ARM MPEG—Advanced
Audio Coding Decoder

Version 1

Programmer’s Guide

ARM

Copyright © 1999 ARM Limited. All rights reserved.
ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Change history

Date Issue Change

October 1999 A First release

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, Embedded| CE, M odel Gen, Multi-I CE, PrimeCell ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

Dolby, Dolby Digital, and Dolby AC-3 are registered trademarks of Dolby Laboratories.
All other products or services mentioned herein may be trademarks of their respective owners.

Supply of thisimplementation of Dolby Technology does not convey alicense nor imply aright under any
patent, or any other Industrial or Intellectual Property Right of Dolby L aboratories, to usethisimplementation
in any finished end-user or ready-to-use fina product. Companies planning to use thisimplementation in
products must obtain alicense from Dolby Laboratories Licensing Corporation before designing such
products.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
al warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Contents
Programmer’s Guide

Preface
ADOUL thiS DOOK ... Vi
FEEADACK ..ot e viii
Chapter 1 Introduction
1.1 ADOUL the MPEG—AAC ..ottt e et e e naaaaee e e e s nneees 1-2
Chapter 2 ARM MPEG—AAC Decoder Types and Constants
2.1 ENUMEIALIONS ..ottt ettt 2-2
2.2 The DItStream SIrUCIUIEoooiiiiiiiiee e 2-6
2.3 The bitstream header StrUCIUIecccvieriiiiiiiee e 2-8
2.4 The deCOAEI LYPE ...ttt e e 2-9
Chapter 3 ARM MPEG—AAC Decoder Functions
3.1 MPEG—AAC fUNCHONSiiiiiiiiiii et 3-2
Chapter 4 Example Program
4.1 EXaMPIE PrOQIamM ..cooieiiiie et et 4-2

ARM DUI 0129A © Copyright ARM Limited 1999. All rights reserved. iii

© Copyright ARM Limited 1999. All rights reserved.

ARM DUI 0129A

Preface

This prefaceintroducesthe ARM Moving Pictures Experts Group (MPEG)—Advanced
Audio Coding (AAC) Decoder. It contains the following sections:

. About this book on page vi
. Feedback on page Vviii.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. v

Preface

About this book

This book is provided with the ARM MPEG—AAC Decoder. It describes the
Application Program Interface (API) to the decoder library.

Intended audience

This book is written for programmers who want to integrate the ARM MPEG—AAC
Decoder into an embedded system.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM MPEG—AAC
Decoder.

Chapter 2 ARM MPEG--AAC Decoder Types and Constants

Read this chapter for a description of the types and constants used
by the ARM MPEG—AAC Decoder.

Chapter 3 ARM MPEG--AAC Decoder Functions

Read this chapter for a description of the functions provided by
the ARM MPEG—AAC Decoder.

Chapter 4 Example program

Read this chapter to see a complete example implementation of
the ARM MPEG—AAC Decoder.

Vi Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Preface

Typographical conventions

Further reading

The following typographical conventions are used in this book:

bold Highlightsinterface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

italic Highlights special terminology, denotesinternal cross-references,
and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

typewiteritalic

Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bol d Denoteslanguage keywords when used outside example code.

This section lists publications from third parties that provide additional information on
developing the ARM MPEG—AAC Decoder.

ARM periodically provides updates and corrections to its documentation. See
htt p: // ww. ar m comfor current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://ww. arm conf DevSupp/ Sal es+Support/faqg. ht m
Other publications

For reference information relating to the ARM MPEG—AAC Decoder, please refer to
the following:

. ISO/IEC 13818-4:199nformation technology—Generic coding of moving
pictures and associated audio information Part 4. Conformance testing

. ISO/IEC 13818-7:1991nformation Technology—Generic coding of moving
pictures and associated audio information Part 7. Advanced Audio Coding
(AAC).

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved. vii

Preface

Feedback
ARM Limited welcomes feedback on both the ARM MPEG—AAC Decoder and its
documentation.

Feedback on the ARM MPEG—AAC Decoder

If you have any problems with the ARM MPEG—AAC Decoder, please contact your
supplier. To help them provide a rapid and useful response, please give:

. details of the release you are using

. details of the platform you are running on, such as the hardware platform,
operating system type and version

. a small standalone sample of code that reproduces the problem

. a clear explanation of what you expected to happen, and what actually happened

. the commands you used, including any command-line options

. sample output illustrating the problem

. the version string of the tool, including the version number and date.

Feedback on this book

If you have any comments on this book, please send eneait ta a@r m comgiving:
. the document title

. the document number

. the page number(s) to which your comments apply

. a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

viii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 1
Introduction

This chapter provides an overview of the ARM MPEG—AAC Decoder. It includes the
following section:

. About the MPEG—AAGN page 1-2.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 1-1

Introduction

11

About the MPEG—AAC

The ARM 2.0.0.0 Channel Low Complexity Profile MPEG-2 AAC decoder is an
optimized library, designed to efficiently decode mono or stereo Low Complexity
Profile AAC hitstreams on the ARMv4 processor family.

Note

The ARM MPEG—AAC Decoder will be referred to as MPEG—AAC throughout this
book.

MPEG—AAC is an ARM implementation of the AAC audio compression standard.
This standard was specifically designed for generic multi-channel audio data. Unlike
other MPEG audio standards, such as MPEG Audio Layer Ill (MP3), MPEG—AAC is
not restricted by the necessity to maintain backward compatibility with previous MPEG
standards and, as a result, is more efficient, while maintaining a high audio quality.

MPEG—AAC is compliant with SO/IEC 13818-7:1997.

All output sampling frequencies, from 8kHz to 96kHz, and all valid input rates
(including variable-rate) are supported.

1-2

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 2
ARM MPEG—AAC Decoder Types and
Constants

This chapter describes the types and constants used by MPEG—AAC. It contains the
following sections:

. Enumerations on page 2-2

. The bitstream structure on page 2-6

. The bitstream header structure on page 2-8
. The decoder type on page 2-9.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-1

ARM MPEG—AAC Decoder Types and Constants

2.1 Enumerations

This section describes the enumerations available in the MPEG—AAC library:
. The bitstream format enumeration (tAAC_BitstreamFormat)

. The original/copy enumeration (tAAC_OriginalCopy) on page 2-3

. The bitstream type enumeration (tAAC_BitstreamType) on page 2-3

. The profile enumeration (tAAC_Profile) on page 2-3

. The sampling frequency enumeration (tAAC_Freguency) on page 2-4

. The error code enumeration (tAAC_ErrorCode) on page 2-4.

211 The bitstream format enumeration (tAAC_BitstreamFormat)
This enumeration is used to represent the format of the bitstream:

typedef enum

{
eAAC_UnknownFor mat , /1 Uninitialized val ue
eAAC_ADI F, /1 ADIF (raw bitstreamwi th single header)
eAAC_ADTS, /1 ADTS (franed bitstreamwi th frane headers)
eAAC_RAW /1 raw bitstream w t hout header

}

t AAC Bit streanformat;
|SO/IEC 13838-7 defines two bitstream formats:

Audio Data I nterchange Format (ADIF)
A single header followed by a stream of raw data blocks.

Audio Data Transport Stream (ADTS)

The bitstream is divided into frames, each consisting of a header followed
by one or more raw data blocks.

Additionally, MPEG—AAC can be used to decode a raw bitstream with no header. In
this case, you must set the sampling frequency when initializing the decoder (see
AAC Initialise() on page 3-2). The number of channels will be counted automatically
while decoding the first data block.

2-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

2.1.2 The original/copy enumeration (tAAC_OriginalCopy)

This enumeration is used to represent the field in the bitstream header that indicates
whether the bitstream is an original recording or a copy:

typedef enum

{
eAAC_Copy, /1 Copy of a recording
eAAC Ori gi nal /1 Original recording

}
t AAC_Ori gi nal Copy;

2.1.3 The bitstream type enumeration (tAAC_BitstreamType)

This enumeration is used to represent the field in the bitstream header that indicates
whether the input bitrate is constant or variable:

typedef enum

{
eAAC ConstantRate, // Constant input bitrate

eAAC Vari abl eRat e /1 Variable input bitrate

}
t AAC Bi t streanilype;

214 The profile enumeration (tAAC_Profile)

This enumeration is used to represent the field in the bitstream header that indicates
which profile is required to decode the bitstream:

typedef enum

{

eAAC MainProfile, // Main Profile

eAAC LCProfil e, /1 Low Complexity Profile

eAAC SSRProfile /1 Scal abl e Sanpling Rate Profile
}
t AAC Profile;

Note

The ARM MPEG-AAC Decoder currently supports only Low Complexity Profile
bitstreams.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-3

ARM MPEG—AAC Decoder Types and Constants

2.15

2.1.6

The sampling frequency enumeration (tAAC_Frequency)

This enumeration is used to represent the sampling frequency of the bitstream. The
numerical values in the enumerator names represent the sampling frequency in Hertz
(H2):

typedef enum

{
eAAC 96000,
eAAC 88200,
eAAC 64000,
eAAC 48000,
eAAC 44100,
eAAC 32000,
eAAC 24000,
eAAC 22050,
eAAC 16000,
eAAC 12000,
eAAC 11025,
eAAC 8000

}
t AAC_Fr equency;

The error code enumeration (tAAC_ErrorCode)

Thisenumeration is used as the return value of all the MPEG—AAC functions to
indicate whether the function completed successfully:

typedef enum

{
eAAC NoError,

eAAC EndOF Bit stream
eAAC_Header M ssi ng,

eAAC _Unsupport edFeat ure,
eAAC _TooManyChannel s,
eAAC_UnknownEr r or

}
t AAC Error Code;

where the error codes mean:

eAAC NoError
The function completed successfully.

eAAC EndOF Bit stream

The function completed successfully, and all the valid data in the input
buffer was used.

2-4

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

eAAC_Header M ssi ng

The bitstream does not begin with either an ADIF or an ADTS header. If
itisavalid raw bitstream, it can still be decoded. However, you must set
the sampling frequency to the correct value when initializing the decoder
(see AAC_Initialise() on page 3-2).

eAAC _Unsupport edFeat ure

The bitstream appears to use features which are not supported by the
2.0.0.0 Channel Low Complexity Profile.

eAAC_TooManyChannel s

Either the bitstream contains more channels than MPEG—AAC will
support, or the application has not provided enough output buffers for all
the channels.

eAAC_UnknownEr r or

Indicates that either the bitstream is invalid, or that an internal error has
occurred.

Note

Because of the highly compressed nature of the bitstream, either of these
eAAC_UnknownEr r or problems could produce any of the error codes.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-5

ARM MPEG—AAC Decoder Types and Constants

2.2 The bitstream structure

This structureis used to control and access the buffer that is used to transfer the audio
bitstream to the decoder.
Example 2-1 The bitstream structure
typedef struct
{

/* The follow ng are mai ntai ned by the decoder. */

/* They should not be altered by the application. */

int ValidBits; /* For internal use */

unsi gned | ong CurrentWord; /* For internal use */

unsi gned char *DataCut; /* Pointer to start of */

/* valid data */

/* The follow ng are maintained by the application. */

/* They will not be altered by the decoder. */

unsi gned | ong *DataEnd; /* Pointer to end of buffer */

unsigned long *DataStart; /* Pointer to start of buffer */

unsi gned long *Dataln; /* Pointer to end of valid data */
}
t AAC Bitstream
The bitstream is held in acircular buffer, delimited by the Dat aSt art and Dat aEnd
pointers. The Dat aSt art pointer must reference the first word of the buffer, and the
Dat aEnd pointer must reference the first word after the end of the buffer.
You must place new datain the buffer at the position referenced by theDat al n pointer,
which must be initialized to reference the first word of the buffer. You must update the
Dat al n pointer to reference the word after the last word that containsvalid data. If the
last word containing valid datais also the last word in the buffer, you must update the
Dat al n pointer to reference the first word of the buffer, and not the word after the end
of the buffer. That is, you must update the Dat al n pointer to reference the next location
in which datawill be placed.
Within each word, you must order the bits so that the most significant bit representsthe
first bit of the bitstream. For example, the bitstream fragment
0100 0001 0100 0100 0100 1001 0100 0110
would be represented by 0x41444946.

2-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

The Dat aCut pointer references the next word that will be read by the decoder. When
placing new datain the bitstream, you must not overwrite thisword. You can place data
in the word before this one.

You must ensure that the buffer contains at least 6144 bits (768 bytes) of valid data per
audio channel when the decoder isinvoked. Thisisthe largest possible size of a data
block.

You must keep the Dat aSt ar t , Dat aEnd, and Dat al n pointers aligned on 4-byte
boundaries at all times. You can assume that the Dat aOut pointer will aso be aligned
on a4-byte boundary.

Some applications might requirethat you usealinear buffer rather than acircular buffer.
To use alinear buffer:

1. Initializethe Dat aSt art pointer to reference the first word of the buffer, as
described above.

2. InitidizetheDat aEnd pointer to NULL toindicate that thereisno end to the buffer
(the end of the valid datais marked by the Dat al n pointer).

3. Placenew datain the buffer, updating the Dat al n pointer to reference the word
after the last word containing valid data, as described above.

4. If, after decoding ablock, the buffer contains less than 6144 bits of valid data per
audio channel, you must copy the remaining data to the start of the buffer to add
more data. The valid data begins with the word referenced by the Dat aQut
pointer, and endswith the word before that referenced by the Dat al n pointer. The
Dat aQut and Dat al n pointers must be updated to reference the first word of the
buffer, and the word after the last word containing valid data, respectively.

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved. 2-7

ARM MPEG—AAC Decoder Types and Constants

2.3

The bitstream header structure

This structure is used to represent the information supplied in the header of abitstream.
Most of the information is not required by the decoder, and is provided for the benefit
of the application. An exception to this is the sampling frequency field, where an
incorrect value could result in distorted audio output.

If the bitstream begins with avalid ADIF or ADTS header, the first call to
AAC_DecodeHeader () will fill al the relevant fields with valid values (see
AAC_DecodeHeader () on page 3-3). Otherwise, the first call to

AAC DecodeDat aBl ock() will fill inthefield for the number of channels,
Nunber OF Channel s. All other fields are considered invalid.

All the fields are defined in |SO/IEC 13818-7:1997, subclause 8.1.1.

Example 2-2 The bitstream header structure

typedef struct

{
t AAC BitstreanfFormat Bitstreanfornat; /1 ADIF, ADTS or raw data
char Copyrightl O 9]; /1 72-bit copyright 1D
i nt CopyrightBits; /1 Nunmber of currently valid bits
t AAC_Ori gi nal Copy Oi gi nal Copy; /1 Original recording or copy
t AAC_Bi t st reanilype Bi t st reanilype; /1 Variable or fixed rate
i nt Hone;
i nt Bi t Rat e; /1 Input rate; zero if unknown
i nt Buf f er Ful | ness;
i nt FraneLengt h; /1 Only for ADTS bitstreans
i nt Bl ocksl nFr ane; /1 Only for ADTS bitstreans
i nt Nurber Of Channel s; /1 Zero if not known
i nt Nurber OF Fr ont Channel s; // Zero if not known
i nt Nurber OF Si deChannels; // Zero if not known
i nt Nunmber Of BackChannels; // Zero if not known
i nt Nunmber O LFEChannel s; /!l Zero if not known
t AAC Profile Profil e; /1 Main, LC or SSR profile
t AAC_Fr equency Fr equency; /1 Qutput sanpling frequency
char Comment [257] ; /1 Null-termnated string
}
t AAC Header;

2-8 Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

2.4 The decoder type

MPEG—AAC requires a certain amount of RAM to function. For convenience, all of
the required RAM (except for a small amount of stack usage) is collected into a single
structure. This allows:

. several independent instances of the decoder to be used concurrently

. the memory to be easily reused by other applications when the decoder is not
required.

This structure is regarded as an opaque type. A pointer of this type is passed to each
the MPEG—AAC functions. The type is declared as:

typedef struct sAAC Decoder tAAC Decoder;

The size is defined by a constant symbol which is exported from the library, and is
declared as:

extern const int AAC DecoderSi ze;

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved. 2-9

ARM MPEG—AAC Decoder Types and Constants

2-10 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 3
ARM MPEG—AAC Decoder Functions

This chapter describes the functions provided by MPEG—AAC. It contains the
following section:

. MPEG—AAC functionsen page 3-2.

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 3-1

ARM MPEG—AAC Decoder Functions

3.1

3.1.1

MPEG—AAC functions

The section describes each of the functions provided with the MPEG—AAC library:
. AAC_Initialise()

. AAC_DecodeHeader() on page 3-3

. AAC_DecodeDataBlock() on page 3-4.

AAC_Initialise()

This function sets up the decoder workspace, making it ready to decode a bitstream.
This function must be called before the first frame of each new bitstream. If it is not
called, there might be loud clicks in the output of the first block.

Syntax

t AAC Error Code AAC Initialise(tAAC Decoder *Decoder,
t AAC Bitstream *Bi tstream
t AAC Header * Header,
t AAC _Frequency Defaul t Frequency)

where:

Decoder Is the workspace to be used by the decoder. This will be initialized (see
The decoder type on page 2-8).

Bi t st ream |sthe incoming bitstream buffer. Thet aSt art andbDat aEnd pointers
must point to the first byte of the buffer and the first byte above the buffer,
respectively, before calling the function. The internal fields
(Current Word, Val i dBi t s, andDat aCut) will be initialized by the
function (se€The bitstream structure on page 2-6).

Header Is the structure that will be used to record the bitstream header. All of its
fields will be cleared (seEhe bitstream header structure on page 2-8). If
you do not require the header information, you can pass a NULL pointer
instead.

Def aul t Frequency

Is the sampling frequency to use if the bitstream has no header. The
decoder might fail to decode a raw bitstreameif aul t Fr equency is
incorrectly set (se&€he sampling frequency enumeration—
tAAC_Frequencyn page 2-4).

Return value

See The error code enumeration (tAAC_ErrorCoda)page 2-4.

3-2

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Functions

3.1.2 AAC_DecodeHeader()

This function decodes the information contained in an ADIF or ADTS header.

Syntax

t AAC _Error Code AAC DecodeHeader (t AAC _Decoder * Decoder,
t AAC Bitstream *Bi tstream
t AAC Header * Header)

where:

Decoder Isapointer to the block of memory defined as your workspace (see The
decoder type on page 2-8).

Bi t st ream |stheincoming bitstream buffer. On output, the Dat aCut pointer will be
updated (see The bitstream structure on page 2-6).

Header Isastructure that will be used to record the bitstream header. On output,
the fieldswill befilled in if a header is found (see The bitstream header
structure on page 2-7).

Return value

See The error code enumeration (tAAC_ErrorCode) on page 2-4.

Notes

It is safe to call this function before each data block. If no header is found, the
AAC_DecodeHeader function will have no effect. It is not necessary to call this
function if you do not require the header information.

If the bitstream isin the ADIF format, you can call this function before the first data
block. It is not necessary to call it more than once.

If the bitstream isin the ADTS format, you can call this function before each ADTS
frame. The Bl ocksI nFr ane field will then indicate how many blocks you can decode
before you call this function again. If you require the copyright ID field of the header,
you must call thisfunction before every ADTSframebecausethisinformationis spread
over many frames.

If the bitstream has no header, none of the fields of the header are valid. The
AAC DecodeDat aBl ock() function will fill inthe Nunber O Channel s field based
on the number of channels it encounters (see AAC_DecodeDataBlock() on page 3-4).

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved. 3-3

ARM MPEG—AAC Decoder Functions

3.1.3

AAC_DecodeDataBlock()

This function decodes a block of data from the bitstream to produce 1024 new audio
samples for each channel.

Syntax

t AAC Error Code AAC DecodeDat aBl ock(t AAC_Decoder * Decoder,

where:

Decoder

Bi t stream

Header

Channel s[]

t AAC Bitstream *Bij tstream
t AAC Header * Header,
short *Channel s[])

Is a pointer to the block of memory defined as your workspace (see The
decoder type on page 2-8).

I's the incoming bitstream buffer. On output, the Dat aCut pointer is
updated to point to the start of the next block (see The bitstream structure
on page 2-6).

Is the header structure for this bitstream. On output, more fields can be
filledin if a Program Configuration Element (PCE) isfound. The
Nunber OF Channel s field will befilledinif set to zero on entry (see The
bitstream header structure on page 2-8). If you do not require the header
information, you can pass a NULL pointer instead.

Isan array of pointersto output buffers. Each will be filled with 1024
16-bit PCM samples, decoded from the bitstream. You must terminate
thislist withaNULL pointer to ensure that the decoder does not attempt
to decode additional channels for which there is no memory space
allocation.

Return value

See The error code enumeration (tAAC_ErrorCode) on page 2-4.

—— Caution

The bitstream structure will beinvalid if this function returns any value other than
eAAC_NoEr r or , and any attempt to continue decoding the bitstream will have
unpredictable results.

3-4

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 4

Example Program

This chapter provides an example implementation of MPEG_AAC. It contains the
following section:

. Example program on page 4-2.

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved.

41

Example Program

4.1 Example program

Example 4-1 is an example implementation of MPEG—AAC.

Example 4-1 Example implementation—AAC_Decoder.c

AAC Decoder.c
Exanpl e i npl enentati on of the ARM MPEG AAC Decoder.

Copyright ARM Limted 1999. Al Ri ghts Reserved.

* 0% X X X X X

/
#i ncl ude <stdio. h>
#i ncl ude "AAC. h"

#defi ne WORKSPACE_SI ZE 16436
#def i ne | NBUFFER_SI ZE 384 [* 2 channels require 12288 bits = 384 words */

/* Menory for the decoder’s workspace */
static char sWor kspace[WORKSPACE_SI ZE] ;

/* Structure to record the bitstream header (optional) */
static t AAC Header sHeader ;

/* The buffer for the input bitstream */
static unsigned long |InBuffer [INBUFFER_SI ZE];
static tAAC Bitstream sBitstream =

{
0, 0, 0, /* internal data will be initialised by AAC Initialise() */
I nBuf f er + | NBUFFER_SI ZE, /* Dat aEnd */
| nBuf f er, /* DataStart */
| nBuf f er /* Dataln */
b
/* The audi o output buffers */
static short Qut Buf fer 1[1024] ;
static short Qut Buf f er 2[1024] ;
static short *QutBuffers[] = {CQutBufferl, QutBuffer2, NULL};

/* Function to read input data into the bitstream buffer (defined below */
static void FillBitstrean(tAAC Bitstream *Bitstream FILE *File);

4-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Example Program

/* External function required to play or otherw se process the audio data */
extern void ProcessAudi oData(short *Data[], int NunberOf Channel s);

static const char *ErrorStrings[] =

{
"No error", "End of bitstreant, "Header m ssing",
"Unsupported feature", "Too many channel s", "Unknown error"

}

int main(int argc, char *argv[])
{
t AAC Decoder *Decoder
t AAC Bitstream *Bitstream
t AAC Header *Header
FI LE *InFile;

(t AAC_Decoder *)sWrkspace;
&sBi t stream
&sHeader ;

/* Check that the workspace is |arge enough */

if (sizeof (sWrkspace) < AAC Decoder Si ze)

{

printf("Error: Wrkspace nust be at l|east % bytes.\n", AAC DecoderSize);
return 1;

}

/* Open the input file */
InFile = fopen(argv[1], "rb");

if (!InFile)

{
printf("Error: Unable to open '%’ .\n", argv[1]);
return 1;

}

/* Initialise the decoder */

if (AAC_Initialise(Decoder, Bitstream Header, eAAC 44100) != eAAC NoError)

{
printf("Error: Initialisation failed.\n");
return 1;

}

/* Ensure there will be enough data avail able */

FillBitstream Bitstream InFile);

/* Read the header (if there is one) */
AAC _DecodeHeader (Decoder, Bitstream Header);

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved.

Example Program

for(;;)

{
t AAC Error Code Error;
/* Ensure there will be enough data avail able */
FillBitstream(Bitstream |InFile);

/* Extract the audio data */
Error = AAC DecodeDat aBl ock(Decoder, Bitstream Header, QutBuffers);

if (Error !'= eAAC NoError && Error != eAAC EndOf Bitstream
{

printf("Error: 9%.\n", ErrorStrings[Error]);

return 1;

}

/* call external function to process the audio data */
ProcessAudi oDat a(Qut Buf fers, Header - >Nunber O Channel s) ;

if (Error == eAAC _EndOF Bi t stream
{
printf("End of bitstream\n");
br eak;
}
}

return O;

}

/* Function to read input data into the bitstream buffer */
static void FillBitstrean(tAAC Bitstream *Bitstream FILE *File)

{
do

{
unsi gned | ong NewbDat a;

/* Read 32 bits fromthe bitstream with the first bits on the right */

/* Return immediately if there is no data avail abl e. */
if ((NewData = getc(File)) == EOF)
return;

NewDat a <<= 24;

NewData | = (getc(File) & Oxff) << 16;
NewData | = (getc(File) & Oxff) << 8;
NewData | = (getc(File) & Oxff);

/* Wite this into the buffer */
*Bitstream >Dataln = NewDat a;

4-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

/* Update the buffer pointer */

Bi t st r eam >Dat al n++;

if (Bitstream >Dataln == Bitstream >Dat aEnd)
Bitstream>Dataln = Bitstream >DataStart;

} while(!feof (File) &&

Bitstream >Dataln != Bitstream >DataCut);

Example Program

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved.

4-5

Example Program

4-6

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0129A

Index

Theitemsin thisindex are listed in a phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

AAC standard 1-2

AAC_DecodeDataBlock() 2-8, 3-3,
34

AAC_DecodeHeader() 2-8, 3-3

AAC DecoderSize 2-9

AAC Initialise() 3-2

ADIF header 2-5, 2-8, 3-3

ADTSheader 2-5, 2-8, 3-3

Audio Datal nterchange Format (ADIF)
2-2

Audio Data Transport Stream (ADTS)
2-2

B

Bitstream format enumeration
(tAAC_BitstreamFormat) 2-2

Bitstream header structure
(tAAC_Header) 2-2,2-3,2-8

Bitstream structure (tAAC_Bitstream)

2-6
Bitstream type enumeration
(tAAC_BitstreamType) 2-3
BlocksinFrame field 3-3

C

Circular buffer 2-6

D

Datablock 2-2,2-7, 3-3, 3-4
DataEnd pointer 2-6, 3-2

Dataln pointer 2-6

DataOut pointer 2-7

DataStart pointer 2-6, 3-2
Decoder type (tAAC_Decoder) 2-9

E

eAAC_EndOfBitstream (error code)
2-4
eAAC_HeaderMissing (error code)
2-5
eAAC_NokError (error code) 2-4, 3-4
eAAC_TooManyChannels(error code)
2-5
eAAC_UnknownError (error code) 2-5
eAAC_UnsupportedFeature (error
code) 2-5
Enumerations 2-2
bitstream format
(tAAC_BitstreamFormat) 2-2
bitstream type
(tAAC _BitstreamType) 2-3
error code (tAAC_ErrorCode) 2-4
original/copy (tAAC_Original Copy)
2-3
profile (AAC_Profile) 2-3
sampling frequency
(tAAC_Frequency) 2-4

ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved.

Index-1

Index

Error code enumeration
(tAAC_ErrorCode) 2-4

Error codes
eAAC_EndOfBitstream 2-4
eAAC_HeaderMissing 2-5
eAAC NoError 2-4
eAAC_TooManyChannels 2-5
eAAC_UnknownError 2-5
eAAC_UnsupportedFeature 2-5

F

Functions
AAC_DecodeDataBlock() 3-4
AAC_DecodeHeader() 3-3
AAC Initialise() 3-2

Input buffer 2-4

L

Linear buffer 2-7
Low Complexity Profile 1-2, 2-3, 2-5

N

NumberOfChannelsfield 2-8, 3-3, 3-4

O

Original/copy enumeration
(tAAC_OriginalCopy) 2-3
Output buffer 2-5

P

Profile enumeration (tAAC_Profile)
2-3

Program Configuration Element (PCE)
34

R

Raw hitstream 2-5

S

Sampling frequency 1-2, 2-2, 2-4
Sampling frequency enumeration
(tAAC_Frequency) 2-4

T

tAAC_Bitstream (bitstream structure)
2-6
tAAC_BitstreamFormat (bitstream
format enumeration) 2-2
tAAC_BitstreamType (bitstream type
enumeration) 2-3
tAAC_Decoder (decoder type) 2-9
tAAC_ErrorCode (error code
enumeration) 2-4
tAAC_Frequency (sampling frequency
enumeration) 2-4
tAAC_Header (bitstream header
structure) 2-8
tAAC_OriginalCopy (original/copy
enumeration) 2-3
tAAC_Profile (profile enumeration)
2-3

Numerics

2.0.0.0 Low Complexity Profile 1-2,
2-5

Index-2 Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0129A

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM MPEG—AAC Decoder
	Feedback on this book

	Introduction
	1.1 About the MPEG—AAC

	ARM MPEG—AAC Decoder Types and Constants
	2.1 Enumerations
	2.1.1 The bitstream format enumeration (tAAC_BitstreamFormat)
	2.1.2 The original/copy enumeration (tAAC_OriginalCopy)
	2.1.3 The bitstream type enumeration (tAAC_BitstreamType)
	2.1.4 The profile enumeration (tAAC_Profile)
	2.1.5 The sampling frequency enumeration (tAAC_Frequency)
	2.1.6 The error code enumeration (tAAC_ErrorCode)

	2.2 The bitstream structure
	2.3 The bitstream header structure
	2.4 The decoder type

	ARM MPEG—AAC Decoder Functions
	3.1 MPEG—AAC functions
	3.1.1 AAC_Initialise()
	3.1.2 AAC_DecodeHeader()
	3.1.3 AAC_DecodeDataBlock()

	Example Program
	4.1 Example program
	A
	B
	C
	D
	E
	F
	I
	L
	N
	O
	P
	R
	S
	T
	Numerics

