
ARM6 PIE User
Guide

ARM Ltd, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, UK

Advanced RISC Machines

ARM

 2

© Copyright 1995 Advanced RISC Machines Limited.
All rights reserved.
No part of this publication may be reproduced or transmitted, in
any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, or stored in any retrieval system of any
nature, without the written permission of the copyright holder.

The product described in the manual is subject to continuous
development and improvement. All particulars of the product and
its use contained in this manual are given by Advanced RISC
Machines Limited (“ARM”) in good faith. However, all warranties
express or implied, including but not limited to implied
warranties of merchantability or fitness for purpose, are excluded.

This manual is intended only to assist the reader in the use of the
product. ARM shall not be liable for any loss or damage arising
from the use of the information contained in this manual, or any
error or omission in such information, or any incorrect use of the
product.

The product described in this manual is not intended for use as a
critical component in life support devices or any system in which
failure could be expected to result in personal injury.

ARM is a trademark of Advanced RISC Machines Limited. All
other trademarks are acknowledged as the property of their
respective owners.

Credits: Carol Atack, Dave Flynn, Dave Jaggar,
Pete Magowan, Stuart Avery Design

Document number: ARMDUI-0001D

Issue date: April 1995

Change Log: July 1994: Minor modifications to text.
April 95: Updates to schematics.

 3

ARM PIE User Guide

1 Overview 5
1.1 Welcome to the PIE 5
1.2 What the PIE is 5
1.3 Other requirements 5
1.4 About this manual 6

2 Getting started 7
2.1 In this chapter 7
2.2 System setup 7
2.3 Protecting your card 7
2.4 Inspecting the card 8
2.5 Powering up 9
2.6 Activating self-test 9
2.7 Connecting to a host 9
2.8 Big-endian operation 11
2.9 Using ARM resources in your design. 12
2.10 Using this manual 12

3 PIE Hardware 13
3.1 In this chapter 13
3.2 The ARM60 PIE system. 13

3.2.1 The clock generator 15
3.2.2 The ARM60 CPU–U7 15
3.2.3 State machine and system decode–U6 and U9 . . . 17
3.2.4 RAM Subsystem–U10 to U13 20
3.2.5 ROM subsystem–U8, U15, U16, U17 21

3.3 Logic analysis 23
3.3.1 Connecting a Hewlett-Packard logic analyser . . . 23
3.3.2 Connection procedure 23
3.3.3 Logic analyser interface 24

3.4 Expansion interface. 27
3.5 The I/O subsystem 28

3.5.1 Reset circuitry 28

Contents

 4

3.5.2 SCC2691 communication controller 28
3.5.3 LED indicator. 30

4 Software 31
4.1 About this chapter 31
4.2 Demon and the PIE 31
4.3 Level 0 services 32
4.4 Level 1 services 33

4.4.1 Initial memory map 33
4.5 Standard monitor SWIs 35

5 Developing your system 39
5.1 About this chapter 39
5.2 Extending the PIE 39

5.2.1 Expansion bus interface 40
5.2.2 Expansion bus timing. 42

5.3 State machine design 42
5.3.1 Processor clock interface 42
5.3.2 State interface timing 43
5.3.3 State diagram 44
5.3.4 EPROM and I/O access 45
5.3.5 SRAM access 47
5.3.6 External I/O access 48
5.3.7 State implementation 49

5.4 Serial interfaceprogramming 50
5.4.1 Programming interface 50

A Appendix . . 55

A.1 Host interface 55

A.2 Connector 55
B Appendix: GAL listings 57

B.1 State Control GAL 57

B.2 Decoder GAL 60
C Appendix . . 63

C.1 Circuit schematics 63
Index . . i

 5

ARM PIE User Guide

Overview 4

Welcome to the Advanced RISC Machines’ Platform Independent
Evaluation (PIE) card.

The PIE card is the first step in developing an embedded system
and a convenient means of evaluating the Advanced RISC
Machines’ (ARM) family of RISC processors.

The PIE card is a compact card which serves as a target board for the
development of a RISC processor based embedded system. The PIE
is also the evaluation vehicle for the ARM CPU macrocell for chip-
level customer specific designs (ASICs). The board is based around
the ARM60 processor which has been designed specifically for
embedded applications.

The ARM PIE card includes :

• 512 Kbytes of SRAM, for data and program storage

• 128 Kbyte EPROM with monitor and self-test firmware

• 20 MHz clock supply (scalable for reduced power)

• Serial RS232 interface

• JTAG boundary scan test port, simplifying debugging

• Interface for logic analyser/system expansion

• User configurable bi-endian operation

The PIE card incorporates a simple industry standard RS232
interface which allows it to be connected to any computer which
has a serial interface, giving access to a wide variety of host
machines including :

• SUN

• IBM compatible PCs

• Apple Macintosh computers

To use the PIE you will also need a power supply unit, an
appropriate serial cable, the ARM Software Development Toolkit.
The PIE board is designed to be used in conjunction with the ARM
Software Development Toolkit which, when running on a host

1.1 Welcome to the PIE

1.2 What the PIE is

1.3 Other requirements

1

Overview

 6

machine, fully supports code design and debugging. You may
wish to refer to a copy of the ARM60 datasheet; please contact
your local supplier.

The PIE card, in addition to allowing evaluation of the ARM
processor, forms the basis of a custom embedded board.
Throughout the design, standard commercially available parts
have been used and a 0.1 inch grid pitch has been adopted.

This means that the PIE hardware can be easily expanded to suit
the requirements of your specific application. To support this
comprehensive documentation is provided.

This manual explains everything you need to know in order to get
your PIE board up and running.

Chapter 2 describes the installation and setup procedure.

Chapter 3 describes the PIE hardware in detail and explains
how to connect a logic analyser to the PIE.

Chapter 4 covers the Demon debugger contained in its
EPROM.

Chapter 5 covers developing your custom system.

In addition, comprehensive technical appendices provide detailed
timing diagrams, circuit schematics, GAL listings and mechanical
dimensions.

This manual employs several typographic conventions intended
to improve its ease of use. Computer code which you need to enter
or which is provided as an example is presented in a monospaced
typewriter font to aid recognition.

State diagrams in chapters three and five employ their own
conventions to depict logical states. ! is used to mean NOT, &
indicates a logical AND and the vertical bar |indicates a
logical OR.

Like most electronic devices the PIE can be damaged by
inappropriate handling or use. Such actions are warned against in
the text and an arrow like the one on the left is used to draw your
attention to them.

1.4About this manual

Conventions

➠

 7

ARM PIE User Guide

Getting started 2

This chapter explains how to set up the ARM60 PIE Card – either
when demonstrating the ARM60 processor or when evaluating its
suitability for embedded controller development.

Topics include unpacking and installing the card, establishing a
communications link with a host computer, downloading and
running software, and configuring the PIE.

The EPROM debug monitor, and how to install software on the
host to communicate with the card, is described fully in the ARM
Software Development Toolkit documentation.

To try out the ARM60 processor in its evaluation card, you need to
obtain the relevant ARM Software Development Toolkit for your
host system.

You also need a cable to connect the PIE to the host system.
See Appendix A for details on how to wire the cable correctly. You
will also need a +5 volt DC power supply, unless you intend to
draw power from a PC motherboard.

The card is shipped in a protective black box, where it sits between
two layers of conductive plastic foam.

Break the quality seal to open the box. Note the alternative decode
GAL chip for big-endian operation.

Take care not to subject the evaluation card to high electrostatic
potentials. You may prefer to wear a grounding strap or similar
protective device while handling the card.

Generally avoid touching the underneath (solder side) of the card,
the component pins or any other metallic element. If passing to
another person, place on foam in shipping box or other suitably
antistatic material.

2.1 In this chapter

2.2 System setup

2.3 Protecting your card

➠

2

Getting started

 8

The arrangement of major components on the card is shown in
Figure 2.1.

The following system components are clearly labelled on the card
by name, and all components are identified by their code number
shown on the schematic at the back of this manual:

• ARM60 Microprocessor

• EPROM

• RAM

• State GAL

• Decode GAL (little-endian)

Figure 2.1 shows also the six 20-pin connectors providing the logic
analyser interface, the oscillator, serial communications controller
and serial port, reset button and test LED, and the spade
connectors to which you should attach power leads to an external
power supply if used.

2.4 Inspecting the card

EPROM

CLOCK
OSCILLATOR

RAM

RAM

RAM

RAM

LOGIC ANALYSER INTERFACE

LOGIC ANALYSER INTERFACE

STATE GAL

DECODE GAL
- LITTLE

- BIG
ENDIAN

LINK

9-PIN
SERIAL
D-TYPE

LED

RESET

POWER
LEADS

SERIAL
C C

GND

VCC

ARM60

Figure 2.1 Evaluation card

 9

ARM PIE User Guide

You can power your evaluation card by plugging it into a PC XT
8-bit expansion slot in your intended host system. (This may be
convenient even when you are developing on a Sun or other
non-PC host.) Alternatively, you can attach a suitable
independent power supply.

The ARM evaluation card is a short PC card and is easily
accommodated in IBM PC or compatible machines with a free
expansion slot. Turn off the machine while inserting the card.

If you choose this option you will not need to attach power leads
to the spade connectors.

Power can also be supplied to the card via the two spade
connectors adjacent to the reset button.

The card has no diode protection and so any power supply must
provide the correct voltage and polarity:

• +5 volts DC ± 10%, 250 mA or gr eater

Check that the polarity of the power supply leads is correct and
that the power is attached to VCC.

Once the card is powered up, you can activate the self-test facility.
Press the reset button and note that the red LED lights for
approximately one second, goes off for one second and then
relights and stays on.

If the LED fails to light or if it fails to stay on, then the card is either
faulty or incorrectly powered.

Pressing the reset button causes the card to take the following
actions:

• Checks the RAM

• Checks the ROM and its contents

• Checks the serial controller chip

After making these checks, the card outputs a diagnostic message
(system configuration, RAM size etc) on the serial line and waits.

This procedure is also automatically activated on power up.

Serial cables are host-specific. You should build your cable
according to the guidelines in Appendix A and the manual for
your host system.

2.5 Powering up

PC power

➠
Independent power

2.6 Activating self-test

Reset button

2.7 Connecting to a host

Getting started

 10

Plug the appropriate end of the cable into the serial port on the
evaluation card. Connect the other end to the serial port on your
host computer. If this is a small footprint Sun workstation, you
will also need to use the adaptor cable supplied with the machine.

Install the ARM Software Development Toolkit on your host
computer as described in the associated user manuals.

With the ARM software correctly installed on the host, and the
evaluation card powered up at the other end of the link, type the
following command at the host keyboard to invoke the ARM
Symbolic Debugger:

armsd -serial

The -serial option specifies that armsd should act as a front end
for the PIE card.

See the Software Development Toolkit documentation for further
information about the ARM Symbolic Debugger.

If both the link and the card are functioning correctly, then the
EPROM Debug Monitor software (Demon) responds with a
two-line message giving the results of self-test and stating the
amount of RAM available on the card. If there is no response,
recheck the serial connection then exit using CTRL-BREAK (or
CTRL-C).

The Software Development Toolkit includes a directory of
example programs you can download and run on the evaluation
card before your own applications become available. Some are
well-known benchmarks, for example:

• Dhrystone

• Whetstone

• Sieve

These programs allow you to examine the performance of the
ARM60 processor and can be modified or extended in simple
programming experiments.

Your own programs, written using the ARM Software
Development Toolkit, can also be run on the PIE using the
symbolic debugger ARMsd which forms part of the toolkit.
The toolkit documentation contains further information on this.

Installing ARM software
on the host

Running example
programs

 11

ARM PIE User Guide

Figure 2.2 shows an annotated example of running the Dhrystone
program.

The evaluation card is shipped in little-endian configuration.
However many PIE users may find that big-endian configuration
is more appropriate for their requirements, for example if
interfacing to mixed processor systems.

To change to big-endian operation, reposition the two-position
select jumper (JP 5 on the schematic and the board) southwards
away from the ARM processor, and replace the decode GAL chip
shipped on the card (U9) by the alternative GAL shipped with the
card.

For ease of recognition the little-endian GAL’s label contains the
suffix -L and the big-endian GAL the suffix -B.

If, at a later date, little-endian operation is again required, reverse
the procedure, moving the jumper north and replacing the -L
decode GAL.

Figure 2.2 Running the Dhrystone program

 >pisd dhryston - invoke PISD and load the program dhryston from
 the current directory

 A.R.M. Source-level Debugger, version 4.01 (A.R.M.) [Feb 17, 1992]
 ARM60, DEMON V1.00, 0x80000 bytes RAM, ROM CRC OK, Little endian, FPE
 Object program file dhryston
 Low Level Debugging information found
 High Level Debugging information found
 pisd: break main - set a breakpoint in the procedure main
 pisd: go - begin execution
 Breakpoint #1 at #dhryston:main block 0, line 98 of dhryston.c
 98 Proc0();
 pisd: registers - after the breakpoint has been reached,

 display the CPU registers
 r0 = 0x00000001 r1 = 0x0000f5b0 r2 = 0x004a5552 r3 = 0x0000f5b0
 r4 = 0x0000000a r5 = 0x00000001 r6 = 0x00000f0a r7 = 0x00000000
 r8 = 0x00000000 r9 = 0x0000000a r10 = 0x0007f230 r11 = 0x0007ffd0
 r12 = 0x0007ffd4 r13 = 0x0007ffc4 r14 = 0x0000b704
 pc = 0x000080a4 psr = %nzCvif_User32
 pisd: go - resume execution
 Dhrystone(1.1) time for 500000 passes = 68
 This machine benchmarks at 7331 dhrystones/second
 Program terminated normally
 pisd: quit - exit PISD
 Quitting
 >

2.8 Big-endian operation

Getting started

 12

This manual contains both the circuit description (and schematics)
of the ARM60 Evaluation Card and the source code for the GAL
equations. The Software Development Toolkit includes the source
code for Demon (the Debug Monitor). These are provided to help
you design your prototype target hardware systems.

Both the hardware and software are provided as tutorial aids and
so serve to demonstrate techniques rather than an optimal
implementation.

Whatever target prototype system you build, it is important that
you include some form of communications channel that can
support the Remote Debug Protocol (RDP), so that the ARM
symbolic debugger ARMsd can still operate from the host.

The RDP is designed to operate over any 8-bit communications
channel and asynchronous serial RS232 is used in the evaluation
card because it is the most generally available host computer
interface.

For example, a target laser printer controller with 4 Mbytes of
DRAM would be better designed at the target hardware level with
a fast download channel (eg a bidirectional printer port) for
downloading fonts, raster images etc.

The PIE can be connected to a logic analyser. The section Logic
analysis on page 23 discusses the facilities for this in detail.

Many PIE users will be developing their own hardware and
Chapters 3 and 5 contain essential reference information on
interfacing expansion hardware to the PIE. The section
Extending the PIE on page 39 and Expansion interface on page 27 are
particularly relevant to this process.

2.9 Using ARM resources
 in your design

2.10 Using this manual

 13

ARM PIE User Guide

PIE Hardware 3

This chapter covers the PIE hardware in detail, including the
circuit board design and the facilities for logic analysis.

The first section describes the components of the PIE and gives
details of the way they work.

The second section describes the logic analysis interface and
explains how to connect your own logic analyser to the card.
Details are given of the signals which can be observed through
each of the six connectors.

The final sections look at the PIE’s I/O and expansion circuitry,
including the serial communications facility.

You should read this chapter in conjunction with the circuit
diagram schematic which forms part of Appendix C. You may
also find a copy of the ARM60 datasheet useful.

The ARM60 PIE system contains the following principal
components:

• Clock generator

• ARM60 CPU

• Programmed logic state machine

• RAM subsystem

• ROM subsystem

• Logic analysis and expansion interface

This section of the manual looks at each of these components in
turn.

The basic architecure of the card is shown in figure 3.1:

The PIE board is configured for 32-bit address space, and the
system memory map is divided into four 1-Gigabyte segments,
with one of these reserved for external prototype extension.
The memory map is illustrated in Figure 3.2.

The normal memory map has RAM mapped at low memory, and
the system EPROM and I/O space are both allocated to the high
half of memory.

3.1 In this chapter

3.2 The ARM60 PIE system

3

PIE Hardware

 14

There is a special reset map, forced at hardware reset, which
ensures that the image of the EPROM appears at the bottom of
memory where the ARM reset vector must exist. The reset boot
code switches the EPROM out of all other memory spaces after the
first dummy write to the low quarter of memory space (RAM).

Logic Analyser Interface/expansion

A[16:2]

EPROM

EPROM pipeline (NROM)
D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[31:0]

NFIQ
RESET

ARM60

STATE
MACHINE

STATE
DECODER

RAM

LED

SCC

RS232
HOST

D[31:0]

A[31:30]

A[1:0]

NRAM

A[18:2]

NFIQ
D[7:0]

NIO

NWE[0]

A[4:2]

A[31:30]

CTRL

NWAIT

ROMCK

B[1:0]

NROM

NROM, NRAM, NIO selects

NWE[3:0]

Figure 3.1 Basic PIE architecture

 15

ARM PIE User Guide

This write does not actually write through to the RAM so that
warm restart may be attempted.

The clock generator (marked U14 on the card) is an oscillator
which provides the CPU and basic state machine clock.

The generator drives a fast invertor pack (U1) which produces the
system clocks for the board. Resistors are used to isolate four
principal clocks:

• SCLK is the state machine clock.

• ALE is the Address Latch Enable signal to ARM60.

• MCLK is the processor clock (to U7) which is gated with
NWAIT.

• LCLK is a Logic Analyser clock exported (to PL6).

MCLK and LCLK are inverted versions of SCLK and ALE slightly
delayed. The basic waveforms are shown in Figure 3.3.

ALE is used to hold addresses stable from the processor for the
low phase of SCLK (the high phase of MCLK to the ARM60) to
ensure that EPROM and SRAM addresses are held to the end of
the bus cycle.

The ARM60 CPU has separate 32-bit address and data buses
which in this lightly loaded system are not buffered.

Figure 3.2 System memory map

EPROM

EPROM

EPROMEPROM

I/O

EXPANSION EXPANSION

SRAM SRAM

I/OEPROM

EPROM

RESET MAP SYSTEM MAP USER MAP
4GB

3GB

2GB

1GB

0GB

Usable

Not usable

3.2.1 The clock generator

3.2.2 The ARM60 CPU–U7

PIE Hardware

 16

Loading should be kept to two CMOS loads plus the logic
analyser probes for user prototyping purposes on the expansion
connectors.

The processor clock, MCLK from the clock generator, is gated with
the NWAIT output from the state machine (U6). The clock to the
processor is inhibited when NWAIT is low. A simple AND gate
keeps the core static and unclocked during wait cycles to save
power.

The ARM60 CPU is configured for full 32-bit data and program
operation (CF3 and CF4 signals). Thus the system memory map is
decoded by looking at the top two address bits (A31,A30).

The board is shipped with little-endian byte ordering by default
but this may be changed with the shunt setting of the two-position
jumper JP5 on the circuit board. You will also need to reconfigure
the external memory system for big-endian operation by changing
the decode GAL (U9)–see the previous chapter’s section Big-
endian operation on page 11.

The basic signals with the appropriate timings, marked using the
symbols defined in the AC Parameters section of the ARM60
datasheet, are shown in Figure 3.4. The MCLK cycles to the
processor are marked as inactive or active depending on whether
NWAIT is low or high. Only when NWAIT is high is the clock
gated through to the processor core, allowing the control signals
to change.

The data cycle completes on (active) MCLK falling, around which
input data must be setup and held.

SCLK (ALE)

STATE O/Ps

MCLK (LCLK)

Figure 3.3 Waveforms

Configuration

Processor timing

 17

ARM PIE User Guide

The two forms of pipelined output, referring to the end of the data
access cycle, are:

• NMREQ (Not Memory Request) and SEQ (Sequential),
which are pipelined one full cycle ahead of the cycle to
which they apply.

• Other control outputs, such as Not Read/Write (NRW) and
Not Byte/Word (NBW), which are pipelined one half cycle
ahead.

The use of the clocked ALE signal ensures that the addresses
remain latched to the end of the data access cycle. There is a small
guaranteed address latch fall-through time which provides
address hold time to the system RAM and other writeable devices.

The main state machine and associated system memory decoder
are provided in the form of GAL (Generic Array Logic) devices.
As such the devices may be reprogrammed using a standard GAL
programming system and extended for customer evaluation of
specific prototype hardware interfaces.

The standard GALs may also be replaced by pin-compatible zero
power devices for use with low clock rate test systems.

Figure 3.4 Processor timing

NWAIT

MCLK

NMREQ/SEQ

DATA[31:0]

NBW,NRW

ALE

A[31:0] A A' A"

C C' C"

D D'

NON-SEQ INTERNAL SEQ SEQ

3.2.3 State machine and
system decode–U6 and U9

PIE Hardware

 18

The two programmed logic devices are clocked by the rising edge
of SCLK and are tightly coupled, sharing the following inputs:

• A[31:30] the high order CPU address bits for memory space
decoding.

• NMREQ and SEQ, the ARM60 CPU next memory access
flags.

• NRW, the CPU read/write line.

• ABORT, from the external interface (for expansion).

The state machine GAL also uses the following signals:

• NRESET, which is used to put the ROM vectors in low
memory.

• ERDY, from the expansion interface to stretch external
memory access cycles.

The main state machine (U6) is a GAL20V8 device with all outputs
registered, and provides the following system outputs to other
devices:

RESMAP maps the ROM to all memory at reset (cleared by
software).

NWAIT the processor wait input for slow accesses.

B[1:0] the EPROM byte sequencing signals.

BCK the EPROM byte pipeline sequence clock.

NIOS the I/O cycle strobe timing (and shared as RAM
output enable).

Other outputs provide state register flag bits (Note that STATE is
exported to the logic analyser interface with NWAIT for system
debugging).

Any non-sequential activity, or sequential writes to RAM, adds at
least one clock period wait state to re-decode the address.

There are four basic states:

Decode: entered every non-sequential memory request cycle,
and allowing the high-order addresses to be decoded
for the next chip select cycle (burst). NWAIT is driven
low to force the processor to wait a clock cycle. The
next state is Wait, unless a very fast decode bank has
been selected and the Memory state is chosen (if an

The state machine–U6

 19

ARM PIE User Guide

external device is ready and asserting the external
ready signal ERDY).

Memory: entered during the last cycle of a memory access
cycle, and de-asserts NWAIT to the processor for this
cycle to allow the processor to complete the
operation.

Internal: processor internal cycles run at full clock speed when
memory is not requested; Internal state deasserts
NWAIT to the processor to allow such high-speed
operations for the duration of a multi-cycle internal
operation (such as multiply).

Wait: entered for all memory request cycles that require the
processor to add additional clock cycles before
completing the memory cycle. NWAIT is driven low
to force the processor to wait a clock cycle, and
looping in this state extends the access period until
changing to the Memory state when the external
memory can complete the access in one further cycle.

DECODE
!NWAIT
!STATE

WAIT
!NWAIT
STATE

MEMORY
NWAIT
STATE

romio & NOT ready

ram & seq & read

nmreq

!nmreq & (!seq | romio | (ram & write))

nmreq

!nmreq

ready

INTERNAL
NWAIT
!STATE

Figure 3.5 Basic state flow

PIE Hardware

 20

The basic state flow, illustrated in Figure 3.5, is:

DECODE fi WAITfi MEMORY fi DECODE/INTERNAL

For sequential bursts there is no need to redecode addresses:

WAIT fi MEMORY fi WAIT fi MEMORY etc.

The decode GAL (U9) uses the NWAIT, STATE and RESMAP
outputs from the state machine with the addition of the following
signals:

• NBW, the byte/word qualifier from ARM60

• A[1:0] the byte address bits from the CPU

These three additional signals, together with NRW, are sufficient
for the byte lane decoding of write enable signals for the 32-bit
system data bus. In addition the SCLK signal is also fed to a
combinational logic input to the device to allow setup and hold
timing for the write enables.

The decoder produces three registered chip enable outputs and
four combinational byte-write signals:

• ROM, the EPROM and pipeline register enable signal

• RAM, the SRAM array common chip select

• NIO, the active low I/O space decode

• NWE[3:0] the four active-low byte write enable controls

The NWE outputs are provided as a little-endian implementation
as supplied and the ordering must be reversed for big-endian
system operation.

NWE0 is shared between the RAM and the I/O subsystems.

The PIE is supplied with four byte-wide 85ns static RAM devices
providing 512KBytes memory. They share the word addresses A2
upwards — see the schematic diagram in Appendix C — with
independently controlled write enable lines NWE0-3, which steer
byte writes to the correct byte lane. The RAM bandwidth is 10
Mwords/second.

The static RAM devices are enabled by a common chip select
signal, NRAM, and the output enables are controlled using the
NIOS signal. This is in fact an I/O strobe timing signal during
I/O cycle accesses and is reused as the active low RAM output

The decode GAL–U9

3.2.4 RAM Subsystem–
U10 to U13

 21

ARM PIE User Guide

enable purely to avoid bus clashes when byte writes occur to
RAM; using a common chip enable means that 32-bit write data
from ARM is only written to one byte and the other bytes must not
drive the bus in read mode.

A CMOS invertor buffer is used to drive NRAM to ensure the
devices are in stand-by power-down mode when RAM is not
selected.

Four 512Kx8 static RAM devices can be soldered to the printed
circuit board to provide 2MBytes RAM in place of the 512KBytes
fitted as standard. A configuration link, JP2, is provided which
should be moved and resoldered in the 4MB position.

A socketed 128Kbyte EPROM (U8 on the circuit board) is supplied
containing the bootstrap and self-test code as well as the low-level
Remote Debug Protocol firmware. The ROM bandwidth is 1.5
Mwords/sec.

The ROM is an 8-bit device, and the following process, illustrated
in Figure 3.6, ensures that the CPU receives the 32-bit words it
requires. The processor is forced to wait whilst sequencing
through four EPROM accesses building up to a full 32-bit quantity.

The bottom two address lines to the EPROM are provided from
the state machine as B1, B0 byte sequence lines and the rest of the

Custom configuration

3.2.5 ROM subsystem–
U8, U15, U16, U17

REG REG REG

EPROM

(128Kx8)

B1

B0

NROM

BCK

D[7:0] D[15:8] D[23:16] D[31:24]

D[31:0]

DATA

ADDRESS

A[18:2]

Figure 3.6 EPROM pipeline

PIE Hardware

 22

address lines are connected to the CPU word address bus
(A2 upwards).

The EPROM sits directly on the bottom (D7-D0) data bits of the
bus. A data pipeline comprising three eight-bit registers, U15 to
U17, effectively acts as a byte-wide shift register which builds up
the data bus value in reverse byte order. The sequence is byte3,
byte2, byte1 and byte0.

The registers are clocked by the rising edge of BCK. This simplifies
the control lines to NROM and BCK (the Byte Clock) with B1 and
B0, the byte sequence bits.

The EPROM is a slow access device, so three clock cycles per byte
access are used. At 20MHz this allows a 120ns EPROM to work
comfortably in the 150 ns access ‘slot’. Figure 3.7 shows the timing.

A fast CMOS drive invertor is used to ensure the chip select signal
to the EPROM input is driven to a true CMOS logic high level
when the chip and pipeline are deselected. This ensures stand-by
power operation.

A pin-compatible 4Mbit EPROM may be fitted in place of the
128K x 8, 1Mbit device shipped. If a larger EPROM is fitted the
configuration link (JP3) should be moved and resoldered to the
4Mbit setting.

MCLK

ROMCK

BYTE1

BYTE0

NWAIT

DATA DATADATA BYTE3 BYTE2 BYTE1 XXX

Figure 3.7 ROM Timing

Custom configuration

 23

ARM PIE User Guide

The PIE Card is a development and evaluation platform and so
provision for testing and analysis is built in the form of six
connectors which allow direct connection to a logic analyser.

The evaluation card can be connected directly to Hewlett-Packard
logic analysers supporting at least 80 channels, for example
HP1650B and HP16510 series machines.

To avoid the use of “grabber” probes, use five HP Termination
Adapters to interface between the analyser’s 40-pin flexible cable
connectors and the 20-pin header plugs (2 x 10 x 0.1 inch grid) on
the evaluation card, as shown in Figure 3.8. These can be either:

• Termination Adapter HP Part No. 01650-63203

• Termination Adapter (earlier type) HP Part No. 06150-63201

The adapter connections are keyed to ensure correct orientation
and allow correctly terminated high-speed signal analysis in a
straightforward and reliable manner.

Other logic analyser probes with suitable header connectors will
also work with the PIE.

The connector pods provide for:

• low address bus

• high address bus

• low data bus

• high data bus

• control & status port

• test & miscellaneous observation port

First ensure both card and analyser are powered down. Then
connect the analyser to the evaluation card as follows:

• Analyser POD1 to PL4 (low 16 data bits)

• Analyser POD2 to PL5 (high 16 data bits)

• Analyser POD3 to PL6 (status, clock signals)

• Analyser POD4 to PL2 (low 16 address bits)

• Analyser POD5 to PL3 (high 16 address bits)

Both systems may now be powered up and the analyser
configured for use.

3.3 Logic analysis

3.3.1 Connecting a Hewlett-
Packard logic analyser

3.3.2 Connection procedure

PIE Hardware

 24

The analyser connectors are laid out on an overall board-wide 0.1
inch pitch grid allowing Eurocard prototype boards to be added
for external user memory or I/O subsystem prototyping. 0.1 inch
square grid board is recommended for this purpose. See Chapter
Five for further details on expanding the PIE.

The control and status signals are grouped together on one port
and allow for full processor analysis and test.

The six header plugs, PL2 to PL7, are arranged along the top and
bottom edges of the PIE card — see the schematic diagram in
Appendix C — and signals are configured in bus order for correct
bus value display.

In the following descriptions logic analyser inputs are shown in
the left hand column and PIE outputs in the right.

This bus, in conjunction with the high address bus PL3, provides
access to the full 32-bit address bus.

 D[15] : A[15]
 D[14] : A[14]
 D[13] : A[13]
 D[12] : A[12]
 D[11] : A[11]
 D[10] : A[10]
 D[09] : A[09]
 D[08] : A[08]
 D[07] : A[07]
 D[06] : A[06]
 D[05] : A[05]
 D[04] : A[04]
 D[03] : A[03]
 D[02] : A[02]
 D[01] : A[01]
 D[00] : A[00]
 CLK : no connect (reserved)

3.3.3 Logic analyser interface

Low Address Bus–PL2

 25

ARM PIE User Guide

This bus, in conjunction with the low address bus PL2, provides
access to the full 32-bit address bus.

 D[15] : A[31]
 D[14] : A[30]
 D[13] : A[29]
 D[12] : A[28]
 D[11] : A[27]
 D[10] : A[26]
 D[09] : A[25]
 D[08] : A[24]
 D[07] : A[23]
 D[06] : A[22]
 D[05] : A[21]
 D[04] : A[20]
 D[03] : A[19]
 D[02] : A[18]
 D[01] : A[17]
 D[00] : A[16]
 CLK : no connect (reserved)

This bus, in conjunction with the high data bus PL5, provides
access to the full 32-bit data bus.

 D[15] : D[15]
 D[14] : D[14]
 D[13] : D[13]
 D[12] : D[12]
 D[11] : D[11]
 D[10] : D[10]
 D[09] : D[09]
 D[08] : D[08]
 D[07] : D[07]
 D[06] : D[06]
 D[05] : D[05]
 D[04] : D[04]
 D[03] : D[03]
 D[02] : D[02]
 D[01] : D[01]
 D[00] : D[00]
 CLK : no connect (reserved)

High Address Bus–PL3

Low Data Bus–PL4

PIE Hardware

 26

This bus, in conjunction with the low data bus PL4, provides
access to the full 32-bit data bus.

 D[15] : D[31]
 D[14] : D[30]
 D[13] : D[29]
 D[12] : D[28]
 D[11] : D[27]
 D[10] : D[26]
 D[09] : D[25]
 D[08] : D[24]
 D[07] : D[23]
 D[06] : D[22]
 D[05] : D[21]
 D[04] : D[20]
 D[03] : D[19]
 D[02] : D[18]
 D[01] : D[17]
 D[00] : D[16]
 CLK : no connect (reserved)

This bus is the principal trigger and status port.

 D[15] : DBE
 D[14] : ABE
 D[13] : ALE
 D[12] : NTRANS
 D[11] : NOPC
 D[10] : LOCK
 D[09] : NBW
 D[08] : NRW
 D[07] : SEQ
 D[06] : NMREQ
 D[05] : ABORT
 D[04] : NIRQ
 D[03] : NFIQ
 D[02] : NRESET
 D[01] : NWAIT
 D[00] : STATE
 CLK : Processor clock:

MCLK(schematic LCLK)

High Data Bus–PL5

Control/Status Port–PL6

 27

ARM PIE User Guide

This bus is provided for JTAG boundary scan access and testing
with additional miscellaneous outputs for expansion.

 D[15] : NWE3
 D[14] : NWE2
 D[13] : NWE1
 D[12] : NWE0
 D[11] : ERDY
 D[10] : NIO
 D[09] : NCPI
 D[08] : ROMCK
 D[07] : ROMB1
 D[06] : ROMB0
 D[05] : NROM
 D[04] : TDO
 D[03] : NTRST
 D[02] : TDI
 D[01] : TMS
 D[00] : TCK
 CLK : Processor JTAG test clock: TCK

Expansion hardware may be added provided all signals are
suitably buffered by installing a 0.1 inch grid prototype card over
the logic analyser connectors. The connectivity (as seen from top
of the PCB) is shown in Figure 3.8:

where s[16:1] are the 16 logic analyser signals as defined above.

Pin 3, TRIG, is in fact CLK1 on later Hewlett Packard Analysers
(HP16510 series) and pin 2 is hard-wired to provide power to an
expansion card (a permanently high CLK2 on HP16510 analysers).

Test Port–PL7

3.4 Expansion interface

Figure 3.8 Logic analyser port connectivity (PL2-7)

 (NC) 1 2 VCC (+5V)
 CLK 3 4 D[15]
 D[14] 5 6 D[13]
 D[12] 7 8 D[11]
 D[10] 9 10 D[9]
 D[8] 11 12 D[7]
 D[6] 13 14 D[5]
 D[4] 15 16 D[3]
 D[2] 17 18 D[1]
 D[0] 19 20 GND (0V)

PIE Hardware

 28

The unused trigger inputs on PL2-5 are reserved for future use,
but may be used temporarily with flying leads to provide
alternative triggers to the analyser (e.g. BCK, etc.).

The I/O subsystem shown on Schematic 3 is described below in
two main sections:

• Reset circuitry shared with the main system.

• Serial communications controller and host interface.

The reset circuitry is enhanced to allow independent resets to both
the boundary scan and the processor.

The NTRST input to ARM60 must be driven low at initialisation
time to disable the boundary scan circuitry and allow the ARM60
to function normally.

A separate NTPOR signal is generated which clears down the
boundary scan at board power-up. This allows the boundary scan
to be reset from the test connector (PL7) without requiring the
CPU to be reset. This allows the possibility of stopping the
processor (NWAIT held low) and then serially inspecting and
testing the ARM60 in circuit.

The main power-on-reset signal has a separate monostable
function with a switch that allows the card to be reset. RES and
NRES are required by the serial interface and the CPU system.

A single-chip serial communications controller with internal timer
counter and single-bit programmable output port is used as the
host interface for asynchronous serial communications.

The chip used is a Philips/Signetics SCC2691, a single channel
serial interface controller (SCC) capable of 38.4 Kbaud RS-232

3.5 The I/O subsystem

3.5.1 Reset circuitry

Figure 3.10 Reset timing

. . .

. . .

NTPOR

NRESET

Power applied NTRST asserted
RESET switch

3.5.2 SCC2691 communication
 controller

 29

ARM PIE User Guide

operation. It has an active-low wired-OR Interrupt request
interface which enables it to drive the inverted ARM Fast
Interrupt ReQuest (NFIQ) input. Refer to the relevant datasheet
from Philips.

The Counter/Timer built into the device allows basic timer
services to the debugger (for timeouts etc.) with the only
disadvantage being that the interrupt request line has to be shared
with the serial controller (on FIQ).

Link JP1 allows the SCC to be configured to generate IRQ as
opposed to FIQ requests to the ARM60 (see the ARM60 datasheet
for more information on ARM interrupts). Normally FIQ would
always be used as the highest priority interrupt to allow the
Remote Debugger Protocol to interrogate both user and operating
system code.

The ARM60 is clocked at 20MHz and must use wait states to
access the serial controller for I/O operations.

The state machine GAL generates timings (closely shared with the
slow 8-bit EPROM interface pipeline) as shown in Figure 3.11. The
interface may therefore be increased up to 40MHz (with fast static
RAM) and still meet the valid I/O cycle timing constraints.

The read strobe (NRD) is removed in the cycle before the
processor reads the data and so relies on dynamic bus hold time,

Configuration

System bus interface

Figure 3.11 System bus interface timing

SCLK

NWAIT

A[31:0]

NIO

NIOS

D[31:0}

[READ]

[WRITE]

PIE Hardware

 30

which is no problem on this card as all loads are CMOS with low
leakage and no other devices are enabled during this cycle (and
the next which is always a decode cycle in this design).

Peripherals which require address and chip select hold times after
the data access should use a transparent latch to latch the data at
the end of the read strobe.

The PIE includes a Light Emitting Diode, which is to be found next
to the serial interface. It is driven by the Multi Purpose Output,
MPO, and a high current inverting buffer. The LED defaults to off
at reset.

The MPO pin is also driven by the RS232 driver to the output
9-way connector.

3.5.3 LED indicator

 31

ARM PIE User Guide

Software 4

This chapter describes the PIE card’s software, and shows how it
enables the card to be used with ARM software running on the
host computer.

Topics include an overview and description of Demon, the Debug
Monitor software in the PIE card’s EPROM, and a listing of all the
software interrupts (SWIs) implemented by Demon.

The PIE is designed to run software produced using the ARM
Software Toolkit. The software provided on the PIE is intended to
support the use of the ARM debugger ARMsd, to test and debug
users’ programs for ARM-based systems.

Demon contains support code for the symbolic debugger ARMsd,
and for user programs written in assembly or C. It supports host
communication by handling interrupts. It supports user programs
via a software interrupt mechanism. Demon also defines the
default RAM memory map for the PIE.

The ARM Software Toolkit contains the source code for Demon.

The debug monitor is split into two parts:

• Level 0

• Level 1

The code in Level 1 is replaceable, allowing new targets to be
debugged using the same standard interface. The Remote Debug
Protocol (RDP) is implemented between the debugger and the
PIE. Refer to the ARM Software Development Toolkit
documentation for a complete description of the protocol.

The RDP defines the communication protocol between the
debugger and debug monitor. Level 0 is responsible for
recognising incoming RDP messages from the serial channel and
dispatching them to Level 1 of the debug monitor. Level 0 also
drives the serial channel, at the request of Level 1.

4.1 About this chapter

4.2 Demon and the PIE

4

Software

 32

The interface between Level 0 and Level 1 is via a number of entry
addresses situated at the beginning of ROM. Their layout is shown
in figure 4.1 over.

The first two words are mapped into address 0 and 4 when the
CPU is reset to provide the initial code entry.

The InstallRDP routine is used by the Level 1 code to register a
handler of all RDP messages. The address of the handler should
be passed in register 0, and the address of the previous handler
will be returned in register 0. Level 1 code that does not handle all
RDP messages may pass unhandled messages to the previous
handler.

The RDP handler is entered in FIQ mode, with interrupts
disabled, and the RDP message number in register 0. Exit from the
handler by loading the program counter from the stack with an
instruction like LDMFD sp!, {pc} . All register values have been
saved before entry to the handler, and will be restored after it exits.

4.3 Level 0 services

ROM Offset

0x00000 Reset Instruction

Address of Reset routine

Address of InstallRDP routine

0x00004

0x00008

Address of ResetChannel routine0x0000c

0x00010 Address of ChannelSpeed routine

Address of GetByte routine0x00014

0x00018 Address of PutByte routine

0x0001c Address of ReadTimer routine

0x00020 Address of SetLED routine

Figure 4.1 Interface between Demon’s Levels 0 and 1

 33

ARM PIE User Guide

Once the Level 1 RDP handler has been entered it may read
successive bytes from the serial channel using the GetByte routine,
and send replies using the PutByte routine. The Level 1 handler
may also formulate RDP messages to support application code
that has called it, and these too are sent using PutByte.

The ResetChannel routine can be used to reset the serial driver,
should an error be detected by the Level 1 Code.

The ChannelSpeed routine is used to change the speed of the
serial channel in an implementation designed fashion. Currently
the PIE board supports baud rates of 9600, 19200 and 38400 bits
per second over its serial channel. These speeds can be selected by
sending the values 1, 2 or 3 respectively to the ChannelSpeed
routine. A value of 0 selects the default (power on reset) value,
which for the PIE is 9600 bps. The meaning of all other values is
undefined.

The GetByte and PutByte routines get and put bytes to and from
the debug channel, as described above.

The ReadTimer routine returns in register 0 a centi-second count
from an on board timer.

The SetLED routine allows the setting and clearing of the Light
Emitting Diode (LED). Bit 0 of register 0 dictates the action
required; 0 turns the LED off, and 1 turns it on.

Level 1 handles RDP messages from the debugger, and generates
RDP messages to support the actions of the application using it.
The Level 1 code implements a number of SWI instructions to
allow an application access to high level functions. See section 4.5,
Standard Monitor SWIs.

An initial memory map is defined on the following page in
diagram 4.2.

The C library support uses the top of memory address (0x80000)
for the base of the user mode stack. All stacks grow towards
address zero.

4.4 Level 1 services

4.4.1 Initial memory map

Software

 34

Application space

Floating point emulator space

Free for user supplied Debug Monitor

Debug monitor Private Workspace

256 bytes for SVC mode stack

256 bytes for Undefined mode stack

256 bytes for Abort mode stack

256 bytes for IRQ mode stack

∼1 KByte for FIQ routine and FIQ mode stack

CPU Fast Interrupt Vector

CPU Interrupt Vector

CPU Address Exception Vector

CPU Data Abort Vector

CPU Prefetch Abort Vector

CPU Software Interrupt Vector

CPU Undefined Instruction Vector

CPU Reset Vector

Address

0x00000

0x00004

0x00008

0x0000c

0x00010

0x00014

0x00018

0x0001c

0x00020

0x00400

0x00500

0x00600

0x00700

0x00800

0x01000

0x02000

0x08000

0x80000

Figure 4.2 Initial memory map

 35

ARM PIE User Guide

Demon implements a number of useful SWIs which allow
programmers to call host and operating system functions direct
from programs being run and debugged on the PIE.

Write a byte, passed in register 0, to the debugger. The character
will appear on the display device connected to the ARM Symbolic
Debugger, that is, on the screen of the host.

Write the null terminated string, pointed to by register 0, to the
debugger. The characters will appear on the display device
connected to the ARM Symbolic Debugger, that is, on the screen
of the host.

Read a byte from the debugger, returning it in register 0. The read
is notionally from the keyboard attached to the debugger.

Pass the string, pointed to by register 0, to the host’s command
line interpreter.

Please note that this SWI is not available in the PC/DOS release of
the ARM Software Toolkit.

Return in register 0 the address of the command line string used
to invoke the program, and in register 1 the highest available
address in user memory.

Halt execution. Use this SWI to exit a program cleanly and return
control to the debugger.

Put the processor into supervisor mode. If the processor is
currently in a 26-bit mode then SVC26 is entered; otherwise
SVC32 is entered.

Return, in register 0, the value of the C library errno variable
associated with the host support for this debug monitor. errno
may be set, by a number of C library support SWIs, including
SWI_Remove, SWI_Rename, SWI_Open, SWI_Close, SWI_Read,
SWI_Write, SWI_Seek, etc. Except where the ANSI C standard
defines the behaviour, whether errno is set, and to what value it
is set, are completely host-specific.

Return, in r0, the number of centi-seconds since the support code
began execution. In general, only the difference between
successive calls to SWI_Clock, can be meaningful.

4.5Standard monitor SWIs

SWI_WriteC (SWI 0)

 SWI_Write0 (SWI 2)

SWI_ReadC (SWI 4)

SWI_CLI (SWI 5)

SWI_GetEnv (SWI 0x10)

SWI_Exit (SWI 0x11)

SWI_EnterOS (SWI 0x16)

SWI_GetErrno (SWI 0x60)

SWI_Clock (SWI 0x61)

Software

 36

Return, in r0, the number of seconds since the beginning of 1970
(the Unix time origin).

Delete the file named by the NUL-terminated string addressed by
r0. Return, in r0, zero if the removal succeeds, or a non-zero, host-
specific error code if it fails.

Rename a file. R0 and r1 address NUL-terminated strings, the
old-name and new-name , respectively. If the rename succeeds,
zero is returned in r0; otherwise, a non-zero, host-specific error
code is returned.

Open a file. R0 addresses a NUL-terminated string containing a
file or device name; r1 is a small integer specifying the file opening
mode (see table below). If the open succeeds, a non-zero handle is
returned in r0, which can be quoted to SWI_Close, SWI_Read,
SWI_Write, SWI_Seek, SWI_Flen and SWI_IsTTY. Nothing else
may be asserted about the value of the handle. If the open fails, the
value 0 is returned in r0.

r1 value ANSI C fopen() mode

0 “r”
1 “rb”
2 “r+”
3 “r+b”
4 “w”
5 “wb”
6 “w+”
7 “w+b”
8 “a”
9 “ab”
10 “a+”
11 “a+b”

Close a file. On entry, r0 must be a handle for an open file,
previously returned by SWI_Open. If the close succeeds, zero is
returned in r0; otherwise, a non-zero value is returned.

Write bytes to a file. On entry, r0 must contain a handle for a
previously opened file; r1 points to a buffer in the callee; and r2
contains the number of bytes to be written from the buffer to the
file. SWI_Write returns, in r0, the number of bytes not written (and
so indicates success with a 0 return value).

SWI_Time (SWI 0x63)

SWI_Remove (SWI 0x64)

SWI_Rename (SWI 0x65)

SWI_Open (SWI 0x66)

SWI_Close (SWI 0x68)

SWI_Write (SWI 0x69)

 37

ARM PIE User Guide

Read bytes from a file. On entry, r0 must contain a handle for a
previously opened file or device; r1 points to a buffer in the callee,
and r2 contains the number of bytes to be read from the file into
the buffer. SWI_Read returns, in r0, the number of bytes not read
and so indicates the success of a read from a file with a zero return
value. If the handle is for an interactive device (SWI_IsTTY returns
non-zero for this handle), then a non-zero return from SWI_Read
indicates that the line read did not fill the buffer.

Alter file pointer position of a file. On entry, r0 must contain a
handle for an open seekable file object and r1 the absolute byte
position to be sought to. If the request can be honoured then
SWI_Seek returns 0 in r0; otherwise a host-specific non-zero value.
Note that the effect of seeking outside of the current extent of the
file object is undefined.

Return length of a file. On entry, r0 contains a handle for a
previously opened, seekable file object. SWI_Flen returns, in r0,
the current length of the file object, otherwise -1.

On entry, r0 must contain a handle for a previously opened file or
device object. On exit, r0 contains 1 if the handle identifies an
interactive device, and 0 otherwise.

Return a temporary file name. On entry, r0 points to a buffer and
r1 contains the length of the buffer (r1 should be at least the value
of L_tmpnam on the host system). On successful return, r0 points
to the buffer which contains a host temporary file name.

If the request cannot be satisfied (e.g. because the buffer is too
small) then 0 is returned in r0.

SWI_InstallHandler installs a handler for a hardware exception.

On entry, r0 contains the exception number (see the table below);
r1 contains a value to pass to the handler when it is eventually
invoked; and r2 contains the address of the handler.

On return, r2 contains the address of the previous handler and r1
its argument.

On occurrence of the exception, the handler is entered in the
appropriate non-user mode, with r10 holding a value dependent
on the exception type, and r11 holding the handler argument (as
passed to InstallHandler in r1). r10, r11, r12 and r14 (for the

SWI_Read (SWI 0x6a)

SWI_Seek (SWI 0x6b)

SWI_Flen (SWI 0x6c)

SWI_IsTTY (SWI 0x6e)

SWI_TmpNam (SWI 0x6f)

SWI_InstallHandler (SWI 0x70)

Software

 38

processor mode in which the handler is entered) are saved on the
stack of the mode in which the handler is entered; all other
registers are as at the time of the exception. Any effects of the
instruction causing the exception have been unwound. If the
handler returns, the exception will be passed to the debugger.

On entry, r0 points to an error block (containing a 32-bit error
number, followed by a zero-terminated error string) and r1 points
to a 17-word block containing the values of the ARM CPU
registers at the instant the error occurred (the 17th word contains
the PSR).

SWI_GenerateError causes the (software) error vector to be called:
this SWI also causes the installed error handler to be called (see
SWI InstallHandler).

NO EXCEPTION MODE R10 VALUE

0 branch through zero swi32 -

1 undefined instruction undef32 -

2 swi swi32 swi number

3 prefetch abort abort32 -

4 data abort abort32 -

5 address exception swi32 -

6 IRQ irq32 -

7 FIQ fiq32 -

8 Error swi32 error pointer

SWI_GenerateError (SWI 0x71)

 39

ARM PIE User Guide

Developing your
system 5

This chapter looks at aspects of the PIE system of interest to
system designers who wish to use the PIE as the basis for their
own system or ASIC designs. It should be read after users have
become familiar with the standard PIE hardware and gained a
good understanding of ARM processors, and after the
introduction to the PIE hardware in Chapter Three.

The PIE is intended to ease the process of building systems and
ASICs based on ARM technology. With the addition of your own
circuits the PIE can be used to test designs for many ideas and
products. Suitable uses include embedded systems such as
communications interfaces, memory subsystems, network
interfaces for FDDI or Ethernet, laser printer engines, and custom
ICs for a variety of purposes.

The first section provides detail on timing and signals which relate
to the expansion bus. System designers who intend to add
expansion hardware to the PIE should pay particular attention to
the information in this section.

The second section covers state machine design. The PIE state
machine and ways to develop it are discussed in detail.

The third section discusses serial interface programming in detail
and is intended to allows PIE users to ensure that even heavily
modified test systems are still able to communicate with the host.

The ARM60 evaluation card is designed to interface to a standard
prototyping card, typically a 100 mm x 160 mm Eurocard which
can then sit over the PIE card and be connected directly to it using
standard 0.1inch PCB double row sockets, as shown in Figure 5.1
Other size cards can be used if required.

5.1 About this chapter

5.2 Extending the PIE

5

Developing your system

 40

Observe the following points when building any hardware test
systems to add to the PIE:

• Do not load signals excessively (buffer for more than four
CMOS loads).

• Avoid ribbon cable connections over 100 mm long. Use
plug/socket connections from top card if possible.

• Decode memory space to the 1-2 Gbyte address range to
avoid clashing with devices (RAM 0-1 Gbyte, I/O 2-3 Gbyte,
ROM 3-4 Gbyte–see Figure 3.2).

• Use the external ready (ERDY) signal with care. The system
card will wait indefinitely if the signal is driven low during
external I/O cycles.

• Check carefully all connections, especially for any short
circuits, before attempting to use any add-on card.

• Disconnect or turn off the power supply from the card
before installing or removing any external test circuitry.

The physical aspects of the expansion bus interface are discussed
in Chapter Three (page 27). This section covers the signal and
timing information needed to enable users to interface additional
hardware to the PIE successfully.

➠

Figure 5.1 Adding an expansion card

5.2.1 Expansion bus interface

 41

ARM PIE User Guide

The external interface is decoded for the memory space from 1-2
Gbyte. There is a single External Ready (ERDY) input on
connector PL7. It has a weak pull-up resistor on the card which is
used to provide a variable wait-state interface (the default is
ready).

ERDY must be set high to allow the cycle to complete on the next
cycle. If a peripheral (memory, etc.) cannot complete in one more
cycle then ERDY must be driven low to add wait states until
ERDY is driven high to signify data transfer is completing in the
next clock period.

ERDY must be set-up and held around falling edges of LCLK (a
slightly delayed version of the SCLK signal one level back in the
clock tree invertor chain).

Signal timing for a mixed variety of cycles is shown in figure 5.2.

The first non-sequential read cycle (N-read) is stretched by two
wait states the next cycle (sequential) completes immediately
followed by another with a single wait state.

The rest of the cycles are shown unstretched to demonstrate the
inclusion of an extra wait cycle every write cycle (which allows the

Figure 5.2 External timing cycles

LCLK

state mem dec wait wait mem mem wait mem dec wait mem int mem dec

A31
A30

NWAIT

STATE

ERDY

A[31:2]

NWE[x]

N-read 2 S-reads N-write i-cycle s-read

Developing your system

 42

time for data out to become valid from the processor - which in
sequential writes to devices such as dynamic RAM is a limiting
factor).

After the write cycle an internal cycle is shown which is merged
immediately with the following sequential memory request as
ERDY is till high. Write data is set up in such internal cycles which
can complete with no wait cycles.

Figure 5.3 shows the cycle times that are generated, in units of
clock period (50ns for 20 MHZ clock).

The basic state machine design described in Chapter Three is the
starting point for the overall state machine design which is
discussed more fully in this section.

The ARM60 has a clock input MCLK and a gating control NWAIT
which enables the clock to the processor core.The logic function is
an AND-gating function of the two inputs: only when NWAIT
and MCLK are both high is an active processor clock (“Phase 2” in
ARM2 nomenclature) generated.

5.2.2 Expansion bus timing

Figure 5.3 Cycle times generated

Cycle Type Precharge Access

Non-sequential SRAM access 1 2 50+100ns-Tdsu

Sequential SRAM read 0 2 100ns-Tdsu acc.

Sequential SRAM write 1 2

I/O access (8-bit) 1 12 650ns min cycle

(I/O read/write strobe) (7) (6) 300ns-Tdsu acc.

EPROM access (32-bit) 1 12 650ns cycle

(each EPROM byte access) (3) 150ns-Tdsu acc.

Internal cycle 1 0 50ns

Non-sequential EXT access 1 1* (1+N)x50ns

Sequential EXT read 0 1* Nx50ns

Sequential EXT write 0 1+1* (1+N)x50ns

* Where ERDY may hold up completion by an integer number of cycles

5.3 State machine design

5.3.1 Processor clock interface

 43

ARM PIE User Guide

The clocking scheme used in the PIE is designed to use standard
(active rising-edge triggered) programmed logic components
with a clock scheme as follows:

SCLK the system state machine clock

MCLK the processor clock signal (inverted form of above)

A clocked Address Latch Enable, ALE, signal is also used in this
design. The ARM60 processor internal addresses are generated
(“early”) timed from the active MCLK rising edge (active means
only when NWAIT was high). This is useful when early addresses
allow memory mapping or dynamic RAM interfacing, but is not
required for simple memory and I/O bus interfaces where
addresses need to be held to the end of the access cycle.

When ALE is high allows the processor addresses to flow out of
the CPU and when low holds them at their last value. SCLK is
used as ALE, and the Address Latch open time guarantees the
addresses start changing to a new state cleanly at the completion
of the active MCLK cycle.

The diagram (Figure 5.5) shows the basic parameters for the state
machine interface to the ARM60 processor. Note the following
times:

Tq the SCLK rising to Q output change of the PLDs.

Th input hold time to SCLK rising.

Tsu input setup time to SCLK rising.

Tms the ARM processor (active) MCLK falling to new
NMREQ, SEQ.

Tale the ALE latch fall-through time.

Figure 5.4 Waveforms

SCLK (ALE)

STATE O/Ps

MCLK (LCLK)

5.3.2 State interface timing

Developing your system

 44

In zero wait-state operation and internal cycle operation at MCLK
rate new NMREQ and SEQ status is generated every clock cycle:
the state machine is constrained by valid NMREQ and SEQ time
signals and the combinational logic delays inherent in the setup to
the next SCLK edge. Also the SCLK output timing must meet
valid NWAIT timing constraints.

The state diagram outlined in the introduction is further
expanded and explained in Figure 5.6 as follows:

• States are shown as named circles, with asserted output
listed below the names.

• Input transitions are from left, output transitions to right.

Internal cycles are optimised such that a sequential memory
request following an internal cycle is merged with the decode
because the processor guarantees to have broadcast a valid
address during the last internal operation.

The diagram splits into two halves; the upper half represents
cycles where the CPU is stalled (NWAIT asserted low) and the
lower half the active processor cycle operations.

Figure 5.5 Annotated timing diagram

(ALE)
SCLK

NWAIT

active
MCLK

NMREQ
SEQ

A[31:0]

NBW,
NRW

Tq

Th Tsu

Tale
Tmsd

5.3.3 State diagram

 45

ARM PIE User Guide

The principal enhancement to the simple state machine depicted
in the basic flow diagram is the merging of internal cycles with
following sequential cycles to avoid a wasted decode cycle, shown
in Figure 5.7. The address on the bus is guaranteed to be valid
during such an internal cycle and therefore the decode is
implicitly performed. Note the outputs decremented in wait state.

The Byte counter BYT counts down from 3 to 0 to fetch the bytes
from EPROM (preloaded when leaving internal or decode states)
and only decremented each time the CNT counter cycles through
zero.

The wait counter cycles through three states, preset to 2 as BYT
when inactive and reloaded whilst sequencing through the bytes.

The resultant external waveforms produced are shown in
Figure 5.8. Note that the ROM must be programmed little-endian
byte ordered and is accessed in reverse byte order for data
pipeline design simplicity.

The I/O decoder does not use the byte count (address) bits and
simply uses the down counter to generate strobe timing.

Figure 5.6 Expanded state diagram

DECODE
!NWAIT
!STATE

WAIT
!NWAIT
 STATE

INTERNAL
 NWAIT
!STATE

MEMORY
 NWAIT
 STATE

romio & NOT ready

ram & seq & read

NWAIT=0

NWAIT=1

nmreq

!nmreq & (!seq | romio | (ram & write))

nmreq

!nmreq & !seq

!nmreq & seq

ready

5.3.4 EPROM and I/O access

Developing your system

 46

Fig 5.7 EPROM and I/O access state diagram

DECODE
!NWAIT
!STATE
NROM
CNT=0
BYT=0

WAIT
!NWAIT
STATE
!NROM
CNT--
BYT--

MEMORY
NWAIT
STATE
!NROM
CNT=0
BYT=0

INTERNAL
NWAIT
!STATE
NROM
CNT=0
BYT=0

romio

(CNT>1) | (BYT>0)

(CNT=1)&(BYT=0)

nmreq

!nmreq

nmreq

!nmreq & (!seq | romio)

!nmreq & seq
&!romio

MCLK

ROMCK

BYTE1

BYTE0

NWAIT

DATA DATADATA BYTE3 BYTE2 BYTE1 XXX

NIOS

Figure 5.8 ROM timing waveforms

 47

ARM PIE User Guide

The principal enhancement for static RAM access is to merge
sequential RAM read accesses to avoid re-entering the decode
state and simply loop back through the wait state as the low order
address increments, as shown in Figure 5.9. There is an implicit
assumption here that sequential runs will not be re-decoded
across the RAM/EXT memory spaces.

Write cycles are implemented with an extra decode cycle. This
causes the NRAM chip select to strobe in write data at the rising
edge. Speed could be improved by gating the write strobe and
removing this extra decode tick.

Figure 5.10 shows the waveforms produced by a mix of read and
write burst accesses and the merging of an internal cycle with the
following sequential cycle at the end.

NRAM is asserted low for burst reads to improve static RAM
access speed. This is not strictly necessary for the RAM fitted to
the PIE but demonstrates a technique for using fast BiCMOS RAM
with zero wait states or on-chip RAM in an ASIC design. The
situation is different for writes to static RAM: NRAM must be
used rather than using address lines to ensure valid writes (which
in zero-wait state designs require a wait state to achieve stable
data out from the ARM CPU).

5.3.5 SRAM access

Figure 5. 9 SRAM access state diagram

!nmreq & (!seq | !ram | (ram & write))

nmreq

nmreq

!nmreq & !seq

ram

ram & seq & read

!nmreq
& seq
& ram

DECODE
!NWAIT
!STATE
NRAM

WAIT
!NWAIT
STATE
!NRAM

MEMORY
NWAIT
STATE
!NRAM

INTERNAL
NWAIT
!STATE
NRAM

Developing your system

 48

In fast write cycle designs the data out time from ARM60 must be
carefully observed particularly if dynamic RAM is being used
(where delayed write cycles would normally be used more
efficiently than early writes where data is required set up to NCAS
falling edge).

An External Ready (ERDY) signal is provided in this example of a
variable wait state interface, shown in Figure 5.11. If ERDY is
asserted high then the bus cycle will complete in the next clock
period.

This enhancement allows zero wait state memory operation for
sequential external memory read operations, with a single cycle
precharge cycle added for sequential write and non-sequential
accesses. Thus 40ns static RAM may be mapped into external
RAM space with the ERDY signal asserted high.

Fast page-mode dynamic RAM would run at page cycle rate and
only add wait states by deasserting ERDY for row access and
refresh cycle operations.

Figure 5.10 SRAM Waveforms

LCLK

state mem dec wait wait mem mem wait mem dec wait mem int mem dec

A31
A30

NWAIT

STATE

ERDY

A[31:2]

NWE[x]

N-read 2 S-reads N-write i-cycle s-read

5.3.6 External I/O access

 49

ARM PIE User Guide

Two GAL20V8 electrically erasable programmable generic array
logic components are used to implement a state machine to meet
the specification outlined above. The states have been carefully
designed to keep the number of product terms within limits and
to attempt to make the design simple to alter and enhance. See
Appendix B for the equation listings.

Figure 5.11 External I/O access state diagram

!erdy

ext & !erdy

ext & erdy
!nmreq & !seq

nmreq

nmreq

erdy

!nmreq & !seq

seq & read & erdy

seq&(write | (read & !erdy))

DECODE
!NWAIT
!STATE
NRAM

WAIT
!NWAIT
STATE
!NRAM

INTERNAL
NWAIT
!STATE
NRAM

MEMORY
NWAIT
STATE
!NRAM

seq & ext
& erdy

!nmreq & seq
& ext & !erdy

5.3.7 State implementation

Developing your system

 50

The card supports the ARM Remote Debugger Protocol (RDP)
which can be run on any of Sun, PC compatible and Apple
Macintosh host computers. The PIE’s asynchronous serial
interface allows the card to be interfaced to any of these hosts.

This avoids special hardware interfacing or system software
driver support overheads.

The I/O base address is

 0x80000000

Only data bits D[7:0] are valid on the bus after reads from I/O
space, the other 24-bits contain previously-driven bus values. Byte
load and stores would normally only be used rather than word
operations.

Big-endian Little-endian READ WRITE

0x80000003 0x80000000 MR1, MR2 MR1, MR2

0x80000007 0x80000004 SR CSR

0x8000000B 0x80000008 *RESERVED* CR

0x8000000F 0x8000000C RHR THR

0x80000013 0x80000010 *RESERVED* ACR

0x80000017 0x80000014 ISR IMR

0x8000001B 0x80000018 CTU CTUR

0x8000001F 0x8000001C CTL CTLR

5.4 Serial interface
5.5 programming

5.5.1 Programming interface

 51

ARM PIE User Guide

The first write to this register maps MR2 in for further accesses; it
is recommended that no parity is enabled.

Bit 3, shown as N, is set to 1 for two stop bits and set to zero for
one stop bit. It is recommended that one stop bit is used.

The clock select register sets the speeds for the transmission and
reception of serial communications. The bottom four bits define
transmission and the top four reception.

 See the Philips Data Book for full information on this register.

Writes to the command register require at least three rising edges
(four clock cycles would guarantee this) e.g. four 3.6864MHz

Mode register 1–MR1

7 6 5 4 3 2 1 0

set for NO Parity, zero for parity enable

ODD Parity if 1 (else EVEN)
when enabled

8-bit

0 NOP 1ODD 10 0 0

(normally no parity)

Mode Register 2–MR2

7 6 5 4 3 2 1 0

0 0 0 0 N 1 1 1

Normal Number of stop bits

Normally
programmed
as 0

Clock Select Register–
CSR

7 6 5 4 3 2 1 0

1 1 0 0 0 011

RX clock rate TX clock rate

Command Register–CR

7 6 5 4 3 2 1 0

C C C C E E E E

commands enables

Developing your system

 52

cycles or 1.1 microseconds between consecutive writes.
The EPROM byte-wide code has no problem with this but fast
RAM code must ensure commands are not written at a faster rate.

The status register is used to convey errors and other important
information which requires action back to the controlling
program. The errors are expressed in the eight bits of the registers
as follows:

The auxiliary control register contains the following information:

Status Register–SR

7 6 5 4 3 2 1 0

RBD RFE RPE ROE TBE TBD RFF RDA

Receiver Data

Receiver FIFO Full
Transmitter Buffer Done

Transmitter Buffer Empty
Receiver Overrun Error

Receiver Parity Error

Receiver Framing Error
Receiver Break Detect

 Available

7 6 5 4 3 2 1 0

B38 1 01 1 1 0 0

Baud rate 38.4K (0 for 19.2K)

Timer X/16 LED (RTS) on MP0 pin

Auxiliary Control
Register–ACR

 53

ARM PIE User Guide

 This register conveys information about interrupts:

 This register contains the interrupt masks:

With a 3.6864MHz crystal and the divide by 16 prescalar selected
the counter/timer register deals in units of 4.34 µS (exactly 230.4
KHz count rate).

The interrupt rate is this divided by 2N where N is programmed
as CTH and CTL register values. The minimum frequency is 230.4
KHz (2*65535) = 1.76 Hz.

You should be aware that reading this register and CTH may
result in discontinuities as increments may occur between reads.

Interrupt Status Register–
ISR 7 6 5 4 3 2 1 0

Transmitter

Transmitter Empty
Receiver Data request

Change In Break status

Timer period tick

Data request

X X X TIM CIB RxD TxE TxD

Interrupt Mask Register–
IMR 7 6 5 4 3 2 1 0

O TIM CIB RxD TxE TxDO O

Transmitter Data

Transmitter Empty

Receiver Data request

Change In Break status

Timer period tick interrupt enable

interrupt enable

enable

 interrupt enable

interrupt enable

 interrupt

Counter/Timer Register
Low–CTL

7 6 5 4 3 2 1 0

L L L L L LL L

➠

Developing your system

 54

With this register you should also be aware of possible
discontinuities caused by increments between reads; see CTL on
the previous page.

Counter/Timer Register
High –CTH

7 6 5 4 3 2 1 0

H H H H HH H H

 55

ARM PIE User Guide

Appendix A

To use the PIE you need to connect it via a cable to your host
system. A nine-pin sub-miniature D-type socket is provided on
the PIE for this purpose; its signal levels are RS232 compatible.
You will need to build a cable, ensuring that the signals are
properly carried to the host and to the correct pins on your host
system’s serial port. This appendix should be used in conjunction
with the manual for your host system.

These signals appear at the connector at the edge of the card:

PIN FUNCTION
2 Receive Data to card
3 Transmit Data from card
5 Signal Ground
(7) (Multi Purpose Output)
8 Clear To Send to card

The Multi Purpose Output does have an RS232 output driver but
is not normally used in serial communications handshaking
unless specifically programmed to do so. It reflects the (inverse)
status displayed on the LED.

A.1 Host interface

A.2 Connector

1 2 3 4 5
6 7 8 9

CTS (input)MPO (output)
(not normally connected)

RESET
LED

(common)
(output)

(input) RXD

RESET BUTTON (MPO)

GROUND
TXD

Figure A.1 Connector (View from end of card)

A

Developing your system

 56

A standard null modem cable is used to connect host and
evaluation card. The cable should be a symmetric cable such as
would be used to connect PC/AT machines back-to-back with
9-way sockets at either end:

If your host is a Sun you should produce a cable wired like this:

9-pin PC/AT host serial
(COMx:) cable

TO HOST TO ARM60-PIE

TXD (3) RXD (2)

RXD (2) TXD (3)

GND (5) GND (5)

RTS (7) RTS (7)

CTS (8) CTS (8)

DTR (4) DTR (4)

DSR (6) DSR (6)

DCD (1) DCD (1)

25-way SUN host serial
(A/B) cable

TO HOST TO ARM60-PIE

TXD (2) RXD (2)

RXD (3) TXD (3)

GND (7) GND (5)

RTS (4) RTS (7)

CTS (5) CTS (8)

DTR (20) DTR (4)

DSR (6) DSR (6)

DCD (8) DCD (1)

 57

ARM PIE User Guide

Appendix: GAL listings B

B.1 State Control GAL
Name PIESM2 ARM60-PIE State Machine;
Partno PIESM2;
Revision 03;
Date 17/01/92;
Designer David Flynn;
Company Advanced RISC Machines Ltd;
Assembly ;
Location U5;
Device g20v8;

/***/
/* Allowable Target Device Type: GAL20V8A */
/**/

/** Inputs **/

pin[1] = ck;
pin[2] = a31;
pin[3] = a30;
pin[4] = abort;
pin[5] = Nread;
pin[6] = Nmreq;
pin[7] = seq;
pin[10] = Nreset;
pin[11] = erdy;
pin[13] = Noe;
pin[14] = Ntrans;

/** Outputs **/

pin[22] = !ios; /* io strobe gating */
pin[21] = q0; /* divide/3 count */
pin[20] = q1; /* romck */
pin[19] = q2; /* romb0 */
pin[18] = q3; /* romb1 */
pin[17] = state; /* -> PIEDC1 */
pin[16] = Nwait; /* -> PIEDC1 */
pin[15] = resmap; /* -> PIEDC1 */

/** definitions **/
$define decST (!Nwait & !state)
$define waiST (!Nwait & state)
$define memST (Nwait & state)
$define intST (Nwait & !state)

$define ramDEC (!a31 & !a30)
$define extDEC (!a31 & a30 & !resmap)
$define ioDEC (a31 & !a30)
$define romDEC (a31 & a30)

B

Developing your system

 58

$define hiDEC (a31)

$define iCYC (Nmreq)
$define sCYC (!Nmreq & seq)
$define nCYC (!Nmreq & !seq)
$define mCYC (!Nmreq)

/** Logic Equations **/

/* in fact resmap := reset + resmap & !(ramDEC & write & memST) */
resmap.D = !Nreset
 # resÒmap & !Nread
 # resmap & !Nwait
 # resmap & !state
 # resmap & a31
 # resmap & a30
 ;

/* carefully handcrafted down counter:
 low 2 bits count: 2,1,0,2,1,0...
 rom,io access count: E,D,C,A,9,8,6,5,4,2,1,0(,0)
 ram 1,0(,1,0 for seq RAM read)

ROM/IO
 MEMDECWAIWAIWAIWAIWAIWAIWAIWAIWAIWAIWAIMEM

 q3 _____/ ___________________
 ________ ________
 q2 _____/ ________/ __________
 __ __ __ __
 q1 _____/ _____/ _____/ _____/ _______
 __ __ __ __
 q0 ________/ _____/ _____/ _____/ ____
 ____________________ _________________ ____
NIOS _________________/
 __ __
NWAIT ___________________________________/ _

RAM (seq read, then Nseq/writes)
 MEMDECWAIMEMWAIMEMDECWAIMEM
 q3 ____________________________
 q2 ____________________________
 q1 ____________________________
 __ __ __
 q0 _____/ __/ _____/ ____
 __ __ __ __
NWAIT _____/ __/ _____/ _
*/

q0.D = decST & ramDEC & !resmap
 # intST & sCYC & ramDEC & !resmap
 # memST & sCYC & ramDEC & !resmap & !Nread /* ram SEQ */
 # !Nwait & q1 /* div by 3 ring counter */
 # waiST & !q0 & !q1 & !q2 & !q3 /* prevent init lockup */
 ;

 59

ARM PIE User Guide

q1.D = decST & hiDEC /* set for ROM/IO start */
 # intST & sCYC & hiDEC
 # decST & resmap
 # intST & sCYC & resmap
 # waiST & !q0 & !q1 & q2
 # waiST & !q0 & !q1 & q3
 # extDEC /* force count on external space */
 ;

q2.D = decST & hiDEC /* set for ROM/IO start */
 # intST & sCYC & hiDEC
 # decST & resmap
 # intST & sCYC & resmap
 # !Nwait & !q0 & !q1 & !q2 & q3
 # !Nwait & q2 & q0
 # !Nwait & q2 & q1
 ;

q3.D = decST & hiDEC /* set for ROM/IO start */
 # intST & sCYC & hiDEC
 # decST & resmap
 # intST & sCYC & resmap
 # !Nwait & q3 & q0
 # !Nwait & q3 & q1
 # !Nwait & q3 & q2
 ;

Nwait.D = waiST & !q3 & !q2 & !q1 & q0 /* WAI->MEM */
 # Nwait & iCYC /* MEM,INT->INT */
/* extra terms for zero wait-state external memory space */
 # !Nwait & extDEC & erdy /* DEC/WAI -> extMEM */
 # intST & sCYC & extDEC & erdy /* mrg I-cyc ->extMEM */
 # memST & sCYC & extDEC & erdy & !Nread /* SEQ reads */
 ;

state.D = !Nwait /* DEC,WAIT->WAIT,MEM */
 # intST & sCYC /* INT -> WAIT,MEM */
 # memST & sCYC & ramDEC & !Nread & !resmap /* ram SEQ */
/* extra terms for zero wait-state external memory space */
 # memST & sCYC & extDEC /* ext SEQ */
 ;

/* note this pin is also used for NRAMOE */
ios.D = waiST & ioDEC & Ntrans & q3 & !q2 & !q1 /* start after 5T */
 # waiST & ioDEC & Ntrans & !q3 & q2
 # waiST & ioDEC & Ntrans & !q3 & q1 /* complete at 11T */
 # !Nwait & ramDEC & !resmap & !Nread /* DEC/WAI->MEM */
 # intST & ramDEC & !resmap & !Nread & sCYC /* I-cyc->MEM */
 # memST & ramDEC & !resmap & !Nread & sCYC /* ram seq */
 ;

Developing your system

 60

B.2 Decoder GAL

Name PIEDC2 ARM60-PIE Decoder;
Partno PIEDC2;
Revision 02;
Date 17/01/92;
Designer David Flynn;
Company Advanced RISC Machines Ltd;
Assembly ;
Location U9;
Device g20v8;

/**/
/* Allowable Target Device Type: GAL20V8A */
/**/

/** Inputs **/

pin[1] = ck;
pin[2] = a31;
pin[3] = a30;
pin[4] = abort;
pin[5] = Nread;
pin[6] = Nmreq;
pin[7] = seq;
pin[8] = state;
pin[9] = Nwait;
pin[10] = resmap;
pin[11] = Nbyte;
pin[13] = Noe;
pin[14] = a1;
pin[15] = a0;

pin[23] = clk;

/** Outputs **/

pin[22] = !we3;
pin[21] = !we2;
pin[20] = !we1;
pin[19] = !we0;
pin[18] = rom;
pin[17] = ram;
pin[16] = !io;

/** definitions **/
$define decST (!Nwait & !state)
$define waiST (!Nwait & state)
$define memST (Nwait & state)
$define intST (Nwait & !state)

$define ramDEC (!a31 & !a30)
$define extDEC (!a31 & a30)
$define ioDEC (a31 & !a30)
$define romDEC (a31 & a30)

 61

ARM PIE User Guide

$define hiDEC (a31)

$define iCYC (Nmreq)
$define sCYC (!Nmreq & seq)
$define nCYC (!Nmreq & !seq)
$define mCYC (!Nmreq)

/** Logic Equations **/

rom.D = decST & !Nread & romDEC
 # intST & !Nread & romDEC & sCYC
 # decST & !Nread & resmap
 # intST & !Nread & resmap & sCYC
 # rom & !Nread & !Nwait
 # rom & !Nread & !state
 ;

ram.D = decST & ramDEC & !resmap
 # intST & ramDEC & !resmap & sCYC
 # ram & ramDEC & !resmap & !Nwait
 # ram & ramDEC & !resmap & !state
 # ram & ramDEC & !resmap & memST & sCYC & !Nread
 ;

io.D = decST & ioDEC & Nbyte & !resmap
 # intST & ioDEC & Nbyte & !resmap & sCYC
 # io & ioDEC & Nbyte & !resmap & !Nwait
 # io & ioDEC & Nbyte & !resmap & !state
 ;

/** combinational Write strobes (if NO ABORT) with set-up+hold */
/** little-endian byte decodes */
we3 = decST & !abort & !clk & Nread & Nbyte
 # decST & !abort & !clk & Nread & !Nbyte & a1 & a0
 # intST & !abort & sCYC & !clk & Nread & Nbyte
 # intST & !abort & sCYC & !clk & Nread & !Nbyte & a1 & a0
 # we3 & memST
 # we3 & clk
 ;

we2 = decST & !abort & !clk & Nread & Nbyte
 # decST & !abort & !clk & Nread & !Nbyte & a1 & !a0
 # intST & !abort & sCYC & !clk & Nread & Nbyte
 # intST & !abort & sCYC & !clk & Nread & !Nbyte & a1 & !a0
 # we2 & memST
 # we2 & clk
 ;

we1 = decST & !abort & !clk & Nread & Nbyte
 # decST & !abort & !clk & Nread & !Nbyte & !a1 & a0
 # intST & !abort & sCYC & !clk & Nread & Nbyte
 # intST & !abort & sCYC & !clk & Nread & !Nbyte & !a1 & a0
 # we1 & memST
 # we1 & clk
 ;

Developing your system

 62

we0 = decST & !abort & !clk & Nread & Nbyte
 # decST & !abort & !clk & Nread & !Nbyte & !a1 & !a0
 # intST & !abort & sCYC & !clk & Nread & Nbyte
 # intST & !abort & sCYC & !clk & Nread & !Nbyte & !a1 & !a0
 # we0 & memST
 # we0 & clk
 ;

 63

ARM PIE User Guide

Appendix C

Three schematics are included in this appendix and can be found
in the following pages:

• Design Hierarchy

• System

• I/O subsystem

C.1 Circuit schematics

C

Developing your system

 64

 65

ARM PIE User Guide

D
a
t
e
:

D
e
c
e
m
b
e
r

1
0
,

1
9
9
1
S
h
e
e
t

1

o
f

3

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
A
R
M
/
P
I
E
/
1

1

T
i
t
l
e

A
R
M
6
0

E
v
a
l
u
a
t
i
o
n

C
a
r
d

U
N
I
T
E
D

K
I
N
G
D
O
M

C
A
M
B
R
I
D
G
E

C
B
5

0
N
A

S
w
a
f
f
h
a
m

B
u
l
b
e
c
k

P
a
r
k

E
n
d

(
c
)

A
d
v
a
n
c
e
d

R
I
S
C

M
a
c
h
i
n
e
s

L
t
d

N
R
E
S

N
T
P
O
R

A
R
M
6
0

S
Y
S

A
R
M
6
0
S
Y
S
.
S
C
H

N
T
P
O
R

N
R
E
S

N
T
R
S
T

N
I
O

N
I
O
S

N
W
E
0

N
F
I
Q

N
I
R
Q

D
[
0
.
.
7
]

A
[
2
.
.
4
]

A
R
M
6
0

I
O

A
R
M
6
0
I
O
.
S
C
H

N
T
P
O
R

N
T
R
S
T

N
R
E
S

A
[
2
.
.
4
]

N
I
O

N
I
O
S

N
W
E
0

N
I
R
Q

N
F
I
Q

D
[
0
.
.
7
]

N
T
R
S
T

A
[
2
.
.
4
]

N
I
O

N
I
O
S

N
W
E
0

D
[
0
.
.
7
]

N
I
R
Q

N
F
I
Q

S
ch

em
at

ic
 1

: D
es

ig
n

H
ie

ra
rc

hy

Developing your system

 66

 67

ARM PIE User Guide

D
a
t
e
:

J
a
n
u
a
r
y

2
2
,

1
9
9
2
S
h
e
e
t

2

o
f

3

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
A
R
M
/
D
W
F
/
P
I
E
/
2

1

T
i
t
l
e

A
R
M
6
0

E
v
a
l
u
a
t
i
o
n

C
a
r
d

:

S
Y
S

U
n
i
t
e
d

K
i
n
g
d
o
m

C
a
m
b
r
i
d
g
e

C
B
5

0
N
A

S
w
a
f
f
h
a
m

B
u
l
b
e
c
k

P
a
r
k

E
n
d

(
c
)

A
d
v
a
n
c
e
d

R
I
S
C

M
a
c
h
i
n
e
s

L
t
d

S
C
L
K

V
C
C

N
W
E
3

N
W
E
2

N
W
E
1

N
W
E
0

R
O
M

I
/
C
L
K

1

I

2

I

3

I

4

I

5

I

6

I

7

I

8

I

9

I

1
0

I

1
1

G
N
D

1
2

I
/
O
E

1
3

I
1
4

I
/
O

1
5

I
/
O

1
6

I
/
O

1
7

I
/
O

1
8

I
/
O

1
9

I
/
O

2
0

I
/
O

2
1

I
/
O

2
2

I
2
3

V
C
C

2
4

U
9

G
A
L
2
0
V
8
A

R
2
0

1
0
0
K

S
C
L
K

A
3
1

A
3
0

A
B
O
R
T

N
R
W

N
M
R
E
Q

S
E
Q

I
/
C
L
K

1

I

2

I

3

I

4

I

5

I

6

I

7

I

8

I

9

I

1
0

I

1
1

G
N
D

1
2

I
/
O
E

1
3

I
1
4

I
/
O

1
5

I
/
O

1
6

I
/
O

1
7

I
/
O

1
8

I
/
O

1
9

I
/
O

2
0

I
/
O

2
1

I
/
O

2
2

I
2
3

V
C
C

2
4

U
6

G
A
L
2
0
V
8
A

V
C
C

B
1

B
0

B
C
K

N
I
O
S

R
1
5

3
3
R

R
1
6

3
3
R

R
1
7

3
3
R

S
C
L
K

A
3
1

A
3
0

A
B
O
R
T

N
R
W

N
M
R
E
Q

S
E
Q

S
C
L
K

A
L
E

5

6

U
1
C

7
4
A
C
T
0
4

9

8

U
1
D

7
4
A
C
T
0
4

R
1
4

3
3
R

V
C
C

C
L
K

(
N
C
)

1

(
G
N
D
)

4

G
N
D

7

O
U
T

8

(
O
U
T
)

1
1

V
C
C

1
4

U
1
4

O
S
C
1
4
/
8

G
N
D

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
3

C
O
N
2
0
A
PA
1
7

A
1
8

A
1
9

A
2
0

A
2
1

A
2
2

A
2
3

A
2
4

A
2
5

A
2
6

A
2
7

A
2
8

A
2
9

A
3
0

A
3
1

V
C
C

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
2

C
O
N
2
0
A
PA
1
5

A
1
3

A
1
1

A
9

A
7

A
5

A
3

A
1

A
1
4

A
1
2

A
1
0

A
8

A
6

A
4

A
2

V
C
C

D
2
7

1

D
2
8

2

D
2
9

3

D
3
0

4

D
3
1

5

C
P
A

6

V
S
S
E

7

V
D
D
E

8

L
O
C
K

9

B
I
G
E
N
D

1
0

N
C
P
I

1
1

D
B
E

1
2

N
B
W

1
3

M
C
L
K

1
4

N
W
A
I
T

1
5

L
A
T
E
A
B
T

1
6

P
R
O
G
3
2

1
7

D
A
T
A
3
2

1
8

N
R
W

1
9

N
O
P
C

2
0

N
M
R
E
Q

2
1

S
E
Q

2
2

A
B
O
R
T

2
3

N
I
R
Q

2
4

N
F
I
Q

2
5

N
R
E
S
E
T

2
6

A
L
E

2
7

C
P
B

2
8

N
T
R
A
N
S

2
9

A
3
1

3
0

A 3 03 1

A 2 93 2

A 2 83 3

A 2 73 4

A 2 63 5

A 2 53 6

A 2 43 7

A 2 33 8

A 2 23 9

A 2 14 0

A 2 04 1

A 1 94 2

A 1 84 3

A 1 74 4

A 1 64 5

A 1 54 6

A 1 44 7

A 1 34 8

A 1 24 9

A 1 15 0

V
D
D
E

5
1

V
S
S
E

5
2

A
1
0

5
3

A
9

5
4

A
8

5
5

A
7

5
6

A
6

5
7

A
5

5
8

A
4

5
9

A
3

6
0

A
2

6
1

A
1

6
2

A
0

6
3

V
S
S
I

6
4

V
D
D
I

6
5

A
B
E

6
6

T
C
K

6
7

T
M
S

6
8

N
T
R
S
T

6
9

T
D
I

7
0

T
D
O

7
1

D
0

7
2

D
1

7
3

D
2

7
4

D
3

7
5

D
4

7
6

D
5

7
7

D
6

7
8

D
7

7
9

V
S
S
I

8
0

V D D I 8 1D 8 8 2D 9 8 3D 1 0 8 4D 1 1 8 5D 1 2 8 6D 1 3 8 7D 1 4 8 8D 1 5 8 9D 1 6 9 0D 1 7 9 1D 1 8 9 2D 1 9 9 3D 2 0 9 4D 2 1 9 5D 2 2 9 6D 2 3 9 7D 2 4 9 8D 2 5 9 9D 2 6 1 0 0

U
7

A
R
M
6
0

A
0

A 1 1

A 1 2

A 1 3

A 1 4

G
N
D

A
1
6

A 1 5

A 1 6

A 1 7

A 1 8

A 1 9

A 2 0

A 2 1

A 2 2

A 2 3

A 2 4

A 2 5

A 2 6

A 2 7

A 2 8

A 2 9

A 3 0

G
N
D

V
P
P

1

A
1
6

2

A
1
5

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

V
S
S

1
6

D
3

1
7

D
4

1
8

D
5

1
9

D
6

2
0

D
7

2
1

C
E

2
2

A
1
0

2
3

O
E

2
4

A
1
1

2
5

A
9

2
6

A
8

2
7

A
1
3

2
8

A
1
4

2
9

N
C
/
A
1
7

3
0

P
G
M
/
A
1
8

3
1

V
C
C

3
2

U
8

E
P
R
O
M
1
2
8
K
/
5
1
2
K

V
C
C

V
C
C

R
1
8

3
3
R

G
N
D

N
R
E
S

E
R
D
Y

M
C
L
K

L
C
L
K

R
O
M

G
N
D

1
1

1
0

U
1
E

7
4
A
C
T
0
4

G
N
D

S
T
A
T
E

N
W
A
I
T

R
E
S
M
A
P

N
R
O
M

N
T
R
A
N
S

1
3

1
2

U
1
F

7
4
A
C
T
0
4

R
1
9

1
0
0
K

G
N
D

S
T
A
T
E

N
W
A
I
T

R
E
S
M
A
P

N
R
A
M

N
B
W

R
A
M

G
N
D

G
N
D

A
1

A
0

R
A
M

N
I
O

D
2
4

D
2
5

D
2
6

D
2
7

D
2
8

D
2
9

D
3
0

V
C
C

O
E

1

D
0

2

D
1

3

D
2

4

D
3

5

D
4

6

D
5

7

D
6

8

D
7

9

V
S
S

1
0

C
L
K

1
1

Q
7

1
2

Q
6

1
3

Q
5

1
4

Q
4

1
5

Q
3

1
6

Q
2

1
7

Q
1

1
8

Q
0

1
9

V
D
D

2
0

U
1
7

7
4
H
C
T
5
7
4

D
1
6

D
1
7

D
1
8

D
1
9

D
2
0

D
2
1

D
2
2

N
R
O
M

V
C
C

D
1
6

D
1
7

D
1
8

D
1
9

D
2
0

D
2
1

D
2
2

O
E

1

D
0

2

D
1

3

D
2

4

D
3

5

D
4

6

D
5

7

D
6

8

D
7

9

V
S
S

1
0

C
L
K

1
1

Q
7

1
2

Q
6

1
3

Q
5

1
4

Q
4

1
5

Q
3

1
6

Q
2

1
7

Q
1

1
8

Q
0

1
9

V
D
D

2
0

U
1
6

7
4
H
C
T
5
7
4

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

N
R
O
M

V
C
C

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

O
E

1

D
0

2

D
1

3

D
2

4

D
3

5

D
4

6

D
5

7

D
6

8

D
7

9

V
S
S

1
0

C
L
K

1
1

Q
7

1
2

Q
6

1
3

Q
5

1
4

Q
4

1
5

Q
3

1
6

Q
2

1
7

Q
1

1
8

Q
0

1
9

V
D
D

2
0

U
1
5

7
4
H
C
T
5
7
4

N
R
O
M

D
0

D
1

D
2

D
3

D
4

D
5

D
6

X
1
8

A
1
7

A
1
4

A
1
3

A
8

A
9

A
1
1

A
1
0

N
R
O
M

D
7

D
6

N
R
O
M

A
3
1

A
1
6

A
1
5

A
1
2

A
7

A
6

A
5

A
4

A
3

A
2

B
0

D
0

B
1

N
T
R
A
N
S

C
P
B

N
R
E
S

N
F
I
Q

N
I
R
Q

A
B
O
R
T

S
E
Q

N
M
R
E
Q

A
L
E

A
1
0

A
9

A
8

A
7

A
6

A
5

A
4

A
3

G
N
D

V
C
C

A
2

A
1

A
0

D
0

G
N
D

T
C
K

T
M
S

T
D
I

T
D
O

A
B
E

N
T
P
O
R

V
T
S
T

N
C
/
A
1
8

1

A
1
6

2

A
1
4

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

V
S
S

1
6

D
3

1
7

D
4

1
8

D
5

1
9

D
6

2
0

D
7

2
1

C
S

2
2

A
1
0

2
3

O
E

2
4

A
1
1

2
5

A
9

2
6

A
8

2
7

A
1
3

2
8

W
E

2
9

C
S
/
A
1
7

3
0

A
1
5

3
1

V
C
C

3
2

U
1
0

S
R
A
M
1
2
8
K
/
5
1
2
K

G
N
D

D
1

A
2
0

A
1
8

D
2

N
O
P
C

N
R
W

N
W
A
I
T

L
O
C
K

M
C
L
K

N
B
W

D
B
E

N
C
P
I

C
F
1

C
F
2

C
F
3

C
F
4

A
1
7

V
C
C

A
2
0

A
1
8

D
5

D
4

D
3

N
C
/
A
1
8

1

A
1
6

2

A
1
4

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

V
S
S

1
6

D
3

1
7

D
4

1
8

D
5

1
9

D
6

2
0

D
7

2
1

C
S

2
2

A
1
0

2
3

O
E

2
4

A
1
1

2
5

A
9

2
6

A
8

2
7

A
1
3

2
8

W
E

2
9

C
S
/
A
1
7

3
0

A
1
5

3
1

V
C
C

3
2

U
1
1

S
R
A
M
1
2
8
K
/
5
1
2
K

A
1
7

V
C
C

G
N
D
D
7

N
C
/
A
1
8

1

A
1
6

2

A
1
4

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

V
S
S

1
6

D
3

1
7

D
4

1
8

D
5

1
9

D
6

2
0

D
7

2
1

C
S

2
2

A
1
0

2
3

O
E

2
4

A
1
1

2
5

A
9

2
6

A
8

2
7

A
1
3

2
8

W
E

2
9

C
S
/
A
1
7

3
0

A
1
5

3
1

V
C
C

3
2

U
1
2

S
R
A
M
1
2
8
K
/
5
1
2
K

D
1
5

A
2
0

A
1
8

G
N
D

B
C
K

D
1
5

N
C
/
A
1
8

1

A
1
6

2

A
1
4

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

V
S
S

1
6

D
3

1
7

D
4

1
8

D
5

1
9

D
6

2
0

D
7

2
1

C
S

2
2

A
1
0

2
3

O
E

2
4

A
1
1

2
5

A
9

2
6

A
8

2
7

A
1
3

2
8

W
E

2
9

C
S
/
A
1
7

3
0

A
1
5

3
1

V
C
C

3
2

U
1
3

S
R
A
M
1
2
8
K
/
5
1
2
K

D
2
3

G
N
D

A
1
7

V
C
C

A
2
0

A
1
8

B
C
K

D
2
3

D
3
1

B
C
K

A
1
7

V
C
C

D
3
1

D
3
0

X
1
9

N
W
E
3

A
1
5

A
1
3

A
1
2

N
R
A
M

A
1
0

A
1
1

N
I
O
S

D
2
3

D
2
2

X
1
9

N
W
E
2

A
1
5

A
1
3

A
1
2

N
R
A
M

A
1
0

A
1
1

A
1
6

A
1
4

A
9

A
8

A
7

A
6

A
5

A
4

A
2

A
3

D
2
4

N
I
O
S

A
1
6

A
1
4

A
9

A
8

A
7

A
6

A
5

A
4

A
2

A
3

D
1
6

D
1
5

D
1
4

X
1
9

N
W
E
1

A
1
5

A
1
3

A
1
2

N
R
A
M

A
1
0

A
1
1

N
I
O
S

X
1
9

N
W
E
0

A
1
5

A
1
3

A
1
2

N
R
A
M

A
1
0

A
1
1

A
1
6

A
1
4

A
9

A
8

A
7

A
6

A
5

A
4

A
2

D
8

A
3

D
6

D
7

N
I
O
S

D
3
1

D
3
0

D
2
9

D
2
8

D
2
7

A
1
6

A
1
4

A
9

A
8

A
7

A
6

A
5

A
4

A
2

D
0

A
3

G
N
D

V
C
C

C
P
A

1J
P
7

C
O
N
1

D
1

D
2

D
3

D
4

D
5

D
6

D
7

G
N
D

V
C
C

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
4

C
O
N
2
0
A
P

R
2
2

0
R

1J
P
6

C
O
N
1

D
1
5

D 8
D 9
D 1 0

V
T
S
T

V
C
C

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
5

C
O
N
2
0
A
PD
3
1

D 1 1

D 1 2

D 1 3

D 1 4

D 1 5

D 1 6

D 1 7

D 1 8

D 1 9

D 2 0

D 2 1

D 2 2

D 2 3

D 2 4

D 2 5

D 2 6

L
C
L
K

V
C
C

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
6

C
O
N
2
0
A
P

G
N
D

D
1

D
2

D
B
E

T
C
K

V
C
C

+

1

+

3

+

5

+

7

+

9

+

1
1

+

1
3

+

1
5

+

1
7

+

1
9

+
2

+
4

+
6

+
8

+
1
0

+
1
2

+
1
4

+
1
6

+
1
8

+
2
0

P
L
7

C
O
N
2
0
A
P

N
R
E
SD
1
0

G
N
D

D
9

D
3

D
4

D
5

N
W
E
3

V
C
C

N
I
O

D
1
3

D
1
2

D
1
1

N
I
O

N
R
E
S

C
1
8

1
0
0
n

C
1
9

1
0
0
n

D
1
8

G
N
D

D
1
7

C
2
4

1
0
0
n

C
1
3

1
0
0
n

C
1
4

1
0
0
n

C
1
5

1
0
0
n

D
2
1

D
2
0

D
1
9

D
2
6

G
N
D

D
2
5

C
1
6

1
0
0
n

C
1
7

1
0
0
n

D
2
9

D
2
8

D
2
7

V
C
C

C
2
0

1
0
u

C
2
1

1
0
u

V
C
C

G
N
D

G
N
D

C
2
2

1
0
n

C
2
3

1
0
n

A
[
2
.
.
4
]

D
[
0
.
.
7
]

D
[
0
.
.
7
]

A
[
2
.
.
4
]

V
C
C

V
C
C

N
W
E
0

N
I
O
S

N
T
R
S
T

N
W
E
0

N
I
O
S

N
T
R
S
T

N
F
I
Q

N
I
R
Q

N
T
P
O
R

N
F
I
Q

N
I
R
Q

N
T
P
O
R

G
N
D

E
R
D
Y

N
W
E
1

N
C
P
I

B
1

N
R
O
M

N
T
R
S
T

T
M
S

G
N
D

N
W
A
I
T

N
F
I
Q

A
B
O
R
T

S
E
Q

N
B
W

N
O
P
C

A
L
E

B
C
K

N
W
E
2

N
W
E
0

N
I
O

B
0

T
D
O

T
D
I

T
C
K

R
5

4
7
0
R

R
2
4

1
0
0
K

D
3
0

D
2
8

D
2
6

D
2
4

D
2
2

D
2
0

D
1
8

D
1
6

D
2
9

D
2
7

D
2
5

D
2
3

D
2
1

D
1
9

D
1
7

G
N
D

S
T
A
T
E

N
R
E
S

N
I
R
Q

N
M
R
E
Q

N
R
W

L
O
C
K

N
T
R
A
N
S

A
B
E

R
4

4
7
0
R

D
1
4

D
1
2

D
1
0

D
8

D
6

D
4

D
2

D
0

D
1
3

D
1
1

D
9

D
7

D
5

D
3

D
1

G
N
D

R
6

1
0
0
K

R
7

1
0
0
K

V
C
C

A
B
E

V
C
C

V
C
C

C
F
3

V
C
C

V
C
C

V
C
C

N
F
I
Q

R
8

1
0
0
K

R
9

1
0
0
K

R
1
1

1
0
0
K

R
2
3

1
0
0
K

D
B
E

V
C
C

C
F
4

V
C
C

N
I
R
Q

V
C
C

R
1
0

1
0
0
K

C
P
A

V
C
C

C
P
B

N
T
R
S
T

E
R
D
Y

R
1
3

1
0
0
K

G
N
D

A
B
O
R
T

A 1

C

2

B3
J
P
2

R
L
I
N
K
2

A 1

C

2

B3
J
P
3

R
L
I
N
K
2

A 1

C

2

B3
J
P
4

R
L
I
N
K
2

A
1
8

A
1
9

X
1
8

X
1
9

A 1

C

2

B3
J
P
5

M
O
L
E
X
3

C
F
2

C
F
1

G
N
D

G
N
D

S
ch

em
at

ic
 2

: S
ys

te
m

N
ot

e:
 R

es
is

to
rs

 R
13

, R
19

 a
nd

 R
20

 m
ay

 b
e

re
pl

ac
ed

 b
y

3k
3

re
si

st
or

s
 o

n
so

m
e

ve
rs

io
ns

 o
f t

hi
s

bo
ar

d.

Developing your system

 68

 69

ARM PIE User Guide

D
a
t
e
:

M
a
r
c
h

5
,

1
9
9
2
S
h
e
e
t

3

o
f

3

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
A
R
M
/
D
W
F
/
P
I
E
/
3

2

T
i
t
l
e

A
R
M
6
0

E
v
a
l
u
a
t
i
o
n

C
a
r
d

:

I
/
O

U
N
I
T
E
D

K
I
N
G
D
O
M

C
A
M
B
R
I
D
G
E

C
B
5

0
N
A

S
w
a
f
f
h
a
m

B
u
l
b
e
c
k

P
a
r
k

E
n
d

(
c
)

A
d
v
a
n
c
e
d

R
I
S
C

M
a
c
h
i
n
e
s

L
t
d

9

8

U
5
D

7
4
H
C
1
4

9

1
0

8

U
4
C

7
4
H
C
T
3
2

1

2

U
1
A

7
4
A
C
T
0
4

T
R
S
T

N
T
R
S
T

V
C
C

N
T
R
S
T

D
2

B
A
S
1
6

C
1
2

1
u

R
2

1
0
K

1

2

U
5
A

7
4
H
C
1
4

P
O
R

N
P
O
R
C

G
N
D

1
2

1
3

1
1

U
4
D

7
4
H
C
T
3
2

R
E
S

T
P
O
R

1
1

1
0

U
5
E

7
4
H
C
1
4

N
T
P
O
R

N
R
E
S

N
T
P
O
R

N
R
E
S

G
N
D

5

6

U
5
C

7
4
H
C
1
4

D
1

L
E
D

R
3

4
7
0
R

G
N
D

3

4

U
1
B

7
4
A
C
T
0
4

R
T
S

C
1
1

1
0
u

R
1

1
0
K

3

4

U
5
B

7
4
H
C
1
4

R
S
T

N
R
S
T

V
C
C

S
1

S
W

P
U
S
H

D
3

B
A
S
1
6

G
N
D

N
I
N
T

X
2

G N D

C
1

2
0
p

G
N
D

V
C
C

5

9

4

8

3

7

2

6

1

P
L
1

C
O
N
N
E
C
T
O
R

D
B
9

G
N
D

C 1 +1

C 1 -3 V C C1 6 C 2 +4

C 2 -5

T
2
X

7

R
2
X

8

R
2

9

T
2

1
0

T
1

1
1

R
1

1
2

R
1
X

1
3

T
1
X

1
4

V + 2

G N D 1 5

V - 6

U
3

M
A
X
2
3
2

C
6

1
0
u

C
9

1
0
u

C
2

2
0
p

A
2

A
3

G
N
D

M
P
O

5

M
P
I

6

(
N
C
)

7

(
N
C
)

8

A
2

9

A
1

1
0

A
0

1
1

X 11 2

X 21 3

R E S E T1 4

G N D1 5

I N T R N1 6

C E N1 7

D 71 8

D
6

1
9

D
5

2
0

D
4

2
1

D
3

2
2

(
N
C
)

2
3

D
2

2
4

D
1

2
5

(N C) 2 6D 0 2 7W R N 2 8V C C 1R D N 2R X D 3T X D 4

U
2

S
C
C
2
6
9
1
_
P
L
C
C

X
1

3
.
6
8
M
H
z

X
1

D
6

D
5

D
7

A 1

C

2

B3
J
P
1

R
L
I
N
K
2N
F
I
Q

N
F
I
Q

N
I
O

N
I
R
Q

N
I
R
Q

D
4

D
3

D
2

D
1

D
0

A
4

R
X
D

T
X
D

R
T
S

C
T
S

C
T
S

R
T
S

T
X
D

R
S
T
X
D

R
S
R
X
D

R
S
C
T
S

R
S
R
T
S

R
S
C
T
S

R
S
T
X
D

R
S
R
T
S

R
S
R
X
D

R
2
5

1
0
K

R
S
C
T
S

R
2
6

1
0
K

R
S
R
X
D

O
P
T
I
O
N
A
L

R
E
S
I
S
T
O
R
S

F
O
R

S
E
R
I
A
L

D
E
F
A
U
L
T
S

C
7

1
0
u

C
8
1
0
u

G
N
D

V
C
C

V
9
+

R
X
D

V C C

1

2

3

U
4
A

7
4
H
C
T
3
2

N
W
D

N
I
O
S

A
[
2
.
.
4
]

D
[
0
.
.
7
]

N
I
O
S

D
[
0
.
.
7
]

A
[
2
.
.
4
]

N
W
E
0

1
3

1
2

U
5
F

7
4
H
C
1
4

N
W
E
0

W
E
0

4

5

6

U
4
B

7
4
H
C
T
3
2

N
R
D

1P
L
8

S
P
A
D
E

1P
L
9

S
P
A
D
E

C
3

1
0
0
n

C
4

1
0
0
n

C
5

1
0
0
n

C
1
0

4
7
uV
C
C

G
N
D

V
C
C

G
N
D

S
ch

em
at

ic
 3

: I
/O

 S
ub

sy
st

em

Developing your system

 70

 i

ARM PIE User Guide

Index
A
Architecure 13
Activating self-test 9
Address bus 15
Address Latch Enable 15, 43
Address space 13
Apple Macintosh 5, 50
ARM Software Development Kit 5
ARM Software Development Toolkit 10
ARM Symbolic Debugger 10
ARM60 processor 5, 7, 10, 15, 28
ARMsd 31
ASIC design 39, 47

B
Bi-endian operation 5
Big-endian operation 11
Byte counter 45

C
Cable 7, 55
Clock generator 15
Connecting to a host 9
Control/Status Port 26
Components 8

D
Data bus 15, 20
Decode GAL 7, 11, 20
Decode state 18
Dhrystone 10
Diagnostic message 9
Demon 10, 31
Developing your system 39
Dynamic RAM 48

E
Embedded system 5
Extending the PIE 39

External I/O access 48
External timing cycles 41
External Ready 41, 48
Eurocard 39
Eurocard prototype boards 24
EPROM 5, 10
EPROM pipeline 21
Expansion bus interface 40
Expansion connectors 16, 23
Expansion interface 27

H
High Address Bus 25
High Data Bus 26
Host machines 5
Hewlett-Packard logic analysers 23

I
I/O subsystem 28
IBM compatible PCs 5
IBM PC compatible 9, 50, 56
Initial memory map 33
Internal state 20
Inspecting the card 8
Installing ARM software on the host 10

J
JTAG boundary 27

L
LED 8, 30
Little-endian operation 11
Logic analyser 10

interface 8
Logic analyser interface 24
Logic analysis 23
Low Address Bus 24

 ii

M
Memory state 19

P
Pipelined output 17
Protecting your card 7
Power

independent 9
leads 8
supply 8

Powering up 9

R
RAM

static 5
RAM Subsystem 20
Running example programs 10
Remote Debug Protocol 12, 31
Remote Debugger Protocol 50
ROM timing 46
ROM subsystem 21
Reset map 14
Reset button 8, 9
Reset circuitry 28
Reset timing 28

S
Sun 9, 10, 50, 56
State machine 15, 18
State interface timing 43
Spade connectors 8, 9
Standard monitor SWIs 35
static RAM 48
Serial cables 9
Serial communications controller 8, 28
Serial interface 5
Serial interface programming 50
Serial port 8, 10
Sieve 10
Software interrupts 31, 35
SUN 5

System bus interface timing 29
System memory map 13
System setup 7

T
Test Port 27

W
Whetstone 10
Warning arrow 6
Wait state 18

