
 Copyright © 2002, 2003. ARM Limited. All rights reserved.

Application Note
Core Type & Revision Identification

Document number: ARM DAI 0099C

Issued: November 2003

Copyright ARM Limited 2002, 2003

99

ii Copyright © 2002, 2003. ARM Limited. All rights reserved. Application Note 99
 ARM DAI 0099C

Application Note 99
Core Type & Revision Identification

Copyright © 2002, 2003. ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

July 2002 A First release

September 2002 B Second release

November 2003 C Updated to include ARM1136J-S & ARM1136FJ-S cores. Also updated ARM
Manufacture ID.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars
of the product and its use contained in this document are given by ARM in good faith. However, all warranties
implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are
excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for
any loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:
• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.
General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

Table of Contents

Application Note 99 Copyright © 2002, 2003. ARM Limited. All rights reserved. 1
ARM DAI 0099C

Table of Contents

1 Introduction.. 2
1.1 Two ways ARM cores are identified.. 2
1.2 What does the application note cover? .. 2

2 Core Identification ... 3
2.1 Coprocessor 15 Register 0 core identification.. 3
2.2 JTAG TAP ID core identification... 6
2.3 Customer specific SoC identification .. 9

Introduction

2 Copyright © 2002, 2003. ARM Limited. All rights reserved. Application Note 99 ARM DAI 0099C

1 Introduction

1.1 Two ways ARM cores are identified
ARM cores are identified through two mechanisms. The first is through Register 0 of the
System Control Coprocessor, also referred to as coprocessor 15, or CP15. CP15 is
available on processor cores containing an MMU or MPU only and contains a number of
configuration registers (the actual number dependent on the core). CP15 Register 0 is
hard-wired, readable by the core, and defined by ARM Limited. It defines information such
as the core’s part number, revision number, architecture version, implementation variants,
and who implemented the core. The value of Register 0 must not be changed by the
implementer; otherwise, operating systems may not correctly identify the host processor,
and have difficulties with validation.

The second way that ARM cores are identified is through a hard-wired, IEEE 1149.1
(JTAG) standard compliant TAP ID. This TAP ID is used to configure debug software and
indicates the part number, manufacturer, and revision of a particular ARM core. The TAP
ID is configured by the implementer (the person integrating the core into a chip design).

Note The TAP ID is not visible through CP15 and so the revision of a particular ARM core is not
readable by the core. It is only read through the scan chain.

1.2 What does the application note cover?
This application note, together with the appropriate Technical Reference Manual (TRM),
describes CP15 Register 0, core TAP ID settings, and ways of implementing separate
SoC identification numbers.

Cores in the SecurCore family do not normally have a TAP controller and so no TAP ID.

This application note indicates:

 The bit allocation of CP15 Register 0

 How to set the 32 bits of the ARM core TAP ID

The bit allocation of the ARM core TAP ID

 Using a separate SoC TAP ID

Core Identification

Application Note 99 Copyright © 2002, 2003. ARM Limited. All rights reserved. 3
ARM DAI 0099C

2 Core Identification

2.1 Coprocessor 15 Register 0 core identification
Coprocessor 15 (CP15) Register 0 is the main identification (ID) register and defines the
core implementation. This register is read-only and configured by ARM Limited within the
core.

Note CP15 Register 0 can have extra shadow registers, depending on the core. These shadow
registers identify additional characteristics of the particular core. The following table shows
some examples of this.

Core
MRC

Instruction

opcode_2

Coprocessor 15 – Register 0

ID code and shadow registers

ARM720T 0 ID code register

ARM920T 0 ID code register

 1 Shadow register – Instruction & Data Cache type & size

ARM922T 0 ID code register

 1 Shadow register – Instruction & Data Cache type & size

ARM940T 0 ID code register

 1 Shadow register – Instruction & Data Cache type & size

ARM926EJ-S 0 ID code register

1 Shadow register – Instruction & Data Cache type & size

2 Shadow register – Tightly Coupled RAM type & size

ARM946E-S 0 ID code register

1 Shadow register – Instruction & Data Cache type & size

2 Shadow register – Tightly Coupled RAM type & size

ARM966E-S 0 ID code register

ARM1020T 0 ID code register

ARM1022E 0 ID code register

 1 Shadow register - Instruction & Data Cache type & size

ARM1026EJ-S 0 ID code register

 1 Shadow register – Cache Type

 2 Shadow register – TCM Status

ARM1136J-S /

ARM1136JF-S

0 ID code register

 1 Shadow register – Instruction & Data Cache type & size

 2 Shadow register – Tightly Coupled RAM type & size

 3 Shadow register – Translation Look-Aside Buffer RAM type & size

Core Identification

4 Copyright © 2002, 2003. ARM Limited. All rights reserved. Application Note 99 ARM DAI 0099C

All CP15 Register 0 registers are read using the MRC instruction. The syntax of the MRC
instruction is:

 MRC {cond} p15, opcode_1, Rd, CRn, CRm, opcode_2

For example:

MRC p15, 0, r0, c0, c0, 0

This instruction has two opcode fields. The second, opcode_2, identifies which register
within Register 0 you access.

For specific CP15 Register 0 registers and their particular bit allocation, see the
appropriate TRM for your core.

The bit allocation of the ID code register is different for ARM7 family cores and post ARM7
(ARM9, ARM10, etc.) family cores.

Note ARM7TDMI, ARM7TDMI-S, ARM7EJ-S, and ARM9TDMI cores do not have a CP15.

The bit allocation of CP15 Register 0 depends on the ARM core family as indicated by the
following two tables.

ARM7 Core Family

Coprocessor 15 Register 0

[31:24] [23] [22:16] [15:4] [3:0]

Implementer A Variant Primary Part Number Revision

Where:

Revision (bits [3:0]) Implementation-defined processor revision number

Primary Part Number (bits [15:4]) Implementation-defined processor primary part number

Variant (bits [22:16]) Implementation-defined variant number

A (bit [23]) ARM processor architecture

 0 Architecture 3

 1 Architecture 4T

Implementer (bits [31:24]) Implementer code indicates who designed the core

 e.g.

 0x41 A (ARM Ltd)

 0x44 D (Digital Equipment Corporation)

 0x69 i (Intel Corporation)

Core Identification

Application Note 99 Copyright © 2002, 2003. ARM Limited. All rights reserved. 5
ARM DAI 0099C

ARM9, ARM10, ARM11 …. Core Families

Coprocessor 15 Register 0

[31:24] [23:20] [19:16] [15:4] [3:0]

Implementer Variant Architecture Primary Part Number Revision

Where:

Revision (bits [3:0]) Implementation defined processor revision number

Primary Part Number (bits [15:4]) Implementation defined processor primary part number

Architecture (bits [19:16]) ARM processor architecture

 0x1 Architecture 4

 0x2 Architecture 4T

 0x3 Architecture 5

 0x4 Architecture 5T

 0x5 Architecture 5TE

 0x6 Architecture 5TEJ

 0x7 Architecture 6

Variant (bits [23:20]) Implementation defined variant number

Implementer (bits [31:24]) Implementer code indicates who designed the core

 e.g.

 0x41 A (ARM Ltd)

 0x44 D (Digital Equipment Corporation)

 0x69 i (Intel Corporation)

Revision and Variant fields
ARM uses the Revision field (bits[3:0]) and Variant field (bits[23:20]) to define the CPU
revision and silicon revision according to the following table. A CPU revision can be
viewed as a major change and is accompanied with updated documentation. A silicon
revision can be viewed as a minor update.

Core Variant field Revision field Most recent major
revision as of Nov 2003

ARM720T Minor CPU revision Major CPU revision Rev 4

ARM920T Major CPU revision Minor CPU revision Rev 1

ARM922T Major CPU revision Minor CPU revision Rev 0

ARM926EJ-S Minor CPU revision Major CPU revision Rev r0

ARM940T Minor CPU revision Major CPU revision Rev 2

ARM946E-S Major CPU revision Minor CPU revision Rev r1

ARM966E-S Major CPU revision Minor CPU revision Rev r2

ARM1020T Major CPU revision Minor CPU revision Rev 0

ARM1022E Major CPU revision Minor CPU revision Rev r0

ARM1026EJ-S Major CPU revision Minor CPU revision Rev r0

ARM1136J-S /

ARM1136JF-S
Major CPU revision Minor CPU revision Rev r0

Core Identification

6 Copyright © 2002, 2003. ARM Limited. All rights reserved. Application Note 99 ARM DAI 0099C

2.2 JTAG TAP ID core identification
The JTAG TAP ID is a 32-bit “Device ID” register that can be read through the JTAG port
by debug tools. The debug tools read this TAP ID and can automatically configure
themselves for the appropriate core. Alternatively, if you are using Multi-ICE or RealView-
ICE you can manually configure it for any particular core configuration. The partner
implementing the core must set the TAP ID according to the following table as defined by
ARM Limited and in accordance with the IEEE 1149.1 standard.

Note.

For the ARM7TDMI, ARM720T, and ARM740T cores, the TAP ID can only be set
by hand-patching the layout. Usually, this is done in the top mask layer.

For the ARM9 AND ARM10 family cores, the TAP ID is configured by setting all
values on a 32-bit TAPID[31:0] bus external to the macrocell. To change the TAP
ID you must change the value on the 32-bit TAPID[31:0] bus.

For the ARM11 family cores, only the version and manufacturer ID fields of the
32-bit TAP ID, are routed to the edge of the chip so that partners can create their
own TAP ID device numbers by tying the pins to HIGH or LOW values. The
remaining parts of the TAP ID, which are fixed for a particular core, are pre-
configured within the core.

JTAG TAP ID

Part number
Version

Processor Core Capability Family Device number
Manufacturer ID Marker

31:28 27 26:24 23:20 19:12 11:1 0

Where:

Marker [0] Must always set to logic 1, as required by IEEE 1149.1.

Manufacturer ID [11:1] The value of the Manufacturer ID field identifies the ARM partner that manufactured the
chip.
Foundry customers can either use their own JEDEC issued manufacturers ID or use
ARM's i.e. 0x477 including the Marker bit, bit0. (This 0x477 value is better than using
the old number 0xF0F, again including the Maker bit.)
For the ARM7TDMI, ARM720T, and ARM740T the Manufacturer ID plus Marker is fixed
in the layout. In the past, this value has been at 0xF0F. This is not a problem, but future
all new implementations should use ARM’s new number 0x477.

For ARM test chips, ARM’s Manufacturer ID is used (0x477 including the Marker bit).

In production devices, the manufacturer ID may be set to the manufacturer’s JEDEC
bank and company code, as described in the IEEE 1149.1 JTAG standard.

The implementer can change the number from the default value, but if you do, you
must ensure the part number does not conflict with the part number of any other
device with the same manufacturer number.

Part Number [27:12] The Part Number has four fields as shown and must be set appropriately by the
implementer. Multi-ICE uses this value to automatically detect the device type.

ARM has developed some general rules to predict in advance which ID codes will be
used for various ARM cores. See section 2.2.1

If you change the part number from the default value, you must notify ARM Limited and
other debug tool vendors, so that their debug tools can be updated, but no guarantees
can be given as to when this will happen.

Version (Revision)
[31:28]

The revision number is used by debug tools to decide which features and
workarounds to enable. You should not normally need to change the revision from the
default value.

Only major revisions are reflected in the JTAG ID, not minor revisions.

Core Identification

Application Note 99 Copyright © 2002, 2003. ARM Limited. All rights reserved. 7
ARM DAI 0099C

2.2.1 Device number (TAPID[19:12])

The 8 bits of the device number represent the last two digits in the part number (see
following table).

TAPID[19:12]

Device number
Core features

0x00 (b 0000 0000) Core only

0x20 (b 0010 0000) Core with MMU

0x22 (b 0010 0010) Core with MMU and half-size
caches

0x26 (b 0010 0110) Core with MMU and TCM

0x40 (b 0100 0000) Core with MPU

0x46 (b 0100 0110) Core with MPU and TCM

0x66 (b 0110 0110) Core with TCM

0x36 (b 0011 0110) V6 architecture core with MMU

Where:

MMU – Memory Management Unit
MPU – Memory Protection Unit
TCM – Tightly Coupled Memory

2.2.2 Family (TAPID[23:20])

This field is used to represent the core family as shown.

TAPID[23:20] Family

0x7 (b0111) ARM7

0x9 (b1001) ARM9

0xA (b1010) ARM10

0xB (b1011) ARM11

2.2.3 Capability (TAPID[26:24]) and Processor Core (TAPID[27])

The capability bits ([26:24]) define the core’s capability in terms of:

extended math operations (E extension)

Jazelle extension (J extension) for running JAVA

whether the processor core is a hard or soft macrocell

TAPID bit 27 identifies the core as being an ARM processor core (logic 0) or a non-ARM
processor core (logic 1).

The combined ARM core ID bit 27 and the capability bits [26:24] are interpreted according
to one of the following two tables, depending on the core family.

Note All ARM11 cores contain extended math operations, so there is no need for its option in
the capability bits. These bits are left reserved for future use.

Core Identification

8 Copyright © 2002, 2003. ARM Limited. All rights reserved. Application Note 99 ARM DAI 0099C

Capability - ARM7, ARM9, ARM10 Core Families

Processor core - TAPID[27] /
Capability - TAPID[26:24] Description

b0 000 ARM Processor pre E extension - hard macrocell

b0 001 ARM Processor pre E extension - soft macrocell

b0 010 Reserved

b0 011 Reserved

b0 100 ARM processor with E extension - hard macrocell

b0 101 ARM processor with E extension - soft macrocell

b0 110 ARM Processor with J extension - hard macrocell

b0 111 ARM Processor with J extension - soft macrocell

b1 000 Reserved

b1 001 Not a recognized executable ARM device (1)

b1 010 Reserved

b1 011 ARM Embedded Trace Buffer (2)

b1 100 Reserved

b1 101 Reserved

b1 110 Reserved

b1 111 Typically used for test chip boundary scan IDs

Capability - ARM11 Core Family

Processor core - TAPID[27] /
Capability - TAPID[26:24] Description

b0 000 Reserved

b0 001 Reserved

b0 010 Reserved

b0 011 Reserved

b0 100 Reserved

b0 101 Reserved

b0 110 ARM Processor with J extension - hard macrocell

b0 111 ARM Processor with J extension - soft macrocell

b1 000 Reserved

b1 001 Not a recognized executable ARM device (1)

b1 010 Reserved

b1 011 ARM Trace Buffer (2)

b1 100 Reserved

b1 101 Reserved

b1 110 Reserved

b1 111 Typically used for test chip boundary scan IDs

Core Identification

Application Note 99 Copyright © 2002, 2003. ARM Limited. All rights reserved. 9
ARM DAI 0099C

Example part numbers
Example TAP ID part numbers are shown in the following table. The ‘E’ means extended
math operations and the ‘S’ means it is a synthesizable core.

Part Number

TAPID [27] TAPID [26:24] TAPID [23:20] TAPID [19:12] Core name

ARM core ID Capability Family Core

Part number in
Hex format

ARM9TDMI 0 000 1001 0000 0000 X0900xxx

ARM966E-S 0 101 1001 0110 0110 X5966xxx

2.3 Customer specific SoC identification
You might want your SoC implementation to have its own ID to identify different revisions
or configurations of the chip. These must not conflict with the ID registers already
described in this document.

To implement this, ARM Limited recommends you add a separate memory-mapped read-
only register on the system bus, possibly on the AMBA bus if you are using AMBA. See
the diagram below.

C P U

M e m o ry

B

r

i

d

g

e

A H B / A S B A P B

ID R e g is te r

T im e r

Alternatively, you might want to implement the ID in a separate scan chain, using the
existing ARM TAP controller.

The ARM7TDMI core uses scan chains 0-4 and 8 for internal purposes. Additionally, scan
chain 15 is used by the system control coprocessor in the ARM710T and ARM720T cores.
This means scan chains 5-7 and 10-14 can be used by the ASIC designer for their own
purpose.

For the ARM9 family, scan chains 0 to 15 are used by ARM leaving 16 to 31 which can be
used by the ASIC designer.

Details of how to add scan chains can be found in the FAQ (frequently asked questions)
titled “How do I add scan chains to the ARM TAP controller?” This FAQ uses a latch-
based scan cell, but applies equally well when using a flip-flop based scan cell.

Note The ARM TAP controller is IEEE compliant. It is recommended that you follow the
IEEE1149.1 specifications when adding scan chains to the TAP Controller.

