
 Copyright© 2016 ARM Limited. All Rights Reserved

ARM DUI 0955B

SoC Designer
Version 8.4

AXI4 Protocol Bundle
User Guide

Non-Confidential

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 2

Non-Confidential

SoC Designer
AXI4 Protocol Bundle User Guide

Copyright © 2016 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in

this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in

any form by any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by

estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE

WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has

undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English

version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL

DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF

THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of

this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not

exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not

intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any

time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically

covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these

terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Change History

Date Issue Confidentiality Change

February 2016 A Non-Confidential Release with 8.3

March 2016 B Non-Confidential Release with 8.4

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 3

Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in

accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 4

Non-Confidential

Table of Contents

1 Introduction .. 7

2 Requirements .. 7

3 Bundle Contents .. 7

3.1 AXI4 Models and Examples .. 7

3.2 AXI4 Probes ... 7

3.3 AXI4 Ports.. 7

4 AXI Adapter Compatibility ... 7

5 Models .. 8

5.1 AXI4*_Master .. 9

5.2 AXI4*_Slave .. 10

5.3 AXI4*_Mem .. 11

5.4 AXI4*_Stub ... 13

5.4.1 AXI4*_Stub Macros ... 14

5.5 MxAXI4 ... 15

5.5.1 MxAXI4 Limitations .. 15

5.5.2 MxAXI4 Parameters ... 16

5.6 AXI4ToAXIv2 ... 17

5.6.1 AXI4ToAXIv2 Limitations and Implementation Notes 17

5.6.2 AXI4ToAXIv2 Parameters ... 18

5.7 AXIv2ToAXI4 ... 19

5.7.1 AXIv2ToAXI4 Limitations and Implementation Notes 19

5.7.2 AXIv2ToAXI4 Parameters ... 19

5.8 AXI4ToAXI4 ... 20

5.8.1 AXI4ToAXI4 Parameters ... 20

5.9 Implementation Note: Address Width Parameter .. 21

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 5

Non-Confidential

5.10 Disk Backed Memory Functionality .. 21

5.10.1 Disk Backed Memory Use Case ... 22

6 Probes... 23

6.1 Tracer Probe ... 23

6.2 Breakpoint Probe .. 24

6.2.1 Multiple-channel breakpoints ... 26

6.2.2 Response breakpoints for ACE and ACE-Lite+DVM 26

6.3 Profiling Probe ... 27

6.4 Monitor Probe .. 30

6.4.1 Dumping monitor contents ... 31

7 AXI4 Port Interfaces .. 32

7.1 Port Classes .. 32

7.2 Channel Ports ... 32

7.3 Master Interface.. 33

7.3.1 AXI4_Master_Port .. 33

7.3.2 AXI Sender and Receiver Ports for AXI Master Interface 34

7.3.3 Methods for Setting Channel Signal Values ... 35

7.3.4 sendDrive .. 35

7.3.5 Initialization and Reset ... 35

7.3.6 Changing the protocol variant for AXI4_Master_Port 36

7.3.7 Supporting Combinatorial Ready-On-Valid ... 36

7.3.8 Master Port Supporting Full System Coherent Memory Views 36

7.4 Slave Interface .. 36

7.4.1 AXI4_Slave_Port .. 36

7.4.2 AXI Sender and Receiver Ports for AXI Slave Interface 37

7.4.3 Methods for Setting Channel Signal Values ... 38

7.4.4 sendDrive .. 38

7.4.5 Initialization and Reset ... 38

7.4.6 Changing the protocol variant for AXI4_Slave_Port 39

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 6

Non-Confidential

7.4.7 Slave Port Supporting Full System Coherent Memory Views 39

7.4.8 Slave Port Supporting Fast Debug Access.. 39

7.4.9 Slave Port Supporting Full System Coherent Memory Views Plus Fast

Debug Access .. 39

7.5 Note on Using Large AXI ID Widths .. 40

7.6 Examples .. 40

7.6.1 AXI Master Port .. 40

7.6.2 AXI Master Component .. 41

7.6.3 AXI Master Backtrace Port ... 41

7.6.4 AXI Slave Port .. 42

7.6.5 AXI Slave Component .. 43

7.6.6 AXI4 Slave Backtrace Port ... 44

7.6.7 AXI4 Slave Backtrace Port with Fast Debug Access 44

8 Component Wizard .. 46

8.1 Generating AXI4 Ports ... 46

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 7

Non-Confidential

1 Introduction

This is the user guide for the SoC Designer AXI4 Protocol Bundle. This protocol bundle contains

SoC Designer components, probes, and the transaction port interfaces for the ARM AXI4

protocol (includes support for AMBA4 AXI).

2 Requirements

The AXI4 protocol bundle requires the following:

 SoC Designer v8.4 or later

 Compilation tools as set forth in the SoC Designer Installation Guide.

3 Bundle Contents

This bundle contains protocol support packages for the ARM AMBA AXI4 protocol including

ACE.

3.1 AXI4 Models and Examples

Generic components such as memory are included in this bundle. Also provided is example

source code to help users develop custom AXI4 components.

3.2 AXI4 Probes

Probes provide visibility into transactions between two components. AXI4-specific probes are

included in this protocol bundle.

3.3 AXI4 Ports

AXI4 transaction port definition header files and libraries are included in this package. These are

required during runtime of any components with AXI4 ports and also when creating components

with AXI4 ports.

4 AXI Adapter Compatibility

The following matrix describes the protocol support for the AXI adapters. AXI4toAXIv2,

AXIv2ToAXI4, and AXI4ToAXI4 adapters are included in this protocol bundle.

Adapter Name Protocol Support Compatibility

AXIv2 AMBA3 AXI Only compatible with AXIv2 ports.

Connection to AXI4 ports requires an

adapter component.

AXI4 AXI4 to AXI4

AXI4 to AXI-Lite+DVM

AXI-Lite to AXI4

Compatible using the AXI4ToAXI4

adapter component.

Table 4-1 AXI Adapter Compatibility Matrix

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 8

Non-Confidential

5 Models

Table 5-1 lists the AXI4 components included in this bundle. These are described in more detail

throughout this section.

Note: This document uses the following convention when referring to AXI4 components:

AXI4*_<ComponentName>. The asterisk (*) represents the five variants of the AXI4

Protocol that you can specify (ACE, ACE-Lite+DVM, ACE-Lite, AXI4, or AXI4-Lite).

Component Description

AXI4*_Master This is an example AXI4 master component.

AXI4*_Slave This is an example AXI4 slave component.

AXI4*_Mem A generic AXI4 memory component with an AXI slave interface.

AXI4*_Stub A scriptable AXI4 master component.

MxAXI4 A generic model of an AXI4 interconnect component.

AXI4ToAXIv2 Bridges an AXI4 master component to a legacy AXIv2 slave component.

AXIv2ToAXI4 Bridges a legacy AXIv2 master component to an AXI4 slave component.

AXI4ToAXI4 Converts AXI traffic between different AXI4 variants.

Table 5-1 AXI4 Components

The .conf files for AXI4 components are located under the $MAXSIM_PROTOCOLS\AXI4\etc

directory.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 9

Non-Confidential

5.1 AXI4*_Master

AXI4* _Master is an example AXI component using the AXI4 master port.

There is an example system which uses AXI4* _Master located in

$MAXSIM_PROTOCOLS/AXI4/examples/AXI4MasterSlave.

This example component is provided in source code form under

$MAXSIM_PROTOCOLS/AXI4/src/AXI4_Master.

Figure 5-1 shows the AXI4*_Master component:

Figure 5-1 AXI4*_Master

Table 5-2 lists the component parameters.

Name Description

Address Width Width in bits of the address bus. Supported values are 32 to 63.

B ready delay Number of delay cycles for the B channel ready response.

Data Width Width in bits of the data bus. It must match the data bus width of

the connected model. Allowed values are: 32, 64, 128, 256, 512,

and 1024.

Enable If false, the component will not generate any transactions.

Enable aw & w

simultaneous

Used to enable the AW and W channels at the same time. Usually

W follows AW, but you can change this parameter so that both

channels go high at the same time.

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

Enable Fast Debug When set to true, the model runs a fast debug access test which

writes and reads 50 MB of random binary data to memory

starting from address 0x28080. This test runs each time the model

is reset.

Enable multiple reads If true, the component will try to issue a second read transaction

even if the first read transaction has not completed.

Enable output Enable printing of informational messages about transactions in a

SoC Designer Console window.

Protocol Variant Select from the following options: ACE, ACE-Lite+DVM,

ACE-Lite, AXI4, AXI4-Lite.

R ready delay Number of delay cycles for the R channel ready response.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 10

Non-Confidential

Start address The starting address of transactions. Address will be incremented

by the data width for each transaction.

Start address2 Specifies the address for the second read transaction in case

Enable multiple reads is set to true.

Start with writes If true, the component will issue a write as the first transaction.

If false, the component will issue a read as the first transaction.

Table 5-2 AXI4*_Master Parameters

5.2 AXI4*_Slave

AXI4* _Slave is an example AXI component using the AXI4 slave port.

There is an example system which uses AXI4* _Slave, which is located in

$MAXSIM_PROTOCOLS/AXI4/examples/AXI4MasterSlave.

This example component is provided in source code form under

$MAXSIM_PROTOCOLS/AXI4/src/AXI4_Slave.

Figure 5-2 shows the AXI4*_Slave component:

Figure 5-2 AXI4*_Slave

Table 5-3 lists the component parameters:

Name Description

Address Width Width in bits of the address bus. Supported values are 32 to 63.

AR ready delay Number of delay cycles for the AR channel ready response.

AW ready delay Number of delay cycles for the AW channel ready response.

B valid delay Number of delay cycles for the B channel valid response.

Data Width Width in bits of the data bus. It must match the data bus width of

the connected model. Allowed values are 32, 64, 128, 256, 512,

and 1024.

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

Protocol Variant Select from the following options: ACE, ACE-Lite+DVM,

ACE-Lite, AXI4, AXI4-Lite.

R valid delay Number of delay cycles for the R channel valid response.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 11

Non-Confidential

W ready delay Number of delay cycles for the W channel ready response.

Table 5-3 AXI4*_Slave Parameters

5.3 AXI4*_Mem

AXI4*_Mem is a generic AXI4 memory model with an AXI slave interface. Figure 5-3 shows the

AXI4*_Mem component:

Figure 5-3 AXI4*_Mem

The AXI4*_Mem component supports both AXI4 and the ACE-Lite protocol. Use the “Protocol

Variant” parameter to select between the two modes.

In ACE-Lite mode the AXI4*_Mem component accepts all ACE-Lite transactions as follows (see

the ARM AMBA AXI and ACE Protocol Specification for details):

 All types of Reads and Writes are treated as ordinary Reads and Writes.

 All cache maintenance operations are responded to immediately with an OK status.

 All barriers are responded to immediately with an OK status.

Table 5-4 lists the component parameters.

Name Description Init/Runtime
1

Address Width Width in bits of the address bus. Supported range is

32 to 64. Settable at sdcanvas time only; not

settable at runtime. Refer to Section 5.9 for

important implementation notes on this parameter.

Init

AR-to-R delay Amount of cycles to wait before sending the first

beat of read data after an AR transfer has

completed.

Runtime

axi_name[0-5]

axi_size[0-5]

axi_start[0-5]

These parameters are obsolete and should be left at

their default values.
2

Init

1
 Runtime means the parameter can be dynamically changed during simulation, Init means it can be

changed only when building the system.
2
 ARM recommends using the Memory Map Editor (MME) in SoC Designer, which provides centralized

viewing and management of the memory regions available to the components in a system. For

information about migrating existing systems to use the MME, refer to the SoC Designer User Guide.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 12

Non-Confidential

Data width Width in bits of the data bus. It must match the data

bus width of the connected model. Allowed values

are 32, 64, 128, 256, 512, and 1024.

Init

Disk Backed

Memory
3

When enabled, the model uses a file on the disk to

hold the simulated memory contents, to limit the

RAM consumption of the simulator. The default

setting is Disabled.

Init

Disk Backed

Memory

Size(Bytes)3

If ‘Disk Backed Memory’ is enabled, this 32-bit

integer value is used as the default value of the

memory being modeled. The default value is 100

GB.

If ‘Disk Backed Memory’ is set to False, Disk

Backed Memory Size (Bytes) is ignored.

Init

Disk Backed

Memory-RAM

Limit (MB)3

If ‘Disk Backed Memory’ is enabled, this parameter

determines how much memory each instance can

consume before swapping occurs. The default value

is 250 MB.

If ‘Disk Backed Memory’ is set to False, Disk

Backed Memory RAM Limit (MB) is ignored.

Init

Enable Debug

Messages

When set to true, the model debug messages are

displayed as output.

Runtime

Enable Warnings When set to true, this parameter enables printing of

warning messages.

Init

Exclusive Monitor When set to true (the default setting), the memory

does additional checking for exclusive access

requests and can return EXOKAY for success on

RRESP or BRESP. When set to false, exclusive

access requests always return OKAY, which is a

failure code. Only the true value allows the

memory to be fully compliant with the AMBA AXI

and ACE specification.

Init

Num of Exclusive

Monitors

The maximum number of exclusive monitors

needed. This parameter becomes active only when

the Exclusive Monitor parameter is set to true. If

this value is set to 0 when Exclusive Monitor= true,

the exclusive monitor is not turned on.

Init

Protocol Variant AXI4 and ACE-Lite. Init

RAM Usage Limit

(MB)

If ‘Disk backed memory’ is set to true, this integer

value will set the threshold for the memory model

on the RAM consumption before starting to swap

its contents to the file.

If ‘Disk backed memory’ is set to false, it will be

Ignored.

Init

3
 Refer to Section 5.10 for more information about using the Disk Backed Memory parameters.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 13

Non-Confidential

User Width Width of the user data. Init

WS read The number of wait cycles introduced for a Read

access is given by this parameter.

Init

WS write The number of wait cycles introduced for a Write

access is given by this parameter.

Init

W-to-B delay Number of cycles to wait before sending the B

response after the Write data transfer has

completed.

Runtime

Table 5-4 AXI4*_Mem Parameters

5.4 AXI4*_Stub

AXI4*_Stub is an AXI4 master component which can be controlled with a SoC Designer mxscr

script. Figure 5-4 shows the AXI4*_Slave component:

Figure 5-4 AXI4*_Stub

Table 5-5 lists the component parameters.

Name Description

Address Width Width in bits of the address bus. Supported values are 32 to 63.

axi_name[0-5]

axi_size[0-5]

axi_start[0-5]

These parameters are obsolete and should be left at their default

values.

ARM recommends using the Memory Map Editor (MME) in SoC

Designer, which provides centralized viewing and management

of the memory regions available to the components in a system.

For information about migrating existing systems to use the

MME, refer to Chapter 9 of the SoC Designer User Guide.

CPP include path Additional include path for header files to be used by script

preprocessor.

Data Width Width in bits of the data bus. It must match the data bus width of

the connected model. Allowed values are 32, 64, 128, 256, 512,

and 1024.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 14

Non-Confidential

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

Memory Init Byte Value Value to initialize the scratch memory used by the stub.

Protocol Variant Select from the following options: ACE, ACE-Lite+DVM,

ACE-Lite, AXI4, AXI4-Lite.

User Width User signal (i.e., AWUSER) width. 1-32

Table 5-5 AXI4*_Stub Parameters

5.4.1 AXI4*_Stub Macros

Macro definitions for AXI4*_Stub are provided in the following files:

$MAXSIM_PROTOCOLS/AXI4/include/AXI4_Stub_Macros.h

$MAXSIM_ PROTOCOLS/AXI4/include/AXI4_Stub_CheckMacros.h

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 15

Non-Confidential

5.5 MxAXI4

This is a generic model of an AXI interconnect. This model supports up to 16 masters and 16

slaves. Each AXI4 slave port supports up to 4 independent memory regions which can be

configured through the component parameters or via SD Memory Map Editor.

All ports have the same data width (see the Parameters table below for supported data widths).

External bridges can be used to convert the data widths on different ports. Figure 5-5 shows an

example system that uses a 3x2 MxAXI4.

Figure 5-5 MxAXI4 with 3 masters and 2 slaves

The MxAXI4 component currently supports two protocol variants: AXI4 and ACE-Lite. You can

configure this in SoC Designer Canvas by setting the Protocol Variant parameter.

The MxAXI4 passes transactions from the slave ports to the appropriate master ports based on the

defined address map. It does not consider the transaction contents to determine how to

accomplish this. So for example, the QoS (Quality of Service) ports are not used to prioritize the

transactions. In addition, coherency information is not interpreted, but rather simply passed

through the master port to be handled by the attached slave device.

5.5.1 MxAXI4 Limitations

The MxAXI4 does not include full support the AXI4 protocol. The following are some of its

limitations:

1. It supports only one transaction at a time on any slave or master, whether the transaction

is read or write.

2. It reports decode errors as errors, rather than returning a decode response using the R or

B channels.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 16

Non-Confidential

5.5.2 MxAXI4 Parameters

Table 5-6 below lists the MxAXI4 component parameters.

Name Description

Address width Width in bits of the address bus. Supported values are 32 to 63.

Data width Data bus width. Applies to all ports. Supported widths are 32, 64,

128, 256, 512, and 1024.

Protocol Variant Select between AXI4 protocol variants. Currently supports AXI4

and ACE-Lite.

sXX_nameY The name for memory region Y on port XX. Y: 0 – 3. XX: 00 – 15.

sXX_sizeY The size for memory region Y on port XX. Y: 0 – 3. XX: 00 – 15.

sXX_startY The start address for memory region Y on port XX. Y: 0 – 3. XX:

00 – 15.

Use MME Use Memory Map Editor for configuring memory regions. If set

to false, component parameters are used instead.

Table 5-6 MxAXI4 Parameters

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 17

Non-Confidential

5.6 AXI4ToAXIv2

This is a generic model that converts AXI4 traffic into AXIv2 traffic. Figure 5-6 shows the

component.

Figure 5-6 AXI4ToAXIv2 component

The AXI4ToAXIv2 currently supports only the AXI4 and ACE-Lite protocol variantes and does

not cover ACE-Lite+DVM or ACE. Use this component to attach a legacy AXIv2 component to

an AXI4 component.

The AXI4ToAXIv2 component handles the AXI4 to AXIv2 differences as follows:

 It splits any INCR bursts longer than 16 beats into multiple transactions.

 It generates the WID which is missing from AXI4 but is required by AXIv2.

 It handles AXIv2 early write response by delaying it until the address has been accepted.

The AXI4ToAXIv2 supports both AXI4 and the ACE-Lite protocol. Use the “Protocol Variant”

parameter to select between the two modes.

In ACE-Lite mode it accepts all ACE-Lite transactions as follows (see the ARM AMBA AXI and

ACE Protocol Specification for details):

 All types of reads and writes are treated as ordinary reads and writes.

 All cache maintenance operations are responded to immediately with an OK status.

 All barriers are responded to immediately with an OK status.

5.6.1 AXI4ToAXIv2 Limitations and Implementation Notes

The component currently does not support the following:

 Address widths greater than 32 bits.

Note: For 40-bit address support, the AXI4ToAXIv2 emits a warning but allows the

connection. However, the upper 8 bits must be zero; non-zero values in the upper

8 bits cause an error.

 USER signals greater than 32 bits (causes a warning).

 Non-zero values in the AxQOS or AxREGION signals (causes a warning).

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 18

Non-Confidential

5.6.2 AXI4ToAXIv2 Parameters

Table 5-7 below lists the AXI4ToAXIv2 component parameters:

Name Description

Address Width Supports 32-bits

Data Width Width in bits of the data bus. Allowed values are 32, 64, and 128.

Protocol Variant Currently supports AXI4 and ACE-Lite.

User Width User signal (i.e., AWUSER) width. 1-32

Table 5-7 AXI4ToAXIv2 Component Parameters

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 19

Non-Confidential

5.7 AXIv2ToAXI4

This is a generic model that converts AXIv2 traffic into AXI4 traffic. Figure 5-7 shows the

component.

Figure 5-7 AXIv2ToAXI4 component

The AXIv2ToAXI4 can be connected to any of the AXI4 protocol variants (AXI4, ACE-Lite,

ACE-Lite+DVM, and ACE). However, it generates only traffic that is consistent with the AXI3

protocol. In other words, it does not use any of the new AXI4/ACE signaling. These are treated as

zero.

5.7.1 AXIv2ToAXI4 Limitations and Implementation Notes

The AXIv2ToAXI4 component currently does not support the following:

1. Address widths greater than 32-bits (causes an error).

2. USER signals greater than 32-bits (causes a warning).

5.7.2 AXIv2ToAXI4 Parameters

Table 5-8 below lists the AXIv2ToAXI4 component parameters:

Name Description

Address Width Supports 32-bits

Data Width Width in bits of the data bus. Allowed values are 32, 64, and 128.

Protocol Variant AXI4, ACE-Lite, ACE-Lite+DVM, and ACE

User Width User signal (i.e., AWUSER) width. 1-32

AXI4* Domain The component sets the AXI4* domain field in all forwarded

transactions based on this value. Available settings are:

 NON_SHAREABLE

 INNER_SHAREABLE

 OUTER_SHAREABLE

 SYSTEM

Refer to the ARM AMBA 4 Specification for details.

Table 5-8 AXIv2ToAXI4 Component Parameters

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 20

Non-Confidential

5.8 AXI4ToAXI4

This is a generic model that converts AXI traffic between different AXI4 variants. Use the

“Protocol Variant” parameter to select the desired protocol variant separately for the master and

the slave ports.

The AXI4ToAXI4 currently supports the following conversions:

Slave Side Master Side

AXI4 AXI4

AXI4 ACE-Lite+DVM

ACE-Lite AXI4

Notes:

When converting from AXI4, signals that are not provided by AXI4 are tied to 0 on the target

side. Similarly, when converting to AXI4, signals that are not implemented in AXI4 are ignored.

The system in which the AXI4ToAXI4 component is used must be configured so that

components connected to the AXI4ToAXI4 do not issue transactions that are not supported by the

target protocol.

The CCI-400 can be connected to the NIC-400 via the AXI4ToAXI4. In this case, the CCI-400

should be configured for connection to AXI4 master and slaves as described in the CCI-400

Integration Manual.

5.8.1 AXI4ToAXI4 Parameters

Table 5-9 below lists the AXI4ToAXI4 component parameters:

Name Description

Address Width Supports 32-bits

Data Width Width in bits of the data bus. Allowed values are 32, 64, 128,

256, 512, and 1024.

Master Protocol Variant Currently supports AXI4 and ACE-Lite+DVM.

Slave Protocol Variant Currently supports AXI4 and ACE-Lite.

User Width User signal (i.e., AWUSER) width (1-32).

Table 5-9 AXI4ToAXI4 Component Parameters

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 21

Non-Confidential

5.9 Implementation Note: Address Width Parameter

The Address Width parameter allows you to create a system in which a mismatch exists between

the address widths on a connection from a master to a slave device. This type of mismatch is

allowed by the AXI3 and AXI4 protocols (Section A10.3.1 of the AMBA AXI and ACE Protocol

Specification (AXI3, AXI4, and AXI4-Lite)).

If an address mismatch is detected, SoC Designer Simulator prints a warning when the system is

loaded.

If the address field (AxADDR) of the slave is:

 Wider than the master - Zeros are used for the extra bits.

 Narrower than the master - The address bits beyond the width of the slave are not used

by the slave.

In addition, SoC Designer Simulator watches the extra bits from the master and reports a warning

if they are ever driven to non-zero values (indicating that the master is attempting to address a

location that is not supported by the slave). To eliminate this warning, adjust the Address Width

parameter for the master or slave so that they match.

5.10 Disk Backed Memory Functionality

The AXI4*_Mem component allows systems to model very large memories (several GBs) using

a feature called Disk Backed Memory. This feature helps contain SoC Designer memory usage

within the limits imposed by the operating systems.

Disk Backed Memory achieves this by swapping the contents of the simulated memory to the

disk when the simulated memory exceeds a certain limit. The content swapped to the disk is

usually the oldest content, while the most recent content remains in memory.

As general guidelines, this feature should be enabled if the memory being modeled is larger than

2GB.

Note: Be aware that enabling disk backed memory may affect performance. By default, the

functionality is disabled.

This feature is enabled and controlled using the following parameters:

 Disk Backed Memory – This parameter enables/disables Disk Backed Memory

functionality. It is disabled by default.

 Disk Backed Memory Size (Bytes) – This parameter should match the size of

addressable space of the memory instance. For example, if an AXI4*_Mem instance

called Mem1 is required to address 0x8000:0000 to 0xFFFF:FFFF (2GB), then this

parameter should be set to 0x80000000 (0xFFFF:FFFF minus 0x8000:0000) for Mem1.

The default is 100 GB.

 Disk Backed Memory-RAM Limit (MB) – This parameter determines how much

physical RAM each instance consumes before swapping starts. The default setting of

250 MB should work well for most users; however, if you want to fine-tune these

settings, allocate more RAM to the most frequently-accessed memory instance.

Note: The sum of all RAM Limit settings should not exceed 4GB (this is the current

implementation limit). This does not limit the amount of memory being modeled;

rather, it limits the RAM consumption of SoC Designer.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 22

Non-Confidential

5.10.1 Disk Backed Memory Use Case

The following figure shows a sample use case in which Disk Backed Memory is enabled. In this

use case, there are two instances of modeled memory.

The AXI4_mem component limits the RAM consumption on each instance to the value specified

by the RAM Limit parameter. In this example, the total RAM used by the disk memory instances

is 100 MB + 1 GB. Because MEM2 is more frequently accessed than MEM1 in this use case, the

RAM Limit parameter for MEM2 has been set significantly higher (1 GB) than the RAM Limit

parameter for MEM1 (100 MB). When the limit set for each instance is reached, the oldest data is

swapped to disk.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 23

Non-Confidential

6 Probes

Table 6-1 describes the simulation probes that are included in the AXI4 Protocol Bundle. These

are described further in the following sections:

Name Description

Tracer Enables tracing of AXI signals on an AXI4 connection. Traced

signals can be viewed in the SoC Designer simulator waveform

window.

BreakPoint Transaction breakpoint on an AXI connection.

Profiler Profiles AXI transactions. Profiled data can be viewed in the SoC

Designer simulator profiler window.

Monitor View the activity over the connection for each cycle.

Table 6-1 AXI4 Probes

6.1 Tracer Probe

This probe allows tracing of AXI signals. Use the SoC Designer Waveform window to see the

traced signals. To add a tracer probe, right-click on an AXI4 connection and select

“Enable/Disable Tracing”. This displays the Tracer Properties dialog shown in Figure 6-1:

Figure 6-1 Tracer Properties

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 24

Non-Confidential

By default, all signals are traced. To disable tracing of certain signals, use the checkboxes

located on the left side of the signal.

Note: AXI4 tracer properties show all AMBA4 AXI signals including the ACE channel signals

regardless of whether or not the additional signals are used by the components. Disable

unused signals or channels by deselecting the check-boxes next to the Channel/Signal

name in the Tracer Properties dialog.

6.2 Breakpoint Probe

To insert a breakpoint probe, either:

 Double-click on the connection, or

 Right-click on the connection and select “Insert/Remove Breakpoint” from the context

menu.

By default, the breakpoint is activated and breaks on any active AXI transaction across the

connection.

To specify more specific breakpoint conditions:

1. Right-click on the connection.

2. Select “Edit Breakpoint Properties.”

This displays the Breakpoint Condition dialog, shown in Figure 6-2:

Figure 6-2 Breakpoint Condition Dialog

Channel and Signal options differ depending on the protocol variant of the connection. Options

that are not available with a particular protocol variant appear grayed out. Additionally, certain

options may be grayed out automatically based on your Channel and Step choices.

If you do not specify any options, SoC Designer generates a breakpoint for the VALID signals on

all channels, plus RACK and WACK (if available in the protocol variant).

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 25

Non-Confidential

Table 6-2 describes the breakpoint condition options.

Option Description

Activity on: Select Read Channels, Write Channels, Coherency Channels, or

Any Channel.

Step is: Select Address, Data, Response, or ACK channels.

Transaction Type: Choices are channel-dependent and based on the permitted

address control signal combinations for read, write, and snoop

transactions.**

Address:

Data:

Beat:

Select to specify equals, greater than, less than, not equals, less

than or equals, or greater than or equals plus a value that you

enter, or within plus two values that you enter.

Size: Specify 8bit, 16bit, 32bit, 64bit, or 128bit.

BRESP:*

RRESP[1:0]: *
Choices are the AXI-defined responses for read and write

transactions: OKAY, EXOKAY, SLVERR, AND DECERR.**

RRESP[3:2]: * Choices are the AXI-defined RRESP read response bits:

PassDirty and IsShared.**

CRRESP[4:0]: * Choices are the AXI-defined Snoop response bit allocations:

WasUnique, IsShared, PassDirty, Error, and DataTransfer.**

*Refer to Section 6.2.2 for important details on response breakpoints.

** Refer to the ARM AMBA 4 Specification for details.

Table 6-2 AXI4 Breakpoint Options

Note: If certain breakpoint conditions are more complex than can be specified with the

Breakpoint Condition dialog, use MxScript to generate your breakpoints. Refer to the

MxScript Reference Manual for information.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 26

Non-Confidential

6.2.1 Multiple-channel breakpoints

When you select multiple channels in the Activity and Step menus, the SoC Designer breakpoint

logic defines the broadest possible breakpoint definition. In other words, it combines all of the

conditions that are applicable to the choices made in the Breakpoint Condition dialog.

Consider the example shown in Figure 6-3:

Figure 6-3 Multiple-channel example

 The breakpoint generated for the configuration specified in Figure 6-3 is:

(((RVALID == 0x1) && (RDATA == 0x2)) || ((ARVALID == 0x1) && (ARADDR == 0x1)))

Because the breakpoint is restricted to channels AR and R, which cannot occur simulteneously,

SoC Designer generates two breakpoints: one for RDATA and another for ARADDR.

Note: Because RACK is asserted with every transaction, SoC Designer does not include RACK

as a breakpoint when additional breakpoints are specified in the “Plus Any of the

Following” section of the dialog.

6.2.2 Response breakpoints for ACE and ACE-Lite+DVM

The additional RRESP bits for ACE (IsShared and PassDirty) are handled in the SoCD

breakpoint logic by matching against one and a mask. Similarly, the additional CRRESP bits for

ACE and ACE-Lite + DVM (WasUnique, IsShared, PassDirty, Error, and DataTransfer) are

handled in the SoCD breakpoint logic by matching against one and a mask. As a result, these bits

may only be compared against one (asserted) or x (don't care; not included in the mask). The

option to break when these bits equal zero is not available.

The masking comparison is a breakpoint condition equal to: (SIGNAL & MASK) == MASK, where

MASK is the bitwise OR (|) of the individual response bits.

For example, breaking on the CRRESP bits for IsShared and DataTransfer yields MASK = 9,

because 9 is (8|1), because IsShared is CRRESP[3] and DataTransfer is CRRESP[0]. The

breakpoint condition for CRRESP is (CRRESP & 0x9) == 0x9.

For RRESP, the MASK is enabled for the lower 2 bits if a comparison is made against OKAY

through DECERR.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 27

Non-Confidential

6.3 Profiling Probe

The Profiling Probe enables profiling on AXI4, ACE-Lite, ACE-Lite+DVM, and ACE

connections.

To enable this probe:

1. Right-click on a connection.

2. From the context menu, select Profiler > Enable.

3. View the Profiler Probe dialog by right-clicking again and selecting Profiler > Display.

There are three separate streams available for profiling the set of AXI4 protocol variant

connections:

Channels Usage: AXI events when channel is active (Valid is asserted on the channel). This

captures:

 Cycle – the timestamp.

 Address – address being read or written at the cycle.

 Channel Used – one of the 5, 7, or 8 AXI4/ACE-Lite/ACE-Lite+DVM/ACE

channels.

Latency: Latency for each operation type. This captures:

 Cycle – the timestamp.

 Latency – the length of time taken by an operation that finished on the cycle.

 Operation Type – the write, read, or coherency latency types: write trans, write-

initial, write-burst, etc.

Address: Plots the accessed address location. This captures:

 Cycle – the timestamp.

 Address – the address being read or written at the cycle.

 Latency – the length of time taken by an operation that finished on the cycle.

 Operation Type – one of read, write, or coherency.

Browse the Profiling Manager to view the available choices for Y axis dimensions for the profiler

plot.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 28

Non-Confidential

Figure 6-4 shows a sample Profiling Probe dialog for the Channels Usage stream, with Channel

Used on the Y axis:

Figure 6-4 Profiling Dialog, Channels Usage

Figure 6-5 shows a sample Profiling Probe dialog for the Latency stream, with Latency used on

the Y axis:

Figure 6-5 Profiling Dialog, Latency

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 29

Non-Confidential

Table 6-2 defines the channels profiled for the Channels Usage stream:

Channel Name… Is available on Protocol Variant…

AR, R, AW, W, B All AXI4/ACE variants.

AC and CR ACE-Lite+DVM and ACE.

CE ACE only.

Table 6-2 Channels Usage Stream Profiling Channels

Table 6-3 describes the operation types profiled on the Latency Stream. For descriptions of

operation types, refer to the SoC Designer User Guide, section 4.9.7, Latency Profiling:

Operation Type… Is available on Protocol Variant…

Write Trans, Write-Initial, Write-Burst,

Write Response

All AXI4/ACE variants.

Read Trans, Read-Initial, Read-Burst All AXI4/ACE variants.

Coherency Trans ACE, latency of an entire transaction involving

AC, CR, and CD.

Coherency Response ACE and ACE-Lite+DVM, latency of the

response involving AC and CR.

Coherency-Initial ACE, the latency of the first coherency write

involving AC and CD.

Coherency-Burst ACE, the latency of remaining coherency writes

involving AC and CD.

Table 6-3 Latency Stream Profiling Operation Types

Table 6-4 describes the operation types profiled on the Address Stream. For descriptions of

operation types, refer to the SoC Designer User Guide, section 4.9.7, Latency Profiling:

Operation Type Protocol Variant and Description

Write Trans, Write-Initial, Write-Burst,

Write Response

All AXI4/ACE variants. Any operation involving

the write channels AW, W, and B.

Read Trans, Read-Initial, Read-Burst All AXI4/ACE variants. Any operation involving

the read channels AR and R.

Coherency, ACE-Lite+ Trans ACE, latency of an entire transaction involving

AC, CR, and CD.

Table 6-4 Address Stream Profiling Operation Types

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 30

Non-Confidential

6.4 Monitor Probe

This probe enables monitoring of an AXI4 connection for each cycle. To enable this probe, right-

click on a connection and select “Insert/Remove Monitor”.

The default view shows the basic information for each of the 5 AXI channels. Use the “>>”

button on the top left to expand the monitor window to show transaction details

Use the pulldown menu at the top left of the Monitor dialog to view the three available sets of

data: Active Channels (Figure 6-4), Open transactions (Figure 6-5), and Closed transactions

(Figure 6-6).

Figure 6-4 Monitor dialog, Active Channels view

Figure 6-5 Monitor dialog, Open Transactions view

Figure 6-6 Monitor dialog, Closed Transactions view

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 31

Non-Confidential

6.4.1 Dumping monitor contents

To dump the monitor contents to a file:

1. In the Monitor dialog, with Channels selected in the pulldown menu, click the “Start

Logging” button (circled in Figure 6-7).

Figure 6-7 Start Logging button in the Monitor dialog, Channels view

2. Click the “…” button to specify the output file.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 32

Non-Confidential

7 AXI4 Port Interfaces

AXI4 port classes are CASI implementations of the ARM AMBA4 AXI protocol, including

ACE. The interfaces for AXI4 transactions are described in this chapter.

7.1 Port Classes

The port class header files are located under the $MAXSIM_PROTOCOLS/AXI4/include

directory. These header files are needed for building SoC Designer components with AXI4 ports.

All interface classes are under C++ namespace casiaxi4.

7.2 Channel Ports

AMBA4 AXI (ACE) uses up to eight independent channels that build up the overall transaction

interface. Although the master initiates transactions, not all five channels are initiated from the

master. Address (AR, AW) and write data (W) have the master-to-slave direction, whereas the

read data (R) and the write response (B) are initiated from the slave. For this reason, CASI AXI4

utilizes the concept of sub-ports to represent each of the AXI channels.

Figure 7-1 AXI Channels using Sub-ports

Using these channel ports encapsulated in the parent AXI4 master and slave ports, the model

developer is able to control the communication at the AXI channel level.

Note: The channel ports are internal to the AXI4 port. They are not visible in SoC Designer

Canvas or in the Simulator. The connections for the channel ports are established based

on the connection of the parent AXI4 ports.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 33

Non-Confidential

Figure 7-2 depicts where the internal ports reside for the master port (Figure 7-2, left) and slave

port (Figure 7-2, right).

Figure 7-2 Master and Slave Ports showing Internal Channel Ports

7.3 Master Interface

7.3.1 AXI4_Master_Port

The AXI4_Master_Port class implements the parent port that encapsulates the eight AXI channel

ports underneath, and provides the necessary APIs to the port owner for controlling the channel

communication. AXI ports implementing the AXI master interface must derive off this class. It

also defines methods used for setting AMBA4 AXI specific signals.

The location of this file is: $MAXSIM_PROTOCOLS/AXI4/include/AXI4_Master_Port.h.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 34

Non-Confidential

7.3.2 AXI Sender and Receiver Ports for AXI Master Interface

AXI4_Master_Port instantiates the eight AXI channel ports. Channel ports are categorized as

sender ports and receiver ports. For the AXI master interface, the sender ports (initiating

channel) are the AR, AW, W, CR, and CD channels. The B, R, and AC channels are categorized

as receiver ports.

AXI4_Master_Port serves as the interface for accessing each of the channels: it is not

necessary or recommended for the owner to access the channels directly. AXI4_Master_Port

provides the methods for setting and retrieving channel signal values. Signals are transferred

over the channels via CASI driveTransaction/notifyEvent calls. The relationship

between the AXI master port and the channel ports is depicted in the figure below. setX

methods (X refers to the channel) are used for setting the channel signals, which occurs when

driveTransaction is called for that channel.

Figure 7-3 AXI Master Port and its Channel Ports

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 35

Non-Confidential

Note: AXI4_Master_Port implements CASI connect and disconnect methods, which handle

the interconnection of all internal channel ports.

7.3.3 Methods for Setting Channel Signal Values

The following methods are provided for setting individual signals on the sender ports.

void setAW(bool valid, uint16_t id, uint64_t addr, uint8_t len, uint8_t size, uint8_t

burst, bool lock, uint8_t cache, uint8_t prot, uint32_t user=0, uint8_t qos=0, uint8_t

region=0);

void setAR(bool valid, uint16_t id, uint64_t addr, uint8_t len, uint8_t size, uint8_t

burst, bool lock, uint8_t cache, uint8_t prot, uint32_t user=0, uint8_t qos=0, uint8_t

region=0);

void setACReady(bool ready);

void setCR(bool valid, uint32_t resp);

void setCD(bool valid, bool last);

void setCDData(uint32_t data, uint8_t idx);

Call these methods only during the SoC Designer Update phase. The new values are buffered

until the next Communicate phase, when they are sent out via driveTransaction() calls. The

only time these methods can be called in the Communicate phase is when they are inside a

driveTransactionCB_X call and signals need to be forwarded onto a different channel sender

port. In this case, the channel sender port that receives the forwarded data requires that its

driveTransaction() method also be called inside the driveTransactionCB_X.

For the receiver ports, the following methods are provided for responding with the AXI ready

signal.

void setRReady(bool ready);

void setBReady(bool ready);

void setACReady(bool ready);

Normally, you call these methods during the Update phase. However, if you need to model

combinatorial ready-on-valid behavior, call the above methods from the

driveTransactionCB_X callback function. See Section 7.3.6 for information on handling

combinatorial ready-on-valid channel handshake behavior.

The clear() method is useful for resetting the signal values. As with other methods for setting

new values on the channel signals, this method must be called during the Update phase.

7.3.4 sendDrive

Call sendDrive() from the component’s communicate method. This transfers the signal

values across the channels via CASI driveTransaction method on each channel sender port.

7.3.5 Initialization and Reset

void init(uint32_t addrWidth, uint32_t dataWidth, uint32_t userWidth);

Call init() to initialize the port with the correct address and data bit-widths. The valid ranges

are as follows:

 address bit-width – from 32 to 63

 data bit-width – between 8 and 1024 (powers of 2)

 user bit-width – 1 to 64 bits

This method should be called from the component’s init().

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 36

Non-Confidential

void reset();

To properly reset the channel port, you must call reset(). This should be called from the

component’s reset() routine.

7.3.6 Changing the protocol variant for AXI4_Master_Port

For an example of how to change the protocol variant used for the AXI4_Master_Port, refer to

the example code in the AXI_Master::init() method defined in

$MAXSIM_HOME/Protocols/AXI4/src/AXI4_Master/AXI4_Master.cpp. This example

shows how to adjust the Protocol ID and Name based on the current value of the Protocol ID

parameter.

7.3.7 Supporting Combinatorial Ready-On-Valid

AXI4_Master_Port provides the following interface for supporting combinatorial ready-on-

valid behavior:

virtual void driveTransactionCB_R() {};

virtual void driveTransactionCB_B() {};

virtual void driveTransactionCB_AC() {};

It is not mandatory for the port owner to implement the above methods; however, they must be

implemented if the master component needs to model combinatorial ready-on-valid behavior. The

above methods are called during the Communicate phase when the slave’s R, B and/or AC

channel is initiated. Setting the AXI ready signal high in these methods means that the ready

signal goes high combinatorially, based on the valid signal in the same cycle.

7.3.8 Master Port Supporting Full System Coherent Memory Views

To support full system coherent memory views, use the port class called

AXI4_Master_Backtrace_Port, which drives directly from AXI4_Master_Port. This port class has

the following additional function compared to its parent port:

eslapi::CASIStatus debugTransactionBackTrace(eslapi::CASITransactionInfo

*info);.

This function resides Protocols/AXI4/ports/include/AXI4_Master_Backtrace_Port.h.

Refer to the SoC Designer User Guide for more information about full system coherent memory

views, and to the MxScript Reference Manual for details about how CADIMemWrite and

CADIMemRead support full system coherent memory views.

7.4 Slave Interface

7.4.1 AXI4_Slave_Port

The AXI4_Slave_Port class, similar to AXI4_Master_Port, implements the parent

transaction slave port that encapsulates the eight AXI channel ports underneath, and provides the

necessary APIs to the port owner for controlling the channel communication. AXI ports

implementing the AXI slave interface must derive off this class.

The location of this file is: $MAXSIM_PROTOCOLS/AXI4/include/AXI4_Slave_Port.h.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 37

Non-Confidential

7.4.2 AXI Sender and Receiver Ports for AXI Slave Interface

AXI4_Slave_Port instantiates the five AXI channel ports. Channel directions are opposite to

those used in AXI4_Master_Port: AR, AW, and W channels serve as receiver ports, and B and

R channels serve as sender ports. Methods are provided for accessing the channel data.

Figure 7-4 AXI Slave Port and its Channel Ports

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 38

Non-Confidential

7.4.3 Methods for Setting Channel Signal Values

The following methods are provided for setting individual signals on the sender ports.

void setR (bool valid, uint16_t id, uint8_t resp, bool last, uint32_t user=0);

void setRData(uint32_t data, uint8_t idx = 0);

void setB (bool valid, uint16_t id, uint8_t resp, uint32_t user=0);

void setAC(bool valid, uint64_t addr, uint32_t snoop, uint32_t prot);

Call these methods only during the SoC Designer update phase. The new values are buffered

until the next Communicate phase, when they are sent out via driveTransaction() calls.

The clear() method is useful for resetting the signal values. As with other methods for setting

new values on the channel signals, this method must be called during the Update phase.

For the receiver ports, the following methods are provided for responding with the AXI ready

signal.

void setARReady(bool ready);

void setAWReady(bool ready);

void setWReady(bool ready);

void setCRReady(bool ready);

void setCDReady(bool ready);

These methods are the same as the AXI4_Master_Port’s setXReady methods in terms of their

usage.

Additional callbacks are added in AXI4_Slave_Port for ACE:

virtual void driveTransactionCB_CR() {};

virtual void driveTransactionCB_CD() {};

virtual void driveSignalCB_RACK() {};

virtual void driveSignalCB_WACK() {};

The callbacks for the CR/CD channels can be used to handle combinatorial ready-on-valid

behavior (same as the AW/AR/W callbacks defined in AXI4_Slave_Port). For detecting

changes on RACK/WACK, driveSignalCB_* callbacks are provided.

7.4.4 sendDrive

Call sendDrive() only from the component’s communicate method. This transfers the signal

values across the channels via CASI driveTransaction method for each sender channel port.

7.4.5 Initialization and Reset

void init(uint32_t addrWidth, uint32_t dataWidth, uint32_t userWidth);

Call init() to initialize the port with the correct address and data bit-widths. The valid ranges

are as follows:

 address bit-width – from 32 to 63

 data bit-width – between 8 and 1024 (powers of 2)

 user bit-width – 1 to 64 bits

This method should be called from the component’s init() routine.

void reset();

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 39

Non-Confidential

To properly reset the channel ports, you must call reset(). This should be called from the

component’s reset() routine.

7.4.6 Changing the protocol variant for AXI4_Slave_Port

For an example of how to change the protocol variant used for the AXI4_Slave_Port, refer to the

example code in the AXI_Slave::init() method defined in

$MAXSIM_HOME/Protocols/AXI4/src/AXI4_Slave/AXI4_Slave.cpp. This example

shows how to adjust the Protocol ID and Name based on the current value of the Protocol ID

parameter.

7.4.7 Slave Port Supporting Full System Coherent Memory Views

To support full system coherent memory views, use the port class AXI4_Slave_Backtrace_Port,

which derives directly from AXI4_Slave_Port. This port class has the following additional

function compared to its parent port:

eslapi::CASIStatus debugTransactionBackTrace(eslapi::CASITransactionInfo

*info);.

This function resides Protocols/AXI4/ports/include/ AXI4_Slave_Backtrace_Port.h.

Refer to the SoC Designer User Guide for more information about full system coherent memory

views, and to the MxScript Reference Manual for details about how CADIMemWrite and

CADIMemRead support full system coherent memory views.

7.4.8 Slave Port Supporting Fast Debug Access

Fast debug access is a form of debug access which ignores the BUS width. This is mainly used

for loading larger application images into CPUs.

To support fast debug access, the AXI4 slave interface provides a fast_debug_access_if interface

and introduces a new port class called AXI4_Slave_Port_fda. This derives directly from

AXI4_Slave_Port.

The following class implements the fast debug access function:

eslapi::CASIStatus debugTransaction(eslapi::CASIDebugTransactionInfo* info);

7.4.9 Slave Port Supporting Full System Coherent Memory Views Plus
Fast Debug Access

The AXI4 slave interface provides a port class that supports both coherent memory views

(described in the previous section) and fast debug access: AXI4_Slave_Backtrace_Port_fda,

which derives from AXI4_Slave_Port_fda.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 40

Non-Confidential

7.5 Note on Using Large AXI ID Widths

AXI4 master and slave channel access methods have a limit of 16 bits for accessing the AXI ID

field. If your design is using wider ID widths, you can overload the AXI4 set methods as shown

in the following code sample:

class MyLargeIDWidthMasterPort : public AXI4_Master_Port {

public:

 // overloaded setAW method

 void setAW(bool valid, uint64_t id, uint64_t addr, uint8_t len, uint8_t

size, uint8_t burst, bool lock, uint8_t cache, uint8_t prot, uint32_t user=0)

 {

 AXI4_Master_Port::setAW(valid, id, addr, len, size, burst, lock, cache,

prot, user);

 setSig(AW_ID, id);

 }

};

In the code sample above, AXI4_Master_Port::setAW() is used to set the values for fields

other than the ID. Then, a setSig() is called for setting the ID value, which can be larger than

16 bits. An example for overloading the setAW method is shown here; you can take a similar

approach for overloading the set method for other channels.

7.6 Examples

Pseudo-code examples are presented in this chapter for AXI master and slave using AXI4 ports.

7.6.1 AXI Master Port

Derive the port from AXI4_Master_Port class, and inherit driveTransactionCB_X methods

for supporting ready-on-valid behavior, as shown in the following example:

#ifndef MYAXIMASTERPORT_H
#define MYAXIMASTERPORT_H

#include "AXI4_Master_Port.h"

#include "AXI4_Receiver_Port.h"

class AXI_Master;

class MyAxiMasterPort : public casiaxi4::AXI4_Master_Port

{

public:

 MyAxiMasterPort(CASIModule* owner, std::string name);

 virtual void driveTransactionCB_R();

 virtual void driveTransactionCB_B();

 virtual void driveTransactionCB_AC();

private:

 AXI_Master* master;

};

#endif

}

Note: driveTransactionCB_X need only be defined if the master port needs to model ready-

on-valid behavior.

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 41

Non-Confidential

7.6.2 AXI Master Component

The requirements for driving output and signal values are as follows:

 Drive output values on the channel ports only during the Communicate phase

 Set signal values only during the Update phase

The following example shows the sequence of events for an AXI master’s communicate and

update methods.

void AXI_Master::communicate()

{

 // send out the channel signals from previous update

 AXI_TMaster->sendDrive();

}

void AXI_Master::update()

{

 AXI_TMaster->clear();

 // handle active channel requests and responses

 if (AXI_TMaster->getSig(R_VALID) && AXI_TMaster->getSig(R_READY))

 {

 // process RDATA

 My_RDATA = AXI_TMaster->getRData(i);

 …

 }

 if (AXI_TMaster->getSig(B_VALID) && AXI_TMaster->getSig(B_READY))

 {

 // done with a write transaction

 }

 if (AXI_TMaster->getSig(AR_VALID) && AXI_TMaster->getSig(AR_READY))

 {

 …

 }

 …

 // new channel requests

 AXI_TMaster->setAR(…);

 AXI_TMaster->setAW(…);

}

7.6.3 AXI Master Backtrace Port

Derive the port from AXI4_Master_Backtrace_Port class, and inherit

debugTransactionBackTrace methods for supporting reverse debug transaction from slave port as

shown in the following example:

#ifndef _axi4_TM_H_

#define _axi4_TM_H_

#include "maxsimCompatibility.h"

#include "AXI4_Master_Backtrace_Port.h"

#include "xactors/arm/include/carbon_arm_adaptor.h"

typedef CarbonDebugTransactionFunction CarbonBackwardDebugTransactionFunction;

class AXI4_S2T;

class axi4_TM : public casiaxi4::AXI4_Master_Backtrace_Port

{

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 42

Non-Confidential

private:

 AXI4_S2T* owner;

 CASIModule* owner_module;

public:

 axi4_TM(CASIModule* owner, AXI4_S2T* xtor, std::string name,

CarbonBackwardDebugTransactionFunction* backDebugFunc=NULL);

 virtual ~axi4_TM() {}

 virtual eslapi::CASIStatus

debugTransactionBackTrace(eslapi::CASITransactionInfo *info);

private:

 CarbonBackwardDebugTransactionFunction* backDebugCallback;

};

#endif

7.6.4 AXI Slave Port

Derive the port from the AXI4_Slave_Port class, and inherit driveTransactionCB_X

methods for supporting ready-on-valid behavior, as shown in the following example:

ifndef MYAXISLAVEPORT_H
#define MYAXISLAVEPORT_H

#include "AXI4_Slave_Port.h"

#include "AXI4_Receiver_Port.h"

class AXI_Slave;

class MyAxiSlavePort : public casiaxi4::AXI4_Slave_Port

{

public:

 MyAxiSlavePort(CASIModule* owner, std::string name);

 virtual void driveTransactionCB_AR();

 virtual void driveTransactionCB_AW();

 virtual void driveTransactionCB_W();

 virtual void driveTransactionCB_CR();

 virtual void driveTransactionCB_CD();

 virtual void driveSignalCB_RACK();

 virtual void driveSignalCB_WACK();

private:

 AXI_Slave* slave;

};

#endif

The following example illustrates sample driveTransactionCB_X method implementations:

void MyAxiSlavePort::driveTransactionCB_AR()

{

 if (getSig(AR_VALID))

 {

 this->setARReady(1);

 }

}

void MyAxiSlavePort::driveTransactionCB_AW()

{

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 43

Non-Confidential

 if (getSig(AW_VALID))

 {

 this->setAWReady(1);

 }

}

void MyAxiSlavePort::driveTransactionCB_W()

{

 if (getSig(W_VALID))

 {

 this->setWReady(1);

 }

}

void MyAxiSlavePort::driveTransactionCB_CR()

{

 if (getSig(CR_VALID))

 this->setCRReady(1);

}

void MyAxiSlavePort::driveTransactionCB_CD()

{

 if (getSig(CD_VALID))

 this->setCDReady(1);

}

void MyAxiSlavePort::driveSignalCB_RACK()

{

 owner->forwardRACK(getSig(RACK));

}

void MyAxiSlavePort::driveSignalCB_WACK()

{

 owner->forwardWACK(getSig(WACK));}

7.6.5 AXI Slave Component

Modeling requirements for an AXI slave component are the same as those for an AXI master

component: channel communication, or driving out-of-channel signal values during the

Communicate phase, and sequential logic and setting of new signal values during the Update

phase.

void AXI_Slave::communicate()

{

 AXI_TSlave->sendDrive();

}

void AXI_Slave::update()

{

 // clear signals

 AXI_TSlave->setR(false, 0, 0, 0);

 AXI_TSlave->setB(false, 0, 0);

 AXI_TSlave->setAWReady(false);

 AXI_TSlave->setARReady(false);

 AXI_TSlave->setWReady(false);

 // handle active channel requests

 if (AXI_TSlave->getSig(AR_VALID) && AXI_TSlave->getSig(AR_READY))

 {

 …

 }

 // handle new channel requests

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 44

Non-Confidential

 AXI_TSlave->setR(true, it->first, 0, isLastBeat);

}

7.6.6 AXI4 Slave Backtrace Port

Derive the port from the AXI4_Slave_Backtrace_Port class, and inherit the

debugTransactionBackTrace methods for supporting reverse debug transaction from the slave

port as shown in the following example:

#ifndef __AXI4_T2S_TS_H__

#define __AXI4_T2S_TS_H__

#include "AXI4_Slave_Backtrace_Port.h"

#include "AXI4_Receiver_Port.h"

#include <string>

#include <vector>

class AXI4_T2S;

class AXI4_T2S_TS : public casiaxi4::AXI4_Slave_Backtrace_Port

{

public:

 AXI4_T2S_TS(CASIModule* _owner, AXI4_T2S* xtor, std::string name);

 virtual ~AXI4_T2S_TS() {}

 AXI4_T2S* owner;

 virtual eslapi::CASIStatus debugTransaction(eslapi::CASITransactionInfo

*info);

};

#endif

7.6.7 AXI4 Slave Backtrace Port with Fast Debug Access

This port supports both backtrace () and fast debug access. To support reverse debug transactions,

drive the port from the AXI4_Slave_Backtrace_Port_fda class and inherit

debugTransactionBackTrace(). To support fast debug access, implement debugTransaction().

For example:

#ifndef __AXI4_T2S_TS_H__

#define __AXI4_T2S_TS_H__

#include "AXI4_Slave_Backtrace_Port.h"

#include "AXI4_Receiver_Port.h"

#include <string>

#include <vector>

class AXI4_T2S_TS : public casiaxi4::AXI4_Slave_Backtrace_Port_fda

{

public:

 AXI4_T2S_TS(CASIModule* _owner, AXI4_T2S* xtor, std::string name);

 virtual ~AXI4_T2S_TS() {}

 AXI4_T2S* owner;

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 45

Non-Confidential

virtual eslapi::CASIStatus

debugTransaction(eslapi::CASIDebugTransactionInfo *info);

}

 #endif

ARM DUI 0955B Copyright© 2016 ARM Limited. All Rights Reserved 46

Non-Confidential

8 Component Wizard

The SoC Designer component wizard supports generation of AXI4 master and slave ports.

Note: Refer to the SoC Designer User Guide for general information regarding the Component

Wizard.

8.1 Generating AXI4 Ports

To generate a model with AXI4 ports:

1. Launch the component wizard from SoC Designer Canvas and proceed to the port

definition step.

2. Click New to create a new port, and select the desired AXI port type from the port type

drop-down list, as shown in Figure 8-1:

Figure 8-1 AXI Port Selection

This generates a .cpp file and a .h file for each AXI port that was selected.

	1 Introduction
	2 Requirements
	3 Bundle Contents
	3.1 AXI4 Models and Examples
	3.2 AXI4 Probes
	3.3 AXI4 Ports

	4 AXI Adapter Compatibility
	5 Models
	5.1 AXI4*_Master
	5.2 AXI4*_Slave
	5.3 AXI4*_Mem
	5.4 AXI4*_Stub
	5.4.1 AXI4*_Stub Macros

	5.5 MxAXI4
	5.5.1 MxAXI4 Limitations
	5.5.2 MxAXI4 Parameters

	5.6 AXI4ToAXIv2
	5.6.1 AXI4ToAXIv2 Limitations and Implementation Notes
	5.6.2 AXI4ToAXIv2 Parameters

	5.7 AXIv2ToAXI4
	5.7.1 AXIv2ToAXI4 Limitations and Implementation Notes
	5.7.2 AXIv2ToAXI4 Parameters

	5.8 AXI4ToAXI4
	5.8.1 AXI4ToAXI4 Parameters

	5.9 Implementation Note: Address Width Parameter
	5.10 Disk Backed Memory Functionality
	5.10.1 Disk Backed Memory Use Case

	6 Probes
	6.1 Tracer Probe
	6.2 Breakpoint Probe
	6.2.1 Multiple-channel breakpoints
	6.2.2 Response breakpoints for ACE and ACE-Lite+DVM

	6.3 Profiling Probe
	6.4 Monitor Probe
	6.4.1 Dumping monitor contents

	7 AXI4 Port Interfaces
	7.1 Port Classes
	7.2 Channel Ports
	7.3 Master Interface
	7.3.1 AXI4_Master_Port
	7.3.2 AXI Sender and Receiver Ports for AXI Master Interface
	7.3.3 Methods for Setting Channel Signal Values
	7.3.4 sendDrive
	7.3.5 Initialization and Reset
	7.3.6 Changing the protocol variant for AXI4_Master_Port
	7.3.7 Supporting Combinatorial Ready-On-Valid
	7.3.8 Master Port Supporting Full System Coherent Memory Views

	7.4 Slave Interface
	7.4.1 AXI4_Slave_Port
	7.4.2 AXI Sender and Receiver Ports for AXI Slave Interface
	7.4.3 Methods for Setting Channel Signal Values
	7.4.4 sendDrive
	7.4.5 Initialization and Reset
	7.4.6 Changing the protocol variant for AXI4_Slave_Port
	7.4.7 Slave Port Supporting Full System Coherent Memory Views
	7.4.8 Slave Port Supporting Fast Debug Access
	7.4.9 Slave Port Supporting Full System Coherent Memory Views Plus Fast Debug Access

	7.5 Note on Using Large AXI ID Widths
	7.6 Examples
	7.6.1 AXI Master Port
	7.6.2 AXI Master Component
	7.6.3 AXI Master Backtrace Port
	7.6.4 AXI Slave Port
	7.6.5 AXI Slave Component
	7.6.6 AXI4 Slave Backtrace Port
	7.6.7 AXI4 Slave Backtrace Port with Fast Debug Access

	8 Component Wizard
	8.1 Generating AXI4 Ports

