
ARM MPEG—Advanced
Audio Coding Decoder

Version 1

Programmer’s Guide
Copyright © 1999 ARM Limited. All rights reserved.
ARM DUI 0129A

Copyright © 1999 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

Dolby, Dolby Digital, and Dolby AC-3 are registered trademarks of Dolby Laboratories.

All other products or services mentioned herein may be trademarks of their respective owners.

Supply of this implementation of Dolby Technology does not convey a license nor imply a right under any
patent, or any other Industrial or Intellectual Property Right of Dolby Laboratories, to use this implementation
in any finished end-user or ready-to-use final product. Companies planning to use this implementation in
products must obtain a license from Dolby Laboratories Licensing Corporation before designing such
products.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change history

Date Issue Change

October 1999 A First release
ii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Contents
Programmer’s Guide
Preface
About this book ...vi
Feedback .. viii

Chapter 1 Introduction
1.1 About the MPEG—AAC ...1-2

Chapter 2 ARM MPEG—AAC Decoder Types and Constants
2.1 Enumerations ...2-2
2.2 The bitstream structure ..2-6
2.3 The bitstream header structure ..2-8
2.4 The decoder type ...2-9

Chapter 3 ARM MPEG—AAC Decoder Functions
3.1 MPEG—AAC functions ..3-2

Chapter 4 Example Program
4.1 Example program ...4-2
ARM DUI 0129A © Copyright ARM Limited 1999. All rights reserved. iii

iv © Copyright ARM Limited 1999. All rights reserved. ARM DUI 0129A

Preface

This preface introduces the ARM Moving Pictures Experts Group (MPEG)—Advanced
Audio Coding (AAC) Decoder. It contains the following sections:

• About this book on page vi

• Feedback on page viii.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. v

Preface

C

C

sed

y

 of
About this book

This book is provided with the ARM MPEG—AAC Decoder. It describes the
Application Program Interface (API) to the decoder library.

Intended audience

This book is written for programmers who want to integrate the ARM MPEG—AA
Decoder into an embedded system.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM MPEG—AA
Decoder.

Chapter 2 ARM MPEG--AAC Decoder Types and Constants
Read this chapter for a description of the types and constants u
by the ARM MPEG—AAC Decoder.

Chapter 3 ARM MPEG--AAC Decoder Functions
Read this chapter for a description of the functions provided b
the ARM MPEG—AAC Decoder.

Chapter 4 Example program
Read this chapter to see a complete example implementation
the ARM MPEG—AAC Decoder.
vi Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Preface

r to
Typographical conventions

The following typographical conventions are used in this book:

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

italic Highlights special terminology, denotes internal cross-references,
and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from third parties that provide additional information on
developing the ARM MPEG—AAC Decoder.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

Other publications

For reference information relating to the ARM MPEG—AAC Decoder, please refe
the following:

• ISO/IEC 13818-4:1997, Information technology—Generic coding of moving
pictures and associated audio information Part 4. Conformance testing.

• ISO/IEC 13818-7:1997, Information Technology—Generic coding of moving
pictures and associated audio information Part 7. Advanced Audio Coding
(AAC).
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. vii

Preface

pened
Feedback
ARM Limited welcomes feedback on both the ARM MPEG—AAC Decoder and its

documentation.

Feedback on the ARM MPEG—AAC Decoder

If you have any problems with the ARM MPEG—AAC Decoder, please contact your
supplier. To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually hap

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
viii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 1
Introduction

This chapter provides an overview of the ARM MPEG—AAC Decoder. It includes the
following section:

• About the MPEG—AAC on page 1-2.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 1-1

Introduction

is

.
like
 is
EG
y.
1.1 About the MPEG—AAC

The ARM 2.0.0.0 Channel Low Complexity Profile MPEG-2 AAC decoder is an
optimized library, designed to efficiently decode mono or stereo Low Complexity
Profile AAC bitstreams on the ARMv4 processor family.

Note

The ARM MPEG—AAC Decoder will be referred to as MPEG—AAC throughout th
book.

MPEG—AAC is an ARM implementation of the AAC audio compression standard
This standard was specifically designed for generic multi-channel audio data. Un
other MPEG audio standards, such as MPEG Audio Layer III (MP3), MPEG—AAC
not restricted by the necessity to maintain backward compatibility with previous MP
standards and, as a result, is more efficient, while maintaining a high audio qualit

MPEG—AAC is compliant with ISO/IEC 13818-7:1997.

All output sampling frequencies, from 8kHz to 96kHz, and all valid input rates
(including variable-rate) are supported.
1-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 2
ARM MPEG—AAC Decoder Types and
Constants

This chapter describes the types and constants used by MPEG—AAC. It contains the
following sections:

• Enumerations on page 2-2

• The bitstream structure on page 2-6

• The bitstream header structure on page 2-8

• The decoder type on page 2-9.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-1

ARM MPEG—AAC Decoder Types and Constants

ed

r. In

lly
2.1 Enumerations

This section describes the enumerations available in the MPEG—AAC library:

• The bitstream format enumeration (tAAC_BitstreamFormat)

• The original/copy enumeration (tAAC_OriginalCopy) on page 2-3

• The bitstream type enumeration (tAAC_BitstreamType) on page 2-3

• The profile enumeration (tAAC_Profile) on page 2-3

• The sampling frequency enumeration (tAAC_Frequency) on page 2-4

• The error code enumeration (tAAC_ErrorCode) on page 2-4.

2.1.1 The bitstream format enumeration (tAAC_BitstreamFormat)

This enumeration is used to represent the format of the bitstream:

typedef enum
{
 eAAC_UnknownFormat, // Uninitialized value
 eAAC_ADIF, // ADIF (raw bitstream with single header)
 eAAC_ADTS, // ADTS (framed bitstream with frame headers)
 eAAC_RAW // raw bitstream without header
}
tAAC_BitstreamFormat;

ISO/IEC 13838-7 defines two bitstream formats:

Audio Data Interchange Format (ADIF)
A single header followed by a stream of raw data blocks.

Audio Data Transport Stream (ADTS)
The bitstream is divided into frames, each consisting of a header follow
by one or more raw data blocks.

Additionally, MPEG—AAC can be used to decode a raw bitstream with no heade
this case, you must set the sampling frequency when initializing the decoder (see
AAC_Initialise() on page 3-2). The number of channels will be counted automatica
while decoding the first data block.
2-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants
2.1.2 The original/copy enumeration (tAAC_OriginalCopy)

This enumeration is used to represent the field in the bitstream header that indicates
whether the bitstream is an original recording or a copy:

typedef enum
{
 eAAC_Copy, // Copy of a recording
 eAAC_Original // Original recording
}
tAAC_OriginalCopy;

2.1.3 The bitstream type enumeration (tAAC_BitstreamType)

This enumeration is used to represent the field in the bitstream header that indicates
whether the input bitrate is constant or variable:

typedef enum
{
 eAAC_ConstantRate, // Constant input bitrate
 eAAC_VariableRate // Variable input bitrate
}
tAAC_BitstreamType;

2.1.4 The profile enumeration (tAAC_Profile)

This enumeration is used to represent the field in the bitstream header that indicates
which profile is required to decode the bitstream:

typedef enum
{
 eAAC_MainProfile, // Main Profile
 eAAC_LCProfile, // Low Complexity Profile
 eAAC_SSRProfile // Scalable Sampling Rate Profile
}
tAAC_Profile;

Note

The ARM MPEG-AAC Decoder currently supports only Low Complexity Profile
bitstreams.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-3

ARM MPEG—AAC Decoder Types and Constants

ut
2.1.5 The sampling frequency enumeration (tAAC_Frequency)

This enumeration is used to represent the sampling frequency of the bitstream. The
numerical values in the enumerator names represent the sampling frequency in Hertz
(Hz):

typedef enum
{
 eAAC_96000,
 eAAC_88200,
 eAAC_64000,
 eAAC_48000,
 eAAC_44100,
 eAAC_32000,
 eAAC_24000,
 eAAC_22050,
 eAAC_16000,
 eAAC_12000,
 eAAC_11025,
 eAAC_8000
}
tAAC_Frequency;

2.1.6 The error code enumeration (tAAC_ErrorCode)

This enumeration is used as the return value of all the MPEG—AAC functions to
indicate whether the function completed successfully:

typedef enum
{
 eAAC_NoError,
 eAAC_EndOfBitstream,
 eAAC_HeaderMissing,
 eAAC_UnsupportedFeature,
 eAAC_TooManyChannels,
 eAAC_UnknownError
}
tAAC_ErrorCode;

where the error codes mean:

eAAC_NoError

The function completed successfully.

eAAC_EndOfBitstream

The function completed successfully, and all the valid data in the inp
buffer was used.
2-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

r all

has

ese
.

eAAC_HeaderMissing

The bitstream does not begin with either an ADIF or an ADTS header. If
it is a valid raw bitstream, it can still be decoded. However, you must set
the sampling frequency to the correct value when initializing the decoder
(see AAC_Initialise() on page 3-2).

eAAC_UnsupportedFeature

The bitstream appears to use features which are not supported by the
2.0.0.0 Channel Low Complexity Profile.

eAAC_TooManyChannels

Either the bitstream contains more channels than MPEG—AAC will
support, or the application has not provided enough output buffers fo
the channels.

eAAC_UnknownError

Indicates that either the bitstream is invalid, or that an internal error
occurred.

Note

Because of the highly compressed nature of the bitstream, either of th
eAAC_UnknownError problems could produce any of the error codes
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-5

ARM MPEG—AAC Decoder Types and Constants
2.2 The bitstream structure

This structure is used to control and access the buffer that is used to transfer the audio
bitstream to the decoder.

Example 2-1 The bitstream structure

typedef struct
{
 /* The following are maintained by the decoder. */
 /* They should not be altered by the application. */
 int ValidBits; /* For internal use */
 unsigned long CurrentWord; /* For internal use */
 unsigned char *DataOut; /* Pointer to start of */
 /* valid data */

 /* The following are maintained by the application. */
 /* They will not be altered by the decoder. */
 unsigned long *DataEnd; /* Pointer to end of buffer */
 unsigned long *DataStart; /* Pointer to start of buffer */
 unsigned long *DataIn; /* Pointer to end of valid data */
}
tAAC_Bitstream;

The bitstream is held in a circular buffer, delimited by the DataStart and DataEnd
pointers. The DataStart pointer must reference the first word of the buffer, and the
DataEnd pointer must reference the first word after the end of the buffer.

You must place new data in the buffer at the position referenced by the DataIn pointer,
which must be initialized to reference the first word of the buffer. You must update the
DataIn pointer to reference the word after the last word that contains valid data. If the
last word containing valid data is also the last word in the buffer, you must update the
DataIn pointer to reference the first word of the buffer, and not the word after the end
of the buffer. That is, you must update the DataIn pointer to reference the next location
in which data will be placed.

Within each word, you must order the bits so that the most significant bit represents the
first bit of the bitstream. For example, the bitstream fragment

0100 0001 0100 0100 0100 1001 0100 0110

would be represented by 0x41444946.
2-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants
The DataOut pointer references the next word that will be read by the decoder. When
placing new data in the bitstream, you must not overwrite this word. You can place data
in the word before this one.

You must ensure that the buffer contains at least 6144 bits (768 bytes) of valid data per
audio channel when the decoder is invoked. This is the largest possible size of a data
block.

You must keep the DataStart, DataEnd, and DataIn pointers aligned on 4-byte
boundaries at all times. You can assume that the DataOut pointer will also be aligned
on a 4-byte boundary.

Some applications might require that you use a linear buffer rather than a circular buffer.
To use a linear buffer:

1. Initialize the DataStart pointer to reference the first word of the buffer, as
described above.

2. Initialize the DataEnd pointer to NULL to indicate that there is no end to the buffer
(the end of the valid data is marked by the DataIn pointer).

3. Place new data in the buffer, updating the DataIn pointer to reference the word
after the last word containing valid data, as described above.

4. If, after decoding a block, the buffer contains less than 6144 bits of valid data per
audio channel, you must copy the remaining data to the start of the buffer to add
more data. The valid data begins with the word referenced by the DataOut
pointer, and ends with the word before that referenced by the DataIn pointer. The
DataOut and DataIn pointers must be updated to reference the first word of the
buffer, and the word after the last word containing valid data, respectively.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-7

ARM MPEG—AAC Decoder Types and Constants
2.3 The bitstream header structure

This structure is used to represent the information supplied in the header of a bitstream.
Most of the information is not required by the decoder, and is provided for the benefit
of the application. An exception to this is the sampling frequency field, where an
incorrect value could result in distorted audio output.

If the bitstream begins with a valid ADIF or ADTS header, the first call to
AAC_DecodeHeader() will fill all the relevant fields with valid values (see
AAC_DecodeHeader() on page 3-3). Otherwise, the first call to
AAC_DecodeDataBlock() will fill in the field for the number of channels,
NumberOfChannels. All other fields are considered invalid.

All the fields are defined in ISO/IEC 13818-7:1997, subclause 8.1.1.

Example 2-2 The bitstream header structure

typedef struct
{
 tAAC_BitstreamFormat BitstreamFormat; // ADIF, ADTS or raw data
 char CopyrightID[9]; // 72-bit copyright ID
 int CopyrightBits; // Number of currently valid bits
 tAAC_OriginalCopy OriginalCopy; // Original recording or copy
 tAAC_BitstreamType BitstreamType; // Variable or fixed rate
 int Home;
 int BitRate; // Input rate; zero if unknown
 int BufferFullness;
 int FrameLength; // Only for ADTS bitstreams
 int BlocksInFrame; // Only for ADTS bitstreams
 int NumberOfChannels; // Zero if not known
 int NumberOfFrontChannels; // Zero if not known
 int NumberOfSideChannels; // Zero if not known
 int NumberOfBackChannels; // Zero if not known
 int NumberOfLFEChannels; // Zero if not known
 tAAC_Profile Profile; // Main, LC or SSR profile
 tAAC_Frequency Frequency; // Output sampling frequency
 char Comment[257]; // Null-terminated string
}
tAAC_Header;
2-8 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Types and Constants

l of
ingle

ot

ach of

s
2.4 The decoder type

MPEG—AAC requires a certain amount of RAM to function. For convenience, al
the required RAM (except for a small amount of stack usage) is collected into a s
structure. This allows:

• several independent instances of the decoder to be used concurrently

• the memory to be easily reused by other applications when the decoder is n
required.

This structure is regarded as an opaque type. A pointer of this type is passed to e
the MPEG—AAC functions. The type is declared as:

typedef struct sAAC_Decoder tAAC_Decoder;

The size is defined by a constant symbol which is exported from the library, and i
declared as:

extern const int AAC_DecoderSize;
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 2-9

ARM MPEG—AAC Decoder Types and Constants
2-10 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 3
ARM MPEG—AAC Decoder Functions

This chapter describes the functions provided by MPEG—AAC. It contains the
following section:

• MPEG—AAC functions on page 3-2.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 3-1

ARM MPEG—AAC Decoder Functions

ry:

am.
ot

ee

fer,

f its

ter

3.1 MPEG—AAC functions

The section describes each of the functions provided with the MPEG—AAC libra

• AAC_Initialise()

• AAC_DecodeHeader() on page 3-3

• AAC_DecodeDataBlock() on page 3-4.

3.1.1 AAC_Initialise()

This function sets up the decoder workspace, making it ready to decode a bitstre
This function must be called before the first frame of each new bitstream. If it is n
called, there might be loud clicks in the output of the first block.

Syntax

tAAC_ErrorCode AAC_Initialise(tAAC_Decoder *Decoder,
tAAC_Bitstream *Bitstream,
tAAC_Header *Header,
tAAC_Frequency DefaultFrequency)

where:

Decoder Is the workspace to be used by the decoder. This will be initialized (s
The decoder type on page 2-8).

Bitstream Is the incoming bitstream buffer. The DataStart and DataEnd pointers
must point to the first byte of the buffer and the first byte above the buf
respectively, before calling the function. The internal fields
(CurrentWord, ValidBits, and DataOut) will be initialized by the
function (see The bitstream structure on page 2-6).

Header Is the structure that will be used to record the bitstream header. All o
fields will be cleared (see The bitstream header structure on page 2-8). If
you do not require the header information, you can pass a NULL poin
instead.

DefaultFrequency

Is the sampling frequency to use if the bitstream has no header. The
decoder might fail to decode a raw bitstream if DefaultFrequency is
incorrectly set (see The sampling frequency enumeration—
tAAC_Frequency on page 2-4).

Return value

See The error code enumeration (tAAC_ErrorCode) on page 2-4.
3-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

ARM MPEG—AAC Decoder Functions
3.1.2 AAC_DecodeHeader()

This function decodes the information contained in an ADIF or ADTS header.

Syntax

tAAC_ErrorCode AAC_DecodeHeader(tAAC_Decoder *Decoder,
tAAC_Bitstream *Bitstream,
tAAC_Header *Header)

where:

Decoder Is a pointer to the block of memory defined as your workspace (see The
decoder type on page 2-8).

Bitstream Is the incoming bitstream buffer. On output, the DataOut pointer will be
updated (see The bitstream structure on page 2-6).

Header Is a structure that will be used to record the bitstream header. On output,
the fields will be filled in if a header is found (see The bitstream header
structure on page 2-7).

Return value

See The error code enumeration (tAAC_ErrorCode) on page 2-4.

Notes

It is safe to call this function before each data block. If no header is found, the
AAC_DecodeHeader function will have no effect. It is not necessary to call this
function if you do not require the header information.

If the bitstream is in the ADIF format, you can call this function before the first data
block. It is not necessary to call it more than once.

If the bitstream is in the ADTS format, you can call this function before each ADTS
frame. The BlocksInFrame field will then indicate how many blocks you can decode
before you call this function again. If you require the copyright ID field of the header,
you must call this function before every ADTS frame because this information is spread
over many frames.

If the bitstream has no header, none of the fields of the header are valid. The
AAC_DecodeDataBlock() function will fill in the NumberOfChannels field based
on the number of channels it encounters (see AAC_DecodeDataBlock() on page 3-4).
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 3-3

ARM MPEG—AAC Decoder Functions
3.1.3 AAC_DecodeDataBlock()

This function decodes a block of data from the bitstream to produce 1024 new audio
samples for each channel.

Syntax

tAAC_ErrorCode AAC_DecodeDataBlock(tAAC_Decoder *Decoder,
tAAC_Bitstream *Bitstream,
tAAC_Header *Header,
short *Channels[])

where:

Decoder Is a pointer to the block of memory defined as your workspace (see The
decoder type on page 2-8).

Bitstream Is the incoming bitstream buffer. On output, the DataOut pointer is
updated to point to the start of the next block (see The bitstream structure
on page 2-6).

Header Is the header structure for this bitstream. On output, more fields can be
filled in if a Program Configuration Element (PCE) is found. The
NumberOfChannels field will be filled in if set to zero on entry (see The
bitstream header structure on page 2-8). If you do not require the header
information, you can pass a NULL pointer instead.

Channels[] Is an array of pointers to output buffers. Each will be filled with 1024
16-bit PCM samples, decoded from the bitstream. You must terminate
this list with a NULL pointer to ensure that the decoder does not attempt
to decode additional channels for which there is no memory space
allocation.

Return value

See The error code enumeration (tAAC_ErrorCode) on page 2-4.

Caution
The bitstream structure will be invalid if this function returns any value other than
eAAC_NoError, and any attempt to continue decoding the bitstream will have
unpredictable results.
3-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Chapter 4
Example Program

This chapter provides an example implementation of MPEG_AAC. It contains the
following section:

• Example program on page 4-2.
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 4-1

Example Program
4.1 Example program

Example 4-1 is an example implementation of MPEG—AAC.

Example 4-1 Example implementation—AAC_Decoder.c

/*
 * AAC_Decoder.c
 * Example implementation of the ARM MPEG AAC Decoder.
 *
 * Copyright ARM Limited 1999. All Rights Reserved.
 *
 */

#include <stdio.h>

#include "AAC.h"

#define WORKSPACE_SIZE 16436
#define INBUFFER_SIZE 384 /* 2 channels require 12288 bits = 384 words */

/* Memory for the decoder’s workspace */
static char sWorkspace[WORKSPACE_SIZE];

/* Structure to record the bitstream header (optional) */
static tAAC_Header sHeader;

/* The buffer for the input bitstream */
static unsigned long InBuffer [INBUFFER_SIZE];
static tAAC_Bitstream sBitstream =
{
 0, 0, 0, /* internal data will be initialised by AAC_Initialise() */
 InBuffer + INBUFFER_SIZE, /* DataEnd */
 InBuffer, /* DataStart */
 InBuffer /* DataIn */
};

/* The audio output buffers */
static short OutBuffer1[1024];
static short OutBuffer2[1024];
static short *OutBuffers[] = {OutBuffer1, OutBuffer2, NULL};

/* Function to read input data into the bitstream buffer (defined below) */
static void FillBitstream(tAAC_Bitstream *Bitstream, FILE *File);
4-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Example Program
/* External function required to play or otherwise process the audio data */
extern void ProcessAudioData(short *Data[], int NumberOfChannels);

static const char *ErrorStrings[] =
{
 "No error", "End of bitstream", "Header missing",
 "Unsupported feature", "Too many channels", "Unknown error"
};

int main(int argc, char *argv[])
{
 tAAC_Decoder *Decoder = (tAAC_Decoder *)sWorkspace;
 tAAC_Bitstream *Bitstream = &sBitstream;
 tAAC_Header *Header = &sHeader;
 FILE *InFile;

 /* Check that the workspace is large enough */
 if (sizeof(sWorkspace) < AAC_DecoderSize)
 {
 printf("Error: Workspace must be at least %d bytes.\n", AAC_DecoderSize);
 return 1;
 }

 /* Open the input file */
 InFile = fopen(argv[1], "rb");
 if (!InFile)
 {
 printf("Error: Unable to open ’%s’.\n", argv[1]);
 return 1;
 }

 /* Initialise the decoder */
 if (AAC_Initialise(Decoder, Bitstream, Header, eAAC_44100) != eAAC_NoError)
 {
 printf("Error: Initialisation failed.\n");
 return 1;
 }

 /* Ensure there will be enough data available */
 FillBitstream(Bitstream, InFile);

 /* Read the header (if there is one) */
 AAC_DecodeHeader(Decoder, Bitstream, Header);

ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 4-3

Example Program
 for(;;)
 {
 tAAC_ErrorCode Error;
 /* Ensure there will be enough data available */
 FillBitstream(Bitstream, InFile);

 /* Extract the audio data */
 Error = AAC_DecodeDataBlock(Decoder, Bitstream, Header, OutBuffers);

 if (Error != eAAC_NoError && Error != eAAC_EndOfBitstream)
 {
 printf("Error: %s.\n", ErrorStrings[Error]);
 return 1;
 }

 /* call external function to process the audio data */
 ProcessAudioData(OutBuffers, Header->NumberOfChannels);

 if (Error == eAAC_EndOfBitstream)
 {
 printf("End of bitstream.\n");
 break;
 }
 }
 return 0;
}

/* Function to read input data into the bitstream buffer */
static void FillBitstream(tAAC_Bitstream *Bitstream, FILE *File)
{
 do
 {

 unsigned long NewData;

 /* Read 32 bits from the bitstream, with the first bits on the right */
 /* Return immediately if there is no data available. */
 if ((NewData = getc(File)) == EOF)
 return;

 NewData <<= 24;
 NewData |= (getc(File) & 0xff) << 16;
 NewData |= (getc(File) & 0xff) << 8;
 NewData |= (getc(File) & 0xff);

 /* Write this into the buffer */
 *Bitstream->DataIn = NewData;
4-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Example Program
 /* Update the buffer pointer */
 Bitstream->DataIn++;

 if (Bitstream->DataIn == Bitstream->DataEnd)
 Bitstream->DataIn = Bitstream->DataStart;
 } while(!feof(File) &&
 Bitstream->DataIn != Bitstream->DataOut);
}
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. 4-5

Example Program
4-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
AAC standard 1-2
AAC_DecodeDataBlock() 2-8, 3-3,

3-4
AAC_DecodeHeader() 2-8, 3-3
AAC_DecoderSize 2-9
AAC_Initialise() 3-2
ADIF header 2-5, 2-8, 3-3
ADTS header 2-5, 2-8, 3-3
Audio Data Interchange Format (ADIF)

2-2
Audio Data Transport Stream (ADTS)

2-2

B
Bitstream format enumeration

(tAAC_BitstreamFormat) 2-2
Bitstream header structure

(tAAC_Header) 2-2, 2-3, 2-8
Bitstream structure (tAAC_Bitstream)

2-6
Bitstream type enumeration

(tAAC_BitstreamType) 2-3
BlocksInFrame field 3-3

C
Circular buffer 2-6

D
Data block 2-2, 2-7, 3-3, 3-4
DataEnd pointer 2-6, 3-2
DataIn pointer 2-6
DataOut pointer 2-7
DataStart pointer 2-6, 3-2
Decoder type (tAAC_Decoder) 2-9

E
eAAC_EndOfBitstream (error code)

2-4
eAAC_HeaderMissing (error code)

2-5
eAAC_NoError (error code) 2-4, 3-4
eAAC_TooManyChannels (error code)

2-5
eAAC_UnknownError (error code) 2-5
eAAC_UnsupportedFeature (error

code) 2-5
Enumerations 2-2

bitstream format
(tAAC_BitstreamFormat) 2-2

bitstream type
(tAAC_BitstreamType) 2-3

error code (tAAC_ErrorCode) 2-4
original/copy (tAAC_OriginalCopy)

2-3
profile (tAAC_Profile) 2-3
sampling frequency

(tAAC_Frequency) 2-4
ARM DUI 0129A Copyright © 1999 ARM Limited. All rights reserved. Index-1

Index
Error code enumeration
(tAAC_ErrorCode) 2-4

Error codes
eAAC_EndOfBitstream 2-4
eAAC_HeaderMissing 2-5
eAAC_NoError 2-4
eAAC_TooManyChannels 2-5
eAAC_UnknownError 2-5
eAAC_UnsupportedFeature 2-5

F
Functions

AAC_DecodeDataBlock() 3-4
AAC_DecodeHeader() 3-3
AAC_Initialise() 3-2

I
Input buffer 2-4

L
Linear buffer 2-7
Low Complexity Profile 1-2, 2-3, 2-5

N
NumberOfChannels field 2-8, 3-3, 3-4

O
Original/copy enumeration

(tAAC_OriginalCopy) 2-3
Output buffer 2-5

P
Profile enumeration (tAAC_Profile)

2-3
Program Configuration Element (PCE)

3-4

R
Raw bitstream 2-5

S
Sampling frequency 1-2, 2-2, 2-4
Sampling frequency enumeration

(tAAC_Frequency) 2-4

T
tAAC_Bitstream (bitstream structure)

2-6
tAAC_BitstreamFormat (bitstream

format enumeration) 2-2
tAAC_BitstreamType (bitstream type

enumeration) 2-3
tAAC_Decoder (decoder type) 2-9
tAAC_ErrorCode (error code

enumeration) 2-4
tAAC_Frequency (sampling frequency

enumeration) 2-4
tAAC_Header (bitstream header

structure) 2-8
tAAC_OriginalCopy (original/copy

enumeration) 2-3
tAAC_Profile (profile enumeration)

2-3

Numerics
2.0.0.0 Low Complexity Profile 1-2,

2-5
Index-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0129A

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM MPEG—AAC Decoder
	Feedback on this book

	Introduction
	1.1 About the MPEG—AAC

	ARM MPEG—AAC Decoder Types and Constants
	2.1 Enumerations
	2.1.1 The bitstream format enumeration (tAAC_BitstreamFormat)
	2.1.2 The original/copy enumeration (tAAC_OriginalCopy)
	2.1.3 The bitstream type enumeration (tAAC_BitstreamType)
	2.1.4 The profile enumeration (tAAC_Profile)
	2.1.5 The sampling frequency enumeration (tAAC_Frequency)
	2.1.6 The error code enumeration (tAAC_ErrorCode)

	2.2 The bitstream structure
	2.3 The bitstream header structure
	2.4 The decoder type

	ARM MPEG—AAC Decoder Functions
	3.1 MPEG—AAC functions
	3.1.1 AAC_Initialise()
	3.1.2 AAC_DecodeHeader()
	3.1.3 AAC_DecodeDataBlock()

	Example Program
	4.1 Example program
	A
	B
	C
	D
	E
	F
	I
	L
	N
	O
	P
	R
	S
	T
	Numerics

