
Abstract

On-chip caches represent a sizeable fraction of the total
power consumption of microprocessors. Although large
caches can significantly improve performance, they have the
potential to increase power consumption. As feature sizes
shrink, the dominant component of this power loss will be
leakage. In our previous work we have shown how the
drowsy circuit—a simple, state-preserving, low-leakage cir-
cuit that relies on voltage scaling for leakage reduction—
can be used to reduce the total energy consumption of data
caches by more than 50%. In this paper, we extend the
architectural control mechanism of the drowsy cache to
reduce leakage power consumption of instruction caches
without significant impact on execution time. Our results
show that data and instruction caches require different con-
trol strategies for efficient execution. To enable drowsy
instruction caches, we propose a technique called cache sub-
bank prediction which is used to selectively wake up only
the necessary parts of the instruction cache, while allowing
most of the cache to stay in a low leakage drowsy mode. This
prediction technique reduces the negative performance
impact by 76% compared to the no-prediction policy. Our
technique works well even with small predictor sizes and
enables an 86% reduction of leakage energy in a 64K byte
instruction cache.

1. Introduction
Leakage power is a difficult issue confronting pro-

cessor designers. On one hand, performance demands
require the use of fast transistors that consume
(“leak”) energy even when they are turned off, on the
other hand, new applications and cost issues favor
designs that are energy efficient. Figure 1 illustrates
the magnitude of the problem with data from some
existing processors and projections based on future
transistor counts and circuit parameters. As can be
seen, even in current processes, leakage power con-
sumption can be as much as 20% of total and this frac-
tion will increase significantly in the future. We
believe that in three generations, leakage power will
amount to as much as 30%-40% of total power con-
sumed by the processor. Moreover, total power will be
a severely limiting factor of integration levels and

complexity, since it is unlikely that the amount of pro-
jected power (close to 900W) would fit in most peo-
ple’s power budget.

Leakage is a problem for all transistors, but it’s a
particularly important problem in caches, where leak-
age power can be the dominant fraction of total power
consumption. We project that in a 0.07 micron process,
leakage will amount to more than 70% of power con-
sumed in caches if left unchecked. Most data in a
cache are accessed relatively infrequently, thus as the
cost of storing data increases in the form of leakage
power, the contribution of dynamic power consump-
tion diminishes. To alleviate this problem, transistors
in caches could be statically designed such that they
have less leakage, for example by assigning them a
higher threshold voltage. However, this trade-off ulti-
mately implies slower caches. Architects would like to
have the best of all worlds: large caches, fast access
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FIGURE 1. Dynamic and static power trends
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times, and low power consumption. We believe that it
is possible to reconcile these aims by taking advantage
of the run-time characteristics of workloads and by
approaching the problem from both the circuit and
microarchitecture directions simultaneously.

The main idea behind the drowsy cache is that
cachelines can be in one of two modes: in a low-leak-
age drowsy mode, in which data is preserved but can-
not be accessed, and in a high-leakage awake mode,
which is used during accesses. To reduce leakage
power consumption, an algorithm is used to decide
which lines will be accessed in the near future and
these are kept in the awake state, and the rest of the
lines are put into the low power drowsy mode. Figure
2 illustrates how the different energy components vary
between regular and drowsy caches. While in a regu-
lar cache all lines leak at a high rate, in the drowsy
cache the high leakage component is only incurred
when the line is in awake mode and is predicted to be
accessed. Although leakage is not zero in drowsy

mode, it provides a 6x to 10x reduction (depending on
design) over the regular high-leakage mode. The
drowsy circuit technique, which uses dynamic voltage
scaling for leakage reduction is described in [1]. Volt-
age scaling yields significant leakage power reduction,
due to short-channel effects in deep-submicron pro-
cesses [2]. The combined effect of reduced leakage cur-
rent and reduced voltage yields a significant reduction
in leakage power. While voltage scaling does not
reduce leakage as much as gated-Vdd [3][4], it has the
crucial advantage of being able to preserve the state of
the transistors.

The circuit technique used in this paper is an
improvement to the one described in our previous
work [1]. In addition, we are proposing a new
microarchitectural control technique for making
drowsy instruction caches—as opposed to data caches
that were the focus of our previous investigations. We
found that while our previous algorithm was very
effective for data caches, it does not work well for
instruction caches, due to the different locality charac-
teristics.

Various researchers have proposed the use of sub-
banks as a means of reducing power consumption in
caches. In [5], the instruction cache is partitioned into
several sub-banks, and on each access only a limited
set of sub-banks are checked for their contents. This
approach reduces the dynamic power consumption at
the cost of slightly increasing the cache access time
due to additional decoder logic for indexing the sub-
banks. In [6], a leakage power reduction circuit tech-
nique is applied to the sub-bank that has been most
recently accessed. The circuit technique optimizes
leakage power consumption by biasing the bit-lines
based on the number of ones and zeros connected to
each bit-line. The weakness of this technique is that it
requires the processor to wake up the next target sub-
bank on the critical path, where the penalty for the
wake-up can be several cycles. According to our
experiments the use of techniques employed in [6] can
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FIGURE 2. Energy reduction using the drowsy cache
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FIGURE 3. Wake-up overhead and run-time increase

For the simulations, 16K-byte, 32K-byte, and 64K-byte direct mapped instruction caches are used, and the sub-bank size is
4K bytes for all the cache sizes (see Section 5.1 for the detailed simulation machine configuration).



result in a run-time increase of 4.06% to 12.46% on
SPEC 2000 benchmarks, even when assuming an
aggressive singe cycle wake-up penalty (see Figure 3).

To minimize the performance impact as well as
leakage power consumption, in this paper we propose
a low leakage instruction cache architecture using our
drowsy circuit technique combined with cache sub-
banking and various sub-bank prediction techniques.
Our prediction techniques rely on the insight that
transitions between sub-banks are often correlated
with specific types of instructions. Due to program
loops, the program counter, which is the instruction
cache access index, remains in small cache regions for
relatively long periods of time. On the other hand,
there are often abrupt changes in the accessed cache
region when subroutines are called, or when subrou-
tine returns, and long distance unconditional branches
are executed. Most conditional branches stay within
the current cache region and it is rare that the these
branches jump across page boundaries.

In this paper we focus mainly on the implication
of the various sub-bank prediction techniques for the
instruction caches since other low leakage circuit tech-
niques can be deployed instead of our drowsy circuit
technique. Section 2 reviews the drowsy cache tech-
nique for data caches and examines the behavior of
the policy for data caches on instruction caches. Sec-
tion 3 presents low leakage power instruction cache
architectures using the drowsy circuit and sub-bank
prediction techniques. Section 4 discusses detailed cir-
cuit issues for the proposed drowsy circuit technique
and cache sub-bank design. Section 5 shows simula-
tion models and experiment results for the proposed
architectures. Section 6 concludes this work and sug-
gests directions for future research.

2. Drowsy techniques for caches

2.1 Operation of drowsy cache line
Figure 4 shows a cache line that supports a

drowsy mode proposed in [1]. In order to support the

drowsy mode, each cache line circuit includes two
more transistors than the traditional memory circuit.
The operating voltage of an array of memory cells in
the cache line is determined by the voltage controller,
which switches the cache line voltage between normal
(active) and low (drowsy) supply voltages depending
on the state of the drowsy bit. If a drowsy cache line is
accessed, the drowsy bit is cleared causing the supply
voltage to be switched to normal Vdd. The word-line
gating circuit is used to prevent accesses of the drowsy
memory cells in the cache line, since the supply volt-
age of the drowsy cache line is far lower than the pre-
charged bit-line voltage and thus unchecked accesses
to a drowsy line could destroy its contents. Whenever
a cache line is accessed, the cache controller monitors
the voltage level of the cache line by checking the
drowsy bit. If the accessed line is in normal mode, its
contents can be read without losing any performance.
No performance penalty is incurred, because the
power mode of the line can be checked by reading the
drowsy bit concurrently with the read and comparison
of the tag. However, if the memory array is in drowsy
mode, we need to prevent discharging the bit-lines of
the memory array because it may read out incorrect
data. The line is woken up automatically during the
next cycle, and the data can be accessed during con-
secutive cycles.

2.2 Drowsy Policy
The key difference between drowsy caches and

the caches that use gated-Vdd is that in drowsy
caches the cost of being wrong—putting a line into
drowsy mode that is accessed soon thereafter—is rela-
tively small. The only penalty one must contend with
is an additional delay and energy cost for having to
wake up a drowsy line. One of the simplest policies
that one might consider is one where, periodically, all
lines in the cache—regardless of access patterns—are
put into drowsy mode and a line is woken up only
when it is accessed again. This policy requires only a
single global counter and no per-line statistics. The
policy that uses no per-line access history is referred to
as the simple policy. In this case, all lines in the cache
are put into drowsy mode periodically (the period is
the window size) [1].

2.3 Drowsy Policy Evaluation
In this section, we evaluate the simple policy for

data and instruction caches, and show that this policy,
which was designed for data caches, is not as effective
for instruction caches. Figure 5 shows the run-time
increases and the percentage of the drowsy lines—
which is proportional to leakage power reduction—of
workloads using a 2000-cycle update window, mean-
ing that all cache lines are put into drowsy mode every
2000 cycles. According to the experimental results
shown in Figure 5, using the simple policy on 32K byte
direct-mapped instruction cache may have a run-time
impact of as much 5.7%, and the percentage of drowsy
lines can be as low as 68.5%. This is in sharp contrast
with the simple policy on a 32K byte 4-way set-asso-
ciative data cache, where on the same benchmarks the
run-time impact is no more than 0.87% and the frac-
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tion of drowsy lines is no lower than 74.4%. These
experimental results show that the application of the
drowsy technique for the instruction cache can result
in both poor performance and relatively low leakage
reduction compared to the data cache. The main rea-
son for this behavior is that data caches tend to have
better temporal locality while instruction caches tend
to have better spatial locality.

3. Drowsy caches using memory bank 
predictions

3.1 The drowsy circuit and memory sub-
banking techniques

Figure 6 illustrates a 16K byte direct-mapped
cache architecture using a technique based on voltage
scaling and four 4K byte sub-banks. The pre-decoder
identifies which sub-bank is accessed with a cache

access address, and the decoder in each sub-bank
selects an appropriate cache line in the sub-bank with
the pre-decoded address. In this technique, the pre-
decoder includes the wake-up logic which drives the
wake-up signal to the target sub-bank. Only one sub-
bank is active at a time, while the rest of the sub-banks
are in drowsy mode by scaling the voltage levels of all
lines in the sub-bank. Whenever the processor
accesses a cache line in a non-active sub-bank, the pre-
decoder activates the next target sub-bank, and puts
the currently active sub-bank into drowsy mode. Dur-
ing the wake-up of the next target sub-bank, the pro-
cessor halts since it must wait until reinstating the
power supply lines of the target sub-bank to the nor-
mal voltage level. On a hit, this wake-up latency is
incurred on the critical path. On a cache miss, the
wake-up latency can be hidden during the miss han-
dling cycles. Therefore, to avoid undue performance
degradation on a cache hit, it is critical to wake-up the
next sub-bank as soon as possible.

Each cache line in the drowsy instruction cache
consists of a cache line which is illustrated in Figure 7.
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FIGURE 5. Run-time increase and drowsy line percentage using the simple policy

For the simulations, 32K-byte direct mapped instruction and 4-way data caches are used, and 2000-cycle window size and
1-cycle wake-up latency is used for the drowsy policy. (see Section 5.1 for the detailed simulation configuration).
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Unlike in the drowsy data cache, illustrated in Figure
4, we do not need a drowsy bit for each line. Instead,
the wake-up logic in the pre-decoder sends wake-up
signals to the target sub-bank. Furthermore, the pre-
charge circuit is modified to reduce the leakage cur-
rent through the wordline pass transistors in the con-
ventional 6T memory cell by gating the pre-charge
signal with the wake-up signal. With this pre-charge
gating technique, we do not need to use high-Vt pass
transistors to reduce the leakage power via the pass
transistors, which improves access time of the sub-
banks compared to our previous scheme [1]. More
detail of the circuit technique is provided in Section 4.

A cache can be sub-banked in two different ways:
vertically or horizontally. Assuming a 32K byte 4-way
associative cache, using the vertical organization, one
would assign 2 4K byte sub-banks in each way, and
activate only one sub-bank among 8 sub-banks as
shown in the vertical configuration of Figure 8 (the
sub-bank 6 of the way-3 is active, and the rest of the
sub-banks are in drowsy mode). In a horizontal orga-
nization, sub-banks are distributed through 4 ways. In
this case, we can assign 1K for each way, and activate
each 1K portion of the sub-bank in all 4 ways as illus-
trated on the right side of Figure 8. The horizontal
scheme also requires a separate modified precharge
circuit shown in Figure 7 for each 1K portion of the 4K
sub-bank. In both cases, the same amount of cache
area is activated.

In the vertical configuration, the change of either
the sub-bank address or the way address causes per-
formance loss since it is likely that the processor is
looking for data that is contained in a currently inac-
tive way of the cache. However, this scheme has the
advantage of lower dynamic power consumption,
since only one way is accessed at a time
[5][7][8][9][10]. Because it is simpler of the two, we
limit our study to the vertical organization.

3.2 Memory sub-bank prediction buffers
Without any prediction for the next target sub-

bank, performance is degraded significantly by the
wake-up penalties as shown in Figure 3. According to
our analysis, most transitions among the sub-banks
are caused by subroutine calls, returns and long dis-
tance unconditional branches. These transition points
from one sub-bank to another tend to repeat. If the
instructions that cause sub-bank transitions could be
marked in the cache, this information could be used to
hide the wake-up.

Figure 9 illustrates the next sub-bank prediction
buffer scheme for a 16K byte direct mapped cache. The
assumption in the figure is that there is a single cycle
wake-up latency and both code regions are already in
the cache. Each prediction buffer entry contains an
instruction address which is the address of the instruc-
tion one before the instruction (usually a branch)
which leads to another sub-bank. The buffer entry also
contains the next target sub-bank index and a valid
bit. On each cache access, this buffer is consulted to
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128 lines
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FIGURE 8. Vertical and horizontal configurations for sub-bank cache partitioning.
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see whether or not a new sub-bank is predicted to be
awakened. If there is a misprediction, or no prediction
at all, the old entry is updated or a new one allocated.
In the example of Figure 9 the control flow is predicted
to jump to the sub-bank 2 code region.

It is important to predict the next target sub-bank
address one instruction ahead in order to avoid losing
performance due to the one cycle wake-up overhead.
For the vertical sub-bank configuration of a set asso-
ciative cache, the sub-bank index field also contains
the target way information along with the sub-bank
number.

3.3 Next sub-bank predictors in cache tags
The area as well as power overhead of the predic-

tion buffer can be significant using the sub-bank pre-
diction technique shown in Section 3.2. In particular,
the CAM tag in the prediction buffers can consume
significant amounts of dynamic power. In this section,
a sub-bank prediction technique is presented which
extends cache tags to minimize the power cost of pre-
diction.

Figure 10 illustrates the extended cache tags to
support the next sub-bank prediction. Each tag entry
contains a block address of the transition instruction
(bof field in Figure 10), the next sub-bank address, and
a valid bit. Whenever the processor accesses the cache,
it compares the block address of the current instruc-
tion and checks the validity of the prediction informa-
tion. If the address matches and the information is
valid, the processor sends the predicted next sub-bank
address to the wake-up logic.

The disadvantage of this technique is that predic-
tion information is lost if the cache line is replaced.
Furthermore, multiple next sub-bank addresses can-
not be kept in a cache tag when there are multiple
transition addresses in a cache line. However, our
experiments show that this situation arises relatively
infrequently.

4. Circuit issues
Traditionally, three circuit techniques have been

used to reduce leakage power in CMOS circuits:
gated-Vdd, ABB-MTCMOS (Adaptive Body Biasing -
Multi Threshold CMOS) and leakage-biased bitlines.
Recently, these methods have been applied to cache
design as well [6][11][12][13]. In this paper, we instead
use dynamic voltage scaling (DVS) for leakage control
[1]. While voltage scaling has seen extensive use for
dynamic power reduction, short-channel effects also
make it very effective for leakage reduction [2]. Fur-
thermore, DVS also reduces gate-oxide leakage, which
has increased dramatically with process scaling.
Below, we discuss the traditional gated-Vdd and ABB-
MTCMOS techniques for cache leakage reduction, as
well as our proposed technique using DVS and com-
pare the different techniques.

4.1 Gated-Vdd

The gated-Vdd structure was introduced in [3][4].
This technique reduces the leakage power by using a
high threshold (high-Vt) transistor to turn off the
power to the memory cell when the cell is set to low-
power mode. This high-Vt device drastically reduces
the leakage of the circuit because of the exponential
dependence of leakage on Vt. This method is very
effective at reducing leakage, however it has the dis-
advantage that it loses any information stored in the
cell when switched into low-leakage mode. This
means that a significant performance penalty is
incurred when data in the cell is accessed and more
complex and conservative cache policies must be
employed. 

4.2 ABB-MTCMOS
The ABB-MTCMOS scheme was presented in [14].

In this method, the threshold voltages of the transis-
tors in the cell are dynamically increased when the cell
is set to drowsy mode by raising the source-to-body
voltage of the transistors in the circuit. This higher Vt
reduces the leakage current while allowing the mem-
ory cell to maintain its state even in drowsy mode.
However, to avoid the need for a twin-well process,
the dynamic Vt scaling is accomplished by increasing
the source of the NMOS devices and by increasing the
body voltage of the wells of the PMOS devices when
the circuit is in drowsy mode. Although the leakage
current through the memory cell is reduced signifi-
cantly in this scheme, the supply voltage of the circuit
is increased, thereby offsetting some of the gain in
total leakage power.

Also, this leakage reduction technique requires
that the voltage of the N-well and of the power and
ground supply lines are changed each time the circuit
enters or exits drowsy mode. Since the N-well capaci-
tance of the PMOS devices is quite significant, this
increases the energy required to switch the cache cell
to high-power mode and can also significantly
increase the time needed to transition to/from drowsy
mode. Similarly to the gated-Vdd technique, ABB-
MTCMOS also requires special high-Vt devices for the
control logic.
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0x180x7f

0x180x1ff0x000b
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FIGURE 10. Next sub-bank predictors in cache tags



4.3 Dynamic Vdd Scaling (DVS)
The method proposed in this paper utilizes

dynamic voltage scaling (DVS) to reduce the leakage
power of cache cells [1]. By scaling the voltage of the
cell to approximately 1.5 times Vt, the state of the
memory cell can be maintained. For a typical 0.07um
process, this drowsy voltage is conservatively set to
0.3V. Due to the short-channel effects in high-perfor-
mance processes, the leakage current will reduce sub-
stantially with voltage scaling. Since both voltage and
current are reduced in DVS, a dramatic reduction in
leakage power is obtained. Since the capacitance of the
power rail is significantly less than the capacitance of
the N-wells, the transition between the two power
states occurs more quickly in the DVS scheme than the
ABB-MTCMOS scheme.

Figure 11 illustrates the circuit schematic of mem-
ory cells connected to the voltage-selection controller.
No high-Vt device is used in the memory cell itself in
our proposed technique as opposed to the method in
[1] where high-Vt devices were used for the pass tran-
sistors that connect the memory’s internal inverters to
the read/write lines (N1 and N2). Because each cache
line in [1] is controlled independently and each bit line
is shared by all the cache lines in a sub-bank, all the
read/write lines are maintained at high-Vdd, making
it necessary to use high-Vdd, making it necessary to
use high-Vt transistors for the pass gates in order to
maintain acceptable leakage current [1].

However, since for the instruction cache, the entire
sub-bank is switched between low-Vdd and high-Vdd,
the read/write lines in each sub-bank are included in
the DVS and no high-vt pass-transistors are needed.
Avoiding the use of high-Vt device for the memory
cells has several advantages against the previous
approach [1]. First, the access time of the cache is not
compromised. High-Vt devices show poor current
driving capability at the same gate input voltage,

which results in slower caches. Particularly for I-
caches, which are critical in determining the cycle time
of the processor, it is important to avoid any increase
of the access time. This is why a direct-mapped cache
is usually employed for an instruction cache since a
set-associative cache is slower than a direct-mapped
cache. Second, use of low-Vt pass-transistors reduces
the dynamic power, since in our previous approach,
significantly larger pass transistors are used to com-
pensate the reduced current driving capability which
is impaired by high-Vt threshold voltage.

In Figure 11, one PMOS pass gate connects the
supply line to the normal supply voltage and the other
connects it to the low supply voltage for. Each pass
gate is a high-Vt device to prevent leakage current
from the normal supply to the low supply through the
two PMOS pass gate transistors. A separate voltage
controller can be implemented for each sub-bank or
for each cache line.

A possible disadvantage of the circuit in Figure 11
is that it has increased susceptibility to noise and vari-
ation of Vt across process corners. The first problem
may be corrected with careful layout because the
capacitive coupling of the lines is small. To examine
the stability of a memory cell in the low power mode,
we simulated a write operation to an adjacent memory
cell that shares the same bit lines but whose supply
voltage was normal. The coupling capacitance and the
large voltage swing across the bit lines would make
the bit in the drowsy memory cell vulnerable to flip-
ping if this circuit had a stability problem. However,
our experiments show that the state of the drowsy
memory cell is stable. There is just a slight fluctuation
in the core node voltage caused by the signal cross-
talk between the bit lines and the memory internal
nodes. In addition, there is no cross-talk noise between
the word line and the internal node voltage, because
word line gating prevents accesses to memory cells in
drowsy mode. Of course, this voltage scaling tech-
nique has less immunity against a single event upset
(SEU) from alpha particles, but this problem can be
relieved by process techniques such as silicon on insu-
lator (SOI). Other static memory structures also suffer
from this problem. making it necessary to implement
error correction codes (ECC) even for non-drowsy
caches. The second problem, variation of Vt, may be
handled by choosing a conservative Vdd value, as we
have done in our design.

The memory cell layout was done in TSMC
0.18um technology, which is the smallest feature size
available to the academic community. The dimensions
of our memory cell is 1.84um by 3.66um, and those for
the voltage controller are 6.18um by 3.66um. We esti-
mate the area overhead of the voltage controller is
equivalent to 3.35 memory cells for a 64 x Leff (effec-
tive gate length) voltage controller. This relatively low
area overhead can be achieved because the routing in
the voltage controller is simple compared to the mem-
ory cell. In addition, we assumed the following (con-
servative) area overhead factors: 1) 1.5 equivalent
memory cell for the control signal driver (three invert-
ers); and 2) 1.5 equivalent memory cells for the word-
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FIGURE 11. Implementation of a drowsy memory cell.

The arrows are leakage current path in the memory cell.



line gating circuit (a nand gate). The total overhead is
thus equivalent to 6.35 memory cells per cache line.
The total area overhead is less than 3% for the entire
cache line. To examine the effects of circuit issues like
stability and leakage power reduction, we applied a
linear scaling technique to all the extracted capaci-
tances.

In Figure 11, we list the advantages and disadvan-
tages for the two traditional circuit techniques for
leakage reduction as well as for DVS, and we show the
power consumption for the three schemes in both nor-
mal and low power mode. The leakage power in the
gated-Vdd method is very small compared to the other
schemes, however, this technique does not preserve
the state of the cache cell. Comparing the DVS and
ABB-MTCMOS techniques, the DVS method reduces
leakage power by a factor of 12.5, while the ABB-
MTCMOS method reduces leakage by only a factor of
5.9. 

In order to determine the time required to switch a
cache line from drowsy mode to normal power mode,
we measured the delay time of the supply lines with
HSPICE and the Berkeley Predictive Model [15] for a
0.07um process. To measure the transition delay, we
connected a 32K byte memory cell array to the supply
voltage controllers and then estimated the capaci-
tances of the supply voltage metal line and bit lines.
The transition delay varies depending on the transis-
tor width of the pass gate switch in the voltage con-
troller. A 16 x Leff PMOS pass-transistor is needed for a
two cycle transition delay. A single cycle transition
delay can be obtained by increasing the width of this
transistor to 64 x Leff. The cycle time of the cache was
estimated using the CACTI model with the supported
process scaling. We found that the access time of the
cache is 0.57ns and that the transition time to and from
drowsy mode is 0.28ns with a 64 x Leff width PMOS
pass-transistor.

5. Experiments

5.1 Experiment Setup
The evaluation methodology combines detailed

processor simulation for performance analysis and for
gathering event counts. In addition, analytical model-
ing is employed for estimating the energy dissipation
for both the conventional caches and those employing
drowsy techniques. We used the SimpleScalar toolset
[16] to model an out-of-order speculative processor
with a two-level cache hierarchy. The simulation
parameters, listed in Table 1, roughly correspond to
those of a present-day high-end microprocessor such
as the HP PA-8000 or Alpha 21264. 

We choose three different L1 cache sizes: 16K, 32K,
and 64K bytes and various degrees of associativity: 1,
2, 4. In our experiments we use 4K bytes as the sub-
bank or sub-array size, which corresponds to the page
size of the virtual memory system. The trade-off of

when using smaller sub-bank sizes is between more
leakage reduction and increased wake-up penalties.

In this paper benchmarks from the SPEC2000 suite
were used, which were run on a modified SimpleSca-
lar simulator. The benchmarks were compiled with
GCC 2.6.3 using O2 level optimizations and were stat-
ically linked with library code. We ran 1 billion
instructions for each simulation to complete the simu-
lation within reasonable simulation time.

5.2 Experiment results and analysis

5.2.1 Prediction accuracy and run-time increase 
of the sub-bank predictors

Figure 12 shows the average prediction accuracies
of the various sub-bank predictors illustrated in Sec-
tion 3 for various cache configurations (see Equation
1). From the results of the experiment we observe that
the prediction accuracy increases as the number of
entries in the prediction buffers are increased. This in
turn results in reduced run-time overhead compared
to the base-line machines. However, prediction accu-
racy decreases as the cache sizes increase. Given a
fixed sub-bank size, there are more sub-banks for
larger caches, which require more prediction entries to
maintain the same level of prediction accuracy. Of
course, the positive effect of a larger cache still yields
improved run-times.

The associativity of the cache also affects predic-
tion accuracy. As the associativity increases the predic-
tion accuracy decreases, because the correct set also
needs to be predicted and awakened. In this experi-
ment, we keep the target set prediction with the target

TABLE 1. Simulation parameters.

Parameters Value

fetch/issue/decode/commit 4 instructions

fetch queue / speed 4 instructions / 1x

branch prediction bimodal, 2k

BTB 512 entry, 4-way

RAS 8 entry

RUU size 64 entry

LSQ size 32 entry

integer ALUs/multi-divs 4 / 1

floating point ALUs / mul-div 1 / 1

memory bus width / latency 8 bytes / 80 and 8 cycles for the first 
and inter chunks 

inst. / data TLBs 16 entry / 32 entry in each way, 4KB 
page size, 4-way, LRU, 30-cycle 
latency

L1 caches 16KB ~ 64KB, 1~4-way, 32B blocks, 
LRU, 1 cycle latency, write-back

L2 unified cache 256KB, 4-way, 64B line block, LRU, 
8 cycle latency



sub-bank address in the prediction buffer entry,
although one could use other way-prediction tech-
niques as well [8][9][10]. Although we employ very
simple BTB-like predictors, the prediction buffer is
quite effective.

(EQ 1)

When prediction information is kept in cache-line
tags overall, the accuracy of the cache-line tag based
predictor is between the 64 and 128 entry configura-
tions of the sub-bank prediction buffer.There are two
reasons accounting for this result: First, the prediction
information is lost when tag lines containing valid
predictions are replaced. This causes unnecessary
wake-up cycles until the prediction information is
updated. This situation is avoided in the prediction
buffers, where there is no direct correlation between
cache entries and predictions. Second, each cache tag
line can keep only one prediction per line, while per-
haps multiple predictions might be necessary. On the
other hand the accuracy of the cache-line tag based
predictor increases as the cache size is increased
because the number of the predictor entries are pro-
portional to the number of lines.

Figure 13 shows the run-time impact with and
without the sub-bank predictors when the drowsy cir-
cuit is used. The run-time increase by the proposed
cache architectures are measured against the base-line
machines (see Equation 2). The experiment results
show that the prediction technique using 128 entry
prediction buffer can reduce the run-time impact by
83%, 74%, and 76% for 16K, 32K, and 64K byte caches
compared to no prediction at all.

(EQ 2)

According to the experimental results, the run-
time increase of the 64K cache is smaller than that of
the 32K byte cache, which does not mean that there are
more sub-bank wake-up’s in 32K byte cache machine
compared to 64K byte one. The performance of the
drowsy cache is measured against the base-line
machine of each cache size. In other words, it is a rela-
tive performance against the base-line machine of each
cache configuration. In addition, there are other fac-
tors which influence on the performance: The amount
of the wake-up latencies hidden during out-of-order
executions would be different for various cache sizes.

5.2.2 Predictor overhead and leakage power 
reduction

Table 2 shows the number of required bits of each
predictor type for a 32K byte direct-mapped cache.
The tag-based sub-bank predictor requires the same
number of bits as a 64 entry prediction buffer. 

For example, in a 32-entry predictor, the number
of required bits are 4096 bits (512 bytes), which is
equivalent to 16 cache lines (32-byte per line). If we
assume that the size of the cache is 64k-bytes the num-
ber of the cache lines is 2048 lines. The fractions of the
32, 64, and 128 entry predictors compared to the 64k
cache are just 0.78%, 1.56%, and 3.12%. 

Table 5 on page 12 shows leakage power reduc-
tions for SPEC2000 benchmarks when the DVS and
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FIGURE 12. Average prediction accuracies of various sub-bank predictors.

See Table 3 on page 11 for the detailed experiment results

accuracy = 
total correct sub-bank predictions

total wake-ups
---------------------------------------------------------------------------------

run time inc.
 drowsy sim cycles - base-line sim cycles

base-line sim cycles
--------------------------------------------------------------------------------------------------=

TABLE 2. Predictor overheads for 40-bit address, 32-
byte line size, and 32K byte direct-mapped 
cache.

32 64 128 tag

# req. bits 4096 8192 16384 8192



sub-bank prediction techniques are applied. The leak-
age energy reductions are measured against conven-
tional caches. Leakage is reduced by about 75%, 88%,
and 94% in the data array for 16K, 32K and 64K byte
caches consisting of 4K byte sub-banks. However,
since the tag array is always active and the use of the
leakage reduction technique implies extra run time,
the total energy reduction is slightly smaller. When
this is accounted for, our measurements show the
average leakage energy reductions are about 68%,
80%, and 86% for 16K, 32K, and 64K byte configura-
tions, respectively.

6. Conclusion
During our investigations of drowsy instruction

caches we found that our sub-banked cache with the
next target sub-bank predictor—where only one sub-
bank is active and the rest of the sub-banks are in
drowsy mode—can reduce the cache’s static power
consumption by more than 86% for 64K byte caches.
Furthermore, the experiment results show that the
prediction technique using 128 entry prediction buffer
can reduce the run-time overhead by 83%, 74%, and
76% for 16K, 32K, and 64K byte caches compared to
the default policy where no prediction was employed.
We believe that our combination of a simple circuit
technique with a simple microarchitectural mecha-
nism provides sufficient static power savings at a
modest performance impact to make more complex
solutions unattractive. Future work will examine
extending our techniques to other memory structures,
such as branch predictors, L2, and L3 caches, and
using BTB for the prediction buffer because there is a
close relation between sub-bank transitions and the
branches.
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Appendix

The figures in the Tables are all rounded to 2 dig-
its.

TABLE 3. Sub-bank predictor accuracies of direct-mapped caches for SPEC 2000 benchmarks.

SPEC 2000 prediction buffers tag predictor
(%) (%)

32 entry 64 entry 128 entry
16k 32k 64k 16k 32k 64k 16k 32k 64k 16k 32k 64k

bzip200 95 91 91 99 95 95 100 96 96 84 67 85
eon00 45 43 41 47 44 42 55 52 50 70 71 70
gcc00 45 42 41 54 51 50 62 59 59 55 68 60
parser00 86 86 87 88 85 86 85 78 78 73 83 76
twolf00 56 54 44 73 72 63 80 82 79 72 75 81
vpr00 53 58 56 59 61 60 78 77 76 81 79 82
crafty00 38 32 32 54 52 51 59 58 59 56 68 69
gap00 64 65 64 67 68 66 73 70 72 73 76 79
gzip00 82 82 72 69 62 86 100 100 75 54 73 51
mcf00 73 46 42 78 80 82 78 80 78 83 79 82
vortex00 41 37 35 53 48 44 57 57 54 52 63 64
ammp00 85 84 84 88 89 87 95 92 92 76 71 81
applu00 93 97 98 93 97 98 93 97 98 90 98 97
art00 100 100 100 100 100 100 100 100 100 92 97 93
equake00 46 43 39 75 73 72 82 82 84 77 86 85
galgel00 97 97 97 97 97 97 97 97 97 97 97 97
lucas00 100 100 100 100 100 100 100 100 100 75 83 83
mesa00 63 60 56 75 73 68 88 86 87 73 85 83
mgrid00 99 98 98 99 99 99 99 99 99 99 89 99
avg 72 69 67 77 76 76 83 82 81 76 79 80



TABLE 4. Run-time increases of direct-mapped caches for SPEC 2000 benchmarks.

SPEC 2000 no prediction prediction buffers tag predictor
(%) (%) (%)

32 entry 64 entry 128 entry
16k 32k 64k 16k 32k 64k 16k 32k 64k 16k 32k 64k 16k 32k 64k

bzip200 0.8 0.8 0.8 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.2 0.4 0.4
eon00 6.1 7.0 7.2 4.1 4.4 4.2 3.9 4.4 4.4 2.9 3.3 3.4 2.0 3.0 3.2
gcc00 1.9 2.3 2.3 1.1 1.5 1.6 0.9 1.3 1.4 0.8 1.0 1.1 0.8 1.1 1.1
parser00 1.2 1.2 1.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.7 0.7
twolf00 2.8 3.0 3.0 0.9 1.2 1.2 0.5 0.8 0.8 0.3 0.5 0.4 0.5 0.6 0.7
vpr00 4.7 5.3 5.3 2.1 2.1 2.0 1.6 1.7 1.7 0.7 0.7 0.8 1.2 1.2 1.6
crafty00 3.7 5.2 4.3 2.3 3.8 3.1 1.5 2.7 2.5 1.3 2.3 2.2 1.6 2.0 2.2
gap00 3.5 3.7 3.7 1.6 1.6 1.8 1.3 1.3 1.4 1.0 1.2 1.0 1.0 1.1 1.0
gzip00 0.9 0.9 2.4 0.5 0.5 0.6 0.5 0.6 0.1 0.0 0.0 0.5 0.1 0.9 1.8
mcf00 5.0 8.7 9.7 0.9 3.4 3.7 0.5 0.7 0.2 0.5 0.7 0.4 1.0 1.5 1.9
vortex00 5.4 8.6 3.2 2.8 3.7 1.5 2.0 3.0 3.1 0.2 5.1 2.6 1.0 2.4 2.6
ammp00 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
applu00 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
art00 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
equake00 9.0 10.6 12.5 5.4 6.0 6.9 1.4 1.6 1.9 0.5 0.6 0.6 2.1 1.6 1.8
galgel00 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lucas00 4.2 4.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.1 1.1
mesa00 5.9 5.5 5.0 2.1 2.4 2.2 1.4 1.5 1.2 0.4 0.4 0.3 1.4 1.8 1.3
mgrid00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
avg 1.5 1.8 1.6 0.7 0.8 0.7 0.5 0.6 0.5 0.3 0.5 0.4 0.3 0.4 0.3

TABLE 5. Leakage energy reduction of direct-mapped caches for SPEC 2000 benchmarks.

SPEC 2000 no prediction prediction buffers tag predictor
(%) (%) (%)

32 entry 64 entry 128 entry
16k 32k 64k 16k 32k 64k 16k 32k 64k 16k 32k 64k 16k 32k 64k

bzip200 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
eon00 67 79 85 68 80 86 68 80 86 68 80 86 68 84 86
gcc00 69 80 86 69 80 86 69 80 86 69 80 86 69 84 86
parser00 69 80 86 69 81 86 69 81 86 69 81 86 69 84 86
twolf00 68 80 86 69 80 86 69 80 86 69 81 86 69 84 86
vpr00 68 80 86 68 80 86 69 80 86 69 81 86 69 84 86
crafty00 68 80 86 68 80 86 69 80 86 69 80 86 69 84 86
gap00 68 80 86 69 80 86 69 80 86 69 80 86 69 84 86
gzip00 69 80 86 69 81 86 69 81 86 69 81 86 69 84 86
mcf00 68 79 85 69 80 86 69 81 86 69 81 86 69 84 86
vortex00 67 79 86 68 80 86 68 80 86 69 80 86 69 84 86
ammp00 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
applu00 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
art00 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
equake00 66 79 85 67 79 85 69 80 86 69 81 86 68 84 86
galgel00 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
lucas00 68 80 86 69 81 86 69 81 86 69 81 86 68 84 86
mesa00 67 80 86 68 80 86 69 80 86 69 81 86 69 84 86
mgrid00 69 81 86 69 81 86 69 81 86 69 81 86 69 84 86
avg 69 80 86 69 80 86 69 81 86 69 81 86 69 84 86


