Porting the ARM DHCP
Server

Version 1

Programmer’s Guide

ARM

Copyright © 1999 ARM Limited. All rights reserved.
ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change history

Date Issue Change

June 1999 A First release

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, Embedded| CE, Model Gen, Mullti-ICE,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Contents
Programmer’s Guide

Preface
ADOUL thiS DOOK ... Vi
FEEADACK ..o iX

Chapter 1 Introduction

11 About the ARM DHCP SEIVETccviiiiiieiieee et 1-2

1.2 Terms and CONVENTIONSoooiiiiiiiieesiet et 1-3
Chapter 2 Overview and Requirements

2.1 PUrpoSe Of DHCP ..ot

2.2 Overview of BOOTP

2.3 What is a port?ccccceeenee

2.4 SYSLEM FEQUITEMENTS ...eiiuiiiiiiiie ittt ettt eaibre e
Chapter 3 Porting Step-by-Step

3.1 Setting up your source tree

3.2 Porting procedurec.cccevveeenineenne

3.3 The DHCP POIt fil@ ...

34 Coding the gIUE IAYEIeeeieeeieee e

35 The DHCP database

3.6 Nonvolatile storage fUNCLONScccuviiiiieeiiee e 3-15

3.7 TSN -eeeeiee ittt eae 3-17
Chapter 4 Troubleshooting

4.1 Overview of troubleSho0tiNgccccoiiiiiiiiiei e 4-2

4.2 UDP tranSPOITovvviiiiiiiiiiiiiieeeei e

4.3 Database debugging

4.4 The DHCP user menu

Chapter 5 User-provided Functions
51 General fFUNCHIONSccoiiiiiiiiie e e e e e e e
5.2 UDP network API layer
5.3 UDP callback function
5.4 Timer callback function

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. iii

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0123A

Preface

This preface introduces the ARM DHCP Server porting procedure. It contains the
following sections:

. About this book on page vi
. Feedback on page ix.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved.

Preface

About this book
This book is provided with the ARM DHCP Server software.

It is assumed that the ARM DHCP Server porting sources are available as areference.
It is also assumed that you have access to programmer’s guides for C and ARM
assembly language.

Intended audience

This Programmer’s Guide is written for experienced embedded systems programmers,
with a general understanding of what a DHCP server does. It is written for those
programmers who want to port the ARM DHCP Server to an embedded system.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARyhamic Host
Configuration Protocol (DHCP) server porting procedure.

Chapter 2 Overview and Reguirements

Read this chapter for an overview of DHCP and the system
requirements for porting the ARM DHCP Server.

Chapter 3 Porting Step-by-Step
Read this chapter to learn what you need to do, step-by-step, to
port the ARM DHCP Server to an embedded system.

Chapter 4 Troubleshooting

Read this chapter for a description of some common problems
which could arise when porting the ARM DHCP Server, and to
learn methods for tracking and fixing them.

Chapter 5 User-provided Functions

Read this chapter for a description of the functions and primitives
that you must provide as part of the porting process.

Vi Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Preface

Typographical conventions
The following typographical conventions are used in this document:

bold Highlightsinterface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

italic Highlights special terminology, denotesinternal cross-references,
and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

typewiteritalic

Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bol d Denoteslanguage keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing for the ARM DHCP Server.

ARM periodically provides updates and corrections to its documentation. See
htt p: // ww. ar m comfor current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://ww. arm conf DevSupp/ Sal es+Support/faqg. ht m

ARM publications

Thisbook containsreference information that is specific tothe ARM DHCP Server. For
additional information, refer to the following ARM publications:

. ARM Software Development Toolkit Reference Guide (ARM DUI 0041)
. ARM Software Development Toolkit User Guide (ARM DUI 0040)
. Porting TCP/IP Programmer’s Guid@dRM DUI 0079).

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. vii

Preface

Other publications

For other reference information that may be helpful in understanding the DHCP server,
please refer to the following:

. Kernighan, Brian W. and Ritchie, Dennis Mhe C Programming Language,
2nd Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8)

. RFC 1700, Postel, J., Reynolds, J., "ASSIGNED NUMBERS", October 1994
. RFC 2131, Droms, R., "Dynamic Host Configuration Protocol", March 1997.

viii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Feedback

Preface

ARM Limited welcomes feedback on both the ARM DHCP Server, and its
documentation.

Feedback on the ARM DHCP Server

Feedback on this book

If you have any problems with the ARM DHCP Server, please contact your supplier.
To help us provide arapid and useful response, please give:

details of the release you are using

details of the platform you are running on, such as the hardware platform,
operating system type and version

a small standalone sample of code that reproduces the problem

a clear explanation of what you expected to happen, and what actually happene
the commands you used, including any command-line options

sample output illustrating the problem.

If you have any comments on this book, please send eneail & a@r m comgiving:

the document title

the document number

the page number(s) to which you comments apply
a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. ix

Preface

X Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Chapter 1
Introduction

This chapter introduces the ARM Dynamic Host Configuration Protocol (DHCP)
Server porting procedure.

This chapter contains the following sections:
. About the ARM DHCP Server on page 1-2
. Terms and conventions on page 1-3.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 1-1

Introduction

11

About the ARM DHCP Server

This Programmer’s Guide is provided with the ARM portabigamic Host

Configuration Protocol (DHCP) server sources. The purpose of this document is to
provide enough information to enable a moderately experienced C programmer, with a
reasonable understanding of DHCP, to port the ARM DHCP Server to a new
environment.

It is assumed that the ARM DHCP Server demonstration program is available as a
reference.

The ARM DHCP Server can be readily ported to any system that supports network
communication by way dfiser Datagram Protocol (UDP). An example
implementation is provided that uses the lightweight UDP interface of the ARM
Internet Protocol (IP) stack.

1-2

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Introduction

1.2 Terms and conventions

In this document, the following terms are used:

client When used without other qualification, meansthe ARM DHCP client
that is ported to an embedded system.

end user Refers to the person who ultimately uses your product.

packet A sequence of bytes sent on network hardware, also known as aframe or
datagram.

server When used without other qualification, meansthe ARM DHCP Server as
ported to an embedded system.

stack Means the TCP/IP and related code, as ported to an embedded system.

system Refers to the embedded system.

you Used to indicate the user or engineer who is porting the server.

Conventions used throughout the document, such as the use of bold or italic font, are
explained in Typographical conventions in the Preface.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 1-3

Introduction

1-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Chapter 2
Overview and Requirements

This chapter gives an overview of DHCP and the system requirements for porting the
ARM DHCP Server. It contains the following sections:

. Purpose of DHCP on page 2-2

. Overview of BOOTP on page 2-3
. What isa port? on page 2-4

. System requirements on page 2-6.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-1

Overview and Requirements

2.1

Purpose of DHCP

DHCPisdesigned to ease configuration management of large networks by allowing the
network administrator to collect al the | P hosts soft configuration information into a
single computer. Soft configuration information includes:

. IP address

. name

. gateway

. default servers.

There are about 50 of these information items which can be assigned with DHCP, and
DHCP is designed so that customized configuration items can be easily added.

DHCP is a client/server protocol, meaning that the machine with the DHCP database
serves requests from DHCP clients. The clients typically initiate the transaction by
requesting an IP address and, possibly, other information from the server. The server
looks up the client in its database, usually using the client's media address, and assigns
the requested fields. Clients do not always need to be in the server's database. If an
unknown client submits a request, the server may optionally assign the client a free IP
address from a pool of free addresses kept for this purpose. The server may also assign
the client default information of the local network, such as the default gateway, the
Domain Name System (DNS) server, and routing information.

When the IP address is assigned, liedsed to the client for a potentially infinite

amount of time. The DHCP client needs to keep track of this lease time, and obtain a
lease extension from the server before this time runs out. After the lease has elapsed,
the client should not send any more IP packets (except DHCP requests) until another
address is obtained. This approach allows computers (such as laptops or factory floor
monitors), which will not be permanently attached to the network, to share IP addresses
when they are not using the network.

2-2

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Overview and Requirements

2.2 Overview of BOOTP

In this manual and other DHCP literature, you will find numerous cross-references to
Bootstrap Protocol (BOOTP), which preceded DHCP. DHCP is a superset of BOOTP.

The main differences between the two protocols are;

. the lease concept, which was created for DHCP

. DHCP has the ability to assign addresses from a pool.

The ARM DHCP client (sold as part of the ARM TCP/IP stack) can work with older
BOOTP servers.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 2-3

Overview and Requirements

2.3

What is a port?

Figure 2-1 showsasimplified diagram of the eventswhich driveatypical DHCP server.
The vast majority of activity isinitiated by DHCP packets from the clients. The server
code also requiresaperiodic clock tick so it can detect non-network-driven events, such
as alease expiring.

End user
commands

A

y

Timers and > > DHCP
task control DHCP server database

A

Network (UDP)
API

Figure 2-1 Events driving a DHCP server

Whileprocessing DHCP requests, the server will consult alocal database. This database
is generally set up by an end user. It contains the IP address pools, default information
for clients, and, possibly, special configurations for specific clients. This database may
be stored in adisk file or in nonvolatile memory. On some embedded systems, such as
Networ k Address Translation (NAT) routers, it isrecommended that you ship the server
with a factory-configured database.

The stack designer does not know what tasking system, user applications, or interfaces
will besupported inthetarget system. Therefore, aportable stack isonethat isdesigned
with simple, generic interfacesin these areas, and a glue layer is created which maps
this generic interface into the specific interfaces available on the target system. For
example, when sending a packet, the stack would be designed with a generic
send_packet () call, and you would code a glue routine to send the packet on the
target system'’s network interface.

2-4

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Overview and Requirements

Making a stack portable involves minimizing the number of calls which have to go
across glue routines, and keeping the glue routines simple and therefore easy to
implement. The glue routines also need to be well-documented. The interfaces to the
ARM DHCP Server have evolved through years of porting to a variety of processors,
network media, and tasking systems. Wherever possible, ARM has used standard
interfaces (such asthe ANSI C library) or included glue routines to illustrate their use.

Thebulk of thework in porting a stack involves understanding and implementing these
glue routines. The ARM DHCP Server has two kinds of glue routines:

. database access
. network access.

The calls to set and extract database itemalaeacted out. This means the calls are
generic, and will need to be provided as part of the port. Files are provided which use
standard file input/output calls (suchfagpen() andfread()) to implement a
fully-functional database. So, if your target system has a disk-like device, you will most
likely be able to use this code as provided. If your database will be kept in nonvolatile
memory, and it does not have a file-system like API, you will need to develop your own
data structures and the code to access them.

The other set of glue routines needed for a port is the network access set. It is
recommended that you use the ARM DHCP Server with the ARM IP stack, because ¢
file is provided which implements the required functions on the lightweight UDP API.
Otherwise, you will need to provide some simple routines to allow the server to acces:s
your UDP protocol.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 2-5

Overview and Requirements

2.4 System requirements

Before beginning a port, you should ensure the necessary resources are availablein the

target environment. The ARM DHCP Server requires the following services from the

system:

. access to a UDP layer wilisten capabilities (such as the ARM lightweight API
or sockets)

. a timer which ticks at least once per second

. a nonvolatile read/write method for storing database items (such as disk or
nonvolatile memory)

. memory, as described in the next sectMamory requirements.

2.4.1 Memory requirements

It is difficult to provide exact memory requirements for the ARM DHCP Server.
However, an estimate can be obtained by examining the results provided in the
examples. The values in Table 2-1 are taken from the Menus example of the ARM
TCP/IP stack, configured to include the server. The code was compiled for the
ARM7TDMI processor core with version 2.50 of the ARSftware Development

Toolkit (SDT), and was optimized for code size rather than speed. The figures do not
include the UDP stack, generic menu drivers, or Standard C library functions, which
would be required for full functionality.

Note

Because the code is subject to continuous development, the values in Table 2-1 may
change with subsequent releases.

Table 2-1 ARM7TDMI memory requirements (in bytes)

Builtas Builtas Read- Read- Total
ARM Thumb only write data
code code data data
DHCP server core 5304 3724 88 128 216
DHCP file access code 2652 2056 160 264 424
Menu front-end routines 464 388 72 72 144
UDP glue layer 436 316 72 72 144
Totals 8856 6484 392 536 928

2-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Overview and Requirements

2.4.2 Operating system requirements
The ARM DHCP Server aso requires two services from the operating system:

clock tick The DHCP server needsto be called onetime per second to free resources
for addresses which have timed out.

dynamic memory allocation
Thestandardcal | oc() andfree() library callsareideal. However, the
DHCP server can aso use any other system, such as a partition-based
system, with very little effort.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-7

Overview and Requirements

2-8

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0123A

Chapter 3
Porting Step-by-Step

This chapter outlineswhat you need to do, step-by-step, to port the ARM DHCP Server

to an embedded system.

This chapter contains the following sections:

. Setting up your source tree on page 3-2

. Porting procedure on page 3-3

. The DHCP port file on page 3-4

. Coding the glue layer on page 3-8

. The DHCP database on page 3-11

. Nonvolatile storage functions on page 3-15
. Testing on page 3-17.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved.

3-1

Porting Step-by-Step

3.1 Setting up your source tree

Before beginning the porting procedure (see Porting procedure on page 3-3), you
should be aware of those filesin the ARM distribution that are the portable files, and
those that are not:

. The portable files are those which should be compiled and used on any target
system without modification.

. The unportable, or port-dependent, files, are those which will need to be replaced
or heavily modified for different target systems.

This section contains a list of ARM DHCP Server source files which sinotitteed

to be modified during a normal port. If you feel you need to modify one of these files
during a routine port, please contact ARM technical support staff first, who will either
suggest an alternative, or modify ARM sources to reflect the change.

The portable ARM DHCP Server source files, which should not require modification
during a standard port, are:

dhcpsrv\dhecpsrv. c
Contains the main DHCP server code.

dhcpsrv\dhecpsrv. h
Contains internal declarations.

dhcpsrvidheps. h
Contains internal declarations.

The database access file, which may need modification on some ports, is:

dhcpsrv\dhcpsnv. ¢
Contains the file system database access code.

The ARM menu system routines can be used as delivered with the ARM menuing
system. Otherwise, the routines may be replaced or omitted:

dhcpsr v\ dhcpnenu. ¢
Contains routines to dump statistics and the status.

The two per-port files usually need to be rewritten for the target system:

dhcpsr v\ dhcpport. c and dhcpsr v\ dhcpport. h

Contain the glue layers for network access, memory allocation, time
ticks, and other system-dependent calls.

3-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

3.2 Porting procedure

Thelist below describes the steps needed to port the ARM DHCP Server to a new
environment. It isassumed that the server isbeing ported to asmall or embedded system
with asuitable API to access UDP operations, and that aminimal Standard C library, or
equivalent, isavailable.

1. Copy the source filesinto your development environment (see Setting up your
source tree on page 3-2).

2. If thetarget system does not support file system operations, write and compilethe
necessary code to load and modify the nonvolatile database (see The DHCP
database on page 3-11).

3. Create aDHCP port file (see The DHCP port file on page 3-4) and compile the
portable sources.

4. Write and compile the necessary code for the glue layer (see Coding the glue
layer on page 3-8).

5. Build atarget system image, linking with those libraries or objectsthat are
required to perform UDP operations.

6. Test and debug the image (see Testing on page 3-17).

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-3

Porting Step-by-Step

3.3 The DHCP port file

Before you compile the source files, you must create aversion of thefiledhcpport . h.
Thisfile contains most of the port-dependent definitionsin the stack. CPU architectures
(big-endian versus little-endian), compiler idiosyncrasies, and optional features (such
as multiple interfaces and 10-net-only configuration) are controlled in thisfile.

— Warning

A singlemistakein thisfile (such as confusing big-endian with little-endian) may cause
the port to work incorrectly. It is recommended that you spend time carefully
implementing the file line-by-line to avoid any mistakes or typographical errors.

This section outlines the basic contents of dhcpport . h.

If the DHCP server isto be used with the ARM [P stack, the IP port file, i pport . h,
should be included to ensure consistency. Thisfile contains many of the definitionsin
this section.

3.3.1 Standard macros and definitions

The ARM DHCP Server expects TRUE, FALSE, and NULL to be defined within the scope
of dhcpport. h. To do this, it isrecommended that you include the standard C library
filest di 0. hiinsidedhcpport. h If st di 0. h isimpractical to use or missing, the
examples below will work for almost every C environment:

#i f ndef TRUE

#define TRUE -1
#define FALSE O

#endi f

#i f ndef NULL

#define NULL (void*)O0
#endi f

3.3.2 Memory allocation

The ARM DHCP Server code allocates and frees memory blocksdynamically asit runs.
It uses the macros listed below to do this. If your target system supports standard C
cal l oc() andfree(), the macros map directly as follows:

#define DHE_ALLOC(si ze) calloc(1,size)
/* dhcp address list entry */
#define DHR_ALLOC(si ze) calloc(1,size)
/* address range structure */
#define DHD ALLOC(si ze) calloc(1,size)
/* dhcp nessage structure */

3-4

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

#define DHE_FREE(ptr) free(ptr)
#define DHR_FREE(ptr) free(ptr)
#define DHD_FREE(ptr) free(ptr)

Note
The ALLOC() macros must clear the allocated memory by setting it to zero.

Many Real-Time Operating Systems (RTOS) do not usecal | oc() because of
performance issues. Generally, they use a system which supports allocations of fixed
size partitions (blocks) instead. The macros above are designed to support this. Each of
the ALLOC() macrosonly allocates asinglesize. Therefore, the macros can be mapped
to acall to alocate the next largest partition size. The size requested for each macrois
shown in Table 3-1.

— Note
These sizes may change, depending on the compiler settings and the target system.

Table 3-1 Partition sizes

Macro . Size
(in bytes)
DHE_ALLOC() 56
DHR_ALLOCX() 16
DHD_ALLOCX() 548

3.3.3 CPU architecture

Four common macros are used from Berkeley UNIX for doing byte-order conversions
between different CPU architecture types. These are:

ht ons() converts 16-bit from local to network format
ht onl () converts 32-bit from local to network format
nt ohs() converts 16-bit from network to local format

nt ohl () converts 32-bit from network to local format.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-5

Porting Step-by-Step

They may be either macros or functions. They accept 16-bit and 32-bit quantities as
shown, and convert them from network format (big-endian) to the format of the local
CPU. Most IP stacks already have these byte-ordering macros defined. If thisisthe
case, you should try to find the existing include file which definesthem, and useit rather
than duplicate these macros. The information below is given in case these macros are
not already available.

For an ARM processor running in big-endian mode, these can simply return thevariable
passed, as in the following example:

#define htonl (1 ong_var) (long_var)
#define htons(short_var) (short _var)
#defi ne ntohl (1 ong_var) (long_var)

#define ntohs(short_var) (short _var)

An ARM processor running in little-endian mode requires the byte order in 16-bit or
32-bit quantities to be swapped. The | swap() and bswap() primitives provided with
the ARM demonstration program can be used, as follows:

#define htonl (1 ong_var) | swap(l ong_var)

#define htons(short_var) ((u_short)(((u_short)(short_var)>>8) \
| ((u_short)(short_var)<<8)))

#define ntohl (1 ong_var) | swap(l ong_var)

#define ntohs(short_var) htons(short_var)

3.34 Debugging aids

Thedt rap() primitiveiscaled by the DHCP code whenever it detects a situation
which should not occur. The purpose of the dt r ap() primitiveistotry to trap to
whichever debugger may bein use by the programmer. It functions as an embedded
break point.

The ARM exampleimplementsdt r ap() asanempty function. A breakpoint can then
be set on the function to alert a debug monitor such as Multi-ICE or the Angel Debug
Monitor.

The stack code will generally continue executing after acall todt rap() , butdt r ap()
usually indicates that something is wrong with the port.

— Warning

You should not ship any product based on this code until all callstodt r ap() havebeen
eliminated. When it istime to ship code, thedt r ap() primitive can be redefined to a
null macro to slightly reduce code size.

3-6

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

Thelast debuggingtool indhcpport . histhe#def i ne NPDEBUG. Thiscan be defined
to cause the debug code to be compiled into the build. This code performs operations
such as checking for valid parameters and sensible configurations during runtime. It
frequently invokesdt rap() ordpri nt f () (seedprintf() and ns_printf() on page 5-3)
to inform you of detected problems. You should ensureit is defined during
development. Unless ROM spaceislow, it may be acceptable to leave it defined for
release. It can be undefined for release to reduce code size by a small amount:

#defi ne NPDEBUG 1 /* enabl e debug checks */

3.35 Features and options

The ARM DHCP Server can optionally read a standard UNIX-like boot pt ab file and
useit toinitialize entries in the DHCP address pool. Thisis provided for backward
compatibility with BOOTP. This feature requires access to a conventional file system
by way of the standard C callsf open() ,f get s() ,andf cl ose() . If youaredesigning
aDHCP server for use with older UNIX or Windows 3.1 workstations, it is
recommended that you includethisfeature. To dothis, dhcppor t . h should contain this
definition:

#define BOOTPTAB 1 /* will try to read a BSD bootptab file */

DHCP servicerequires one or more devices for sending and receiving network packets.
These are usually hardware devices, such as Ethernet or PPP ports. Most DHCP servers
on embedded systems support only one device (Ethernet, most commonly), but some
servers, such as routers, may need two or more devices. The ARM stack supports
multiple logical devices, and has been used with up to eight. The structures to manage
these devices are statically allocated at compile time, so the maximum number of
devicesthe system will use at runtime must be set with a#def i ne. If you are using the
ARM [P stack, thisis aready defined ini pport. h as MAXNETS:

/* nunber of interfaces on which we nmay support DHCP *
#defi ne DHCPNETS MAXNETS

Finally, you will need to set upper limits for the sizes of certain datafields:

#define CLIDSI ZE 6
/* client ID size, usually ethernet address */
#def i ne DHCPNAMES| ZE 32 /* maxi mum name | ength */

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-7

Porting Step-by-Step

3.4

3.4.1

3.4.2

Coding the glue layer

UDP hooks

After you have developed your dhcppor t . h file, as described in the previous section,
you must then code the glue layers. These are the routines which map the generic
service requests DHCP makes to specific services provided by your target system. You
may have already handled some of them through #def i ne mapping in dhcpport . h.
The rest need to be implemented as a minimal layer of C code. In the demonstration
program, most of these are collected in thefiledhcpport . c. You can name thisfile
anything you want, or implement these routines in multiple source files. For the
purposes of this documentation, it is assumed they are all in dhcpport . c.

Usually the most complex part of the glue layer is the network interface. DHCP needs

to send and receive packets by way of the UDP protocaol. If you are using ARM’s
lightweight API, a samplahcpport . c file is provided which does most of the work
for you. Otherwise, you will need to implement the routines describgBihnetwork
API layer on page 5-5. These are summarized below:

/* dhcp server’s per-port utility for sending datagranms */
int dh_udp_send(int iface, void * outbuf, int outlen);

/* get the IP address associate with an iface nunber. This is */
/* returned in network endian */
i p_addr dh_get _ip(int iface);

The above routines do not provide a mechanism for DHCP to receive packets.
Receiving is accomplished by way of a callback, a routine inside DHCP which is called
from user code when a packet is received for the ARM DHCP Server. The form of the
callback is:

/* portable dhcp server received packet handler */
int dhcp_receive(int iface, struct bootp * bp, unsigned |en);

Timers and multitasking

A DHCP server only needs to service two events, each of which is handled by a callback
routine:

. an arriving DHCP packet

. the once-per-second timer.

The arriving DHCP packets are processedhiop_r ecei ve(), discussed briefly in

UDP hooks above, and detailed dhcp_receive() on page 5-7. The once-per-second
timer is implemented by callinghcp_t i mei sup() (seeTimer callback function on

page 5-8) once per second.

3-8

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

The other aspect of multitasking isto protect sensitive structures from being corrupted
by code re-entry. Thisis accomplished with two macrosthat protect critical sections of
code:

#defi ne ENTER_DHCP_SECTI O\()
#defi ne EXI T_DHCP_SECTI ON()

If you are using the ARM 1P stack, these could be mapped to the CRI T_SECTI ON() or
NET_RESOURCE() macros provided. For some applications, it may be acceptable to
simply disable interrupts for abrief period. On atrue real-time system, these might be
mapped to a mutual -exclusion semaphore.

3.4.3 Database location and default values

A small amount of static dataisrequiredin dhcpport . c. Thefirst set of dataisthefile
paths of the database files. These can be hardcoded for some products or made to be
user-configurable. The name strings are:

char *dhcpdef;
char *dhcpsfile;

An example setup is shown here:

Example 3-1

/* names of DHCP dat abase and configuration files */
char * dhcpdef = "dhcpsrv.nv"; /* Default DHCP values list */

/* DHCP dynam c dat abase (disk file) for deno port. This nust be
an absol ute path since the user application may change the
current working directory. */

char * dhcpsfile = "\\etc\\dhcprecs. nv";

These are pointersto strings and can therefore be left null at compile time and assigned
at runtime.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-9

Porting Step-by-Step

3.4.4

Initialization

The following steps are required to initialize the server. In the ARM implementation,
thisis performed by the function dhcp_i ni t () indhcpport. c:

1

Set up the UDP layer to:
. listen for incoming packets on tiEHCP server port (port 67)
. enable it to send packets.

Initialize the database (s&ke DHCP database on page 3-11). This can be
achieved by a call toh_nvi ni t () if the ARM-provided database access code

is used. Otherwise, you should provide code to initialize the database, either from
nonvolatile storage or from hard-coded defaults. The ARM example can be
configured to use default configuration values and address ranges suitable for
assigning information on a local 10-net. This is designed to facilitate integration
with, for example, a NAT router product, making the setup of a network of
factory-floor monitors, or small LAN, completely independent of public IP
addressing. These default values will be overwritten by any values in the
nonvolatile database.

3-10

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

35 The DHCP database

Before the ARM DHCP Server can be used, some basic IP address information is
required. Thisis stored in a database containing information which will be assigned to
DHCP clients. Thisinformation may include:

. IP addresses
. subnet masks
. servers

. lease times

. names.

The database is stored in memory, but most applications will require a nonvolatile copy
of the database.

The ARM implementation includes routines to access the database, and to load defau
settings from a file (seBuggested database file format on page 3-12). You should
initialize this by calling the functiodh_nvi ni t (), as described idh_nvinit() on

page 3-15.

351 Database parameters

The database parameters are divided into two categories:

. those which are maintained on a per-client basis, such as a single permanent IF
address

. those which are maintained per-network, such as a pool of free IP addresses.

When setting up the database, the end user will generally want to set up both types. Fc
example, if a webserver obtains its IP address by way of DHCP, the end user can
improve its accessibility by ensuring that it always obtains the same IP address from th
ARM DHCP Server. However, a Windows 95 workstation whose only IP application is
a Web browser can change IP addresses every time it is rebooted, while still allowing
repeated access to the network.

To facilitate managing this type of data mix, the DHCP server maintains two types of
data:

. That which contains detailed per-client information for permanent client
assignments.

. That which containgefault information for more generic client setup.
Assignment of this data is done from a single file. In the demonstration program,
this file is namedihcpsr v. nv, but this can be changed during the porting
process. If the DHCP server is to work over multiple interfaces, one of these files
must be provided for each interface.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-11

Porting Step-by-Step

The DHCP data items supported in the database are:
char nane[DHCPNAMESI ZE]; /* String for nane */

i p_addr i paddr; /* client’s assigned | P address */

i p_addr snmask; /* client’s assigned subnet mask */

i p_addr gwaddr; /* client’s assigned default gateway */
i p_addr dnsaddr; /* Domai n Name server */

char clientld[CLIDSIZE];

/* usually client’s hardware address */

unsi gned short type;

/* type of this entry */

unsi gned short st at us;

/* status of this entry */

unsi gned | ong | ease;

/* default |ease duration, Oxffffffff==infinite */

Note

The IP addresses (thei p_addr fields) are stored in local-endian format, not
network-endian.

Most of these fields should be familiar to programmers with some exposure to TCP/IP
networks, but thecl i ent | d field requires elaboration. Thisfield isthe unique ID

which the ARM DHCP Server will useto track each client asit asksfor and receivesan
| P address and configuration. On old BOOTP systems, this was always the Ethernet (or
Token Ring) MAC address because this was always unique. Thisidentification method
has been adopted by DHCP, soif you are using DHCP over Ethernet or Token Ring, the
simplest method isto usethe MAC address ascl i ent | d. The DHCP clients will

determine the size of thisfield, and on these media, the size will always be six because
both MAC addresses are six bytesin length. However, because it may be used over PPP
and other address-less links, there may be cases wherethe cl i ent | d field will not be
six bytesin length. If you implement a server which will useanonstandardcl i ent | d
size, be sure to modify the definition of CLI DSI ZE to the size your mediawill be using.

3.5.2 Suggested database file format

Asyou develop your DHCP server’s user interface, you should consider the method the
end user will use to assign the database information. ARM providesthe dhcpsnv. c
source code file which will read in thisinformation from afile at runtime. Because this
is expected to be used in most DHCP server ports, the format of the databasefile is
described in this section.

Note
One of these database files is heeded for each network your DHCP server will serve.

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Porting Step-by-Step

Thefileisaplain text file which can be easily read and modified by a human operator.
It is also designed to be easily modified from a GUI front-end, such as an embedded
webserver. Each data item occupies one line of text. The name of the dataitem isfirst.
The parameters are identified by performing a pattern match on this name, so the end
user should understand that these must not be changed if editing the file directly. Every
item name ends with a colon character (:). The text after the colon is the datawhich is
usually an IP address, numeric parameter, or text string. If the database initialization
functionnv_i ni t () detectssyntax errorsinthefile, it will dpri nt f an error message
and return an error code.

Thefirst portion of the file covers the default database information. This is the setup
information that will be given to the DHCP clients, unless overridden by a per-client
entry at alater time. The list of per-client settings comprises the remainder of the
database file.

Database file default settings fields
Thefields of the default-settings portion are as follows:

Net interface: 0O
Def ault gateway: 10.0.0.1
Def ault DNS server: 204.156.128.1
Domai n nane: arm com
Default | ease: 3600
Default subnet: 255.0.0.0

Address Pool: 1

H gh address: 10.0.0.99
Low address: 10.0.0.2
Interface: 0O

All these should be self-explanatory to experienced TCP/IP programmers. None of
these fields are mandatory. Any that are missing in this section, and not specified in the
per-client section which follows, will simply be assigned default values as set up in the
DHCPinitialization code. If there are no addressesin the free address pool, |P addresses
will only be assigned to clients with an entry in the per-client list. Any requests will be
ignored in this case.

If discontiguous blocks of | P addresses are desired, more than one | P address free pool
can be specified. In the above example, the format for a second address pool is:

Addr ess Pool : 2

H gh address: 10.0.1.99
Low address: 10.0.1.2
Interface: 1

This pattern can be continued indefinitely.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-13

Porting Step-by-Step

Database file per-client fields
The per-client portion of the file isformatted as follows:

Cient I D 00006090068b

Host nanme: rose

| ease tinme: 3600

| P address: 10.0.0.33

subnet mask: 0.0.0.0

gateway: 10.0.0.1
. 0.

dns server: O. 0

The 12-digit d i ent |1 Dfield is a hexadecima number representing the six bytes of
the MAC address of thisclient.

Thisfollowsthe same rules asthose described in Database file default settingsfieldson
page 3-13. However, any omitted parameters (except host name) will use the defaults.
If you omit the host name, no host name will be offered to the client. Clients which
request a particular host name (such as Windows 95 DHCP clients) will be allowed the
requested host name, unlessit conflicts with another DHCP client already known to the
DHCP server.

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

3.6

3.6.1

Porting Step-by-Step

Nonvolatile storage functions

dh_nvinit()

Thefunctionsin this section require an underlying nonvolatile storage system that can
be accessed by way of afile system-like AP, that is, one with standard functions such
asfopen() andfwite().If suchasystemisnot available, or if nonvolatile storage
is not required, you will have to provide versions of dh_nvadd() and dh_nvdel (),
both described below. It is permissible for them to do nothing. In this case, they could
simply be defined to null macrosin dhcpport . h.

Additionally, the database should be set up when the DHCP server isinitialized, either
from previously saved values or from default values. In the ARM example,

dh_nvi ni t () showshow thiscan be done from a UNIX-likeboot pt ab file, from the
text format defined in Suggested database file format on page 3-12, or from a binary
format used by the example dh_nvadd() and dh_nvdel () functions. Reference
should be made to the example implementation (in particular, dhcpsnv. ¢ and
dhcpsrv. h) for details of the data structures.

Thisfunctionis provided with the ARM example databaseimplementation and iscalled
when DHCP isinitialized to set up initial values for the database. It will read default
values and initial per-client settings from the file given by dhcpdef (see Suggested
database file format on page 3-12) and (optionally) from a UNIX-like boot pt ab file.
It will then load any additional per-client entries which were stored by dh_nvadd() in
aprevious session.

Syntax

int dh_nvinit(void)

Return value
Returns one of the following:
0 If successful.

-1 If not successful.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-15

Porting Step-by-Step

3.6.2 dh_nvadd()
This function should store the datain the given list entry in nonvolatile storage, or
updatethe entry if datafrom thislist entry hasalready been stored. Thecl i ent | d field
of the list-entry structure uniquely identifies the list entry. In the ARM example
implementation, thisiswritten to the file given by dhcpsfi | e inacustom binary
format.
Syntax
voi d dh_nvadd(struct dhcpent *dhp)
where:
dhp is apointer to a DHCP address list-entry structure.
Return value
None.
3.6.3 dh_nvdel()
This function should find the given list entry in nonvolatile storage and, if found,
removeit. Thecl i ent | d field of the list-entry structure uniquely identifies the list
entry.
Syntax
voi d dh_nvdel (struct dhcpent *dhp)
where:
dhp isapointer to a DHCP address list-entry structure.
Return value
None.
3-16 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

3.7 Testing

Porting Step-by-Step

After your dhcpport . h fileis set up and your glue layers are coded, compiled, and
linked, the server can be tested. To perform abasic test:

1. Start your DHCP server.

2. Reboot any DHCP client machine. The two machines should complete a
four-packet exchange, as described in RFC 2131.

3. If you have replaced the ARM example file access code with your own, you
should also test to ensure that both per-client data and host data are being set
properly.

You should now have aworking DHCP server.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 3-17

Porting Step-by-Step

3-18

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0123A

Chapter 4
Troubleshooting

This chapter describes some common problems which could arise when porting the
ARM DHCP Server, and outlines methods for tracking and fixing them.

This chapter contains the following sections:

. Overview of troubleshooting on page 4-2
. UDP transport on page 4-3

. Database debugging on page 4-4

The DHCP user menu on page 4-5.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 4-1

Troubleshooting

4.1 Overview of troubleshooting

If your implementation of the ARM DHCP Server devel ops problems, there are various
techniques you can use to track them. These techniques may involve any of the
following:

. UDP transport on page 4-3

. Database debugging on page 4-4

. The DHCP user menu on page 4-5.

Problems can arise as a result of either:

. connecting the server to UDP
. attempting to keep the database information accurate.

4-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Troubleshooting

4.2 UDP transport

Because the ARM DHCP Server always operates by responding to client requests, the
first problem you may encounter is afailure to receive packets. If you have tried
rebooting aDHCP client and the server has not responded, you should ensurethe DHCP
server actually received the packet from the client. To do this, usethedhsr v command
in the DHCP server menus. It provides counters for all types of packets, both received
and sent. A counter showing all zeros indicates that no packets are being received, and
the problem islikely to involve the UDP listen or receive code.

If the menu counters indicate a discover packet was received and an offer packet was
sent, but no request was received, it is possible your UDP send has problems. For
example, the server may have sent the packet to the UDP layer, but UDP never relayed
it to the network. In this case, the problem islikely to involve the dh_udp_send()
code.

The ARM DHCP Server, unlike many networking protocols, accepts source level
debugging with breakpoints. Because each DHCP packet is sent from the server asa
reply to aclient packet, you can set abreakpoint on dhcp_r ecei ve(), enabling you to
trace the entire DHCP transaction up to the sending of the response.

Inall cases, apacket analyzer isthe suggested tool for debugging thistype of problem.
These are available as software programs for most major operating systems, or as
dedicated hardware devices. An analyzer will capture packets on the LAN to which it
isattached, and save them for later review. Most packet analyzers support filters, so you
can set them to capture only the packets of interest (in this case, BOOTP/DHCP
packets). Older analyzers may only filter at acoarser level, such asall |P packets, or all
UDP packets. Older analyzers may also treat DHCP packets as BOOTP packets.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 4-3

Troubleshooting

4.3 Database debugging

If the DHCP packets are being exchanged between client and server, but the [P

configuration information is not what you expected, there are some simple techniques

you can use to discover the problem:

1. Double check your databasefiles. Mistyped MAC addresses, or other client IDs,
are acommon source of trouble in per-client setups. That is, the clients will not
be found in the database and will be assigned default values instead.

2. Ensurethefiles are being read correctly into the DHCP server's internal
structures. The menu system’'sdhl i st and dhent r y commands can be used to
display information, even for clients that have not yet generated arequest. If the
IP configuration information is not correct here, it will not be correct on the
network.

3. Useapacket anayzer to check theinformation in the reply packets coming out of
the server. If the packets do not reflect the datarevealed by dhent ry, thereisan
encoding problem. Specifying the wrong byte order isthe most common cause of
this.

4-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Troubleshooting

4.4 The DHCP user menu

The ARM DHCP Server includes portable C code to implement afew simple diagnostic
commands on the debugging terminal. These commands can be helpful during
debugging of the server, and can also be helpful to the end user during configuration
and runtime. If you do not implement these menu commands as provided, it is
recommended that you provide the end user with some alternative method for accessing
the same data. The menu commands are summarized in Table 4-1.

Table 4-1 Menu commands

Menu command Description

dhsrv Displays DHCP
server statistics

dhl i st Lists DHCP server
assigned addresses

dhentry Lists specific entry
details

dhdel et e Deletesa DHCP entry

The use and output of the these commands are illustrated in the examples bel ow.
Example 4-1 displays packet statistics for the server.

Example 4-1 dhsrv

I NET> dhsrv

pl ai n bootp requests received: 0
pl ain bootp replies sent: 0O

di scover packets received: O

of fer packets sent: O

dhcp request packets received: 0
declines received: 0

rel eases received: 0

acks sent: 0

naks sent: O

requests for other servers: 0O
protocol errors; all types: O

All these packet types are described in RFC 2131. Note that plain BOOTP packets are
kept in separate categories.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 4-5

Troubleshooting

The next command isdhl i st . Example 4-2 shows a summary of all the database
entries for known DHCP clients:

Example 4-2 dhlist

I NET> dhl i st
1 1P:10.0.0.34 - client ID:00:00:60:90: 06: 8C - status: Unassi gned
2 1P:10.0.0.2 - client ID:00:00: F4:90:10: 52 - status: Assigned via DHCP
3 1P:10.0.0.33 - client ID:00:00: F4:90: OE: D8 - status: Assigned via DHCP
4 1P:10.0.0.3 - client ID: 00:40:C8:04:63: FA - status: Assigned via BOOTP
4 Entries

Note

Thislist includes clients defined in the database files, but not yet assigned by way of
DHCP.

Thislist isan effective tool for detecting non-existent machines. For example, with this
list, amistyped MAC address, or adevice which has been retired from the network, can
be easily identified. The Unassi gned status can also indicate that the client’s lease has
expired, or the machineis currently powered off. Thefirst entry above (10. 0. 0. 34) is
an example of this.

In Example 4-2, as on most networks, the client |ds are ethernet addresses. The ethernet
addressesin lines 2 and 4 are apparently not in the per-client list because they were
assigned | P addresses from the free address pool.

The next command, dhent ry, displaysall the database items assigned (or, those which
will be assigned) for this client. Example 4-3 isfor the first (1) entry from thedhl i st
command’s output in Example 4-2.

Example 4-3 dhentry

I NET> dhentry 1

I P:10.0.0.34 - client |D:00:00:60:90: 06: 8C - status: Unassi gned
subnet: 255. 0. 0. 0 gateway: 10. 0. 0. 1 DNS: 204. 156. 128. 1

| ease 0, type: dbase, nane: rose

This data was taken from dhcpsr v. nv file excerptsin Database file default settings
fields on page 3-13.

4-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Troubleshooting

Note

Some of the parameters, such asnane, are taken from the per-client entry for thisMAC
address. Others, such as the DNS server, are taken from the default values.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 4-7

Troubleshooting

4-8

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0123A

Chapter 5
User-provided Functions

The functions and primitives described in this section must be provided as part of the
porting process. The ARM example port can be referenced for examples. Many of these
functions are provided in the ARM IP stack.

Inthe demonstration program, these functions are either mapped directly to system calls
by way of macrosin dhcpport . h, or they are implemented in dhcpport . c.

This chapter contains the following sections:
. General functions on page 5-2

. UDP network API layer on page 5-5
. UDP callback function on page 5-7
. Timer callback function on page 5-8.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 5-1

User-provided Functions

5.1

511

General functions

The functions described in this section are used by the server to perform the
platform-specific tasks of reporting information to the user and guarding critical data.

dtrap()

This primitiveisintended to hook a debugger whenever it is called. For more details,
see Debugging aids on page 3-6.

Syntax

voi d dtrap(voi d)

Return value

None.

5-2

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

User-provided Functions

5.1.2 dprintf() and ns_printf()

These two functions perform the same operation aspri nt f () . That is, both are called
by the stack code to inform the programmer or end user of the system status. They have
separate names so they can have their output redirected, or be completely disabled,
independently of each other. Thedpri nt f () function is used throughout the stack
code to print warning messages when something seems to be wrong. This should be
mapped to a debugging console or log during development, and generally redefined to
anull macro for release. Thens_pri nt f () functionisfor printing statistical
information from the DHCP menus functions. These may be utilized during product
development and, depending on the nature of the product, may be needed in the final
release.

Syntax
int dprintf(const char *format, ..)

i nt ns_printf(void *vio, char * format, ...)

where:
for mat isaformat string like printf()
vio is ageneric input/output pointer.

Return value

Ignored.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 5-3

User-provided Functions

513 ENTER_DHCP_SECTION() and EXIT_DHCP_SECTION()
These two primitives should be paired around sections of code that must not be
interrupted or pre-empted. A simpleimplementation involvesdisabling and re-enabling
interrupts. Thismay be unacceptable on areal -time system, where these functions could
map to a mutual exclusion (mutex) semaphore. This type of mechanism is generally
provided by an RTOS.
Syntax
voi d ENTER_DHCP_SECTI ON(voi d)
voi d EXI T_DHCP_SECTI O\(voi d)
Return value
None.
Usage
The stack source code always pairs these two in the same routines. The implementor
can store state information, for example, by pushing it onto a stack during the call to
ENTER_DHCP_SECTI ON() , and restore it during the call to EXI T_DHCP_SECTI ON() .
5-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

User-provided Functions

5.2 UDP network API layer

5.2.1 dh_get_ip()

This layer comprises three functions which allow DHCP to send and receive UDP
datagrams. Implementations are provided for ARM’s lightweight UDP API. The first
two are calls the DHCP server code makes to the glue layer code, whereas
dhcp_receive() anddhcp_ti mei sup() are DHCP server internal functions which
need to be called from the UDP glue layer.

Each function is passedatwork interface index argument. This should be an integer
between 0 anBHCPNETS- 1 (defined indhcpport . h), which uniguely identifies a
network interface.

This function obtains the IP address associated with an interface number.

Syntax
i p_addr dh_get _i p(int net)
where:

net is the index of the network interface.

Return value

Returns the IP address of the interface in network-endian.

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved. 5-5

User-provided Functions

5.2.2 dh_udp_send()

This function broadcasts a UDP datagram on the network interface indicated. A buffer
with UDP datato send is passed, including alength.

Syntax

int dh_udp_send(int net, void *outbuf, int outlen)

where:

net isthe index for the network interface on which the packet is to be sent.
out buf is the data buffer containing the DHCP message.

out!en isthe length, in bytes, of the buffer, which is usually the BOOTP or

DHCP message structure size.

Return value
Returns one of the following:
0 If successful.

non-zero error value
If unsuccessful.

5-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

User-provided Functions

5.3 UDP callback function
The UDP callback function dhcp_r ecei ve() should be called upon receipt of a
DHCP packet.

5.3.1 dhcp_receive()
This function should be called by the protocol stack whenever aBOOTP or DHCP
message is received by UDP on the BOOTP server port (port 67).
Syntax

int dhcp_receive(int net, struct bootp *bp, unsigned /en)

where:

net isthe index of the network interface on which the packet was received.
bp is apointer to the start of the BOOTP/DHCP message.

I en isthe length, in bytes, of the bp structure.

Return value
Returns one of the following:
0 If successful.

-1 If the packet contains an error.

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 5-7

User-provided Functions

5.4

54.1

Timer callback function
Thetimer callback function dhcp_ti mei sup() isaDHCP server function that should
be called once per second.

dhcp_timeisup()

Thisfunctionisthe DHCP clock tick. This should be called once per second by the host
system. It allows the DHCP server to track lease time-outs and recycle unclaimed IP
addresses.

Syntax

voi d dhcp_tinei sup(voi d)

Return value

None.

5-8

Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A

Index

Theitemsin thisindex are listed in a phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

ALLOC() macros 3-5
DHD_ALLOC() 35
DHE_ALLOC() 35
DHR_ALLOC() 3-5

Angel Debug Monitor 3-6

ARM IPstack 1-2, 2-5,3-4,3-7, 3-9

ARM Software Development Tool kit

(SDT) 2-6

ARM7TDMI 2-6

B

BOOTP 2-3,5-6,5-7

bootptab file 3-7, 3-15

Bootstrap Protocol (BOOTP) 2-3, 5-6,
5-7

bswap() 3-6

C

cdloc() 2-7,3-4
Client/server 2-2
Clock tick 2-4,2-7, 3-8, 5-8
CPU architecture 3-4
CPU architecture types 3-5
htonl() 3-5
htons() 3-5
ntohl() 3-5
ntohs() 3-5
CRIT_SECTION() macros 3-9

D

Database access 2-5, 3-15, 3-16, 3-17
Database access file
dhcpsnv.c 3-2, 3-15
Database debugging 4-4
Definitions (standard) 3-4
DHCP database 3-11
database file default settings fields

3-13
database file per-client fields 3-14
parameters 3-11
suggested database fileformat 3-12
DHCP packet 3-8
DHCP user menu 4-5
dhcpdef 3-9, 3-15
dhcpmenu.c 3-2
DHCPNETS 3-7,5-5
dhcpport.c 3-2, 3-8, 3-10, 5-1
dhcpport.h 3-2, 3-4, 3-8, 3-15, 3-17,
5-1,55
dhcpsfile 3-9, 3-16
dhcpsnv.c 3-2, 3-15
dhcpsrv.c 3-2
dhcpsrv.h 3-2, 3-15
dhcpsrv.nv 3-11, 4-6
dhcps.h 3-2
dhcp_init() 3-10
dhcp_receive() 3-8, 4-3, 5-5,5-7
dhcp_timeisup() 3-8, 5-5, 5-8
dhdelete 4-5
DHD_ALLOC() 3-5

ARM DUI 0123A

Copyright © 1999 ARM Limited. All rights reserved.

Index-1

Index

dhentry 4-4, 4-5, 4-6
DHE_ALLOC() 3-5

dhlist 4-4,4-5
DHR_ALLOC() 3-5
dhsrv 4-3, 4-5

dh_get_ip() 5-5
dh_nvadd() 3-15, 3-16
dh_nvdel() 3-15, 3-16
dh_nvinit() 3-10, 3-11, 3-15
dh_udp_send() 4-3,5-6
DNS server 2-2

dprintf() 3-7,5-3

dtrap() 3-6, 3-7,5-2
Dynamic memory allocation 2-7

E

ENTER_DHCP_SECTION() 3-9,5-4
Ethernet 3-7
EXIT_DHCP_SECTION() 3-9,5-4

F

fclose() 3-7

foets() 3-7

fopen() 2-5,3-7,3-15
fread() 2-5

free() 2-7,3-4
fwrite() 3-15

G

Gluelayer 2-4,3-2
coding 3-8

H

htonl() 3-5
htons() 3-5

Initialization 3-10
IPaddress 2-2,3-11

ipport.h 3-4, 3-7

L

Lightweight UDP 1-2, 2-5
Iswap() 3-6

M

Macros (standard) 3-4
MAXNETS 3-7
Memory dlocation 3-4
Memory requirements 2-6
Menu commands 4-5
dhdelete 4-5
dhentry 4-4, 4-5, 4-6
dhlist 4-4,4-5
dhsrv 4-3,4-5
Menu system routines file 3-2
dhcpmenu.c 3-2
Menus example 2-6
Menus functions 5-3
Multi-ICE 3-6
Mutual exclusion (mutex) 3-9, 5-4

N

NAT router 2-4, 3-10

Network access 2-5

Network Address Translation (NAT)
router 2-4, 3-10

Network interfaceindex 5-5

NET_RESOURCE() macros 3-9

Nonvolatile storage functions 3-15

NPDEBUG 3-7

ns printf() 5-3

ntohl() 3-5

ntohs() 3-5

O

Operating system requirements 2-7

P

Packet analyzer 4-3,4-4
Packets 2-2, 4-3, 4-4,5-7
Per-port files 3-2
dhcpport.c 3-2
dhcpport.h 3-2
Portablefiles 3-2
Portable stack 2-4
Port-dependent files 3-2
Porting procedure 3-3

R

Real-Time Operating System (RTOS)
3-5,3-9,54

S

Sourcefiles 3-2
dhcpmenu.c 3-2
dhcpport.c 3-2, 3-8, 3-10, 5-1
dhcpport.h 3-2, 3-4, 3-8, 3-15, 3-17,
51,55
dhcpsnv.c 3-2, 3-15
dhcpsrv.c 3-2
dhcpsrv.h 3-2, 3-15
dhcps.h 3-2
stdio.h 3-4
System requirements 2-6

T

Testing 3-17

Timer callback function
dhcp_timeisup() 3-8, 5-5, 5-8

Timers and multitasking 3-8

Troubleshooting 4-2

U

UDP callback function
dhcp_receive() 3-8, 4-3, 5-5, 5-7

UDP datagram 5-6

UDP hooks 3-8

Index-2

Copyright © 1999 ARM Limited. All rights reserved.

ARM DUI 0123A

Index

UDP network API layer 5-5

UDP transport 4-3

Unassigned (status) 4-6

User Datagram Protocol (UDP) 1-2

W

Windows 95 3-11, 3-14

ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. Index-3

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM DHCP Server
	Feedback on this book

	Introduction
	1.1 About the ARM DHCP Server
	1.2 Terms and conventions

	Overview and Requirements
	2.1 Purpose of DHCP
	2.2 Overview of BOOTP
	2.3 What is a port?
	2.4 System requirements
	2.4.1 Memory requirements
	2.4.2 Operating system requirements

	Porting Step-by-Step
	3.1 Setting up your source tree
	3.2 Porting procedure
	3.3 The DHCP port file
	3.3.1 Standard macros and definitions
	3.3.2 Memory allocation
	3.3.3 CPU architecture
	3.3.4 Debugging aids
	3.3.5 Features and options

	3.4 Coding the glue layer
	3.4.1 UDP hooks
	3.4.2 Timers and multitasking
	3.4.3 Database location and default values
	3.4.4 Initialization

	3.5 The DHCP database
	3.5.1 Database parameters
	3.5.2 Suggested database file format

	3.6 Nonvolatile storage functions
	3.6.1 dh_nvinit()
	3.6.2 dh_nvadd()
	3.6.3 dh_nvdel()

	3.7 Testing

	Troubleshooting
	4.1 Overview of troubleshooting
	4.2 UDP transport
	4.3 Database debugging
	4.4 The DHCP user menu

	User-provided Functions
	5.1 General functions
	5.1.1 dtrap()
	5.1.2 dprintf() and ns_printf()
	5.1.3 ENTER_DHCP_SECTION() and EXIT_DHCP_SECTION()

	5.2 UDP network API layer
	5.2.1 dh_get_ip()
	5.2.2 dh_udp_send()

	5.3 UDP callback function
	5.3.1 dhcp_receive()

	5.4 Timer callback function
	5.4.1 dhcp_timeisup()

