
RealView™ Debugger
Version 1.6.1

Target Configuration Guide
Copyright © 2002, 2003 ARM Limited. All rights reserved.
ARM DUI 0182D

RealView Debugger
Target Configuration Guide

Copyright © 2002, 2003 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Change

April 2002 A RealView Debugger 1.5 release.

September 2002 B RealView Debugger v1.6 release.

February 2003 C RealView Debugger v1.6.1 release.

September 2003 D RealView Debugger v1.6.1 release for RVDS 2.0.
ii Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Contents
RealView Debugger Target Configuration Guide

Preface
About this book .. vi
Feedback ... xi

Chapter 1 Introduction
1.1 About RealView configuration ... 1-2
1.2 Comparing target configuration to connection configuration 1-3
1.3 Configuration files ... 1-6

Chapter 2 Connecting to Targets
2.1 The Connection Control window ... 2-2
2.2 Managing connections .. 2-6
2.3 Connecting to a target ... 2-9
2.4 Connecting to many targets .. 2-13
2.5 Failing to make a connection .. 2-14
2.6 Disconnecting from a target .. 2-16

Chapter 3 Configuring Custom Targets
3.1 About target configuration ... 3-2
3.2 The supplied target descriptions ... 3-6
3.3 Creating new target descriptions ... 3-8
3.4 Example descriptions .. 3-20
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. iii

Contents
Chapter 4 Configuring Custom Connections
4.1 Working with connection properties .. 4-2
4.2 Working with RDI targets .. 4-6
4.3 Working with JTAG files ... 4-16

Appendix A Configuration Settings Reference
A.1 Generic settings .. A-2
A.2 Target configuration reference ... A-5
A.3 Custom connection reference ... A-21

Glossary
iv Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Preface

This preface introduces the RealView™ Debugger v1.6 Target Configuration Guide. It
contains the following sections:

• About this book on page vi

• Feedback on page xi.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. v

Preface
About this book

RealView Debugger version 1.6 provides a powerful debugging tool for ARM software
projects. This book shows you how to configure RealView Debugger for your chosen
debug target. This book also describes how target connections are managed and
displayed in RealView Debugger. It contains:

• a description of the target configuration model used by RealView Debugger

• a description of target configuration using the RealView Debugger configuration
facility.

Intended audience

This book has been written for developers who are using RealView Debugger to debug
ARM-based development projects. It assumes that you are an experienced software
developer. It does not assume that you are familiar with RealView Debugger.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the connection and target configuration system
that is used by RealView Debugger. It is recommended that you read this
chapter.

Chapter 2 Connecting to Targets

This chapter describes how you connect to your target using the
RealView Debugger connection control window. It expands on the
introduction in the RealView Debugger v1.6 Essentials Guide, including
details of the context menus and connection to targets in specific ways.

Chapter 3 Configuring Custom Targets

This chapter describes how you configure RealView Debugger with
details of the memory and registers available on your custom target.

If you are using the ARM Integrator or Evaluator development platforms
you do not have to configure the target because the required information
is included with the product. See Chapter 2 Connecting to Targets for
details of how to invoke this configuration.

If you are using another target, the information in this chapter enables you
to set up configuration information for RealView Debugger to define the
target memory map.
vi Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Preface
Chapter 4 Configuring Custom Connections

This chapter describes how you create new connection types if the
connection types configured into the product are not suitable for your
target. It also describes how you install and configure Remote Debug
Interface (RDI) target interfaces into the RealView Debugger Connection
Control window.

You must refer to the manual for the product, for example the Multi-ICE®
Version 2.2 User Guide, for details of each RDI debug agent.

Appendix and Glossary

Appendix A Configuration Settings Reference
Read this appendix for details on setting options to configure
your targets and connections using RealView Debugger.

 Glossary
Refer to this for explanations of terms used in this book.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. vii

Preface
ARM periodically provides updates and corrections to its documentation. See the
Documentation area of http://www.arm.com for current errata, addenda, and the ARM
Frequently Asked Questions list.

ARM publications

This book is part of the RealView Debugger documentation suite. Other books in this
suite include:

• RealView Debugger v1.6 Essentials Guide (ARM DUI 0181)

• RealView Debugger v1.6 User Guide (ARM DUI 0153)

• RealView Debugger v1.6 Command Line Reference Guide (ARM DUI 0175)

• RealView Debugger v1.6 Extensions User Guide (ARM DUI 0174).

Refer to the following books in the RVCT document suite for more information on the
compilation tools component of RVDS 2.0:

• RealView Compilation Tools Essentials Guide (ARM DUI 0202)

• RealView Compilation Tools Compiler and Libraries Guide (ARM DUI 0205)

• RealView Compilation Tools Linker and Utilities Guide (ARM DUI 0206)

• RealView Compilation Tools Assembler Guide (ARM DUI 0204)

• RealView Compilation Tools Developer Guide (ARM DUI 0203).

The following documentation provides general information on the ARM architecture,
processors, associated devices, and software interfaces:

• ARM Architecture Reference Manual (ARM DDI 0100). David Seal, ARM
Architecture Reference Manual, Second Edition, 2001, Addison Wesley. ISBN
0-201-73719-1.

• ARM Reference Peripheral Specification (ARM DDI 0062).

• ARM-Thumb® Procedure Call Standard (ATPCS) Specification (SWS ESPC
0002).

Refer to the following documentation for information relating to the ARM debug
interfaces suitable for use with RealView Debugger:

• Multi-ICE Version 2.2 User Guide (ARM DUI 0048)

• ARM Agilent Debug Interface User Guide (ARM DUI 0158)

• ARM Firmware Suite Version 1.4 User Guide (ARM DUI 0136)

• ARM RMHost User Guide (ARM DUI 0137)

• ARM RMTarget Integration Guide (ARM DUI 0142).
viii Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Preface
Refer to the following documentation for information relating to specific ARM Limited
processors:

• ARM7DI™ Datasheet (ARM DDI 0027)

• ARM710T™ Datasheet (ARM DDI 0086)

• ARM720T™ Datasheet (ARM DDI 0087)

• ARM740T™ Datasheet (ARM DDI 0008)

• ARM7TDMI™ Technical Reference Manual (ARM DDI 0210)

• ARM7EJ-S™ Technical Reference Manual (ARM DDI 0214)

• ARM9TDMI™ Technical Reference Manual (ARM DDI 0180)

• ARM920T™ Technical Reference Manual (ARM DDI 0151)

• ARM922T™ Technical Reference Manual (ARM DDI 0184)

• ARM9EJ-S™ Technical Reference Manual (ARM DDI 0222)

• ARM926EJ-S™ Technical Reference Manual (ARM DDI 0198)

• ARM940T™ Technical Reference Manual (ARM DDI 0144)

• ARM946E-S™ Technical Reference Manual (ARM DDI 0201)

• ARM966E-S™ Technical Reference Manual (ARM DDI 0213)

• ARM1020E™ Technical Reference Manual (ARM DDI 0177)

• ARM1022E™ Technical Reference Manual (ARM DDI 0237).

Refer to the following documentation for details on the FLEXlm license management
system, supplied by GLOBEtrotter Inc., that controls the use of ARM applications:

• ARM FLEXlm License Management Guide v3.0 (ARM DUI 0209).

Make sure that you use version 3.0 of this documentation for details on license
management in RealView Debugger v1.6.1 for RVDS 2.0.

Other publications

For a comprehensive introduction to ARM architecture see:

Steve Furber, ARM System-on-Chip Architecture, Second Edition, 2000, Addison
Wesley, ISBN 0-201-67519-6.

For a detailed introduction to regular expressions, as used in the RealView Debugger
search and pattern matching tools, see:

Jeffrey E. F. Friedl, Mastering Regular Expressions, Powerful Techniques for Perl and
Other Tools, 1997, O'Reilly & Associates, Inc. ISBN 1-56592-257-3.

For the definitive guide to the C programming language, on which the RealView
Debugger macro and expression language is based, see:
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. ix

Preface
Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, second
edition, 1989, Prentice-Hall, ISBN 0-13-110362-8.

For more information about the JTAG standard, see:

IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 1149.1),
available from the IEEE (www.ieee.org).

For specific information relating to Oak and TeakLite processors from the DSP Group
see http://www.dspg.com.
x Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Preface
Feedback

ARM Limited welcomes feedback on both RealView Debugger, and its documentation.

Feedback on RealView Debugger

If you have any problems with RealView Debugger, submit a Software Problem Report:

1. Select Help → Send a Problem Report... from the RealView Debugger main
menu.

2. Complete all sections of the Software Problem Report.

3. To get a rapid and useful response, give:

• a small standalone sample of code that reproduces the problem, if
applicable

• a clear explanation of what you expected to happen, and what actually
happened

• the commands you used, including any command-line options

• sample output illustrating the problem.

4. Email the report to your supplier.

Feedback on this book

If you have any comments on this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. xi

Preface
xii Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Chapter 1
Introduction

This chapter introduces the connection and target configuration system used by
RealView Debugger. It contains the following sections:

• About RealView configuration on page 1-2

• Comparing target configuration to connection configuration on page 1-3

• Configuration files on page 1-6.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About RealView configuration

You configure the way that RealView Debugger connects to and interacts with your
target using a board file. Specifically, the board file enables you to configure:

• debugger to target connection details, such as interface type and instance, TAP
controller positions, and connection interface address

• target processor characteristics, for example processor type and endianess

• target peripheral register and memory configuration.

The board file is initially called rvdebug.brd and, along with files that it references, it is
stored in your default home directory, created for you by RealView Debugger, for
example in \home\user_name. For more information, see About target configuration on
page 3-2.

The RealView Debugger v1.6 Essentials Guide explains how to connect to a simple
target using the Connection Control window. The contents of this window are defined
by elements of the board file. You can change the board file to add to, and modify, the
elements displayed in the Connection Control window.
1-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Introduction
1.2 Comparing target configuration to connection configuration

There is a distinction in RealView Debugger between configuring the target, for
example memory layout, and configuring how the target is accessed. Within the board
file you can specify two types of entry, shown in Figure 1-1:

• connection information, using CONNECTION and DEVICE

• target configuration information, using BOARD, CHIP, and COMPONENT.

Entries such as CONNECTION and CHIP contain many individual settings and in this book
are called groups. Groups can contain subgroups. Individual settings, such as the
Disabled setting shown in Figure 1-1, are always stored in groups, such as the
CONNECTION group.

Figure 1-1 Connection Properties window

The left pane of the Connection Properties window lists the groups for the board file.
The red floppy disk icons indicate a group that is stored in its own file. The yellow folder
icons indicate that the group is stored within an enclosing group.

The right pane of the Connection Properties window lists the groups and other entries
that a selected group contains. Yellow icons in this pane mean the same as yellow folder
icons in the left pane, but a red floppy disk icon in the right pane is also used for any
setting that references a file, for example the Configuration value in Figure 1-1.

��������	

����	

�
�����

�������	���
�	
��������	
��
�����

��	��� �
�������
����	���
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-3

Introduction
1.2.1 Connection entries

The target connection groups shown in Figure 1-1 on page 1-3 are set up for you when
you install ARM Developer Suite (ADS) and ARM Multi-ICE, and are provided by a
RealView Debugger connection interface component, or vehicle, called ARM-A-RR. The
ARM-A-RR vehicle provides the interface to ARM RDI debug targets. RealView Debugger
can support other vehicles, for example to communicate with the DSP Group Oak
processors.

The connection entries in the board file have a corresponding entry in the Connection
Control window. So, for the board file shown in Figure 1-1 on page 1-3, the Connection
Control window in Figure 1-2 shows connections for ARMulator, Multi-ICE, and
Remote_A.

To see these connection entries, you must have installed ADS, for ARMulator and
Remote_A, and ARM Multi-ICE (Version 2.0 or later), for Multi-ICE. RealView
Debugger does not include any connection software of its own.

Figure 1-2 Connection entries in the Connection Control window

The Connection Control window uses the connection configurations listed in the board
file to create a tree of possible connection vehicles and the processors that can be
reached using them.

1.2.2 Configuration entries

Target configuration entries enable you to describe the target architecture to RealView
Debugger. This makes it possible for the debugger to present peripheral registers in a
more human-readable format, and enables operations involving target memory to take
account of the target memory map, for example so that flash memory can be treated as
flash memory.

��������	

����	

�
�����

������	����	�����������
���
�������	

����	

1-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Introduction
Target configuration is possible using the Advanced_Information group that is found in
almost all the main groups. For example, there is an Advanced_Information group in the
CONNECTION=Multi-ICE entry of the ARM-A-RR group, and there also is one in the BOARD=AP
entry of the (*.bcd) Board/Chip Definitions group.

However, to minimize the potential for mistakes, it is suggested that you only modify
the Advanced_Information settings of the following group types:

• BOARD

• CHIP

• COMPONENT.

These groups names can be used to define a hierarchy, starting from the general
board-level and becoming more specific, through whole chips to component modules
on a chip. However, RealView Debugger does not distinguish, functionally, between the
different group names and you can use them as you require.

Within the top-level board file, rvdebug.brd, you can have as many BOARD, CHIP, or
COMPONENT entries as you require. However, there is a better way to store them. When
RealView Debugger starts up, it searches for files with the extension bcd and loads them
into a group called *.bcd Board/Chip Definitions. Configuration entries in files loaded
into this group can be referenced from any other connection, which makes the target
description independent of the connection used to access it, and makes it easier to use
target descriptions in multiple instances of the debugger.

Note

 In the board file, both target connection groups, for example CONNECTION=Multi-ICE, and
target configuration groups, for example BOARD=AP, have an Advanced_Information group.
Although you can use the Advanced_Information group of the target connection, it is
suggested that you use target configuration groups and then reference these from the
connection entry you are using.

The search procedure, the way files are referenced, and the configuration options are
described in more detail in Chapter 3 Configuring Custom Targets.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-5

Introduction
1.3 Configuration files

Default configuration files are supplied as part of the RealView Debugger installation
that define standard ARM targets such as Integrator/AP. If you have ADS, Multi-ICE,
or ARM ADI installed, configuration files are also created for the standard ARM RDI
DLLs included with these products.

This section describes how the debugger install and home directories are located and
how they are used to find the configuration files. It contains the following sections:

• The install directory

• The home directory

• The RealView Debugger search path on page 1-7

• What the configuration files contain on page 1-8

• Saving and restoring connection properties on page 1-9.

1.3.1 The install directory

RealView Debugger must be able to locate the product installation directory so that it
can locate program extensions, data, and configuration files stored there. Use the
following settings to do this:

1. The -install command line option:

-install="D:\WinApp\RVDebug\”

2. The $RVDEBUG_INSTALL environment variable:

set RVDEBUG_INSTALL=D:\WinApp\RVDebug\

3. The default location, for example: C:\Program Files\ARM\RVD\

If the debugger cannot find the install directory, it terminates.

The shortcuts that are installed on the Windows Start → Programs menu include an
-install option to define the directory. If you did not install the debugger in the default
location and you create your own shortcuts, or run rvdebug.exe from the command line,
you must either include the same -install option or define the RVDEBUG_INSTALL
environment variable globally, for example using the Windows Control Panel.

1.3.2 The home directory

RealView Debugger requires a debugger-specific home directory to store user-specific
settings such as your board file. Information about the other files that are stored in the
debugger home directory is in an appendix to the RealView Debugger v1.6 Essentials
Guide.
1-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Introduction
The location of this directory depends on the environment variables and command-line
options defined when the debugger is started. RealView Debugger uses the first defined
item from the following ordered list:

1. You can use -home on the command line to specify an explicit path:

-home="C:\Documents and Settings\user_name\RVDebug"

The home directory is C:\Documents and Settings\user_name\RVDebug

2. You can use the $RVDEBUG_HOME environment variable to use a subdirectory of the
Windows home directory:

set RVDEBUG_HOME=C:\WinNT\Profiles\user_name\Application data\RVDebug

3. You can use the -install command line option on its own or together with -user
or $USER:

-install="D:\WinApp\RVDebug\” -user=”MyTeam”

The home directory is D:\WinApp\RVDebug\home\MyTeam\.

You can use -user or $USER to specify an alternative for MyTeam.

4. You can use the $RVDEBUG_INSTALL environment variable on its own or together
with -user or $USER:

set RVDEBUG_INSTALL=D:\WinApp\RVDebug\

set USER=MyTeam

The home directory is D:\WinApp\RVDebug\home\MyTeam.

5. The default location, for example
install_directory\RVD\Core\1.6.1\release\win_32-pentium\home\user_name\

6. If the product is not found in any of these places, the debugger cannot find the files
it requires and it terminates.

Note

 If the debugger home directory location is defined, but the directory itself does not exist,
the debugger creates it and copies the standard set of configuration files there from the
system defaults in the default settings directory (\etc).

1.3.3 The RealView Debugger search path

RealView Debugger searches several directories for board files, including the default
file, rvdebug.brd. The search path that the debugger uses is:

1. The current working directory, sometimes called the Start In directory.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-7

Introduction
2. The RVDEBUG_SHARE environment variable, if it is set.

3. The RealView Debugger home directory, described in The home directory on
page 1-6, using the order specified there.

4. The default settings directory, \etc.

RealView Debugger searches all of these directories for workspace files and other
configuration files. In particular, this is how Board/Chip definition files are found.
Where two or more files with the same filename in more than one of the searched
directories are found, the first file found is loaded and others are ignored.

1.3.4 What the configuration files contain

The configuration files that RealView Debugger stores in your home directory include
the following files relating to this guide:

*.brd Top-level board files. Normally this is rvdebug.brd. This file includes the
filenames of the other configuration files. You change this file when you
save settings in the Connection Properties window.

*.cnf Configuration files for ARM RDI target connections, for example
Multi-ICE. You change one of these files when you modify the
configuration of an RDI connection using the RDI configuration dialog.

*.rbe The board file that references the configuration file for ARM RDI targets.
This file is where the *.cnf file is named, and it also extends the RDI
settings with chip and board specific configuration settings. You might
change this file when you save settings in the Connection Properties
window.

*.bcd Files that contain configuration information for specific targets. By
default, these files are used from the default settings directory, \etc. If
you change a supplied file or you create your own, you are recommended
to store them in your debugger home directory.

These files contain per-chip and per-board settings as named
configurations. You might change this file when you save settings in the
Connection Properties window.

There are other files that are stored in your debugger home directory. For more
information about these files, see the appendix in RealView Debugger v1.6 Essentials
Guide.
1-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Introduction
1.3.5 Saving and restoring connection properties

When you are configuring RealView Debugger, and especially when you are testing out
worked examples, you are recommended to keep backups of known-good configuration
information before changing settings. These are the backup systems you can use:

• you can rely on the per-file backups that RealView Debugger makes whenever it
saves the Connection Properties window

• you can copy specific files or the whole home directory to a backup area.

Using the automatic backup files

RealView Debugger automatically renames any existing file named in What the
configuration files contain on page 1-8 by adding a .bak file extension whenever the file
is edited. Any previous backup copy of the file is deleted.

If you want to restore a backup file:

1. Exit the Connection Properties window without saving changes.

2. Delete the current file or files.

3. Rename the backup file to the original filename by deleting .bak from the name.

Using manual file or directory backups

For safer backups, you are recommended to make tape or disk copies of the files in
another place. The simplest policy is to save the whole directory when you make a
backup, but restore individual files when you want to revert changes.

Note
 If you restore the whole directory, then as well as restoring the Connection Properties
configuration information, you restore preferences that you might not want to change,
for example workspace properties, project properties, and window layout.

Creating a directory backup requires you to locate and copy the home directory to a safe
place. You do not have to exit the debugger to do this.

Restoring a previous backup file by file requires you to:

1. Locate the backup that you wish to restore from and the debugger home directory
that RealView Debugger is using for your session.

See The home directory on page 1-6 for more information about the location of
your debugger home directory.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-9

Introduction
2. Determine the files to restore.

3. Copy the backup files to the debugger home directory.

Deciding which files to restore depends on the type of configuration you have
performed. These hints might help:

• If you have only changed RDI connection settings, for example by changing items
in the Multi-ICE configuration dialog, select the *.cnf files for the RDI
connections you have reconfigured.

• If you have changed the linkage between RDI connections and your target, select
the *.rbe file for the RDI connections you have reconfigured.

• If you have configured or reconfigured a chip or board using BOARD, CHIP or
COMPONENT groups, select appropriate files from the *.bcd set.

If you have created new *.bcd files in your debugger home directory, you might
also want to delete them from that directory. However, a *.bcd file is not used
unless it is explicitly referenced.

• If you have changed everything, or you are not sure what to select, selecting all
the files listed in What the configuration files contain on page 1-8 will restore the
Connection Properties window to its original state.
1-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Chapter 2
Connecting to Targets

This chapter describes how the Connection Control window is used to view connection
details and to configure new ones. It contains the following sections:

• The Connection Control window on page 2-2

• Managing connections on page 2-6

• Connecting to a target on page 2-9

• Connecting to many targets on page 2-13

• Failing to make a connection on page 2-14

• Disconnecting from a target on page 2-16.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-1

Connecting to Targets
2.1 The Connection Control window

The Connection Control window enables you to make connections, change existing
connections, and configure new ones if required.

You can display the Connection Control window, shown in Figure 2-1, in the following
ways:

• Click on the blue hyperlink in the File Editor pane, if available.

• Select File → Connection → Connect to Target... from the Code window.

Figure 2-1 Connection Control window

If you are licensed to work with multiprocessor debug target systems using different
processor families, the Connection Control window contains tabs, for example the
Synch tab, shown in Figure 2-1. In single processor debugging mode, these tabs are not
available.

If you are using the RTOS extension to work with multithreaded applications, the
window might contain additional tabs not shown here. See the RTOS chapter in
RealView Debugger v1.6 Extensions User Guide, for more details.

2.1.1 Using the Connection Control window

The Connection Control window shows all the connections available to you as specified
in your board file and the configuration files it references. The window title bar shows
the location of the board file being used. In the example in Figure 2-1, this is the default
file, stored in \home\My_user_name\rvdebug.brd, in the root installation.

The Connection Control window is arranged in two columns or panes, Name and
Description. Connection and target details are displayed in the left pane as a
hierarchical tree with node controls, + and -.
2-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
Expanding and collapsing groups

Expand and collapse the groups in the Connection Control window by clicking on the
plus sign or the minus sign at each node in the Name tree. Figure 2-2 shows a Connection
Control window after groups have been expanded. If a group is selected, a box is drawn
around it.

Figure 2-2 Expanding groups in the Connection Control window

Context menus are available to change the way entries are displayed. To expand the
top-level groups, right-click on a group, for example ARM-A-RR, and select Expand
Vehicles from the context menu. To expand the second-level entries, right-click on an
entry, for example ARMulator, and select Expand. To collapse them again, select
Collapse from the context menu, shown in Figure 2-3.

Figure 2-3 Displaying the context menu for the ARMulator vehicle

You can connect or disconnect by checking or unchecking the connection state check
box shown in Figure 2-4 on page 2-4.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-3

Connecting to Targets
Figure 2-4 The Connection Control check box

If you collapse connected (checked) entries, RealView Debugger does not complete the
collapse request so that a connection is not hidden. Instead, the control is grayed out, as
shown for the ARMulator entry in Figure 2-5.

Figure 2-5 Collapsed, active connection display

The Connection Control window shows available connections as defined by the target
configuration settings. This is based on information about the available target
processors as defined in the default configuration files. For example, the ARMulator
configuration files, installed as part of the root installation, specify the ARM7TDMI core as
the default processor.

You can connect to any of the default connections, shown in the Connection Control
window, without making any further changes to configuration files. See Connecting to
many targets on page 2-13 for details.

2.1.2 Groups in the Connection Control window

Connection and target details are displayed as a hierarchy, in the Name column of the
Connection Control window:

Target Vehicles

Top-level groups are supported target vehicles as specified by the target
configuration settings, for example ARM-A-RR for ARM RDI targets.

Access-provider connections

Second-level groups show the type of vehicle, or the debug target
interface used to support the connection, for example Multi-ICE, the
ARM JTAG debug tool for embedded systems, or Remote_A, the Angel
debug monitor. The ARM RDI second-level groups are enabled in your
board file when you install the ADS, ARM ADI, or ARM Multi-ICE
software.

�	

����	
������������	�

��������	

����	

2-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
Endpoint connections

Third-level entries show the target processors that are made available by
the access provider, for example the ARM7TDMI core being simulated by
ARMulator, or the ARM920T core connected using Multi-ICE.

Each endpoint connection is accompanied by a check box to show the
current state of the connection. When connected, this check box is
checked, shown in Figure 2-4 on page 2-4. Where no connections have
been made, the check boxes are blank.

RealView Debugger uses icons to help you identify the types of entries in the Name
column.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-5

Connecting to Targets
2.2 Managing connections

Use context menus in the Connection Control window to:

• manage the displayed connections

• change your board file

• establish a connection to your chosen debug target.

There are several context menus that can be displayed, depending on the tree item you
click on:

• The vehicle menu

• The ARM RDI target menu on page 2-7

• The JTAG target menu on page 2-8.

2.2.1 The vehicle menu

Right-click anywhere on a top-level tree name, for example the ARM-A-RR vehicle, to see
the vehicle context menu shown in Figure 2-6.

Figure 2-6 Vehicle menu

The options available from this menu are:

Collapse All Collapses the hierarchical tree to display only the top-level entries.

Expand Vehicles

Expands the hierarchical tree to display the contents of top-level groups.

Connection Properties...

Displays the Connection Properties window to amend current
configuration details or to add target configurations.

Add/Remove/Edit Devices...

Only displayed for the ARM-A-RR vehicle, this item displays the RDI Target
List window, used to add or remove RDI target DLLs from the ARM-A-RR
vehicle, or to edit the configuration of one of these targets.

Select Board-File...

Displays the Select Board-File to Read dialog, where you can specify a
new board file for target configuration in this session.
2-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
If there are any connections established, for any vehicle, the menu includes the option:

Disconnect All

Disconnects all connected targets and collapses the hierarchical tree to
display the top-level and second-level entries.

2.2.2 The ARM RDI target menu

Right-click on a second-level entry within ARM-A-RR, for example ARMulator or
Multi-ICE, to see the RDI target context menu, shown in Figure 2-7.

Figure 2-7 RDI target menu

The options available from this menu are:

Expand Expands the hierarchical tree to display all the second-level entries. This
then changes to Collapse. Expanding the connection causes the RDI
interface to be initialized and queried. This might:

• cause a short delay

• result in error messages being displayed if previously configured
connection no longer operates because, for example, the JTAG
cable is not connected

• result in the connection configuration dialog for the RDI software
being displayed.

Connection Properties...

Displays the Connection Properties window, as for the vehicle menu.

Add/Remove/Edit Devices...

Enables you to add or remove RDI targets, as for ARM-A-RR above.

Configure Device Info...

Enables you to configure the debug target, for example by displaying the
ARMulator Configuration dialog box where you can configure simulated
debug targets.

For details on using these menu options to configure RDI targets, see Chapter 4
Configuring Custom Connections.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-7

Connecting to Targets
2.2.3 The JTAG target menu

This menu is displayed for connections that use On-Chip Debugging (OCD)
JTAG-based connections.

Right-click on ARMOAK_MICE, to see the JTAG target context menu, shown in Figure 2-8.

Figure 2-8 JTAG Target menu

The options available from this menu are:

Collapse Collapses the hierarchical tree to display only the top-level nodes. This
then changes to Expand.

Connection Properties...

Displays the Connection Properties window to amend current
configuration details or to add target configurations.

Test JTAG... Enables you to test that a JTAG connection exists to the devices specified
for this emulator. This is useful when troubleshooting the connection
setup.
2-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
2.3 Connecting to a target

RealView Debugger offers different ways to connect to your debug target:

• Using the Connection Control window

• Including the connection in the workspace on page 2-10

• Using CLI commands on page 2-10

• Setting connect mode on page 2-11.

If you are already connected to a target processor, in single processor debugging mode,
making a new connection automatically disconnects the existing connection. The
auto-disconnect does not occur until the new connection is successfully established so
it is not necessary to disconnect yourself before making a new connection. Making
multiprocessor connections is described in the RealView Debugger v1.6 Extensions
User Guide.

2.3.1 Using the Connection Control window

Select File → Connection → Connect to Target... from the Code window main menu
to display the Connection Control window where you can connect to your debug target.

You can connect to a target in the following ways:

• Double-click on an unconnected entry.

• Select the check box for a required entry so that it is checked.

• Right-click on a connection entry and select Connect from the Connection
context menu, shown in Figure 2-9 on page 2-10.

• Right-click on a connection entry and select Connect (Defining Mode)... from
the Connection context menu, shown in Figure 2-9 on page 2-10.

Note
 You must use this option if you do not want the processor to be stopped when you

connect to a target. For more information on defining the connection mode, see
Setting connect mode on page 2-11.

For example, to connect to an ARMulator model:

1. Display the Connection Control window.

2. Expand the top-level ARM_A_RR vehicle.

3. Expand the second-level ARMulator entry.

4. Select the processor connection, for example the default ARM7TDMI_0.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-9

Connecting to Targets
Figure 2-9 Connection menu

Note
 When you connect to a Multi-ICE target with two or more processors, the order the
processors appear in is neither alphabetical nor based on the TAP number.

If the chosen vehicle provides an RDI target that has not been configured, a dialog box
is displayed to indicate that the connection has failed (see Failing to make a connection
on page 2-14 for details). This enables you to configure the target and connect.

RealView Debugger connects to the specified target using the default connection mode
for that target, unless you choose the Connect (Defining Mode)... option. You can,
however, specify the connection mode to use, see Setting connect mode on page 2-11.

2.3.2 Including the connection in the workspace

If you exit the debugger with an active connection, a record of the connection details is
kept in the active workspace. The next time that workspace is active when the debugger
starts, the debugger attempts to set up the previous connection again.

2.3.3 Using CLI commands

The CONNECT and RUN commands can be used to make a connection to your debug target.
For details on using these commands, see RealView Debugger v1.6 Command Line
Reference Guide.
2-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
2.3.4 Setting connect mode

You can control the way a processor starts when you connect. This is useful when
debugging multiprocessor debug target systems or multithreaded applications but can
also be used when debugging a single processor target system, for example using
RealMonitor.

To set the connect mode use either:

• the Connect (Defining Mode)... submenu of the File menu

• the Advanced_Information setting Connect_mode.

The connection mode that is used is defined by the Connect_mode setting in the
Advanced_Information group in your board file unless you use the option Connect
(Defining Mode).... For more information about setting connect mode in the board file,
see the description of the Advanced_Information block in Appendix A Configuration
Settings Reference.

To define a connection mode using the option Connect (Defining Mode)...:

1. Right-click on a connection entry, for example ARM7TDMI, using ARMulator, to
display the context menu, shown in Figure 2-9 on page 2-10.

2. Select Connect (Defining Mode)... to display the Connect Mode selection box
shown in Figure 2-10.

Figure 2-10 Connect Mode selection box

The state options shown depend on the target vehicle making the connection. If you
select an option that is not supported by your target processor, a warning is displayed to
show that RealView Debugger has not completed the request.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-11

Connecting to Targets
Choose from this list to establish a connection and control the startup state of the target
processor:

Default Reset/Halt

Submits a processor reset and halts any process currently running by
issuing a Stop command. This is the default.

Reset and Halt Target

Submits a processor reset and halts any process currently running by
issuing a Stop command.

Reset and No-Halt Target

Submits a processor reset but does not explicitly halt any process
currently running.

No-Reset and Halt Target

Does not submit a processor reset but explicitly halts any process
currently running by issuing a Stop command.

No-Reset and No-Halt Target

Does not submit a processor reset or halt any process currently running.

Highlight the required state and click OK.
2-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
2.4 Connecting to many targets

If you are licensed to work in multiprocessor debugging mode, you can make multiple
target connections. In single processor debugging mode, however, you can make only
one connection at a time, and making a second connection automatically disconnects
the previous connection.

As supplied in the base product, the default board file rvdebug.brd enables you to
connect to one or more preconfigured debug targets on your local workstation. You can
connect to these targets without making any changes to this board file.

Note

 It is recommended that you turn off the cache mechanism in Multi-ICE when debugging
multiple processors:

1. Select File → Connection → Connect to Target... to display the Connection
Control window.

2. Right-click on the Multi-ICE entry and select Configure Device Info... from the
context menu.

The Multi-ICE DLL configuration dialog is displayed.

3. Click the Advanced tab.

4. Ensure that the Start-up with cache enabled check box is not selected, and click
OK.

Managing your connection options is described in Using the Connection Control
window on page 2-9.

For details on making multiprocessor connections see the multiprocessing chapter in
RealView Debugger v1.6 Extensions User Guide.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-13

Connecting to Targets
2.5 Failing to make a connection

Clicking inside a check box, in the Connection Control window, might fail to connect
to the chosen debug target. This might be due to one of the following reasons:

• You do not have a valid license to use the debug target. RealView Debugger
displays a message if you do not have a valid license.

• The debug target is not installed or the connection is disabled.

• The RDI target has not been configured.

• The target hardware is not powered up ready for use.

• The target is on a scan chain that has been claimed for use by something else.

• The target hardware is not connected.

If RealView Debugger attempts to make a connection and fails, it normally displays a
selection box to offer possible actions, shown in Figure 2-11. Some endpoint
connections, such as Multi-ICE, might also display their own dialogs or messages.

Figure 2-11 Failing to make a connection

The options are:

Retry... If you have identified the cause of the failure and corrected it, for example
you have connected a board or switched on power, you can select this
option and click OK to connect.

Edit Board file...

You can select this option and click OK to close the list selection box and
display the Connection Properties window where you can edit your target
configuration details. Save the new settings and then close the window
before trying to make the connection using the Connection Control
window.
2-14 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
Display list of possible problems...

RealView Debugger might display this option if there are known
problems with solutions to apply. Selecting the option displays a message
box containing a list of possible causes for the failure to connect. The text
describes ways to fix the problem. This list provides only suggestions and
might not be applicable to your debug target.

Configure Device Info...

Select this option to configure the target. If you are accessing an RDI
target for the first time, for example Multi-ICE, it must be configured
before it can be used.

The error message displayed at the top of the window indicates the type of error
encountered by RealView Debugger. To close the error message and abandon the
connection, click Cancel.

2.5.1 Troubleshooting

This section describes how to identify and fix some problems you might encounter:

• If you are using Multi-ICE and see a message asking you to Reconnect to the
server, you must disconnect from all processors using the Multi-ICE connection
and then reconnect them.

You can use either the Connection Control window check boxes or the CLI
DISCONNECT and CONNECT commands.

• If your working versions of configuration files are accidentally erased, or become
corrupted, RealView Debugger might be unable to use them. See Troubleshooting
on page 3-46 for information describing how to recover from this situation.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-15

Connecting to Targets
2.6 Disconnecting from a target

There are several ways to disconnect when working with a target. Choosing the most
appropriate method depends on:

• the number and attachment of Code windows

• which window has the focus when the disconnection option is used

• the state of the currently connected processor, and process if running

• the desired state of the processor, or process, following disconnection.

If you are already connected to a debug target processor, in single processor debugging
mode, making a new connection automatically disconnects the existing connection. The
auto-disconnect does not occur until the new connection is successfully established so
it is not necessary to disconnect yourself before making a new connection.

Code windows are not closed on disconnecting but their contents might change
depending on the data they contain. For example any loaded images are unloaded and
so associated source files close and entries displayed in a Register, Memory, or Process
Control pane are cleared whereas entries in the Watch pane remain unchanged. This
behavior depends on the update options you set for the window and the disconnect state
of the target processor.

If you are working with projects, any open projects do not close if you disconnect from
a debug target. Even where a project is bound to the connection, it does not close if you
disconnect. However, it is unbound and its details are no longer shown in the Process
Control pane.

For details on disconnecting during multiprocessor debugging sessions see the
multiprocessing chapter in the RealView Debugger v1.6 Extensions User Guide.

The disconnection options available are:

• Using the File menu

• Using the Connection Control window on page 2-17

• Using the CLI on page 2-18

• Disconnecting by exiting on page 2-18

• Setting disconnect mode on page 2-19.

2.6.1 Using the File menu

If you are connected to a single debug target processor, you can disconnect from the
current connection. Select File → Connection → Disconnect from the Code window
main menu. This has the following results:

• the current connection is terminated immediately

• any windows attached to the current connection are unattached
2-16 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
• title bars and Color Boxes for all unattached windows are updated.

To close any unwanted windows, select File → Close Window from the main menu.

2.6.2 Using the Connection Control window

At any point in your debugging session, you can disconnect from a target using the
Connection Control window. This can be done in different ways:

• double-click on a connected entry

• select the check box for a required entry so that it is unchecked

• right-click on a connection entry and select Disconnect from the Disconnection
context menu, shown in Figure 2-12

• right-click on a connection entry and select Disconnect (Defining Mode)... from
the Disconnection context menu, shown in Figure 2-12.

Note

 You must use this option if you do not want the processor to be stopped when you
disconnect from a target. For more information on defining the disconnection
mode, see Setting disconnect mode on page 2-19.

Figure 2-12 Disconnection menu

Using any of these methods immediately terminates the connection and updates the
Code window display and the active connections list. This has the following results:

• the specified connection is terminated immediately

• any windows attached to the current connection are unattached

• title bars and Color Boxes for all unattached windows are updated.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-17

Connecting to Targets
RealView Debugger disconnects from the target using the default disconnect mode for
that target, unless you use the Disconnect (Defining Mode)... option. You can,
however, specify the connection mode to use, see Setting disconnect mode on
page 2-19.

To close any unwanted windows, select File → Close Window from the main menu.

2.6.3 Using the CLI

You can disconnect a connection using the CLI command DISCONNECT. This also enables
you to specify the disconnection mode. See the RealView Debugger v1.6 Command
Line Reference Guide for more information.

2.6.4 Disconnecting by exiting

Exiting the debugger with a connection active causes details of the connection to be
stored in the current workspace. However, although saving the workspace on exit is the
default behavior, you might have changed this. See the chapter describing configuring
workspaces in RealView Debugger v1.6 User Guide for more details. When you exit,
the debugger prompts you to make sure you want to disconnect, as described in
Disconnection confirmation.

When RealView Debugger starts up with a workspace that includes stored connection
information, it will try to reconnect. If this fails, you are prompted for the next action,
as described in Reconnecting stored connections on page 2-19.

Disconnection confirmation

If you exit the debugger with active connections, the debugger asks whether these
connections can be disconnected, shown in Figure 2-13.

Figure 2-13 Disconnect confirmation
2-18 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
If you do not disconnect, the Target Vehicle Server (TVS) maintains the connection until
another debugger session requires it. Therefore, if you load and run an image on your
target, stop it, exit from the debugger without disconnecting, and then rerun the
debugger, it will still be stopped in the same place when the debugger redisplays the
connection.

If you do disconnect when you exit the debugger, TVS disconnects that connection,
using the disconnection mode defined in the Advanced_Information setting
Disconnect_mode in the connection properties for that connection. If this leaves the TVS
with no connections, it exits as well.

Reconnecting stored connections

If, when you restart the debugger, the connection stored in the workspace is no longer
available, you are prompted to retry or reconfigure it, shown in Figure 2-14. Select
Configure Device Information... from the list and click OK to reconfigure the
connection. Click Cancel to abort the connection attempt.

Figure 2-14 Disconnect reconfiguration or retry

2.6.5 Setting disconnect mode

You can control the way a processor is left when you disconnect. This is useful when
debugging multiprocessor debug target systems or multithreaded applications, and can
also be used when debugging a single processor target system, for example to download
your application and leave it running without the debugger connected.

To set the disconnect mode use either:

• the Disconnect (Defining Mode)... submenu of the File menu

• the Advanced_Information setting Disconnect_mode.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-19

Connecting to Targets
The disconnection mode that is used is defined by the Disconnect_mode setting in the
Advanced_Information group in your board file unless you use the option Disconnect
(Defining Mode).... For more information about setting disconnect mode in the board
file, see the description of the Advanced_Information block in Appendix A
Configuration Settings Reference.

To define a disconnection mode using the option Disconnect (Defining Mode)...:

1. Right-click on a connection entry to display the Disconnection context menu,
shown in Figure 2-12 on page 2-17.

2. Select Disconnect (Defining Mode)... to display the Disconnect Mode selection
box, shown in Figure 2-15.

Figure 2-15 Disconnect Mode selection box

The state options shown depend on the target vehicle handling the connection. If you
select an option that is not supported by your target processor, a warning is displayed to
show that the chosen mode is invalid and is being ignored.

Choose from the list to close a connection and leave the target processor in one of these
states:

Running (Debug)

This leaves the processor running, with any defined breakpoints still
active. This means the program might enter debug state after the
debugger has disconnected, depending on the code paths the program
takes.

Free Running

This leaves the processor running, with any defined breakpoints disabled.
This means the program does not enter debug state after the debugger has
disconnected.
2-20 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Connecting to Targets
Running This leaves the processor running, with the state of breakpoints defined
by the vehicle in use. This means the program might enter debug state
after the debugger has disconnected, depending on the code paths the
program takes.

As-is now This leaves the processor in the current state, whether stopped or running,
and with the state of any breakpoints unchanged.

Stopped (Debug)

The processor is left stopped.

Highlight the required state and click OK. This has the following results:

• the current connection is disconnected

• the command is reflected in the Cmd tab of the Output pane

• the toolbar state group is set to Unknown

• any windows attached to the current connection are unattached

• title bars and Color Boxes for all unattached windows are updated.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-21

Connecting to Targets
2-22 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Chapter 3
Configuring Custom Targets

This chapter describes the debug target configuration model used by RealView
Debugger. Read this chapter to find out how to describe your debug target to the
debugger. It contains the following sections:

• About target configuration on page 3-2

• The supplied target descriptions on page 3-6

• Creating new target descriptions on page 3-8

• Example descriptions on page 3-20.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-1

Configuring Custom Targets
3.1 About target configuration

RealView Debugger works in conjunction with either a hardware or a software debug
target. An ARM development board, communicating through Multi-ICE, is an example
of a hardware debug target system. ARMulator is an example of a software debug target
system. This section provides an introduction to target configuration. It contains the
following sections:

• Target configuration

• Configuration files

• Default configuration files on page 3-3

• Using other board files on page 3-5.

3.1.1 Target configuration

RealView Debugger assembles configuration settings to describe the debug
environment and all the debug targets available in the current debugging session. These
settings serve two main purposes:

• to describe your debug targets in a way that enables RealView Debugger to find
out all the information it requires to establish a connection

• to enable you to configure the Extended Target Visibility (ETV) features of your
debug targets, and to make this information accessible to RealView Debugger.

Using internal configuration settings in this way means that you can change your debug
target connection, or connect to multiple debug targets, without leaving your RealView
Debugger session.

3.1.2 Configuration files

Default configuration files are supplied as part of the RealView Debugger installation.
If you have ADS installed, these are set up for you to make a connection to the
supported target connection vehicles.

RealView Debugger creates a personal home directory for you, as described in
Configuration files on page 1-6, containing default configuration files.

How the configuration files are linked together

The board file references several other configuration files, for example the RDI
definitions, *.rbe, and the Board/Chip definition files, *.bcd., to form the complete
configuration. This is shown in Figure 3-1 on page 3-3.
3-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-1 Board file configuration file structure

The JTAG and RDI configuration files contain the remaining information required to
configure a specific debug target. These files are not structured in the same way as the
board files. They use the format required by the debug target that they are used to
configure, for example, the RDI configurations are structured as Toolconf files.

3.1.3 Default configuration files

The debug target configuration settings are maintained through the use of a hierarchy of
configuration files:

• Board file

• RDI configuration files on page 3-4

• JTAG files on page 3-4

• Board/Chip definition files on page 3-5.

Board file

RealView Debugger uses a board file to access information about the debugging
environment and the debug targets available to you. You can use RealView Debugger
with the default board file that is installed for you. This is called rvdebug.brd and is
copied into your home directory, from the default settings directory \etc, when you first
use RealView Debugger after installation. This means that if you damage your personal
board file, you only have to delete it from your home directory and a new copy of the
original default board file is placed there.

����������

������	������ ���	
��������	
�

!"#��	
��������	
�

��
�������

�	
��������	
�
�
������
��������

$	��������
�	��	
�
����

�����
��������

���	������

���������

��%�����
���	
�

���������

!"#�����
���	
�

���������
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-3

Configuring Custom Targets
The board file defines the debug target configuration settings for the current session. For
each available target, it describes the type of target, the simulator or emulator being
used, and any custom connection information.

RealView Debugger must have a board file to make connections. If you work with a
variety of targets and connections, you might set up, and save, several board files so that
you can easily switch RealView Debugger from one to another. You can use the default
board file as a basis for any number of further copies, each edited for a particular
purpose.

You can use a text editor to display or print the contents of a board file, and all associated
configuration files, but it is recommended that you never edit these files with a text
editor or word processor. Use only the Connection Properties window to make changes
to a board file, or to create a new one.

RDI configuration files

When you are working with RDI targets, such as Multi-ICE and Remote_A, special
configuration files are generated by the RDI configuration utilities. These files make up
the RealView Debugger configuration settings specific to RDI targets.

The RDI configuration files consist of:

.rbe files There is one .rbe file for each RDI target available for connection.

.cnf files These files store the target configuration settings you make in one
debugging session so that they can be automatically used again in any
subsequent sessions.

Note
 You must not edit these files manually. Instead, use the RDI configuration utilities
provided as part of the RealView Debugger base product, as described in Chapter 4
Configuring Custom Connections.

JTAG files

JTAG files are used for built-in emulators such as ARM Multi-ICE direct connect.
These files define the JTAG (Joint Test Action Group) boundary scan architecture for
your target and so describe the number and types of hardware devices in the scan chain
that are available for connection.
3-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
JTAG files provide access, on the local workstation, to an emulator for each architecture
that RealView Debugger supports, as specified in the installation. Each emulator is
defined using a .jtg file named processor.jtg, for example arm.jtg. These files are
created in the default settings directory \etc at installation.

Whenever RealView Debugger reads a .brd file, it also searches for any of these related
files and reads them. In this way, the information held in the JTAG files becomes part
of the configuration settings for this session. You can add or remove JTAG files if
necessary, without having to edit the .brd file. By default, new .jtg files are stored in
\etc, but you can specify a different location in your .brd file.

If you are using an emulation scan chain that corresponds to the devices defined in an
available .jtg file, you can refer to that file and specify the I/O port used by the
emulator, if necessary. If you plan to use different debug target systems, you must create
a .jtg file that defines the devices on your target. Do this using the Connection
Properties window.

Note
 When working with RDI targets, or the ARMulator simulator, JTAG files are replaced
by the .cnf configuration files.

Board/Chip definition files

Board/Chip definition files contain ETV information about a particular board or chip as
supplied by the manufacturer, including peripheral registers and memory regions. The
files are usually stored in one location so that they can be referred to from as many
places as necessary, but only a single copy requires maintenance.

Each board or chip is defined using a file named processor_name.bcd, for example
CM920T_ETM.bcd or CM966ES.bcd. By default, .bcd files are stored in \etc, but you can
specify a different location in your board file.

In general, you do not need to edit these files but you can specify their location so that
they are included in the configuration settings. However, where changes are required,
use the Connection Properties window to make the necessary changes.

3.1.4 Using other board files

The default board file, rvdebug.brd, can be used as a template to create additional board
files. RealView Debugger can only access one board file at a time but you can specify
which .brd file to use for a particular debugging session. You can use this facility to
share a configuration between developers.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-5

Configuring Custom Targets
3.2 The supplied target descriptions

This section describes the target board descriptions that are supplied with RealView
Debugger. These descriptions can be used with the associated target without further
modification. Reference them from the target connection, see Linking a board, chip, or
component to a connection on page 3-12 for details.

The target descriptions are stored in files with the extension .bcd, in the default settings
directory \etc. These Board/Chip definition files include details of the location and
format of the registers and memory available on the described target boards.

Note

 If you upgrade to a later version of RealView Debugger you are provided with a new,
and possibly different, version of these files. It is recommended, therefore, that you do
not modify these files so that you can upgrade easily. See Creating new target
descriptions on page 3-8 for details of creating your own configurations.

The supplied descriptions include:

AP.bcd A description of the ARM Integrator/AP registers and that part of
the core module memory map that is decoded by the motherboard.

This description is also suitable for use with the Integrator/CM
platform.

Eval7T.bcd A description of the ARM Evaluator-7T registers and memory
map, including a description of the KS32C50100 processor
internal registers.

CM7TDMI.bcd A description of the ARM CM7TDMI processor core module
registers and memory map.

CM720T.bcd A description of the ARM CM720T processor core module
registers and memory map.

CM740T.bcd A description of the ARM CM740T processor core module
registers and memory map.

CM920T.bcd A description of the ARM CM920T processor core module
registers and memory map.

CM920_ETM.bcd A description of the ARM CM920T-ETM processor core module
registers and memory map.

CM940T.bcd A description of the ARM CM920T processor core module
registers and memory map.
3-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
CM966ES.bcd A description of the ARM CM966E-S processor core module
registers and memory map.

CM10200.bcd A description of the ARM CM10200 processor core module
registers and memory map.

CP.bcd A description of the ARM Integrator/CP registers and that part of
the core module memory map that is decoded by the motherboard.

Note
 If you are using an Integrator/AP, Integrator/CM, or Integrator/CP motherboard with a
core module, you can combine the platform and core module descriptions by using
multiple BoardChip_name assignments in the CONNECTION section of the board file, shown
in Figure 3-2.

Figure 3-2 Connection Properties window, showing use of BoardChip_name setting

You can use the supplied target descriptions by referencing them from the connection
you use to communicate with your target. For example, if you are using an Integrator
CM920T processor core module with Multi-ICE, you modify the Multi-ICE CONNECTION
setting BoardChip_name to reference the CM920T description. For further instructions on
doing this, see Linking a board, chip, or component to a connection on page 3-12.

#
������	�& '
	�������������	

�()*+��	���
���������	
 $	����������	�����

�
������� '���

$	����������	�����
�
��������()*+����
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-7

Configuring Custom Targets
3.3 Creating new target descriptions

This section describes how to create variations of existing configurations and new target
descriptions. Creating new target descriptions provides these advantages:

• with a memory map, the debugger can check that memory is used as it should be,
including refusing to load programs where there is no memory, and automatically
invoking flash memory programming routines

• with definitions of the addresses of I/O registers, and the bit fields within them,
the debugger can display tabs in the Register pane enabling GUI access to these
values.

Creating new target descriptions involves these steps:

1. Create a BOARD, CHIP, or COMPONENT group for the configuration. This requires the
following steps:

a. Creating a *.bcd file on page 3-9, to store the group.

b. Creating and naming a board, chip, or component on page 3-11.

2. Define the target using the configuration items in the group. This is described in
Example descriptions on page 3-20.

3. Link the new target definition to the CONNECTION that the target uses. This is
described in Linking a board, chip, or component to a connection on page 3-12.

Note
 Do not configure the board file when the debugger is connected to a target.

3.3.1 Saving and restoring your .brd file

In these examples, you are changing your board file. This is stored in your RealView
Debugger home directory, for example \home\user_name\, where user_name is your
Windows login or user name. Target configuration files are also stored in this directory,
for example .cnf files.

It is recommended that you back up this directory before starting the examples
described in this chapter, so that you can restore your original configuration later. For
details see:

• Configuration files on page 1-6 for instructions on making backups of your
configuration

• Restoring your .brd file on page 3-45 for instructions on restoring a default
configuration
3-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
• Troubleshooting on page 3-46 for instructions on recovering from an incorrectly
configured debugger home directory, whether or not you have a backup.

3.3.2 Creating a *.bcd file

To create a new *.bcd file, you must copy one of the existing files. You can do this in
Windows Explorer or from within RealView Debugger.

To copy the file in Windows Explorer, use the Windows copy commands in the normal
way. Start RealView Debugger and display the Connection Properties window. Resume
at step 8 of the following procedure.

To copy a *.bcd file from within the debugger:

1. Select File → Connection → Connection Properties... to display the
Connection Properties window.

2. Expand the group (*.bcd) Board/Chip Definitions to show the current list of
target descriptions.

3. Right-click on the name of the *.bcd file to copy. For example, right-click on the
entry ...\AP.bcd.

4. Select Save As... from the context menu, to display the dialog shown in
Figure 3-3.

Figure 3-3 Saving an existing *.bcd file with a new name

By default, *.bcd files are saved in your default settings directory \etc. Locate
your RealView Debugger home directory to save the new file.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-9

Configuring Custom Targets
5. Enter the new filename, for example AM.bcd. You must use the .bcd file extension.

6. Click Save. The dialog closes and the new name is displayed in the *.bcd list. It
replaces the initial filename.

7. Select File → Save Changes, then File → Reset to display the updated list of
target description files.

8. Expand the new.bcd file group by clicking on the icon. Right-click on the
contents (for example, a BOARD entry), to display the context menu shown in
Figure 3-4.

Figure 3-4 Deleting the original contents of the copied file

9. Select Delete from the context menu to delete the BOARD (or other groups) in the
file. By deleting and then recreating the group, you avoid problems caused by old
and inappropriate settings.

10. Select File → Save and Close.

Note
 The general layout and controls of the RealView Debugger settings windows are
described in the online help topic Changing Settings.
3-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
3.3.3 Creating and naming a board, chip, or component

To configure your target, within the *.bcd file that you created in Creating a *.bcd file
on page 3-9, you must create a BOARD, a CHIP, or a COMPONENT group. RealView Debugger
uses these groups in the same way regardless of which type you use. It is however
recommended that you use them as follows so that it is clear what the group describes:

BOARD Target boards as a whole, for example, the Evaluator-7T, or the
Integrator/AP motherboard, including the effect of glue logic
implementing memory maps and small peripheral components.

CHIP Significant devices on a target board, especially where you might use the
device on more than one board, or where the device is in itself complex.
For example, in the supplied target descriptions, the Evaluator-7T BOARD
references the KS32C50100 CHIP to define the processor and ASIC
components of that device.

COMPONENT Other components not covered by the above.

To create a group:

1. Right-click on the name of the *.bcd file. For example, right-click on the entry
...\AM.bcd, shown in Figure 3-5.

Figure 3-5 Adding a new group to a *.bcd file

2. Select Make New Group... to display the Group Type/Name selector dialog.

3. Select the type of group you want to use from BOARD, CHIP, or COMPONENT.

4. In the Group Name data field change the name from new to something suitable for
your target, using only alphanumeric characters, underscore _, and dash -. This
example shows a CHIP called S5471KT.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-11

Configuring Custom Targets
5. Click OK to create the group. It is initially displayed collapsed, so you must click
on the icon to display the group, shown in Figure 3-6.

Figure 3-6 Viewing the new group in the *.bcd file

6. Select File → Save and Close.

3.3.4 Linking a board, chip, or component to a connection

The configuration group you create in a *.bcd file is only used if you reference it from
a connection. There are several cases to consider, presented here in order of increasing
complexity:

• Linking one board group to one processor connection

• Linking several board groups to one processor connection on page 3-14

• Linking one or more board groups to another board group on page 3-16

• Linking one or more board groups to multiple processor connections on
page 3-18.

Linking one board group to one processor connection

This configuration is shown as in the form of a tree in Figure 3-7.

Figure 3-7 Linking one connection to one board

����������

���	
�������

���������������������
3-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
To link to this you must first ensure that the *.bcd file contains the required BOARD, CHIP,
or COMPONENT groups. Then:

1. In the Connection Properties window, expand the connection that you are using.
For example, if you are using a Multi-ICE interface, expand these entries:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe

2. Click on CONNECTION within the entry you selected in step 1b. The right pane
displays a set of properties including BoardChip_name.

3. Left-click on the BoardChip_name. It becomes highlighted.

4. Left-click on the BoardChip_name again. This displays a context menu including a
list of available .bcd files, shown in Figure 3-8.

Figure 3-8 Linking a board

Note

 The two clicks in steps 3 and 4 must be distinct. A double-click does not work.

5. Select the name of the board group, for example the CHIP called S5471KT that was
created in Creating and naming a board, chip, or component on page 3-11.

6. Select File → Save and Close.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-13

Configuring Custom Targets
7. Restart the debugger. When you connect using Multi-ICE, the configuration
defined in your board group is applied to the connection.

Linking several board groups to one processor connection

You might want to link several groups to a single processor if the groups represent
different, possibly optional, parts of the same target. For example, the Integrator/AP
motherboard definition BOARD=AP and an Integrator core module definition such as
BOARD=CM940T. This kind of layout is shown in tree form in Figure 3-9.

Figure 3-9 Linking one connection to two boards

When you reference multiple boards, RealView Debugger merges the settings from
each group in a breadth-first search of the group tree. Therefore the complete
configuration is the combined configurations of all of the groups. If the same setting is
specified in more than one group, the specification in the group that is listed first in the
CONNECTION is used, for example BoardChip_name=AP in Figure 3-9.

To do this you must first ensure that the *.bcd files exist and then reference them from
your board file using the required BOARD, CHIP, or COMPONENT groups:

1. In the Connection Properties window, expand the connection that you are using.
For example, if you are using a Multi-ICE interface, expand these entries:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe

2. Click on CONNECTION within the entry you selected in step 1b, so that it is
highlighted. The right pane displays a set of properties including BoardChip_name.

3. Left-click on the BoardChip_name to highlight it.

4. Left-click on the BoardChip_name once more. A context menu is displayed, shown
in Figure 3-8 on page 3-13.

Note

 The two clicks in steps 3 and 4 must be distinct. A double-click does not work.

����������

���	
���

�����������������

���	
�������

���������������������
3-14 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
5. Select the name of the board group. A new entry is displayed in the right pane
with an asterisk * beside it. For example, *BoardChip_name CM940T.

6. Right-click on the BoardChip_name that does not have an asterisk to see the context
menu, shown in Figure 3-10.

Figure 3-10 Linking a second board

7. Select the name of the board group. A new entry is added to the right pane with
an asterisk * that indicates this value is not a default, for example,
*BoardChip_name AP.

8. Select File → Save and Close.

9. Restart the debugger. When you connect using Multi-ICE, the configuration
defined in your board group is applied to the connection.

You can repeat steps 6, 7, and 8 until all of the groups you require are included.

Changing the order of board groups

This procedure describes adding board CM940T before board AP, so that the structure
shown in Figure 3-9 on page 3-14 is recreated. New boards are always added at the top
of the list and this gives their settings priority over the settings in boards lower down the
list.

If you want to reorder the boards in the BoardChip_name list to give the settings a different
priority, select the context menu as described above and click on Manage List..., shown
in Figure 3-10. Use the Settings: List Manager dialog box to reorder the board groups.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-15

Configuring Custom Targets
Linking one or more board groups to another board group

You might want to link several groups together so that you can share descriptions or
simplify each part of a description. For example, the description of the ARM
Evaluator-7T provided in Eval7T.bcd is split into a description of the board, Evaluator7T,
and a description of the processor on the board, KS32C50100. This is shown in tree form
in Figure 3-11.

Figure 3-11 Linking one board into another board

Groups can contain BoardChip_name references to other groups, so that you can build
multi-layered descriptions. For example, if you were building a simple ethernet router,
you might use the network interface on the KS32C50100 with a second network
interface provided by an AMD LANCE. If you set this up as a board file, you might get
the structure shown in Figure 3-12.

Figure 3-12 Linking one board into other boards

����������

������ !"�#�$��

����������������%�&'�

���	
��%�&'�
���������������� !"�#�$��

����������

������ !"�#�$��

����������������(���	�)(��

���	
��(���	�)(��
�����������������
*����

�������
*����

���������������� !"�#�$��
3-16 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Note

 You are not required to split your board up into distinct CHIP descriptions. You could
create one BOARD description containing all of the required information. However,
splitting your board up into distinct CHIP descriptions can help you later on because it is
then easier to share descriptions or reuse a description for another project.

To create the structure shown in Figure 3-12 on page 3-16 you must first ensure that the
*.bcd files exist and then reference them from your board file using the required BOARD,
CHIP, or COMPONENT groups:

1. In the Connection Properties window, expand the connection that you are using.
For example, if you are using a Multi-ICE interface, expand these entries:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe

2. Click on CONNECTION within the entry you selected in step 1b, so that it is
highlighted. The right pane displays a set of properties including BoardChip_name.

3. Right-click on the BoardChip_name. A context menu is displayed, shown in
Figure 3-10 on page 3-15.

4. Select the name of the board group. A new entry is added to the right pane with
an asterisk * beside it, shown in Figure 3-13.

Figure 3-13 Setting up EtherRouter

5. In the left pane of the Connection Properties window, expand the group for the
board that is inheriting information from the CHIPs. For example, expand:

a. (*.bcd) Board/Chip Definitions

b. ...\ether.bcd

where you have created the file ether.bcd to contain the EtherRouter BOARD
definition, as described in Creating a *.bcd file on page 3-9.

6. Click on BOARD within the *.bcd file you selected in step 5b, so that it is
highlighted. The right pane displays a set of properties including BoardChip_name.

7. Right-click on the BoardChip_name that does not have an asterisk to see the context
menu, shown in Figure 3-10 on page 3-15.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-17

Configuring Custom Targets
8. Select the name of a board group, for example KS32C50100. A new entry is added
to the right pane with an asterisk * beside it. For example, *BoardChip_name
KS32C50100.

9. Right-click on the BoardChip_name that does not have an asterisk again to see the
context menu.

10. Select the name of the other board group, for example AMDLANCE. A new entry is
added to the right pane with an asterisk * beside it, shown in Figure 3-14.

Figure 3-14 Setting up EtherRouter

11. Select File → Save and Close.

12. Restart the debugger. When you connect using Multi-ICE, the configuration
defined in your board group is applied to the connection.

Linking one or more board groups to multiple processor connections

If you want to use the debugger to debug a multiprocessor target, where some of the
processor configurations are different, you do so by defining multiple
Advanced_Information groups using names that match the processor name. These then
appear in the Connection Control window.

For example, if you have a single Integrator CM920T, Multi-ICE names the connection
ARM920T_0. The _0 in the name indicates that this processor is on the first TAP position,
that is position 0. If, in any BOARD, CHIP or COMPONENT, you create an Advanced_Information
group called ARM920T_0, the entries in that group only apply to that processor.

If you have two CM920T boards connected to an Integrator motherboard, Multi-ICE
names them ARM920T_0 and ARM920T_1. If you create two Advanced_Information groups
called ARM920T_0 and ARM920T_1, shown in Figure 3-15 on page 3-19, you can configure
each board independently. Using the Default group, you can also have
Advanced_Information that applies to both processors linked to the connection.
3-18 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-15 Configuring a two processor target

See Chapter 4 Configuring Custom Connections for more information about managing
connections.

For more information about connecting RealView Debugger to multiprocessor targets,
see the multiprocessing chapter in RealView Debugger v1.6 Extensions User Guide.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-19

Configuring Custom Targets
3.4 Example descriptions

These examples describe how to amend board file entries, using the Connection
Properties window, to configure your debug target. These examples assume you are
familiar with the procedures described in the online help topic Changing Settings.

In these examples, board file entries are created and renamed. The names used are for
illustration only and you can change them as you require. However, it is recommended
that you avoid duplicates.

Note

 • Do not configure the board file with the debugger connected to a target.

• See Configuration files on page 1-6 for instructions on making backups of your
configuration before you start.

The examples are described in the following sections:

• Setting up an Integrator board and core module

• Configuring a memory map on page 3-26

• Setting up a custom register on page 3-28

• Setting up memory blocks on page 3-32

• Setting top of memory and stack heap values on page 3-35

• Using RealMonitor on page 3-38

• Flash programming on page 3-43.

This section also includes:

• Restoring your .brd file on page 3-45 for instructions on restoring your factory
settings

• Troubleshooting on page 3-46 for instructions on recovering from an incorrectly
configured debugger home directory, whether or not you have a backup.

3.4.1 Setting up an Integrator board and core module

This example demonstrates how to use the Connection Properties window to create a
specific Integrator/AP and core module target configuration. It shows how to use a
predefined Board/Chip Definition file (with extension .bcd) to set up your target.

After you set up your target, the example also demonstrates how you can connect to it
using Multi-ICE with the Connection Control window, and verify that RealView
Debugger can connect to the target.
3-20 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
The example is split into the following sections, which must be executed in this
sequence:

1. Setting up the hardware and Multi-ICE server

2. Configuring the new target

3. Connecting to the new target on page 3-24

4. Viewing the new target definition on page 3-25.

Setting up the hardware and Multi-ICE server

The first stage is to set up the hardware and configure the Multi-ICE server software:

1. Ensure that your Integrator/AP and core module are connected and switched on.
This example uses the ARM7TDMI core mounted on the CM7TDMI board, but you
can use any core module supported by the Integrator/AP.

2. Ensure that you have Multi-ICE installed, and that the Multi-ICE server is
running on the workstation connected to the target. If you have not yet configured
the target with Multi-ICE, do so now.

Note
 • Multi-ICE Release 1.4 works with RealView Debugger with some

limitations, for example it does not support multiple simultaneous
connections. See Configuring RDI targets on page 4-8 for more
information. For best results use Multi-ICE Version 2.0 or later.

• See the Multi-ICE User Guide for more details on configuring Multi-ICE.

Configuring the new target

The next stage is to configure the new target:

1. Start RealView Debugger without connecting to a target.

2. Select File → Connection → Connect to Target... to display the Connection
Control window.

3. Right-click on the ARM-A-RR vehicle entry and select Add/Remove/Edit Devices...
from the context menu (Figure 3-16 on page 3-22).
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-21

Configuring Custom Targets
Figure 3-16 The ARM-A-RR vehicle context menu

4. Click in the Description column for Multi-ICE in the RDI target List dialog, to
select it. The Duplicate button is enabled.

5. Click Duplicate to display the Create New RDI Target dialog (Figure 3-17).

Figure 3-17 Creating a new RDI Target connection

6. Edit the Short Name... and Description... fields as required. For example, enter
MP3Player as the name and Integrator/AP with ARM7 for MP3 product as the
description.

7. Click OK. The RDI Target List dialog now looks like Figure 3-18 on page 3-23.
The contents of this window depend on the software you have installed.
3-22 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-18 The RDI Target List with a new connection

8. Click Close. The new target is added to the Connection Control window.

9. Right-click on the new MP3Player connection and select Connection Properties...
from the context menu. This displays the Connection Properties window with the
new connection expanded (Figure 3-19).

Figure 3-19 The MP3Player connection properties

10. Right-click on BoardChip_name in the right pane to display the context menu.

11. Click AP to select the Integrator/AP description (Figure 3-20 on page 3-24). A
new entry *BoardChip_name AP is added to the pane.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-23

Configuring Custom Targets
Figure 3-20 The new RDI Target connection

12. Click on BoardChip_name (not on *BoardChip_name). The context menu is displayed
again.

13. Click on CM7TDMI to select the ARM7TDMI core module description. The
Connection Properties window now shows two BoardChip_name settings, shown in
Figure 3-21.

Figure 3-21 The new RDI Target connection

14. Select File → Save and Close to save the new settings and close the Connection
Properties window.

Connecting to the new target

The next stage is to connect to the new target board and core module:

1. Select File → Connection → Connect to Target... to display the Connection
Control window.

2. Click on the icon next to the new entry, MP3Player, to expand it.

The entry expands and the relevant processor name entry is displayed.
3-24 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
If a List Selection dialog appears, you need to configure Multi-ICE before
continuing. Select Configure Device Information..., and click OK. The
interface for configuring Multi-ICE is displayed. Ensure the details are correct,
click OK. The Connection Control window is displayed, and you can now expand
the new Multi-ICE entry.

3. Click on the processor entry under the new Multi-ICE entry to connect to the
target. RealView Debugger retrieves information specific to the target.

Viewing the new target definition

To view details about the new target hardware:

1. In the Code window, select View → Pane Views → Registers to display the
Register pane. Two new tabs are included at the bottom of the pane, AP and
CM7TDMI.

2. Click on the AP tab. RealView Debugger shows the abstraction of the hardware
information specific to the Integrator/AP board, shown in Figure 3-22.

Figure 3-22 AP tab in the Register pane

This tab view enables you to modify your Integrator/AP board features, such as
the memory mapped peripherals.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-25

Configuring Custom Targets
3. To illustrate how RealView Debugger communicates directly with your
Integrator/AP board, right-click on the text OFF directly beneath the L2 entry in the
Register pane, and select ON from the context menu. The relevant LED display
on your Integrator/AP board is turned on.

4. Select the CM7TDMI tab to see the abstraction of the hardware specific to the
core module. The PRESENT status of the Motherboard indicates that the core module
is connected to the Integrator/AP board.

For more details on the Register pane, see the section on working with registers
in the monitoring execution chapter in RealView Debugger v1.6 User Guide.

5. In the Output pane at the bottom of the Code window, click on the Log tab. The
display includes the line Using BoardChips: AP, 7TDMI, indicating that RealView
Debugger is using the Integrator/AP board file. As a result, the memory map now
contains the definitions required to use the Flash memory on the Integrator (see
Flash programming on page 3-43).

3.4.2 Configuring a memory map

If you want to set up a memory map that is used automatically when you connect to a
target processor, you must configure this in your board file. The memory definition is
contained in the Advanced_Information group for the target processor. To do this:

1. Ensure that RealView Debugger is not connected to a target.

2. Expand the following entries in turn:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\armulator.rbe (change as required)

c. CONNECTION=ARMulator (change as required)

d. Advanced_Information

e. Default

f. Memory_block

3. Right-click on the Default entry, under Memory_block, to display the context menu,
shown in Figure 3-23 on page 3-27.
3-26 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-23 The default Memory_block settings for ARMulator

4. Select Make Copy... to describe the memory map for the chosen target. Give this
entry a suitable name, for example SSRAM, and click Create.

5. Click on the new SSRAM entry in the left pane to display it in the right pane.

6. Set the value of Start, in the right pane, to 0x0.

7. Set the value of Length to 0x20000.

8. Set the value of Description to Static RAM as shown in Figure 3-24.

Figure 3-24 Viewing the contents of the new group

9. Select File → Save and Close to save the new settings and close the window.

10. Connect to your target.

11. Select View → Pane Views → Memory Map to view the new memory map
before loading an image, shown in Figure 3-25 on page 3-28.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-27

Configuring Custom Targets
Figure 3-25 New memory map in the Process Control pane

3.4.3 Setting up a custom register

This example describes the steps to follow to specify a register MYREG, that appears as a
new tab in the Register pane. It also describes how to set up named bit fields in this
register. To set up the custom register, you must make changes in the Memory_block,
Register, Register_enum, and Register_Window groups.

In this example:

• The custom register, named MYREG, has an offset of 0x20 from the base of the I/O
Register base.

• The custom register, MYREG, has four bit fields. These are used as indicators of the
state of the register and are named INDICATORS. They are labeled IND1, IND2, IND3,
and IND4.

• The memory region used for registers is called REGS and is addressed from
0x10000000-0x107FFFFF.

The example is split into the following sections, which must be executed in this
sequence:

1. Setting up the configuration

2. Creating enumerations for the register values on page 3-29

3. Creating the register descriptions on page 3-30

4. Creating the register tab on page 3-31

5. Displaying the register on page 3-32.

Setting up the configuration

In this stage, you set up a memory group that provides the base address for the new
registers:

1. Ensure that RealView Debugger is not connected to a target.
3-28 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
2. Expand the following entries of the selected board group:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe (change as required)

c. CONNECTION=Multi-ICE (change as required)

d. Advanced_Information

e. Default

3. Expand the Memory_block group.

4. Rename the Default entry under Memory_block to REGS.

5. Click on the REGS entry, in the left pane, to display the group contents.

6. Set the value of Start, in the right pane, to 0x10000000.

7. Set the value of Length to 0x800000 (Figure 3-26).

Figure 3-26 Configuring REGS

8. Set the value of Description to I/O Registers.

Creating enumerations for the register values

In this stage you set up enumerations, or names for specific values, that are used when
the register value is displayed:

1. Expand Register_enum in the left pane.

2. Use Make New... to create a new Register_enum. Name this E_SWITCH.

3. Click on the E_SWITCH entry, in the left pane, to display the group contents.

4. Set the value of Names, in the right pane, to On,Off.

5. Rename the Default entry under Register_enum to E_ENABLE.

6. Click on the E_ENABLE entry, in the left pane, to display the group contents.

7. Set the value of the Names entry, in the right pane, to Disable,Enable (Figure 3-27).
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-29

Configuring Custom Targets
Figure 3-27 Creating enumerations

Creating the register descriptions

In this stage you create descriptions of each register:

1. Expand the Register group.

2. Rename the Default entry under Register to Newreg.

3. Expand the Newreg group.

4. Set the value of Base to REGS.

5. Set the value of Start to 0x20.

6. Expand the Bit_fields group, to set up the four bit fields.

7. Rename the Default entry under Bit_fields to IND1.

8. Use Make Copy... on IND1. The dialog suggests the name IND2. Click Create.

9. Use Make Copy... on IND2. The dialog suggests the name IND3. Click Create.

10. Use Make Copy... on IND3. The dialog suggests the name IND4. Click Create.

11. Click IND1, in the left pane and set these values (Figure 3-28 on page 3-31):

• Position=0 (this is the default)

• Size=4

• Enum=E_ENABLE.
3-30 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-28 Creating bit field descriptions

12. Click on the IND2 entry and set these values:

• Position=4

• Size=4

• Enum=E_SWITCH.

13. Click on the IND3 entry and set these values:

• Position=8

• Size=4.

14. Click on the IND4 entry and set these values:

• Position=12

• Size=4.

Creating the register tab

In this stage you create a Register_Window group to display the new register in the
Register pane:

1. Expand the Register_Window group.

2. Rename the Default entry under Register_Window to MYREG. This is the name of the
new tab in the Register pane.

3. Click on MYREG, in the left pane.

4. Set the Line entry, to _INDICATORS. (Literals entered in Line must be preceded by
an underscore.)

5. Use Make New... on *Line to create a new *Line entry.

6. Set the new *Line to IND1,IND2,IND3,IND4.

The Connection Properties window looks like Figure 3-29 on page 3-32.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-31

Configuring Custom Targets
Figure 3-29 The MYREG group

All board file entries are now complete.

Displaying the register

In the last stage save the changes and display the new register in the Register pane:

1. Select File → Save and Close to save the new settings and close the Connection
Properties window.

2. Connect to your target.

3. Select View → Pane Views → Registers to view the new tab, MYREG, shown
in Figure 3-30.

Figure 3-30 MYREG in the Register pane

3.4.4 Setting up memory blocks

This example assumes that you have worked through Setting up a custom register on
page 3-28, because it uses some of the configuration details set up in that example and
saved in the board file.

This example describes how to set up two memory blocks that are activated at different
times according to the value of a register. It uses the Newreg register created in Setting
up a custom register on page 3-28. This is displayed in the MYREG tab in the Register
pane.
3-32 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
This example also describes setting a memory rule to specify how the memory is used.
When Newreg is zero, MEM2 is activated. Otherwise, MEM1 is used. The example is split into
these sections, which must be executed in this sequence:

1. Defining the memory blocks

2. Defining the memory rules on page 3-34.

Defining the memory blocks

The first stage is to define the two Memory_blocks named MEM1 and MEM2:

1. Ensure that RealView Debugger is not connected to a target.

2. Expand the following entries of the selected board group:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe (change as required)

c. CONNECTION=Multi-ICE (change as required)

d. Advanced_Information

e. Default

f. Memory_Block

3. Right-click on the REGS entry, in the left pane, and select Make New... from the
context menu (Figure 3-31).

Figure 3-31 Creating a new memory block

4. Enter a new name for this entry, for example MEM1, and click Create.

5. Click on the MEM1 entry, in the left pane.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-33

Configuring Custom Targets
6. Set the value of Start to 0x0. (This is the default.)

7. Set the value of Length to 0x80000.

8. Set the value of Description to Fast Static RAM.

9. Set the value of Access entry to RAM. (This is the default.)

10. Use Make Copy... on MEM1 to create a new group, MEM2.

11. Click on the MEM2 entry, in the left pane, to display the settings values.

12. Set the value of Access to ROM.

13. Set the value of *Description to Slow Boot ROM.

Defining the memory rules

The second stage is to define the rules that control which memory block is used:

1. Expand the Map_rule group.

The map rule defines which memory block to use. In this example, MEM2 is
activated if Newreg is set to zero. Otherwise MEM1 is used.

2. Click on the Default entry.

3. Set the value of Register to Newreg (use the context menu).

Do not change the settings for Mask or Value.

4. Set the value of On_equal to MEM1. (Figure 3-32)

Figure 3-32 Creating a map rule

5. Rename the Default entry of Map_rule to RULE1.

6. Use Make Copy... on RULE1, to create a new group, RULE2.

7. Click on RULE2 and set the value of Value to 1.

8. Set the value of *On_equal to MEM2. All board file entries are now complete
(Figure 3-33 on page 3-35).
3-34 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
Figure 3-33 Settings for the second map rule

9. Select File → Save and Close to save the new settings and close the Connection
Properties window.

10. Connect to your target.

11. In the Code window, select View → Pane Views → Registers to view the
MYREG tab.

12. Toggle the register value to activate the memory rule and so specify the memory
block.

13. Select View → Pane Views → Memory Map to view the Map tab, shown in
Figure 3-34.

Figure 3-34 New memory block in the Map tab

3.4.5 Setting top of memory and stack heap values

This example demonstrates how you can set permanent top of memory and stack heap
values for a given target using your board file. It shows how to do this by updating the
information in the Advanced_Information block. After you have defined the settings, they
are used whenever you connect to the target with RealView Debugger.

This example uses an Integrator/AP board with a core module, but the procedure for
amending the settings is the same for any target.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-35

Configuring Custom Targets
The top_of_memory variable is used to enable the semihosting mechanism to return the
top of stack. You can create your own settings to specify the bottom of the stack address,
the size of the stack, the bottom of the heap address, and the size of the heap. If you do
not set these values manually, RealView Debugger uses the target-dependent defaults.
If your application is scatterloaded, you must define the stack and heap limits.

Note

 The value of top_of_memory must be higher than the sum of the program base address,
program code size, and program data size. If set incorrectly, the program might crash
because of stack corruption or because the program overwrites its own code.

There is no requirement that the top of memory address is at the true top of memory. A
C or assembler program can use memory at higher addresses.

The default value of top_of_memory for ARM processors is 0x20000. For details on how
this variable is relevant to ARM targets, see the internal variable descriptions section in
the Multi-ICE User Guide. You can set the value of top_of_memory in a BOARD description
of the target or in the CONNECTION you use to connect to the target.

To set the top of memory and stack heap values in the CONNECTION:

1. Ensure that RealView Debugger is not connected to a target.

2. Expand the following entries of the selected board group:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe (change as required)

c. CONNECTION=Multi-ICE (change as required)

d. Advanced_Information

e. Default

f. ARM_config

3. Set the value of top_of_memory, in the right pane, as required. For example, set it
to 0x40000 if your target has 256KB of RAM starting at location 0.

Note
 Be sure to specify a value that is supported by your debug target.

When you load a program, the debugger sanity-checks top_of_memory by checking
that the words just below top_of_memory are writable. It issues a warning if they
are not. However, your program might require much more RAM than the
debugger checks for.
3-36 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
4. Double-click on the Stack_Heap group, in the right pane, to display the contents
(Figure 3-35).

Figure 3-35 Settings in the Stack_Heap group

This shows the currently selected size and location of the stack and heap. A blank
or zero Heap_base value is modified by the ARM C library runtime code, setting
it to the address of the end of program data space (Figure 3-36).

Figure 3-36 Relating top_of_memory to single section program layout

5. If you require more control over the stack and heap location for a semihosted
program, set the values as required.

If your application requires control over the stack and heap location, or if the
application is scatterloaded, the application must include a user-defined function,
__user_initial_stackheap, that defines the stack and heap limits.

6. Select File → Save and Close to close the Connection Properties window.

Whenever you load a program compiled with the standard ARM C library to this target,
the top of memory, stack, and heap values you have set are used. For details on how to
connect, see Connecting to the new target on page 3-24.

,�������

������������	

'�	����
-!./!01

2����

,���

3#�����

!0�����

'�	��������
�������

2��������

�
��	����	����

,���������

2����������

���������

�

ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-37

Configuring Custom Targets
3.4.6 Using RealMonitor

This example describes how to set up RealView Debugger and run a
RealMonitor-integrated application. It demonstrates how to use the Connection
Properties window to access the Multi-ICE server with RMHost to run the RealMonitor
LEDs demonstration supplied with the ARM Firmware Suite (AFS). For more
information see:

• Multi-ICE User Guide

• ARM Firmware Suite User Guide

• ARM RMHost User Guide

• ARM RMTarget Integration Guide.

To debug a RealMonitor-integrated application, you must connect with the RMHost
controller while the program is running. Therefore, the example is split into sections,
which must be executed in this sequence:

1. Setting up the hardware and Multi-ICE server

2. Configuring the targets

3. Connecting and running the image on page 3-40

4. Configuring RealMonitor on page 3-41

5. Connecting and running the RealMonitor image on page 3-41.

Setting up the hardware and Multi-ICE server

The first stage is to set up the hardware and configure the Multi-ICE server software:

1. Ensure that your Integrator/AP and core module are connected and switched on.
This example uses the ARM7TDMI core mounted on the CM7TDMI board, but you
can use any core module supported by the Integrator/AP.

2. Configure the Multi-ICE server to work with RMHost.

Note
 If you are using the Multi-ICE server with RMHost, you must ensure that it is not

autoconfigured because this causes the target to be reset and disrupts any running
program. See the ARM RMHost User Guide for more details on configuring
Multi-ICE server with RMHost.

Configuring the targets

The next stage is to configure the new target:

1. Start RealView Debugger without connecting to a target.
3-38 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
2. Select File → Connection → Connect to Target... to display the Connection
Control window, shown in Figure 3-37.

Figure 3-37 RealMonitor in the Connection Control window

Where you have installed RealMonitor, the RealMonitor.dll is autodetected by
RealView Debugger and appears as a target in the Connection Control window. If
it is not visible, see Adding RDI targets on page 4-6 for details on how to add this
DLL to your list of RDI targets.

3. Right-click on the Multi-ICE connection and select Connection Properties...
from the context menu. This displays the Connection Properties window with the
connection expanded (Figure 3-38).

Figure 3-38 Multi-ICE connection properties

4. Expand the following entries of the selected board group:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\multiice.rbe (change as required)
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-39

Configuring Custom Targets
c. CONNECTION=Multi-ICE (change as required)

5. Set the BoardChip_name in the right pane, as described in Setting up an Integrator
board and core module on page 3-20, for example:

• BoardChip_name=AP

• BoardChip_name=CM7TDMI.

6. Expand the following entries of the selected board group:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\rm.rbe

c. CONNECTION=RealMonitor

7. Set the BoardChip_name in the right pane, for example:

• BoardChip_name=AP

• BoardChip_name=CM7TDMI.

8. Select File → Save and Close to save the new settings and close the Connection
Properties window.

Connecting and running the image

The next stage is to connect to Multi-ICE and run the image:

1. Select File → Connection → Connect to Target... to display the Connection
Control window.

2. Click on the icon next to the entry, Multi-ICE, to expand it.

The entry expands and the relevant processor name entry is displayed.

3. Click on the processor entry under the Multi-ICE entry to connect to the target.
RealView Debugger retrieves information specific to the target.

4. Select File → Load Image... to display the Load File to Target dialog where you
can locate the LEDs demonstration for your target, for example
install_directory\AFSv1_4\Demos\Integrator7TDMI\standalone\LEDs.axf.

5. Specify the location of the source, for example
install_directory\AFSv1_4\Source\RealMonitor\Demos\Sources\Native\entry.s.

6. Select Debug → Execution Control → Go (Start Execution) to execute the
image.
3-40 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
The LEDs demonstration runs:

• a foreground task to scroll text across the 15-segment alphanumeric LEDs
on the Integrator board in an endless loop

• a background task to cycle the three colored LEDs in a UK traffic light
sequence.

Note

 See the ARM RMTarget Integration Guide for full details about this
demonstration.

7. Select File → Connection → Disconnect (Defining Mode)... and disconnect
from the Multi-ICE target but leave the image running. See Setting disconnect
mode on page 2-19 for full details on disconnecting this way.

8. Click OK to close the Disconnection Mode selection box.

Configuring RealMonitor

The next stage is to configure RealMonitor to use Multi-ICE:

1. Select File → Connection → Connect to Target... to display the Connection
Control window.

2. Click on the icon next to the entry, RealMonitor, to expand it.

The entry expands and the relevant processor name entry is displayed.

3. Right-click on the RealMonitor entry and select Configure Device Info... from the
context menu. Use the configuration dialog to configure RealMonitor to use
Multi-ICE. Ensure that the JTAG Controller settings points to the Multi-ICE
DLL. See Configuring ARM RealMonitor on page 4-14 for details.

4. Click OK to close the RealMonitor configuration dialog.

Connecting and running the RealMonitor image

The next stage is to connect to the target and load the RealMonitor-integrated image:

1. Click on the icon next to the entry, RealMonitor, to expand it.

The entry expands and the relevant processor name entry is displayed.

2. Right-click on the processor entry and select Connect (Defining Mode)... to
connect to the Multi-ICE target without resetting the target. Select No-Reset and
No-Halt Target from the Connection Mode selection box. See Setting connect
mode on page 2-11 for details on connecting this way.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-41

Configuring Custom Targets
If you select an option that is not supported by your target processor, a warning is
displayed to show that RealView Debugger has not completed the request.

3. Click OK to close the Connection Mode selection box.

4. Select File → Load Image... to display the Load File to Target dialog where you
can locate the LEDs demonstration for your target.

Note

 Ensure that you select the Symbols Only check box and unselect all other check
boxes.

5. To get the context, you have to stop and restart the image:

a. Select Debug → Execution Control → Stop Execution to stop the image.

b. Select Debug → Execution Control → Go (Start Execution).

Specify the location of the source when requested.

You are now ready to start debugging the image using RealView Debugger, for example
by changing the country element of the user_state structure to cycle the traffic light
LEDs in the US sequence, shown in Figure 3-39.

Figure 3-39 Watching the LEDs user_state variable
3-42 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
3.4.7 Flash programming

Before you can use RealView Debugger to control a Flash memory chip on your target,
you must:

• describe the Flash memory chip in a memory map entry, in a manner similar to
that described in Configuring a memory map on page 3-26

• ensure that you have a correctly configured Flash MEthod (FME) file.

FME files include:

• code that enables writing to the Flash device

• code to perform write and erase operations

• information describing the way the Flash is configured on the bus.

The following example describes how to use the ARM Integrator FME file to program
Flash memory on the Integrator/AP board. If you have another target board with a
standard AMD, ATMEL, or Intel Flash device you must create a board-specific
assembler file and link that file to create an FME file before you can program the Flash
memory. If you are using another type of Flash memory, you must also create the Flash
programming routines.

The board-specific assembler and Flash memory programming files are installed in a
directory called \flash, as part of the base product. The board-specific files have names
starting with b_, for example b_aeb1.s. The Flash memory files have names starting with
f_, for example f_atmel.s.

RealView Debugger projects to create FME files from these sources are also provided,
for example in \flash\examples\...

Programming an image to the Integrator/AP Flash target

This example describes how to use the predefined Integrator/AP Flash configuration to
write an image to the Flash memory on the Integrator system board.

Note
 If you program the Flash on an Integrator using this release of RealView Debugger, you
bypass the AFS Flash library system information blocks. These blocks are used by the
AFS Flash Library and are stored at the end of each image written to Flash. If you rely
on these blocks to keep track of what is in the Flash memory of your target, keep a
record of the state and recreate it after trying the example.

The example is split into these sections, which must be executed in this sequence:

1. Defining the new target on page 3-44
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-43

Configuring Custom Targets
2. Programming the image into Flash.

Defining the new target

To configure the Flash target:

1. Ensure that RealView Debugger is not connected to a target.

2. Click on the CONNECTION= entry, in the right pane, to display the settings values in
the left pane.

3. Set the BoardChip_name of the CONNECTION to AP, so that the predefined
Integrator/AP board file is used for this connection.

4. Select File → Save and Close to close the Connection Properties window.

5. Connect to the target using the Connection Control window.

6. Click on the Log tab in the Output pane, shown in Figure 3-40. This includes the
line:

Using BoardChips: AP

This tells you that RealView Debugger is using the Integrator/AP Board/Chip
Definition file (AP.bcd). As a result, the memory map now contains the definitions
required to use the Flash memory on the Integrator board.

Figure 3-40 Output pane after configuration

Programming the image into Flash

To program the image, you request RealView Debugger to write to the Flash memory
region that you have defined by using the Integrator/AP board file. The Integrator Flash
starts at memory address 0x24000000, so to write an image to flash:

1. If necessary, create an image file compiled to run with code at 0x24000000 and that
has data in RAM.
3-44 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Targets
This example uses the dhrystone project, located in your \Examples directory.
Open the project and rebuild using modified linker options. Set the Link_Advanced
values in the BUILD group using Ro_base = 0x24000000 and Rw_base = 0x8000.

2. Click File → Load Image... and select the image file.

3. Click Open in the Load File to Target dialog. The Flash Memory Control dialog
appears, shown in Figure 3-41.

Figure 3-41 The Flash Memory Control dialog

4. Click Write to program the image into Flash.

5. Click Close to close the Flash Memory Control dialog.

3.4.8 Restoring your .brd file

If you have completed these examples and you want to return to the factory settings:

1. Exit RealView Debugger.

2. Delete your RealView Debugger home directory \home\user_name.

When you restart RealView Debugger it creates a new default configuration for you.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-45

Configuring Custom Targets
3.4.9 Troubleshooting

If your working versions of configuration files are accidentally erased, or become
corrupted, RealView Debugger might be unable to use them. In this case, making a
connection to your chosen target is not possible.

You can do one the following:

• If you have made a backup of your configuration, restore it as described in Saving
and restoring connection properties on page 1-9.

• If it is acceptable to lose all of the configuration settings, program preferences,
workspaces and other information that is stored in the debugger home directory,
you can delete it:

1. Exit RealView Debugger.

2. Locate the home directory the debugger is using.

See The home directory on page 1-6 for more details.

3. Use Windows Explorer to rename or delete the home directory.

You might want to move or rename it before deleting so that if you make a
mistake you can recover selected files.

4. Restart RealView Debugger. It will create a new, default copy of the
debugger home directory as it starts up.

• If there are configuration items that you wish to try to keep:

1. Exit RealView Debugger.

2. Using Windows Explorer, display the home directory the debugger is using.

See The home directory on page 1-6 for more details.

3. Using a second Windows Explorer window, locate the RealView Debugger
installation directory.

See The install directory on page 1-6 for more details.

4. Use the hints given in Using manual file or directory backups on page 1-9
to copy files from the default settings directory \etc to your debugger home
directory. Some of the *.cnf files have no default in etc, and are recreated
as required. If you believe it is causing problems, delete the version in your
home directory and let the debugger recreate it when you next connect.

5. Restart RealView Debugger.
3-46 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Chapter 4
Configuring Custom Connections

This chapter describes how you can configure the connection that RealView Debugger
makes to your target. It includes information on the board file groups CONNECTION and
DEVICE, and explains how RDI targets such as Multi-ICE are configured. It contains the
following sections:

• Working with connection properties on page 4-2

• Working with RDI targets on page 4-6

• Working with JTAG files on page 4-15.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-1

Configuring Custom Connections
4.1 Working with connection properties

Connection properties, contained in board file entries, define possible connections to
debug target systems. A debug target might be a simulator, an emulator, or an evaluation
board installed on your host workstation.

There are descriptions of the general layout and controls of the RealView Debugger
settings windows, including the Connection Properties window, in the RealView
Debugger online help topic Changing Settings. This chapter assumes you are familiar
with the procedures described in this help topic.

You can enable and disable each entry in the board file. Disabled entries are grayed out
in the left pane, the List of Entries pane. Disabled entries can be edited in the same way
as enabled entries and then enabled when available for connection. See Enabling or
disabling a board file entry on page 4-3 for details on how to do this.

Board file entries that are enabled form the basis of the information displayed in the
Connection Control window, shown in Figure 4-1.

Figure 4-1 Connection properties entries in the Connection Control window

If you make changes to values in the Connection Properties window, an asterisk is added
to each entry, in the left or the right pane, to show that the defaults have changed. You
can restore the default settings and so cancel any changes. See Restoring board file entry
defaults on page 4-4 for details on how to do this.

"��������
���
4-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Board file entries might have duplicate names because entries are uniquely identified
through the combination of three elements:

• the CONNECTION entry

• the name of the manufacturer of the emulator or board

• the host workstation I/O device address, or ID, of the emulator or board.

For example, assume that you have a target board named MP3Player that you want to use
with two different emulators. The board file entry name for each is MP3Player to reflect
the target. However, the entries are differentiated by the type of connection (emulator
type), and I/O device connection addresses.

When you display the Connection Properties window, the left pane shows the top-level
entries specifying the supported vehicles, for example ARM RDI Configuration Entries
or CONNECTION. You can create your own custom entries in this hierarchy using other
types of entry, for example BOARD, CHIP, COMPONENT, or DEVICE.

Note
 If you are creating custom, lower-level entries, it is recommended that you avoid
duplicate names.

For full information on the contents and values contained in different types of board file
entries, both default and custom, see Appendix A Configuration Settings Reference.

4.1.1 Enabling or disabling a board file entry

To disable a board file entry so that the target it represents is no longer offered for
selection in the Connection Control window:

1. Start RealView Debugger without connecting to a target.

2. Select File → Connection → Connection Properties... to display the
Connection Properties window.

Enabled entries in the left pane are displayed in regular type, and those that are
disabled are grayed out.

3. Expand the connection that you are using. For example, if you are using
ARMulator, expand these entries:

a. (*.rbe) ARM RDI Configuration Entries

b. ...\armulator.rbe

It becomes the selected entry and its contents are displayed in the right pane,
shown in Figure 4-2 on page 4-4.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-3

Configuring Custom Connections
Figure 4-2 Enabling or disabling a board file entry

4. Click on the Disabled entry, in the right pane, and select True from the menu.

5. Select File → Save and Close to save the changes to your board file and close the
Connection Properties window.

6. Display the Connection Control window where this entry is no longer available.

You enable disabled board file entries in the same way.

4.1.2 Restoring board file entry defaults

An entry starts with an asterisk when it has been edited. For group entries, this might
mean that a value lower down in the hierarchy has been edited.

In Enabling or disabling a board file entry on page 4-3, the CONNECTION=ARMulator entry
was disabled, which means it contains a custom setting. To restore the default values for
this entry:

1. Select File → Connection → Connection Properties... to display the
Connection Properties window.

2. Click on the CONNECTION=ARMulator entry, in the left pane. It becomes the selected
entry and its contents are displayed in the right pane, shown in Figure 4-3 on
page 4-5.
4-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Figure 4-3 Restoring board file entry defaults

3. Right-click on the *Disabled entry, in the right pane, and select Reset to Default
from the context menu.

This sets the value of this setting to False as defined in the default board file. The
asterisk is removed.

4. Select File → Save and Close to save the changes to your board file and close the
Connection Properties window.

The original contents of the Connection Control window are restored.

Where entries contain user-information values, these can be customized in a similar
way:

1. Select File → Connection → Connection Properties... to display the
Connection Properties window.

2. Click on the CONNECTION=ARMulator entry, in the left pane. It becomes the selected
entry and its contents are displayed in the right pane.

3. Right-click on the Description entry, in the right pane, and select Edit Value from
the context menu.

The text defined by this entry appears in the Description in the Connection
Control window. Enter a new description, for example ARM RDI ARMulator and
press Enter.

4. Select File → Close Window to close the Connection Properties window without
saving this change. This generates a dialog box warning that contents have
changed and giving you the option of saving them. Do not save this change.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-5

Configuring Custom Connections
4.2 Working with RDI targets

This section describes how to use the Connection Control window to add and configure
RDI targets. The settings defined in your configuration files control the available targets
and the emulators and simulators offered. Therefore, your installation might vary from
the examples shown in this section.

The RealView Debugger base product includes RDI configuration files to simulate the
ARM7TDMI core using ARMulator. You can change this by reconfiguring ARMulator,
described in Configuring ARMulator on page 4-9. When you first try to connect to
another RDI target, for example Multi-ICE, you must configure the target first,
described in Configuring ARM Multi-ICE on page 4-11.

To add new RDI targets to the configuration settings, you must first add the required
DLL to specify the device and then configure the chosen target.

See the following sections for details on these operations:

• Adding RDI targets

• Configuring RDI targets on page 4-8.

4.2.1 Adding RDI targets

RDI targets are automatically installed for ARM products such as ARM ADS 1.2 and
ARM Multi-ICE 2.1. If you have a third-party RDI component that uses RDI 1.5.1, you
can use the following procedure to include it.

To add an RDI target to the RDI Target List dialog:

1. Start RealView Debugger without connecting to a target.

2. Select File → Connection → Connect to Target... to display the Connection
Control window.

3. Right-click on an RDI target, for example ARMulator, to display the RDI Target
context menu.

4. Select the option Add/Remove/Edit Devices... to display the RDI Target List
configuration dialog box shown in Figure 4-4 on page 4-7.
4-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Figure 4-4 RDI Target List dialog box

The entries in the display list show the autodetected targets currently available to you.
If you install a new DLL outside RealView Debugger, for example ARM ADI, the
display list is automatically updated for you.

The check boxes show which devices are enabled. Disabling an entry removes it from
the list of available connections shown in the Connection Control window. The entry is
not, however, removed from the RDI Target List and so can be re-enabled when
required.

If you do want to add a target yourself, click Add DLL... to display the Select RDI DLL
dialog box where you can locate the required DLL and add it to the list.

Any entry in the display list can be duplicated so that specific processor configurations
are available in the Connection Control window. Highlight the entry to be copied and
click Duplicate... to display the Create New RDI Target dialog box where the new target
can be specified, shown in Figure 4-5.

Figure 4-5 Create New RDI Target dialog box
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-7

Configuring Custom Connections
Click OK to confirm your entries and to add the target to the display list.

Any DLLs added to the list manually, or new entries created by duplicating an existing
target, must be configured before you can connect. Highlight the entry in the display list
and click Configure... to display the configuration dialog for the chosen entry. This is
described in detail in Configuring RDI targets.

You can use the RDI Target List dialog box to remove RDI targets from the list.
Highlight the entry to be deleted and click Remove.

You can also use the RDI Target List dialog box to reset all entries to the installation
defaults by clicking Reset list.

Note

 When working with the RDI Target List dialog box:

• Autodetected targets cannot be removed from the display list.

• If you choose to reset list entries any targets added to the list since installation are
also removed.

Click Close to close the RDI Target List dialog box and return to the Connection
Control window.

4.2.2 Configuring RDI targets

RealView Debugger does not support connecting to multiple RDI targets at the same
time. You can, however, configure your target connections in advance and then connect
to each in turn.

Within a single Multi-ICE connection, you can connect to multiple processors provided
they are all on the same scan chain. You must have the appropriate RealView Debugger
multiprocessor license to make multiple connections.

You can configure your RDI target either:

• from the Connection Control window. Highlight the entry, for example the
second-level entry Multi-ICE, and select Configure Device Info... from the RDI
Target menu

• from the RDI Target List dialog box, shown in Figure 4-4 on page 4-7. Highlight
the entry in the display list and click Configure....
4-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
This section contains basic configuration information for the following ARM RDI
interface software, with details of changes that result from the use of RealView
Debugger:

• Configuring ARMulator

• Configuring Remote_A on page 4-11

• Configuring ARM Multi-ICE on page 4-11

• Configuring ARM Agilent Debug Interface on page 4-13.

These instructions do not replace the original manuals.

Configuring ARMulator

ARMulator is the ARM processor simulator and is supplied with ADS. For the
ARMulator RDI target entry, the configuration dialog enables you to examine and change
the following settings:

Processor Use the drop-down list to specify which ARM processor you want
ARMulator to simulate.

The list of processors includes all available variants including, for
example, ARM7TDMI-ETM or ARM920T-ETM.

Clock Choose between simulating a processor clock running at a speed that you
can specify, or executing instructions in real-time by setting this value to
0. You can use units of Hz, KHz, MHz and GHz, for example 50MHz.

Changing this value does not affect the real time taken to run a program.
Instead, it affects the values that the semihosting time() functions return
to the program.

Options Enable this to include an emulation of the Floating Point Accelerator
(FPA) coprocessor included in the ARM7500FE processor.

Debug Endian

Select the byte order of the modeled system. This setting:

• sets RealView Debugger to work with the appropriate byte order

• sets the byte order of models that do not have a CP15 coprocessor

• sets the byte order of models that do have a CP15 coprocessor if the
Start target Endian option is set to Debug Endian.

Start target Endian

Select the way in which the byte order of ARMulator models that have a
CP15 coprocessor is determined:

• Select the Debug Endian radio button to instruct the model to use
the byte order set in the Debug Endian group.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-9

Configuring Custom Connections
• Select the Hardware Endian radio button to instruct the model to
simulate the behavior of real hardware.

The possible combinations of Debug Endian and Start target Endian are
shown in Table 4-1.

Memory Map File

Specify a memory map file for use with ARMulator.

A map file that is specified in this way is not available to RealView
Debugger. Use the Memory_block configuration item to specify the
memory map to RealView Debugger. See Configuring a memory map on
page 3-26 for an example explaining how to do this.

Floating Point Coprocessor

Use the drop-down list to specify the Vector Floating Point (VFP)
coprocessor included with some ARM CPUs. The default is No_FPU.

MMU/PU Initialization

If you are simulating a processor with an active Memory Management
Unit (MMU), specify DEFAULT_PAGETABLES, otherwise select
NO_PAGETABLES. See ARM Architecture Reference Manual for more
information.

See the RVISS User Guide for more information on how these settings apply to
ARMulator.

Table 4-1 ARMulator Endian settings

Usage
Debug
Endian

Start target
Endian

A target that is always little-endian. This is the default. Little Debug Endian

A target that is always big-endian Big Debug Endian

A big-endian target where the code and the processor core
start in little-endian mode, and switch to big-endian in the
initialization code

Big Hardware
Endian
4-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Configuring Remote_A

To enable RealView Debugger to communicate with an Angel debug target, you use
Remote_A, supplied with ADS. The Remote_A configuration dialog enables you to
change the following settings:

Remote connection driver

Click Select... to see a list of available drivers. This includes Serial,
Serial/Parallel, and Ethernet drivers. Select one if you want to use it
instead of the current driver.

To change the settings of the currently selected driver, click Configure....
This displays the dialog box appropriate to the chosen driver.

Heartbeat Ensures reliable transmission by sending heartbeat messages. Any errors
are more easily detected when known messages are expected regularly.

Endian These radio buttons specify that the target is operating in little-endian or
big-endian mode.

This setting is only used if you are connected to an EmbeddedICE
Interface Unit.

Channel Viewers

RealView Debugger does not support channel viewers.

Configuring ARM Multi-ICE

You can use the Multi-ICE interface unit in two ways:

• If you are only connecting to ARM processors, use the RDI Multi-ICE DLL and
the Multi-ICE server.

• If you want to connect to a DSP, use the Multi-ICE interface unit with no
Multi-ICE server and the ARM-ARM-PP Multi-ICE direct connect vehicle.

See Working with JTAG files on page 4-15 for general information about
configuring Multi-ICE direct connect.

See the RealView Debugger v1.6 Extensions User Guide for more information
about connecting to DSP processors

The Multi-ICE DLL configuration dialog, shown in Figure 4-6, contains these tabs:

Connect This tab contains the This computer... and Another computer... buttons
that enable you to select the Windows workstation that is running the
Multi-ICE server, and the Connection name data field that enables you to
identify each processor connection.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-11

Configuring Custom Connections
Figure 4-6 Multi-ICE DLL multiprocessor configuration mode

If you connect to a Multi-ICE server that is configured with more than
one ARM processor, the configuration dialog includes a side-panel
showing icons for each of these processors, shown in Figure 4-6. This is
not shown if you connect to a single processor.

Selecting a processor in the side-panel enables you to independently
configure properties for that processor using the Processor Settings and
Advanced tabs. For example, you can set the processor setting Cache
clean code address, differently on two processors:

1. Click Processor Settings tab.

2. Select the first processor in the side-panel.

3. Change the value of Cache clean code address.

4. Select the second processor in the side-panel.

5. Change the value of Cache clean code address.

With RealView Debugger all the available processors are configured into
the Connection Control window and you use that window to connect and
disconnect from each processor as required.
4-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Processor Settings

This tab contains any processor-specific settings. See the Multi-ICE User
Guide for details of these.

Advanced This tab contains the target endianess and interface settings. Use the radio
buttons in the Target Settings group as shown in Table 4-2.

Disable the Read-ahead cache if you are accessing read-sensitive
memory with the debugger.

Trace Use this tab to enable and configure your Trace Capture tool. Where
enabled, select the required Trace Capture DLL from the list, or use
Add... to locate a new DLL.

About Displays information about the version numbers of the Multi-ICE DLL
and RealView Debugger.

More information about configuring Multi-ICE is given in Multi-ICE User Guide and
in the online help available from the dialog box.

Note
 • Releases of Multi-ICE before 1.4 are not compatible with RealView Debugger.

• RealView Debugger supports DCC semihosting with Multi-ICE. When this mode
is used, the target processor is not stopped while semihosting takes place.

• RealView Debugger does not support multiple simultaneous connections to
Multi-ICE.

Configuring ARM Agilent Debug Interface

The ARM Agilent Debug Interface (ADI) configuration dialog enables you to change
the following settings:

Network details

The network (ethernet) address of the Agilent JTAG probe.

Table 4-2 Multi-ICE Endian settings

Usage Selection

A target that is always little-endian. This is the default. Little-endian

A target that is always big-endian. Big-endian
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-13

Configuring Custom Connections
JTAG Frequency

The frequency of the IEEE1149.1 TCK signal. A frequency of 10MHz is
suitable for most ARM processor cores.

Device Configuration

The Specify Devices... button displays the Specify Devices dialog, and
enables you to select the processor with which to connect. RealView
Debugger does not support multiple simultaneous connections with
ARM ADI Version 1.0.

See the ARM Agilent Debug Interface User Guide for more information.

Configuring ARM RealMonitor

The ARM RealMonitor configuration dialog enables you to change the following
settings:

JTAG Controller

The RDI-compliant JTAG controller DLL, for example your Multi-ICE
DLL.

RDI Module Server

This enables you to view special target registers in RealView Debugger:

Use RDI Module Server
Ticked by default, click to disable the RDI Module Server. If
disabled, this grays out the second option in this group.

Fetch module information from target
Ticked by default, this provides the module server with
information about the target system. This might be embedded
in RMTarget. If you unselect this option then you must
provide:

• the target processor you are using

• the target board you are using.

See the ARM RMTarget Integration Guide for more information.

Configure Click to configure the JTAG controller you have selected, for example the
Multi-ICE server, shown in Figure 4-6 on page 4-12.

See the Multi-ICE User Guide or the documentation that accompanies
your JTAG unit for more details.

See the ARM RMHost User Guide for more information.
4-14 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
4.3 Working with JTAG files

Multi-ICE direct connect is an OCD-based emulator that uses JTAG files to define the
devices on the JTAG scan chain and their order. This information might be supplied by
the manufacturer or might be configured after installation. RealView Debugger uses
JTAG files to access emulator targets on the local host for each supported processor.

Each emulation is specified in a .jtg file named after the supported processor, for
example arm.jtg or arm_oak.jtg. By default, supported .jtg files are stored in the
default settings directory \etc when you install RealView Debugger.

RealView Debugger detects the JTAG files and uses them to complete the configuration
settings. However, these files can be disabled. This means that they are included in the
configuration settings but are not displayed as available targets in the Connection
Control window.

To access the .jtg file editor for a Multi-ICE direct connect connection:

1. Start RealView Debugger without connecting to a target.

2. Display the Connection Control window.

3. Right-click on the chosen entry in the Connection Control window to display the
context menu, shown in Figure 4-7.

Figure 4-7 Editing JTAG files in the Connection Control window

4. Select Connection Properties... to display the Connection Properties window.
Right-click on the required .jtg file and select Edit Configuration-File
Contents... from the context menu, shown in Figure 4-8 on page 4-16.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-15

Configuring Custom Connections
Figure 4-8 Editing JTAG files in the Connection Properties window

This displays the Device JTAG-File Editor dialog box, shown in Figure 4-9.

Figure 4-9 Device JTAG-File Editor dialog box

Use this dialog box to amend the current device list, or to add new devices to the stored
scan chain. The dialog box contains the following controls:

Name: Enter the name of a new device to be added to the configuration. This
name identifies the new processor in the Connection Control window.

Type: Click on the down arrow to see a list of predefined processor types, for
example ARM, or TEAKLITE.
4-16 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
Note

 The choices displayed in the drop-down list are determined by the vehicle
defined for this connection, as set by the Connect_with/Manufacturer (see
Appendix A Configuration Settings Reference). For example, selecting
the vehicle DSG-DSPG-AT causes the drop-down list to include OAK and
TEALKITE, but not ARM.

On Connect:

Click on the down arrow to see a list of processor reset options when
making a connection to the chosen device, for example Reset.

Bypass: This is used to ignore a particular TAP controller, preventing the
debugger from connecting to it. Insert in the text field the number of bits
in the Scan Chain Select Register (SCSR) for the bypassed device. For
ARM CPUs this depends on CPU model, but is normally either 4 or 5.

The bypass option is not available for some vehicle types.

Extra: If your configuration file contains non-generic, target-specific entries,
use this field to specify these parameters.

Create New When you have entered the device details, click here to add the new
device to the top of the display list.

Device List This shows all the devices currently configured in the JTAG file. As you
create a new device it is added to the top of the list.

The list is ordered with the top list entry corresponding to the device that
has its Test Data Out (TDO) connected to the host interface Test Data In
(TDI) pin and the bottom list entry has its TDO connecting its TDI to
TDO of the host interface. This is shown in Figure 4-10.

Figure 4-10 JTAG chain ordering

� '�+
 !(4*+

� '�5
 !()*+

� '�*
 !()*6�".

�"#

�".�"#

�	��	��"������7��� $	��	��	��"������7���
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-17

Configuring Custom Connections
Move Up Use this to change the order of entries in the display list. Highlight an
entry and click Move Up to move it up towards the top of the list by one
place.

Move Down Use this to change the order of entries in the display list. Highlight an
entry and click Move Down to move it down towards the bottom of the
list by one place.

Copy Click to copy an existing entry and add it to the device list.

Edit Click to edit a device definition and so rename it in the device list. Editing
a device also means that you can change the text given in the Description
column in the Connection Control window.

There is a limit on the number of characters that can be displayed in the
Description column.

Remove Click to remove a highlighted entry from the device list.

File: Use this data field to specify the full pathname to the .jtg file that defines
the device list.

OK Click to confirm your entries and so update the specified .jtg file. This
closes the Device JTAG-File Editor dialog box.

Cancel Click to close the Device JTAG-File Editor dialog box without making
any changes to the device list.

Help Click to get online help text about this dialog box.

4.3.1 Viewing changes

You must save the amended board file entries to update the contents of the Connection
Control window. After confirming entries in the Device JTAG-File Editor dialog box,
select File → Save and Close to close the Connection Properties window.

If the chosen entry, for example ARMOAK_MICE, was expanded in the Connection Control
window, saving the updated board file settings collapses the second-level entry.

Expand the entry to see the new or updated devices available for connection.

4.3.2 Defining a DSP target

This example defines a new Oak DSP target. The example assumes that a correctly
configured .jtg file exists for the new target and this has been saved in the default
settings directory \etc.
4-18 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuring Custom Connections
To define the new target:

1. Select File → Connection → Connection Properties... to display the
Connection Properties window.

2. Right-click on the ...\rvdebug.brd entry, in the left pane.

3. Select Make New Group... from the menu, shown in Figure 4-11.

Figure 4-11 Defining a target board

4. This displays the Group Type/Name selector dialog, shown in Figure 4-12.

Figure 4-12 Specifying a CONNECTION group

Leave the type of the new entry unchanged as CONNECTION, but replace the default
name new with a meaningful name for the new entry, for example New_OAK_DSP.

This can be a descriptive name or the name of the new .jtg file that you are going
to select, but without the .jtg extension.

5. Click OK to confirm your settings and to close the Group Type/Name selector
dialog box.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. 4-19

Configuring Custom Connections
The new entry appears in the left pane of the Connection Properties window. It is
automatically selected, and its details are displayed in the right pane. These
details are the default for a new CONNECTION and you must change at least the
Connect_with/Manufacturer, the Configuration filename and target Description.

6. In the right pane of the Connection Properties window, right-click on the
Configuration entry and select Edit as Filename from the context menu.

The Enter New Filename dialog box is displayed to enable you to locate the
required .jtg file, for example \etc\new_oak_DSP.jtg.

7. Click Save to confirm your entries and to close the Enter New Filename dialog
box.

The new pathname is displayed in the right pane.

8. In the right pane of the Connection Properties window, right-click on the
Description field, and select Edit Value from the context menu.

Type New_Oak_DSP in the entry area and press Enter.

This is the description displayed in the Connection Control window and
Connection Properties window to identify the new target.

9. In the right pane of the Connection Properties window, right-click on the
Connect_with entry and select Explore from the context menu.

10. In the right pane of the Connection Properties window, right-click on the
Manufacturer entry and select the required connection type from the context
menu, for example ARM-ARM-PP.

11. Select File → Save and Close from the main menu to save your changes and
close the Connection Properties window.

Your new target board is now displayed in the Connection Control window.

Note
 RealView Debugger DSP support is separately licensed. You must obtain a license from
your ARM distributor to use this feature and connect to the new target.
4-20 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Appendix A
Configuration Settings Reference

This appendix contains reference details about board file entries that define target
configurations and custom connections. It contains the sections:

• Generic settings on page A-2

• Target configuration reference on page A-5

• Custom connection reference on page A-21.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-1

Configuration Settings Reference
A.1 Generic settings

There are many board file entries that are common to several types of settings, shown
in Figure A-1.

Figure A-1 Viewing generic settings

They are described in this section, and referenced from each setting type:

Connect_with This includes the settings values:

Manufacturer The name and the type of the connection.

The values show the available connection
types, but you also require an appropriate
license and the hardware to use them.

IOdevice This field contains additional information
about the hardware. It is not used in this
release of the RealView Debugger.

Speed You can set the emulation speed for some
emulators. It is not used in this release of the
RealView Debugger.

Remote Connections to remote targets are not supported in this release.

Advanced_Information

Provides extended target visibility details about the debug target
system. This feature is described in The Advanced_Information
block on page A-5.
A-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
Configuration Specifies a named JTAG scan file. The default is to search for the
.jtg file with the same name as this group (after the = sign). The
name in this field does not have to be the same as the name of this
group. If the file specified here is a full pathname, then only that
location is used. Otherwise, it is searched for.

When working with RDI targets, or the ARMulator simulator,
.jtg files are replaced by the .cnf configuration files.

Auto_connect Expands the list of devices on the target board. The list of devices
comes from the .jtg file specified by the BOARD or CHIP group. The
list of devices is shown in the Connection Control window. You
can then connect to the devices with a single click.

Pre_Connect Forces an order for device connection. When you connect to a
device within the .jtg file, this ensures that one or more specific
devices are connected first regardless of which device is selected
for connection. This enables pre-setup of the specific devices to
guarantee correct operation, such as initializations. You can
specify the device(s) to connect to first by name, by processor
name, or by processor type, as used in .cnf files that contain target
configuration settings.

Description Description of what board, processor, or emulator this is for.

Project Opens one or more projects automatically when connecting to this
board. If more than one device is in the scan chain and they are the
same processor type, you must set the Specific_device field of the
project to bind the project to the correct device(s). If the devices
are different processor types, this is not necessary.

Disabled Stops this entry from being shown in the Connection Control
window.

Shared Enables the sharing of target configurations for remote
connections. This setting is not supported in this release.

BoardChip_name Refers to the BOARD, CHIP, or COMPONENT group this is derived from,
using its name. If the group has more than one name separated by
a slash, such as ID/name, any of them can be used. If not specified,
the name of this group is used to match a board or chip.

Family_select Ensures the correct family member is used (for example, for
memory mapping, and registers) when the silicon ID is
ambiguous. Some chip families do not use different silicon IDs for
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-3

Configuration Settings Reference
different members of the family, and this field enables you to
specify which you are using. Specify the family member using
one of these formats:

name=family_name This enables you to specify the name of the
device. Use either the name defined in the
.jtg file or the processor name. This is used
when multiple chips are housed on the same
target but from different families.

family_name Choose from the preconfigured list.

silicon_id Can be expressed as num.num.num or as a
value.
A-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
A.2 Target configuration reference

This section describes in detail the target configuration entries that are supported by
RealView Debugger. It is split into the following sections:

• The Advanced_Information block

• BOARD, CHIP, and COMPONENT settings on page A-19.

For information about connection configuration, including the CONNECTION and DEVICE
entries, see Custom connection reference on page A-21.

A.2.1 The Advanced_Information block

The Advanced_Information block enables you to provide ETV information, for example
about extended memory mapping, mapped registers, and peripherals. Because more
than one device might be present, and each might have different details, you can create
more than one information block. The base block is called Default and is used if you
provide no other information. Entry names can be the same as processor or device
names in .jtg or .cnf files. These apply more specifically to matching devices.
Advanced information settings can be nested so that one might refer to another which
might refer to another. These references cause the information to be concatenated.
References are made to board and chip definitions.

The Default group in an Advanced_Information block contains:

• Application_Load on page A-6

• Memory_block on page A-6

• Map_rule on page A-10

• Register_enum on page A-10

• Register on page A-11

• Concat_Register on page A-12

• Peripherals on page A-13

• Register_Window on page A-14

• ARM_config on page A-14

• Logic_Analyzer on page A-16

• Cross_trigger on page A-16

• RTOS on page A-17

• Pre_connect on page A-17

• Commands on page A-17

• Connect_mode on page A-18

• Disconnect_mode on page A-18

• Id_chip on page A-19

• Id_match on page A-19
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-5

Configuration Settings Reference
• Chip_name on page A-19

• Endianess on page A-19.

Application_Load

Use the Application_Load block to change the way that an executable image is loaded
into target memory. The default is to write the memory using the emulator or EVM
board. This block can be used to override the default and so disable all image load, for
pure ROM or EPROM systems, or to run an external program to do the load.

The Application_Load block contains the following settings:

Load_using Specifies how to perform the load.

Load_command

This defines a shell command run to perform the load. The command
might contain $ variables which are substituted by RealView Debugger
before calling. The possible $ variables are:

$D directory of the application

$P full path of the application

$F filename of the application

$N name of the application without the extension.

If the command starts with an exclamation mark (!), the return value of
the shell command is not used to stop the load, otherwise a non-0 return
aborts the load. In all cases, the output of the command is shown in the
Log tab in the Output pane.

Load_set_pc This controls how the program counter is initialized during an image
load. The default is to set the program counter to the entry point if an
entry point is defined and symbols are loaded and this is not an appended
load (it is replace or new). This enables you to disable setting the program
counter under any situation, or to set it specifically to address 0.

Memory_block

Memory_block entries are used to build up fixed, enabled, or based memory regions. A
fixed block is one that refers to memory that is always enabled, always at the same
place, and always the same size. An enabled memory block is enabled or disabled by a
register value (see Map_rule on page A-10). A based memory block has its start or
length adjusted or set by a register value. This value might be added to an offset or might
itself be the required value.
A-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
This contains the following settings:

Attributes Additional attributes can be specified for the memory. These are used by
the simulators and guide the debugger in access to this block of memory.
The following settings are available:

Internal This memory is internal to the processor core and not treated
as external. This affects wait-state timings and other factors.

Access_rule
The access rule information is only used in simulators to
control timing issues. It is noted if a link command file is
generated.

Access_size
This field enables control of how the memory is accessed by
the debugger internally. For external memory with only
byte-wide or halfword-wide access enabled, this can be used
to ensure proper access to the memory. Depending on the
processor, this might have no effect.

Volatile True if access destroys contents or the contents change in
response to external events.

Shared This field indicates if the memory is shared with other
processors. If it is, it also indicates if directly shared (accessed
directly using the bus) or indirectly shared (using the host
workstation port of this processor). If this is set, this field
indicates what other processors or devices see this memory.

Shared_id
This field contains a number that identifies this memory block.
You must use the same number for each device when referring
to it. RealView Debugger can then correctly update all device
views when this memory is modified.

Register_Pos_Len

Used when one or two memory-mapped registers are used to set the base
address and length of the memory block, such as for cross-bar switches,
and chip-selects. These are not used for enables which are set using map
rules (see Map_rule on page A-10). The following settings are available:

Register_base
Enables you to specify a memory block position based on a
memory-mapped register. The value of the register is added to
the start field to construct the block start address. It can be
masked and scaled (multiplied or divided) first.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-7

Configuration Settings Reference
Base_mask
Mask to apply to register.

Base_scale
Use this to change the value of the register contents, after
masking, to define the actual base. If the number is positive, it
is multiplied against the register content. If the number is
negative, it is divided from the register content. For example,
a byte register might select the 64Kbyte region to map to. If the
scale is 0x10000 (64K), then register values of 0, 1, 2, 3, ... each
select a 64Kbyte region. If the selector occupies part of a
register, the mask is applied to select only the selector portion
and the scaling value itself might be scaled. Using the example
above, if the byte selector portion is the upper byte of a
register, the scale value is 0x10000/0x100=0x100 (256). So,
mask with 0xFF00 and multiply by 256 to get a 64Kbyte
selection.

Register_length
Enables a block of memory to be sized by a register. This is
commonly used in multi-processor shared memory systems.
The content of the register is added to the specified length to
compute the block length.

Len_mask
Mask to apply to register.

Len_scale Used like Base_scale.

Len_table
Enables table indexing for the length. The length register is
masked and scaled and then used as an index in a table of
values. The last value is used if the scaled register value is too
large. The table value is added to the length field of the block.

Update_rule
Indicates how often to check the register to see if the mapping
has changed. For cases where the mapping is set by jumpers,
which read as registers, it must be inspected only when first
connecting to the device. If the program changes it, it must be
tested on each stop. Valid values are:

init_time Test when connecting to device.

update_init Test on connect and when register
changes.
A-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
stop_update Test on connect, change, and execution
stop.

Start The base address of the block. If the block is mapped using a register, this
is the offset from that register.

Length The block length of this memory unit. If Length is set by a register, this
must be 0 or the amount to add to that register.

Type The type of memory is dependent on the device type. The default is to
map to data space. Otherwise, a memory space can be specified. Valid
values are:

• Default

• Program

• Data

• IO.

Access Indicates how the memory is to be treated. For simulators, this affects the
target use of the memory. For real targets, this only affects how the
debugger uses the memory and any generated linker command files.

Wait_states Used with simulators to calculate the cycles used when accessing this
memory. The default is based on the wait-state model used by the
processor for external memory. This value is noted when link command
files are generated from this data to enable careful positioning of sections
to this memory.

Flash_type Contains the name of a file containing the Flash programming code and
information for this processor. Example files for selected ARM targets
are provided in the \flash\examples directory installed as part of the root
installation. These files have the file extension .fme.

By using the routines in this file, RealView Debugger can erase, modify
and verify the contents of Flash memory.

Description Description of memory space.

Volatile Enables you to define ranges of a memory block that is volatile on read
(and so is marked specially in the Memory pane). The format is an offset
from within this block (0 relative). A range can be specified, for example
0x10..0x20 or 0x40..+4. If not a range, it defines a single value.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-9

Configuration Settings Reference
Map_rule

These entries control the enabling and disabling of memory blocks using target
registers. You specify a register to be watched, and when the contents match a given
value, a set of memory blocks is enabled. You can define several map rules, one for each
of several memory blocks. The following settings are available:

Register This is the name of a memory-mapped target register that controls the
visibility of a memory block. This register is read to determine the current
mappings. You must define the register using the Register block (see
Register on page A-11).

You are recommended to name the register itself instead of the bit fields
within it when more than one bit field controls the mapping.

Mask This is ANDed with the contents of the register as described in Value.

Value This is compared with the register contents after the mask is added. The
comparison is (reg-value & mask) == value. For example, if bit 3 being
HIGH means the map is enabled, mask is 0x8 (1<<3) and value is also 0x8.

On equal This contains the name of one or more memory blocks to enable when the
value matches, or disable when it does not match. To replace one block
with another, create one rule that tests for one value and another that tests
for a different value.

Update_rule

Indicates how often to check the register to see if the mapping has
changed. For cases where the mapping is set by jumpers, which read as
registers, it needs to be inspected only when first connecting to the
device. If the program changes it, it must be tested on each stop. Valid
values are:

init_time Test when connecting to device.

update_init Test on connect and when register changes.

stop_update Test on connect, change, and execution stop.

Register_enum

Enumerations can be used, instead of values, when a register is displayed in the Register
pane. This setting enables you to define the names associated with different values.
Names defined in this group are displayed in the Register pane, and can be used to
switch the register.

Register bit fields are numbered 0, 1, 2,... no matter where they are positioned in the
register.
A-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
The following setting is available:

Names You can specify a list of names, either in the form name,name,name,... or
in the form name=value,name=value,name=value,...

Register

This entry enables you to define memory-mapped registers provided at the board or
ASIC level. Each register is named and typed and can be subdivided into bit fields (any
number of bits) which act as subregisters.

The Register entry contains a group called Bit_fields which in turn contains the
Default settings:

Position Bit position from 0 (LSbit).

Size Size in bits.

Signed True if signed, false if unsigned.

Enum Enumeration name to show values to show values in the Register pane,
derived from Register_enum group.

Read_only True if read-only (cannot modify).

Volatile Indicates that the register has side-effects when it is read or written. A
common read side-effect is loss of data (when pulled from a UART, for
example). A common write side-effect is for the device to take some
action on write (triggering a DMA, for example). This information is
used in the Register pane.

Gui_name Optional name for showing in Register pane.

Other settings in the Register entry are:

Start The base address of the block. If the register is mapped using a memory
block, this is the offset from that register (see Base).

Length The block length of this memory unit. If Length is set by a register, this
must be 0 or the amount to add to that register.

Base This specifies how to interpret Start. If Base is Absolute, Start is the
memory address of the register. Otherwise, Base can be set to the name of
a memory block, and Start is an offset from the base address of that
memory block.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-11

Configuration Settings Reference
Memory_type

The type of memory is dependent on the device type. The default is to
map to data space. Otherwise, a memory space can be specified. Valid
values are:

• default

• program

• data

• IO.

Type Specifies how to interpret the value contained in the register. The type
names are as in the C language.

Read_only If this value is True, the register is read-only and the debugger does not
let you write to it. Otherwise, you can modify the value using the Register
pane in the Code window and using CLI expressions.

Write_only If this value is True, the register cannot be read. The debugger does not
attempt to query the hardware for the current value when the Register
pane is displayed.

Volatile If this value is True, the register value can change without the debugger
explicitly modifying it. For example, a hardware timer continues to count
even when the processor is halted.

Enum The name of a Register_enum block that maps a register value to a textual
string describing the value.

Gui_name The name of the register as it appears in the Register pane.

Concat_Register

You can define a concatenated register that is built up using specific bits from other
registers. Concatenated registers are usually used only for memory mapping, but you
can also use them for control and status. The suggested approach is to name two
registers and then shift and mask them into the new register. If you want to concatenate
parts from more than two registers, you can build them up in stages.

The following settings are available:

Low_name Name of low register.

Low_shift Amount to shift low register by (<0 for left shift).

Low_mask Amount of low register to mask (after shift).

High_name Name of high register.
A-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
High_shift Amount to shift high register by (<0 for left shift).

High_mask Amount of high register to mask (after shift).

Length Length of register, in memory units.

Type An explicit type for the register. If you do not specify the type, the default
is the signed scalar C type based on the register size.

Enum Enumeration name to show values to show values in the Register pane,
derived from Register_enum group.

Gui_name Optional name for showing in Register pane.

Peripherals

This entry enables you to define block peripherals so they can be mapped in memory,
for display and control, and accessed for block data, when available. You define the
peripheral in terms of the area of memory it occupies (for all its registers), and a
breakdown of the registers used for access and control. The following settings are
available:

Access_Method

This applies only when you can access blocks of data, and contains:

Type Method used to extract data.

Method_name
Name of access method function if needed.

Start Buffer or DMA start address.

Length Buffer or DMA length.

Register Used to add memory mapped registers provided at the board or ASIC
level. Each register is named and typed and can be subdivided into bit
fields (any number of bits) which act as subregisters. See Register on
page A-11 for details.

Start Start address of first peripheral register.

Length Block length.

Base Controls how the start field is interpreted. The default is Absolute (from
0), but can be relative to a memory block (if the block is disabled, the
peripheral is too).

Type Basic type of the device. The available values are:

• Serial
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-13

Configuration Settings Reference
• Parallel

• Block

• Network

• Display

• Other.

Description Description of the device.

Register_Window

This entry contains a set of lines to show in the Register pane. The name of the block is
the tab name used for the lines. Each line contains a list of mapped registers displayed
in the Register pane, see Register_enum on page A-10, Register on page A-11, and
Concat_Register on page A-12 for more details.

The format of a line is name,name,name,... where each name is the name of a register or
bit field. Be aware of the following:

• If the string starts with an equals sign, =, all the registers are shown as name=value
in the window, else shown in table form (the name is above the value).

• If a line starts with an underscore character, _, the line shows as a comment label
(non-active).

• If the line starts with an exclamation mark, !, it provides a description line for the
tab.

• If the line starts with:

$ the next line starts or ends an expansion block, controlled by + or -.

$+ indicates a collapsed block

$- indicates a expanded block

$$ this ends a previously opened block.

ARM_config

This entry enables control of ARM processor used for ARM emulators, monitors, or
simulators, and emulators. These control features such as semihosting, vector catching,
and memory top control (for stack and heap assignment) which must be set or unset
depending on the type of runtime you have linked into your application.

You can also set many of these at runtime using pseudo-registers. To do this, name the
block Default if it applies to all devices or give it the name of the scan chain device to
which it applies.
A-14 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
The following settings are available:

Stack_Heap The ARM tools automatically set the stack and heap based on the top of
memory using semihosting. The following settings are available:

Stack_bottom Bottom of stack (lowest address).

Stack_size Size of stack in bytes.

Heap_base Bottom of heap (lowest address).

Heap_size Size of heap in bytes.

Vectors If Vector_catch is set to True, the fields within this block enable individual
control over each vector.

Semihost_vector

Contains:

Vector Address of SWI vector catch to use.

Arm_swi_num ARM SWI instruction for semihosting.

Thumb_swi_num Thumb SWI instruction for semihosting.

Armulator Contains:

Clock_speed Clock speed in MHz as num.num.

Fpoint_emu True if floating point emulation.

Config_file The name of the configuration file.

Top_memory

Enables the semihosting mechanism to return the top of stack and base of
heap. If not defined here, the default for each tool is used (different for
Angel, Multi-ICE, ARMulator). Any defined value is set into each tool to
force this address base. You can use explicit stack and heap sizes and
locations below, but this might not be supported by all target debug
targets. You can also set this during a debugging session using the
@top_mem pseudo-register.

Vector_catch

Used to catch possible program errors by setting breakpoints on (or
otherwise trapping) the vectors. The default is to catch error-type vectors
but leave IRQ, FIQ, and SWI alone. SWI is caught separately by
semihosting if enabled. To use this, the vectors must be writable. These
can also be set during debugging using the @vector_catch pseudo-register.
In this case, each bit, starting with 1, represents the vectors from reset to
FIQ.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-15

Configuration Settings Reference
Semihosting Enables programs to communicate with the host workstation.
Semihosting operations supported include stack and heap assignment and
console I/O (printf and scanf type calls). Semihosting is implemented
using the SWI instruction. You can change the semihosting vector during
debug using the @semihost_vector pseudo-register. You can also define a
window number to display semihosting printf messages using
@semihost_window. The window numbers match the VOPEN command
numbers.

Properties This enables free-form definition of the properties required by a vehicle
(emulator or simulator). The form of the string is name=value, where name
is the name for the property as defined by the vehicle and value is a
numeric value in hex or decimal.

Logic_Analyzer

This block is used to define settings for external trace analyzer hardware.

RealView Debugger currently supports:

• ARM-based trace targets

• the Oak and TeakLite DSPs

• Motorola MC56600

• XScale onchip trace.

By default, RealView Debugger is automatically configured with tracing enabled for
ARM targets using preset values. These settings are not used for non-ARM trace targets.

If you have set up a new ARM-based trace target, using a new CONNECTION group (as
described in Creating new target descriptions on page 3-8) you must configure these
settings to enable tracing:

• right-click on Vendor and select ARM
• right-click on Load_when and select connect.

Cross_trigger

These settings control the cross-triggering of a stop command between multiple
processors that are closely coupled in hardware. They specify whether stopping
execution of one processor stops execution of other processors, due to a break or other
stop condition:

• input triggering means that the processor is stopped by others

• output triggering means that the processor can stop others.
A-16 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
The available settings are:

Trig_in_ena List commands to enable input triggering.

Trig_in_dis List commands to disable input triggering.

Trig_out_ena List commands to enable output triggering.

Trig_out_dis List commands to disable output triggering.

RTOS

This entry enables automatic loading of RTOS and kernel awareness. This entry enables
forced loading of RTOS support or symbol hooking. When the RTOS is
symbol-hooked, support is only loaded when the RTOS, or its symbols, are loaded to
the target. See the instructions from your vendor for proper setup. If supporting your
own RTOS and kernel, use the method that best matches your DLL.

The following settings are available:

Vendor Select the manufacturer of the RTOS from a popup list.

Load_when Accepts a keyword from a list to specify when to load RTOS, for
example on connection (connect), or when image is loaded
(image_load).

Base_address Defines a base address for RTOS data structures. See the
documentation for your specific RTOS support code.

Pre_connect

Forces an order for device connection. When you connect to a device within the .jtg
file, this ensures that one or more specific devices are connected first no matter which
you selected for connection. This enables pre-setup of the specific devices to guarantee
correct operation, such as initializations. You can specify the device(s) to connect to
first by name, by processor name, or by processor type, as used in .cnf files that contain
target configuration settings.

Commands

This enables you to specify RealView Debugger commands to run after a connection is
established. The most common example is INCLUDE to include commands from a file.
The commands are run just after the connection is completed. If Pre_connect is set, and
the pre-connected device is running this command, the command executes before the
original device is connected.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-17

Configuration Settings Reference
Connect_mode

This setting defines the connection mode, described in Setting connect mode on
page 2-11, when you connect by checking the check box in the Connection Control
window, or when the debugger automatically connects on start-up. If you connect using
the CONNECT command, or using the File menu, the connection mode is set in other ways.
The options include:

default Connect in the standard way for this connection type.

prompt Prompt for the connection mode to use.

stop Stop the target, placing it in debug state.

reset_stop Reset the target and place it in debug state

non_stop Leave the target running, making use of non-stop debug facilities of the
connection, if available, to display memory.

The options available for Connect_mode settings are generic to all vehicles and supported
processors.

Disconnect_mode

This setting defines the disconnection mode, described in Setting disconnect mode on
page 2-19, when you disconnect by checking the check box in the Connection Control
window, or when the debugger automatically disconnects on exit or when making a new
connection in single-connection mode. If you disconnect using the DISCONNECT
command, or using the File menu, the disconnection mode is set in other ways. The
options include:

default Disconnect in the standard way for this connection type.

prompt Prompt for the disconnection mode to use.

as-is Leave the target in the state it is in. That is, if it is stopped, leave it
stopped, if running then leave it running. Breakpoints that are currently
set are not deleted.

stopped Leave the target stopped, in debug state

running Leave the target running, with breakpoints deleted.

The options available for Disconnect_mode settings are generic to all vehicles and
supported processors.
A-18 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
Id_chip

The chip-id, or silicon-id, is loaded from the processor normally. When accessing
special custom chips, it might be necessary to force the ID explicitly. The ID can be
expressed as a 16-bit number or in num.num.num format. It can also be expressed as a
name of the family member if known.

Id_match

This contains the expected silicon ID from the processor. If it does not match this value,
you are prompted to choose whether or not to continue the connect operation. The ID
can be expressed as a 16-bit number or in num.num.num format.

Chip_name

This defines the manufacturer name of the actual device, such as family name or core
name. The Chip_name field enables you to specify a name to use in messages and lists
displayed by RealView Debugger. It does not enforce the chip family selection. For that,
you must use the Id_chip field.

Endianess

This field applies to ARMulator only. Use it to set the byte order of the simulated
processor.

A.2.2 BOARD, CHIP, and COMPONENT settings

You use a BOARD, CHIP, or COMPONENT entry when a standard board or chip, core plus
ASICs, exists, either commercial or custom. A CONNECTION group can refer to this entry
by name or ID. A reference to one of these groups enables automatic use of the .jtg file,
settings, and advanced information (ASIC, peripherals, and memory). This entry can
specify the default connection information which can be overridden by the CONNECTION
group (see CONNECTION settings on page A-23 for details).

The following entries are available, as described in Generic settings on page A-2:

• Connect_with

• Advanced_Information

• Configuration

• Description

• Project

• Family_select

• BoardChip_name.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-19

Configuration Settings Reference
Note

 If you create a new BOARD, CHIP, or COMPONENT entry, the Connect_with group also contains
an Ethernet group of settings. These are not supported in this release.
A-20 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
A.3 Custom connection reference

There are different types of board file entry depending on the kind of targets they
describe and the format of configuration files that they access. The board file consists
of the following types of entry:

• Connections and targets

• Board file (brd file) on page A-22

• CONNECTION settings on page A-23

• DEVICE settings on page A-23

• ARM RDI Configuration (rbe file) on page A-24

• JTAG configuration (jtg file) on page A-24.

A.3.1 Connections and targets

The board file describes two things about the target hardware:

• the hardware components used by software on the target

• the method used to access the target.

The target access method description includes the nature and addresses of the hardware
interface, for example the port name of the JTAG interface that is connected to the
target. This information is described in the Connect_with block of the board file and in
the file associated with the Configuration setting.

The RealView Debugger board file group type CONNECTION is normally used to specify
target access method connection details (although occasionally, you might use DEVICE
instead). Within a specific CONNECTION, one or more BoardChip_name entries are used to
associate the connection with a BOARD or CHIP description that defines peripherals and
memory maps.

It is recommended that the descriptions of the target are only defined in BOARD or CHIP
definitions, and that these descriptions are stored in .bcd files. For example, the
definition of the registers and peripherals of the ARM Integrator/AP motherboard is
stored in the file AP.bcd.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-21

Configuration Settings Reference
Figure A-2 How Components, Boards, and Chips fit together

A.3.2 Board file (brd file)

RealView Debugger uses a board file to access information about the debugging
environment and the debug targets available to you. You can use RealView Debugger
with the default board file that is installed for you in your debugger home directory. See
The home directory on page 1-6 for more information.

If you work with a variety of targets and connections you might set up and save several
board files, so that you can easily switch RealView Debugger from one to another. You
can change the board file being used for the current session in two ways:

• right-click on a top-level entry in the Connection Control window, for example
ARM-A-RR, and select Select Board-File... from the context menu

• change your workspace settings file to start the session with a specified board file,
see the chapter on configuring workspaces in RealView Debugger v1.6 User
Guide for details.

Note
 To ensure that configuration information is maintained, do not change the active board
file if:

• the Connection Properties window is open

• you are connected to a debug target.

 �������	
��������	

������������	
��������	

���	
��	
��������	

��������������� ������	
��������	

������	
��������	

���������������
���������������
A-22 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
A.3.3 CONNECTION settings

CONNECTION entries are used by boards to get a list of one or more devices. This setting
specifies:

• the type of the device

• the position of the device in the scan chain

• a name used to specify what to connect to.

In some JTAG file forms, additional information such as speed adjust can also be
specified. Using a group of type CONNECTION automatically pulls the list of devices from
the named file and provides an easy way to keep the two locked together.

The following entries are available, as described in Generic settings on page A-2:

• Connect_with

• Remote

• Advanced_information

• Configuration

• Auto_connect

• Pre_connect

• Description

• Project

• Disabled

• Shared

• BoardChip_name

• Family_select.

A.3.4 DEVICE settings

You use a DEVICE entry when only one device exists on the scan chain or when you have
to specify a lot of information for a specific device. The name of this group must be a
name within the .jtg file.

The following entries are available, as described in Generic settings on page A-2:

• Connect_with

• Remote

• Advanced_information

• Description

• Project

• Configuration

• Disabled

• Shared
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-23

Configuration Settings Reference
• Family_select

• BoardChip_name.

You can use a CONNECTION entry instead of a DEVICE entry.

A.3.5 ARM RDI Configuration (rbe file)

These are RDI configuration entries generated by the RDI configuration utilities.

You can expand this entry to see the second-level entries that list autodetected targets.
Expand one of these, for example armulator.rbe, to see the CONNECTION entry,
CONNECTION=ARMulator, where the configuration file, armulator.cnf, is specified.

A.3.6 JTAG configuration (jtg file)

JTAG configuration files define the devices on the JTAG scan chain and their order. This
information might be supplied either by the manufacturer or configured after
installation. RealView Debugger uses JTAG files to access emulator targets on the local
host for each supported processor.

Groups use the Configuration setting to name a file defining the JTAG scan chain, for
example CONNECTION or DEVICE. These files are expected to use the extension .jtg. There
are some shortcuts you can use in defining these files:

• If you provide the name of a .jtg file without specifying a path, RealView
Debugger searches for it, first in the current working directory, then in your home
directory, and then in the default settings directory \etc.

• If you use the same name for the .jtg file as the name of the CONNECTION, and the
Configuration entry is blank, RealView Debugger searches for a file called
connectionname.jtg, first in the current working directory, then in your home
directory, and then in the default settings directory \etc.

• If the Configuration entry is blank and a .jtg file cannot be found, RealView
Debugger prompts you to complete the configuration details.

Based on the information contained in the .jtg file, RealView Debugger determines the
appropriate scan length and access sequence for the processor you are communicating
with.

You use the JTAG file editor, accessed using the Connection Properties window, to edit
a .jtg file, and you use the Connection Properties window itself to supplement this
information if required, for example to define how the connection is made to the board.
A-24 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Configuration Settings Reference
The RealView Debugger base product includes the following JTAG files:

arm.jtg Specifies a single ARM processor on the scan chain.

arm_oak.jtg Specifies a DSP Group Oak processor and then an ARM processor
on the scan chain.

oak.jtg Specifies a DSP Group Oak processor on the scan chain.

arm_mp.jtg Specifies two ARM processors on the scan chain

teaklite.jtg Specifies a DSP Group TeakLite processor on the scan chain.

You must have the RealView Debugger DSP license to access the DSP Group
processors.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. A-25

Configuration Settings Reference
A-26 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

Access-provider connection
A debug target connection item that can connect to one or more target processors. The
term is normally used when describing the RealView Debugger Connection Control
window.

Address breakpoint A type of breakpoint.

See also Breakpoint.

ADS See ARM Developer Suite.

Angel Angel is a software debug monitor that runs on the target and enables you to debug
applications running on ARM-based hardware. Angel is commonly used where a JTAG
emulator, such as Multi-ICE, is not available.

ARM Developer Suite (ADS)
A suite of software development applications, together with supporting documentation
and examples, that enable you to write and debug applications for the ARM family of
RISC processors.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb state

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

Asynchronous execution
Asynchronous execution of a command means that the debugger accepts new commands
as soon as this command has been started, enabling you to continue do other work with
the debugger.

ATPCS ARM-Thumb Procedure Call Standard.

Backtracing See Stack Traceback.

Big-endian Memory organization where the least significant byte of a word is at the highest address
and the most significant byte is at the lowest address in the word.

See also Little-endian.

Board RealView Debugger uses the term board to refer to a target processor, memory,
peripherals, and debugger connection method.

Board file The board file is the top-level configuration file, normally called rvdebug.brd, that
references one or more other files.

Breakpoint A user defined point at which execution stops in order that a debugger can examine the
state of memory and registers.

See also Hardware breakpoint and Software breakpoint.

Conditional breakpoint
A breakpoint that halts execution when a particular condition becomes true. The
condition normally references the values of program variables that are in scope at the
breakpoint location.

Context menu See Pop-up menu.

Core module In the context of Integrator, an add-on development board that contains an ARM
processor and local memory. Core modules can run stand-alone, or can be stacked onto
Integrator motherboards.

See also Integrator

CPSR Current Program Status Register.

See also Program Status Register.

DCC See Debug Communications Channel.
Glossary-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Glossary
Debug Communications Channel (DCC)
A debug communications channel enables data to be passed between RealView
Debugger and the EmbeddedICE logic on the target using the JTAG interface, without
stopping the program flow or entering debug state.

Debug With Arbitrary Record Format (DWARF)
ARM code generation tools generate debug information in DWARF2 format.

Deprecated A deprecated option or feature is one that you are strongly discouraged from using.
Deprecated options and features will not be supported in future versions of the product.

Doubleword A 64-bit unit of information.

DWARF See Debug With Arbitrary Record Format.

ELF Executable and Linking Format. ARM code generation tools produce objects and
executable images in ELF format.

EmbeddedICE logic The EmbeddedICE logic is an on-chip logic block that provides TAP-based debug
support for ARM processor cores. It is accessed through the TAP controller on the ARM
core using the JTAG interface.

See also IEEE1149.1.

Emulator In the context of target connection hardware, an emulator provides an interface to the
pins of a real core (emulating the pins to the external world) and enables you to control
or manipulate signals on those pins.

Endpoint connection
A debug target processor, normally accessed through an access-provider connection.

ETV See Extended Target Visibility.

Execution vehicle Part of the debug target interface, execution vehicles process requests from the client
tools to the target.

Extended Target Visibility (ETV)
Extended Target Visibility enables RealView Debugger to access features of the
underlying target, such as chip-level details provided by the hardware manufacturer or
SoC designer.

Floating Point Emulator (FPE)
Software that emulates the action of a hardware unit dedicated to performing arithmetic
operations on floating-point values.

FPE See Floating Point Emulator.

Halfword A 16-bit unit of information.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-3

Glossary
Hardware breakpoint
A breakpoint that is implemented using non-intrusive additional hardware. Hardware
breakpoints are the only method of halting execution when the location is in Read Only
Memory (ROM). Using a hardware breakpoint often results in the processor halting
completely. This is usually undesirable for a real-time system.

See also Breakpoint and Software breakpoint.

IEEE Std. 1149.1 The IEEE Standard that defines TAP. Commonly (but incorrectly) referred to as JTAG.

See also Test Access Port

Integrator A range of ARM hardware development platforms. Core modules are available that
contain the processor and local memory.

Joint Test Action Group (JTAG)
An IEEE group focussed on silicon chip testing methods. Many debug and
programming tools use a Joint Test Action Group (JTAG) interface port to communicate
with processors. For further information refer to IEEE Standard, Test Access Port and
Boundary-Scan Architecture specification 1149.1 (JTAG).

JTAG See Joint Test Action Group.

JTAG interface unit A protocol converter that converts low-level commands from RealView Debugger into
JTAG signals to the processor, for example to the EmbeddedICE logic and to the ETM.

Little-endian Memory organization where the least significant byte of a word is at the lowest address
and the most significant byte is at the highest address of the word.

See also Big-endian.

Multi-ICE The ARM JTAG emulator debug tool for embedded systems. ARM registered
trademark.

Pop-up menu Also known as Context menu. A menu that is displayed temporarily, offering items
relevant to your current situation. Obtainable in most RealView Debugger windows or
panes by right-clicking with the mouse pointer inside the window. In some windows the
pop-up menu can vary according to the line the mouse pointer is on and the tabbed page
that is currently selected.

Processor core The part of a microprocessor that reads instructions from memory and executes them,
including the instruction fetch unit, arithmetic and logic unit and the register bank. It
excludes optional coprocessors, caches, and the memory management unit.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.
Glossary-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Glossary
Program Status Register (PSR)
Contains information about the current execution context. It is also referred to as the
Current PSR (CPSR), to emphasize the distinction between it and the Saved PSR
(SPSR), which records information about an alternate processor mode.

PSR See Program Status Register.

RDI See Remote Debug Interface.

RealView Compilation Tools
RealView Compilation Tools is a suite of tools, together with supporting documentation
and examples, that enables you to write and build applications for the ARM family of
RISC processors.

RealView Debugger Trace
A software product add-on to RealView Debugger that extends the debugging capability
with the addition of real-time program and data tracing.

Remote Debug Interface (RDI)
The Remote Debug Interface is an ARM standard procedural interface between a
debugger and the debug agent. RDI gives the debugger a uniform way to communicate
with:

• a simulator running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

Remote_A Remote_A is a software protocol converter and configuration interface. It converts
between the RDI 1.5 software interface of a debugger and the Angel Debug Protocol
used by Angel targets. It can communicate over a serial or Ethernet interface.

RTOS Real Time Operating System.

RVCT See RealView Compilation Tools.

Scan chain A scan chain is made up of serially-connected devices that implement boundary-scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain. Processors might contain
several shift registers to enable you to access selected parts of the device.

Scope The range within which it is valid to access such items as a variable or a function.

Script A file specifying a sequence of debugger commands that you can submit to the
command-line interface using the include command.

Semihosting A mechanism whereby I/O requests made in the application code are communicated to
the host system, rather than being executed on the target.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-5

Glossary
Simulator A simulator executes non-native instructions in software (simulating a core).

Software breakpoint A breakpoint that is implemented by replacing an instruction in memory with one that
causes the processor to take exceptional action. Because instruction memory must be
altered software breakpoints cannot be used where instructions are stored in read-only
memory. Using software breakpoints can enable interrupt processing to continue during
the breakpoint, making them more suitable for use in real-time systems.

See also Breakpoint and Hardware breakpoint.

Software Interrupt (SWI)
An instruction that causes the processor to call a programmer-specified subroutine.
Used by the ARM standard C library to handle semihosting.

SPSR Saved Program Status Register.

See also Program Status Register.

Stack traceback This a list of procedure or function call instances on the current program stack. It might
also include information about call parameters and local variables for each instance.

SWI See Software Interrupt.

Synchronous execution
Synchronous execution of a command means that the debugger stops accepting new
commands until this command is complete.

Synchronous starting
Setting several processors to a particular program location and state, and starting them
together.

Synchronous stopping
Stopping several processors in such a way that they stop executing at the same instant.

TAP See Test Access Port.

TAP Controller Logic on a device which enables access to some or all of that device for test purposes.
The circuit functionality is defined in Std. IEEE1149.1.

See also Test Access Port and IEEE Std. 1149.1.

Target The target board, including processor, memory, and peripherals, real or simulated, on
which the target application is running.

Target Vehicle Server (TVS)
Essentially the debugger itself, this contains the basic debugging functionality. TVS
contains the run control, base multitasking support, much of the command handling,
target knowledge, such as memory mapping, lists, rule processing, board-files and .bcd
files, and data structures to track the target environment.
Glossary-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Glossary
Test Access Port (TAP)
The port used to access the TAP Controller for a given device. Comprises TCK, TMS,
TDI, TDO, and nTRST (optional).

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.

See also ARM state

Tracepoint A tracepoint can be a line of source code, a line of assembly code, or a memory address.
In RealView Debugger, you can set a variety of tracepoints to determine exactly what
program information is traced.

Trigger In the context of breakpoints, a trigger is the action of noticing that the breakpoint has
been reached by the target and that any associated conditions are met.

In the context of tracing, a trigger is an event that instructs the debugger to stop
collecting trace and display the trace information around the trigger position, without
halting the processor. The exact information that is displayed depends on the position
of the trigger within the buffer.

TVS See Target Vehicle Server.

Vector Floating Point (VFP)
A standard for floating-point coprocessors where several data values can be processed
by a single instruction.

VFP See Vector Floating Point.

Watch A watch is a variable or expression that you require the debugger to display at every step
or breakpoint so that you can see how its value changes. The Watch pane is part of the
RealView Debugger Code window that displays the watches you have defined.

Word A 32-bit unit of information.
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-7

Glossary
Glossary-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
About this book vi
Accessing a .jtg file 4-16
Add/Remove/Edit Devices... 2-7
ADI

configuration dialog 4-14
installing configuration files 1-6

ADS
installing configuration files 1-6

ADS, requirement for 1-4
ADS, result of installing 3-2
Advanced_Information block 1-5
Agilent JTAG probe 4-14
Analyzer

trace hardware A-16
Angel debug target 4-11
ARM ADI 4-14
ARM Agilent Debug Interface 4-14
ARM Multi-ICE 4-12
ARM RealMonitor 4-14
ARM-ARM-PP 4-11
ARM-A-RR vehicle 1-4, 2-4

ARMulator memory map 4-10
ARMulator, options 4-9
Audience, intended vi

B
Backups of configuration 3-8
Bit fields, configuring 3-8
Board file

about 1-2
asterisk 4-4
location 1-2, 3-3

Board files
disabling entries 4-3
enabling entries 4-3
restoring entries 4-4
types of entries A-21

BOARD, uses of 3-11
Book, about this vi
Bypass 4-18
Byte ordering 4-9

C
Cache clean code address 4-12
Channel viewers 4-11
Checking memory use 3-8
CHIPs and BOARDs 3-17
CHIP, uses of 3-11
Code windows, behavior on disconnect

2-16
Collapsing groups 2-3
Comments

on documentation xi
on RealView Debugger xi

COMPONENT, uses of 3-11
Configuration, making backups 3-8
Configure Device Info... 2-7
Configuring

Remote_A 4-11
Configuring ARMulator 4-9
Configuring RDI 4-6
Configuring Remote_A 4-11
Connect

Default Reset/Halt 2-12
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Index-1

Index
No-Reset and No-Halt Target 2-12
Reset and Halt Target 2-12

CONNECT command 2-10
Connect to simple target 1-2
Connecting to multiple RDI targets 4-8
Connecting to target 2-9
Connection Control window 2-2

Access-provider connections 2-4
adding RDI DLLs 4-7
adding RDI targets 4-6
collapsing entries 2-3
configuring RDI targets 4-8
connect mode 2-11
connecting 2-9
disconnect mode 2-19
disconnecting 2-17
Endpoint connections 2-5
expanding entries 2-3
failing to connect 2-14
managing connections 2-6
Target vehicles 2-4
types of entry 2-4

Connection Control window, displaying
2-2

Connection Mode 2-11
Connection properties

asterisk beside entry 4-2
disabled entry 4-2, 4-3
enabled entry 4-2
entries 4-2

Connection Properties... 2-6
Connection state check box 2-3
Connection, failing to 2-14
Copying a *.bcd file 3-9
Create New RDI Target dialog 4-7
Creating

a bcd file 3-9
a board 3-11
a group 3-11
target descriptions 3-8
target group 3-8

D
DCC semihosting 4-13
Debug Endian 4-9
Debug target

bcd configuration files 3-5

board files 3-5
configuration files 3-3
configuring JTG 4-16
configuring Remote_A 4-11
connect mode 2-11
connecting 2-2, 2-9
disconnect mode 2-19
disconnecting 2-16
failing to connect 2-14
hardware 3-2
JTAG configuration files 3-4
RDI configuration files 3-4
RDI targets 4-6
troubleshooting connections 3-46

DEFAULT_PAGETABLES 4-10
Defining the target 3-8
Deleting board from .bcd file 3-10
Device JTAG-File Editor dialog 4-17
Device List 4-18
Disabled entries, in board file 4-2, 4-3
Disconnect

As-is now 2-21
Free Running 2-20
Running 2-21
Running (Debug) 2-20
Stopped (Debug) 2-21

Disconnect All 2-7
Disconnecting

by exiting 2-18
from Connection Control window

2-17
using the CLI 2-18
using the menu 2-16

Displaying peripherals 1-5
Documentation feedback xi
DSP, Oak or TeakLite 4-11

E
Edit Configuration-File Contents...

4-16
Enabled entries, in board file 4-2
Endianess 4-9, 4-11, 4-13
Enquiries xi
Evaluator-7T 3-6, 3-11
Expand Vehicles 2-6
Expand whole Tree 2-3
Extended Target Visibility 3-2

Extra 4-18

F
Failure to connect 2-14
Feedback

on documentation xi
on RealView Debugger xi

File search path 1-7
Files, searching 1-5
Finding Board/Chip definitions 1-8
Flash memory programming 3-8
Floating Point Accelerator 4-9
Format, of registers 3-6

G
Glossary Glossary-1
Group Name/Type selector dialog 4-20
GUI access to registers 3-8

H
Hardware Endian 4-10
Heartbeat 4-11
Home directory 1-6, 3-2
-home option 1-6, 1-7
How BOARD and CHIP differ 3-11

I
Integrator/AP 3-6, 3-7, 3-11, A-21
Integrator/CM 3-6, 3-7
Intended audience vi
Interface to RDI 1-4
I/O registers and bit fields 3-8

J
JTAG

configuration files 3-4
JTAG Controller 4-14
JTAG files 4-16
JTAG Frequency 4-14
Index-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

Index
K
KS32C50100 3-6, 3-11

L
Licenses, valid 2-14
Licensing 2-2
Link from Connection to Configuration

entry 1-4
Linking a board to a connection 3-12
Linking several boards from a

connection 3-14
Linking to the target 3-8
Locating Board/Chip definitions 1-8

M
Make New Group 3-11
Managing connections 2-6
Map file, ARMulator 4-10
Memory Management Unit, configuring

ARMulator 4-10
Merging settings from several boards

3-14
Mode, connection 2-11
Modifyng supplied files 3-6
Multi-ICE

and RMHost 3-38
compatibility 4-13
configuration 4-12
DCC semihosting 4-13
direct connect 4-11
DLL version numbers 4-13
installing configuration files 1-6
Processor Settings 4-13
requirement for 1-4
setting per-processor options 4-12

Multi-ICE direct connect 4-16
Multi-ICE server 4-12
Multiple board files, selecting A-22
Multiprocessor connections 2-9, 2-13

N
NO_PAGETABLES 4-10

O
Oak 4-18
Oak DSP 4-11, 4-19
On Connect 4-18
Order of board settings 3-14

P
Peripheral registers, displaying 1-5
Problem solving xi
Processor core module 3-6
Processor Settings

Multi-ICE 4-13
Processor simulation 4-9
Product feedback xi
Programming flash memory 3-8

example 3-43
Projects, behavior on disconnect 2-16

Q
Queries xi

R
RDI

adding third-party 4-6
configuration files 3-4
configuring targets 4-6
interfacing to 1-4
target configuration 4-6

RDI Module Server 4-14
RDI Target List dialog 4-6

enabling RDI connections 4-7
RDI 1.5.1 4-6
RealMonitor 4-14

configuration dialog 3-41, 4-14
debugging demonstration 3-42
example 3-38
loading symbols 3-41
Multi-ICE and RMHost 3-38
RMHost 3-38

Referencing
a board from a connection 3-12
multiple boards 3-14

target descriptions 3-7
Register format 3-6
Registers, configuring 3-8
Registers, GUI access to 3-8
Remote connection driver 4-11
Remote_A

channel viewers 4-11
target configuration 4-11

Remote_A, configuring 4-11
Restoring defaults, in board files

Board files
restoring defaults 4-4

RMHost 3-38

S
Search path, file 1-7
Searching for files 1-5
Select Board-File... 2-6, A-22
Select RDI DLL 4-7
Selecting group type 3-11
Serial driver, Remote_A 4-11
Simulating processors 4-9
Splitting your BOARD into distinct

CHIPs 3-17
Structure of this book vi
Supplied target descriptions 3-6

T
Target

See Debug target
Target board descriptions 3-6
Target, creating group 3-8
Target, defining 3-8
Target, linking to 3-8
TDI 4-18
TDO 4-18
TeakLite 4-18
TeakLite DSP 4-11
Terminology Glossary-1
Test Data In 4-18
Test Data Out 4-18
Test JTAG 2-8
Toolconf files 3-3
Trace

analyzer hardware A-16
ARM DUI 0182C Copyright © 2002, 2003 ARM Limited. All rights reserved. Index-3

Index
creating custom targets A-16
support A-16

U
Unconfigured RDI target 2-10
Using distinct CHIPs 3-17
Using several board files A-22

V
Valid licenses 2-14
Vector Floating Point 4-10
Vehicle, ARM-A-RR 1-4, 2-4

Symbols
*.bcd files 1-5
Index-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0182C

	RealView
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on
	Feedback on this book

	Introduction
	1.1 About RealView configuration
	1.2 Comparing target configuration to connection configuration
	1.2.1 Connection entries
	1.2.2 Configuration entries

	1.3 Configuration files
	1.3.1 The install directory
	1.3.2 The home directory
	1.3.3 The RealView Debugger search path
	1.3.4 What the configuration files contain
	1.3.5 Saving and restoring connection properties

	Connecting to Targets
	2.1 The Connection Control window
	2.1.1 Using the Connection Control window
	2.1.2 Groups in the Connection Control window

	2.2 Managing connections
	2.2.1 The vehicle menu
	2.2.2 The ARM RDI target menu
	2.2.3 The JTAG target menu

	2.3 Connecting to a target
	2.3.1 Using the Connection Control window
	2.3.2 Including the connection in the workspace
	2.3.3 Using CLI commands
	2.3.4 Setting connect mode

	2.4 Connecting to many targets
	2.5 Failing to make a connection
	2.5.1 Troubleshooting

	2.6 Disconnecting from a target
	2.6.1 Using the File menu
	2.6.2 Using the Connection Control window
	2.6.3 Using the CLI
	2.6.4 Disconnecting by exiting
	2.6.5 Setting disconnect mode

	Configuring Custom Targets
	3.1 About target configuration
	3.1.1 Target configuration
	3.1.2 Configuration files
	3.1.3 Default configuration files
	3.1.4 Using other board files

	3.2 The supplied target descriptions
	3.3 Creating new target descriptions
	3.3.1 Saving and restoring your .brd file
	3.3.2 Creating a *.bcd file
	3.3.3 Creating and naming a board, chip, or component
	3.3.4 Linking a board, chip, or component to a connection

	3.4 Example descriptions
	3.4.1 Setting up an Integrator board and core module
	3.4.2 Configuring a memory map
	3.4.3 Setting up a custom register
	3.4.4 Setting up memory blocks
	3.4.5 Setting top of memory and stack heap values
	3.4.6 Using RealMonitor
	3.4.7 Flash programming
	3.4.8 Restoring your .brd file
	3.4.9 Troubleshooting

	Configuring Custom Connections
	4.1 Working with connection properties
	4.1.1 Enabling or disabling a board file entry
	4.1.2 Restoring board file entry defaults

	4.2 Working with RDI targets
	4.2.1 Adding RDI targets
	4.2.2 Configuring RDI targets

	4.3 Working with JTAG files
	4.3.1 Viewing changes
	4.3.2 Defining a DSP target

	Configuration Settings Reference
	A.1 Generic settings
	A.2 Target configuration reference
	A.2.1 The Advanced_Information block
	A.2.2 BOARD, CHIP, and COMPONENT settings

	A.3 Custom connection reference
	A.3.1 Connections and targets
	A.3.2 Board file (brd file)
	A.3.3 CONNECTION settings
	A.3.4 DEVICE settings
	A.3.5 ARM RDI Configuration (rbe file)
	A.3.6 JTAG configuration (jtg file)

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Symbols

