
Copyright © 1999 ARM Limited. All rights reversed

Application Note
TCP/IP RTOS Integration Case Study

Document number: ARM DAI 0076

Issued: April 1999

Copyright ARM Limited 1999

76

ii Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

Application Note 76
TCP/IP RTOS Integration Case Study

Copyright © 1999 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

April 1999 A First release

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI, ARM9TDMI, TDMI
and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective owners

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for addtions and improvements are also welcome.

ARM web address

http://www.arm.com

Table of Contents

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 1
ARM DAI 0076A

Table of Contents

1 Introduction ...2

1.1 Overview of µC/OS...2
1.2 ARM TCP/IP and PPP overview ...2

2 Porting TCP/IP ...3
2.1 Timers...3
2.2 Task control ..3
2.3 TCP ..7
2.4 Pre-emption and protection ...9
2.5 PPP porting...10

3 ARM Development Board Device Drivers ...11
3.1 Source files ...11
3.2 Interrupt service routines...11

Introduction

2 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

1 Introduction

This application note is intended as a supplement to the Porting TCP/IP Programmer’s
[ARM DUI 0079B]. It gives more detail on some of the issues which arise when targeting
an RTOS, and gives a concrete example of such an implementation on µC/OS, a small
RTOS kernel.

1.1 Overview of µµC/OS

µC/OS (pronounced micro C OS) is a small, portable real-time kernel. It has a fully pre-
emptive prioritized task scheduler supporting up to 63 tasks, and mechanisms for
passing signals and messages between tasks. Tasks can be dynamically created and
deleted, and task priorities can be dynamically changed.

µC/OS is available for download at http://www.ucos-ii.com.

The version used in this example has been ported to the ARM7TDMI version of the ARM
Development Board. The API has been extended to allow user-defined interrupt service
routines to be installed, and also to selectively enable the various interrupt sources
available on the development board.

1.2 ARM TCP/IP and PPP overview

The ARM portable TCP/IP stack is designed to access the underlying system through a
simple, generic interface. Most systems can be targeted simply by providing device
drivers and some small glue functions to map the stack’s interface onto the system API.

ARM provides an example implementation on the ARM Development Board, with drivers
for the built-in serial port and an Olicom PCMCIA Ethernet interface, including support
for modem and direct cable network connections by way of the serial port. Therefore,
the only work necessary in porting to a RTOS on the development board is to write the
RTOS-specific glue layer and applications.

Note The ARM implementation makes use of semihosted SWI operations, particularly to read
nonvolatile parameters from a file on the host machine. It is therefore necessary to ensure
that the semihosting operations are available. For more information on semihosting, see
section 13.7 of the SDT 2.50 User Guide [ARM DUI 0040D]. In particular, if µC/OS installs a
SWI handler, this must be chained onto the semihosting one. See Application Note 31: Using
EmbeddedICE for more details.

Porting TCP/IP

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 3
ARM DAI 0076A

2 Porting TCP/IP

Many of the source files in the TCP/IP stack are designed to be portable, and should
therefore not need to be modified. ARM’s example implementation provides Ethernet
and PPP network interfaces that need only minor alterations to work with µC/OS (see
below). Otherwise, all that must be done is to code the glue layer. This consists of simple
mappings between the service requests made by the stack and the API functions
provided by the target.

2.1 Timers

The stack requires access to a timing variable called cticks, which is incremented at
regular intervals, and a constant called TPS (ticks per second), which gives the number
of times per second the timer is incremented. µC/OS implements a 100Hz timer, which
can be accessed by way of API calls. Therefore, the stack can be given access to the
timer using the following macros (which should be defined in ipport.h):

#define TPS 100L

#define cticks OSTimeGet()

In addition, the ARM example implementation expects functions to initialize and finalize
the clock. These are not required on µC/OS because the clock is initialized during the OS
startup, so these functions should be made null, as follows:

#define clock_init()

__inline void clock_c(void) {}

Note The clock_c function cannot be implemented as a null macro because a pointer to it is
installed in the ARM IP start-up code.

2.2 Task control

Using the multitasking method, it is necessary to create several tasks when the stack is
initialized. Many of the ARM implementation modules (such as the modem handler and
echo clients) must be frequently polled. Other functions must be called at regular
intervals, and in response to signals from other (possibly interrupt-driven) parts of the
implementation.

The polling functions can be called from separate tasks, which should be scheduled in a
round-robin manner. In the µC/OS implementation, because all tasks must have a unique
priority and only the highest priority active task will run, this is implemented by pending
on a synchronization semaphore after each call to a polling function. An extra task, at a
lower priority than any other, repeatedly signals this semaphore until all of the polling
tasks are active again. Many of the polling functions contain calls to the
tk_yield()function in order to block for a while and let the rest of the stack run. On
µC/OS, this can be mapped directly to wait on the same synchronization semaphore.

Porting TCP/IP

4 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

2.2.1 Example

In main.c, each polling function could have a task coded in this manner:

void Task_Poll(void *Id)

{

 for (;;)

 {

 /* Call the polling function */

 polling_function();

 /* Give the other tasks some time */

 tk_yield();

 }

}

The tk_yield() function can be mapped onto the µC/OS API function which waits on a
signal semaphore. The easiest way to do this is to define an inline function or macro in
ipport.h, such as

__inline void tk_yield(void)

{

 /* placeholder for semaphore error code */

 uint error;

 /* Wait to be signaled */

 OSSemPend(sem_sync,0,&error);

}

where sem_sync is a µC/OS semaphore created with initial value 0, so that initially, any
task which waits on it will block.

A separate task could be used to restart the polling tasks. If this has a lower priority than
the polling tasks, it will run after the last polling task yields. Alternatively, it could wait for
a short delay after restarting the pending tasks. A simple implementation is as follows:

Porting TCP/IP

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 5
ARM DAI 0076A

void Task_Restart(void *Id)

{

 for(;;)

 {

 /* Lock scheduling to prevent newly restarted

 * tasks from pre-empting this one */

 OSSchedLock();

 /* While tasks are pending, restart them */

 while (sem_sync->OsEventCnt < 0)

 OSSemPost(sem_sync);

 /* Allow the restarted tasks to run */

 OSSchedUnlock();

 }

}

If this task is given the lowest priority of all tasks, it will restart the polling tasks after they
have all yielded control.

The timer functions must be called regularly, at intervals of typically 100ms to 1s. This
can be easily implemented if the RTOS provides a facility to block for a length of time.

2.2.2 Example

µC/OS provides an API function to block for a given length of time, in multiples of 10ms.
A simple implementation is to give each timer a task, in a form such as the following.

void Task_Timer(void *Id)

{

 for(;;)

 {

 /* Record the start time */

 long time_start = cticks;

 /* Run the timer function */

 timer_function();

 /* Wait for the next period */

 OSTimeDly(TPS/FREQUENCY - (cticks - time_start));

 }

}

Porting TCP/IP

6 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

A more efficient implementation would use only one task. It would keep a local record of
the time at which each timer is due, and would delay until the first one arrives.

Some functions must be run in response to signals from other tasks or interrupt handlers.
The signal requests can be mapped onto a mechanism provided by the RTOS, and the
functions can be called from tasks which respond to the signal.

2.2.3 Example

µC/OS semaphores provide a simple mechanism to signal tasks. If the semaphore
counter is initialized to 0, any task which waits on it will block until the semaphore is
signaled.

The most important signal is given whenever an incoming network packet is received by
the line driver. The packet is placed on a queue, and then the function pktdemux()
must be called promptly to unwrap the packet and make the data accessible. The line
driver arranges this by calling SignalPktDemux(). This could be mapped onto the
µC/OS semaphore posting function. The simplest method is to define a macro in
ipport.h, as follows:

#define SignalPktDemux() OSSemPost(sem_pktdemux)

There should then be a task which waits for this signal and then calls pktdemux(), such
as:

void Task_PktDemux(void *Id)

{

 uint error;

 for(;;)

 {

 /* Wait for the signal */

 OSSemPend(sem_pktdemux, 0, &error);

 /* and act on it */

 pktdemux();

 }

}

If several signals are implemented, it may be more efficient to use a µC/OS mailbox.
This allows a message (in the form of a generic pointer) to be passed when signaling the
task, and this would therefore allow the pending task to determine which event has
occurred.

Porting TCP/IP

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 7
ARM DAI 0076A

2.3 TCP

Functions in the TCP layer often have to block until a resource becomes available (for
example, while a connection is being established, or when two threads wish to send
packets). This is implemented by calling tcp_sleep() when a required resource is not
available, and calling tcp_wakeup() when it should be made available to other threads.
They each take an argument which can be used as a key for the required resource so
that threads are not woken prematurely. However, it is permissible to wake sleeping
threads at any time because the specification of tcp_sleep() states that, when a
thread is woken, it should retest the condition it was waiting for and go back to sleep if
necessary. This allows the mechanism to work without an RTOS, whereby
tcp_sleep() simply calls each polling function once and then returns. It also allows a
simple implementation on an RTOS, whereby tcp_wakeup() restarts every thread
which is sleeping, and then lets those which cannot proceed go back to sleep.

Porting TCP/IP

8 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

2.3.1 Example

A simple implementation on µC/OS uses a semaphore to block the tasks, in a similar
way to the synchronization semaphore used earlier to schedule the polling functions.
Again, its counter is initialized to 0 so that the first call to tcp_sleep() will block. The
simplest way to implement tcp_wakeup() is then to wake all tasks that are sleeping, as
shown below. The code should be placed in tcpport.c:

/* A signal semaphore, which should be

 * initialized with a count of 0 */

extern OS_EVENT *sem_tcp;

void tcp_sleep(void *ptr)

{

 /* placeholder for the semaphore error code */

 int error;

 /* Ensure the other threads can access the network */

 UNLOCK_NET_RESOURCE(NET_RESID);

 /* Wait for the wakeup call */

 OSSemPend(sem_tcp, 0, &error);

 /* Reclaim access to the network */

 LOCK_NET_RESOURCE(NET_RESID);

}

void tcp_wakeup(void *ptr)

{

 /* prevent woken threads from pre-empting this one */

 OSSchedLock();

 /* while threads are sleeping, wake them*/

 while (sem_tcp->OSEventCnt < 0)

 OSSemPost(sem_tcp);

 /* Allow the system to run again */

 OSSchedUnlock();

}

Porting TCP/IP

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 9
ARM DAI 0076A

This is quite inefficient because all pending threads are woken on every signal, and many
might go back to sleep immediately. A better approach might be to use the function
arguments as a key in a hash table of semaphores, so that fewer threads are woken
unnecessarily each time.

2.4 Pre-emption and protection

The TCP/IP stack provides two methods for preventing global data structures from being
corrupted by simultaneous access by two threads:

• The critical section method, whereby sections of code must be run without the
possibility of being pre-empted. This typically involves disabling interrupts for
short periods, and should therefore be avoided on an RTOS running time-critical
applications.

• The resource locking method, whereby semaphore locks are placed on critical
global resources to allow only one thread to access them. Any other threads
which require a locked resource will block until the resource is unlocked by the
thread which initially locked it.

2.4.1 Examples

Critical section locking can be implemented by disabling interrupts. The ARM
Development Board version of µC/OS has a facility for disabling and re-enabling all
interrupts, which gives a simple implementation. Unfortunately, some parts of the stack
contain nested critical sections, so it is important to keep track of the nesting level and
only re-enable the interrupts when the outermost critical section is left. The following
example illustrates this. The functions should be declared in ipport.h. The following is
an example of how to implement these functions. It must be coded in one of the files of
your application:

static int critical_nesting = 0; /* nesting counter */

void ENTER_CRIT_SECTION(void *ptr)

{

 /* Disable all interrupts */

 OSDisableInt();

 /* increment nesting counter */

 critical_nesting++;

}

void EXIT_CRIT_SECTION(void *ptr)

{

 /* If this is the outer section, re-enable interrupts */

 if (--critical_nesting == 0)

 OSEnableInt();

}

Porting TCP/IP

10 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

Resource locking can be easily implemented using µC/OS semaphores. If the
semaphore counter is initially set to 1, the first thread which waits on it will be allowed to
proceed. Subsequent threads which wait on it will block until the semaphore is signaled,
whereupon one pending thread will be allowed to proceed. The glue layer is simple
enough to be defined in ipport.h as macros or inline functions, as shown in the
following example:

/* A table of semaphore handles, which should

 * each be initialised with a count value of 1 */

extern OS_EVENT *sem_resources[];

__inline LOCK_NET_RESOURCE(int resource)

{

 /* placeholder for semaphore error code */

 int error;

 /* Wait for resource*/

 OSSemPend(sem_resources[resource], 0, &error);

}

__inline UNLOCK_NET_RESOURCE(int resource)

{

 /* Signal that the resource is now available */

 OSSemPost(sem_resources[resource])
}

2.5 PPP porting

Once the TCP/IP stack has been ported to µC/OS on the ARM Development Board, the
ARM PPP code can be used without modification. However, small modifications will be
necessary to the device drivers used by the serial line driver. This is detailed below.

ARM Development Board Device Drivers

Application Note 76 Copyright © 1999 ARM Limited. All rights reversed 11
ARM DAI 0076A

3 ARM Development Board Device Drivers

3.1 Source files

The device drivers provided with the example implementation can be used with µC/OS
with only minor modifications. The following files from the \pid7tdm directory are
required:

82595.c driver code for the Intel 82595 device (used with the Olicom driver)

82595.h state machine and register definitions for the 82595 driver

delay.s spinloop delay, used by the 82595 and PCMCIA drivers

listopts.h assembly include file required by delay.s

lolevel.h assembly include file required by delay.s

nisa.h definitions of NISA bus peripheral registers

olicom.c driver code for Olicom PCMCIA Ethernet PC-Card

olicom.h declarations for Olicom PCMCIA Ethernet PC-Card driver

pcmcia.c driver code for handling PCMCIA cards

pcmcia.h definitions of PCMCIA control registers

pcmif.h function declarations for PCMCIA driver

st16c552.h register definitions for ST16C552 UART/parallel port device

uart.c device driver for ST16C552 UART.

These source files should be modified to ensure that no other header files from the
\pid7tdm directory are included because some contain definitions which conflict with
µC/OS definitions. The µC/OS header files ucos.h and pid.h should be included in
each C source file.

3.2 Interrupt service routines

The interrupt-related function calls in pcmcia.c and uart.c should be replaced with
the equivalent µC/OS function calls, as follows:

µµC/OS function call equivalents

Replace… With…

irq_Enable(source) IRQEnable(source)

irq_Disable(source) IRQDisable(source)

µC/OS uses the same names as the example implementation to identify the interrupt
sources, but they are defined as source numbers, rather than bitmasks. Therefore,
µC/OS does not allow more than one interrupt to be (for example) enabled in a single
function call.

ARM Development Board Device Drivers

12 Copyright © 1999 ARM Limited. All rights reversed Application Note 76
ARM DAI 0076A

3.2.1 Example

In the example PCMCIA driver, the two PC card interrupts are enabled as follows:

irq_Enable(IRQCardA | IRQCardB);

Under µC/OS, this must be done as follows:

IRQEnable(IRQCardA);

IRQEnable(IRQCardB);

Additionally, instead of calling irqInit() as the example implementation does, an
interrupt service routine must be installed for each interrupt source using the ARM
µC/OS ISR installation function IRQInstall(). This is best done in the initialization
routine for each driver.

The interrupt sources which need to be handled in the example implementation are the
two serial ports (IRQSerialA and IRQSerialB) and the two PC card interfaces
(IRQCardA and IRQCardB). Additionally, µC/OS will install its own handler for one of the
timers (IRQTimer1) when the system is started.

In the example implementation, some minimal decoding of the interrupt source is carried
out by the low-level interrupt handler, and extra information (for example, which of the
two serial interfaces generated the interrupt) is passed to the ISR. In µC/OS, this can be
carried out by a small glue layer between the low-level handler and the ISR, as follows:

/* This is installed as the ISR for

 * the serial port A interrupt source */

void SerialA_ISR(void)

{

 /* Call main serial port ISR, giving a pointer

 * to the UART structure representing Serial Port A,

 * which is used for a modem connection */

 Main_Serial_ISR(&ModemUart);

}

/* This is installed as the ISR for

 * the serial port B interrupt source */

void SerialB_ISR(void)

{

 /* Call main serial port ISR, giving a pointer

 * to the UART structure representing Serial Port B,

 * which is used for debugging information */

 Main_Serial_ISR(&DebugUart);

}

Using this approach allows the existing example ISRs to be used with very little
modification.

