
ARM MPEG-2 Audio
Layer III Decoder

Version 1

Programmer’s Guide
Copyright © 1999 ARM Limited. All rights reserved.
ARM DUI 0121B

Copyright © 1999 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI,
ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change history

Date Issue Change

May 1999 A First release

June 1999 B Second release, minor changes
ii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Preface

This preface introduces the ARM Moving Pictures Experts Group (MPEG)-2 Audio
Layer III (MP3) Decoder. It contains the following sections:

• About this guide on page iv

• Further reading on page vi

• Feedback on page vii.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. iii

Preface
About this guide

This guide is provided with the ARM MP3 Decoder. It describes the Application
Program Interface (API) to the MP3 decoder library.

Intended audience

This document has been written for programmers who want to integrate the ARM MP3
Decoder into an embedded system.

Organization

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter describes the bitstream input format required by the
ARM MP3 Decoder.

Chapter 2 ARM MP3 Decoder Types and Constants

This chapter describes the types and constants defined by the
ARM MP3 Decoder.

Chapter 3 ARM MP3 Decoder Functions

This chapter describes the functions provided by the ARM MP3
Decoder.

Chapter 4 Example Use of ARM MP3 Decoder API

This chapter contains an example C program that uses the API of
the ARM MP3 Decoder.
iv Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Preface
Typographical conventions

The following typographical conventions are used in this document:

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.

italic Highlights special terminology, denotes internal cross-references,
and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. v

Preface
Further reading

The following documents are referenced in this guide or may prove useful as reference
material.

Reference

ISO/IEC 11172-3, Information technology-Coding of moving pictures and associated
audio for digital storage media at up to about 1.5Mbit/s-Part 3: Audio, 1993.

ISO/IEC 13818-3, Information technology-Generic coding of moving pictures and
associated audio information-Part 3: Audio, 1998.
vi Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Preface

alid
ful
ent,

ened
Feedback

ARM Limited welcomes feedback on the ARM MP3 Decoder and this documentation.

Feedback on this document

If you have any comments or suggestions about this document, please send an email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM MP3 Decoder

If you have any problems with the ARM MP3 Decoder (AS022), and you have a v
support contract, please contact your supplier. To help us provide a rapid and use
response, please submit error reports in the form specified in the support agreem
giving:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type, and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happ

• the commands you used, including any command-line options

• sample output illustrating the problem.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. vii

Preface
viii Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Contents
Programmer’s Guide

Preface
About this guide ..iv
Further reading ...vi
Feedback ...vii

Chapter 1 Introduction
1.1 About the ARM MP3 Decoder ..1-2
1.2 Bitstream input format ..1-3

Chapter 2 ARM MP3 Decoder Types and Constants
2.1 Enumerations and structures ...2-2
2.2 Constants ...2-8

Chapter 3 ARM MP3 Decoder Functions
3.1 Functions ...3-2

Chapter 4 Example Use of ARM MP3 Decoder API
4.1 Example C program ...4-2
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. ix

x Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Chapter 1
Introduction

This chapter introduces the ARM MP3 Decoder, and describes the bitstream input
format it requires. This chapter contains the following sections:

• About the ARM MP3 Decoder on page 1-2

• Bitstream input format on page 1-3.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM MP3 Decoder

The ARM MP3 Decoder is an optimized library, designed to efficiently decode MP3 on
the ARM processor family. MP3 is a widely-used audio compression standard, designed
for generic mono or stereo audio. At 128kbps, with a compression ratio of about 11:1,
the quality is subjectively similar to compact disc. At 64kbps, the quality is similar to
FM radio.

The ARM MP3 Decoder is compliant with:

• audio layer III ISO standards:

— ISO/IEC 11172-3:1993 (MPEG-1)

— ISO/IEC 13818-3:1998 (MPEG-2 LSF).

• the MPEG-2.5 extensions.

Multichannel audio (MPEG-2 MC) is not supported.

All output rates are supported. These include:

• 32kHz, 44.1kHz, and 48kHz (MPEG-1)

• 16kHz, 22.05kHz, and 24kHz (MPEG-2)

• 8kHz, 11.025kHz, and 12kHz (MPEG-2.5).

The output format is non-interleaved 16-bit stereo Pulse Code Modulation (PCM).

All input rates are supported. These include:

• 32kbps-320kbps (MPEG-1)

• 8kbps-160kbps (MPEG-2 and MPEG-2.5)

• free-format bitrate.

The ARM MP3 Decoder requires ARMv4.
1-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Introduction

 on

1.2 Bitstream input format

The bitstream must be presented to the decoder as an array of 32-bit ints, each with the
left (most significant) bit first. For example, the stream:

1111 1111 1111 1010 1001 0100 0111 1100...

would be represented by:

0xfffa947c,…

If the input from the hardware is right-bit-first, the user code will have to bit-wise
reverse the input. The ARM Applications Library contains an efficient macro,
BITREVC, which bit-wise reverses a 32-bit register in 12 cycles. Using this macro,
the maximum bitrate of 320kbps, the penalty is about 0.1MHz, ignoring load/store
overhead. Please refer to the ARM website, http://www.arm.com, for details on
products such as the ARM Applications Library.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Chapter 2
ARM MP3 Decoder Types and Constants

This chapter describes the types and constants defined by the ARM MP3 Decoder.

This chapter contains the following sections:

• Enumerations and structures on page 2-2

• Constants on page 2-8.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 2-1

ARM MP3 Decoder Types and Constants

ge.
2.1 Enumerations and structures

This section describes the C types that are used to interface to the following ARM MP3
Decoder functions, described in Chapter 3 ARM MP3 Decoder Functions:

• InitMP3Audio() on page 3-2

• MP3SearchForSyncword() on page 3-4

• MP3DecodeInfo() on page 3-5

• MP3DecodeData() on page 3-7.

2.1.1 The tSampleRate enumeration

The tSampleRate enumeration codes the sampling frequency of the decoded
PCM. It is defined as follows:

typedef enum tagSampleRate
{

SR_11_025kHz,
SR_12kHz,
SR_8kHz,
SR_ReservedMPEG2_5,
SR_22_05kHz,
SR_24kHz,
SR_16kHz,
SR_ReservedLSF,
SR_44_1kHz,
SR_48kHz,
SR_32kHz,
SR_Reserved

} tSampleRate ;

You may assume that the order of the elements of this enumeration will not chan
2-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Types and Constants
2.1.2 The tMPEGStatus enumeration

The tMPEGStatus enumeration codes the return status of each ARM MP3 Decoder
function. Refer to the function descriptions in Chapter 3 ARM MP3 Decoder Functions
to find out which values may be returned by each function. The tMPEGStatus
enumeration is defined as follows:

typedef enum tagMPEGStatus
{

eNoErr,
eNoSyncword,
eCRCError,
eBrokenFrame,
eEndOfBitstream,
eDataOverflow,
eCantAllocateBuffer,
eUnsupportedLayer,

 eFrameDiscarded,
eReservedSamplingFrequency,
eForbiddenBitRate

} tMPEGStatus ;

You may assume that the success status code, eNoErr, will be element zero in all
releases, but the order of the other elements may change.

Note

The elements eEndOfBitstream, eDataOverflow, and eCantAllocateBuffer
are never returned by the ARM MP3 Decoder functions. They have been included so
that user functions may return the tMPEGStatus type to flag errors in addition to those
that may be returned by the ARM MP3 Decoder.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 2-3

ARM MP3 Decoder Types and Constants
2.1.3 The tMPEGBitstream structure

The tMPEGBitstream structure points to the current location in the MPEG bitstream.
It is defined as follows:

typedef struct tagMPEGBitstream
{
 unsigned int *bufptr;
 unsigned int bitidx;
} tMPEGBitstream;

where:

bufptr is a pointer to the current 32-bit word of the bitstream.

bitidx is an index within the 32-bit word. The value can range from 0-31,
inclusive, where:

0 the next bit is bit 31, the Most Significant Bit (MSB) of this
word, followed by bit 30

1 the next bit is bit 30 of this word

...

31 the next bit is bit 0 of this word, followed by bit 31 of the next
word.
2-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Types and Constants
2.1.4 The tMPEGHeader structure

The tMPEGHeader structure contains information from the MPEG audio header. It is
written by the MP3DecodeInfo() function. This structure is defined as follows:

typedef struct tagMPEGHeader
{

tSampleRate sample_rate;
unsigned int samplesperchannel;
unsigned int numchans;
unsigned int packed_info;
unsigned int bits_required;

 unsigned int free_format;
} tMPEGHeader;

where:

sample_rate

is the PCM sampling frequency.

samplesperchannel

is the number of samples-per-channel that will be returned by
MP3DecodeData().

numchans is the number of channels (one or two).

packed_info

is the header information packed into a 32-bit word. The format of
packed_info is shown in Table 2-1:

 Table 2-1 Format of packet_info

Bit number Description

20 1 if MPEG 1 or MPEG2.
0 if MPEG 2.5

19 ID

17, 18 layer:
11—layer 1
10—layer 2
01—layer 3
00—reserved.

16 protection_bit

12-15 bitrate_index
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 2-5

ARM MP3 Decoder Types and Constants
See section 2.4.2.3 of ISO/IEC 11172-3 for a complete description of the
above header information.

bits_required

is the number of bits required by the next call to MP3DecodeData().
This does not include the 32 bits of header already read.

free_format

must be set to one if the bitstream is in free-format mode. See Notes on
page 3-6 in the MP3DecodeInfo() section.

2.1.5 The tMPEGInstance type

The tMPEGInstance type should be regarded as an opaque type, used as a temporary
workspace by the ARM MP3 Decoder. A pointer to an instance of this type is passed to
each of the API functions. This is the only RAM used by the decoder.

For convenience, where the decoder is used in simple applications, the library contains
an instance of this type called MPEGInstance. For most applications, this will be the
only instance required.

10, 11 sampling_frequency

9 padding_bit

8 private_bit

6, 7 mode

4, 5 mode_extension

3 copyright

2 original/copy

0, 1 emphasis

 Table 2-1 Format of packet_info (continued)

Bit number Description
2-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Types and Constants
Where an application needs to support multiple decoder formats, or where multiple
instances of the MP3 decoder are required, an instance of type MPEGInstance should
be declared externally, and a pointer to this instance should be passed to each of the API
functions. For more information, refer to the header file mpgdata.h. This file specifies
the minimum size and alignment restrictions of the datatype. The easiest way to allocate
a block of RAM with the necessary alignment is to define it in a small ARM assembly
language file using the ALIGN area attribute.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 2-7

ARM MP3 Decoder Types and Constants
2.2 Constants

This section describes the constants defined by the ARM MP3 Decoder.

2.2.1 MP3_MAX_PCM_LENGTH—maximum length of PCM returned

This constant defines the maximum number of PCM samples per channel returned by a
single call to MP3DecodeData(). It is the maximum value of the
samplesperchannel element of the tMPEGHeader structure written by
MP3DecodeInfo().

The parameters left and right in the function MP3DecodeData() must both point
to short arrays with at least MP3_MAX_PCM_LENGTH elements.

2.2.2 MP3_MAX_BITS_REQUIRED—maximum number of bits required

This constant defines the maximum number of bits required by the MP3DecodeData()
function.

The constant is defined as follows:

#define MP3_MAX_BITS_REQUIRED 11520

Note

The value 11520 corresponds to the maximum bit rate of 320kbps and the minimum
sampling frequency of 32kHz. It is calculated as follows:

320000 (bits per second) * 1152 (samples per channel per frame) / 32000 (samples per
channel per second) = 11520 (bits per frame).

2.2.3 MP3_NINFOBITS—size of MPEG audio frame header

This constant defines the number of bits required by the function MP3DecodeInfo().
It is defined as follows:

#define MP3_NINFOBITS 32
2-8 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Chapter 3
ARM MP3 Decoder Functions

This chapter describes the functions provided by the ARM MP3 Decoder.

This chapter contains the following section:

• Functions on page 3-2.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 3-1

ARM MP3 Decoder Functions

t and

may
3.1 Functions

This section describes the functions provided by the MP3 decoder library:

• InitMP3Audio()

• MP3SearchForSyncword() on page 3-4

• MP3DecodeInfo() on page 3-5

• MP3DecodeData() on page 3-7.

3.1.1 InitMP3Audio()

This function initializes the MPEG audio decoder. It must be called at system rese
must also be called before decoding a new MPEG bitstream.

It clears the main_data buffer so the new frame cannot refer backwards into the
previous frame from the wrong bitstream (see Figure 3-1). If it is not called, there
be loud clicks on the PCM output, though the decoder will always remain stable.

 Figure 3-1 Invalid reference—MP3 bitstream

Refer to Figure A.7 in ISO/IEC 11172-3 for complete details on this diagram.

This function also clears the filterbank and IMDCT histories, so output from the
previous bitstream does not bleed into the new one.

Intended reference

Incorrect reference

Old bitstream

New bitstream
3-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Functions
Syntax

void InitMP3Audio(tMPEGInstance *inst)

where:

inst is a pointer to the instance data for the decoder.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 3-3

ARM MP3 Decoder Functions

e

eam
3.1.2 MP3SearchForSyncword()

This function searches for the synchronization word (syncword) that marks the
beginning of the next MPEG audio frame.

Syntax

tMPEGStatus MP3SearchForSyncword(tMPEGInstance *inst,
tMPEGBitstream *bs,
unsigned int length)

where:

inst is a pointer to the instance data for the decoder.

bs is a pointer to the structure that holds the incoming bitstream buffer. The
buffer is updated to:

• the end of the buffer minus 11 bits, if the syncword is not found

• the beginning of the syncword, if the syncword is found.

length is the number of new bits that are valid.

Return value

tMPEGStatus the function's return status:

eNoErr the syncword was found

eNoSyncword
there is no syncword.

Usage

This function may not be required if the syncword is known to be at the start of th
buffer, which is typically the case for .mp3 files or MP3 embedded within some
multiplex.

Notes

The syncword in the bitstream must be byte-aligned (see section 2.3 of ISO/IEC
11172-3). This function makes the assumption that byte alignment in the MP3 str
is equivalent to byte alignment in memory.
3-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Functions
3.1.3 MP3DecodeInfo()

This function decodes the header from the MPEG frame, returning the length of the
MPEG audio frame.

There must be at least MP3_NINFOBITS valid bits of incoming bitstream available.

Syntax

tMPEGStatus MP3DecodeInfo(tMPEGInstance *inst,
tMPEGBitstream *bs,
tMPEGHeader *pmpeg_hdr)

where:

inst is a pointer to the instance data for the decoder.

bs is a pointer to the structure that holds the incoming bitstream buffer. The
buffer is moved forward MP3_NINFOBITS bits to point to the beginning
of the audio data, as defined in 2.4.1.7 of ISO/IEC 11172-3.

pmpeg_hdr is a pointer to a structure that will be updated with MPEG audio header
information. For a description of the tMPEGHeader structure, see The
tMPEGHeader structure on page 2-5.

Return value

tMPEGStatus the function’s return status:

eNoErr header decoded with no errors

eNoSyncword
no syncword

eBrokenFrame
header is inconsistent

eUnsupportedLayer
unsupported or illegal (00) MPEG audio layer

eReservedSamplingFrequency
undefined sampling frequency (11)

eForbiddenBitRate
illegal bit rate (1111).
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 3-5

ARM MP3 Decoder Functions
Notes

If the bitstream is in free-format mode, the size of the frame is not indicated. For more
information on free-format mode, see section 2.1.67 in ISO/IEC 11172-3.

In this case, bits_required will contain the maximum value corresponding to the
maximum bit rate of 320kbps. It is safe to provide this length of valid bitstream, and use
the updated bitstream structure from MP3DecodeData() to find out how much data
was actually used.

In some cases, the frame size may be known to the application, such as when the frame
is embedded within a multiplex that indicates the length of the frame. In these cases,
you should ignore bits_required and provide the complete frame.
3-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

ARM MP3 Decoder Functions

3.1.4 MP3DecodeData()

This function decodes a frame of PCM samples from the MP3 stream.

Syntax

tMPEGStatus MP3DecodeData(tMPEGInstance *inst, short *left,
short *right, tMPEGBitstream *bs)

where:

inst is a pointer to the instance data for the decoder.

left is a pointer to the output buffer for left-channel PCM.

right is a pointer to the output buffer for right-channel PCM.

bs is a pointer to the structure that holds the incoming bitstream.

Note

The number of elements written to left and right is given by the element
samplesperchannel of the tMPEGHeader structure. This value is written by the
MP3DecodeInfo() function. The maximum value that can be written is given by
MP3_MAX_PCM_LENGTH, described in MP3_MAX_PCM_LENGTH—maximum length
of PCM returned on page 2-8.

Return value

tMPEGError the function’s return status:

eNoErr the frame decoded with no errors

eCRCError
cyclic redundancy check (CRC) error

eBrokenFrame
the frame is inconsistent

eFrameDiscarded
insufficient main data to decode the frame.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 3-7

ARM MP3 Decoder Functions
Usage

The bitstream must contain at least the number of valid bits requested by
pmpeg_hdr->bits_required, returned by the previous call to MP3DecodeInfo().
The function MP3DecodeData() has no way of ascertaining whether this is true, so if
insufficient data is available, the PCM output is undefined, though the decoder will
remain stable.

The bitstream structure will be updated to reference the first bit in the bitstream
immediately after the audio frame.

If required, the external program may inspect the bitstream structure to check that frame
decoding has not advanced beyond the end of the data. If it has, you should ignore the
PCM output from this function, and call InitMP3Audio() to flush the filterbank
histories and main_data buffer.
3-8 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Chapter 4
Example Use of ARM MP3 Decoder API

This chapter contains an example C program that uses the API of the ARM MP3
Decoder. It contains the following section:

• Example C program on page 4-2.
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 4-1

Example Use of ARM MP3 Decoder API
4.1 Example C program

Example 4-1 shows a simple example program using the ARM MP3 Decoder. The
example is provided for reference purposes only.

Example 4-1

#include <stdio.h>
#include <stdlib.h>

#include "mpgdata.h"
#include "mpgaudio.h"

/* external prototypes */

tMPEGStatus InitAudio(unsigned int buffsize) ;
unsigned int LoadData(FILE *file) ;
unsigned int PlayData(void) ;

/* local globals */

static int *lgBuffer = NULL ;
static unsigned int lgBufferSize = 0 ;
static unsigned int lgLengthDataInBuffer = 0 ;
static tMPEGBitstream lgMPEGBitstream = { NULL, 0 } ;

/* macros */

#define GetNBitsRemaining() \
(lgLengthDataInBuffer*32 - \

/* current bit position in buffer = */ \
(((lgMPEGBitstream.bufptr - lgBuffer)*32) + lgMPEGBitstream.bitidx))

/* local functions */

static void ClearBuffer(void)
{

memset(lgBuffer, 0, lgBufferSize * sizeof(int)) ;
lgLengthDataInBuffer = 0 ;

}

4-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Example Use of ARM MP3 Decoder API
static tMPEGStatus GetDecodedData(short *left, short *right,
tMPEGHeader *pmpeg_hdr)

{
tMPEGStatus mpg_error ;

if(MP3SearchForSyncword(&MPEGInstance, lgMPEGBitstream,
GetNBitsRemaining()) != eNoErr)

{
return eEndOfBitstream ;

}

if((mpg_error = MP3DecodeInfo(&MPEGInstance, lgMPEGBitstream, pmpeg_hdr))
!= eNoErr)

{
return mpg_error ;

}

return MP3DecodeData(&MPEGInstance, left, right, lgMPEGBitstream) ;
}

static unsigned int InterleaveChannels(short *left, short *right,
short *interleaved,
unsigned int samples_per_channel)

{
unsigned int sample;

for(sample = samples_per_channel ; sample /* > 0 */ ; sample -= 1)
{

*interleaved++ = *left++ ;
*interleaved++ = *right++ ;

}

return(samples_per_channel * 2) ;
}

ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 4-3

Example Use of ARM MP3 Decoder API
/* functions */

tMPEGStatus InitAudio(unsigned int buffsize)
{

if(lgBuffer != NULL)
{

/* checks if buffer has been allocated previously and frees it */
/* if it has */
free((void *)lgBuffer) ;
lgBuffer = NULL ;

}

if((lgBuffer = (int *)malloc(buffsize * sizeof(int))) == NULL)
{

return eCantAllocateBuffer ;
}
lgBufferSize = buffsize ;

return eNoErr ;
}

unsigned int LoadData(FILE *file)
{

ClearBuffer() ;
return fread((void *)lgBuffer, sizeof(int), lgBufferSize, file) ;

}

unsigned int PlayData(void)
{

short left[MP3_MAX_PCM_LENGTH] ;
short right[MP3_MAX_PCM_LENGTH] ;
short interleaved[MP3_MAX_PCM_LENGTH * 2] ;
tMPEGStatus mpg_error ;
unsigned int num_samples_interleaved ;

InitMP3Audio(&MPEGInstance) ;

/*
initialise the tMPEGBitstream structure with the pointer to the start of
the buffer containing the MP3 data and set the bit index as the
most significant bit
*/
lgMPEGBitstream.bufptr = lgBuffer ;
lgMPEGBitstream.bitidx = 0 ;
4-4 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Example Use of ARM MP3 Decoder API
while((mpg_error = GetDecodedData(left, right, &mpeg_hdr))
!= eNoErr)

{
num_samples_interleaved = InterleaveChannels(left, right, interleaved,

mpeg_hdr.samplesperchannel) ;
/*
the function

void ProcessPCM(short *pcm, unsigned int nsamples) ;

below is not given here and is any function that processes the interleaved
pcm data post-MP3 decoding
*/

ProcessPCM(interleaved, num_samples_interleaved) ;
}
if(mpg_error != eEndOfBitstream)
{

return 0 ;
}
return 1 ;

}

/* main routine */

int main(void)
{

FILE *file ;
unsigned int error ;

if((file = fopen("filename.mp3", "rb")) == NULL)
{

return 1 ;
}

if(InitAudio(1024 * 1024) != eNoErr)/* 1Mb of samples */
{

return 1 ;
}
error = 0 ;
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. 4-5

Example Use of ARM MP3 Decoder API
if(LoadData(file))
{

error = PlayData() ;
error = !error ; /* invert sense for return from main() */

}

fclose(file) ;

return error ;
}

4-6 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

Index

The items in this index are listed in alphabetic order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
ARM Applications Library 1-3

B
BITREVC 1-3
Bitstream input format 1-3
bits_required 3-6
Bit-wise reverse 1-3

C
Constants 2-8

D
Decoder functions 3-2

E
eCantAllocateBuffer 2-3
eDataOverflow 2-3
eEndOfBitstream 2-3
eNoErr 2-3
Enumerations 2-2

F
filterbank history 3-2, 3-8
Free-format mode 3-6

H
Header information 2-5

I
IMDCT history 3-2
InitMP3Audio() 3-2

L
Left-bit-first input 1-3

M
main_data buffer 3-2, 3-8
ARM DUI 0121B Copyright © 1999 ARM Limited. All rights reserved. Index-1

Most Significant Bit (MSB) 2-4
mpgdata.h 2-7
MP3DecodeData() 2-8, 3-6, 3-7
MP3DecodeInfo() 2-5, 2-8, 3-5, 3-7,

3-8
MP3SearchForSyncword() 3-4
MP3_MAX_BITS_REQUIRED 2-8
MP3_MAX_PCM_LENGTH 2-8,

3-7
MP3_NINFOBITS 2-8, 3-5
Multiplex 3-6

P
pmpeg_hdr->bits_required 3-8
Pulse Code Modulation (PCM) 1-2,

2-2, 3-7

R
Right-bit-first hardware input 1-3

S
Structures 2-2
Synchronization word (syncword)

3-4

T
tMPEGBitstream structure 2-4
tMPEGHeader structure 2-5, 2-8, 3-7
tMPEGInstance 2-6
tMPEGStatus enumeration 2-3
tSampleRate enumeration 2-2
Index-2 Copyright © 1999 ARM Limited. All rights reserved. ARM DUI 0121B

	Preface
	About this guide
	Intended audience
	Organization
	Typographical conventions

	Further reading
	Reference

	Feedback
	Feedback on this document
	Feedback on the ARM MP3 Decoder

	Introduction
	1.1 About the ARM MP3 Decoder
	1.2 Bitstream input format

	ARM MP3 Decoder Types and Constants
	2.1 Enumerations and structures
	2.1.1 The tSampleRate enumeration
	2.1.2 The tMPEGStatus enumeration
	2.1.3 The tMPEGBitstream structure
	2.1.4 The tMPEGHeader structure
	2.1.5 The tMPEGInstance type

	2.2 Constants
	2.2.1 MP3_MAX_PCM_LENGTH—maximum length of PCM returned
	2.2.2 MP3_MAX_BITS_REQUIRED—maximum number of bits required
	2.2.3 MP3_NINFOBITS—size of MPEG audio frame header

	ARM MP3 Decoder Functions
	3.1 Functions
	3.1.1 InitMP3Audio()
	3.1.2 MP3SearchForSyncword()
	3.1.3 MP3DecodeInfo()
	3.1.4 MP3DecodeData()

	Example Use of ARM MP3 Decoder API
	4.1 Example C program

