
 Copyright© 2016 ARM Limited. All Rights Reserved

ARM DUI 0954B

SoC Designer Plus
Version 8.4

AMBA CHI Protocol Bundle
User Guide

Non-Confidential

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 2

Non-Confidential

SoC Designer Plus
AMBA CHI Protocol Bundle User Guide

Copyright © 2016 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change

February 2016 A Non-Confidential Release with 8.3

May 2016 B Non-Confidential Release with 8.4

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in

this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in

any form by any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by

estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE

WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has

undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English

version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL

DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF

THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of

this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not

exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not

intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any

time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically

covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these

terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 3

Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in

accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 4

Non-Confidential

Table of Contents

1 Introduction .. 6

2 Requirements .. 6

3 Suggested Reading .. 6

4 Restrictions and Limitations ... 6

5 Bundle Contents .. 6

6 Models .. 7

6.1 CHIToAXI4* ... 8

6.2 CHI_to_CHI* ... 9

6.3 CHI_Stub .. 10

6.3.1 CHI_Stub Macros ... 11

7 Probes... 11

7.1 Tracer Probe ... 11

7.2 Breakpoint Probe .. 12

7.3 Monitor Probe .. 13

8 AMBA CHI Port Interfaces ... 14

8.1 Port Classes .. 14

8.1.1 Class Derivations .. 14

8.2 Node Interface .. 15

8.2.1 Link Layer Virtual Channels .. 15

8.2.2 Signaling interface .. 15

8.2.3 Interface Methods ... 16

8.2.3.1 Methods for Driving Transactions .. 16

8.2.3.2 Notification Handler Methods ... 16

8.2.3.3 Transmit Request Methods.. 16

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 5

Non-Confidential

8.2.3.4 Transmit Response Methods ... 17

8.2.3.5 Transmit Snoop Methods .. 17

8.2.3.6 Transmit Data Methods ... 17

8.2.3.7 Methods for Setting Receiver LCredit Signals 17

8.2.3.8 Methods for Getting and Setting Signal Values 18

8.2.3.9 Methods for Getting and Setting Control Signals 18

8.2.3.10 Methods for Clearing Signals .. 18

8.2.3.11 Methods related to Connect and Disconnect ... 18

8.2.3.12 Methods for Address and Bit Width Configuration 19

8.2.3.13 Reset Methods ... 19

9 Interface Supporting Full System Coherent Memory Views 19

9.1 Master Port Example Implementation.. 19

9.2 Slave Port Example Implementation .. 20

10 Interface Supporting Fast Debug Access ... 21

10.1 Slave Port Example Implementation .. 21

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 6

Non-Confidential

1 Introduction

This is the user guide for the SoC Designer Plus AMBA CHI Protocol Bundle. This protocol

bundle contains the SoC Designer Plus transaction port interface for the ARM AMBA CHI

protocol.

The ARM AMBA CHI protocol represent a paradigm shift with respect to interface composition.

AMBA CHI operates on the concept of Nodes and Interfaces, rather than the Master/Slave

paradigm used by previous AMBA protocols. AMBA CHI nodes and interfaces signals are

usually mirror-images of each other (exceptions are noted), and the methods supported are the

same for both.

For more information, refer to the ARM AMBA5 CHI Architecture Specification.

2 Requirements

The AMBA CHI protocol bundle requires the following:

 SoC Designer Plus v8.3 or later

 Compilation tools as set forth in the SoC Designer Plus Installation Guide.

3 Suggested Reading

 SoC Designer Plus User Guide

 SoC Designer Plus Installation Guide

 SoC Designer Plus System Analyzer User Guide

 SoC Designer Plus System Analyzer API Reference

 ARM AMBA5 CHI Architecture Specification

4 Restrictions and Limitations

 Monitored CHI data is viewable only with the System Analyzer; it is not visible in the

SoC Designer Plus monitoring views. Use SoC Designer Plus to create monitors and run

simulations; during simulation, monitored data is exported to the System Analyzer

database. See the SoC Designer Plus System Analyzer User Guide for more information.

 CHI Profiling is not currently supported.

 CHI Debug Transactions are not currently supported.

5 Bundle Contents

This bundle contains protocol support packages for the ARM AMBA CHI protocol, a component

that converts between CHI and AXI4, a scriptable CHI master component. Also included are

probes, which provide visibility into transactions between components, and example models.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 7

Non-Confidential

6 Models

Table 6-1 lists the components included in this bundle. These are described in more detail

throughout this section.

Component Description

CHIToAXI4*

Converts CHI traffic to AXI4 format. Note the following:

 CHI sets Address Width to 44 bits.

 CHI RSVDC Width is set to 4 bits.

CHI_To_CHI*

Updates the RSVDC field in REQFLIT as follows:

 REQFLIT RSVDC[3:2] = Cluster_ID

 REQFLIT RSVDC[1:0] = LPID [1:0]

where:

a. LPID[2:0]=Logical Processor ID field read from

REQFLIT[93:91].

b. Cluster_ID is a 2-bit integer that represents the CPU cluster

connected to component’s slave port.

Note: If RSVDC is larger than 4 bits for a system, those bits are set

to 0.

CHI_Stub A scriptable CHI master component.

CHI_LinkRequester
Example models that you can use to build your own CASI models

using the API.
CHI_LinkSlave

Table 6-1 CHI Bundle Components

The .conf files for CHI components are located at:

 $MAXSIM_HOME//Protocols/CHI/etc/CHIComponent.conf

 $MAXSIM_HOME//Protocols/CHI/etc/CHIProbe.conf (include for waveform support)

 $MAXSIM_HOME//Protocols/TLM2/amba_socket/etc/AMBAComponents.conf

(CHI_to_CHI)

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 8

Non-Confidential

6.1 CHIToAXI4*

Table 6-2 lists the ports for the CHIToAXI4* component.

Name Description

axi4*_m Transaction Master

chi_s Transaction Slave

clk-in Clock Slave

Table 6-2 CHIToAXI4* Ports

Table 6-3 lists the parameters for the CHIToAXI4* component.

Name Description

CHI Data Width Width in bits of the CHI data bus. Accepted values are 128, 256,

and 512. The default is 128.

AXI4 Data Width Width in bits of the AXI4 data bus. Accepted values are 32, 64,

128, 256, and 512. The default is 128.

Note: The AXI4 Data Width value must be less than or equal to

the CHI Data Width value; it may not be greater than the

CHI Data Width value.

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

CHI Protocol Variant Sets the protocol for the chi_s port. Select from the following

options: CHI-SNF and CHI-SNI.

AXI4 Protocol Variant Sets the protocol for the axi4*_m port. Select from the following

options: AXI4 and ACE-Lite.

Table 6-3 CHIToAXI4* Parameters

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 9

Non-Confidential

6.2 CHI_to_CHI*

This component supports systems that have one or two clusters, up to eight CPUs, and include

GIC-400 controllers. The CHI_to_CHI* component sets bits in the RSVDC field in REQFLIT as

described in Section 6, Models.

Table 6-2 lists the ports for the CHI_to_CHI* component.

Name Description

chi_m Transaction Master

chi_s Transaction Slave

Table 6-2 CHI_to_CHI* Ports

Table 6-3 lists the parameters for the CHI_to_CHI* component.

Name Description

Data Width Width in bits of the CHI data bus. Accepted values are 128, 256,

and 512. The default is 128.

Cluster ID A 2-bit integer signifying the CPU-cluster connected to this

component’s slave port (chi_s).

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

Protocol Variant Sets the CHI protocol for the component. Select from the

following options: CHI-SNF, CHI-SNI, CHI-RNF, CHI-RND,

and CHI-RNI. Default is CHI-SNF.

Table 6-3 CHI_to_CHI* Parameters

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 10

Non-Confidential

6.3 CHI_Stub

CHI_Stub is a master component which can be controlled with a SoC Designer mxscr script.

Table 6-4 lists the ports for the CHI*_Stub component.

Name Description

chi_m Transaction Master port

p_in[0-3] Signal Slave ports

p_out[0-3] Signal Master ports

clk-in Clock Slave port

reset Executes a reset (RESET_SOFT) on the stub component.

Table 6-4 CHI_Stub Ports

Table 6-5 lists the component parameters.

Name Description

amba_name

amba_size

amba_ start

These parameters are obsolete and should be left at their default

values.

It is recommended that you use the Memory Map Editor (MME)

in SoC Designer Plus, which provides centralized viewing and

management of the memory regions available to the components

in a system. For information about migrating existing systems to

use the MME, refer to the SoC Designer Plus User Guide.

CPP include path Additional include path for header files to be used by script

preprocessor.

Data Width Width in bits of the data bus. It must match the data bus width of

the connected model. Allowed values are 128, 256, and 512.

Enable Debug Messages When set to true, the model debug messages are displayed as

output.

Protocol Variant Select from the following options: ACE, ACE-Lite+DVM,

ACE-Lite, AXI4, AXI4-Lite, RNF, RNI, and RND.

Table 6-5 CHI*_Stub Parameters

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 11

Non-Confidential

6.3.1 CHI_Stub Macros

Macro definitions for CHI_Stub are provided in the following files:

$MAXSIM_PROTOCOLS/CHI/include/CHI_Stub_Macros.h

$MAXSIM_ PROTOCOLS/CHI/include/CHI_Stub_CheckMacros.h

$MAXSIM_PROTOCOLS/CHI/include/AMBA_PVE_Stub_CheckMacros.h

$MAXSIM_PROTOCOLS/CHI/include/AMBA_PVE_Stub_Macros.h

For information about how to use the macros, read the comments in the .h files.

7 Probes

The following simulation probes are included in this Protocol Bundle.

Name Description

CHI Tracer Enables tracing of CHI signals. You can view traced signals in

the SoC Designer Plus simulator waveform window.

Breakpoint Transaction breakpoint on a CHI connection.

Monitor Monitors activity over a CHI connection for each cycle. Results

can be viewed using System Analyzer.

Table 7-1 Probes

7.1 Tracer Probe

This probe allows tracing of CHI signals. On the tracer, the FLIT signals are decoded into

individual fields. You can view traced signals in the SoC Designer Plus waveform window. To

add a tracer probe, right-click on a CHI connection and select “Enable/Disable Tracing.” This

displays the Tracer Properties dialog (see the SoC Designer User Guide for more information

about the Tracer Properties dialog).

By default, all signals are traced. This can be changed by using the checkboxes located on the

left side of the signal.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 12

Non-Confidential

7.2 Breakpoint Probe
To insert a breakpoint probe, either double-click on the connection or right-click on the

connection and select “Insert/Remove Breakpoint.” By default, the breakpoint is activated and

will break on any active CHI transaction across the connection.

Channel and Signal options differ depending on the protocol variant of the connection.

You can create multiple breakpoints on multiple channels. To configure breakpoint conditions,

display the breakpoint property dialog by right-clicking on the connection and selecting “Edit

Breakpoint Properties.” Figure 7-1 shows the CHI breakpoint condition dialog.

Figure 7-1 CHI Breakpoint Condition dialog

Breakpoint condition options are as follows:

Breakpoints panel:

 Breakpoint selection menu – Select the desired breakpoint to display its properties in the

Signal panel.

 Enabled checkbox – Select to keep the breakpoint enabled (this is the default), or

deselect to disable the breakpoint temporarily. Disabling does not delete the breakpoint.

 Channel selection menu – Select the channel you want to set the breakpoint on. Channel

selections differ according to the protocol setting on the component.

 Activity selection menu – Select Any Activity, OR signals, or AND signals for this

breakpoint.

 Add button – Click to create a new breakpoint. A new number appears in the Breakpoint

selection menu and the Signals panel clears so you can specify its properties.

 Delete button – Deletes the selected breakpoint.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 13

Non-Confidential

Signals panel: Use this panel to set the conditions for the breakpoint you’re defining.

 Enabled checkbox - Select to keep the breakpoint for this condition enabled (this is the

default), or deselect to disable it. Disabling does not delete the condition.

 Signal menu – Select the signal you want to break on.

 Value 1 and Value 2 fields – Enter specific values as needed, for example, when setting a

breakpoint on a particular address or within a specific range.

 Symbol field –

 Delete Signal button – Deletes the associated signal breakpoint.

7.3 Monitor Probe

The Monitor probe enables monitoring of per-cycle activity on a CHI connection.

To enable a monitor probe:

1. Right-click on a connection.

2. From the context menu, select Insert/Remove Monitor.

During simulation, monitored content is exported to the System Analyzer database. Refer to the

SoC Designer System Analyzer User Guide for information about viewing monitored activity.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 14

Non-Confidential

8 AMBA CHI Port Interfaces

AMBA CHI transaction port definition header files and libraries are included in this package.

These are required during runtime of any components with AMBA CHI ports and also when

creating components with AMBA CHI ports.

AMBA CHI port classes are CASI implementations of the ARM AMBA CHI protocol. The

interfaces for AMBA CHI transactions are described in this chapter.

8.1 Port Classes

The port class header files are located under the $MAXSIM_PROTOCOLS/AMBA CHI/include

directory. These header files are needed for building SoC Designer Plus components with AMBA

CHI ports. All interface classes are under C++ namespace casichi.

8.1.1 Class Derivations

The CHI_Requester_Port class provides the interface for CHI requester ports. CHI requester ports

must derive from this class to work with the CHI specification.

The CHI_Slave_Port class provides the interface for CHI slave ports. CHI slave ports must

derive from this class to work with the CHI specification.

Interconnect ports have not been specifically defined but must be derived from the corresponding

class to which they are paired. If an interconnect port is connected to a CHI requester port, it must

be derived from the CHI_Slave_Port class. Likewise, if an interconnect port is connected to a

CHI slave port, it must be derived from the CHI_Requester_Port class.

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 15

Non-Confidential

8.2 Node Interface

Nodes communicate by exchanging link layer flits using the node interface. A Flit is the basic

unit of transfer in the link layer. Packets are formatted into flits and transmitted across links.

8.2.1 Link Layer Virtual Channels

The following figure shows the virtual transmit and receive channels on the link layer.

A specific node port acts as both a transmitter and a receiver depending on the type of interface it

supports (see Section 6.2.2, Signaling Interface).

8.2.2 Signaling interface

The following table describes the transactions supported by each node interface.

Interface Description Virtual Channels

REQ RSP SNP DAT

RN-F Used by fully coherent request nodes such as

CPU cores and core clusters.
TX→ TX →

RX←

RX ←

TX→

RX←

RN-I Used by IO coherent nodes such as GPU and

IO bridges.
TX→ TX →

RX ←

 TX→

RX←

RN-D Used by IO coherent nodes that process TX→ TX→ TX→

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 16

Non-Confidential

DVM messages. RX← RX← RX←

SN-F Used by slave nodes such as a DRAM

memory controller.

RX←

TX→ TX→

RX←

SN-I Used by IO slave nodes.

Note: The SN-I interface is identical to the

SN-F interface but receives different

types of transactions.

RX←

TX→ TX→

RX←

8.2.3 Interface Methods

This section describes the methods provided for CHI port interfaces.

8.2.3.1 Methods for Driving Transactions

The following methods are provided for driving flit channel signals. They are called by the node

interface with an associated (connected) TX channel and must be implemented by a node

interface for cycle based reception of the channel signals.

 virtual void driveTransactionCB_RXCTL() {}; (Receive Control Channel)

 virtual void driveTransactionCB_RXREQ() {}; (Receive Request Channel)

 virtual void driveTransactionCB_RXRSP() {}; (Receive Response Channel)

 virtual void driveTransactionCB_RXSNP() {}; (Receive Snoop Channel)

 virtual void driveTransactionCB_RXDAT() {}; (Receive Data Channel)

Refer also to the associated methods in Section 8.2.3.9, Methods for Getting and Setting

Control Signals.

 void sendDrive();

Call the sendDrive() method in the component's Communicate phase to automatically

call driveTransaction on all the sender ports.

8.2.3.2 Notification Handler Methods

Notify handlers allow reception of reverse direction signals. For CHI, these allow reception of the

LCRDV (L-credit) signal. They must be implemented by a node interface for reception of reverse

direction channel signals. Note that notifications are only guaranteed when the LCRDV signal

changes.

 virtual void notifyEventCB_TXREQ() {};

 virtual void notifyEventCB_TXRSP() {};

 virtual void notifyEventCB_TXSNP() {};

 virtual void notifyEventCB_TXDAT() {};

8.2.3.3 Transmit Request Methods

The Transmit Request methods are used for setting the signals on the TXREQ channel only. In

most cases, they should only be called during the Update phase. The signals are driven in the

subsequent Communicate phase.

 void setTXREQFLITPEND(bool value)

 void setTXREQFLITV(bool value)

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 17

Non-Confidential

 void setTXREQFLIT(uint8_t QoS, uint8_t TgtID, uint8_t SrcID, uint8_t

TxnID, uint8_t Opcode, uint8_t Size, uint64_t Addr, bool NS, bool

LikelyShared, bool DynPCrd, uint8_t Order, uint8_t PCrdType, uint8_t

MemAttr, uint8_t SnpAttr, uint8_t LPID, bool Excl, bool ExpCompAck,

uint8_t RSVDC);

8.2.3.4 Transmit Response Methods

The Transmit Response methods are used for setting the signals on the TXSNPchannel only. In

most cases, they should only be called during the Update phase. The signals are driven in the

subsequent Communicate phase.

 void setTXRSPFLITPEND(bool value)

 void setTXRSPFLITV(bool value)

 void setTXRSPFLIT (uint8_t QoS, uint8_t TgtID, uint8_t SrcID, uint8_t

TxnID, uint8_t Opcode, uint8_t RespErr, uint8_t Resp, uint8_t DBID,

uint8_t PCrdType);

8.2.3.5 Transmit Snoop Methods

The Transmit Snoop methods are used for setting the signals on the TXSNPchannel only. In most

cases, they should only be called during the Update phase. The signals are driven in the

subsequent Communicate phase.

 void setTXSNPFLITPEND(bool value)

 void setTXSNPFLITV(bool value)

 void setTXSNPFLIT (uint8_t QoS, uint8_t, uint8_t SrcID, uint8_t TxnID,

uint8_t Opcode, uint64_t Addr, bool NS);

8.2.3.6 Transmit Data Methods

Transmit Data methods are used for setting the signals on the TXDAT channel only. In most

cases, they should only be called during the Update phase. The signals are driven in the

subsequent Communicate phase.

 void setTXDATFLITPEND(bool value)

 void setTXDATFLITV(bool value)

 void setTXDATFLIT (uint8_t QoS, uint8_t TgtID, uint8_t SrcID, uint8_t

TxnID, uint8_t Opcode, uint8_t RespErr, uint8_t Resp, uint8_t DBID,

uint8_t CCID, uint8_t DataID, uint8_t RSVDC, uint64_t BE);

 void setTXDATFLITData(uint32_t data, uint8_t idx = 0);

8.2.3.7 Methods for Setting Receiver LCredit Signals

The LCredit methods are used for setting the LCredit signals on the RX channels. In most cases,

they should only be called during the Update phase. The signals are driven in the subsequent

Communicate phase.

 void setRXREQLCRDV(bool value);

 void setRXRSPLCRDV(bool value);

 void setRXSNPLCRDV(bool value);

 void setRXDATLCRDV(bool value);

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 18

Non-Confidential

8.2.3.8 Methods for Getting and Setting Signal Values

 bool setSig(CHI_CHANNEL chnlIdx, uint8_t sigIdx, uint32_t val)

You can use setSig to set one value to one signal on any channel.

Note: You can only set signals that are generated by the Requester port. Signals

generated by the slave port are ignored.

 uint32_t getSig(CHI_CHANNEL chnlIdx, uint8_t sigIdx);

You can use getSig at any time to see the current signal values for any channel.

Note: Any set method calls performed in the same phase as getSig are not reflected,

because the current signals are updated in the subsequent Communicate phase.

 uint32_t getRXDATFLITData(uint8_t idx);

getRXDATFLITData is the same as getSig, but provides an easier way to retrieve a

particular byte of data on the RXDAT channel. idx points to the 32-bit data word being

referenced.

8.2.3.8.1 chnlIdx/sigIdx values

The chnlIdx values are of type CHI_CHANNEL.

The sigIdx values are of type CHI_<channel>_SIGNAL_INDEX (where channel is REQ,

RSP, SNP, or DAT). These types are defined in the provided include file CHI_TLM.h.

8.2.3.9 Methods for Getting and Setting Control Signals

The following are convenience methods for Control signals:

 void setTXSACTIVE(bool val);

 void setTXLINKACTIVEREQ(bool val);

 void setRXLINKACTIVEACK(bool val);

 bool getTXSACTIVE();

 bool getRXSACTIVE();

 bool getTXLINKACTIVEREQ();

 bool getRXLINKACTIVEREQ();

 bool getTXLINKACTIVEACK();

 bool getRXLINKACTIVEACK();

8.2.3.10 Methods for Clearing Signals

clear is a convenience function that clears all signals on all channels. It should only be called

during Update:

 void clear();

8.2.3.11 Methods related to Connect and Disconnect

Connect and disconnect are used during the interconnect phase in SoC Designer Plus and are

utilized by the SoC Designer Simulator. For normal usage, these functions do not need to be

called by a user (client) of the node interface classes.

 void connect(CASITransactionIF* iface);

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 19

Non-Confidential

 void disconnect(CASITransactionIF* iface);

8.2.3.12 Methods for Address and Bit Width Configuration

Call this method during Initialization to set up the data bit width, protocol ID, and protocol Name

of the CHI master port:

 void init(uint32_t dataWidth, uint32_t protocolID, const string

protocolName);

The protocolName must be “CHI”. The protocolID must be one of the following constants

defined by the node interface (the requester and slave nodes must match):

 CHI_RNF_PROTOCOL_ID

 CHI_RNI_PROTOCOL_ID

 CHI_RND_PROTOCOL_ID

 CHI_SNF_PROTOCOL_ID

8.2.3.13 Reset Methods

Call these methods during Reset to ensure proper state before running again:

 void reset();

 virtual bool saveData(eslapi::CASIODataStream& os);

 virtual bool restoreData(eslapi::CASIIDataStream& is);

9 Interface Supporting Full System Coherent Memory
Views

To support full system coherent memory views, the CHI Master and Slave ports implement the

interface DebugReverseIF, which includes the function debugTransactionReverse. This

function resides in Protocols/CHI/Include/DebugReverseIF.h.

Refer to the SoC Designer Plus User Guide for more information about full system coherent

memory views, and to the MxScript Reference Manual for details about how CADIMemWrite

and CADIMemRead support full system coherent memory views.

9.1 Master Port Example Implementation

Following is an example class implementation of the CHI_XTOR_TPORT port:

#include "CHI_RequesterDefs.h"

#include "CHI_XTOR_TPort.cpp"

eslapi::CASIStatus

CHI_S2T_TM::debugTransactionReverse(eslapi::CASITransactionInfo *info)

{

 if(debugReverseCallback != NULL)

 {

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 20

Non-Confidential

 return debugReverseCallback(owner_module, info);

 }

 else{

 return eslapi::CASI_STATUS_NOTSUPPORTED;

 }

}

eslapi::CAInterface* CHI_S2T_TM::ObtainInterface(eslapi::if_name_t ifName,

 eslapi::if_rev_t minRev,

 eslapi::if_rev_t* actualRev)

{

 eslapi::CAInterface *intf = MxTransactionMaster::ObtainInterface(ifName,

minRev, actualRev);

 if(intf == NULL)

 {

 intf = DebugReverseIF::ObtainInterface(ifName, minRev, actualRev);

 }

 return intf;

9.2 Slave Port Example Implementation

Following is an example class implementation of the CHI_XTOR_TPORT port:

#include "CHI_SlaveDefs.h"

#include "CHI_XTOR_TPort.cpp"

eslapi::CASIStatus

CHI_T2S_TS::debugTransactionReverse(eslapi::CASITransactionInfo *info){

 eslapi::if_rev_t actualRev;

 if(getMaster() != NULL)

 {

 DebugReverseIF* master_p = dynamic_cast<DebugReverseIF*>(getMaster()-

>ObtainInterface("DebugReverseIF", 0, &actualRev));

 if(master_p != NULL)

 {

 return master_p->debugTransactionReverse(info);

 }

 else

 {

 return eslapi::CASI_STATUS_NOTSUPPORTED;

 }

 }else{

 return eslapi::CASI_STATUS_NOTSUPPORTED;

 }

}

ARM DUI 0954B Copyright© 2016 ARM Limited. All Rights Reserved 21

Non-Confidential

eslapi::CAInterface* CHI_T2S_TS::ObtainInterface(eslapi::if_name_t ifName,

 eslapi::if_rev_t minRev,

 eslapi::if_rev_t* actualRev)

{

 eslapi::CAInterface *intf = CASITransactionSlave::ObtainInterface(ifName,

minRev, actualRev);

 if(intf == NULL)

 {

 intf = DebugReverseIF::ObtainInterface(ifName, minRev, actualRev);

 }

 return intf;

}

10 Interface Supporting Fast Debug Access

Fast debug access is a form of debug access which ignores the BUS width. This is mainly used

for loading larger application images into CPUs.

To support fast debug access, the CHI Master and Slave ports implement the interface

fast_debug_access_if, which includes the function debugTransactionReverse. This function

resides in MaxSim/eslapi/CASITypes.h.

10.1 Slave Port Example Implementation

The fast_debug_access_if interface is implemented on slave ports only. The following is an

example implementation:

#include "CHI_SlaveDefs.h"

#include "CHI_XTOR_TPort.cpp"

#include "maxsimCompatibility.h"

eslapi::CASIStatus

CHI_XTOR_TPORT::debugTransaction(eslapi::CASIDebugTransactionInfo *info)

{

 if (owner->mfDbaCb.fastDebugAccess != NULL)

 return CarbonDebugFunctionsToDebugAccess(owner->mfDbaCb, info);

 else

 {

// Normal debug access

 }

}

	1 Introduction
	2 Requirements
	3 Suggested Reading
	4 Restrictions and Limitations
	5 Bundle Contents
	6 Models
	6.1 CHIToAXI4*
	6.2 CHI_to_CHI*
	6.3 CHI_Stub
	6.3.1 CHI_Stub Macros

	7 Probes
	7.1 Tracer Probe
	7.2 Breakpoint Probe
	7.3 Monitor Probe

	8 AMBA CHI Port Interfaces
	8.1 Port Classes
	8.1.1 Class Derivations

	8.2 Node Interface
	8.2.1 Link Layer Virtual Channels
	8.2.2 Signaling interface
	8.2.3 Interface Methods
	8.2.3.1 Methods for Driving Transactions
	8.2.3.2 Notification Handler Methods
	8.2.3.3 Transmit Request Methods
	8.2.3.4 Transmit Response Methods
	8.2.3.5 Transmit Snoop Methods
	8.2.3.6 Transmit Data Methods
	8.2.3.7 Methods for Setting Receiver LCredit Signals
	8.2.3.8 Methods for Getting and Setting Signal Values
	8.2.3.8.1 chnlIdx/sigIdx values

	8.2.3.9 Methods for Getting and Setting Control Signals
	8.2.3.10 Methods for Clearing Signals
	8.2.3.11 Methods related to Connect and Disconnect
	8.2.3.12 Methods for Address and Bit Width Configuration
	8.2.3.13 Reset Methods

	9 Interface Supporting Full System Coherent Memory Views
	9.1 Master Port Example Implementation
	9.2 Slave Port Example Implementation

	10 Interface Supporting Fast Debug Access
	10.1 Slave Port Example Implementation

