

 Copyright  2007 ARM Limited. All rights reserved.
 Open Access

Application Note 199
ARM11 core simulation guidelines

Document number: ARM DAI 199A

Issued: 6th December, 2007

Copyright ARM Limited 2007

ii Copyright  2007 ARM Limited. All rights reserved. ARM DAI 199A
 Open Access

Application Note 199
ARM11 core simulation guidelines

Copyright © 2007 ARM Limited. All rights reserved.

 Release information

Change history

Date Issue Change

December 2007 A First release

 Proprietary notice

Words and logos marked with  and  are registered trademarks owned by ARM Limited, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

 Confidentiality status

This document is Open Access. This document has no restriction on distribution.

 Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

 ARM web address

http://www.arm.com

ARM DAI 199A Copyright  2007 ARM Limited. All rights reserved. iii
 Open Access

Table of Contents
1. Need for initialization sequence.. 1

2. Content of initialization code... 1

3. ARM1136/1156 initialization code.. 2

4. ARM1176 initialization code... 4

 Need for initialization sequence

ARM DAI0199A Copyright  2007 ARM Limited. All rights reserved. 1
 Open Access

1. Need for initialization sequence
ARM cores are implemented using non-reset flip-flops, on logic which does not need to be

reset, for area saving. This sometimes leads to problems of X-propagation in simulations,
particularly at the gate level. Our recommendation for gate-level simulations is to run two-state
simulation using the +2state switch available in vcs simulator. However, not all customers have
access to a vcs simulator. Another alternative is to force some registers to reset at the start of the
simulation.

This application note contains routines for initialisation. By taking care to initialise as much
logic as possible, we can minimise gate-level simulation issues. One routine is provided for
ARM1136 and ARM1156 cores and a separate routine is provided for the ARM1176 core, which
has an additional secure monitor mode. This initialization sequence is only necessary in the
simulation world for rtl, DSM and gate-level simulations and is not needed in the real world.

2. Content of initialization code
The programmer’s registers are not reset and they can affect simulations in some circumstances

(depending on the instruction sequence), so the recommended approach is to initialize these
registers in software. The routine enters each mode and resets the programmer’s registers of that
mode, leaving the CPU in supervisor mode at the end, which is the reset default mode.

The two read ports of the ALU are uninitialized until used by an ALU instruction, so an ADD
instruction is used to reset the A and B read ports between the register bank and the ALU. This
prevents propagation of X-states into the load-store unit (LSU).

The return stack is three entries deep and is not reset. The routine sets the Z bit and initialises
the return stack entries by the use of three BL instructions.

ARM1136/1156 initialization code

2 Copyright  2007 ARM Limited. All rights reserved. ARM DAI0199A
 Open Access

3. ARM1136/1156 initialization code
;** *****************************
;* The confidential and proprietary information con tained in this file may
;* only be used by a person authorised under and to the extent permitted
;* by a subsisting licensing agreement from ARM Lim ited.
;*
;* © COPYRIGHT 2007 ARM Limited.
;* ALL RIGHTS RESERVED
;*
;* This entire notice must be reproduced on all cop ies of this file
;* and copies of this file may only be made by a pe rson if such person is
;* permitted to do so under the terms of a subsisti ng license agreement
;* from ARM Limited.
;*
;** *****************************
;
; Code to initialize ARM1136 or ARM1156
;
;** *****************************

; --- Standard definitions of mode bits and interru pt (I & F) flags in PSRs
Mode_USR EQU 0x10
Mode_FIQ EQU 0x11
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
Mode_ABT EQU 0x17
Mode_UND EQU 0x1B
Mode_SYS EQU 0x1F

I_Bit EQU 0x80 ; when I bit is set, I RQ is disabled
F_Bit EQU 0x40 ; when F bit is set, F IQ is disabled

AREA | Header Code |, CODE
ENTRY
reset B Start
; Exception vectors should be added here

NOP
NOP
NOP
NOP
NOP
NOP
NOP

Start
; On reset the ARM core is in SVC mode

MOV r0, #0
MOV r1, #0
MOV r2, #0
MOV r3, #0
MOV r4, #0
MOV r5, #0
MOV r6, #0
MOV r7, #0
MOV r8, #0
MOV r9, #0
MOV r10, #0
MOV r11, #0
MOV r12, #0
MOV r13, #0

 ARM1136/1156 initialization code

ARM DAI0199A Copyright  2007 ARM Limited. All rights reserved. 3
 Open Access

MOV r14, #0
; Enter each mode in turn and initialize the regist ers specific to it

MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV r8, #0
MOV r9, #0
MOV r10, #0
MOV r11, #0
MOV r12, #0
MOV r13, #0
MOV r14, #0

MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0

; System mode shares user mode registers
MSR CPSR_c, #Mode_SYS:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0

; Leave core in SVC mode (if necessary)
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit

; Initialise ALU paths
ADD r0, r1, r2

; Initialise return stack - requires branch predict ion enabled (Z=1)
MRC p15, 0, r0, c1, c0, 0 ; read control reg
ORR r0, r0, #0x800 ; set Z bit
MCR p15, 0, r0, c1, c0, 0 ; write control reg
BL call1

call1
BL call2

call2
BL call3

call3
; Restore Z bit (if necessary)

BIC r0, r0, #0x800 ; clear Z bit
MCR p15, 0, r0, c1, c0, 0 ; write control reg

END

ARM1176 initialization code

4 Copyright  2007 ARM Limited. All rights reserved. ARM DAI0199A
 Open Access

4. ARM1176 initialization code
;** *****************************
;* The confidential and proprietary information con tained in this file may
;* only be used by a person authorised under and to the extent permitted
;* by a subsisting licensing agreement from ARM Lim ited.
;*
;* © COPYRIGHT 2007 ARM Limited.
;* ALL RIGHTS RESERVED
;*
;* This entire notice must be reproduced on all cop ies of this file
;* and copies of this file may only be made by a pe rson if such person is
;* permitted to do so under the terms of a subsisti ng license agreement
;* from ARM Limited.
;*
;** *****************************
;
; Code to initialize ARM1176
;
;** *****************************

; --- Standard definitions of mode bits and interru pt (I & F) flags in PSRs
Mode_USR EQU 0x10
Mode_FIQ EQU 0x11
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
Mode_MON EQU 0x16
Mode_ABT EQU 0x17
Mode_UND EQU 0x1B
Mode_SYS EQU 0x1F

I_Bit EQU 0x80 ; when I bit is set, I RQ is disabled
F_Bit EQU 0x40 ; when F bit is set, F IQ is disabled

 AREA | Header Code |, CODE
ENTRY
reset B Start
; Exception vectors should be added here

NOP
NOP
NOP
NOP
NOP
NOP
NOP

Start
; On reset the ARM core is in SVC mode

MOV r0, #0
MOV r1, #0
MOV r2, #0
MOV r3, #0
MOV r4, #0
MOV r5, #0
MOV r6, #0
MOV r7, #0
MOV r8, #0
MOV r9, #0
MOV r10, #0
MOV r11, #0
MOV r12, #0
MOV r13, #0

 ARM1176 initialization code

ARM DAI0199A Copyright  2007 ARM Limited. All rights reserved. 5
 Open Access

MOV r14, #0

; Enter each mode in turn and initialize the regist ers specific to it

MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV r8, #0
MOV r9, #0
MOV r10, #0
MOV r11, #0
MOV r12, #0
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0

; System mode shares user mode registers
MSR CPSR_c, #Mode_SYS:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0
MSR CPSR_c, #Mode_MON:OR:I_Bit:OR:F_Bit
MOV r13, #0
MOV r14, #0

; Leave core in SVC mode (if necessary)
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit

; Initialise ALU paths
ADD r0, r1, r2

; Initialise return stack - requires branch predict ion enabled (Z=1)
MRC p15, 0, r0, c1, c0, 0 ; read control reg
ORR r0, r0, #0x800 ; set Z bit
MCR p15, 0, r0, c1, c0, 0 ; write control reg
BL call1

call1
BL call2

call2
BL call3

call3
; Restore Z bit (if necessary)

BIC r0, r0, #0x800 ; clear Z bit
MCR p15, 0, r0, c1, c0, 0 ; write control reg

END

