
Document number:

™

Document number:

™

Document number:

Issued:

Document number:

Issued:

Copyright ARM Limited

Document number:

Issued:

Copyright ARM Limited

Document number:

Issued: 23rd September 2010

Copyright ARM Limited

Document number: ARM DAI 0239A

23rd September 2010

Copyright ARM Limited

ARM DAI 0239A

23rd September 2010

Copyright ARM Limited

ARM DAI 0239A

23rd September 2010

Copyright ARM Limited

ARM DAI 0239A

23rd September 2010

Copyright ARM Limited

ARM DAI 0239A

23rd September 2010

Copyright ARM Limited 2010

ARM DAI 0239A

23rd September 2010

2010

ARM DAI 0239A

23rd September 2010

2010



2 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

Application Note 239
Example programs for the CoreLink™ DMA Controller DMA-330

Copyright © 2010 ARM Limited. All rights reserved.

Release information

The following table lists the changes made to this application note.

Change history

Date Issue Change

September 2010 A First release

Proprietary notice

Words and logos marked with  and  are registered trademarks or trademarks of ARM in the EU
and other countries, except as otherwise stated below in this proprietary notice. Other brands and
names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements.
All particulars of the product and its use contained in this document are given by ARM in good
faith. However, all warranties implied or expressed, including but not limited to implied warranties
of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be
liable for any loss or damage arising from the use of any information in this document, or any error
or omission in such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality status

This document is Non-Confidential. This document has no restriction on distribution.

Feedback on this application note

If you have any comments on content then send an e-mail to errata@arm.com. Give:

 the document title
 the document number
 the page numbers to which your comments apply
 a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM web address

http://www.arm.com

mailto:errata@arm.com
http://www.arm.com/


Table of Contents

Application Note 239 Copyright  2010 ARM Limited. All rights reserved. 3
ARM DAI 0239A Non-Confidential

Table of Contents

1 Introduction............................................................................................................... 4

1.1 References ........................................................................................................ 4
1.2 Notation ............................................................................................................. 4

2 Basic DMA Programs and Addressing ................................................................... 5

2.1 Simple copying from memory to memory .......................................................... 5
2.2 Template for copying arbitrary byte counts........................................................ 6

3 Advanced DMA Features ......................................................................................... 7

3.1 Scatter/gather .................................................................................................... 7
3.2 Endianness swapping........................................................................................ 7
3.3 Byte reversing a large block of memory............................................................. 8

4 Interactions with Software Drivers........................................................................ 10

4.1 Issuing DMA instructions from a software driver.............................................. 10
4.2 Signaling to a software driver using interrupts ................................................. 10
4.3 Software driver using events to control the progress of a memory copy ......... 11
4.4 Complex interaction with software driver - using WFE invalid ......................... 12



Introduction

4 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

1 Introduction

This application note provides examples of how to program the CoreLink DMA Controller
DMA-330.

1.1 References

A description of the DMA Controller (DMAC) including the programmers model and
instruction set can be found in the DMA-330 Technical Reference Manual,
(ARM DDI 0424) available from http://infocenter.arm.com.

1.2 Notation

The following conventions are used for the example programs:

 DMAC instructions are written in the following typeface : DMACODE

 program comments are designated by two semicolons
 instructions within loops are indented and nested loops are further indented.

1.2.1 Resource requirements

The example programs include comments to indicate how many lines of the DMA
Controller’s internal MFIFO data buffer are required by the program. SR indicates the
static requirement and DR the dynamic requirement, for example:

;; MFIFO data buffer resource requirement: SR 0 DR 16

See the MFIFO Usage Overview appendix in the DMA-330 Technical Reference Manual
for more information about the MFIFO data buffer, which is dynamically shared between
channels.

http://infocenter.arm.com/


Basic DMA Programs and Addressing

Application Note 239 Copyright  2010 ARM Limited. All rights reserved. 5
ARM DAI 0239A Non-Confidential

2 Basic DMA Programs and Addressing

2.1 Simple copying from memory to memory

2.1.1 Scenario

Copy 32Kbytes from memory to memory.

AXI interface width is 64 bits.

2.1.2 Description

In this program, the bursts are programmed to the maximum AXI burst length of 16 beats
so that each loop iteration (one DMALD and one DMAST instruction) transfers a total of 128
bytes. The loop count is 256, so the program transfers a total of 32Kbytes, using 256
bursts.

2.1.3 Program

;; simple block copy
;; MFIFO data buffer resource requirement: SR 0 DR 16
DMAMOV SAR 0xF0008000
DMAMOV DAR 0x10000000
DMAMOV CCR SB16 SS64 DB16 DS64
DMALP lc0 256

DMALD
DMAST

DMALPEND lc0
DMAEND

Note The lc0 in the DMALP and DMALPEND instructions specifies that the DMAC uses loop
counter 0 to count the iterations. Specifying this is optional, and the DMA-330 assembler
selects a loop counter if one is not specified in the source code.

2.1.4 Description

In this variation of the program, the individual AXI bursts are programmed to a length of
4 beats, which might be the ‘natural’ burst size used by an SDRAM controller, so that
each loop iteration now contains 4 DMALD and 4 DMAST instructions to transfer the same
128 bytes. Using shorter bursts might result in more system-friendly use of the
interconnect because it provides more opportunities for inter-burst arbitration. The loop
count is 256, so this program also transfers a total of 32Kbytes but using 1024 bursts.

2.1.5 Program

;; simple block copy, smaller burst size
;; MFIFO data buffer resource requirement: SR 0 DR 4
DMAMOV SAR 0xF0008000
DMAMOV DAR 0x10000000
DMAMOV CCR SB4 SS64 DB4 DS64
DMALP lc0 256

DMALD
DMAST
DMALD
DMAST
DMALD
DMAST
DMALD
DMAST

DMALPEND lc0
DMAEND



Basic DMA Programs and Addressing

6 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

Note Although the program interleaves the DMALD and DMAST instructions, the queuing
resources in the DMA-330 mean that the AXI master interface might issue four, or more,
AXI read transactions before it issues one of the AXI write transactions.

2.2 Template for copying arbitrary byte counts

2.2.1 Scenario

Copy from memory to memory.

The byte count is not a multiple of burst size.

AXI interface width is 64 bits.

2.2.2 Description

This program copies 699 bytes from memory to memory. It does this as follows:

1. Five bursts of 16×8 bytes.

2. One burst of 7×8 bytes.

3. One burst of 3 bytes.

This type of program might be used as a template for a software driver that needs to
copy an arbitrary numbers of bytes. The constants in the template that control loop
counts and burst sizes could be modified dynamically to suit the total number of bytes to
transfer.

For simpler cases, where the byte count is a suitable multiple that does not require the
extra bursts for the few odd bytes at the end, the software driver can choose a simpler
template, or can replace the unnecessary instructions with DMANOP instructions.

Note See the MFIFO Usage Overview appendix in the DMA-330 Technical Reference Manual
for examples that illustrate performance optimizations when either the source or
destination address is not aligned to the burst boundary.

2.2.3 Program

;; example template for block copy, not a multiple of burst size
;; MFIFO data buffer resource requirement: SR 0 DR 16
DMAMOV SAR 0x10000000
DMAMOV DAR 0x20000000

;; start by copying 5 bursts of 16 x 8 bytes, total of 640 bytes
DMAMOV CCR SB16 SS64 DB16 DS64
DMALP lc0 5

DMALD
DMAST

DMALPEND lc0

;; now copy 1 burst of 7 x 8 bytes, 56+640 = total of 696 bytes
DMAMOV CCR SB7 SS64 DB7 DS64
DMALD
DMAST

;; now copy 1 burst of 3 x 1 byte, 3+696 = total of 699 bytes
DMAMOV CCR SB3 SS8 DB3 DS8
DMALD
DMAST

DMAEND



Advanced DMA Features

Application Note 239 Copyright  2010 ARM Limited. All rights reserved. 7
ARM DAI 0239A Non-Confidential

3 Advanced DMA Features

3.1 Scatter/gather

3.1.1 Scenario

Copy the first byte from each of the last 8 words at the end of each 4K block and gather
them into a single compact structure.

AXI interface width is 32 bits.

3.1.2 Description

This program walks through 1Mbyte of address space, copying 8 bytes from the end of
each 4Kbyte block address and gathering them to a single compact area of memory. The
8 bytes are spaced at addresses with a stride of 4 between them, as might be the case if
these were peripheral ID registers on an AMBA APB bus. It uses the DMAADDH instruction

to stride from one byte to the next, and again to stride from one block to the next.

You can use this program to scan through a peripheral area of address space and create
a copy of all of the peripheral ID register values.

3.1.3 Program

;; gather operation - 8 bytes from the end of each 4K block
;; MFIFO data buffer resource requirement: SR 0 DR 2
DMAMOV SAR 0xF0000000
DMAMOV DAR 0x10000000
DMAMOV CCR SB1 SS8 DB2 DS32
DMALP lc0 256

DMAADDH SAR, 4064 ;; advance to 8 words before end of 4K block
DMALP lc1 8

DMALD ;; read one byte
DMAADDH SAR, 3 ;; advance to start of next word

DMALPEND lc1
DMAST ;; write 8 bytes (2 x 32-bit words)

DMALPEND lc0
DMAEND

3.2 Endianness swapping

3.2.1 Scenario

Copy a block of memory and swap the byte order within each 32-bit word.

AXI interface width is 128 bits.

3.2.2 Description

This program copies 4Kbytes from memory to memory and swaps the endianness within
each 32-bit word.

This might be used where one processor is interpreting the content of memory as an
array of little-endian words, and another is interpreting it as an array of big-endian words.
Using this feature of the DMAC could reduce the load on a processor that would
otherwise have to perform this reversal in software.

3.2.3 Program

;; block copy with endianness reversal equal to data beat size
;; MFIFO data buffer resource requirement: SR 0 DR 4
DMAMOV SAR 0xF0008000



Advanced DMA Features

8 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

DMAMOV DAR 0x10000000
DMAMOV CCR SB16 SS32 DB16 DS32 ES32
DMALP lc0 64

DMALD
DMAST

DMALPEND lc0
DMAEND

3.2.4 Description

This variant of the previous program produces the same end result, but transfers 128 bits
of data in each beat to make efficient use of the AXI infrastructure. This illustrates that
the DMAC can endian-swap multiple 32-bit words in a single cycle.

3.2.5 Program

;; block copy with multiple endianness reversals within each data beat
;; MFIFO data buffer resource requirement: SR 0 DR 16
DMAMOV SAR 0xF0008000
DMAMOV DAR 0x10000000
DMAMOV CCR SB16 SS128 DB16 DS128 ES32
DMALP lc0 16

DMALD
DMAST

DMALPEND lc0
DMAEND

3.3 Byte reversing a large block of memory

3.3.1 Scenario

Copy a block of memory and reverse the order of all of the bytes.

3.3.2 Description

This simple program reads 256 bytes from addresses in descending order and stores
them at addresses in ascending order. It is effectively endian-swapping at a size of 256
bytes. It does not make efficient use of the AXI infrastructure because data is transferred
one byte at a time.

3.3.3 Program

;; reverse the order of 256 bytes
;; illustrates address arithmetic with subtraction
;; MFIFO data buffer resource requirement: SR 0 DR 1
DMAMOV SAR 0x10000000
DMAMOV DAR 0x20000000
DMAMOV CCR SB1 SS8 DB1 DS8

DMAADDH SAR, 255 ;; adjust source address to point at last byte

DMALP lc0 256
DMALD ;; read 1 byte
DMAADNH SAR, 0xFFFE ;; subtract 2 to skip back behind that byte
DMAST ;; write 1 byte

DMALPEND lc0

DMAEND

3.3.4 Description

This variant of the previous program uses the endianness-swapping feature of the DMAC
to perform the task more efficiently. It reads 64 words from addresses in descending



Advanced DMA Features

Application Note 239 Copyright  2010 ARM Limited. All rights reserved. 9
ARM DAI 0239A Non-Confidential

order and writes them to addresses in ascending order. The ES32 in the DMAMOV CCR

instruction directs the DMAC to reverse the order of the four bytes in each 32-bit access.

3.3.5 Program

;; reverse the order of 256 bytes
;; illustrates address arithmetic with subtraction & endianness-swap
;; MFIFO data buffer resource requirement: SR 0 DR 1
DMAMOV SAR 0x10000000
DMAMOV DAR 0x20000000
DMAMOV CCR SB1 SS32 DB1 DS32 ES32

DMAADDH SAR, 252 ;; adjust source address to point at last word

DMALP lc0 64
DMALD ;; read 4 bytes
DMAADNH SAR, 0xFFF8 ;; subtract 8 to skip back behind that word
DMAST ;; write 4 bytes in endian-swapped order

DMALPEND lc0

DMAEND



Interactions with Software Drivers

10 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

4 Interactions with Software Drivers

4.1 Issuing DMA instructions from a software driver

A software driver running on an ARM processor can interrogate the status and control
the operation of the DMAC by accessing the APB slave interfaces. This process is
described in more detail in Using the APB slave interfaces in the Functional Overview
chapter of the DMA-330 Technical Reference Manual.

A software driver instructs the DMAC to start execution of a DMA channel program by
using one of the APB interfaces to inject a DMAGO instruction. The driver must poll the
DMAC to ensure that a channel is idle before it attempts to inject a DMAGO for that
channel.

A software driver sends events to a DMA channel program by using one of the APB
interfaces to inject a DMASEV instruction. The DMA channel program includes a
corresponding DMAWFE instruction to react to this event. See Software driver using events
to control the progress of a memory copy on page 11.

A software driver instructs the DMAC to terminate execution of a DMA channel program
by using one of the APB interfaces to inject a DMAKILL instruction. This might be used in
an error case, for example where a peripheral is not able to produce or accept the
expected data for a DMA channel program that is in progress. This might also be used to
terminate DMA channel programs that use the DMALPFE instruction to create an infinite
loop, such as the program shown in Complex interaction with software driver - using
WFE invalid on page 12.

4.2 Signaling to a software driver using interrupts

4.2.1 Scenario

Copy 64Kbytes from memory to memory and send an interrupt to software when
complete.

AXI interface width is 32 bits.

4.2.2 Description

In this program, the DMAC sets an event to generate an interrupt to the software driver
running on the ARM processor. The DMAWMB instruction ensures that all of the queued
write operations are complete before the DMAC sends the interrupt. This avoids a race
condition between the DMAC and the driver software.

4.2.3 Program

;; nested loop block copy with interrupt at end of task
;; MFIFO data buffer resource requirement: SR 0 DR 8
DMAMOV SAR 0x10000000
DMAMOV DAR 0x20000000
DMAMOV CCR SB4 SS32 DB4 DS32 ;; 4 x 4 = 16 bytes per transaction

DMALP lc0 16 ;; 16 loops x 4KBytes
DMALP lc1 128 ;; 128 loops x 32 bytes

DMALD
DMALD
DMAST
DMAST

DMALPEND lc1
DMALPEND lc0

DMAWMB ;; wait for queued stores to complete



Interactions with Software Drivers

Application Note 239 Copyright  2010 ARM Limited. All rights reserved. 11
ARM DAI 0239A Non-Confidential

DMASEV e3 ;; raise interrupt to indicate task finished
DMAEND

4.3 Software driver using events to control the progress of a memory copy

4.3.1 Scenario

Copy 64Kbytes from memory to memory, with external software indicating when each
block can start.

AXI interface width is 32 bits.

4.3.2 Description

In this program, the DMAC pauses before each 4Kbyte block until the software driver on
the ARM processor signals that it can continue. For example, this might be used if
software is gradually producing the data to be moved, or to throttle the load that the
DMAC places on a memory controller that is shared with other bus masters.

When the DMAC reaches the DMAWFE instruction it pauses until the software driver has
written to the event register to set the event (e1). Then the DMAC clears the event and
continues execution – performing one complete inner loop of 128×2 read bursts and
128×2 write bursts to transfer 4Kbytes, and then sending an interrupt (e2) to indicate that
it has finished that block of data.

Note The ordering between the DMAC executing the first DMAWFE e1 instruction and the
software driver writing to the event register is unimportant. If the DMAC reaches the
DMAWFE instruction before the software driver has set the event (e1) then the DMAC
channel thread pauses until that event is set. If the DMAC reaches the DMAWFE instruction
after the software driver has set the event then the DMAC pauses for just one cycle to
clear the event, and then immediately continues execution.

4.3.3 Program

;; block copy, throttled using events
;; MFIFO data buffer resource requirement: SR 0 DR 8
DMAMOV SAR 0x10000000
DMAMOV DAR 0x20000000
DMAMOV CCR SB4 SS32 DB4 DS32

DMALP lc0 16
DMAWFE e1 ;; wait for CPU driver software to signal to DMAC
DMALP lc1 128 ;; transfer 4Kbytes in inner loop

DMALD
DMALD
DMAST
DMAST

DMALPEND lc1
DMASEV e2 ;; raise interrupt to indicate that 4K was processed

DMALPEND lc0

DMAWMB ;; wait for queued stores to complete
DMASEV e3 ;; raise interrupt to indicate whole task finished
DMAEND



Interactions with Software Drivers

12 Copyright  2010 ARM Limited. All rights reserved. Application Note 239
Non-Confidential ARM DAI 0239A

4.4 Complex interaction with software driver - using WFE invalid

4.4.1 Scenario

Copy 4Kbyte blocks from memory to memory, with external software updating the source
and destination addresses before each block is copied.

AXI interface width is 32 bits.

4.4.2 Description

In this program, the DMAC pauses before each 4Kbyte block until the software driver on
the ARM processor signals that it can continue. The DMAC then executes the DMAMOV

instructions that set the source and destination address for that block.

This program uses the DMAWFE e1, invalid instruction to invalidate (flush) the DMAC
instruction cache, to ensure that the DMAC uses the address values contained in the
updated DMAMOV opcodes.

Note A DMASEV e4 instruction to signal from the DMAC to the ARM processor follows
immediately after the DMAMOV instructions. Therefore, after the DMAC loads its address
registers with the current block addresses, the processor can begin updating the
opcodes in the DMA channel program memory with the values for the next block to be
copied. When the DMAC completes the 4Kbyte block copy and returns to the DMAWFE e1
instruction, the processor might have already signaled event e1 so that the DMAC can
proceed without stalling.

For convenience, the software driver that inserts the 32-bit address values into the
opcodes, might store these values at word-aligned addresses. The two DMANOP

instructions, prior to the DMAMOV DAR instruction, adjust the alignment of the opcode bytes
to ensure this.

To terminate the infinite loop in this program, the software driver can use an APB
interface to inject a DMAKILL instruction.

4.4.3 Program

;; block copy, addresses updated by software
;; MFIFO data buffer resource requirement: SR 0 DR 8
DMAMOV CCR SB4 SS32 DB4 DS32
DMALPFE ;; loop for ever

DMAWFE e1, invalid ;; wait for CPU to signal to DMAC
DMAMOV SAR 0x00000000 ;; operand value updated by CPU
DMANOP ;; adjust alignment of operand in opcode
DMANOP
DMAMOV DAR 0x00000000 ;; operand value updated by CPU
DMASEV e4 ;; raise interrupt to indicate addresses have been read

DMALP lc1 128 ;; transfer 4Kbytes in inner loop
DMALD
DMALD
DMAST
DMAST

DMALPEND lc1

DMAWMB ;; wait for queued stores to complete
DMASEV e3 ;; raise interrupt to indicate that 4K was processed

DMALPEND ;; loop for ever

DMAEND ;; never executed because of infinite loop


	1	Introduction
	1.1	References
	1.2	Notation
	1.2.1	Resource requirements


	2	Basic DMA Programs and Addressing
	2.1	Simple copying from memory to memory
	2.1.1	Scenario
	2.1.2	Description
	2.1.3	Program
	2.1.4	Description
	2.1.5	Program

	2.2	Template for copying arbitrary byte counts
	2.2.1	Scenario
	2.2.2	Description
	2.2.3	Program


	3	Advanced DMA Features
	3.1	Scatter/gather
	3.1.1	Scenario
	3.1.2	Description
	3.1.3	Program

	3.2	Endianness swapping
	3.2.1	Scenario
	3.2.2	Description
	3.2.3	Program
	3.2.4	Description
	3.2.5	Program

	3.3	Byte reversing a large block of memory
	3.3.1	Scenario
	3.3.2	Description
	3.3.3	Program
	3.3.4	Description
	3.3.5	Program


	4	Interactions with Software Drivers
	4.1	Issuing DMA instructions from a software driver
	4.2	Signaling to a software driver using interrupts
	4.2.1	Scenario
	4.2.2	Description
	4.2.3	Program

	4.3	Software driver using events to control the progress of a memory copy
	4.3.1	Scenario
	4.3.2	Description
	4.3.3	Program

	4.4	Complex interaction with software driver - using WFE invalid
	4.4.1	Scenario
	4.4.2	Description
	4.4.3	Program



