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ABSTRACT

The semanticsof X in Verilog RTL are extremely dangerous as RTL bugs can be masked, dlowing
RTL samulations to incorrectly pass where netlis Smulaions can fail. Such X-bugs are often missed
because forma equivaence checkers are configured to ignore them which isa particular concerngiven
that equivalence checking isfast replacing netlis smulations. This paper gives examples of such
problemsin order to raise awareness of X issuesin many different parts of the design flow, whichare
often poorly understood by RTL designers and EDA vendors dike. 1t gives practica advice on how to
overcome X issues in new designs (including good coding styles) and techniquesto investigate themin
exiding desgns (induding automated formd proofs). New terminology isintroduced to differentiate
subtle interpretations of X by EDA toals, dong with recommendeations to avoid problems. In particular,
this paper describes how to change the default settings of equivalence checkersto find hidden bugs (that
are otherwise far too sneaky to detect). In short, if you are using EDA tools for smulation, code-
coverage, synthesis or equivaence checking, you must be aware of the problems and solutions
described in this paper.
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1 I ntroduction

The aim of this paper isto raiseawareness of dangerous X issues inVerilog RTL and introduce techniques to analyze
otherwise undetected bugsin RTL designs. New terminology is used to distinguish subtle X semantic problems,
illustrated with simple examples that accurately reflect our experienceof real problems found by ARM .

Some of these issues have already been raised by Bening [Bening 99], Gabi [Galbi 02], Foster [Foster 03] and other
referencesin section 11. What' s new in this paper istherevelation that you can actually find most hidden X-bugs
with equivalence checkers, providing you configure them to be sensitive to X issues. This paper also describes how
to use formal property checking to determine which X’ s are safe and which aredangerous (and should therefore be
removed from your RTL). For X-bugs that cannot be found by formal verification, RTL coding guidelines are given.

Many engineers have polarized views on X's, some seeing them as agood thing (e.g. for synthesis or X-
propagation) and others believing them to be an intrinsically bad idea, since they can mask real design bugs, and
should never be used. This paper argues against the widespread use of X’s, particularly for don’t-cares, but also
shows how selective use of X’ s can improve design and verification (e.g. it recommends that every case default
assigns X).

Understanding problems caused by X semantics is extremely important. Many designers are blissfully unaware of the
issues around X, which can have devastating effects on many different parts of the design flow including:

1. RTL Simulation: X semanticsin RTL can mask bugs- expensive validation tests can pass because they are
not being used effectively to stress the design.

2. CodeCoverage: X semanticsin RTL can give both optimistic results (i.e. claims a branch is covered when
it’s unreachable) and pessimistic results (i.e. claims a coverage hole when it’ s reachabl e)

3. Equivalence Checking: all too often, equivalence checkers will miss differencesin RTL and netlist
simulations caused by subtle X semantics (normally due to incorrect usage, even with default behavior)

4. Synthesis: designers often rely on don’t-cares to produce efficient logic, but can be disappointed with their
non-minima results and long critical paths

Often due to limited understanding of X issues, bugs can be missed and left in the shipped product (discovery then
isfar more expensive) or left dormant - only to reappear when anew version of your synthesis tool chooses a
different logic minimization!

As verification is 70% of the work, therisk of adding an undetected bug (which could result in acostly silicon re-
spin) should outweigh any general improvement tologic minimization. Time saved from verification can be used to
help improve any critical pathsin the synthesis by careful consideration of the RTL (especially as adding don’t-cares
will not necessarily improve things as you may expect).

11  Goal: Semantically-Rigorous IP

ARM is keen to promote good coding styles and techniques to ensure semantically rigorous designsi.e. identical
semantics throughout the design flow. ARM has recently undertaken alot of work in this area, including extensive
use of formal verification techniques, to avoid such problems on the latest ARM1136JF)-S™ core. ARM’s IPis
integrated into many different designs so the impact of our RTL quality is magnified many times— as highlighted by a
quotefrom Harry Foster [Foster 03]:

“What about restricting the designer’ s coding style to ensure semantic consistency? Although thiswould
be theideal situation, ... many of today’ s designsinvolve integrating other organizations’ intellectual
property (IP) cores, aswell asexisting legacy code. ... All it takes to ruin your semantically consistent
coded RTL isfor someone else’s P to drive an X value into your pure RTL.”

This paper has therefore been written to promote awareness of X-issues both internally at ARM and externally (for
designersand EDA vendors). It givesadetailed account of many lessons learned, and provides guidance on how to
design semantically rigorous RTL. Simple examples are given to illustrate sometimes complex problems, but each is
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based on our experience of real problems. This paper contains recommended practice that will be new to most
engineers, e.g. how many people change the default X -settings of formal equivalence checkersto avoid missing
bugs?

12  Howto Read thisPaper

Asthis paper coversalot of material, some readers may prefer to start by reading the ten recommendations in section
9.1f you're already following thesethen you’ re done and your RTL should be tolerant of X’s. However, most RTL
designs contain reachable X-assignments and so the majority of readers will have an incentive to read the other
sections too (at least as reference material). The forma techniques described in section 6.5 will be new to most
readers, but these should not be daunting in any way (if you can run an RTL linter you can run these automatic
proofs). There is some repetition in the paper, so that each section can be read in isolation as reference material.

13  History of this Paper
Version 1.0 (12" August 2003). Technical Committee Award winning paper at Boston SNUG (8" September 2003).

Version 1.1 (14" October 2003). Added section 4.1.1 (Latch Behavior in RTL Simulation), improved RTL coding rules
in section 7.1, and made some corrections and improvements fromfeedback at SNUG.

2 What Does X Mean?

This section explains the Verilog semantics of X for different parts of the design flow. The most worrying thing is that
there are different semantics!

Engineers aretaught about two X-semantics, don't-carefor synthesis and unknown for simulation. The overloading
of X in Verilog to cover different conceptsoften causes misunderstandings andcan lead to hidden bugsin your RTL,
as detailed in section 4. To hel punderstand subtle X -semantic issues, this paper uses theterminology below to
compare and contrast different semantics of X.

1. Don't-Care Synthesis semantics (not important if assignment is 0 or 1, allowing better minimization)

2. Unknown: Simulation semantics (not known if valueis 0 or 1, but evaluation will take just one path)

3. Wildcard: Simulation semantics (specifictocasex andcasez statementsin Verilog RTL)

4. 2-State Consistency/Equality: Equivalence Checkingsemantics (try both X=0 and X=1 paths for every X)
5. 2-State Sequential: Property Checking semantics (try both X=0 and X=1 paths and sequences for every X)

Formal tools will try and fail thedesign by stressing every X with both 0 and 1, so a pass is an exhaustive verification
of all possible 2-state (i.e. 0 or 1) settings of X’s (see Figure 2 for an illustration of this). Equivalence checking isa
purely combinatorial verification of two designs, whereas property checking is asequential verification of one
design (e.g. it can consider the effects of an X stored in aregister).

Equivalence checkers compare two designs, and can be set up to treat X’ s differently in each design. There are two
sensible configurations, which gives rise to the Consistency and Equality terminology (see section 2.4). This
terminology issimilar to that used by the Synopsys Formality equivalence-checker (e.g. see “Design Consistency” in
the Formality User Guide [Synopsys 02]), but isapplicable to other equivalence checkers.

21  Synthesis Semantics: Don’'t-Care

The simplest semantics for X istreating it as a don’t-care assignment, allowing synthesisto choosea 0 or 1 to
improve the logic minimization. Note that asingle X-assignment (e.g. def aul t of acase) canin fact represent
multiple don’t-cares, each of which can be assigned to different values.

Synthesis toolstend to have two separate phases:

1. Minimization: producing minima Boolean expressions for logic functions (using any don’t-cares)
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2. Optimization: mapping the minimized logic to atarget synthesislibrary (taking account of signal timings)

Minimization often produces a sumof-products form which tends to get optimized using NAND-NAND logic (rather
than directly using AND gates driving an OR gate). An important point to noteisthat al don’'t-care X’s are resolved
during minimization (so different target libraries will not change this mapping).

22 Smulation Semantics; Unknown

In Verilog, X ismodeled as one of thefour possible logic values (along with 0, 1 and Z). It’simportant to understand
that X isjust a separate enumeration that has no direct relationship with 0 and 1. The semantics of X are fixed and can
only crudely consider the range of possible 0/1 combinations.

The table below summarizes the interpretation of X by some Verilog operators (afull description can be found in the
Verilog LRM [IEEE 95]). Boolean operators and the ternary (i.e. conditional ?) operator will, individually, propagate
X'sinasensibleway. However, it’ sinteresting to note that thei f statement will optimistically consider X asif it
were 0 (this causes many X problemsin Verilog RTL).

Unary NOT AND OR Exclusive-OR | Exclusive-NOR CONDITIONAL (i f,?)

~X X[T(x&x [x[x|T x [x[x~»x [x](x~~x [x]f =x2o00: o1; | ox

(0&x [olo] ¥ [ X[~ x [x[(0—~x [x]|[if (X f=00; o1

(L& X [X[(T] XN [1[(T~X [X[(T —~ X <|¢'se =01

Table1: Interpretation of X by Verilog Operators

The modeling of X as a separate enumeration will inevitably mean the | oss of information. Boolean operators will
carefully propagate X' s but information can be lost when they are combined, e.g. consider the following example.

assign b = a & ~a;
Verilog Snippet 1 — Exampleof X-Pessimism (loss of context information)

From aBoolean algebraviewpoint it’s obvious that b will always be zero. However, an X ona will also causeb to
become X inaVerilog smulation (but in area circuit, b would still be 1’ b0). The unary negation operator
propagates the X, throwing away information that the new result should bea symbolic “~X".

The Unknown simulation semantics of X leads to two unwanted effects:
1. X-Pessimism: ambiguous results lead to more X-assignments than are really necessary

2. X-Optimism interpretation of X will take just onei f/cas e branch when many should be considered

Good examples of problems caused by these two effects are described by Lionel Bening [Bening 99]. We have
already seen one example of X-Pessimism inVerilog Snippet 1, now for acommon example of X-Optimism

al ways @ (CLK or nRESET)
i f (nRESET == 0)
Count <= 3’ b00O0;
el se if (CountEnable)
Count <= NxtCount; // no update if Count Enabl e==1" bX

Verilog Snippet 2— Exampleof X-Optimism

The above example shows a common way to allow synthesisto achieve clock-gating i.e. whenever Count Enabl e
islow the 3-bit Count register does not need to be clocked and power can be saved. A problem occursif any
reachable don’'t-care X’ s have been assigned to Count Enabl e, to help minimizeitsdriving logic. Thesedon't -
cares may improve synthesis but what happensin RTL simulation when there’san X on Count Enabl e? According
tothe Verilog LRM [IEEE 95] the second branch isonly executed if Count Enabl e is1’ b1, so no update occurs
when Count Enabl e is X. Effectively, an RTL simulator isonly considering one possible interpretation of the X on
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Count Enabl e (if Count Enabl e isinfact minimizedto1’ b1 here, the netlist simulationwould give a different
result). X-Optimism can also occur in acasedef aul t that terminates X’ swith a2-state (i.e. 0 or 1) assignment.

Theidea simulation semanticsfor X would be: “ can be either 0 or 1”. Anideal simulator would then have to
consider the effects of both possible settings for every X-assignment (the downside is that simulations could
dramatically slow down as aresult). Such asimulator would not be aVerilog simulator, as its semanticswould differ
to the Verilog standard. However, thisideal X semanticsis used by formal verification tools (as discussed in sections
2.4and 25).

23 Smulation Semantics. Wildcard for casex and casez

Theuseof X (and Z) incasex,and Z incasez,isdescribed in section 9.5.1 (page 110) of the Verilog LRM [IEEE
9 as: “don’t-care conditions in case comparisons’ . The Wildcard terminology is arguably better because:

don’t-caresare normally associated with X-assignments (rather than comparisons)
unlike don’t-car e assignments, casex expression X's areignored by synthesis and equivalencechecking

Before talking about casex and casez, it’sworth reviewing the semantics of the less exoticcase statement.
Consider the example below of a case statement that has an X in one caseitem and an equivalent nestedi f
expression (in comments).

case (sel)

1’ bX: f = 2" bXX /1 if (sel === 1"bX) f = 2'bXX;

1" bl: f = 2'bl0; /'l elseif (sel === 1"bl) f = 2’ bl0;

1’ bO: f = 2" b01; /'l else if (sel === 1"b0) f = 2" b01;

default: f = 2’ bZz /Il else f = 2'bZzz
endcase

Verilog Snippet 3 - Example case-statement and equivalent if-expression (in comments)

Important thingsto note about case statements are listed below (which may help to dispel afew myths).
RTL simulation considers every caseitemabove, but synthesis only considers two (highlighted in bold)
aVerilog case statement ispriority encoded (just likeanested i f expression)
the case-expression iseffectively compared to the case-itemwith atriple-equal (===) case-equality
case-itemsin astandard c as e statement can contain X's (designers often forget this)
thedef aul t inthe exampleabovewill only be hitwhen sel isZ (and propagates the Z onto the output)

normally (when case-items don’'t have explicit X’s) an incoming X on a case-expression will hit thedef aul t
in RTL simulation but netlist simulation may be different

Inan RTL simulation, wheneverthe 1’ b X case-itemin Verilog Snippet 3 is hit there will be an X propagated onto the
output. However, synthesis (and equivalence checking) will ignore this case-item — a semanticinconsistency. The
Semantic Overlap between simulation and synthesis is highlighted in bold — for both thecase statement and the
nested i f . Now consider the same example, but withcase replaced by casex:

casex (sel)

1' bX: f = 2" bXX [l if (sel === sel) f = 2" bXX;
1’ bl: f = 2’ bl0; /1
1’ bO: f = 2" b01;
default: f = 2" bzZz
endcase

Verilog Snippet 4 — Replacing case with casex (wildcard reduces semantic overlap)
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The casex semanticssay that the1l’ bX above will betreated asawildcard and effectively match anything;
consequently all the subsequent caseitemsareredundant. The equivalent i f statement teststhe null operation:
(sel === sel),as(sel === 1’ bX) would have different semantics (explicit test of X, rather than wildcard).

For synthesis, thecasex statement will simply be interpreted as a single assignment (inthe above example a don’t-
care assignment, so the synthesistool isfreeto do anything). This small amount of semantic overlap between
dmulation and synthesis is again highlighted in bold.

Important things to note about cas ex statements include:
the wildcard is 2-dimensional (an X can occur on any case-item and on the case-expression)
awildcard in thecasex expression can cause simulation/synthesis mismatches
ordering isvery important (if 1’ b1 wasthe first case-itemabove, the resulting assignment could differ)
casex wildcardsarefor both X and Z (and ?, a shorthand for Z)
casez doesnot allow X asawildcard (an X in a casezitem isthe same asfor a caseitem)

An example problemfromusingcasex is described in section 4.2.5.

24  Equivalence Checking: 2-State Consistency or strict 2-State Equality

The conceptsin this section should be applicable to al formal equivalence checkers, but are based on our experience
of using both Verplex Conformal and Synopsys Formality at ARM. Thesetools have different terminology for the
two designs, and for different X-related comparison modes. This paper uses the Synopsys Formality terminology of
reference andimplementation designs (termed golden and revised by Verplex Conformal).

Equivalence checkers compare two designs(reference versus implementation) by matching primary 1/0 and internal
state, then individually comparing combinatorial logic for:

Next-States: cones of logic driving the inputs of registers
Outputs: cones of logic driving the primary outputs

In both cases, the conesinputs are driven by primary inputs or the outputs of internal registers. Equivalence
checkers exhaustively compare the two cones by driving al 0/1 combinations onto the inputs. By driving each cone
input to both 0 and 1, equivalence checkersindirectly consider X’sfrom primary inputs and X's stored in registers.

Any explicit X assignments inboth designs will be kept in thelogic cones and the equival ence checker can try both
X=1and X=0in order to fail the comparison. However, an equivalence checker will not necessarily do this— it
depends on how it’s configured to treat X’ sineach design. There are twosensible modes:

1. 2-State Consistency (sameor less X’s): Thisis the defaultway that most equivalent checkers work. The
Formality User Guide [Synopsys 02] saysthat “an implementation isconsistent with areference design
whenitisfunctionally equivalent, given that adon'’t-care state (X) in the reference design can be
represented by either a0 or 1 statein the implementation”. 2-State Consistency differs from Don’'t-Care
semanticsin that the implementation can have the same or less don’t-cares as the reference, but not more
(note that there is an inherent direction from reference to implementation).

2. 2-State Equality (exactly thesame X' s): More stringent test of equality to ensure that the don’t-care space

isidentical. In addition to achieving 2-State Consistency, Formality requires* the [implementation design]
set of don’t-care vectors matches that of the reference design set”.

The basic ideais that 2-State Consistency issufficient for RTL vs. netlist comparisons and most RTL vs. RTL
comparisons because it allows the implementation design to have the same or less don’t-cares (in the case of a netlist
there will be no don’t-cares). If you want exact comparison of X-space, e.g. for RTL Verilogvs. trandated RTL VHDL,
then you need to run acomparison with 2-State Equality semantics (normally after running afirst pass with the
default). However, this basic ideais misleading because:
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1. 2-State Equality can missSequential differences: Section4.2.5 showswhy even this strict comparison
mode can miss differences when X is stored in aregister, due to the combinatorial nature of equivalence.

2. 2-State Consistency can missRTL vs. Netlist Simulation dffer ences: Section 4.2.2shows why this
comparison mode is not enough if you have any reachable don’t-caresin your RTL.

3. Don't-Careboth sidescan introduce RTL bugs. Section 4.2.1 shows how bugs can creep into RTL when
X’sare treated as don’t-care for both sides of an RTL vs. RTL comparison (the default for some tools).

A better explanation of these modes is given below, which isapplicableto all comparisons (not just RTL vs. RTL).
2-State Consistency: Only try setting Implementation X’ sto find differences (Ref X’ s are don’t-care)
2-State Equality: Try setting X's inboth Reference and Implementation designs

Notes are given below for setting comparison modes in the two equivalence checkers used at ARM.

24.1  Comparison Modesin Synopsys For mality

In Formdlity, these two comparison modes are in fact termed Design-Consistency and Design-Equality. This paper
uses 2-State terminology to highlight the dual X=0and X=1 verification, although it does not convey its exhaustive
nature (i.e. for every X). By default, Formality uses 2-State Consistency but you can changethis with the command:

set verification_passing_node equality

242  Comparison Modesin Verplex Conformal

In Verplex Conformal, you need to usethe“set x conver si on” switch correctly for runningthese modes. This
mechanism isvery open and flexible, but the default mode is inappropriatefor RTL vs. RTL comparisons. Some
documentation for this can be found in the Conformal Reference Manual [Verplex 03], but it doesn’t explain the
implications of each setting or how to use it— which should be as follows:

1. 2-State Consistency:set x conversi on DC —gol den; set x conversion E -revised
2. 2-StateEquality:set x conversion E -both

Thiswill produce E points in the comparison, which are pseudo-inputs to drive X to any value. The manual
documents that the default setting isin fact:

Def aul t: set x conversion DC —both

This does not even perform 2-State Consistency and can be dangerous for RTL vs. RTL comparisons (see section
4.2.1fordetails).

25  Formal Property Checking: 2-State Sequential

Formal tools do not adhere to the semantics of X in RTL Verilog but will try and fail the verification by stressing the
design with X=0 and X=1 settings for every X (amuch better representation of any possible synthesized design).
Unlike equivalence checkers, formal property checkersconsider the sequential behavior of adesign— alowing them
to track possible values of X'sthrough internal registers (termed 2-State Sequential in this paper).

Strict 2-State Sequential can be performed by many formal property checkers including;
Averant’s Solidify
Jasper-DA’s Jasper-Gold
Synopsys’ Magellan (dual semantics - al so considers Unknown simulation semantics viaVCS)
Verplex'sBlack-Tie

0-In’s Confirm
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A formal property checker that supports 2-State Sequential semanticsis a powerful analysistool for finding X-
related problemsin RTL, particularly if it has such checksin an automated form (see section 6.5).

Note that some property checkers may support 2-State Sequential but actually use Unknown or Don’t-Care
semantics as default, which are faster but could miss X-related bugs. When evaluating different property checkers,
you should ensure that they are running the same semantics as this can make a big difference to performance results.

3 Why Are X’s Used?

This section describes some of the reasonsfor using X’sin RTL Verilog. Unfortunately, most people that use them
don’t realize the implications of X-semantics and can be adding bugs that they cannot detect!

3.1 Improved Synthesis (don’t-caresfor minimization)

X-assignmentsin RTL are mainly used as don’ t-cares for improvinglogic minimization during synthesis (well known
techniques for thisinclude K-Map and Espresso, but most synthesis tools use proprietary agorithms). This can work
well in reducing the logic, but sometimes doesn’t produce the minimal results you would expect — see section 5.2.

When adding adon’ t-care X-assignment you may unknowingly be adding a bug to your design that you will not be
ableto detect. Y ou need to ask the question: “isit really adon’t-care?”. The fact that your simulations are passing
can be irrelevant — see section 4.1 for a description of this problem and section 4.2.2 for an explanation of why
equivalence checkers normally missthem.

As discussed in section 1, the risk of adding an X outweighs any general improvement to logic minimization. Instead,
designers can manually improve critical paths as necessary and only use X’ sthat are proven to be unreachable.

32  Improved Verification (X-insertion and X-propagation)

Some designersdeliberately insert X’ sinto their RTL to catch exceptional conditions (when they should really be
using assertionsinstead). A common myth isthat X’ swill then stress the design by testing both 0 and 1 valuesin
Verilog simulations—but thisis often not the casedue to X -opti mism(see example in section 4.1.2). Another use of
X4nsertion is to trap missing assignments in complex state machines (see section 2.1.1 of [Cummings 03]).

X-propagation is then used to try and make the error observable. This technique can be useful but will only work if
your Verilog RTL perfectly propagates X's, which isvery rare (see section 7.4). Again, assertions can be better suited
for thistask becausethey increase the observability of bugs by immediately stopping the simulation and reporting its
origin. However, X-propagation can sometimes be useful in RTL simulations (any validation method that detects
bugsiswelcome).

4 Why Are X’s Dangerous?

X-assignmentsin RTL can causepessimistic and optimistic results, as aready described in section 2.2 (and by Lionel
Bening [Bening 99]). X-Pessimism can lead to wasted debugging effort during verification. Worse still, X-Optimism
means that bugs can lay dormant in adesign (undetected by RTL simulations or equivalence checking).

Other problems arise from different RTL simulation and synthesis semantics, e.g. wildcard incasex, which again
cannot be found by equivalence checking. Equivalence checkers are very useful toolsthat can find functional bugs
and X-related bugs, but only if they are used with care—and not with the default settings.

This section detail s the non-intuitive effects of RTL semantics, backed upby simple examples that illustraterea
problems found at ARM.

41 BugsMissed by RTL Smulations

Due to subtle X semanticsin Verilog, RTL simulations can pass tests that netlist simulationscould fail.
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Unfortunately, far fewer netlist simulations are performed because:
1. Netlist simulations are much slower than RTL simulations, so arenot cost effectivefor entire regressions.
2. Equivaence checking is more complete and rigorous.

The second assumptionisavalid onein general (ARM strongly recommends equivalence checking as arigorous
method of finding differences) but not where X’ s are concerned. Equivalence checkers can easily miss differences
due to optimistic RTL interpretation of X.

41.1 Latch Behavior in RTL Simulation

In Figure 1 below, acase statement isused in Verilog RTL to describe asimple AND function. Unsurprisingly, itis
synthesized to an AND2 gate. However, the waveform illustrates that RTL simulation differs from netlist simulation.

Verilog RTL Verilog Netlist
al wvays @ (wl)

case (wl) ‘ . Wi ol
2'b00: ol = 1'bo; [YMNeSIS) o)
2'b01: ol = 1’ bO; |
2’ b10: o0l = 1’ bO;
2'bl1l: o1l = 1'bil;
Il No default! <—Xin wl is not specified, ...
endcase ... latch previous value of o1

N

wiz:o) K o1 X 11 X ox X X X  oxx )

Gate Sim: 01 \ [ \ /( )l( )

RTL Sim: o1 |\ / e————— Latching —_—)
I I

Figure1: Simulation differences caused by L atch behavior

Simulation differences occur when any X appears on the wl signal, maybe from an explicit don’t-care assignment
(aternatively viaaprimary inputor un-initialized register). Any X on wl will mean that wl cannot match any of the
four case-items. Asthere’snodef aul t linethe output 01 must keep itsprevious value, whichin the above
waveform means that 01 will stay latched high. The most interesting difference occurs when wl==2" b0X:

Netlist simulation correctly shows ol low
RTL simulation incorrectly keepsol high (the opposite value)

Every netlist will behave like thisand differ from RTL simulation, regardless of the minimization of the X onwl.

Synthesis tools do not warn of behavioral latches, but such differences between RTL and netlist simulations become
dangerous when the RTL verification only passes certain tests because of thisinterpretation of X.

This example can also be used to compare different semantics of X, asillustrated in Figure 2 bel ow. Formal
verification tries both O and 1 for every X and consequently determines that 01 should go low for wl==2" bOX
Hence, formal analysisof the RTL is an accurate model of any synthesized netlist but thisisa double-edged sword:
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Pro: Formal property checkerscan find functional bugs hidden by X semanticsin RTL simulations
Con: Equivalence checkers cannot find the differencein this example, irrespective of configuration

Thisexampleis best handled by RTL coding style guidelines for avoiding simulation and synthesis mismatches, as
described in sections 7.1 and 7.4

Simulation: Gate vs RTL
wizo)k o1 X 11 X ox X ix X xx )
Gate Sim: 01 | A \ A X )

RTL Sim: o1 | 4

Latching—b\

Formal Verification: RTL
I

RTLFV: ol | / \ A Try Both:0, 1 )
[

Simulation: RTL + default

I

default=1: 01 |\ / Optimism e —
I
— .
default=0: 01 |\ / \ <+ Optimism——/
1

_

6—Pessimism->I X )

default=X: 01 \ A

Figure 2: Comparison of X Semantics

The obvious RTL coding guidelinetofix thisexample isto always use adef aul t to matchincoming X’s, but the
question iswhat valuethedef aul t should assign. Figure 2 illustrates the three possibledef aul t assignments:

default: 01=1 Same result as X atching, with real difference for wl==2" b0X
default: 01=0 Optimistically keepso1 low when it could be highin anetlist simulation
default: 01=X Closest match tonetlist simulation, with pessimistic X for wl==2" b0X
For the most accurate result, thedef aul t should propagate X’ s rather than optimistically terminating them.

412 OptimisticX Semanticsin RTL Simulation

A common problem with Verilog RTL is X-Optimism around i f statements. Consider the following example:
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always @ (il or i2)
case ({i1, i2})
2’ b00, 2’ b01: ol

1'bX; // don't-care X-assignnment

2’ b10: ol = 1' bO;

2’ bl1l: ol = 1' bl;

defaul t: ol = 1'bX; // X propagation
endcase

always @ (i 2 or ol)
if (ol) o2 1' bO;
el se 02 i 2;

Verilog Snippet 5: Example of X-Optimism

Inthis example, an X onoutput 01 will not stress both branches of the subsequent i f statement that assigns output
02. Instead, the X will only choose the el se branch and expose problemswheni 2 isassigned to 02. What if the
don't-careisminimizedtol’ b1 —if you run netlist simulations you could fail apreviously passing test! Infact, the
X-assignment actually represents two separate don’t-cares— asillustrated in Table 2 below.

RTL Simulation
Input il Inputi2 | Output ol | Output 02
0 0 Xa 0
0 1 X 1
1 0 0 0
1 1 1 0

Table2: RTL Simulation

Consider a simple toggle test on each output, to check that they can go toeither 0 or 1. An RTL simulation that sets
every possible combination of inputsi 1 and i 2 will show that output 02 can be toggled. However, theonly
assignment to 1 on output 02 occurs due to optimistic X interpretation. The output-toggle test passes on RTL but
would it also pass on netlist simulation? The two X’sinTable2 areinterpreted as don't-cares by synthesis, allowing
four possible implementations of output 01 — asillustrated in Table3 below.

Xa=0, X,=0 X=0, X,=1 X=1, X,=0 Xa=1 X,=1
Cct #1: 01=(i1&i2) Cct #2: 01=i2 Cct #3: 01=(i1==i2) | Cct #4: 01=(~i1]i2)
i1 i2 ol 02 ol 02 ol 02 ol 02
0 0 0 0 0 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0
1 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 1 0

Table3: Four Possible Netlist Simulations

Table 3 shows that two of the four possiblenetlists would actually fail the simple toggle test, with output 02 being a

constant 0. Thisis an example of RTL simulation passing atest that a netlist simulation could fail —depending on the
minimization of don’t-cares. This showsthat even if RTL simulations pass exhaustively, it does not confirm that X
assignments are truly don’t-care (in this case they are do-cares for 50% of all possible netlists).
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The recommended comparison mode for equivalence checking RTL vs. netlist is2-State Consistency and this will not
findthissort of RTL vs. Netlist ssimulation difference. Section 4.2.2 explains why this RTL will compare as equivalent
to the most likely synthesis (missing the simu lation differences completely).

Recommendation 1: Evenif all RTL smulations pass, a don’t-care should be considered to be adon’t-
know unlessit’s proven to be unreachable.

Section 6.5 shows how to formally verify that don't-cares are unreachabl e, using automatic proof techniques.

42  BugsMissed by Equivalence Checking

This section describes why equivalence checking often misses differencesin both RTL vs. RTL and RTL vs. netlist
comparisons. It provides examples that illustrate unsuitable defaultsin thetools, inadequate documentation leading
toincorrect usage, and fundamental limitationsin thistechnology. Differences are missed due to the use of
reachable don't-care X-assignments and X’ s stored in registers. All of theexamples show false positive results—
something that’ s considered an anathemato equivalence checking. As equivalence checking is such acrucia part of
today’ sdesign-flows, thisisavery good argument to avoid such X’s.

42.1  Equivalence-Check Problem #1: Don’t-Care both sides can introduce RTL bugs

Asdescribed in section 2.4, equival ence checking semantics of X-assignments gives you two choicesto try and find
differences— only try setting X’sinthe implementation (2-State Consistency) or try setting X’sinboth designs (2-
State Equality).

When theimplementationis a netlist there should be no X -assignments, but the directionis very important for RTL
vs. RTL comparison. One thing that an equivalence checker should never doisinterpret X-assignmentsin the
implementation RTL as Don't-Care; otherwise a constant O or 1 in the reference RTL could be incorrectly passed as
equivalent to an X in the implementation (but what if thisis then synthesized to the opposite polarity?). To avoid
such bugs creeping into RTL, you must never pass as equivalent any implementation design that has more reachable
don’t-care X-assignments than the reference design.

The default setting in Verplex Conformal does not have any idea of direction; it treats X’ sin both sidesasdon’t -
cares and so could give afalsepositive result for RTL vs. RTL. Wefirst saw this problem in an RTL Verilogvs.
trandated RTL VHDL comp arison (being an | P house, this comparison is often done at ARM and we can double
check our results with different equival ence checkers).

Verplex Conformal has avery open and flexible mechanism (called “set x conversion™) that can be used to explore
both 2-State Consistency and 2-State Equality. Thisflexibility allows other modes, including the dangerous
configuration that is the current default in Verplex Conformal:

Don't-Carein both designs: set x conversion DC —both

Most users don’t change this setting, so the potential is still there for falsepositive resultswith RTL vs.RTL
comparisons. Thisissue has been highlighted to Verplex and is expected to be addressed this in the next version of
the tool. It’snot atrivial issue, as badly chosen settings can affect performance, but it needs to be addressed to
avoid bugs being introduced into RTL.

42.2  Equivalence-Check Problem #2: 2-State Consistency can missRTL vs.Netlist Simulation differences

The documentationin the Formality User Guide [Synopsys 02] incorrectly states:

“[Equality] is appropriate only when both the inplenentation and
reference designs are RTL designs, because gate-level designs do not
have don’t-care information.”

Intuitively, this seemsto make perfect sense but it’ sinsufficient when you have reachable don’t-caresin your RTL.
This section shows how bugs can be missed with the recommended (2-State Consistency) settings but can be found
with the stricter 2-State Equality comparison.
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Consider the examplein section4.1.2, which passes asimple RTL toggle test that fails in some netlists (see Table 3).
If you read thisRTL into Synopsys DC, synthesiswill result in the minimal form— atrivial circuit shown below.

always @ (i1 or i2)
case ({i1, i2}) i 1D—14—
2'b00,2'b01: 01 = 1'bX; // X ->1i2
2’ bl0: ol = 1’ bO; - N
2’ b11: ol = 1' bl; : i !
; 2 —°| >°—| >0 ol
defaul t : ol = 1’ bx; H 2> ] -E__D
endcase “ouiter
al ways @ (i2 or ol) J___DOZ
if (0l1l) o2 = 1'bO; L
el se 02 =1i2; -

Figure 3: Synthesisto Minimal Form

Consider running an exhaustive simulation on the RTL code, and an exhaustive simulation on the netlist. The results
are shown in the table below.

RTL Smulation Netlist Simulation
Input il Inputi2 | Output 0l | Outputo2 | Outputol [ Output 02
0 0 X 0 0 0
0 1 X 1 1 0
1 0 0 0 0 0
1 1 1 0 1 0

Table4: Different Smulation Resultsfor RTL and Netlist Smulations

The simulation results are different for the netlist and the RTL, highlighting how a passing test in the RTL simulation
can fail in netlist simulation. Thisis due to the optimistic interpretation of X-assignmentsin ani f statement, leading
to just theel se branch being active when output 01 isset to X.

Rather than run netlist simulations (which are much slower than RTL simulations) people now rely on equivalence
checkersto find functional differences. Unfortunately, the default modes of both Synopsys Formality and Verplex
Conformal will passthisRTL vs. netlist comparison as being equivalent. This is because equivalence checkers will

treat X’sin thereference RTL as Don't-Car e (which can legitimately be synthesized to 0 or 1), without considering
the effects of the Unknown X-semanticsin RTL simulation.

So, what does this result mean? In 2-State Consistency mode, the equival ence checker:
Has verified that the synthesistool has correctly implemented the circuit
Has missed an important difference between RTL and netlist simulation, due toa synthesis don’ t-care

If you switch over to astricter 2-State Equality comparison, you will find the difference between RTL and netlist for
this example. Each X ismodeled as a pseudo input that can be set to 0 or 1 for each input combination, as illustrated
in the table below. This confirms the resultsin Table 3, that the difference occurswhen inputi 1 islow and inputi 2
ishigh.
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RTL Reference Netlist Implementation
(X = pseudo-input E in reference RTL)
Input il Input i2 Pseudo | Outputol | Outputo2| Outputol | Output o2
Input E
0 0 0 X=0 0 0 0
0 0 1 X= 0 0 0
0 1 0 X=0 1 1 0
0 1 1 X= 0 1 0
1 0 - 0 0 0 0
1 1 - 1 0 1 0

Table5: Difference found by 2-State Equality Semantics

So, the current default settings for equivalence checkers are not sufficient for RTL vs. netlist comparisons when there
are reachable don’t-care X-assignmentsin the RTL. Question is, should you use 2-State Consistency or 2-State
Equalityfor RTL vs. netlist comparisons? A recommendation is given in section 4.2.4 for a safe methodol ogy that
aso considersthe problem of false negatives.

42.3  Equivalence-Check Problem #3: 2-State Consistency can missRTL vs.RTL differences

2-State Consistencyisthe recommended default modefor RTL vs. RTL comparisons, with 2-State Equality used to
check that the don’t-care spaceisidentical (e.g. for Verilog to VHDL translations).

However, the example netlistin Figure 3 could just as easily be modified RTL — with the don’t-care X -assignment
rewritten asol=i 2. So, the problem described in section4.2.2isequally applicableto RTL vs. RTL comparisons.
However, for RTL rewritesin the same HDL (e.g. Verilog to Verilog) you will have a chance to spot the differences by
rerunning RTL simulation regressions.

424  Recommended Settingsfor Equivalence Checking

Just using 2-State Equality seems to be a good idea becauseit can find areal simulation difference for outputo?2 in
sections 4.2.2 and 4.2.3. However, there are problems with this approach.

This strict comparison mode will also show that output 01 is non-equivalent (in rows 2 and 3 of Table5). Isthis
correct? This difference does not fail the RTL simulation, but thisis just atoggle test on each output and does not
check any functional dependence of outputol. Table 3showsthat output 01 isdifferent for every logic
minimization, which sounds like arecipe for disaster (especially as these differences are masked in RTL simulations).
Bottom lineisthat this X is reachable and so this difference has to be considered as a bug.

Y ou can also get non-equivalencesfrom 2-State Equality that are false negatives, i.e. not areal difference that would
show up in simulation. Thisis due to the fact that equivalence checkers cannot determineif the don’t-care X-
assignmrents are reachable (and could therefore cause a simulation difference).

To avoid missing bugsin both RTL vs. Netlist and RTL vs. RTL comparisons, the first recommendationis:

Recommendation 2: Always start an equivalencechecker in thestrict 2-State Equality comparison
mode (the default settingsof thetool can missbugs).

If this comparison passesthen you' re done. However, such a comparison will sometimes |ead to differences that are
false negatives— hence the following.
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Recommendation 3: If acomparison failswith strict 2-State Equality but passeswith 2-State
Consistency, the passis acceptableprovidedyou can provethat all X’scausing
differencesare unreachable (i.e. thefailures are false negatives).

See the techniques described in section 6.5 to prove that these X’ s are unreachable (maybe these techniques could
be included in future versions of equival ence checkers to automate this recommended flow). Finally, when comparing
RTL Verilog against RTL VHDL you really need to know that the don’ t-care space is exactly the same.

Recommendation 4: RTL Verilogvs.trandated RTL VHDL should be equivalence checked using 2-
State Equality (to ensurethat thedon’t-care space isidentical).

425  Equivalence-Check Problem #4: Sequential Differences missed if X’sstored in Registers

Equivalence checkers exhaustively compare combinatorial logic cones between primary 1/O and internal registers, by
driving the cone inputs to al possible 2-state combinations and comparing the results. They indirectly consider X's
stored in registersas 0 or 1 because register outputs are inputs to the logic cones (along with primary inputs).

However, equivalence checkers do not consider the sequential relationship between an X stored in aregister and the
corresponding X in the next -state logic (from the previous clock cycle). Thisloss of reachability information can
cause false negative failures in the comparison result and al so some misleading debug information.

This isafundamental limitation of current equival ence checkers, which cannot be overcome by changing to an even
stricter comparison mode. It is also an advantage - the comparison is very fast because only combinatorial logicis
checked. There are some sequential equivalence checkers (particularly in academia) but these are restricted in what
they can compare (need to be targeted at a small part of the circuit). Thereisalso alimited sequential check in
Synopsys’ Formality, see [Synopsys 02] for theset _par ant ers —r et i med command, but thisis only suitable
for small isolated parts of adesign.

Consider the following RTL that usescasex to concisely specify case-items.

Assignment Usage in casex
assign abData = aCtrl ? al ways @ (abDat aP)
8' b0000_0000:
8' 1 1XX_ XXX casex (abDat aP)
8' bOOXX XXXX: 01=1'b1l;
8' b0110_0110: o01=1' b1,

Storage
8' b1001 1001: o1=1'b1,;
aData— pEF t—aDbataP RT\,sJ\mu\a\\OY\ 8' b1100 1100: 501—1 bl; ‘
> 8" b11XX_XXXX; ——def aul t :10l1=1" bO; |
Synthesis N~ s
endcase
Effect of stored X’s ignored ... ... difference missed!

Figure 4: False Positive Equivalence dueto X-stor age

Most users are familiar with the fact that you can use wildcardsincasex (and casez) to write concise case-items

that will match many 0/1 combinations. However, many do not realize that wildcards are 2-dimentional —an X or Z ina
casex selection expression is also treated as awildcard and can match in unexpected ways. If thisincoming X is

stored in aregister, equivalence checkerswill ignore thiswildcard (but RTL simulation will not).

Consider the example above, where 6 out of 8 bits can be assigned to X as don’t-cares. When these X-assignments
are stored in the register, RTL simulations will always pick the 4th case-item Synthesiswill result in each X-
assignment being minimized to a0 or 1 Statistically, netlist simulation will pick the default 98% of the time (given 2°
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possible minimizations) but it may even be higher (as every X to zero would make sense here, to reduce the logic for
the conditional selection). The problemisthat thedef aul t assigns1’ b0 whereas the 4" case-item assigns1’ b1
to the output.

This example shows a difference between RTL simulation and netlist simulation, but will equivalence checking spot
this difference? The result depends on the X comparison mode;

2-State Consistency: 100% equivalent. Output ol and next-state aDat a[ 7: 0] .
2-State Equality: 67™6 non-equivalent! Next-stateaDat a[ 5: 0] (but output 01 is equivalent!)

The strict comparison modereports differencesin theaDat a[ 5: 0] next-state function, but only because the
equivalence checker can always set the X’ s to the opposite val ue that synthesis chose Despite this difference, the
01 output isreported as equivalent due to the combinatorial nature of the comparison— so the user may dismissthe
reported differences as unimportant.

The reason for output 01 being equivalent can beinvestigated withan RTL vs. RTL comparison, where the modified
RTL just assigns: aDat a[ 5: 0] =5’ b00000. Theoutput function is unchanged so will be reported as equivalent.

There are many problems associated with casex, including its subtle semantics (along with the abundance of X -

assignmentsin most RTL) and difficult translation to VHDL, so they should never be used. This guidanceis also
given by Don Mills [Mills99], who goes on to say that casez is much safer (asyou don't typically have Z-
assignmentsin RTL). However, they should be avoided if possible becausecasez isstill difficult to translate to
VHDL and does not fully propagate X' s (if an X on the case-sel ection matches a Z-wildcard in a case-item). Hence
the following:

Recommendation 5: Never use casex statements asthey arejust too dangerous, and avoid casez
whenever possible.

42,6  Simulation Semantics|gnored by Synthesisand Equivalence Checking

This paper has already shown two examples that cause fundamental problems for eguivalence checking, even with a
strict 2-State Equality comparison, due to its combinatorial nature:

Figure 1: Smulation differences caused by Latch behavior (100% equivalent)
Figure 4: False Positive Equivalencedue to X-storage (differences found, but too easily ignored)

These examples show differences between RTL and netlist simulationsthat are due to the affects of X semantics on
RTL smulation. RTL coding guidelines can reduce these affects, but a more general solution isto avoid reachable
X’'s inthefirst place (see Recommendation 1) and thereby improve the effectiveness of equivalence checking.

Formal property checkersdo consider sequential semantics, so they can be used to analyze X-assignmentsto seeif
they are reachable (see automated proof techniques in section 6.5) or safe in another way (e.g. only reachable when
not read, as described in section 6.6). This leads to the following recommendation:

Recommendation 6: Use automatic property checking to provethat an X isunreachable, or
interactive property checking to provethat the X isnot stored in aregister.
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42.7  Synthesis Semantics Ignored by Simulation

Consider the example below that uses synthesis pragmas to give extrainformation to synthesis (which are ignored by
RTL simulation).

case (1'bl) // synopsys full_case parallel _case
sel [0]: HSi ze=2' b10;
sel [1]: HSi ze=wi;
sel [2]: HSi ze=w2;
sel [3]: HSi ze=2' b01;
endcase

Verilog Snippet 6: One-hot Casewith Bad Coding Style (two synthesis pragmas)

The above Verilog will look odd to many designers, but is perfectly legal. It’ s effectively a priority encoded nested
i f expression, with every case-item comparedinturni.e. “if (sel [ 0] ===1) HSi ze=2" b10; el se if
(sel [1] ===1) ...”.Although thisdoesn’tlook like an X-issue, thecase statement inVerilog Snippet6is
equivalent to the following casex statement:

casex (sel) // synopsys full_case parallel _case
4’ bXXX1: HSi ze=2' b10;
4’ bXX1X: HSi ze=wl;
4’ bX1XX: HSi ze=w2;
4’ b1XXX: HSi ze=2' b01;
endcase
Verilog Snippet 7: Alternative One-Hot Case with Bad Coding Style

Both of the two bad coding stylesabove use synthesis pragmas to tell the tool not to synthesize priority encoded
logic (which would otherwise be required to avoid clashes when more than one bit of sel isasserted). The
par al | el _case pragmatellsthe synthesistool that al four sel bits are mutually exclusive (i.e. one-hot),
dlowing it to synthesizelogic equivalent toVerilog Snippet 8.
assign HSize[1:0] =
({2{sel[0]}} & 2'Db10)
| ({2{sel[1]}} & wi)
| ({2{sel[2]}} & w2)
| ({2{sel[3]}} & 2"b01);
Verilog Snippet 8: Sum-of-Productsform of One-hot Mux

What if the selection lines are not mutually exclusive? Consider sel [ 0] andsel [ 3] asserted at the sametime, as
highlighted in bold. The RTL simulation of Verilog Snippet 6 will setHSi ze to 2’ b10whensel [ 0] isasserted,
dueto the priority encoding of aVerilogcase statement. However, a netlist simulation of the sumof-products logic
will turn the multiplexer into a merging component— setting HSi ze to2’ b11. This particular problem was found by
formal proof of the AHB property: HSI ZE < 2’ b11, fortunately before the design was shipped.

Equivalence checkers can be told to follow the same synthesis semanticsfor f ul | _case andpar al | el _case,
which is clearly dangerous from the above example. Instead, you should avoid using these pragmas altogether (see
Cummings [Cummings 99] for more information). Some people write a one-hot multiplexer as a sumof-products
directly intheir RTL —if you do this then you should add a one-hot assertion (the OVLassert _one_hot
assertion also checks for X' s on the selection) and, ideally, use automatic formal proofs to ensureit’s always safe to
use (see section 6.5).

43  Mideading Code Coverage
Due to X-Optimismin Verilog RTL semantics, it’ s possible for code-coverage to:

claim abranch isnot covered when it slogically reachable (by some2-state combinations)
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pass a branch ascovered when it’slogically unreachable (i.e. no 2-state combination)

Such problems have been found at ARM by careful comparison of code-coverage reports with automatic property
checking results (see section 65.1).

The following s mple example illustrates both problems. Due to asingle don’t-care X-assignment that’s reachable, an
exhaustive RTL simulation (in fact, just inputi 1 at O then 1) will claim that two assignmentsto outputol are
coverage holes. Thisis becausethe2’ b01 and 2’ b10 assignments can only occur wheni 1 islow, in which case
both wireswl and w2 are X; consequently thefina el se branch must be taken. Code coverage will passthe2’ b00
and 2’ b11 assignments as being hit, but deadcode analysis (see section 6.5) will show that thefinal el se
assignment isimpossible to reach (becausew? isthe inverse of wl).

assign wl =i1 ? 1'bl : 1'bX
assign w2 = ~wl; // Note: ~X=X Code Automatic
Coverage Formal
always @(il or wi or w2) (i11=0; i1=1;) Proofs
if (il) 01 = 2' b00; = covered reachable
else if (wl) 01 = 2' b01; < hole! reachable
else if (W2) ol = 2'bl0; i hole ! reachable
el se 0l = 2'bll; = covered deadcode !

Figure5: Code Coverage affected by X-Optimism and X-Pessimism

It’ simportant to realize that the code-coverage tool is correctly implementing the Verilog semantics, but thisis
arguably not appropriate for itstask i.e. atest metric to ensure every branch has been hit (to have a good chance of
finding bugs). Code coverage isnot incorrect in the above example, but it’s certainly misleading. This example
highlights why:

it’s sometimesimpossible to reach 100% code cover age
100% code-coverage could be optimistically high (with deadcode left in your RTL)
Both these problems can make it difficult to find bugs, which leads to another recommendation.

Recommendation 7: Use automatic property checking to investigate code cover age r eports.

Automatic property checking is excellent at finding deadcode, but branches reported as reachable might in fact be
conditionally reachable. In the above example, the2’ b01 and 2’ b10 assignments are both reported as reachable
but arein fact mutually exclusive— it depends on the minimization of the reachable X-assignment.

5 Why are X’s I nefficient?

Some X assignmentsin Verilog RTL can be inefficient rather than dangerous. They can reduce the efficiency of EDA
tools or the productivity of engineers.

51  Unnecessary X’sin Netlist Smulations

As should be expected, netlist simulations more closely model an actual circuit than RTL simulations. However, they
can still suffer from X-pessimism and loss of context information (see Verilog Snippet 1). An example of thisis shown
in Figure 6 below, where both sides of a Multiplexer are masked by X’ s— even when the inputs are identical (in which
case the output would be driven by theinput in areal circuit).
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UDP Multiplexer Multiplexer as Gates

A multiplexer primitive created A multiplexer that’s been created
from a User Defined Primitive can from gates will pessimistically
correctly model this corner case output an X for this corner case
sel =X
i1=1
w=1
i 0=1

Figure 6: Multiplexer Smashed into Gates can Pessimistically output X’'s

X-pessimism means that netlist simulations can produce fal senegative results, which may require extra debugging
effort. However, you should not miss X-related false positives (assuming you run enough netlist simulations).

52  Non-Minimal Synthesis of Don’t-Cares

One of the main reasonsgiven for using X-assignmentsisto improve logic minimization. It’ strue that don’t-cares
allow better minimization but it' s not always the case that you get the minimal result you expected, and it’ s often
difficult to determinethat it’s gone wrong (when did you | ast inspect large schematics?).

At ARM we have acoding policy that discourages certain Verilog stylesthat can lead to semantic differences
between RTL and netlist simulations, including:

paral | el _case: synthesis semanticsignored by smulation (not priority encoded)
casex: simulation semanticsignored by synthesis (X on case-expression)

At ARM, multiplexers with one-hot selection are used for areas that are speed critical. They are either written directly
in a sumof-products form or as aone-hot case statement — an example of which is shown below. Note that the RTL
below follows good coding-practice, unlike the examples in Verilog Snippet 6 and Verilog Snippet 7.

case (sel)
3'b001: f=i0;
3’ b010: f=i1;
3’ b100: f=i2;
default: f=2"bXX;
endcase

Verilog Snippet 9: One-hot Casewith Good Coding Style

Prior to logic minimization, SynopsysDC does *template matching” to seeif it recognizes design-intent for synthesis
from the coding style. The initial template matching phase recognizes the bad coding styles in Verilog Snippet 6 and
Verilog Snippet 7, and duly minimizes the logic to an efficient 2-stage sumof-productsform. Thisidea minimization
of a3-bit one-hot multiplexer is illustrated in the Karnaugh Map below.
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f sel[2:1] Minimal form
00 01 11 10 f =i2 & sel[2]

ol - |i1 T—E. | i1 & sel[1]
sel[0] ; : | i0 & sel[0];
(o | - [t- | -}

Figure7: Minimal K-Mapof a One-Hot Multiplexer

Rather than implement this minimal sumof-products directly in and OR-AND form, itis optimized to a NAND-NAND
form as shown below (which also uses a composite gate from this library). Note that during optimization the minimal
form will not change (which is chosen during the HDL C or Presto compilation stage).

.- Synopsys Design Analyzer

e Edit Yiew ls

fttributes Analysis Too

|

3-input onehot
2-bits wide
(minimal & optimal)

[ = |- [E @]l

=]

Current Design: test_onehot3

Schenatic View

Left Button: Select - HMiddle Button: Add/Modify Select - Right Button: Menu

Figure 8: Minimal Synthesisfor One-Hot Multiplexer

Unfortunately, the template matching in Synopsys DC does not recognizethe standard Verilog one-hot case
statement in Verilog Snippet 9 (despite following good coding practice). It then goes ontoits proprietary minimization
algorithms but produces a non-minimal result, asillustrated below.
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f sel[2:1]

00 01 11 10

0 m i1 |- | i2}
sel[0] ; ;
1 @J - oo

Non-Minimal form (extra logic!)
f

=i2 & sel[2]

i1 & sel[1]
i0 & !'sel[2]& !'sel [1];
. - S

same as sel[0] if one-hot

Figure 9: Non-Minimal K-Map for aOneHot Multiplexer

Thisinefficient minimization produces an expression with extraterms and, finally,resultsin extra gate stages as
shown in Figure 10 below. This means moregates, wires, a slower circuit and increased power consumption.

= Synopsys Design Analyzer

u Attribubes Analysis Tools

Double as

ol 1D 8

4 :B'—-D

”»

2 bits wide™—

|21

Current Design: test_onehat

Tone:

Schematic Yiew

Figure 10: Redundant Gate Stagesfrom Non-Minimal Synthesis

Thisissue was highlighted to Synopsys and fixed in version 2003.06-SP1, but only for the Presto compiler.

If you are using an older version of Synopsys DC, or use 2003.06-SP1 but with the HDLC compiler, you will still see
this problem. Asidefrom rewriting it directly as a sum-of-products form, there isaworkaround that sometimes
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manages to steer Synopsys DC’slogic minimization to the best choice. That workaround is to set the zero-case
item’s don’t-care to 0, as shown below in Verilog Snippet 10.

case (sel)
3" b000: f=2"b00; // workaround: set zero case-item don’'t-cares to O
3" b001: f=iO0;
3" b010: f=i1;
3" b100: f=i2;
default: f=2"bXX;
endcase

Verilog Snippet 10: Workaround to Improve One-Hot synthesis

This zero-caseiitem assigning zero can stop Synopsys DC’ s minimization agorithm from using the zero term to
produce non optimal min-terms,by stopping the badi 0 loop shown in Figure 9. However, this workaround is not
guaranteed to produce minimal logic - particularly whenthecase statement has multiple assignments with shared
terms (or if the caseexpression is used elsewhere). Thisleadsto the following recommendation.

Recommendation 8: For one-hot logic on a critical path, writethe RTL directly in a sum-of-products
form (rather than case) and add a one-hot assertion checker.

53  Limited Speedup with 2-State Simulation

Some Verilog simulators have a2-state (binary) mode that, in theory at least, can lead to asignificant speed upin
simulation time. If your RTL iswritten in agood coding style, specifically to avoid reachabledon’ t-care X-
assignmrents, then you can save alot of timewith regressions. Even if you do need to do some 4-state simulations, a
2-state mode could be used for quick functional regressions. However, you still might not achieve the speed ups that
you would expect from 2-state simulation.

For example, the VCS User Guide [Synopsys 02] describesthe+2st at e switch in the SynopsysVCS simulator -
which triesto model as much as possible in 2-state but has to retain 4-state simulation for some signas (e.g. if
compared viathe === case-equality operator). This soundsideal but we have experienced very little speed upat
ARM because

“As stated in |EEE Std 1364-1995, page 33, the conparison in the case
equality and inequality operators matches the conparison in a case
statenent. Therefore if a signal is in the case expression in a case
statenent (or a casez or casex statement) then the signal nust retain
four state sinmulation so VCS can |ook for X and Z value bits.”

So, the performance benefit of 2-state simulation will be very limited if you have lots of case statementsin your
Verilog RTL. Thisissue has been highlighted to Synopsys and they are investigating the possibility of providing a
mechanism to bypass this (which should be safe with a suitable RTL coding style for case statements). Note that
SystemV erilog has separate 2-state datatypes to overcone this problem (see section 7.6).

54 Slower Formal Verification

Formal verification exhaustively applies dl 0/1 combinations (and also sequences for property checking) to verify a
design. In addition to this, it can also set X’sin any way to try and break the verification. Therefore the presence of
X’s (either asdon’ t-care assignments or un-initialized registers) will significantly slow down formal proofs.

The most significant reduction in don’'t -care X’ swill probably come from a minimization approach (e.g. Espresso or
Synopsys DC). For the ARM 1136J(F)-S™ over 5,500 X’ s were removed from the Corein thisway and asaresult the
deadcode automatic property checking changed from aweekend run to under 2 hours. Similarly, compilation time for
formal verification tools can be speeded up significantly.
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6 How To Find Dangerous X's
The following sections describe different techniques toinvestigate X' s that can causeproblems.

6.1 Additional Smulations

We have seen in this paper how X-Optimism, particularly aroundi f statements (and case statements with defaults
that don’t assign X), can mask bugs that can only be revealed by netlist simulations. The problem with netlist
simulationsisthat they are slow to run, so this section describes somealternative RTL simulations.

6.1.1 RTL Simulation#1: All X’sto 1 (then all X’sto0)

To reveal problems with reachable don’t-care assignments you can try minimizing them in the RTL and rerunning
RTL regressions. There are far too many possible combinations to explore, but the two extremes (all X’s minimized to
1, and al X’ sminimized to 0) should be tried. It sounds crude but can be effective, particularly theall X'sto1's
(which has more chance of taking adifferent, i.e. non-X, branchinani f statement or def aul t of acase).

It sfairly straightforward to write a script to achieve this simple minimization. One way isto first translate every X-
assignment into a standard form (either 1’ bX or { N{ 1" bX} } for multi-bit assignments) and then just using asimple
sed script to change every 1’ bX (thisworksif you don’t alow casex inthe RTL).

6.1.2 RTL Simulation#2: Minimized RTL as L ogic-Equations

A moreredistic way of investigating the effects of synthesis minimizationwith RTL simulation isto minimize the
don’'t-care X’sin the exact same way as your synthesistool (but without producing a netlist). For Synopsys DC, you
can either usethe “conpi | e —no_map” command or setthe“veri | ogout _equati on” TCL variableto
produce minimized RTL in the form of Boolean equations (rather than a GTECH netlist). Minimization is performed in
Synopsys DC by the Verilog compiler, but can be different according to the choice of compiler (HDLC or Presto) so
you should try both. Note that after theVerilog RTL has been compiled, minimization is not affected by any target
library optimizationsin either Synopsys DC or Synopsys PC.

Y ou may find that you only have to do thiswith small parts of your design, asthere’ s no point minimizing blocks that
have no reachable don’ t-care X-assignments. Complex combinatorial blocks with alarge don’t-care space are ideal
targets for thistechnique (e.g. decodersin amicroprocessor).

6.1.3 RTL Simulation #3: Un-Initialized Datapath Registers

A similar problem to reachable don’t-care X-assignments are initialization X’ s from datapath registers that are not
reset, and could interact in exactly the same X -optimisticway ini f or case statements. Such initialization X’ s are

not exposed by minimizing the logic and there's no associated X-assignmentsin the RTL.

The simplest techniqueisto set theinitid value of all registerstol’ bl (oral to 1’ b0) at the start of asimulation,
just prior to reset. After reset, the control registerswill be reset to their normal initialization value and an RTL
simulation can berun to expose X problems due to un-initialized datapath registers affecting the control logic. Again,
two simulation regressions should be tried (first with all-1's, then with al-0's).

A more sophisticated technique isto randomly initialize registers prior to areset. See Bening [Bening 99] for details of
this approach (and the use of netlist simulationsto reveal X-issues). Note that some simulators provide flagsto
initializeregistersto al-1's, al-0'sor random (e.g. +vcs+i ni t r eg+N for Synopsys VCS, with N>1 for random).
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6.2 RTL Codelnspection

This section gives some ideas about how to identify potential problemsin your RTL by code inspection.

62.1 All Don’t-Care X-Assignments

The set of all don’t-care X-assignments cannot be found with a simple script, because you need to ignore some. RTL
often contains X-assignments that are not synthesis don’t-cares, but instead used for X -propagation. These are
assignments that are redundant in all 0/1 combinations e.g. adef aul t X-assignmentin acase statement where all
2-state enumerations are covered in preceding case-items.

Linters and equivalence checkers can be usedto list all potential don’t-care X-assignments, e.g. Verplex Conformal
will tell you this with the command:

report rule checks -verbose

Not all reported don’t-care assignments will cause a problem, so thislist can be further reduced by comparing the
RTL with minimized netlists using strict 2-State Equality (although this may be applicable to just one netlist). This
list can be reduced further still, but not by linters or equivalence checkers (which can only do combinatorial analysis).
Sequential analysisis often required to formally prove that don’t-care X’ s are in fact unreachable (see section 6.5).

6.2.2 X-Termination Case Defaults

Case defaults that terminate X -propagation should be investigated, and it’ s possible to find these with asimple
script. However, it’ s still useful to determineif the defaults themselves are reachabl e (either redundant in al 2-state
combinations or unreachable). Again, formal proofs can be used for this (see section 6.5).

62.3  Un-Initialized Datapath Registers

Y ou can write a script to search for clocked assignments that don’t have areset term. A more rigorous check (to
ensure the reset has been used for the desired affect) is to use automatic-property -checking “reset” checks to find
these datapath registers. Any registersthat are less than, say, 16-bits wide should be examined to see why they
should not be reset (resetting control registers helpsto simplify validation and formal verification).

6.3  Detecting X’swith Assertions

It s possible to write assertions into your RTL that return an error when an X isfound during an RTL simulation. This
isbest done during RTL development, but it’s also possible to automatically add assertionsto existing RTL — with
thetargetsbeing all i f /case selection expressions. However, adding X-detected assertionsthroughout your RTL
can produce aflood of errors (99.9% of which are false negatives).

Careisrequired in controlling how an X is detected and when it’ s deemed to be an error. ARM is proposing two new
X-checking assertions for adoption to the Accelleracommittee for OVL (Open Verification Library):

1. assert_never_at_x_or_z(clk, reset_n, qualifier, test_expr)
2. assert_never_go_x_or_z(reset_n, test_expr)

Thefirst X-assertion checks if the test expression isat X or Z when aqualifier ishigh (e.g. 32-bit data bus should not
have X’ swhen aread is performed). If you want to check asignal at all times, simply set the qualifiertol’ bl.It's
good to add this checker during RTL devel opment.

The second X-assertion checksthat if the test expressionisat 0 or 1 it does not subsequently go to X, which could
indicate aproblem —particularly on acontrol signal. You might not careif asignal is X during someinitialization
period following reset but once the signal goes 0 or 1 you don’t want to seeit return to X. This checker produces far
fewer error messages, which makesit the best choice for autonatically adding X-checkersto existing RTL.

These proposed OVL assertions have been written in acareful RTL style that deliberately avoids the use of case-
equdlity (i.e. ===) in Verilog to check for X/Z values. Instead, thet est _expr isXor'dwithitself and then Or-
reduced, which can only return a0 or X value. This approach means that these assertions can stay in the RTL for
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both 2-state and 4-state simulations, and for 2-state simulations these X -checking assertions are redundant (so a
simulator should be able to optimize them away completely).

64  Change Default Settings of Equivalence Checkers

If you change the default of equivalence checkersto 2-State Equality for all comparisons, you may revea problem
X’s. However, careis needed as you may also find fal se negatives. See section4.2.4 for a recommend approach, and
section 2.4 for details on how to configure specific tools.

65  Automatic Formal Proofs of Unreachable (deadcode) Assignments

Formal property checking can be used to establish which don’t -care X -assignments are unreachable (and therefore
safe) due to its 2-State Sequential semantics (you often need formal verification over time to prove that something
cannot occur in the design state). User driven formal property checking can require alot of effort, but much of the
burden of proofsfor X's can be automated by extracting standard properties from the RTL itself. Thistechniqueis
known as Automatic Property Checking (Autochecks) in the Averant Solidify tool, and other commercial property
checkers provide similar “super linting” features e.g. Pre-Defined Checks (PDC) in Verplex’ s Black-Tie, or
Automatically Extracted Properties (AEP) in Synopsys Magellan.

This section describes how the X-analysis autocheck in Solidify (based on the deadcode check but customized for
Verilog X-issues) has been used at ARM to investigate many aspects of X reachability, but the methodology and
terminology should be applicable to other tools.

Solidify’s X-analysis autochecks havethree levels to classify reachability of caseitems andi f /? branches:

1. reachable reachable in 2-state (i.e. 0 or 1) combinations
2. deadcode: proven not reachable in 2-state (but could be reachable viaan X)
3. redundant: trivially not reachablein 2-state (e.g. case-default that is only reachable viaan X)

All 3 classes above apply to branches with 2-state assignments (e.g. deadcode assignment to 1’ b0 is redundant
logic, so could indicate abug in the RTL or at the very least a code-coverage hole). They also apply to X-
assignmentsin the RTL, which are classified as one of three X-categories:

x-assignment: indicates don’t-cares, which are good (for synthesis) but only safeif proven as deadcode
x-propagation: X assigned to propagate incoming X’s; should only be used if proven to be redundant
X-termination: 2-state assignment that terminates incoming X's; dangerousif it leads to X-Optimism
Every X-assignment (and some 2-state assignments) in your RTL will then be categorized as one of the following
possible combinations of branch-class+ X-category (if no X-category is given, the branch assignsO or 1 values).
Danger ous Categories

deadcode: Redundant RTL (could be areal bug, or at least acode-coverage hole)

reachable x-assignment : Reachabled on’ t-cares reduce semantic overlap
reachable default x-termination:  Suffersfrom X-Optimism(just likei f statements)

redundant x-termination: No possible reasonfor 2-state assignment in 2-state redundant code

Beneficial Categories

deadcode x-assignment: Unreachable don’t-cares can improve synthesis (non-trivial proof)
redundant x-propagation: Must be better to propagate than terminate (aids debugging)

All of the above combinations are useful to quickly analyze and improve your code. In particular, you want to
eliminate reachable x-assignments (but, conversely, maximize deadcode X-assignments to safely improve synthesis).
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With some user interaction, it is possible to formally prove that an assignment classified asreachabl e x-assignment
isinfact safe (see section6.6). Note that redundant branches are often thought to be exclusively case defaults, but
canincludei f orternary ? elsebranches used explicitly to propagate X’s.

65.1  Using Autochecksto Improve Code-Cover age

As hinted above, X-analyss (deadcode) formal-autochecks can be used to explain holes in a code-coverage report (if
code-coverage says that a branch has not been hit, it can be shown to be unreachable by these proofs).

Conversely, you should double-check that any deadcode reported by autochecks was not falsely reported as being
covered by the code-coverage tool. This can happen due to:

Glitchesthat cause atransient to an unreachable branch
Optimistic inter pretation of X-semantics

Autochecks (and interactive formal proofs) have been used at ARM to improve code-coverage reports and to debug
EDA tools/flows. See section 4.3for an example of misleading code-coverage.

65.2 Aside: Using Autochecksto Avoid False Negativesin Formal Verification

Formal verification (both equivalence checking and property checking) tools can sometimes give false negative
results when they have considered the design starting in an unreachabl e state (e.g. aone-hot state machine starting
at all ones). Resultsfrom autochecks can provide additional information about the design’ s possible state, which can
be reused to improve formal verification elsewhere.

6.6 Interactive Formal Property Checking

The previous section described automatic formal proofsto determine the reachability of don’t-care X-assignments,
which requires very little user interaction. However, sometimes user-driven full property checking isrequired to
determine if some reachable don’'t-cares arein fact safe.

al ways @ (CLK or nRESET)
i f (NnRESET==1'b0)
Count <= 2’ b0O;
el se if (CountEn)
Count <= NxtCount; // NxtCount is only read here

al ways @ (State or Count or reqg or abort)
case (State)
3’ b000: begin

Nxt State = 3" b001; // ldle -> Wit
Nxt Count = 2’ bXX; // reachabl e X-assi gnnment
end

<...>
Verilog Snippet 11: X-assgnment that isreachable but could be safe

Consider the RTL example above, where some control |ogic consists of a state-machine and a counter. Automatic
formal proofs will show that the X -assignment to Nxt Count is reachable. However, the counter is not used for the

first two states, andNxt Count isonly read to assign Count , so this don’t-care could be safe if the X is never read.
To show that it's safe, you need to formally verify the following property.

if (State==3 b000) (CountEn==1'b0);
Verilog Snippet 12: Property to provethat X-assignment is safe

If the above property is exhaustively proven, the X-assignment will be reachable but unused. Provided that no
reachable X’ sare assigned to Nxt St at e, the above X-assignment to Nxt Count will be safe. Asthe property is
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just acombinatorial checkl’ve expressed it in Verilog rather than aformal property language, which also allowsusto
reason about X’ sin the property. Note that an X on Count En will cause the property to fail but any X on St at e
would cause the property to pass (so you need to check for any reachable X-assignmentsto Nxt St at e).

6.7 Netlist smulations

Netlist simulations are much slower than RTL simulations and have beenlargely replaced in the main by equivalence
checking (although “smoke” tests are often run on netlist simulations as a sanity check). Netlists have much better
X-propagation than RTL, which isagood reason for running some regressions as netlist simulations (particularly for
investigating un-initialized datapath registers).

Netlists can suffer from X-pessimism, e.g. a 2-input multiplexerimplemented with an inverter on the selection will not
pass through identical values on the datalines when the select isan X (unlike aUDP mux or the ternary ? operator
in RTL). However, X-Pessimism is better than X-Optimism and if the netlist simulation produces no X’syou’ re done.
Notethat it can be difficult to find cases of X-Optimism in netlist smulations where there is X-Pessimism

7 How To Avoid Dangerous X's

This section describes how to overcome problems related to X (after they have been identified and analyzed using
techniques described in section 6).

71 Good RTL Coding Practice
The unwanted affects of X semantics can be reduced by following some RTL coding guidelines, including:

1. Forif statements:

a) Never usei f statementsin combinatorial logic (use case or ternary ? instead)

b) Only usei f statementsfor sequential elements (e.g. flip-flop with asynchronous reset)

¢) Add X-checking assertions to a clock-gating enablesin sequential logic, e.g.i f (enabl e)
2. Forcasex and casez statements:

a) Never usecasex (it'sfar too dangerous)

b) Avoidcasez if possible (Z-wildcard doesn’t propagate X’ sand i t’s hard to trandate to VHDL))
3. Forcase statements:

a) Alwaysadd adef aul t line(to avoid X-Latching)

b) Only usethedef aul t toassign X’s (to avoid X-Optimism)

c) Never useexplicit X’sin caseitems

d) Cover al reachable 2-state values with case-items

e) Avoid usingcase for one-hot multiplexerson acritical path (use sumof-productsinstead)
4. Reduce thenumber of reachable X's:

a) Discourage the widespread use of X-assignments as synthesisdon’t-cares

b) Consider pre-minimizing essential don’t-care X's prior to RTL verification (see section 7.2

c) Avoidflipflopsthat are not reset (only exception should be for large datapath registers)
5. Avoid synthesis/simulation specific workaroundsthat change semantics:

a) Neveruseful | _case orparall el _case synthesis pragmas
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b) Avoidtransl at e_of f /on pragmasthat change RTL simulations (e.g. for casez X-propagation)

When you cannot follow these rules for any reason, e.g. complexity or legacy, use X-checking assertionsand formal
property checking to verify the RTL.

72  Removing Reachable Don't-Care X-assgnments

Previous sections have shown that don’t-care X-assignments can cause different RTL and netlist simulation results,
which are usually missed by equivalence checking. If you can’t demonstrate that such assignments are unreachable
(by assertions or, ideally, formal proofs) then you should assign fixed values to these reachable don’t-cares. Any
don’t-cares that can be proven unreachabl e should be left in (to improve synthesis without causing semantic
differences).

When there' salot of don’t -care assignments in ablock, e.g. instruction decoders, you will be better off automating
the minimization rather than manually deciding on appropriate assignments. Y ou can do thiswith either:

1. Espresso minimization (keeping the original PLA table as commentsin the Verilog)

2. Readingtheorigina RTL into Synopsys DC and producing logic equations rather than netlists (use the
veril og_out _equati ons TCL variable, orconpi | e —nonap).

Experience at ARM has shown that if using SynopsysDC, theveri | og_out _equati ons TCL variable
produces more optimal logic than theconpi | e —nonmap command.

An added benefit from removing X’sisthat formal property checking will become much faster (as it has much less
work to do).

73  Replacing X-Insertion with Assertions

Y ou should never insert X’ sinto your code to seeif they cause problems. Instead, add assertions to your RTL to act
as exception handlers— to raise an error for an unexpected event. Note that X’ s do not stress RTL simulations with
both possible values— instead, only one path will be evaluated!

74  Enabling X-Propagation

Asdiscussed in section 32, assertions should be used to replace X-insertion as a meansof finding unexpected
results. However, X-propagation can still be useful for RTL simulations to highlight problems withun-initialized
datapath registers and reachable X’ s (although these should be investigated in a different way). Another reason for
encouraging X-propagation is that it must be better than X-termination (asillustrated by Figure 2).

Two recommendations are given belowto enable X-propagation.

Recommendation 9: Avoid using if satements, asthey optimistically interpret X’s. Instead use
ternary (i.e. conditional ?) operatorsor priority-encoded case statements.

Recommendation 10: For case statements, cover all reachable 2-state values with case-items and
always add adefault (but only useit toassign X’s, to avoid X-Optimism).

In addition to these, you should avoid using casex and casez (see Recommendation 5). Avoidingcasez isvery
interesting asacasez wildcard can cause X-termination, but this behavior isagood interpretation of X in terms of

considering the effects of both 0 and 1 If you consider an X as a bad thing and you always want to propagateit in
RTL simulations, you can add an aggressive post-process X -propagation as described by Galbi [Galbi 2002].

75  Avoiding Un-Initialized Registers

Where possible, reset your registers (this avoids X-initialization issues and helpsto validate and formally verify your
design). The exception isfor large datapath registers, where the cost of routing areset is not acceptable.
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76  Future System Verilogand Verilog 2xxx

The SystemV erilog language proposed by Accellera has lots of interesting features that could overcome problems
associated with X-semantics, including:

1. Severa 2-state datatypes (e.g. bit, byte, int) that have defined semantics (as opposed to modes specificto a
particular simulator).

2. Qualifiersfor selection (caseli f) statements, calleduni que andpri ori ty,toclearly definetheir
semantics for both synthesis and simulation (unlike synthesis pragmas).

3. Assertionsthat are an intrinsic part of the design language itself, rather than an afterthought or atool-
specific assertion language or library.

SystemV erilog has the potential to eliminate many X -semantic issues, but introduces new problems including the
wild-equality and wild-inequality operators that allow you to write ani f statement with the semantics of casex:

if (sel =?2= 1"bX) f = 2" bXX;
System Verilog Snippet 1: New Wild-Equality operator

Some of the ideas in SystemV erilog may beincluded in the next version of Verilog’'s |EEE 1364 standard, sometimes
referred to as V erilog 2xxx.

76.1  Proposal for Extending the Semantics of caseitems

This paper has highlighted several issues whereit’s difficult to distinguish between 2-state (i.e. 0 or 1) and 4-state (0,
1, X and Z) semantics— particularly with thedef aul t lineof acase statement. This paper has also shown that
although thecasex and casez statements are very useful for writing concise RTL descriptions, the semantics of
their wildcards are complex and often dangerous.

One way of addressing both issues would be to extend the semantics of case itemsto give a2-state wildcard,
possibly using the “*” symbol to indicate “either 0 or 1, but not X or Z”. Thiswould just besyntactic sugar for case-
items and therefore a 1-dimensional wildcard, with simple and intuitive semantics (andwould probably match design
intent for most existing uses of casex and casez wildcards).

It would make senseto alow thisfor al three types of case-statement, so that casez and casex can be completely
dropped in favor of the standard cas e. Due to the priority-encoded nature of case statementsin Verilog, this
would also allow a simplemethod of writing a2-state catch-all prior to the default line e.g. asfollows:

3" b***: ol 1'b0; // 2-state default
default: ol = 1'bX; // X propagation

Non-Verilog Snippet 1: Using proposed 2-state casewildcard

The above would avoid the messy assignments you sometimes see prior to a case statement, particularly when there
are multiple assignments. Y ou may even want to assign X’sin the 2-state default (e.g. as an X-insertion bug trap).

8 Conclusions

This paper has highlighted the dangers of X-issues throughout the design flow, to raise awareness both internally at
ARM and externdly (for designers and EDA vendors dike). Terminology has been introduced to help explain the
subtleties of X-semanticsand to show what’s broken in atypical design flow. Simple examples have been given for
illustration, but these are based on experience of real problems found by ARM.

Of particular concernisthe interaction of supposedly don’t-care X-assignments with optimistic X interpretation,
especialy around Verilogi f statements, that can mask bugs. Such atheoretical possibility wasinvestigated at ARM

despiten o netlists showing this problem, and lead to agreat deal of work to produce RTL that was semantically
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rigorousthroughout the design flow. Who wants a hidden bug to pop up afew years down the line due to anew
synthesis rel ease choosing a different minimization and breaking a supposedly mature and validated design?

The subsequent investigation at ARM highlighted many problems with different partsof the design flow. One of the
outcomes of thiswork has been this paper, which concentrates on why bugs can all too easily be missed by formal
equivalence checkers (due to incorrect usage, despite being the default of the tool and the recommended approach
by the documentation). This paper has proposed a new methodology for using equivalence checking, that changes
the default X semanticsin order to reveal bugs that would otherwise be hidden. It has also described problemsin
other parts of the design flow, including why passing RTL simulationsand code coverage could be giving a false
sense of security.

This paper has also highlighted lesscritical X issues, which lead to inefficiencies rather than bugs. This includes
non-minimal synthesis (sometimes for RT L written specifically to improve a critical path) and inefficient simulation (2-
state simulation isagreat idea but will not work if your Verilog RTL containscase statements).

This paper has given practical advice for overcoming X issues. It has described several techniques for investigating
hidden bugs due to X issues and gives recommendations to avoid many of these problems. This paper has also
described how formal property checking can be used todistinguish which X’ s are safe and which are dangerous,
using either automatic or interactive proof techniques.

9 Top-Ten Recommendations

This section reiterates the recommendations made throughout this document.

Recommendation 1: Evenif al RTL simulations pass, a don’t-care should beconsidered to be a
don’t-know unlessit’s proven to be unreachable.

Recommendation 2: Always start an equivalence checker in the strict 2-State Equality comparison
mode (the default settingsof the tool can miss bugs).

Recommendation 3: If acomparison fails with strict 2-State Equality but passes with 2-State
Consistency, the pass is acceptable provided you can prove that all X’ s causing
differences are unreachable (i.e. thefailures are false negatives).

Recommendation 4: RTL Verilogvs. translated RTL VHDL should be equivalence checked using 2-
State Equality (to ensure that the don'’ t-care spaceisidentical).

Recommendation 5: Never use casex statements asthey are just too dangerous, and avoid casez
whenever possible.

Recommendation 6: Use automatic property checking to prove that an X is unreachable, or interactive
property checking to prove that the X is not stored in aregister.

Recommendation 7: Use automatic property checking to investigate code coverage reports.

Recommendation 8: For one-hot logic on acritical path, write the RTL directly in a sumof-products

form (rather than case) and add a one-hot assertion checker.

Recommendation 9: Avoid using if statements, as they optimistically interpret X's. Instead use
ternary (i.e. conditional ?) operators or priority-encoded case statements.

Recommendation 10: For case statements, cover all reachable 2-state values with case-items and
always add a default (but only useit to assign X’s, to avoid X-Optimism).

A general guidelineisto avoid adding don’t-care X’sto Verilog RTL asa matter of course and to use good RTL
coding practiceto avoid some X-issues (see section 7.1).
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