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Preface

This preface introduces the ARM DHCP Server porting procedure. It contains the 
following sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. v
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About this book

This book is provided with the ARM DHCP Server software. 

It is assumed that the ARM DHCP Server porting sources are available as a reference. 
It is also assumed that you have access to programmer’s guides for C and ARM 
assembly language.

Intended audience

This Programmer’s Guide is written for experienced embedded systems program
with a general understanding of what a DHCP server does. It is written for those 
programmers who want to port the ARM DHCP Server to an embedded system. 

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 
Read this chapter for an introduction to the ARM Dynamic Host 
Configuration Protocol (DHCP) server porting procedure.

Chapter 2 Overview and Requirements 
Read this chapter for an overview of DHCP and the system 
requirements for porting the ARM DHCP Server.

Chapter 3 Porting Step-by-Step 
Read this chapter to learn what you need to do, step-by-step,
port the ARM DHCP Server to an embedded system.

Chapter 4 Troubleshooting 
Read this chapter for a description of some common problem
which could arise when porting the ARM DHCP Server, and to
learn methods for tracking and fixing them.

Chapter 5 User-provided Functions 
Read this chapter for a description of the functions and primitiv
that you must provide as part of the porting process.
vi Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A



Preface
Typographical conventions

The following typographical conventions are used in this document:

bold  Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate.

italic  Highlights special terminology, denotes internal cross-references, 
and citations.

typewriter Denotes text that may be entered at the keyboard, such as 
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or 
option name.

typewriter italic 
Denotes arguments to commands and functions where the 
argument is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing for the ARM DHCP Server.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains reference information that is specific to the ARM DHCP Server. For 
additional information, refer to the following ARM publications:

• ARM Software Development Toolkit Reference Guide (ARM DUI 0041)

• ARM Software Development Toolkit User Guide (ARM DUI 0040)

• Porting TCP/IP Programmer’s Guide (ARM DUI 0079).
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. vii
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Other publications

For other reference information that may be helpful in understanding the DHCP server, 
please refer to the following:

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 
2nd Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8)

• RFC 1700, Postel, J., Reynolds, J., "ASSIGNED NUMBERS", October 1994

• RFC 2131, Droms, R., "Dynamic Host Configuration Protocol", March 1997
viii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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Feedback

ARM Limited welcomes feedback on both the ARM DHCP Server, and its 
documentation.

Feedback on the ARM DHCP Server

If you have any problems with the ARM DHCP Server, please contact your supplier. 
To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually hap

• the commands you used, including any command-line options

• sample output illustrating the problem.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. ix
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Chapter 1 
Introduction

This chapter introduces the ARM Dynamic Host Configuration Protocol (DHCP) 
Server porting procedure.

This chapter contains the following sections:

• About the ARM DHCP Server on page 1-2

• Terms and conventions on page 1-3.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 1-1
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1.1  About the ARM DHCP Server

This Programmer’s Guide is provided with the ARM portable Dynamic Host 
Configuration Protocol (DHCP) server sources. The purpose of this document is to
provide enough information to enable a moderately experienced C programmer, w
reasonable understanding of DHCP, to port the ARM DHCP Server to a new 
environment.

It is assumed that the ARM DHCP Server demonstration program is available as
reference.

The ARM DHCP Server can be readily ported to any system that supports netwo
communication by way of User Datagram Protocol (UDP). An example 
implementation is provided that uses the lightweight UDP interface of the ARM 
Internet Protocol (IP) stack.
1-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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1.2  Terms and conventions

In this document, the following terms are used:

client When used without other qualification, means the ARM DHCP client 
that is ported to an embedded system.

end user Refers to the person who ultimately uses your product.

packet A sequence of bytes sent on network hardware, also known as a frame or 
datagram.

server When used without other qualification, means the ARM DHCP Server as 
ported to an embedded system.

stack Means the TCP/IP and related code, as ported to an embedded system.

system Refers to the embedded system.

you Used to indicate the user or engineer who is porting the server.

Conventions used throughout the document, such as the use of bold or italic font, are 
explained in Typographical conventions in the Preface.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 1-3
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Chapter 2 
Overview and Requirements

This chapter gives an overview of DHCP and the system requirements for porting the 
ARM DHCP Server. It contains the following sections:

• Purpose of DHCP on page 2-2

• Overview of BOOTP on page 2-3

• What is a port? on page 2-4

• System requirements on page 2-6.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-1
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2.1  Purpose of DHCP

DHCP is designed to ease configuration management of large networks by allowing the 
network administrator to collect all the IP hosts soft configuration information into a 
single computer. Soft configuration information includes:

• IP address

• name

• gateway

• default servers.

There are about 50 of these information items which can be assigned with DHCP
DHCP is designed so that customized configuration items can be easily added.

DHCP is a client/server protocol, meaning that the machine with the DHCP datab
serves requests from DHCP clients. The clients typically initiate the transaction b
requesting an IP address and, possibly, other information from the server. The se
looks up the client in its database, usually using the client's media address, and a
the requested fields. Clients do not always need to be in the server's database. If
unknown client submits a request, the server may optionally assign the client a fr
address from a pool of free addresses kept for this purpose. The server may also
the client default information of the local network, such as the default gateway, th
Domain Name System (DNS) server, and routing information. 

When the IP address is assigned, it is leased to the client for a potentially infinite 
amount of time. The DHCP client needs to keep track of this lease time, and obta
lease extension from the server before this time runs out. After the lease has elap
the client should not send any more IP packets (except DHCP requests) until ano
address is obtained. This approach allows computers (such as laptops or factory
monitors), which will not be permanently attached to the network, to share IP addre
when they are not using the network.
2-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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2.2  Overview of BOOTP

In this manual and other DHCP literature, you will find numerous cross-references to 
Bootstrap Protocol (BOOTP), which preceded DHCP. DHCP is a superset of BOOTP. 
The main differences between the two protocols are:

• the lease concept, which was created for DHCP

• DHCP has the ability to assign addresses from a pool.

The ARM DHCP client (sold as part of the ARM TCP/IP stack) can work with olde
BOOTP servers.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-3
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2.3  What is a port?

Figure 2-1 shows a simplified diagram of the events which drive a typical DHCP server. 
The vast majority of activity is initiated by DHCP packets from the clients. The server 
code also requires a periodic clock tick so it can detect non-network-driven events, such 
as a lease expiring.

 Figure 2-1 Events driving a DHCP server

While processing DHCP requests, the server will consult a local database. This database 
is generally set up by an end user. It contains the IP address pools, default information 
for clients, and, possibly, special configurations for specific clients. This database may 
be stored in a disk file or in nonvolatile memory. On some embedded systems, such as 
Network Address Translation (NAT) routers, it is recommended that you ship the server 
with a factory-configured database. 

The stack designer does not know what tasking system, user applications, or interfaces 
will be supported in the target system. Therefore, a portable stack is one that is designed 
with simple, generic interfaces in these areas, and a glue layer is created which maps 
this generic interface into the specific interfaces available on the target system. For 
example, when sending a packet, the stack would be designed with a generic 
send_packet() call, and you would code a glue routine to send the packet on the 
target system’s network interface.

Timers and
task control

DHCP server DHCP
database

Network (UDP)
API

End user
commands
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Making a stack portable involves minimizing the number of calls which have to go 
across glue routines, and keeping the glue routines simple and therefore easy to 
implement. The glue routines also need to be well-documented. The interfaces to the 
ARM DHCP Server have evolved through years of porting to a variety of processors, 
network media, and tasking systems. Wherever possible, ARM has used standard 
interfaces (such as the ANSI C library) or included glue routines to illustrate their use.

The bulk of the work in porting a stack involves understanding and implementing these 
glue routines. The ARM DHCP Server has two kinds of glue routines:

• database access

• network access.

The calls to set and extract database items are abstracted out. This means the calls are
generic, and will need to be provided as part of the port. Files are provided which
standard file input/output calls (such as fopen() and fread()) to implement a 
fully-functional database. So, if your target system has a disk-like device, you will m
likely be able to use this code as provided. If your database will be kept in nonvo
memory, and it does not have a file-system like API, you will need to develop your 
data structures and the code to access them.

The other set of glue routines needed for a port is the network access set. It is 
recommended that you use the ARM DHCP Server with the ARM IP stack, becau
file is provided which implements the required functions on the lightweight UDP A
Otherwise, you will need to provide some simple routines to allow the server to ac
your UDP protocol. 
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-5
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2.4  System requirements

Before beginning a port, you should ensure the necessary resources are available in the 
target environment. The ARM DHCP Server requires the following services from the 
system:

• access to a UDP layer with listen capabilities (such as the ARM lightweight AP
or sockets)

• a timer which ticks at least once per second

• a nonvolatile read/write method for storing database items (such as disk or 
nonvolatile memory)

• memory, as described in the next section, Memory requirements.

2.4.1  Memory requirements

It is difficult to provide exact memory requirements for the ARM DHCP Server. 
However, an estimate can be obtained by examining the results provided in the 
examples. The values in Table 2-1 are taken from the Menus example of the ARM
TCP/IP stack, configured to include the server. The code was compiled for the 
ARM7TDMI processor core with version 2.50 of the ARM Software Development 
Toolkit (SDT), and was optimized for code size rather than speed. The figures do
include the UDP stack, generic menu drivers, or Standard C library functions, wh
would be required for full functionality.

Note

Because the code is subject to continuous development, the values in Table 2-1 
change with subsequent releases.

 Table 2-1 ARM7TDMI memory requirements (in bytes)

Built as 
ARM 
code

Built as 
Thumb 
code

Read-
only 
data

Read-
write 
data

Total 
data

DHCP server core 5304 3724 88 128 216

DHCP file access code 2652 2056 160 264 424

Menu front-end routines 464 388 72 72 144

UDP glue layer 436 316 72 72 144

Totals 8856 6484 392 536 928
2-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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2.4.2  Operating system requirements

The ARM DHCP Server also requires two services from the operating system:

clock tick The DHCP server needs to be called one time per second to free resources 
for addresses which have timed out.

dynamic memory allocation
The standard calloc() and free() library calls are ideal. However, the 
DHCP server can also use any other system, such as a partition-based 
system, with very little effort.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 2-7
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Chapter 3 
Porting Step-by-Step

This chapter outlines what you need to do, step-by-step, to port the ARM DHCP Server 
to an embedded system.

This chapter contains the following sections:

• Setting up your source tree on page 3-2

• Porting procedure on page 3-3

• The DHCP port file on page 3-4

• Coding the glue layer on page 3-8

• The DHCP database on page 3-11

• Nonvolatile storage functions on page 3-15

• Testing on page 3-17.
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-1
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3.1  Setting up your source tree

Before beginning the porting procedure (see Porting procedure on page 3-3), you 
should be aware of those files in the ARM distribution that are the portable files, and 
those that are not:

• The portable files are those which should be compiled and used on any targ
system without modification.

• The unportable, or port-dependent, files, are those which will need to be repl
or heavily modified for different target systems.

This section contains a list of ARM DHCP Server source files which should not need 
to be modified during a normal port. If you feel you need to modify one of these fi
during a routine port, please contact ARM technical support staff first, who will eit
suggest an alternative, or modify ARM sources to reflect the change.

The portable ARM DHCP Server source files, which should not require modificati
during a standard port, are:

dhcpsrv\dhcpsrv.c 
Contains the main DHCP server code.

dhcpsrv\dhcpsrv.h 
Contains internal declarations.

dhcpsrv\dhcps.h 
Contains internal declarations.

The database access file, which may need modification on some ports, is:

dhcpsrv\dhcpsnv.c 
Contains the file system database access code.

The ARM menu system routines can be used as delivered with the ARM menuing
system. Otherwise, the routines may be replaced or omitted:

dhcpsrv\dhcpmenu.c 
Contains routines to dump statistics and the status.

The two per-port files usually need to be rewritten for the target system:

dhcpsrv\dhcpport.c and dhcpsrv\dhcpport.h 
Contain the glue layers for network access, memory allocation, time
ticks, and other system-dependent calls.
3-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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3.2  Porting procedure

The list below describes the steps needed to port the ARM DHCP Server to a new 
environment. It is assumed that the server is being ported to a small or embedded system 
with a suitable API to access UDP operations, and that a minimal Standard C library, or 
equivalent, is available.

1. Copy the source files into your development environment (see Setting up your 
source tree on page 3-2).

2. If the target system does not support file system operations, write and compile the 
necessary code to load and modify the nonvolatile database (see The DHCP 
database on page 3-11).

3. Create a DHCP port file (see The DHCP port file on page 3-4) and compile the 
portable sources.

4. Write and compile the necessary code for the glue layer (see Coding the glue 
layer on page 3-8).

5. Build a target system image, linking with those libraries or objects that are 
required to perform UDP operations.

6. Test and debug the image (see Testing on page 3-17).
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-3
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3.3  The DHCP port file

Before you compile the source files, you must create a version of the file dhcpport.h. 
This file contains most of the port-dependent definitions in the stack. CPU architectures 
(big-endian versus little-endian), compiler idiosyncrasies, and optional features (such 
as multiple interfaces and 10-net-only configuration) are controlled in this file. 

Warning

A single mistake in this file (such as confusing big-endian with little-endian) may cause 
the port to work incorrectly. It is recommended that you spend time carefully 
implementing the file line-by-line to avoid any mistakes or typographical errors. 

This section outlines the basic contents of dhcpport.h.

If the DHCP server is to be used with the ARM IP stack, the IP port file, ipport.h, 
should be included to ensure consistency. This file contains many of the definitions in 
this section.

3.3.1  Standard macros and definitions

The ARM DHCP Server expects TRUE, FALSE, and NULL to be defined within the scope 
of dhcpport.h. To do this, it is recommended that you include the standard C library 
file stdio.h inside dhcpport.h If stdio.h is impractical to use or missing, the 
examples below will work for almost every C environment:

#ifndef TRUE
#define TRUE -1
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0
#endif

3.3.2  Memory allocation

The ARM DHCP Server code allocates and frees memory blocks dynamically as it runs. 
It uses the macros listed below to do this. If your target system supports standard C 
calloc() and free(), the macros map directly as follows:

#define DHE_ALLOC(size) calloc(1,size) 
/* dhcp address list entry */
#define DHR_ALLOC(size) calloc(1,size) 
/* address range structure */ 
#define DHD_ALLOC(size) calloc(1,size)  
/* dhcp message structure */ 
3-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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#define DHE_FREE(ptr) free(ptr)
#define DHR_FREE(ptr) free(ptr)
#define DHD_FREE(ptr) free(ptr)

Note

The ALLOC() macros must clear the allocated memory by setting it to zero.

Many Real-Time Operating Systems (RTOS) do not use calloc() because of 
performance issues. Generally, they use a system which supports allocations of fixed 
size partitions (blocks) instead. The macros above are designed to support this. Each of 
the ALLOC() macros only allocates a single size. Therefore, the macros can be mapped 
to a call to allocate the next largest partition size. The size requested for each macro is 
shown in Table 3-1.

Note

These sizes may change, depending on the compiler settings and the target system.

3.3.3  CPU architecture

Four common macros are used from Berkeley UNIX for doing byte-order conversions 
between different CPU architecture types. These are:

htons() converts 16-bit from local to network format

htonl() converts 32-bit from local to network format

ntohs() converts 16-bit from network to local format

ntohl() converts 32-bit from network to local format.

 Table 3-1 Partition sizes

Macro
Size

(in bytes)

DHE_ALLOC() 56

DHR_ALLOC() 16

DHD_ALLOC() 548
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-5
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They may be either macros or functions. They accept 16-bit and 32-bit quantities as 
shown, and convert them from network format (big-endian) to the format of the local 
CPU. Most IP stacks already have these byte-ordering macros defined. If this is the 
case, you should try to find the existing include file which defines them, and use it rather 
than duplicate these macros. The information below is given in case these macros are 
not already available.

For an ARM processor running in big-endian mode, these can simply return the variable 
passed, as in the following example:

#define htonl(long_var) (long_var)
#define htons(short_var) (short_var)
#define ntohl(long_var) (long_var)
#define ntohs(short_var) (short_var)

An ARM processor running in little-endian mode requires the byte order in 16-bit or 
32-bit quantities to be swapped. The lswap() and bswap() primitives provided with 
the ARM demonstration program can be used, as follows:

#define htonl(long_var) lswap(long_var)
#define htons(short_var) ((u_short)(((u_short)(short_var)>>8) \

| ((u_short)(short_var)<<8)))
#define ntohl(long_var) lswap(long_var)
#define ntohs(short_var) htons(short_var)

3.3.4  Debugging aids

The dtrap() primitive is called by the DHCP code whenever it detects a situation 
which should not occur. The purpose of the dtrap() primitive is to try to trap to 
whichever debugger may be in use by the programmer. It functions as an embedded 
break point. 

The ARM example implements dtrap() as an empty function. A breakpoint can then 
be set on the function to alert a debug monitor such as Multi-ICE or the Angel Debug 
Monitor.

The stack code will generally continue executing after a call to dtrap(), but dtrap() 
usually indicates that something is wrong with the port.

Warning

You should not ship any product based on this code until all calls to dtrap() have been 
eliminated. When it is time to ship code, the dtrap() primitive can be redefined to a 
null macro to slightly reduce code size.
3-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0123A
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The last debugging tool in dhcpport.h is the #define NPDEBUG. This can be defined 
to cause the debug code to be compiled into the build. This code performs operations 
such as checking for valid parameters and sensible configurations during runtime. It 
frequently invokes dtrap() or dprintf() (see dprintf() and ns_printf() on page 5-3) 
to inform you of detected problems. You should ensure it is defined during 
development. Unless ROM space is low, it may be acceptable to leave it defined for 
release. It can be undefined for release to reduce code size by a small amount:

#define NPDEBUG 1 /* enable debug checks */

3.3.5  Features and options

The ARM DHCP Server can optionally read a standard UNIX-like bootptab file and 
use it to initialize entries in the DHCP address pool. This is provided for backward 
compatibility with BOOTP. This feature requires access to a conventional file system 
by way of the standard C calls fopen(), fgets(), and fclose(). If you are designing 
a DHCP server for use with older UNIX or Windows 3.1 workstations, it is 
recommended that you include this feature. To do this, dhcpport.h should contain this 
definition:

#define BOOTPTAB 1 /* will try to read a BSD bootptab file */

DHCP service requires one or more devices for sending and receiving network packets. 
These are usually hardware devices, such as Ethernet or PPP ports. Most DHCP servers 
on embedded systems support only one device (Ethernet, most commonly), but some 
servers, such as routers, may need two or more devices. The ARM stack supports 
multiple logical devices, and has been used with up to eight. The structures to manage 
these devices are statically allocated at compile time, so the maximum number of 
devices the system will use at runtime must be set with a #define. If you are using the 
ARM IP stack, this is already defined in ipport.h as MAXNETS:

/* number of interfaces on which we may support DHCP *
#define DHCPNETS MAXNETS

Finally, you will need to set upper limits for the sizes of certain data fields:

#define CLIDSIZE 6
/* client ID size, usually ethernet address */
#define DHCPNAMESIZE 32 /* maximum name length */
ARM DUI 0123A Copyright © 1999 ARM Limited. All rights reserved. 3-7
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3.4  Coding the glue layer

After you have developed your dhcpport.h file, as described in the previous section, 
you must then code the glue layers. These are the routines which map the generic 
service requests DHCP makes to specific services provided by your target system. You 
may have already handled some of them through #define mapping in dhcpport.h. 
The rest need to be implemented as a minimal layer of C code. In the demonstration 
program, most of these are collected in the file dhcpport.c. You can name this file 
anything you want, or implement these routines in multiple source files. For the 
purposes of this documentation, it is assumed they are all in dhcpport.c. 

3.4.1  UDP hooks

Usually the most complex part of the glue layer is the network interface. DHCP needs 
to send and receive packets by way of the UDP protocol. If you are using ARM’s 
lightweight API, a sample dhcpport.c file is provided which does most of the work
for you. Otherwise, you will need to implement the routines described in UDP network 
API layer on page 5-5. These are summarized below:

/* dhcp server’s per-port utility for sending datagrams */
int   dh_udp_send(int iface, void * outbuf, int outlen);

/* get the IP address associate with an iface number. This is */
/* returned in network endian */
ip_addr   dh_get_ip(int iface);

The above routines do not provide a mechanism for DHCP to receive packets. 
Receiving is accomplished by way of a callback, a routine inside DHCP which is c
from user code when a packet is received for the ARM DHCP Server. The form o
callback is:

/* portable dhcp server received packet handler */
int dhcp_receive(int iface, struct bootp * bp, unsigned len);

3.4.2  Timers and multitasking

A DHCP server only needs to service two events, each of which is handled by a ca
routine:

• an arriving DHCP packet

• the once-per-second timer.

The arriving DHCP packets are processed in dhcp_receive(), discussed briefly in 
UDP hooks above, and detailed in dhcp_receive() on page 5-7. The once-per-second
timer is implemented by calling dhcp_timeisup() (see Timer callback function on 
page 5-8) once per second. 
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The other aspect of multitasking is to protect sensitive structures from being corrupted 
by code re-entry. This is accomplished with two macros that protect critical sections of 
code:

#define ENTER_DHCP_SECTION()
#define EXIT_DHCP_SECTION()

If you are using the ARM IP stack, these could be mapped to the CRIT_SECTION() or 
NET_RESOURCE() macros provided. For some applications, it may be acceptable to 
simply disable interrupts for a brief period. On a true real-time system, these might be 
mapped to a mutual-exclusion semaphore. 

3.4.3  Database location and default values

A small amount of static data is required in dhcpport.c. The first set of data is the file 
paths of the database files. These can be hardcoded for some products or made to be 
user-configurable. The name strings are:

char *dhcpdef;
char *dhcpsfile;

An example setup is shown here:

Example 3-1

/* names of DHCP database and configuration files */
char * dhcpdef = "dhcpsrv.nv";   /* Default DHCP values list */

/* DHCP dynamic database (disk file) for demo port. This must be 
an absolute path since the user application may change the 
current working directory. */
char * dhcpsfile = "\\etc\\dhcprecs.nv";

These are pointers to strings and can therefore be left null at compile time and assigned 
at runtime.
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3.4.4  Initialization

The following steps are required to initialize the server. In the ARM implementation, 
this is performed by the function dhcp_init() in dhcpport.c:

1. Set up the UDP layer to:

• listen for incoming packets on the DHCP server port (port 67)

• enable it to send packets.

2. Initialize the database (see The DHCP database on page 3-11). This can be 
achieved by a call to dh_nvinit() if the ARM-provided database access cod
is used. Otherwise, you should provide code to initialize the database, either
nonvolatile storage or from hard-coded defaults. The ARM example can be
configured to use default configuration values and address ranges suitable 
assigning information on a local 10-net. This is designed to facilitate integra
with, for example, a NAT router product, making the setup of a network of 
factory-floor monitors, or small LAN, completely independent of public IP 
addressing. These default values will be overwritten by any values in the 
nonvolatile database.
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3.5  The DHCP database

Before the ARM DHCP Server can be used, some basic IP address information is 
required. This is stored in a database containing information which will be assigned to 
DHCP clients. This information may include:

• IP addresses

• subnet masks

• servers

• lease times

• names.

The database is stored in memory, but most applications will require a nonvolatile 
of the database.

The ARM implementation includes routines to access the database, and to load d
settings from a file (see Suggested database file format on page 3-12). You should 
initialize this by calling the function dh_nvinit(), as described in dh_nvinit() on 
page 3-15.

3.5.1  Database parameters

The database parameters are divided into two categories:

• those which are maintained on a per-client basis, such as a single permane
address

• those which are maintained per-network, such as a pool of free IP addresse

When setting up the database, the end user will generally want to set up both type
example, if a webserver obtains its IP address by way of DHCP, the end user can
improve its accessibility by ensuring that it always obtains the same IP address fro
ARM DHCP Server. However, a Windows 95 workstation whose only IP applicatio
a Web browser can change IP addresses every time it is rebooted, while still allo
repeated access to the network.

To facilitate managing this type of data mix, the DHCP server maintains two type
data:

• That which contains detailed per-client information for permanent client 
assignments. 

• That which contains default information for more generic client setup. 
Assignment of this data is done from a single file. In the demonstration progr
this file is named dhcpsrv.nv, but this can be changed during the porting 
process. If the DHCP server is to work over multiple interfaces, one of these 
must be provided for each interface.
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The DHCP data items supported in the database are:

char name[DHCPNAMESIZE]; /* String for name */
ip_addr ipaddr; /* client’s assigned IP address */
ip_addr snmask; /* client’s assigned subnet mask */
ip_addr gwaddr; /* client’s assigned default gateway */
ip_addr dnsaddr; /* Domain Name server */
char clientId[CLIDSIZE];
/* usually client’s hardware address */
unsigned short type;      
/* type of this entry */
unsigned short status;    
/* status of this entry */
unsigned long lease;           
/* default lease duration, 0xffffffff==infinite */

Note

The IP addresses (the ip_addr fields) are stored in local-endian format, not 
network-endian.

Most of these fields should be familiar to programmers with some exposure to TCP/IP 
networks, but the clientId field requires elaboration. This field is the unique ID 
which the ARM DHCP Server will use to track each client as it asks for and receives an 
IP address and configuration. On old BOOTP systems, this was always the Ethernet (or 
Token Ring) MAC address because this was always unique. This identification method 
has been adopted by DHCP, so if you are using DHCP over Ethernet or Token Ring, the 
simplest method is to use the MAC address as clientId. The DHCP clients will 
determine the size of this field, and on these media, the size will always be six because 
both MAC addresses are six bytes in length. However, because it may be used over PPP 
and other address-less links, there may be cases where the clientId field will not be 
six bytes in length. If you implement a server which will use a nonstandard clientId 
size, be sure to modify the definition of CLIDSIZE to the size your media will be using.

3.5.2  Suggested database file format

As you develop your DHCP server’s user interface, you should consider the method the 
end user will use to assign the database information. ARM provides the dhcpsnv.c 
source code file which will read in this information from a file at runtime. Because this 
is expected to be used in most DHCP server ports, the format of the database file is 
described in this section. 

Note

One of these database files is needed for each network your DHCP server will serve.
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The file is a plain text file which can be easily read and modified by a human operator. 
It is also designed to be easily modified from a GUI front-end, such as an embedded 
webserver. Each data item occupies one line of text. The name of the data item is first. 
The parameters are identified by performing a pattern match on this name, so the end 
user should understand that these must not be changed if editing the file directly. Every 
item name ends with a colon character (:). The text after the colon is the data which is 
usually an IP address, numeric parameter, or text string. If the database initialization 
function nv_init() detects syntax errors in the file, it will dprintf an error message 
and return an error code.

The first portion of the file covers the default database information. This is the setup 
information that will be given to the DHCP clients, unless overridden by a per-client 
entry at a later time. The list of per-client settings comprises the remainder of the 
database file.

Database file default settings fields

The fields of the default-settings portion are as follows:

Net interface: 0
Default gateway: 10.0.0.1
Default DNS server: 204.156.128.1
Domain name: arm.com 
Default lease: 3600
Default subnet: 255.0.0.0

Address Pool: 1
High address: 10.0.0.99
Low address: 10.0.0.2
Interface: 0

All these should be self-explanatory to experienced TCP/IP programmers. None of 
these fields are mandatory. Any that are missing in this section, and not specified in the 
per-client section which follows, will simply be assigned default values as set up in the 
DHCP initialization code. If there are no addresses in the free address pool, IP addresses 
will only be assigned to clients with an entry in the per-client list. Any requests will be 
ignored in this case.

If discontiguous blocks of IP addresses are desired, more than one IP address free pool 
can be specified. In the above example, the format for a second address pool is:

Address Pool: 2 
High address: 10.0.1.99
Low address: 10.0.1.2
Interface: 1

This pattern can be continued indefinitely.
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Database file per-client fields

The per-client portion of the file is formatted as follows:

Client ID: 00006090068b
Host name: rose
lease time: 3600
IP address: 10.0.0.33
subnet mask: 0.0.0.0
gateway: 10.0.0.1
dns server: 0.0.0.0

The 12-digit Client ID field is a hexadecimal number representing the six bytes of 
the MAC address of this client.

This follows the same rules as those described in Database file default settings fields on 
page 3-13. However, any omitted parameters (except host name) will use the defaults. 
If you omit the host name, no host name will be offered to the client. Clients which 
request a particular host name (such as Windows 95 DHCP clients) will be allowed the 
requested host name, unless it conflicts with another DHCP client already known to the 
DHCP server.
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3.6  Nonvolatile storage functions

The functions in this section require an underlying nonvolatile storage system that can 
be accessed by way of a file system-like API, that is, one with standard functions such 
as fopen() and fwrite(). If such a system is not available, or if nonvolatile storage 
is not required, you will have to provide versions of dh_nvadd() and dh_nvdel(), 
both described below. It is permissible for them to do nothing. In this case, they could 
simply be defined to null macros in dhcpport.h.

Additionally, the database should be set up when the DHCP server is initialized, either 
from previously saved values or from default values. In the ARM example, 
dh_nvinit() shows how this can be done from a UNIX-like bootptab file, from the 
text format defined in Suggested database file format on page 3-12, or from a binary 
format used by the example dh_nvadd() and dh_nvdel() functions. Reference 
should be made to the example implementation (in particular, dhcpsnv.c and 
dhcpsrv.h) for details of the data structures.

3.6.1  dh_nvinit()

This function is provided with the ARM example database implementation and is called 
when DHCP is initialized to set up initial values for the database. It will read default 
values and initial per-client settings from the file given by dhcpdef (see Suggested 
database file format on page 3-12) and (optionally) from a UNIX-like bootptab file. 
It will then load any additional per-client entries which were stored by dh_nvadd() in 
a previous session.

Syntax

int dh_nvinit(void)

Return value

Returns one of the following:

0 If successful.

-1 If not successful.
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3.6.2  dh_nvadd()

This function should store the data in the given list entry in nonvolatile storage, or 
update the entry if data from this list entry has already been stored. The clientId field 
of the list-entry structure uniquely identifies the list entry. In the ARM example 
implementation, this is written to the file given by dhcpsfile in a custom binary 
format.

Syntax

void dh_nvadd(struct dhcpent *dhp)

where:

dhp is a pointer to a DHCP address list-entry structure.

Return value

None.

3.6.3  dh_nvdel()

This function should find the given list entry in nonvolatile storage and, if found, 
remove it. The clientId field of the list-entry structure uniquely identifies the list 
entry.

Syntax

void dh_nvdel(struct dhcpent *dhp)

where:

dhp is a pointer to a DHCP address list-entry structure.

Return value

None.
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3.7  Testing

After your dhcpport.h file is set up and your glue layers are coded, compiled, and 
linked, the server can be tested. To perform a basic test:

1. Start your DHCP server.

2. Reboot any DHCP client machine. The two machines should complete a 
four-packet exchange, as described in RFC 2131.

3. If you have replaced the ARM example file access code with your own, you 
should also test to ensure that both per-client data and host data are being set 
properly.

You should now have a working DHCP server.
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Chapter 4 
Troubleshooting

This chapter describes some common problems which could arise when porting the 
ARM DHCP Server, and outlines methods for tracking and fixing them.

This chapter contains the following sections:

• Overview of troubleshooting on page 4-2

• UDP transport on page 4-3

• Database debugging on page 4-4

• The DHCP user menu on page 4-5.
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4.1  Overview of troubleshooting

If your implementation of the ARM DHCP Server develops problems, there are various 
techniques you can use to track them. These techniques may involve any of the 
following:

• UDP transport on page 4-3

• Database debugging on page 4-4

• The DHCP user menu on page 4-5.

Problems can arise as a result of either:

• connecting the server to UDP

• attempting to keep the database information accurate.
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4.2  UDP transport

Because the ARM DHCP Server always operates by responding to client requests, the 
first problem you may encounter is a failure to receive packets. If you have tried 
rebooting a DHCP client and the server has not responded, you should ensure the DHCP 
server actually received the packet from the client. To do this, use the dhsrv command 
in the DHCP server menus. It provides counters for all types of packets, both received 
and sent. A counter showing all zeros indicates that no packets are being received, and 
the problem is likely to involve the UDP listen or receive code.

If the menu counters indicate a discover packet was received and an offer packet was 
sent, but no request was received, it is possible your UDP send has problems. For 
example, the server may have sent the packet to the UDP layer, but UDP never relayed 
it to the network. In this case, the problem is likely to involve the dh_udp_send() 
code.

The ARM DHCP Server, unlike many networking protocols, accepts source level 
debugging with breakpoints. Because each DHCP packet is sent from the server as a 
reply to a client packet, you can set a breakpoint on dhcp_receive(), enabling you to 
trace the entire DHCP transaction up to the sending of the response.

In all cases, a packet analyzer is the suggested tool for debugging this type of problem. 
These are available as software programs for most major operating systems, or as 
dedicated hardware devices. An analyzer will capture packets on the LAN to which it 
is attached, and save them for later review. Most packet analyzers support filters, so you 
can set them to capture only the packets of interest (in this case, BOOTP/DHCP 
packets). Older analyzers may only filter at a coarser level, such as all IP packets, or all 
UDP packets. Older analyzers may also treat DHCP packets as BOOTP packets.
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4.3  Database debugging

If the DHCP packets are being exchanged between client and server, but the IP 
configuration information is not what you expected, there are some simple techniques 
you can use to discover the problem:

1. Double check your database files. Mistyped MAC addresses, or other client IDs, 
are a common source of trouble in per-client setups. That is, the clients will not 
be found in the database and will be assigned default values instead.

2. Ensure the files are being read correctly into the DHCP server’s internal 
structures. The menu system’s dhlist and dhentry commands can be used to 
display information, even for clients that have not yet generated a request. If the 
IP configuration information is not correct here, it will not be correct on the 
network.

3. Use a packet analyzer to check the information in the reply packets coming out of 
the server. If the packets do not reflect the data revealed by dhentry, there is an 
encoding problem. Specifying the wrong byte order is the most common cause of 
this.
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4.4  The DHCP user menu

The ARM DHCP Server includes portable C code to implement a few simple diagnostic 
commands on the debugging terminal. These commands can be helpful during 
debugging of the server, and can also be helpful to the end user during configuration 
and runtime. If you do not implement these menu commands as provided, it is 
recommended that you provide the end user with some alternative method for accessing 
the same data. The menu commands are summarized in Table 4-1:

The use and output of the these commands are illustrated in the examples below. 
Example 4-1 displays packet statistics for the server.

Example 4-1 dhsrv

INET> dhsrv
plain bootp requests received: 0
plain bootp replies sent: 0
discover packets received: 0
offer packets sent: 0
dhcp request packets received: 0
declines received: 0
releases received: 0
acks sent: 0
naks sent: 0
requests for other servers: 0
protocol errors; all types: 0

All these packet types are described in RFC 2131. Note that plain BOOTP packets are 
kept in separate categories.

 Table 4-1 Menu commands

Menu command Description

dhsrv Displays DHCP 
server statistics

dhlist Lists DHCP server 
assigned addresses

dhentry Lists specific entry 
details

dhdelete Deletes a DHCP entry
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The next command is dhlist. Example 4-2 shows a summary of all the database 
entries for known DHCP clients:

Example 4-2 dhlist

INET> dhlist
 1 IP:10.0.0.34 - client ID:00:00:60:90:06:8C - status:Unassigned
 2 IP:10.0.0.2 - client ID:00:00:F4:90:10:52 - status:Assigned via DHCP
 3 IP:10.0.0.33 - client ID:00:00:F4:90:0E:D8 - status:Assigned via DHCP
 4 IP:10.0.0.3 - client ID:00:40:C8:04:63:FA - status:Assigned via BOOTP
4 Entries

Note

This list includes clients defined in the database files, but not yet assigned by way of 
DHCP.

This list is an effective tool for detecting non-existent machines. For example, with this 
list, a mistyped MAC address, or a device which has been retired from the network, can 
be easily identified. The Unassigned status can also indicate that the client’s lease has 
expired, or the machine is currently powered off. The first entry above (10.0.0.34) is 
an example of this.

In Example 4-2, as on most networks, the client Ids are ethernet addresses. The ethernet 
addresses in lines 2 and 4 are apparently not in the per-client list because they were 
assigned IP addresses from the free address pool.

The next command, dhentry, displays all the database items assigned (or, those which 
will be assigned) for this client. Example 4-3 is for the first (1) entry from the dhlist 
command’s output in Example 4-2. 

Example 4-3 dhentry

INET> dhentry 1
IP:10.0.0.34 - client ID:00:00:60:90:06:8C - status:Unassigned
subnet:255.0.0.0 gateway:10.0.0.1 DNS:204.156.128.1
lease 0, type: dbase, name: rose

This data was taken from dhcpsrv.nv file excerpts in Database file default settings 
fields on page 3-13.
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Note

Some of the parameters, such as name, are taken from the per-client entry for this MAC 
address. Others, such as the DNS server, are taken from the default values.
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Chapter 5 
User-provided Functions

The functions and primitives described in this section must be provided as part of the 
porting process. The ARM example port can be referenced for examples. Many of these 
functions are provided in the ARM IP stack.

In the demonstration program, these functions are either mapped directly to system calls 
by way of macros in dhcpport.h, or they are implemented in dhcpport.c.

This chapter contains the following sections:

• General functions on page 5-2

• UDP network API layer on page 5-5

• UDP callback function on page 5-7

• Timer callback function on page 5-8.
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5.1  General functions

The functions described in this section are used by the server to perform the 
platform-specific tasks of reporting information to the user and guarding critical data.

5.1.1  dtrap()

This primitive is intended to hook a debugger whenever it is called. For more details, 
see Debugging aids on page 3-6.

Syntax

void dtrap(void)

Return value

None.
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5.1.2  dprintf() and ns_printf()

These two functions perform the same operation as printf(). That is, both are called 
by the stack code to inform the programmer or end user of the system status. They have 
separate names so they can have their output redirected, or be completely disabled, 
independently of each other. The dprintf() function is used throughout the stack 
code to print warning messages when something seems to be wrong. This should be 
mapped to a debugging console or log during development, and generally redefined to 
a null macro for release. The ns_printf() function is for printing statistical 
information from the DHCP menus functions. These may be utilized during product 
development and, depending on the nature of the product, may be needed in the final 
release. 

Syntax

int dprintf(const char *format, …)

int ns_printf( void * vio, char * format, …)

where:

format is a format string like printf() .

vio is a generic input/output pointer.

Return value

Ignored.
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5.1.3  ENTER_DHCP_SECTION() and EXIT_DHCP_SECTION()

These two primitives should be paired around sections of code that must not be 
interrupted or pre-empted. A simple implementation involves disabling and re-enabling 
interrupts. This may be unacceptable on a real-time system, where these functions could 
map to a mutual exclusion (mutex) semaphore. This type of mechanism is generally 
provided by an RTOS.

Syntax

void ENTER_DHCP_SECTION(void)

void EXIT_DHCP_SECTION(void)

Return value

None.

Usage

The stack source code always pairs these two in the same routines. The implementor 
can store state information, for example, by pushing it onto a stack during the call to 
ENTER_DHCP_SECTION(), and restore it during the call to EXIT_DHCP_SECTION().
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5.2  UDP network API layer

This layer comprises three functions which allow DHCP to send and receive UDP 
datagrams. Implementations are provided for ARM’s lightweight UDP API. The first 
two are calls the DHCP server code makes to the glue layer code, whereas 
dhcp_receive() and dhcp_timeisup() are DHCP server internal functions which
need to be called from the UDP glue layer.

Each function is passed a network interface index argument. This should be an intege
between 0 and DHCPNETS-1 (defined in dhcpport.h), which uniquely identifies a 
network interface.

5.2.1  dh_get_ip()

This function obtains the IP address associated with an interface number.

Syntax

ip_addr dh_get_ip(int net)

where:

net is the index of the network interface.

Return value

Returns the IP address of the interface in network-endian.
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5.2.2  dh_udp_send()

This function broadcasts a UDP datagram on the network interface indicated. A buffer 
with UDP data to send is passed, including a length. 

Syntax

int dh_udp_send(int net, void *outbuf, int outlen)

where:

net is the index for the network interface on which the packet is to be sent.

outbuf is the data buffer containing the DHCP message.

outlen is the length, in bytes, of the buffer, which is usually the BOOTP or 
DHCP message structure size.

Return value

Returns one of the following:

0 If successful.

non-zero error value 
If unsuccessful.
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5.3  UDP callback function

The UDP callback function dhcp_receive() should be called upon receipt of a 
DHCP packet.

5.3.1  dhcp_receive()

This function should be called by the protocol stack whenever a BOOTP or DHCP 
message is received by UDP on the BOOTP server port (port 67).

Syntax

int dhcp_receive(int net, struct bootp *bp, unsigned len)

where:

net is the index of the network interface on which the packet was received.

bp is a pointer to the start of the BOOTP/DHCP message.

len is the length, in bytes, of the bp structure.

Return value

Returns one of the following:

0 If successful.

–1 If the packet contains an error.
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5.4  Timer callback function

The timer callback function dhcp_timeisup() is a DHCP server function that should 
be called once per second.

5.4.1  dhcp_timeisup()

This function is the DHCP clock tick. This should be called once per second by the host 
system. It allows the DHCP server to track lease time-outs and recycle unclaimed IP 
addresses.

Syntax

void dhcp_timeisup(void)

Return value

None.
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