

Application Note 201
Building and Debugging ARM Linux Using ARM
Embedded Linux, ARM RealView Development

Suite 3.1 and RealView ICE 3.2

Document number: DAI 0201 A

Issued: June 2008

Copyright ARM Limited 2008

 Introduction

2 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Application Note 201
Building and Debugging Embedded Linux

Copyright © 2008 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

June 2008 A First release

Proprietary notice

Words and logos marked with ® or © are registered trademarks or trademarks owned by
ARM Limited, except as otherwise stated below in this proprietary notice. Other brands
and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are
given by ARM in good faith. However, all warranties implied or expressed, including but
not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any error or omission in such information, or any incorrect use of the
product.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

Introduction

3 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Contents

1 Introduction.. 4
1.1 Support status .. 4
1.2 Scope of this document .. 4
1.3 Requirements ... 5

2 Building the ARM Embedded Linux Kernel .. 6
2.1 Requirements ... 6
2.2 Building the Kernel ... 7

3 Installing & Running ARM Embedded Linux on the Target System 9
3.1 Requirements ... 9
3.2 Installing and Running the System... 9

4 Kernel Debug with RealView Debugger .. 21
4.1 Requirements ... 21
4.2 Debugging a Running Kernel Using RealView Debugger................................ 21
4.3 Booting the Kernel with RealView Debugger ... 27

5 Application Debug with Eclipse & GDB .. 29
5.1 Debugging with GDB and gdbserver.. 29
5.2 Requirements ... 29
5.3 Preparing the Target... 30
5.4 Preparing the Host Debugger... 31
5.5 Debugging the Application.. 35

6 References and Further Information ... 36

 Introduction

4 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

1 Introduction

1.1 Support status
Please note that ARM does not provide support on the use of GNU tools or Linux. The
information provided here is given for your reference only. We can provide limited
support for the instructions in this document to customers with a valid RealView tools
support contract with us. However, we suggest that in the first instance you discuss your
issue in one of the various public forums, such as the comp.sys.arm newsgroup and the
ARM website forums.

Alternatively you may prefer to contact CodeSourcery, who can provide paid support and
assistance on the GNU tools or accept defect reports. Further information is available
from CodeSourcery’s GNU toolchain page at:
http://www.codesourcery.com/gnu_toolchains/arm/.
CodeSourcery also provide a mailing list for queries on the ARM GNU toolchain. Details
of how to subscribe to this list can be found on the CodeSourcery website.

1.2 Scope of this document
The document describes the process of building an ARM Linux kernel and bringing it up
on an ARM hardware target. It also describes the process of debugging applications
using Eclipse, the GNU Project Debugger (GDB) and gdbserver, and the process of
debugging the kernel and statically linked drivers using RealView Debugger.

This document assumes a specific target system (see Section 1.3). It should be possible
to adapt the instructions in this document to work for different target systems and the
instructions are written generically where possible.

This document does not cover the use of RealView Compilation Tools for building
applications or libraries for an ARM Linux system: this is covered by Application Note
178: Building Linux Applications Using RVDS 3.1 and the GNU Tools and Libraries
(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0178a/index.html).

Expected use

This application note supports the following use cases:

• Porting a Linux kernel to a new target

• Developing Linux applications on an existing ARM Linux target (in conjunction
with Application Note 178)

Introduction

5 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

1.3 Requirements
This document assumes that you are familiar with RealView Development Suite, the GNU
tools and Linux.

Target requirements

This document assumes a target system composed of a RealView Versatile PB926 board
(hereafter referred to as a PB926) and ARM Embedded Linux 2.5.0 (‘Freetown’), which
uses the 2.6.24 Linux kernel with the 2.6.24-arm2 patch applied. This is just in order to
make the scope of what is described here manageable and to avoid repeated digression
into target-specific differences. The instructions in this document can be adapted to work
for different target systems.

ARM Embedded Linux can be found on the ARM website at:
http://www.arm.com/products/os/linux_download.html.

Please note that ARM Embedded Linux is an example ARM Linux distribution only and is
not a supported product.

Development environment requirements

All information in this document relates to the use of RealView Development Suite 3.1,
RealView ICE 3.2 and the 2007q1-21 release of CodeSourcery’s GNU ARM toolchain. In
most cases, the host environment may be assumed to be any version of Linux or
Windows supported by these products. The only exception to this is Section 2: Building
the ARM Embedded Linux Kernel, which assumes a Linux host.

Later versions of the CodeSourcery toolchain may work, but this application note is
validated only against the 2007q1-21 release.

All sections use Linux syntax to refer to paths and environment variables on the host
machine (path components are separated with /, not \, and environment variables are
presented as $<name>, for example $ARMROOT refers to the ARMROOT environment
variable).

All screenshots are taken from a Windows XP host.

 Building the ARM Embedded Linux Kernel

6 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

2 Building the ARM Embedded Linux Kernel

2.1 Requirements
This section assumes that you are building the kernel on a Linux host machine. Building
the Linux kernel on a Windows host is beyond the scope of this document.

To build the ARM Embedded Linux kernel from source you will require the main-line
kernel source for the 2.6.24 kernel, the ARM-specific patch for the main-line kernel
source and the ARM-specific kernel configuration files. The kernel source can be
obtained from one of the mirrors listed on http://www.kernel.org/mirrors/, while the other
required files can be obtained from http://www.arm.com/products/os/linux_download.html.

To perform the build you will need the 2007q1-21 release of the CodeSourcery toolchain
for the ARM GNU/Linux target platform. This is available from
http://www.codesourcery.com. At time of writing it can be found at
http://www.codesourcery.com/gnu_toolchains/arm/releases/2007q1-21. The following
instructions assume that you have already installed the CodeSourcery toolchain. These
instructions are likely to work with later releases of the CodeSourcery toolchain, but have
only been validated against the 2007q1-21 release.

To build the U-Boot kernel image, you will need the U-Boot mkimage utility, which is
linked to from http://www.arm.com/products/os/linux_download.html: it should be
downloaded as a blob. At time of writing it can be downloaded directly from
http://www.linux-arm.org/git?p=ael.git;a=blob_plain;f=u-boot/tools/mkimage.

Files required for all targets are listed in Table 2-1, while the required files for a PB926
target are listed in Table 2-2. Equivalent files for a different target can be downloaded in
place of the files listed in Table 2-2.

Note You should ensure that you get the source for the original 2.6.24 kernel release and not
any of the later patch releases (for example 2.6.24.1) as the ARM patch may produce
incorrect code if applied to later releases. The 2.6.24 release is the last 2.6.24 kernel
listed on kernel.org.

Note The mkimage file will download as u-boot-tools-mkimage. You will need to change
the name of the file to mkimage (mv u-boot-tools-mkimage mkimage). You may
also need to set the executable flag on the file (chmod u+x mkimage).

Note If you use Microsoft Internet Explorer to access the ARM Embedded Linux files, files may
download with the name git. The downloaded files can be renamed according to Tables
2-1 and 2-2, either after download or by right-clicking and using the Save as... option.

Building the ARM Embedded Linux Kernel

7 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Table 2-1 Required Files for All Targets

Address at time of writing Name of downloaded file Description

http://www.kernel.org/pub/linux/kern
el/v2.6/linux-2.6.24.tar.bz2

linux-2.6.24.tar.bz2 Main-line kernel source.

http://www.linux-
arm.org/git?p=ael.git;a=blob_plain;f
=kernel/src/patch-2.6.24-
arm2.gz;hb=2008q1

kernel-src-patch-2.6.24-
arm2.gz

Patch to apply to main-line
kernel source.

http://www.linux-
arm.org/git?p=ael.git;a=blob_plain;f
=u-boot/tools/mkimage

u-boot-tools-mkimage Tool to prefix kernel image
with a U-Boot header. Must
be renamed to mkimage
after download.

http://www.codesourcery.com/gnu_t
oolchains/arm/releases/2007q1-21

arm-2007q1-21-arm-none-
linux-gnueabi-i686-pc-linux-
gnu.tar.bz2 (Linux)

arm-2007q1-21-arm-none-
linux-gnueabi.exe (Windows)

CodeSourcery ARM
GNU/Linux toolchain.

Table 2-2 Required Files for PB926

Address at time of writing Name of downloaded file Description

http://www.linux-
arm.org/git?p=ael.git;a=blob_plain;f
=kernel/config/2.6.24-arm2/config-
2.6.24-arm2-versatile;hb=2008q1

kernel-config-2.6.24-arm2-
config-2.6.24-arm2-versatile

Kernel configuration file for
ARM Versatile boards.

2.2 Building the Kernel

2.2.1 Prepare the Working Directory

Ensure that you have sufficient space available to build the kernel in. The kernel source
and object files alone are likely to require a minimum of 600 MB of space, and this
minimum may well increase if you add extra drivers or other patches. Download the
required kernel source archive and patch, plus an appropriate configuration file for your
target board and a copy of mkimage. These files should be placed in a working directory
on the host where you intend to build the kernel. This directory will be referred to as
<workdir> from now on.

Extract the kernel source archive (tar xvjf linux-2.6.24.tar.bz2) and the ARM
patch for the kernel source (gunzip kernel-src-patch-2.6.24-arm2.gz). After
extraction your <workdir> should contain a full kernel source tree along with several
other files. These files and directories are listed in Table 2-2.

Table 2-2 Key contents of <workdir>

File/Directory Description

linux-2.6.24 Directory containing kernel source

kernel-src-patch-2.6.24-arm2 Patch to be applied to the kernel source in order
to build a kernel suitable for ARM targets

kernel-config-2.6.24-arm2-config-
2.6.24-arm2-versatile

Configuration file for target board (file name will
be different if the target is not a PB926)

mkimage Utility to create U-Boot images from kernel
images

 Building the ARM Embedded Linux Kernel

8 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

2.2.2 Set up the Build Environment

Put <workdir> on your path, so that the mkimage utility can be found.

If you do not have the CodeSourcery GNU tools on your path, set the environment
variable CROSS_COMPILE to the location of your CodeSourcery bin directory, followed
by arm-none-linux-gnueabi- for example

export CROSS_COMPILE=~/codesourcery/bin/arm-none-linux-gnueabi-

If the CodeSourcery GNU tools are on your path then you do not need to set
CROSS_COMPILE.

2.2.3 Prepare and Build the Kernel

Enter the <workdir>/linux-2.6.24 directory and apply the ARM patch
(patch -p1 < ../kernel-src-patch-2.6.24-arm2). Then copy the configuration
file into place (cp ../kernel-config-2.6.24-arm2-config-2.6.24-arm2-
versatile .config).

Run the command make oldconfig to import the configuration settings from the new
configuration file. If you want to modify the kernel configuration you can do this in the
normal way (for example make menuconfig or make xconfig).

Finally, run make uImage to have the build process generate a kernel image with a U-
Boot header. When the build completes, the directory <workdir>/linux-
2.6.24/arch/arm/boot/uImage will contain the kernel images listed in Table 2-3.

Table 2-3 Linux kernel images in arch/arm/boot

File Description

Image Raw binary kernel image

zImage Self-extracting compressed binary kernel image

uImage U-Boot kernel image, composed of zImage plus a U-Boot header

Installing & Running ARM Embedded Linux on the Target System

9 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

3 Installing & Running ARM Embedded Linux on the Target System

3.1 Requirements
This section assumes that you have either collected the Linux system binaries from the
ARM Linux web site (http://www.arm.com/products/os/linux_download.html), or else built
them yourself as described in Section 2. If using images that you have built yourself, or
pre-built images for a target other than the PB926, then you will need to substitute file
names appropriately throughout this section. The required files are listed in Table 3-1.
Note that you should use only one of the file system images, and that the Thumb-2 file
system image requires a target that can execute Thumb-2 instructions.

This method of installing ARM Embedded Linux relies on the use of BootMonitor to pass
control to the U-Boot bootloader, and on the use of ARM’s Eclipse Flash Programmer to
program images to flash. The ARM Eclipse Flash Programmer is available in the latest
Eclipse update for RealView Development Suite 3.1 and later. If you do not have the flash
programmer then ensure that you have updated your Eclipse installation to the latest
version of the RealView Development Suite Plug-ins. See Installing software updates
for the Eclipse Plug-ins for RVDS in the RealView Development Suite Eclipse Plug-
in User Guide for details of how to do this.

There are many alternative approaches that can be taken to install and boot Linux,
including booting from a network, using an NFS root file system, using U-Boot without
BootMonitor to boot the system, etc. All alternative approaches are considered to be
outside the scope of this document.

Note If you use Microsoft Internet Explorer to access the ARM Embedded Linux files, files may
download with the name git. The downloaded files can be renamed according to Tables
2-1 and 2-2, either after download or by right-clicking and using the Save as... option.

Table 3-1 Linux system files

Address at time of writing Name of downloaded file Description

http://www.linux-
arm.org/git?p=ael.git;a=bl
ob_plain;f=kernel/bin/2.6.
24-arm2/uImage-2.6.24-
arm2-versatile;hb=2008q1

kernel-bin-2.6.24-arm2-
uImage-2.6.24-arm2-versatile

Pre-built kernel image for
Versatile boards with an
ARM926EJ-S core

http://www.linux-
arm.org/git?p=ael.git;a=bl
ob_plain;f=u-boot/bin/u-
boot_versatilepb.axf;hb=20
08q1

u-boot-bin-u-
boot_versatilepb.axf

U-Boot image for Versatile
PB boards

http://www.arm.com/linux/a
rmbase_2.5.cramfs

armbase_2.5.cramfs Base AEL file system

http://www.arm.com/linux/a
rmfull_2.5.cramfs

armfull_2.5.cramfs Full AEL file system

http://www.arm.com/linux/t
2_base_2.5.cramfs

t2_base_2.5.cramfs Base AEL file system
compiled as Thumb-2

3.2 Installing and Running the System

3.2.1 Check BootMonitor

The target board must have a working Boot Monitor in Flash. To verify this:

 Installing & Running ARM Embedded Linux on the Target System

10 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

1 Connect UART0 on the development board to a serial port on your computer
using the NULL modem cable supplied with your development board.

2 Configure a terminal emulator (such as HyperTerminal, TeraTerm or minicom) to
connect to the serial port. The settings should be: baud rate 38400, 8 data bits,
no parity, 1 stop bit and no flow control.

3 Turn on the power to your board. You should see a startup message similar to
the following in your terminal emulator:
ARM PB926EJ-S Boot Monitor
Version: V4.0.6
Build Date: Apr 17 2007
Endian: Little

If your boot monitor does not work, follow the instructions in the user guide for your
development board (Getting Started section) to program a Boot Monitor into your board.
This guide includes the DIP switch settings to make Boot Monitor run.

3.2.2 Determine Available Space in Flash

Once you have a working Boot Monitor, determine the first available free space in flash.

1 Type the following at the Boot Monitor prompt:
> Flash
Flash> list areas

This should display something like:

Base Area Size Blocks Block Size
---- --------- ------ ----------
0x34000000 256K 4 64K
0x34040000 65280K 255 256K
0x30000000 256K 4 64K
0x30040000 65280K 255 256K

This tells you the total amount of flash available and the size of each block of
flash.

2 Determine the images already in flash. To do this type:
Flash> list images

This should display something like:

Flash Area Base 0x34000000

Address Name
------- ----
0x34000000 Boot_Monitor
0x34030000 SYSTEM.DAT

3 Find out how much space is taken up by the last image in Flash. In this case, you
would type:
Flash> display image SYSTEM.DAT

This should display something like:

Name: SYSTEM.DAT
Flash Address: 0x34030000
Load Address : 0x34030000
Entry Point : 0x34030000
Size : 56 Bytes
Blocks Used : 1

Installing & Running ARM Embedded Linux on the Target System

11 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

4 You now have sufficient information to calculate the first free space in flash. In
this case, SYSTEM.DAT exists in flash at address 0x34030000. It is using 1 block
of flash and the block size is 64K, which is 0x10000 bytes. Therefore the first free
block begins at address 0x34040000 (0x34030000 + 0x10000). Note that in this
example, this is beginning of a new area of flash with a larger block size (256K,
or 0x40000 bytes).

3.2.3 Program the System Images into Flash

There are many ways of programming images to Flash, but as this application note is
focused on the use of Eclipse we will describe the use of ARM’s Eclipse Flash
Programmer. If you are using an ARM Versatile Board then you could use BootMonitor
instead. Refer to the appropriate section of your board’s user guide for more information
(Section 2.6: Using the PB926EJ-S Boot Monitor and platform library in the
RealView Platform Baseboard for ARM926EJ-S User Guide in the case of the PB926).

1 Ensure that you have downloaded all of the system binaries listed in section 3.1.

2 Start Eclipse. Ensure that you are in the C/C++ Perspective. If you are not,
you can change to it by selecting Open Perspective from the Window menu.

3 You will need to create a project to store your system binaries for upload to your
target. To do this select New->Project... from the File menu to bring up the
New Project dialog. Expand the General node in the tree view and select
Project. Click Next.

Shows C/C++
Perspective

 Installing & Running ARM Embedded Linux on the Target System

12 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

4 On the new screen, give the project a name and click Finish.

5 Right-click on your new project in the C/C++ Projects View and select
New->Folder from the context menu to open the New Folder dialog.

Installing & Running ARM Embedded Linux on the Target System

13 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

6 Give the folder a name (for example System Binaries) and press the
Advanced >> button. Tick Link to folder in the file system and
press the Browse... button. Browse to the location where you have stored the
system binaries in the Browse For Folder dialog. If you have built a kernel
from source then the directory should also contain the kernel’s build tree. Press
OK to return to the New Folder dialog and then press Finish.

7 Your project should now contain the folder that you have created, and this folder
should contain the system binaries that you have downloaded.

 Installing & Running ARM Embedded Linux on the Target System

14 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Program U-Boot Image

1 Navigate to the U-Boot image in your project (for example, System
Binaries/u-boot-bin-u-boot_versatilepb.axf). Right-click on this
image and select
Send To->Send To... from the context menu to open the Send To dialog.

2 In the Send To dialog, select ARM Flash Programmer in the tree view and

press the New button.

New button

Installing & Running ARM Embedded Linux on the Target System

15 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

3 Ensure that you are in the Image tab. Enter a name for the new configuration in
the Name field. Confirm that the Select project field is populated with the
name of your project and that the Select image field is populated with the
location of the U-Boot image within your project. Set Select file type to
Binary Image to force the flash programmer to write the image at a set location
in flash. Set Start address to the beginning of the first free block in flash
(0x34040000 in the example in Section 3.2.2 Step 4). Press Apply.

4 Select the Connection tab and press the Configure... button. Configure the
connection to your hardware target as normal (see Working with the ARM
Flash Programmer in the RealView Development Suite Eclipse Plug-ins User
Guide).

5 Select the Flash device tab and select your target type in the Flash device
target configuration drop-down for example ARM Versatile PB926EJ-
S. Select the flash device to use, for example all of the NOR devices.

 Installing & Running ARM Embedded Linux on the Target System

16 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

6 Open the Program tab. Ensure that Erase only modified blocks and
Verify after programming are selected.

7 Press the Send To button. The flash programmer will flash the U-Boot image to
the target. When it completes it will tell you how many blocks it has written. Use
this information to compute the next free block. In the example above,
0x34040000 is the beginning of an area of flash with a block size of 0x40000.
Therefore, if the U-Boot image requires 2 blocks then the next free block starts at
address 0x340C0000 (0x34040000 + 0x80000).

Installing & Running ARM Embedded Linux on the Target System

17 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Program Kernel Image

Re-open the Send To dialog and select the configuration that you have just used to flash
U-Boot to the target. Change the Select image field to your Linux kernel image (for
example System Binaries/kernel-bin-2.6.24-arm2-uImage-2.6.24-arm2-
versatile if you have downloaded the image, or linux-
2.6.24/arch/arm/boot/uImage if you have built it yourself). Change the Start
address field to the address of the next free block in flash. Press Send To to flash the
kernel image to the target.

Program File System Image

Repeat the above process to flash one of the file system images (for example,
armbase_2.5.cramfs) to the next free block in flash after the kernel image.

 Installing & Running ARM Embedded Linux on the Target System

18 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Note Boot Monitor will be unaware of any images programmed to flash using the ARM Flash
Programmer. Using BootMonitor to program flash will cause these images to be
overwritten. Therefore, having used the ARM Eclipse Flash Programmer, you should not
use Boot Monitor for any further flash programming unless you take care to force Boot
Monitor to write to regions of flash that you know to be free.

Note The flash configuration on your board may differ from that expected by the ARM Flash
Programmer if you are using a recent revision of your board. This is more likely to be a
problem is you are using flash devices with a higher address in memory than the first
flash device on the target. If you need to modify the ARM Flash Programmer’s flash target
configuration then you can do so by following the Configure targets link on the
Flash device tab in the Send To dialog and creating and modifying a copy of the
built-in definition of your target. Press F1 while in this dialog to access the online help that
will guide you through this process.

3.2.4 Configure U-Boot

Note Some of the commands given in this section are word-wrapped. Each command should
be entered as a single line. Points in commands where you should enter variable data are
indicated by angle brackets around descriptive text (<angle brackets>).

1 Reset your board.

2 At the Boot Monitor prompt type:
> debug go <location of U-Boot>

In the example above, <location of U-Boot> would be 0x34040000.

3 U-Boot will begin to execute. Press any key to stop it from auto-booting.

4 Configure the arguments that U-Boot will pass to the kernel. U-Boot passes the
contents of its bootargs environment variable to the kernel command line. To set
this environment variable type the following:
setenv bootargs root=/dev/mtdblock0
mtdparts=armflash.0:<cramfs size>@<cramfs offset>(cramfs)
ip=dhcp mem=128M console=ttyAMA0

This command will tell the kernel to use serial port 0 (ttyAMA0) as the system
console, to use 128MB of system RAM for the kernel and to use DHCP to get an
IP address. root=/dev/mtdblock0 tells it to read its root file system from
flash, and the mtdparts command tells it where in flash the root file system is.

<cramfs offset> should be set to the offset from the start of flash where the
root file system begins, and <cramfs size> should be set to the total size of
the root file system. If you have used the armbase_2.5.cramfs file system
then <cramfs size> will be 7442432 bytes. If the file system begins at address
0x34200000 in flash, and flash begins at 0x34000000 then <cramfs offset> will
be 0x200000 (0x34200000 - 0x34000000). You should therefore enter the
following command:

setenv bootargs root=/dev/mtdblock0
mtdparts=armflash.0:7442432@0x200000(cramfs) ip=dhcp
mem=128M console=ttyAMA0

5 Set the bootcmd environment variable to tell U-Boot how to boot the kernel. The
necessary command is:
setenv bootcmd cp.b <kernel address> 0x7fc0 <kernel size>\;
bootm

where <kernel address> is the location of the kernel U-Boot image in flash
memory and <kernel size> is the size of the kernel U-Boot image. In the

Installing & Running ARM Embedded Linux on the Target System

19 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

above example, <kernel address> is 0x34100000 and <kernel size> is
0x13119c.

6 Type saveenv to save the U-Boot environment variables in flash.
Note The offset following the @ symbol in the mtdparts parameter of bootargs is the offset

from the beginning of flash memory, not the offset from the beginning of the area of flash
within which the file system resides.

Note The (cramfs) part of the mtdparts parameter of bootargs is simply a label for the
MTD device. You may place any label you like between the brackets (for example
(root) or (filesystem) might also be appropriate).

Note If mounting a writeable file system (for example JFFS2), the MTD device must occupy an
area of flash with a constant block size for you to be able to write to it.

3.2.5 Boot the System

Note The commands given in this section are not word-wrapped. Line-breaks in the command
indicate that you should press return. Points in commands where you should enter
variable data are indicated by angle brackets around descriptive text (<angle
brackets>).

After U-Boot has finished saving its settings and returns to the prompt, press the reset
button again. Run U-Boot from the Boot Monitor prompt again as above:

debug go <location of U-Boot>

Your Linux system should now boot. You should be able to interact with the system either
by using a VGA monitor, keyboard and mouse or through the serial console. Log in as
root with no password.

To automate system startup in the future, it is possible to set up a boot script within Boot
Monitor to invoke U-Boot automatically at reset. Please refer to your development board
user guide for instructions and DIP switch settings. You should be able to find your
development board user guide on the Versatile Family CD, or at
http://infocenter.arm.com under
Development Boards->RealView Versatile baseboards. In the case of the PB926,
follow these steps:

1 Reset the PB926.

2 If you have a lead-free board then you should install the boot script in NOR flash.
If your board is not lead-free then you should install the boot script in DoC flash.

To install the boot script in DoC flash, type the following at the Boot Monitor
prompt:
> create <script name>

debug go <location of U-Boot>

To install the boot script in NOR flash, type the following at the Boot Monitor
prompt:
> flash create <script name> flash_address <address>

debug go <location of U-Boot>

In both cases, <script name> is the name for your boot script (for example
boot.txt). Note that there is a newline between the command that tells Boot
Monitor to create a script and the script content. You should also follow the
debug go line with a newline.

If you are programming into NOR flash then <address> must be a location in
flash where you have not already written your system files (for example,
somewhere after the end of your root file system). In the example that we have

 Installing & Running ARM Embedded Linux on the Target System

20 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

been following in this chapter, 0x34940000 would be a suitable value for
<address>.

3 Press Ctrl-Z to indicate the end of the boot script and return to Boot Monitor.

4 Verify that the file was entered correctly by typing:
> type <script name>

5 Specify the boot script to use at reset from the Boot Monitor by typing:
> set bootscript <script name>

6 Set S1-1 ON to instruct the Boot Monitor to run the boot script at power on.

7 Reset the PB926. The Boot Monitor runs and executes the boot script. In this
case, it runs the U-Boot image which will, in turn, boot your Linux kernel.

Kernel Debug with RealView Debugger

21 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

4 Kernel Debug with RealView Debugger
Debug of the Linux kernel can be accomplished using RealView Debugger in conjunction
with RealView ICE. RVD can only debug the Linux kernel itself: this includes kernel
modules that are statically built into the kernel, but not loadable kernel modules.

Loadable modules and Linux applications cannot be debugged using RVD because
modules and applications are reliant on a relocation process that only takes place when
they are loaded by the kernel. Furthermore, RVD cannot distinguish between different
Linux application processes as they all execute code from the same virtual address. For
more details see the FAQ Can I debug Linux Applications and Kernel modules using
RVD? at http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/14250.html.
We recommend that all modules that you wish to debug are built into the kernel statically
and that GDB is used for application debug (see Section 5).

4.1 Requirements
This section assumes that you have built a Linux kernel image, or that you otherwise
have access to both a debug-enabled kernel binary and an associated image file
containing debug symbols.

If you have built the kernel image yourself then it is important that debug information is
turned on. This can be activated by selecting the Compile the kernel with debug
info option in the Kernel hacking submenu of the kernel configuration. This is the
default in the kernel configurations available from
http://www.arm.com/products/os/linux_download.html and in the default configuration
created when the ARM patch is applied to the Linux source tree.

As noted above, all parts of the kernel that you wish to be able to debug must be
compiled into the kernel itself. RVD cannot debug loadable kernel modules.

4.2 Debugging a Running Kernel Using RealView Debugger
This section assumes that you are attaching an RVD session to a running kernel. Using
RVD to boot a kernel on a target board is covered in Section 4.3.

4.2.1 Set up the Debug Connection

1 Start RVD.

2 Create a debug connection to the target hardware as normal
(Target -> Connect to target...). See the RealView Debugger User
Guide for more information about creating debug connections in RVD.

3 Open up the debug connection, right-click on the core that you will attach the
debugger to and select Properties from the context menu to open the
Connection Properties dialog.

4 Open up the selected connection in the tree view (left-hand pane) of the
Connection Properties dialog.

 Kernel Debug with RealView Debugger

22 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

5 Still in the tree view, open up Advanced Information and select Default.

6 In the right-hand pane, right-click on Connect mode and select
no_reset_and_no_stop. This will prevent RVD from resetting or stopping the
target when it connects to it.

Kernel Debug with RealView Debugger

23 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

7 In the tree view, open up Default and select ARM_config.

8 In the right-hand pane, set Vector catch to False. This will prevent RVD from
intercepting exceptions. Exceptions can occur in the normal operation of the
kernel and will be handled by it.

 Kernel Debug with RealView Debugger

24 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

9 In the tree view, open up ARM_config and select Semihosting.

10 In the right-hand pane, set Enabled to False. The Linux C runtime does not use
semihosting and so RVD should not be attempting to provide semihosting
services.

Kernel Debug with RealView Debugger

25 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

11 Save the changed connection properties and close the dialog.

12 The debug connection can now be used to connect to the target.

Note If you have set a Board/Chip definition file for this connection, then this file might contain
values for this connection that override the target connection settings that you have made
in this section.

4.2.2 Load Debug Symbols

1 If you have not done so already, connect to the target.

2 Open the Load Image dialog by selecting Load Image... from the Target
menu.

In the Files of Type drop-down, select All files (*).

Tick the Symbols Only check box. It is the responsibility of your boot loader to
load the kernel code: you do not want RVD to load it again.

Ensure that Auto-Set PC and Set PC to Entry Point are not ticked. Your
system is already running, so you do not want RVD to change the PC.

Navigate to the location of your kernel source tree and select the vmlinux file
that is at its root. This file contains the kernel’s debug information.

3 Press the Open button. RVD will load the debug symbols for the Linux kernel.
This may take some time.

 Kernel Debug with RealView Debugger

26 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

4 RVD now has the kernel debug information loaded and is able to proceed with
debugging in the usual manner.

4.2.3 Debug the Kernel

You can debug the kernel as you would any other software running on the target.
However, there are some issues to be aware of when using RealView Debugger to debug
the Linux kernel.

1 Only statically compiled kernel code can be debugged with RVD, not Linux
applications and not loadable kernel modules (see the FAQ Can I debug Linux
applications and Kernel modules using RVD? at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/14250.html).

2 Software breakpoints can be set at any point after the MMU has been initialized,
which means at any point from MAIN\start_kernel onwards. The RealView
Debugger User Guide has full information about setting breakpoints with RVD,
but as an example, typing the following in the Cmd window will set a breakpoint at
the beginning of MAIN\start_kernel:

binstr &@vmlinux\\MAIN\start_kernel

There are no restrictions on when hardware breakpoints (set with the bexec
instruction) may be set.

3 RVD does not provide any special awareness of the Linux kernel and will treat it
as it would any other software running directly on the hardware target. It is
therefore not possible to tell, for example, which process was running when a
kernel breakpoint is triggered, or even if two consecutive breakpoint hits were
caused by the same process.

4 Unless you are able to configure your kernel to build with no optimizations and
full debug information, you will not get a perfect debug illusion. For example, the
debugger may appear to skip source lines, or to be executing a different source
line from the one that is actually currently being executed. Note that the ARM
Embedded Linux kernel build does not permit all optimizations to be disabled.
Although the General setup submenu of the kernel configuration has an
Optimize for size option, disabling this option causes the build to
optimize for performance instead of code size, so the kernel will still contain
optimized code

Kernel Debug with RealView Debugger

27 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

4.3 Booting the Kernel with RealView Debugger
When developing and debugging the kernel, it is useful to be able to boot the kernel using
RealView Debugger rather than having to install each new kernel and load it with a
bootloader such as U-Boot, as described in Section 3. Figure 4-1 shows an RVD script
that will boot a kernel on a PB926 board with a debug connection set up as described
above. It assumes that the root file system is a cramfs file system stored in flash at offset
0x200000 and with size 7442432 bytes. To use this method you must first have run the
appropriate initialization script for your board. In the case of the PB926 this script is
$ARMROOT/Versatile/Firmware/3.4/2/Misc/VPB926EJS_SDRAM_Init_rvd.li
. Suitable scripts for other boards can be found in the same location.

Figure 4-1: RVD Linux Kernel Boot Script

The first line of Figure 4-1 loads the raw, uncompressed kernel image at address
0x8000.

The second line loads the debug symbols for the image. The /ni option selects load of
symbols only - the readfile command on the first line has already loaded the code.
Note that it is necessary to escape the Windows path character for the load command,
but not for the readfile command.

The next lines set registers to the values that they must have when control passes to the
kernel. The main ones to note are r1, which must be set to the machine ID of the target,
and r2, which must be set to the start of the ATAG list in memory. The machine ID 387
identifies the RealView Versatile Platform Baseboard (for example the PB926). Machine
ID 827 identifies the RealView Emulation Baseboard. All Linux machine IDs can be found
at http://www.arm.linux.org.uk/developer/machines.

//load kernel binary image
readfile,raw "H:\linux-2.6.24\arch\arm\boot\Image"=0x8000

//load kernel symbols
load /ni "H:\\linux-2.6.24\\vmlinux"

@r0=0 //must be 0
@r1=387 //machine ID of target
@r2=0x100 //start of ATAG list
@pc=0x8000 //set pc to first instruction in kernel

//clear the first page
fill 0x0000..0x0fff = 0

//ATAG_CORE header
setmem /32 0x100 =2 //size of ATAG_CORE (in words)
setmem /32 0x104 =54410001h //id of ATAG_CORE
//no ATAG_CORE content required

//ATAG_CMDLINE header
setmem /32 0x108 =258 //size of ATAG_CMDLINE (in words)
setmem /32 0x10c =54410009h //id of ATAG_CMDLINE

//ATAG_CMDLINE content
setmem /8 0x110 ="root=/dev/mtdblock0
mtdparts=armflash.0:7442432@0x200000(cramfs) ip=dhcp mem=128M
console=ttyAMA0"

go

 Kernel Debug with RealView Debugger

28 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

Finally, we fill the first page of memory with zeros, then use memory starting at 0x100 to
initialize the kernel parameters. These consist of a list of structures called ATAGs. We
use these to set the kernel’s command line. The ATAG_CORE is required to start the list.

The command line string provided for the ATAG_CMDLINE itself is just the same as the
command line described in Section 3, above. It must be null-terminated, but as we have
already initialized the first page of memory to 0 then we can assume that it will end with a
zero byte. Similarly, we can set a large size of ATAG_CMDLINE so long as it is the last
ATAG that we set. The only restriction is that we must leave at least two zero-value bytes
to serve as an ATAG_NONE.

The ATAG list must be terminated by an ATAG_NONE. However, as an ATAG_NONE
consists of two words with zero value, this has effectively been provided by filling the first
page with zeros.

To adapt this script for your own use, all that is required is to fix the paths for the kernel
image and debug symbols to match your own system, to set r2 to the appropriate
machine ID for your target and to modify the command line given in ATAG_CMDLINE to
match your target. You will not have to modify the size of ATAG_CMDLINE unless you
exceed the existing high limit.

Application Debug with Eclipse & GDB

29 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

5 Application Debug with Eclipse & GDB
Debug of applications running on an ARM Linux target can be accomplished using
Eclipse in combination with the CodeSourcery GDB and gdbserver applications.

5.1 Debugging with GDB and gdbserver
A GDB client on the host system can be using in conjunction with a gdbserver process
running on the target system to achieve application debug on ARM Linux systems. The
host-side GDB configuration can be handled using Eclipse, but the gdbserver process
must be started manually on the target. The same application image must be available on
both the host and the target. The copy of the image on the host must not be stripped, but
the copy of the image on the target may be stripped. The images must not otherwise
differ: in other words, the image on the target must be either an exact copy of the image
on the host, or else a stripped copy of the image on the host.

Figure 5-1 depicts the communication between the main software components in a
typical Eclipse/GDB/gdbserver debug session.

Figure 5-1: Debugging an ARM Linux Application

5.2 Requirements

5.2.1 Target Requirements

This section assumes that you have an ARM Linux target with the following:

1 A gdbserver binary

2 A copy of the application to debug, including any shared libraries on which it
depends

Host System

Eclipse

GDB gdbserver protocol over
TCP/IP or serial port

GDB/MI
protocol

Target System

Application image
(optionally stripped)

gdbserver

gdbserver drives
application

Application image
(unstripped)

gdb reads debug
information from

unstripped local copy of
application

 Application Debug with Eclipse & GDB

30 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

A build of gdbserver can be found in all versions of the ARM Embedded Linux file system,
but it is recommended that you use the gdbserver that was built along with the rest of
your GDB installation if this is possible. In the case of the CodeSourcery 2007q1-21
toolchain, gdbserver can be found at
<CodeSourcery Root>/arm-none-linux-gnueabi/libc/usr/bin/gdbserver.
See Section 5.3.1 for information about ways that files can be transferred from the host
system to the target system.

The application and shared libraries on the target side may be stripped, but it is harmless
to leave them unstripped.

5.2.2 Host Requirements

This section assumes that you have the following on your host:

1 The Eclipse supplied with RealView Development Suite 3.1

2 A GDB that consumes ARM binaries

3 Copies of the application and shared libraries being debugged on the target

The Eclipse supplied with RealView Development Suite 3.1 is composed of the Eclipse
Platform version 3.2, the Eclipse C/C++ Development Tools version 3.1.1 and the
RealView Development Suite plug-ins. The RealView Development Suite plug-ins are not
required to follow the instructions in this section.

GDB is assumed to be the GDB binary supplied with the ARM Linux version of the
CodeSourcery toolchain.

The application and any shared libraries that you wish to debug into must have their
debug symbols available, so you must have a build with debug information to keep on the
host side. If you want source-level debug then you must also have the source available
on the host system.

Note It is important that copies of applications and shared libraries on the host are identical to
the copies on the target: they must be from the same build. The only permissible
difference is that the copies on the target may have their debug symbols removed, for
example by using the strip tool. Failure to keep the copies synchronized will result in
unpredictable debug behavior.

5.3 Preparing the Target

5.3.1 Transfer Files to the Target System

It is necessary to transfer the images for debug, and possibly a gdbserver binary, onto the
target file system. If you are using any kind of networked file system then this may be as
simple as copying the files into a location on the host side that can be mounted on the
target side. If this is not possible then you will need to be able to transfer the files to the
target system. All versions of ARM Embedded Linux provide wget and an FTP client.
Therefore, if you are running an FTP server on your host then you will be able to run the
FTP client on your target to get files from your host, or alternatively you can download
files available via HTTP by using wget.

5.3.2 Run gdbserver

You must be running a gdbserver process on the target system. You will connect to
gdbserver from the host system in order to debug your application. You may start the
target application using gdbserver, or you can attach gdbserver to an already-running
process.

The syntax for launching an application with gdbserver is:

gdbserver <comm> <prog> <args>

Application Debug with Eclipse & GDB

31 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

where <comm> tells gdbserver where to listen for connections, <prog> is the path to the
binary to be executed and <args> are the command-line arguments to pass to the
binary. <comm> may be the name of a serial port (for example /dev/ttyS0) or a port
number preceded by a colon (for example :5000). gdbserver will bind to all available
network interfaces.

A concrete example is the case where you have a less binary in your home directory
and wish to start it with the -M option and listen for debug connections on port 5000 of the
target. To do this, type:

gdbserver :5000 ~/less -M

GDB can also attach to a process that is running on the target. The syntax for attaching
gdbserver to a running process is:

gdbserver <comm> --attach <pid>

where <comm> tells gdbserver where to listen for connections, as before, and <pid> is
the process ID of the process to be debugged. Therefore, if we have a running less -M
with process ID 100 and we want, again, to listen for connections on port 5000 of the
target the command to type would be:

gdbserver :5000 --attach 100

Note The process ID of a running process can be obtained using tools such as pidof, top
and ps. See the man pages for these tools for details of how to use them.

5.4 Preparing the Host Debugger

5.4.1 Create a GDB Command File

Due to limitations in the Eclipse debug configurations it is necessary to create a GDB
command file before beginning. This is just a text file that sets some options within GDB
and you can give it any name and location on your host system that seems sensible. You
will tell your Eclipse debug connection where to find the command file in Step 6 of
Section 5.4.2. When Eclipse launches GDB, it will instruct it to read the commands in this
file. The GDB command file should read as follows:

set remotetimeout 0
set solib-absolute-prefix <CodeSourcery Root>/arm-none-linux-
gnueabi/libc/

where <CodeSourcery Root> is the root of your CodeSourcery installation. Note that
the slash-direction is important here: GDB expects the directory separator to be a forward
slash (/), even when running on Windows.

The first command in the file tells GDB not to time out while waiting for responses from
gdbserver. The second command tells it where on the host to find debug builds of the
shared libraries that are on the target system. If you are not using CodeSourcery’s GNU
libraries then provide the path to your host’s copy of the target’s system libraries. If you
wish to be able to debug into the system libraries then the host’s copies of the libraries
must be built with debug information. Also, if you wish to do source-level debug of the
libraries then you must have their source code on your host.

Note Note that the Eclipse Debug Connection interface appears to provide a GUI-based
means of setting the location of shared libraries. However, in the version of the Eclipse
CDT released with RealView Development Suite 3.1, this part of the interface does not
function correctly. This is a bug in the CDT over which ARM has no control. Future
releases of RealView Development Suite should include a version of the CDT in which
this bug is fixed.

 Application Debug with Eclipse & GDB

32 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

5.4.2 Create an Eclipse Debug Connection

To create a debug connection in Eclipse you must have an Eclipse project to associate it
with. If the application that you are debugging was created using an Eclipse project then
you can use this as the project to associate the debug connection with. Otherwise, you
can create an empty Eclipse C/C++ project to associate the debug connection with. To do
this, select New->Standard Make C++ Project from the File menu to bring up the
New Project dialog. Give the project a name and click Finish.

Having ensured that you have a project to associate your debug connection with, proceed
as follows:

1 Ensure that you are in the C/C++ Perspective. If you are not, you can change
to it by selecting Open Perspective from the Window menu.

2 Right-click on your project in the C/C++ Projects view and select
Debug As->Debug... from the context menu to open the Debug dialog.

3 Select C/C++ Local Application and press the New button at the top-left of
the panel.

4 Ensure that you are in the Main tab. Enter a name for the new debug connection
in the Name field. If your project contains the executable to be debugged then
press the Search Project... button and select the image to be debugged.
Otherwise, press the Browse... button and locate the image in your host’s file
system. In either case, the image selected must be an unstripped version of the
image to which gdbserver is attached.

New button

Shows C/C++
Perspective

Application Debug with Eclipse & GDB

33 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

5 Go to the Debugger tab.

In the Debugger drop-down select gdbserver Debugger.

If your gdbserver session is launching a process (rather than attached to an
existing process) then you may wish to select the Stop on startup at
checkbox to stop the executable when it enters its main function.

6 In the Debugger Options pane, select the Main tab.

To fill the GDB debugger field, press the Browse... button and navigate to the
location of your GDB debugger. If you are using CodeSourcery’s GDB build then
this will be at
<CodeSourcery Root>/bin/arm-none-linux-gnueabi-gdb, where
<CodeSourcery Root> is the root of your CodeSourcery installation.

To fill the GDB command file field, press the Browse... button and navigate
to the location of the GDB command file that you created in Section 5.4.1.

Ensure that GDB command set is set to Standard if your host system runs
Linux or to Standard (Windows) if your host system runs Windows.

Ensure that Protocol is set to mi. This refers to the GDM/MI interface that
Eclipse uses to drive GDB on the host machine. Using the original version of the
interface (just plain mi in the Protocol drop-down) ensures that all versions of
GDB dating from the introduction of GDB/MI can be driven by your debug
configuration.

 Application Debug with Eclipse & GDB

34 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

7 In the Debugger Options pane, select the Shared Libraries tab and
ensure that Load shared library symbols automatically is ticked.

Do not add shared directories to the list of shared libraries: as noted above, this
does not work in the version of the CDT included in the Eclipse plug-ins shipped
with RealView Development Suite 3.1. The locations of shared libraries must,
instead, be specified in the GDB command file.

8 In the Debugger Options pane, select the Connection tab and fill in the
information required to connect to gdbserver on your target system, as follows:

If you are connecting over a serial port then:

Set Type to Serial

Set Device to the serial port on the host system (for example
/dev/ttyS0 or COM1)

Set Speed to the speed of the serial port

If you are connecting over TCP then:

Set Type to TCP

Set Host name or IP address to the host name or IP address of the
target system

Set Port number to the port on which the gdbserver process on the
target is listening

Application Debug with Eclipse & GDB

35 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

9 Press the Debug button to connect to the gdbserver session and begin
debugging, or the Apply and Close buttons to save the changes and return to
Eclipse.

There are several other tabs available to provide information about the Eclipse Debug
Connection, but most of the available connection information is irrelevant in the gdbserver
case. For example, the Arguments and Environment tabs are irrelevant because the
application has already been launched before Eclipse connects to it.

5.5 Debugging the Application
You can now debug as normal. Note that shared library debug symbols may not be
loaded until the shared library itself is loaded: therefore, it may not be possible to set
breakpoints in shared libraries until after they are loaded. If you want to be able to do this
then ensure that you have Stop on shared library events ticked in the Shared
Libraries tab of the Debugger Options pane in the Debug dialog. This will suspend
the debug target when shared libraries are loaded, allowing you to set breakpoints.

It is important to be careful when rebuilding the target, especially if your Eclipse project
builds the binary for you, and even more so if it builds the binary automatically when you
launch your debug session. Eclipse will not transfer the new binary to the target system:
you must do this yourself and restart any gdbserver session attached to it. If the binaries
on host and target are not synchronized then debug behavior will be unpredictable.

Known Issues

1 Be aware that you will be able to see two output consoles in the Console view
during debug sessions. One of these consoles will have a name ending with the
name of application being debugged. This is for output from your application, but
it will not work when debugging via gdbserver. Output will be displayed on the
target system, not through Eclipse.

The other output console will have a name ending with the name of your GDB
binary. This will display output from the GDB process and may be useful for
diagnosing problems with GDB itself.

2 In some circumstances, GDB may not be properly terminated by Eclipse. To
minimize the chance of this happening, always select the application being
debugged in the Debug view before pressing the Terminate button. If your
host’s performance becomes very poor, check for hanging GDB processes.

3 When you terminate the debug session on the host, gdbserver will be terminated
on the target. You will need to start a new gdbserver session on the target to be
able to begin a new debug session.

 References and Further Information

36 Copyright © 2008 ARM Limited. All rights reserved. Application Note 201
 ARM DAI 0201A

6 References and Further Information
For further information on the GNU toolchain supplied by CodeSourcery, please see:

http://www.codesourcery.com/gnu_toolchains/arm/

In particular, the FAQ for the ARM GNU toolchain can be found at:

http://www.codesourcery.com/gnu_toolchains/arm/faq.html

ARM Embedded Linux is available from the ARM website at:

http://www.arm.com/linux/

To use RVCT to build applications for ARM Linux targets see Application Note 178:
Building Linux Applications Using RVDS 3.1 and the GNU Tools and Libraries,
available at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0178a/index.html.

ARM support provides a number of FAQs about Linux:

• How do I rebuild the Linux kernel for my ARM RealView development
board?: http://www.arm.com/support/faqdev/14409.html.

• How do I install the pre-built Linux images on my ARM RealView
development board?: http://www.arm.com/support/faqdev/14586.html.

• What technical support does ARM provide for Linux?:
http://www.arm.com/support/faqdev/18411.html.

• Can I debug my Linux kernel with RVD?:
http://www.arm.com/support/faqdev/14249.html.

• Can I debug Linux Applications and Kernel modules using RVD?:
http://www.arm.com/support/faqdev/14250.html.

• How do I build Linux applications with RVCT 3.x?:
http://www.arm.com/support/faqdev/12750.html.

General information on ARM Linux can be found from the open-source community.
Useful starting points are:

• The comp.sys.arm newsgroup

• The ARM Linux project website: http://www.arm.linux.org.uk/

• The ARM Linux wiki: http://www.linux-arm.org/

