
Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 1
ARM DAI 0237A

Application Note
Migrating from 8051 to Cortex™ Microcontrollers

Document number: ARM DAI 0237

Issued: July 2010

Copyright ARM Limited 2010

237

Introduction

2 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

Application Note 237
Migrating from 8051 to Cortex Microcontrollers

Copyright © 2010 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

July 2010 A First release

Proprietary notice

Words and logos marked with ® or © are registered trademarks or trademarks owned by
ARM Limited, except as otherwise stated below in this proprietary notice. Other brands
and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in,
this document may be adapted or reproduced in any material form except with the prior
written permission of the copyright holder.

The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are
given by ARM in good faith. However, all warranties implied or expressed, including but
not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited
shall not be liable for any loss or damage arising from the use of any information in this
document, or any error or omission in such information, or any incorrect use of the
product.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to
errata@arm.com giving:

 the document title

 the document number

 the page number(s) to which your comments refer

 an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

Introduction

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 3
ARM DAI 0237A

Table of Contents

1 Introduction.. 4

1.1 Why change to Cortex-M3.. 4
1.2 Cortex-M3 products .. 5
1.3 References and Further Reading ... 5

2 Cortex-M3 Features ... 6

2.1 Nested Vectored Interrupt Controller (NVIC) .. 6
2.2 Memory Protection Unit (MPU)... 6
2.3 Debug Interface .. 6
2.4 Program and Data Trace .. 6
2.5 Fixed Memory Map ... 6

3 8051 and Cortex-M3 Compared.. 7

3.1 Programmer’s model .. 8
3.2 Exceptions and interrupts ... 9
3.3 Memory... 10
3.4 Debug ... 13
3.5 Power management.. 14
3.6 Extensions implemented in the Atmel AT91C51RD2....................................... 14

4 Migrating a software application.. 16

4.1 General considerations... 16
4.2 Tools configuration ... 19
4.3 Startup .. 19
4.4 Interrupt handling.. 20
4.5 Timing and delays... 21
4.6 Peripherals.. 21
4.7 Power Management.. 21
4.8 C Programming .. 22

5 Examples .. 23

5.1 Vector tables and exception handlers... 23
5.2 Bit banding.. 25
5.3 Access to peripherals ... 26

6 Comparison with Cortex-M0... 27

Introduction

4 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

1 Introduction

The ARM Cortex™-M range of microcontroller cores are high performance, low cost and
low power 32-bit RISC processors. Currently, the range includes the Cortex-M3, Cortex-
M4 and Cortex-M0 cores (the Cortex-M1 is similar in functionality and is targeted at
implementation in FPGA devices). Cortex-M processors differ from other processors in
ARM’s range in that they execute only Thumb-2 instructions and do not support the ARM
instruction set. They are based on the ARMv7-M architecture and have an efficient
Harvard architecture 3-stage pipeline core. They also feature hardware divide and low-
latency ISR (Interrupt Service Routine) entry and exit.

As well as the CPU core, the Cortex-M processors include a number of other
components. These include a Nested Vectored Interrupt Controller (NVIC), an optional
Memory Protection Unit (MPU), Timer, Debug Access Port (DAP) and optional trace
facilities. They have a fixed memory map.

In this document, we only refer to the standard 8051 architecture. There are several
extended versions of the architecture (e.g. 8052) which are support additional features
(e.g. extra status flags, ability to address more memory etc.). These are not considered.

We compare the 8051 primarily with Cortex-M3 devices as these form the bulk of the
microcontrollers available using Cortex-M cores. This document also contains an
additional comparison with the Cortex-M0, which is in many respects a subset of the
Cortex-M3, providing a lower cost solution, albeit at a lower performance point.

1.1 Why change to Cortex-M3

There are many reasons to take the decision to base a new design on a device
incorporating a Cortex-M3 processor. Most, if not all, of these reasons also apply to the
decision to migrate an existing product to Cortex-M3.

 Higher performance
While exact performance is dependent on the individual device and
implementation, the Cortex-M3 processor is capable of providing 1.25DMIPS/MHz
at clock speeds up to 135MHz.

 More memory
Since the Cortex-M3 is a full 32-bit processor, including 32-bit address and data
buses, it has a 4GB address space. Within the fixed address space, up to 512MB
is available for optimized code execution from flash (further code segments can
be placed in other memory regions) and up to 2GB for RAM (either on or off chip).
Significant space is also allocated for peripherals, system control registers and
debug support.

 Modern tools
The Cortex-M3 is well supported by a wide range of tools from many suppliers. In
particular, the RealView Developer Suite (RVDS) and Keil Microcontroller
Developer Kit (MDK) from ARM provide full support for Cortex-M3. Models are
also available to accelerate software development.

 Can program in C
Unlike many microcontrollers, the Cortex-M3 can be programmed entirely in C.
This includes exception handling, reset and initialization as well as application
software. Doing away with assembly code improves portability, maintainability and
debugging.

 More efficient interrupt handling
The interrupt architecture of the Cortex-M3 is designed for efficient interrupt entry
and exit and also to minimize interrupt latency. The integrated Nested Vectored
Interrupt Controller supports hardware prioritization, pre-emption and dispatch of
external and internal interrupts. The core also supports late arrival, tail-chaining
and nesting with minimal software intervention.

Introduction

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 5
ARM DAI 0237A

 Future proof
The Cortex-M3 will meet the needs of the majority of today’s microcontroller
applications but, crucially, it provides an upwards migration path to the rest of the
ARM architecture family of products. The Cortex-M4 adds a number of extra
instructions providing floating-point and SIMD capability while retaining complete
binary compatibility with Cortex-M3. Since programming is entirely in C, achieving
extra performance by migrating to, for instance, Cortex-R4 is realistic and
achievable with minimal engineering effort.

 Use more capable OS/scheduler
The architecture of the Cortex-M3 provides excellent support for many standard
RTOS’s and schedulers. OS’s can make use of the privileged “Handler” mode to
provide inter-process isolation and protection. The built-in SysTick timer is ideal
for system synchronization and can also function as a watchdog.

 Better consistency between suppliers
Using a microcontroller based on an industry-standard architecture reduces risk
by ensuring that products available from different suppliers are highly consistent
and standardized. The engineering effort involved in moving from one supplier to
another is minimized. The Cortex Microcontroller Software Interface Standard
(CMSIS) is a widely-adopted API for many standard functions, making migration
between suppliers easier.

 Better debug facilities
The Cortex-M3 supports full in-circuit debug using standard debug adapters.
There is full support for breakpointing, single-stepping and program trace as well
as standard instrumentation features.

1.2 Cortex-M3 products

See www.onarm.com for the most comprehensive list of available Cortex-M3 devices,
supporting technology and development tools.

1.3 References and Further Reading

Application Note 179 – Cortex-M3 Embedded Software Development, ARM DAI0179B,
ARM Ltd.

Cortex Microcontroller Software Interface Standard (see www.onarm.com).

Cortex-M3 User Guide Reference Material, ARM DUI0450A, ARM Ltd.

Cortex-M3 Technical Reference Manual, ARM DDI0337G, ARM Ltd.

ARMv7-M Architecture Reference Manual, ARM DDI0403D, ARM Ltd.

Cortex-M3 Features

6 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

2 Cortex-M3 Features

The Cortex-M3 processor core is highly configurable by the chip developer. For this
reason, not all of the features described in this section will be available (or identically
configured) on all Cortex-M3 microcontrollers. It is important to check carefully the feature
set of the device you are using.

2.1 Nested Vectored Interrupt Controller (NVIC)

Depending on the silicon manufacturer’s implementation, the NVIC can support up to 240
external interrupts with up to 256 different priority levels, which can be dynamically
reprioritized. It supports both level and pulse interrupt sources. The processor state and a
subset of core registers are automatically saved by hardware on interrupt entry and is
restored on interrupt exit. The NVIC also supports tail-chaining of interrupts, allowing
efficient handling of multiple pending interrupts.

The use of an NVIC in the Cortex-M3 means that the vector table for a Cortex-M3 is very
different to previous ARM cores. The Cortex-M3 vector table contains the address of the
exception handlers and ISR, not instructions as most other ARM cores do. The initial
stack pointer and the address of the reset handler must be located at 0x0 and 0x4
respectively. These values are then loaded into the appropriate CPU registers at reset.

The NVIC also incorporates a standard SysTick timer which can be used as a one-shot
timer, repeating timer, or system wake-up/watchdog timer.

A separate (optional) Wake-up Interrupt Controller (WIC) is also available. In low power
modes, the rest of the chip can be powered down leaving only the WIC powered.

2.2 Memory Protection Unit (MPU)

The MPU is an optional component of the Cortex-M3. It provides support for protecting
regions of memory through enforcing privilege and access rules. It supports up to 8
different regions which can be split into a further 8 sub-regions, with each sub-region
being one eighth the size of a region.

2.3 Debug Interface

There are two different debug interfaces supported: the Serial Wire JTAG Debug Port
(SWJ-DP) and the Serial Wire Debug Port (SW-DP). Your Cortex-M3 implementation
might contain either or both of these depending on the silicon manufacturer’s
implementation.

2.4 Program and Data Trace

There are several possible components which may be implemented to allow tracing of
program execution and data access. Printf-style program tracing may also be available.
Check the documentation for your device to determine which features are available.

2.5 Fixed Memory Map

Unlike most previous ARM cores, the overall layout of the memory map of a device based
around the Cortex-M3 is fixed. This allows easy porting of software between different
systems based on the Cortex-M3. The address space is split into a number of different
sections and is discussed further in section 3.3.1 below.

8051 and Cortex-M3 Compared

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 7
ARM DAI 0237A

3 8051 and Cortex-M3 Compared

As you would expect, direct comparisons between two such different products are difficult.
Both are available in many different configurations. The Cortex-M3 is arguably more
standardized than the 8051, which exists in several quite different variants (some of which
are obsolete). However, the Cortex-M3 offers several configurable options to the chip
vendor (e.g. number of interrupts and depth of priority scheme, memory protection, debug
configuration etc.).

In both cases, there is a huge variety of devices with a multitude of different peripheral
sets, targeted at different end applications.

For the purposes of comparison, we have selected two devices from chip manufacturer
Atmel. For the 8051 architecture, we will look at the AT89C51RD2; for the Cortex-M3, the
SAM3S1A.

AT8951C51RD2 SAM3S1A

Architecture 8051 (8052) ARMv7-M (Cortex-M3)

Program memory (flash) 64 Kbytes 64 Kbytes

Data memory (RAM) 2 Kbytes 16 Kbytes

EEPROM 2 Kbytes N

Memory Protection Unit N Y

Max clock frequency 60 MHz 64 MHz

GPIO pins 48 34

ADC N 8-channel x 12-bit

Timers 3 x 16-bit 3 x 16-bit + SysTick

Watchdog timer Y Y

SPI 1 1

I2C N 1

USART 1 (UART) 2

PWM Y Y

RTC Y (up to 5 x 8-bit) 4 channel x 16-bit

External interrupt
sources

2 (+ 7 internal) 34 (+ 16 internal)

Interrupt prioritization 4 levels 16 levels

Vectored Interrupt
Controller

Y (two separately-vectored
external interrupts)

Y

Power-saving modes Idle/Power-Down Sleep/Wait/Backup

DMA N 4-channel

Debug port ONCE mode Serial sire or JTAG debug

Voltage Detection Y Y

8051 and Cortex-M3 Compared

8 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

3.1 Programmer’s model

3.1.1 Register set

The two processors are significantly different with regards to the register set.

The 8051 has two 8-bit registers (ACC and B) which are generally used in arithmetic and
logic instructions. Additionally, ACC is used as source and destination for most memory
access instructions. There is also a 16-bit address register, DPTR, which is used
exclusively for addressing external memory.

There are also four banks of eight 8-bit registers which are mapped into the first 32 bytes
of internal RAM. These are byte and bit addressable. The bank in current use is selected
via the RS0 and RS1 bits in the PSW (see below).

The Cortex-M3 has 16 32-bit registers, R0-R15. R0-R12 are generally available for
essentially all instructions. R13 is used as the Stack Pointer, R14 as the Link Register (for
subroutine and exception return) and R15 as the Program Counter. None of the Coretx-
M3 core registers are directly addressable.

Since the Cortex-M3’s registers are all 32-bit, it supports 32-bit arithmetic and logic
operations efficiently. Such operations have to be synthesized from smaller ones when
programming the 8051.

3.1.2 Status registers

The 8051 PSW register contains Carry (CY), Auxiliary Carry (AC) and Overflow (OV) flags
(set on results from ALU operations), RS0 and RS1 (used to select one of four register
banks in current use) and a parity flag, P (set by the hardware to indicate whether there
are an even or odd number of set bits in the accumulator on each instruction cycle).

The Cortex-M3 Program Status Register (xPSR) is a single 32-bit register with several
aliases, each providing a view of a different subset of the contents. From the user point of
view, the Application Program Status Register (APSR) contains the ALU status flags. For
operating system and exception handling use, the Interrupt Program Status Register
(IPSR) contains the number of the currently executing interrupt (or zero if none is currently
active). The Execution Program Status Register (EPSR) contains bits which reflect
execution status and is not directly accessible.

3.1.3 Instruction set

The 8051 supports an 8-bit instruction set. Instructions are variable length and can extend
to include operands in the instruction stream, varying from one to three bytes.

The Cortex-M3 supports a subset of the Thumb-2 instruction set. Instruction are either 16-
bits or 32-bits in size. One crucial difference is that instructions cannot extend to include
operand data. Any information for the instruction must be encoded within the instruction
itself. One consequence of this is that it is not possible to specify arbitrary 32-bit constants
or addresses in instructions so other methods must be used for this. C compilers
supporting the Cortex-M3 all support this transparently to the programmer.

3.1.4 Operating modes

The 8051 does not support any concept of multiple operating modes.

The Cortex-M3 supports two modes, Thread mode (used for user processes) and Handler
mode (used for handling exceptions and automatically entered when an exception is
entered).

The ARMv7-M architecture also defines the concept of “privilege.” Unprivileged execution
limits or excludes access to some resources (for instance, unprivileged code is unable to
mask or unmask interrupts). Handler mode execution is always privileged. By default,
Thread mode will also execute with privilege but the programmer may configure thread

8051 and Cortex-M3 Compared

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 9
ARM DAI 0237A

mode to execute without privilege. This configuration can be used to provide a degree of
system protection from errant or malicious programs.

3.1.5 Stack

The 8051 supports a Full Ascending stack using a single stack pointer, SP. This is
constrained to like in internal RAM. SP is initialized to 0x07, meaning that the first item
pushed on to the stack goes to address 0x08. The stack grows upwards from this point. It
cannot grow beyond the end of internal RAM at 0xFF. This means that the 8051 only
supports 248 bytes of stack space.

Since the internal RAM region is partially shared with the register banks (bank 0 is located
from 0x0 to 0x7, banks 1-3 from 0x08 to 0x1F) and the bit-addressable area (0x20 to 0x
2F), using the full range of 248 bytes of stack space requires foregoing three of the
register banks and the whole of the bit-addressable area. It is more common, therefore,
for SP to be reset by the program to start at 0x30 during initialization. This restricts stack
space to 192 bytes.

All stack accesses on the 8051 are byte-sized.

The 8051 stack pointer is typically initialized to the address one byte below the start of the
allocated stack area so that the first push uses the first byte of the area (since the stack
model is Full Ascending the stack pointer is incremented before the first store).

The Cortex-M3 supports a Full Descending stack addressed by the current stack pointer
(see below). This stack can be located anywhere in RAM. Typically, for best performance,
it will be located in internal SRAM. Stack size is limited only by the available RAM space.

The Cortex-M3 stack pointer is typically initialized to the word above the top of the
allocated stack area. Since the stack model is Full Descending, the stack pointer is
decremented before the first store, thus placing the first word on the stack at the top of the
allocated region.

All stack accesses on the Cortex-M3 are word-sized.

3.2 Exceptions and interrupts

The 8051 supports five interrupt sources: IE0 and IE1 (external hardware interrupts INT0
and INT1), TF0 and TF1 (internal timer overflow interrupts) and RI/TI (receive and
transmit interrupts from the integrated UART, handled as a single interrupt source. Each
can be configured as high or low priority (two priority levels). Within the two priority groups,
priority of individual interrupts is fixed. An interrupt of higher priority will pre-empt a lower
priority interrupt. External interrupts may be configured as level or edge sensitive.
Interrupts may be individually and/or globally enabled and disabled.

The Cortex-M3 has an integrated Nested Vectored Interrupt Controller which supports
between 1 and 240 separate external interrupt courses. There are up to 256 priority levels.
Individual implementations may configure the number of interrupts and the number of
priority levels which are supported so it is important to check the manual for the target
device to determine the exact configuration. The Cortex-M3 also supports an external
Non-Maskable Interrupt (NMI) and several internal interrupts (e.g. HardFault, SVC etc.).

3.2.1 Interrupt prioritization and pre-emption

The 8051 supports two priority levels. These are configured for each interrupt via a single
bit within the Interrupt Priority (IP) register. Interrupts of a higher priority will interrupt an
currently executing interrupt. All interrupts can be masked in software

The Cortex-M3 priority scheme is significantly more flexible. Up to 8-bits (256 levels) of
priority are supported though devices are able to implement fewer than the maximum
number. Additionally, the priority levels may be subdivided into pre-emption priority and
subpriority by setting a binary point position at which the two divide. For instance, on a
system with 6 bits of priority, 8 levels of pre-emption priority and 8 levels of sub-priority

8051 and Cortex-M3 Compared

10 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

may be configured by setting the binary point at bit 5. All external interrupts, except NMI,
can be masked in software.

The priority of NMI is fixed.

3.2.2 External interrupts

The 8051 supports two external interrupts. INT0 is higher priority than INT1.

The Cortex-M3, as discussed above, supports up to 240 external interrupts, all of which
may have separately configured priority, and a Non-Maskable Interrupt (NMI).

3.2.3 Internal interrupts

The 8051 recognizes internal interrupts relating to the two system timers and to the
integrated UART. Each of the two timers can generate an interrupt on overflow. The
UART TI (Transmit Interrupt) and RI (Receive Interrupt) conditions are combined to a
single interrupt.

The Cortex-M3 supports a larger list of internal interrupts and exception events. These
indicate errors (e.g. bus faults, undefined instructions), debug events and software
interrupts.

3.2.4 Vector table

The 8051 vector table is located at a fixed address in the internal RAM area. Each of the
five interrupt handlers is started at a fixed address within the vector table.

The Cortex-M3 vector table is located, by default, at address 0x00000000. It can be
relocated during initialization to a location in either Code or RAM regions. Locating the
vector table in internal SRAM can provide higher performance. Within the vector table,
each entry contains the starting address of the corresponding handler routine.

3.2.5 Interrupt handlers

The 8051 requires that interrupt handler routines return with a Return from Interrupt
(RETI) instruction. This means that such routines must either be written in assembler or
flagged as handlers using some suitable keyword attribute if programming in a high level
language.

The Cortex-M3 supports all exception entry and exit sequences in hardware and thus
allows interrupt routines to be standard C functions, compliant with the ARM Architecture
Procedure Call Standard (AAPCS). Any compliant function can be installed in the vector
table as a handler simply by referencing its address.

3.3 Memory

The 8051 supports 64k of instruction memory (4k on-chip and up to 60k off-chip or 64k
external) and up to 64k of external data memory. Internal data memory is limited to 128
bytes, some of which is given over to the register banks and the bit-addressable area. The
external data memory is accessed via the special MOVX instruction.

The 8-bit 8051 stack pointer is restricted to the portion of the internal RAM between 0x08
and 0xFF, though to use all of this space the programmer must forego use of two of the
register banks and also the bit-addressable area. It is more normal, therefore, to restrict
the stack pointer to the region from 0x30 upwards, leaving only 192 bytes of stack space.

Both processors support bitwise access to memory or “bit-banding”. The 8051 bit-
addressable area is 16 bytes long, contained within the internal RAM region, and can be
directly accessed either as bytes or bits. Additionally, several bits within the Special
Function Register (SFR) region can be directly accessed as bits. However, the transfer
can only be between the memory bit and the Carry flag (C). The Cortex-M3 supports bit
addressing across 1MB of each of the RAM and Peripheral regions. This is achieved by

8051 and Cortex-M3 Compared

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 11
ARM DAI 0237A

aliasing a further 32MB of address space in each region for direct atomic bit accesses in
the bit-band region.

3.3.1 Memory map

The Cortex-M3 memory map is summarized in the table below. This is a unified address
space covering both program and data regions as well as peripherals and system control
registers.

Address Region Address Detail

0x0000 0000 Code Code memory (e.g. flash, ROM etc.)

0x2000 0000 SRAM 0x2000 0000 -
0x200F FFFF

Bit band region

0x2200 0000 -
0x23FF FFFF

Bit band alias

0x4000 0000 Peripheral 0x4000 0000 -
0x400F FFFF

Bit band region

0x4200 0000 -
0x43FF FFFF

Bit band alias

0x6000 0000 -
0x9FFF FFFF

External RAM For external RAM

0xA000 0000 -
0xDFFF FFFF

External device External peripherals or shared memory

0xE000 0000 -
0xE003 FFFF

Private Peripheral
Bus – Internal

0xE000 0000 -
0xE000 2FFF

ITM, DWT, FPB

0xE000 E000 -
0xE000 EFFF

System Control
Space

0xE004 0000 -
0xE00F FFFF

Private Peripheral
Bus – External

0xE004 0000 -
0xE004 1FFF

TPIU, ETM

0xE004 2000 -
0xE00F EFFF

MPU, NVIC etc

0xE010 0000 to
0xFFFF FFFF

Vendor-specific For vendor-specific use

8051 and Cortex-M3 Compared

12 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

The memory map implemented in the SAM3S1A is as follows. Regions which are not
indicated are unimplemented.

Address Region Address Detail

0x0000 0000 Code 0x0000 0000 -
0x007F FFFF

Internal boot
memory

0x0040 0000 -
0x0801 EFFF

64k Internal flash
memory

0x0080 0000 -
0x1FFF F7FF

Internal ROM

0x1FFF F800 -
0x1FFF F80F

Option bytes

0x2000 0000 SRAM 0x2000 0000 -
0x2000 03FF

16k SRAM
(bit banded)

0x2200 0000 -
0x2200 03FF

Bit band alias
region for SRAM

0x4000 0000 Peripheral 0x4000 0000 -
0x400E 25FF

Peripherals
(bit banded)

0x4200 0000 -
0x420E 25FF

Bit band alias for
peripherals

0xE000 0000 -
0xE00F FFFF

Internal peripherals 0xE000 0000 -
0xE000 2FFF

ITM, DWT, FPB

0xE000 E000 -
0xE000 EFFF

System Control
Space

0xE004 0000 -
0xE004 1FFF

TPIU, ETM

0xE004 2000 -
0xE00F EFFF

SysTick, NVIC etc

The boot ROM and internal ROM contain a simple boot monitor, flash programming
algorithms and some support code. The system may be configured (via hardware signals
sensed at reset) to boot from the flash region rather than starting from the beginning of
the internal boot ROM at address 0x0.

Since the amount of SRAM implemented on the SAM3S1A is wholly contained within the
bit band region, all SRAM on this device is bit-addressable. Likewise, all peripherals in the
Peripheral region are bit-addressable.

3.3.2 Memory protection

The 8051 does not support any form of memory protection either in hardware or software.
All program instructions have access to all areas of memory.

The Cortex-M3 supports an optional Memory Protection Unit (MPU). When implemented,
this allows access to memory to be partitioned into regions. Access to each region may
then be restricted based on the current operating mode. This allows software developers
to implement memory access schemes aimed at providing a degree of protection to the
system from inerrant or malicious software applications.

When porting from 8051 to Cortex-M3 it may be desirable to take account of any memory
protection features offered by the Cortex-M3 device but it is not necessary. At reset, the

8051 and Cortex-M3 Compared

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 13
ARM DAI 0237A

MPU is disabled and the default memory map as described above applies. No memory
protection configuration is required unless the MPU is to be enabled.

However, if the Cortex-M3 device incorporates caches and/or write buffers (these are not
part of the architecture and, if present, are implemented externally) the cache and buffer
policies are contained within the MPU configuration. In this case, it may be desirable for
performance reasons to configure and enable the MPU.

The SAM3S1A device implements the standard MPU but does not include any cache or
write buffer functionality.

3.3.3 Access types

8051 supports byte and bit accesses to memory. Bit accesses are supported via the bit-
addressable region. Since the largest item which can be loaded from memory is 8-bits and
the destination is also 8-bits, the sign of the loaded value is not important.

The Cortex-M3 is a 32-bit processor and all internal registers are 32-bit. Memory transfers
of 8-bit bytes, 16-bit halfwords and 32-bit words are supported. In the case of bytes and
halfwords, the programmer needs to specify whether the loaded value is to be treated as
signed or unsigned. In the case of signed loads, the loaded value is sign-extended to
create a 32-bit signed value in the destination register; in the case of unsigned loads, the
upper part of the register is cleared to zero.

The Cortex-M3 also has instructions which transfer doublewords and also Load and Store
Multiple instructions which transfer multiple words in a single instruction to and from a
contiguous block of memory.

3.3.4 Bit banding

The 8051 bit-addressable region supports atomic bit accesses to 16 bytes within the
internal RAM area. In additional, many bits within the Special Function Register area can
be directly accessed as bits. However, a special version of the MOV instruction must be
used to do this and the transfer can only be to or from the Carry flag (C).

The Cortex-M3 scheme is more flexible in that bit access is provided to two 1MB regions
of memory, one within the internal SRAM region and the other in the peripheral region. A
further 32MB of address space is reserved for bit accesses and each word within these
regions aliases to a specific bit within the corresponding bit-band region. Reading from the
alias region returns a word containing the value of the corresponding bit; writing to bit 0 of
a word in the alias region results in an atomic read-modify-write of the corresponding bit
within the bit-band region. Thus, bit accesses can be achieved using standard memory
access instructions across a very wide region of memory, covering both data RAM and
peripheral space.

In the case of the SAM3S1A, the internal RAM is smaller than the bitband region so
atomic bitwise access is possible across all available RAM using standard load and store
instructions.

The ARM/Keil development tools support bit-banding via compiler extensions.

3.4 Debug

8051-based devices support a range of debug options. In many cases a dedicated In-
Circuit Emulator must be connected in place of the processor in order to debug an
application. The Atmel at89C51RD2 supports a mode called ONCE (On-Chip Emulation
mode) which allows debug in-circuit. This involves placing the device into a special mode
in which an external emulator can be connected.

Cortex-M3 devices are debugged via a standard JTAG or Serial-Wire Debug (SWD)
connector. A simple, standardized external connector is required to interface to the host
system. The SAM3S1A supports both types of debug connection. Within the core, a Flash
Patch Breakpoint unit (FPB) provides the ability to implement breakpoints and field code

8051 and Cortex-M3 Compared

14 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

patches, a Data Watchpoint and Trace unit (DWT) allows for data access watchpoints and
data tracing, a Instrumentation and Trace Macrocell (ITM) supports printf-style debugging
even when no suitable output device is present (the output from ITM is carried over the
JTAG interface to the host system when connected).

Since the debug features and the debug connection are standardized across all Cortex-
M3 devices, any compatible external debug adapter (sometimes called a JTAG probe)
may be used, in conjunction with any available debug application supporting Cortex-M3.

In addition, the uVision simulator from Keil and the MPLAB IDE provide software
simulation of target devices. In the case of uVision, this can include simulating external
components at board level.

3.5 Power management

The 8051 supports two power-saving modes: Power-Down Mode and Idle Mode. These
are entered by setting the PD and IDL bits within the Power Control (PCON) register. The
effect on system operation and the resulting power-saving is device-dependent. The
AT91C51RD2 device under consideration stops the CPU clock in Idle mode but continues
to clock peripherals; in Power-Down mode, all clocks are stopped. In both modes, the
CPU status, contents of Special Function registers and contents of RAM are retained. Exit
from either mode is via an enabled interrupt or reset.

Architecturally, the Cortex-M3 supports Sleep and Deep Sleep modes. The exact power
saving which can be realized in these two modes depends to a great extent on the
external logic implemented by the processor manufacturer. Developers should consult the
manual for the device they are using for further details if required.

In Sleep mode, external logic is usually configured to stop the processor clock, minimizing
power consumption. The power and clock to the NVIC is maintained, so that an exception
can exit sleep mode.

In Deep Sleep mode, the processor can be powered down completely, usually leaving
only the external Wakeup Interrupt Controller (WIC) active. The WIC will wake the
processor if any unmasked external interrupt is detected.

Sleep mode can be entered in the following ways.

 Sleep-now
The Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instructions cause the
processor to enter Sleep mode immediately. Exit is on detection of an interrupt or
debug event.

 Sleep-on-exit
Setting the SLEEPONEXIT bit within the System Control Register (SCR) causes
the processor to enter Sleep mode when the last pending ISR has exited. In this
case, the exception context is left on the stack so that the exception which wakes
the processor can be processed immediately.

In addition, Deep Sleep mode can be entered by setting the SLEEPDEEP bit in the SCR.
On entry to Sleep mode, if this bit is set, the processor indicates to the external system
that deeper sleep is possible. The behavior of the external system as a result is device-
specific – you should consult the documentation for the device you are using to determine
exactly what action is taken.

3.6 Extensions implemented in the Atmel AT91C51RD2

As stated earlier, this device is compatible with the standard 8052 architecture (8052 is a
slight enhancement of the 8051 standard providing, among other things, slightly more
internal RAM space and an extra timer). However, the manufacturer has implemented
some enhancements to the standard. Note that these enhancements are proprietary and
may not be supported by all software development tools.

8051 and Cortex-M3 Compared

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 15
ARM DAI 0237A

 Dual Data Pointer
There are two instances of the data pointer register DPTR. These can be selected
via a single bit in the AUXR configuration register. This makes for more flexibility
in addressing external data memory.

 Expanded RAM (XRAM)
The EXTRAM bit in the AUXR configuration register allows certain instructions to
access an extended region of on-chip RAM. In the particular device considered in
this document, this region is 1792 bytes.

 4-level interrupt priority system
An additional Interrupt Priority Register (IPH) allows the standard 2-level priority
scheme to be extended to 4 levels.

There are also some enhancements to the standard UART and Timer functions provided
by standard 8051 parts.

Migrating a software application

16 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

4 Migrating a software application

When making comparisons which depend on the development tools in use, we ARM’s
RealView Microcontroller Development Kit (MDK). This easily available toolset has
variants supporting Cortex-M3, Cortex-M3 and 8051.

4.1 General considerations

4.1.1 Operating mode

The Cortex-M3 will reset in Thread mode, executing as privileged. Handler mode (also
privileged) is automatically entered when handling any exceptions which occur. Unless the
programmer takes explicit steps to configure the core differently, the current mode is
transparent and can this essentially be ignored when migrating software.

Since the 8051 does not support more multiple operating modes and has no concept or
privilege, there is generally nothing for the developer to do here.

In order to take advantage of the protection offered by the privileged execution Thread
mode can be configured to be unprivileged by setting CONTROL[0]. Unprivileged
execution is prohibited from carrying out some system operations, e.g. masking interrupts.

4.1.2 Stack configuration

The 8051 stack is fixed and does not need to be configured by the programmer. It starts
at a fixed address and is constrained to lie within on-chip RAM. The Cortex-M3 allows the
stack to be placed anywhere in a suitable region of RAM.

The Cortex-M3 takes the initial value for the Main Stack Pointer (SP_main) from the first
word in the vector table. This must be initialized to an area of RAM. Ideally this should be
internal SRAM for best performance. Unless configured otherwise (see below) the Cortex-
M3 will use this single stack pointer in both Thread and Handler modes. Since the 8051
only supports a single stack pointer, this is the simplest configuration to use when
migrating to Cortex-M3.

The initial value for the Cortex-M3 stack pointer is typically placed in the vector table
automatically once the tools have been configured with the correct address map
information. The exact method for doing this varies between tools.

The Cortex-M3 can be configured to use the separate Process Stack Pointer
(SP_process) when in Thread Mode. This is done by writing to the CONTROL[1] bit.
Setting this configuration allows separate stacks to be used for normal execution and
exception handling. The initial value for the Process Stack Pointer must be set during
system initialization.

When compiling for Cortex-M3, the C compiler will place all local variables and function
parameters on the stack. This means that there are no problems with re-entrant functions
as with 8051 but stack usage is likely to be higher than for the same program running on
an 8051. Sufficient stack space must therefore be provided. When allocating stack space,
ensure that you take account of any usage required by exceptions.

Compilers targeting 8051 allocate automatic variables in static data memory (due to the
restricted stack model) so stack usage will generally be lower but, correspondingly, RAM
usage may be higher.

4.1.3 Memory map

Unless an MPU is present and enabled, the default memory map described above is
used. When migrating an application from 8051 it is not usually necessary to implement
any memory map configuration.

Migrating a software application

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 17
ARM DAI 0237A

Microcontrollers using a Cortex-M3 processor can be built with many different memory
devices. Usually, there will be some internal Flash or ROM (mapped to the CODE region)
and internal SRAM (in the SRAM region). Any peripherals will be mapped to the
Peripheral region. There may also be some external RAM.

Consult the manual for your chosen device to determine exactly what memories have
been implemented and how they are mapped.

In any event, the system control registers and standard peripherals (such as the SysTick
timer etc) will be located in the standard location.

4.1.4 Code and data placement

The 8051 architecture strictly segregates code and data within the memory map. Further,
it requires that data items be assigned to one of the available memory regions.

data Internal on-chip RAM, directly addressed using 8-bit addresses and
restricted to 128 bytes or less.

idata Internal on-chip RAM, indirectly accessed using 8-bit addressing. Limited
to 256 bytes, the lower half of which overlaps the data region.

bdata Internal on-chip bit-addressable RAM.

xdata External data memory, accessed using 16-bit addressing and restricted to
64Kbytes or less,

pdata One page of external data memory, limited to 256 bytes and accessed
using 8-bit addressing.

In simple systems, much or all of this assignment is carried out implicitly by specifying a
memory model, In all models, executable instructions are always allocated to code
memory. MDK supports the following standard models for data allocation:

SMALL All variables placed in internal on-chip RAM (data region)

COMPACT All variables placed in a single 256-byte page of external memory (pdata
region)

LARGE All variables placed in external data memory (xdata region)

The ARMv7-M architecture of the Cortex-M3 support a single, unified address space. All
memory access instructions can be used to address items in all regions of memory. This
is much more flexible, allowing code and data to be essentially freely allocated across all
available memory regions. The compiler and linker automatically handle run-time
initialization of volatile regions from the contents of ROM following reset.

On-chip memory (including many control registers) can be accessed using bit addressing
on an 8051. The Cortex-M3 provides two regions, one in RAM and one in the peripheral
region, which support this. In both cases, a read-modify-write operation to a single bit is
atomic. In the ARM case, standard memory access instructions are used with an aliased
address to achieve the bit access and specialized bitwise addressing modes are not
required as with the 8051.

One frequent requirement is the need to place a data item or code sequence at an
absolute location. When using the Keil tools on the 8051, this is done using the “at”
function qualifier. This means that these absolute addresses are encoded in the C source
code – this can obviously lead to portability and maintenance problems.

When developing for Cortex-M3 parts, all code and data is relocatable with the final
placement in memory being decided at link time. The input configuration to the linker
(called a “scatter control file”) allows code and data segments to be placed at absolute
addresses. It is not necessary to specify any addresses in the C source code, this
improving maintainability.

Migrating a software application

18 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

4.1.5 Data types and alignment

When programming in a high-level language, the natural data type of the underlying
machine is not necessarily important. The C compiler will take care of mapping high-level
data types to low-level arithmetic operations and storage units.

Both compilers support a variety of types, as listed in the table.

Type Cortex-M3 8051 Notes

char 8-bit signed 8-bit signed

short 16-bit 16-bit

int 32-bit 16-bit int is smaller on 8051

long 32-bit 32-bit

long long 64-bit N/A

float 32-bit 32-bit

double 64-bit 32-bit 8051 has no 64-bit
floating point type

long double 64-bit N/A

The Cortex-M3 is a 32-bit architecture and, as such, handles 32-bit types very efficiently.
In particular, 8-bit and 16-bit types are less efficiently manipulated, although they will save
on data memory if this is an issue.

The sbit keyword is used to declare items which are bit-addressable on 8051. This is
unnecessary in the Cortex-M3 as bit-banding provides bit-addressable accesses via
standard memory access instructions to aliased addresses. See section 5.2 for more
details.

Cortex-M3 devices, in common with other ARM architecture devices, generally require
that data be aligned on natural boundaries. For instance, 32-bit objects should be aligned
on 32-bit (word) boundaries and so on. The core supports unaligned accesses only in the
code and data regions (not the peripheral regions) though there is a slight performance
penalty involved since the hardware performs two separate bus transactions. Access to
unaligned data items can easily be support in C using the “__packed” attribute.

Since data memory is always accessed as bytes, 8051 devices have no such alignment
restrictions. However, being restricted to byte-wise accesses does mean that performance
is significantly lower when dealing with multi-byte quantities.

4.1.6 Pointers

8051 has memory-specific and generic pointer types. Generic pointers are stored using
three bytes, the first of which encodes the memory type. Larger and slower. Memory-
specific pointers can only be used to access the declared type of memory. They are
quicker and smaller but less flexible.

There is no need for any such distinction when coding for Cortex-M3. Since all pointers
are 32 bits in size and are held in 32-bit registers, the address of any location in memory
can be held within a single register and all pointers are treated identically. Any such
pointer qualifiers can and should be removed from code which is being ported.

Migrating a software application

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 19
ARM DAI 0237A

4.1.7 Function declarations

8051 requires that re-entrant functions be declared as such. This is primarily because
function parameters are statically allocated in memory to avoid using the limited stack
space (only return addresses are stacked). This makes functions inherently non-reentrant.

Also the memory model used by the function may be declared if different from the
program-wide default.

Interrupt handlers may be written in C for the 8051 and are usually declared using the
“interrupt” qualifier. This identifies the routine as an interrupt handler and also associates it
with a specific interrupt source. It is also necessary to specify (via the “using” keyword)
which register bank the handler will use in order to avoid corrupting foreground registers.

None of this is required for Cortex-M3. Interrupt handlers are declared and coded exactly
as standard C routines. The hardware which handles exception of the Cortex-M3, together
with the register usage rules in the ARM Architecture Procedure Call Standard,
automatically ensures that all foreground registers are preserved.

4.2 Tools configuration

Existing 8051 applications may have been developed with any of the wide range of
available tool chains supporting 8051. Many of these will come from vendors (e.g. Keil)
who also provide ARM support. In these cases, the simplest option may be to remain with
the same tool vendor and purchase a different variant of the tool. The clear advantage
here is that many tool-specific features will remain unchanged.

In general, very little of the configuration of the tools will need to change beyond the
following.

* Memory map, code and data placement

* Any options which relate to particular target 8051 devices, platforms, processors
or boards. When deciding on the ARM options, it is good practice to be as specific
as possible with respect to the processor and architecture you are using.

* If your application uses floating point, then you will need to configure carefully for
either hardware floating point or soft emulation.

There is also the option of using the ARM RealView tools. Clearly, more significant
reconfiguration will be required here and you should refer to the RealView documentation
(all available on ARM’s website) for further information on this.

4.3 Startup

8051 devices begin execution at the rest vector, located at address 0x0000. The stack
pointer is automatically initialized to address 0x0007 in the internal RAM region (this
means that the first byte on the stack is stored at address0x0008). The reset vector
addresses a startup routine which is responsible for initializing the state of the system e.g.
disabling interrupts, initializing peripherals, clearing memory etc.

Generally, the standard startup software provided with the tools will initialize the C runtime
environment and then jump automatically to the entry of the C code at main().

Cortex-M3 devices take the initial value for the Main Stack Pointer from the first word of
the vector table (at address 0x00000000) and then begin execution by jumping to the
address contained in the reset vector (at address 0x00000004).

The C startup code will initialize the runtime environment and then call main().

If you choose not to use the startup code provided with the Cortex-M3 development tools,
then the entire routine may be coded in C.

Migrating a software application

20 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

4.4 Interrupt handling

8051 devices have 8 interrupt sources, mapped to six handlers via a fixed vector table.
Each vector table entry typically contains a LJMP instruction directing execution to the
relevant handler. There is a simple two-level priority scheme for internal interrupts allowing
each to be assigned high or low priority. This is configured via a single bit for each
interrupt in the IP (Interrupt Priority) register. Within these levels, the underlying priority
scheme is fixed.

In order to use the two external interrupts (which are shared with I/O pins in Port 3), the
pins must be configured as inputs. Whether they are edge or level sensitive must also be
configured via the IT bits in the TCON register.

The NVIC on Cortex-M3 devices supports a much more general priority scheme and also
provides vectoring in hardware. All interrupt sources have separate vectors defined in the
vector table. In parallel with saving context on the stack, the NVIC reads the relevant
vector address from the table and directs program execution directly to the start of the
correct handler.

Writing interrupt handlers

Interrupt handler routines for 8051 devices must be identified in C source code using the
“interrupt” keyword. In addition, the register bank to be used by the interrupt handler must
be specified using the “using” keyword.

Cortex-M3 interrupt handlers are standard C functions and there are no special C coding
rules for them.

Vector table generation

8051 interrupt vectors are at fixed locations in memory. Typically, a LJMP instruction to
the appropriate handler is located at this absolute address using the “at” keyword in
assembler or C source code.

On Cortex-M3 devices, the vector table is typically defined by an array of C function
pointers. This is then located at the correct address by the linker.

See below for an example.

Interrupt configuration

In order to enable an 8051 interrupt, the following must be set correctly:

- Individual Interrupt Enable bit in IE (Interrupt Enable) register set to 1

- EA (Enable All) bit in IE register set to 1

- For external interrupts, the relevant pins must be configured as inputs and also
configured correctly for edge or level sensitivity

On Cortex-M3 devices, the NVIC must be configured appropriately:

- Interrupt Set Enable register

- PRIMASK must be clear to enable interrupts

This is achieved using CMSIS intrinsic functions __enable_irq().and NVIC_EnableIRQ().
See the CMSIS documentation for more detail. CMSIS functions are also available for
setting and clearing pending interrupts, checking the current active interrupt and
configuring priority.

Faults

The 8051 does not have a standard fault-handling mechanism for handling events such
as an attempt to access an invalid memory location. The resulting value will not
necessarily be valid or useful but the program itself will not generate an error.

Migrating a software application

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 21
ARM DAI 0237A

In contrast, the Cortex-M3 will generate a BusFault exception in this situation. This
requires the programmer to implement at least a minimal handler for this event.

The four types of fault are:

 MemManage
This is used for memory protection faults determined by the Memory protection
Unit (if implemented) or by fixed system constraints on the memory map.

 BusFault
This results from a memory access error at hardware level e.g. an attempt to
access an invalid memory location.

 UsageFault
This indicates an attempt to use an instruction in an invalid way or carry out an
invalid operation. Examples include execution of an undefined instruction, division
by zero.

 HardFault
This is generally used for unrecoverable error conditions.

It is advisable to implement at least a minimal handler for each of these events even if
they are not expected to occur in normal operation.

4.5 Timing and delays

It is common, when programming for 8051 devices, to use NOP instructions as a way of
consuming time. The execution time of NOP instructions is easily determined from the
system clock speed.

When developing for Cortex-M3 devices this cannot be relied on as the pipeline is free to
“fold out” NOP instructions from the instruction stream. When this happens, they do not
consume time at all. Deterministic delays in Cortex-M3 systems must therefore make use
of a timer peripheral (e.g. the internal SysTick timer).

4.6 Peripherals

4.6.1 Standard peripherals

On the Cortex-M3 it is usual to define a structure covering the System Control Space. All
of the system control registers are located in this region. The standard peripherals (NVIC,
SysTick etc.) are all controlled via registers in this area.

4.6.2 Custom peripherals

Custom peripherals on Cortex-M3 microcontrollers are generally memory-mapped within
the defined peripheral region in the memory map. The usual method of access to these is
to define C structures which describe the relevant registers. These can then be located at
absolute addresses at link time via the scatter control file.

4.7 Power Management

ANSI C cannot generate the WFI and WFE instructions directly. If you are using ARM/Keil
development tools, the compiler includes portable intrinsic functions for generating these.
You could also use the CMSIS intrinsic functions __WFE() and __WFI() in your source
code. If suitable device-driver functions are provided by the vendor, these can also be
used.

Migrating a software application

22 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

4.8 C Programming

 Don’t bother with static parameters or overlays. Cortex-M3 does not suffer from
data RAM size constraints like the 8051.

 Unless memory size is a constraint, don’t bother with data types smaller than one
32-bit word. They are less efficient on Cortex-M3.

 Any qualifiers relating to memory areas (e.g. idata, xdata, bdata, pdata etc) can
be removed.

 Since Cortex-M3 pointers can address items in any memory region, there is no
need to declare objects as “near” or “far”. All such qualifiers should be removed.

 There is no need to specify which register bank is to be used by interrupt
handlers.

 No need to designate interrupt handlers using any special keywords. Though it is
regarded as good programming practice to declare interrupt handlers using the
__irq keyword when using the ARM/Keil tools to develop for Cortex-M3.

 It is unlikely that you will encounter any data alignment problems but the
__packed keyword should be used to resolve any which do arise. Any data items
which are actually or potentially unaligned should be declared as __packed. Be
particularly careful with pointers.

 There is no need to specify any particular memory model (e.g. small, compact,
large etc.)

 Any assembler in your 8051 source will need to be re-written. Typically it should
be rewritten in C rather than translated to ARM assembler – this will be easier and
more portable. Since modern C compilers produce very efficient code for 32-bit
targets like the Cortex-M3, writing your code directly in C will usually be the best
solution.

 Any #pragma directives will need to be either removed or replaced. Those
associated with associated with placement code or data in C source code must be
removed.

 There is no need to declare functions as “reentrant” when compiling for Cortex-
M3. Nor is there any need to specify which register bank is used by a function.

 By default, many mathematical functions on 8051 default to 32-bit single-precision
floating point. The corresponding ARM functions default to 64-bit. To retain the
same precision, the function name may need to be changed e.g. sin() changed to
sinf().

Examples

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 23
ARM DAI 0237A

5 Examples

5.1 Vector tables and exception handlers

5.1.1 In assembler

The examples below show definition of vector tables and placeholders for exception
handlers when writing in assembly code. Note that it is possible to avoid C startup for
Cortex-M3 systems completely.

8051

$INCLUDE (reg_c51.INC)

; reset vector jumps to initialization
org 000h
ljmp begin

; example vectors
org 03h
ljmp extint0

org 23h
ljmp serial_IT

; main program starting at address 0x0100
org 0100h

begin:
;
JMP $

; example serial interrupt handler

serial_IT:

JNB RI,EMIT_IT ; test RI flag
CLR RI ; clear RI flag
MOV A,SBUF ; read UART data
MOV SBUF,A ; write UART data

LJMP END_IT ; jump to end
EMIT_IT:
CLR TI ; clear TI flag

END_IT:
RETI ; end with RETI instruction

extint0:
; write INT0 handler here

RETI

end

Cortex-M3

; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors

__Vectors
DCD __initial_sp ; Initial SP
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler
DCD MemManage_Handler
DCD BusFault_Handler
DCD UsageFault_Handler
DCD 0, 0, 0, 0 ; Reserved
DCD SVC_Handler
DCD DebugMon_Handler
DCD 0 ; Reserved
DCD PendSV_Handler
DCD SysTick_Handler

; External Interrupts from here
DCD InterruptHandler0
DCD InterruptHandler1
DCD InterruptHandler2

; etc

AREA |.text|, CODE, READONLY
; Reset Handler

Reset_Handler PROC
EXPORT Reset_Handler
IMPORT __main
LDR R0, =__main
BX R0
ENDP

InterruptHandler0
; write your IRQ0 handler here
;
BX lr

END

Examples

24 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

5.1.2 In C

These two examples show how the same is achieved when coding in C.

8051

#include "reg_c51.h"
char uart_data;

/* standard startup sequence calls main
* following initialization
*/

void main (void)
{

/* write main program here */

}

/* serial interrupt handler */
void serial_IT(void) interrupt 4
{
/* serial interrupt handler here */

}

Cortex-M3

/* Filename: exceptions.c */
typedef void(* const ExecFuncPtr)(void);

/* Place table in separate section */
#pragma arm section rodata="vectortable"

ExecFuncPtr exception_table[] =
{
(ExecFuncPtr)&Image$$ARM_LIB_STACKHEAP$$ZI$
$Limit, /* Initial SP */

(ExecFuncPtr)__main, /* Initial PC */
NMIException,
HardFaultException,
MemManageException,
BusFaultException,
UsageFaultException,
0, 0, 0, 0, /* Reserved */
SVCHandler,
DebugMonitor,
0, /* Reserved */
PendSVC,
SysTickHandler,

/* Configurable interrupts from here */
InterruptHandler0,
InterruptHandler1,
InterruptHandler2
/*
* etc.
*/

};

/* One example exception handler */
#pragma arm section
void SysTickHandler(void)
{

printf("---- SysTick Interrupt ----");
}

In Scatter Control File:

LOAD_REGION 0x00000000 0x00200000
{
;; 256 exceptions (256*4 bytes == 0x400)
VECTORS 0x0 0x400
{

exceptions.o (vectortable, +FIRST)
}

}

Table of Contents

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 25
ARM DAI 0237A

5.2 Bit banding

As described above, both devices support bit access to certain areas of memory. In both
cases, bit accesses are atomic.

The 8051 supports this through a direct bit addressing mode in many instructions.
Individual bits within many of the Special Function Registers and within the internal RAM
memory can be addressed like this.

Cortex-M3 devices support bit access via a different method entirely. Within, for example,
the SRAM region of the memory map, 1MB is designated as the “bit band region”. A
second 32MB region, called the bit band alias region, is used to access the bits within the
bit band region. Bit 0 of each word in the alias region is mapped within the memory
system to a single bit within the bit band region. Bits can be read and written. Reading or
writing any bit other than bit 0 in a word in the alias region has no effect.

A simple formula converts from bit address to aliased word address.

word_addr = bit_band_base
+ (byte_offset x 32)
+ (bit_number x 4)

C macros can then be easily defined to automate this process. For example

#define BITBAND_SRAM(a,b) ((BITBAND_SRAM_BASE \
+ (a - BITBAND_SRAM_REF) * 32 \
+ (b * 4)))

A similar macro can be defined for the peripheral region.

Individual bits can then be accessed using sequences like this.

#define MAILBOX 0x20004000
#define MBX_B7 *((volatile unsigned int *) \

(BITBAND_SRAM(MAILBOX,7)))

a = MBX_B7;

The C compiler provides direct support for bit-banding via the “bitband” attribute which can
be used with structure bitfields. The resultant code will use bitband accesses for all single-
bit bitfields, For example:

typedef struct {
char i : 1;
int j : 2;
int k : 3;

} BB __attribute__((bitband));

BB bb __attribute__((at(0x20000004)));

void foo()
{

bb.i = 1; /* will use bitband access */
}

Note the use of the “at” attribute to place the structure at an absolute address within the
bitband region. This could also be achieved at link-time using e.g. scatter-loading.

Note that this latter method is not portable since the “bitband” keyword is an ARM-
proprietary feature.

Examples

26 Copyright © 2010 ARM Limited. All rights reserved. Application Note 237
ARM DAI 0237A

5.3 Access to peripherals

There are device-specific header files for all supported 8051 devices. These are included
with most, if not all, development tools for 8051 (e.g. Keil). These header files define all
registers and systems constants e.g. available memory size etc.

Similarly, header files are usually provided for Cortex-M3 devices. You can obtain these
either from the device supplier or use those included with many development tools. Keil
MDK-ARM includes header files for most common devices.

Developers for Cortex-M3 platforms should be aware of the Cortex Microcontroller
Software Interface Standard (CMSIS). This defines a standard software application
interface for many standard peripherals (e.g. SysTick, NVIC) and system functions (e.g.
enable/disable interrupts) on Cortex-M3 platforms. This covers the set of standard
peripherals and core functions. Most Cortex-M3 device manufacturers supply additional
CMSIS-compliant header files which provide definitions for all device-specific functions
and peripherals.

Comparison with Cortex-M0

Application Note 237 Copyright © 2010 ARM Limited. All rights reserved. 27
ARM DAI 0237A

6 Comparison with Cortex-M0

So far we have compared the 8051 architecture against a Cortex-M3 device. However,
there is a lower-cost, lower-power Cortex-M core available in the form of the Cortex-M0.

Introduced by ARM in 2009, the Cortex-M0 implements a subset of the Cortex-M3, in
terms of architecture and functionality, in a much smaller silicon footprint. It is therefore
capable of operating at much lower power and can be purchased at significantly lower
cost.

The Cortex-M0 support a smaller instruction set than the Cortex-M3 (56 instructions as
compared to 101) and has a smaller number of external interrupt sources (up to 32 as
compared to the maximum of 240 supported by Cortex-M3).

NXP LPC1114 is a typical Cortex-M0 microcontroller. Its largest variant provides 32k of
on-chip flash memory and 8k of on-chip SRAM.

From a software developer’s point of view, especially when writing in C, the two cores can
be treated as essentially identical.

The two cores support the same memory map, exception model and register set.

