SoC Designer Plus

Version 8.3

AMBA CHI Protocol Bundle
User Guide

Non-Confidential

ARM

Copyright© 2016 ARM Limited. All Rights Reserved
ARM DUI 0954

SoC Designer Plus
AMBA CHI Protocol Bundle User Guide

Copyright © 2016 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change

February 2016 A Non-Confidential Release with 8.3

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in
any form by any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English
version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF
THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not
exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not
intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any
time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these
terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

Table of Contents

1 INtrodUCTION ... 6
2 REQUIFEMENTSeiiiiciic et e e 6
3 Suggested ReAdING......cccocuviiieiieiie et 6
4 Restrictions and LIMITatiONSccoovveeeeeeeeeeeee e 6
D BUNAIE CONTENTES. ...ttt et e e e e e e e e e e e e eeaaaans 6
B IMIOARIS ..o ettt e e e e e e e e e e e e e e e e e r e 7
8.1 CHITOAXIA® e ettt e e e e e e e ettt e e e e e e e e e eeeeas 8
6.2 CHI L0 CHIT oo e re e 9
6.3 CHI_SHUD ..o 10
6.3.1 CHI_STUD MACIOSeovieiieiiieiieeie ettt 11
T PO et ————————— 11
T 1 THACEI PrODE e 11
7.2 Breakpoint PrODE........cc.oiiiiicc ettt 12
7.3 MONIEOT PrODE <.t 13
8 AMBA CHI POt INTEITACES.eees 14
8.1 POIT ClaSSES ...ttt e —— 14
8.1.1 ClaSS DEIIVALIONSccoeeeeeeeeeeeee e 14
8.2 NOUE TN ACE ...t 15
8.2.1 Link Layer Virtual Channelsccccoeiiieiiiiiie e 15
8.2.2 SIgNaling INTErTACEcveieiiieie e 15
8.2.3 INterface MEethodSooovvveeie 16
8.2.3.1 Methods for Driving TranSactionsccceeererereninienieniene s 16
8.2.3.2 Notification Handler Methods. ..., 16
8.2.3.3 Transmit Request Methods..........cccccveiiiiiiiiiic e 16

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

8.2.3.4 Transmit Response Methodscccovvveiiiieiiiiiiec e 17

8.2.3.5 Transmit SN00OP MEthOdScccveviiiiiieiece e 17
8.2.3.6 Transmit Data Methods..........cccccveviiiiiiiiiii e 17
8.2.3.7 Methods for Setting Receiver LCredit Signalscccceveiiiiiiiinnne. 17
8.2.3.8 Methods for Getting and Setting Signal Values............ccccoeveivniiinnnnn. 18
8.2.3.9 Methods for Getting and Setting Control Signals...........ccccceeevveriennnnnn. 18
8.2.3.10 Methods for Clearing Signals............cccoveviiieiieiicc e 18
8.2.3.11 Methods related to Connect and DiSCONNECT..........cccevveriereneieniiienienne 18
8.2.3.12 Methods for Address and Bit Width Configuration...........cccccceveverennenne 19
8.2.3.13 RESEt MELNOUSeeeuiiiiieciieieee e 19
9 Interface Supporting Full System Coherent Memory Views........... 19
9.1 Master Port Example Implementation............cccooeieiiiinininieieeec s 19
9.2 Slave Port Example Implementation...........ccccooevveiiiieie e 20
10 Interface Supporting Fast Debug ACCESSccccevveeveeeiieeviee e 21
10.1 Slave Port Example Implementation.............cccccooveiiieeii e 21
11 Technical SUPPOIToccviiieeie e 22
ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

1 Introduction

This is the user guide for the SoC Designer Plus AMBA CHI Protocol Bundle. This protocol
bundle contains the SoC Designer Plus transaction port interface for the ARM AMBA CHI
protocol.

The ARM AMBA CHI protocol represent a paradigm shift with respect to interface composition.
AMBA CHI operates on the concept of Nodes and Interfaces, rather than the Master/Slave
paradigm used by previous AMBA protocols. AMBA CHI nodes and interfaces signals are
usually mirror-images of each other (exceptions are noted), and the methods supported are the
same for both.

For more information, refer to the ARM AMBA5 CHI Architecture Specification.

2 Requirements

The AMBA CHlI protocol bundle requires the following:

e SoC Designer Plus v8.3 or later
e Compilation tools as set forth in the SoC Designer Plus Installation Guide.

3 Suggested Reading

SoC Designer Plus User Guide

SoC Designer Plus Installation Guide

SoC Designer Plus System Analyzer User Guide
SoC Designer Plus System Analyzer APl Reference
ARM AMBA5 CHI Architecture Specification

4 Restrictions and Limitations

e Monitored CHI data is viewable only with the Carbon System Analyzer; it is not visible
in the SoC Designer Plus monitoring views. Use SoC Designer Plus to create monitors
and run simulations; during simulation, monitored data is exported to the System
Analyzer database. See the SoC Designer Plus System Analyzer User Guide for more
information.

e CHI Profiling is not currently supported.

e CHI Debug Transactions are not currently supported.

5 Bundle Contents

This bundle contains protocol support packages for the ARM AMBA CHI protocol, a component
that converts between CHI and AXI4, a scriptable CHI master component. Also included are
probes, which provide visibility into transactions between components, and example models.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

6 Models

Table 6-1 lists the components included in this bundle. These are described in more detail
throughout this section.

Component Description
Converts CHI traffic to AXI14 format. Note the following:
CHIToAXI4* e CHI sets Address Width to 44 bits.

e CHI RSVDC Width is set to 4 bits.

Updates the RSVDC field in REQFLIT as follows:

e REQFLIT RSVDC[3:2] = Cluster_ID
e REQFLIT RSVDC[1:0] = LPID [1:0]

where:
a. LPID[2:0]=Logical Processor ID field read from
CHI_To_CHI* REQFLIT[93:91].
b. Cluster_ID is a 2-bit integer that represents the CPU cluster
connected to component’s slave port.

Note: If RSVDC is larger than 4 bits for a system, those bits are set
to 0.

CHI_Stub A scriptable CHI master component.

CHI_LinkRequester .
Example models that you can use to build your own CASI models

using the API.

CHI_LinkSlave

Table 6-1 CHI Bundle Components
The .conf files for CHI components are located at:
¢ 3MAXSIM_HOME//Protocols/CHI/etc/CHIComponent.conf
$MAXSIM_HOME//Protocols/CHI/etc/CHIProbe.conf (include for waveform support)

e 3MAXSIM_HOME//Protocols/TLM2/amba_socket/etc/AMBAComponents.conf
(CHI_to_CHI)

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

6.1 CHIToAXI4*

Table 6-2 lists the ports for the CHIToAXI4* component.

Name Description
axi4*_m Transaction Master
chi_s Transaction Slave
clk-in Clock Slave

Table 6-2 CHIToAXI14* Ports

Table 6-3 lists the parameters for the CHIToAXI4* component.

Name

Description

CHI Data Width

AXI4 Data Width

Enable Debug Messages
CHI Protocol Variant

AXI4 Protocol Variant

Width in bits of the CHI data bus. Accepted values are 128, 256,
and 512. The default is 128.

Width in bits of the AXI4 data bus. Accepted values are 32, 64,
128, 256, and 512. The default is 128.

Note: The AXI4 Data Width value must be less than or equal to
the CHI Data Width value; it may not be greater than the
CHI Data Width value.

When set to true, the model debug messages are displayed as
output.

Sets the protocol for the chi_s port. Select from the following
options: CHI-SNF and CHI-SNI.

Sets the protocol for the axi4*_m port. Select from the following
options: AXI4 and ACE-L.ite.

ARM DUI 0954

Table 6-3 CHIToAXI14* Parameters

Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

6.2 CHI_to_CHI*

This component supports systems that have one or two clusters, up to eight CPUs, and include
GIC-400 controllers. The CHI_to_CHI* component sets bits in the RSVDC field in REQFLIT as
described in Section 6, Models.

Table 6-2 lists the ports for the CHI_to_ CHI* component.

Name Description
chi_m Transaction Master
chi_s Transaction Slave

Table 6-2 CHI_to_CHI* Ports

Table 6-3 lists the parameters for the CHI_to_ CHI* component.

Name Description

Data Width Width in bits of the CHI data bus. Accepted values are 128, 256,
and 512. The default is 128.

Cluster ID A 2-bit integer signifying the CPU-cluster connected to this

Enable Debug Messages

Protocol Variant

component’s slave port (chi_s).

When set to true, the model debug messages are displayed as
output.

Sets the CHI protocol for the component. Select from the
following options: CHI-SNF, CHI-SNI, CHI-RNF, CHI-RND,
and CHI-RNI. Default is CHI-SNF.

Table 6-3 CHI_to_CHI* Parameters

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

6.3 CHI_Stub

CHI_Stub is a master component which can be controlled with a SoC Designer mxscr script.
Table 6-4 lists the ports for the CHI*_Stub component.

Name Description

chi_m Transaction Master port

p_in[0-3] Signal Slave ports

p_out[0-3] Signal Master ports

clk-in Clock Slave port

reset Executes a reset (RESET_SOFT) on the stub component.

Table 6-4 CHI_Stub Ports

Table 6-5 lists the component parameters.

Name Description

amba_name These parameters are obsolete and should be left at their default
amba_size values.

amba_ start Carbon recommends using the Memory Map Editor (MME) in

CPP include path
Data Width
Enable Debug Messages

Protocol Variant

SoC Designer Plus, which provides centralized viewing and
management of the memory regions available to the components
in a system. For information about migrating existing systems to
use the MME, refer to the SoC Designer Plus User Guide.

Additional include path for header files to be used by script
preprocessor.

Width in bits of the data bus. It must match the data bus width of
the connected model. Allowed values are 128, 256, and 512.

When set to true, the model debug messages are displayed as
output.

Select from the following options: ACE, ACE-Lite+DVM,
ACE-Lite, AXI4, AXIl4-Lite, RNF, RNI, and RND.

ARM DUI 0954

Table 6-5 CHI*_Stub Parameters

Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

10

6.3.1 CHI_Stub Macros
Macro definitions for CHI_Stub are provided in the following files:

SMAXSIM_PROTOCOLS/CHI/include/CHI_Stub_Macros.h

$MAXSIM_ PROTOCOLS/CHI/include/CHI_Stub_CheckMacros.h
$MAXSIM_PROTOCOLS/CHI/include/AMBA_PVE_Stub_CheckMacros.h
$MAXSIM_PROTOCOLS/CHI/include/AMBA_PVE_Stub_Macros.h

For information about how to use the macros, read the comments in the .h files.

7 Probes
The following simulation probes are included in this Protocol Bundle.
Name Description
CHI Tracer Enables tracing of CHI signals. You can view traced signals in
the SoC Designer Plus simulator waveform window.
Breakpoint Transaction breakpoint on a CHI connection.
Monitor Monitors activity over a CHI connection for each cycle. Results
can be viewed using Carbon System Analyzer.

Table 7-1 Probes

7.1 Tracer Probe

This probe allows tracing of CHI signals. On the tracer, the FLIT signals are decoded into
individual fields. You can view traced signals in the SoC Designer Plus waveform window. To
add a tracer probe, right-click on a CHI connection and select “Enable/Disable Tracing.” This
displays the Tracer Properties dialog (see the SoC Designer User Guide for more information
about the Tracer Properties dialog).

By default, all signals are traced. This can be changed by using the checkboxes located on the
left side of the signal.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

11

7.2 Breakpoint Probe

To insert a breakpoint probe, either double-click on the connection or right-click on the
connection and select “Insert/Remove Breakpoint.” By default, the breakpoint is activated and
will break on any active CHI transaction across the connection.

Channel and Signal options differ depending on the protocol variant of the connection.

You can create multiple breakpoints on multiple channels. To configure breakpoint conditions,
display the breakpoint property dialog by right-clicking on the connection and selecting “Edit
Breakpoint Properties.” Figure 7-1 shows the CHI breakpoint condition dialog.

) Breaksoint Condition 7777777777772 ey

~Breakpoints

|2 |+| Enabled ¥ | TxrEQ |+| [AND signals Rd I Add I [Delete]
[ﬁm\,r Channel
: THXREQ
—Signals RXRSP
THDAT
—lEnabIedl Signa pypaT ndition | Valuel | Value2 | Symbol
[- [T i r
1% | FLITPEND |vijequals - | |
2% | FLITPEND |v equals - I
L ..
3 | <Ney

[ox][conce

Figure 7-1 CHI Breakpoint Condition dialog

Breakpoint condition options are as follows:

Breakpoints panel:

Breakpoint selection menu — Select the desired breakpoint to display its properties in the
Signal panel.

Enabled checkbox — Select to keep the breakpoint enabled (this is the default), or
deselect to disable the breakpoint temporarily. Disabling does not delete the breakpoint.
Channel selection menu — Select the channel you want to set the breakpoint on. Channel
selections differ according to the protocol setting on the component.

Activity selection menu — Select Any Activity, OR signals, or AND signals for this
breakpoint.

Add button — Click to create a new breakpoint. A new number appears in the Breakpoint
selection menu and the Signals panel clears so you can specify its properties.

Delete button — Deletes the selected breakpoint.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved

Non-Confidential

12

Signals panel: Use this panel to set the conditions for the breakpoint you’re defining.

o Enabled checkbox - Select to keep the breakpoint for this condition enabled (this is the
default), or deselect to disable it. Disabling does not delete the condition.

e Signal menu — Select the signal you want to break on.
Value 1 and Value 2 fields — Enter specific values as needed, for example, when setting a
breakpoint on a particular address or within a specific range.

e Symbol field -

o Delete Signal button — Deletes the associated signal breakpoint.

7.3 Monitor Probe
The Monitor probe enables monitoring of per-cycle activity on a CHI connection.
To enable a monitor probe:

1. Right-click on a connection.
2. From the context menu, select Insert/Remove Monitor.

During simulation, monitored content is exported to the System Analyzer database. Refer to the
Carbon System Analyzer User Guide for information about viewing monitored activity.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

13

8 AMBA CHI Port Interfaces

AMBA CHlI transaction port definition header files and libraries are included in this package.
These are required during runtime of any components with AMBA CHI ports and also when
creating components with AMBA CHI ports.

AMBA CHI port classes are CASI implementations of the ARM AMBA CHI protocol. The
interfaces for AMBA CHI transactions are described in this chapter.

8.1 Port Classes

The port class header files are located under the $MAXSIM_PROTOCOLS/AMBA CHl/include
directory. These header files are needed for building SoC Designer Plus components with AMBA
CHI ports. All interface classes are under C++ namespace casichi.

8.1.1 Class Derivations

The CHI_Requester_Port class provides the interface for CHI requester ports. CHI requester ports
must derive from this class to work with the CHI specification.

The CHI_Slave_Port class provides the interface for CHI slave ports. CHI slave ports must
derive from this class to work with the CHI specification.

Interconnect ports have not been specifically defined but must be derived from the corresponding
class to which they are paired. If an interconnect port is connected to a CHI requester port, it must
be derived from the CHI_Slave_Port class. Likewise, if an interconnect port is connected to a
CHI slave port, it must be derived from the CHI_Requester_Port class.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

14

8.2 Node Interface

Nodes communicate by exchanging link layer flits using the node interface. A Flit is the basic
unit of transfer in the link layer. Packets are formatted into flits and transmitted across links.

8.2.1 Link Layer Virtual Channels
The following figure shows the virtual transmit and receive channels on the link layer.

o RxaP

TXDAT >
RXDAT

Transmitter Receiver

| TXREQ >

|‘ RXREQ
— TXRSP > — W
o 0 o 5
Se LU S T~ 8 o
Bo Bo
T ? e — 7 &

1

Link Layer
Virtual Channels

A specific node port acts as both a transmitter and a receiver depending on the type of interface it
supports (see Section 6.2.2, Signaling Interface).

8.2.2 Signaling interface
The following table describes the transactions supported by each node interface.

Interface Description Virtual Channels

REQ | RSP SNP DAT

RN-F Used by fully coherent request nodes suchas | Tx— | TX — TX—
CPU cores and core clusters.
RX<«— | RX «— | RX«

RN-I Used by 10 coherent nodes suchas GPU and | Tx— | TX — TX—
10 bridges.
RX «— RX«—
RN-D Used by 10 coherent nodes that process TX— | TX— TX—
ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved 15

Non-Confidential

DVM messages. RX<«— | RX«— RX<«—

SN-F Used by slave nodes such as a DRAM TX— TX—
memory controller.

RX«— RX<«—

SN-I Used by 10 slave nodes. TX— TX—

Note: The SN-I interface is identical to the RX<_ RX<_

SN-F interface but receives different
types of transactions.

8.2.3 Interface Methods
This section describes the methods provided for CHI port interfaces.

8.2.3.1 Methods for Driving Transactions

The following methods are provided for driving flit channel signals. They are called by the node
interface with an associated (connected) TX channel and must be implemented by a node
interface for cycle based reception of the channel signals.

{1; (Receive Control Channel)
{1; (Receive Request Channel)

° virtual void driveTransactionCB RXCTL ()
)
) {1; (Receive Response Channel)
)
)

(
o virtual void driveTransactionCB RXREQ (
o virtual void driveTransactionCB RXRSP (
() {); (Receive Snoop Channel)
. virtual void driveTransactionCB RXDAT () {}; (Receive Data Channel)

Refer also to the associated methods in Section 8.2.3.9, Methods for Getting and Setting
Control Signals.

° virtual void driveTransactionCB RXSNP

° void sendDrive () ;

Call the sendprive () method in the component's Communicate phase to automatically
call driveTransaction on all the sender ports.

8.2.3.2 Notification Handler Methods

Notify handlers allow reception of reverse direction signals. For CHI, these allow reception of the
LCRDV (L-credit) signal. They must be implemented by a node interface for reception of reverse
direction channel signals. Note that notifications are only guaranteed when the LCRDV signal
changes.

virtual void notifyEventCB TXREQ() {};
virtual void notifyEventCB TXRSP() {};
virtual void notifyEventCB TXSNP() {};
virtual void notifyEventCB TXDAT() {};

8.2.3.3 Transmit Request Methods

The Transmit Request methods are used for setting the signals on the TXREQ channel only. In
most cases, they should only be called during the Update phase. The signals are driven in the
subsequent Communicate phase.

(] void setTXREQFLITPEND (bool value)
o void setTXREQFLITV (bool value)

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved 16
Non-Confidential

e void setTXREQFLIT (uint8 t QoS, uint8 t TgtID, uint8 t SrcID, uint8 t
TxnID, uint8 t Opcode, uint8 t Size, uint64 t Addr, bool NS, bool
LikelyShared, bool DynPCrd, uint8 t Order, uint8 t PCrdType, uint8 t
MemAttr, uint8 t SnpAttr, uint8 t LPID, bool Excl, bool ExpCompAck,
uint8_t RSVDC) ;

8.2.3.4 Transmit Response Methods

The Transmit Response methods are used for setting the signals on the TXSNPchannel only. In
most cases, they should only be called during the Update phase. The signals are driven in the
subsequent Communicate phase.

(] void setTXRSPFLITPEND (bool value)
. void setTXRSPFLITV (bool value)

e void setTXRSPFLIT (uint8 t QoS, uint8 t TgtID, uint8 t SrcID, uint8 t
TxnID, uint8 t Opcode, uint8 t RespErr, uint8 t Resp, uint8 t DBID,
uint8 t PCrdType);

8.2.3.5 Transmit Snoop Methods

The Transmit Snoop methods are used for setting the signals on the TXSNPchannel only. In most
cases, they should only be called during the Update phase. The signals are driven in the
subsequent Communicate phase.

(] volid setTXSNPFLITPEND (bool wvalue)

. volid setTXSNPFLITV (bool value)

e void setTXSNPFLIT (uint8 t QoS, uint8 t, uint8 t SrcID, uint8 t TxnID,
uint8 t Opcode, uint64 t Addr, bool NS);

8.2.3.6 Transmit Data Methods

Transmit Data methods are used for setting the signals on the TXDAT channel only. In most
cases, they should only be called during the Update phase. The signals are driven in the
subsequent Communicate phase.

. void setTXDATFLITPEND (bool value)

° void setTXDATFLITV (bool value)

e void setTXDATFLIT (uint8 t QoS, uint8 t TgtID, uint8 t SrcID, uint8 t
TxnID, uint8 t Opcode, uint8 t RespErr, uint8 t Resp, uint8 t DBID,
uint8 t CCID, uint8 t DataID, uint8 t RSVDC, uint64 t BE);

. void setTXDATFLITData (uint32 t data, uint8 t idx = 0);

8.2.3.7 Methods for Setting Receiver LCredit Signals

The LCredit methods are used for setting the LCredit signals on the RX channels. In most cases,
they should only be called during the Update phase. The signals are driven in the subsequent
Communicate phase.

’

. voild setRXREQLCRDV (bool value
. vold setRXRSPLCRDV (bool value
(] void setRXSNPLCRDV (
(

’

’

bool value

° void setRXDATLCRDV (bool value);

)
)
)
)

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

17

8.2.3.8 Methods for Getting and Setting Signal Values
° bool setSig(CHI CHANNEL chnlIdx, uint8 t sigIdx, uint32 t val)

You can use setSig to set one value to one signal on any channel.

Note: You can only set signals that are generated by the Requester port. Signals
generated by the slave port are ignored.

e uint32 t getSig(CHI CHANNEL chnlIdx, uint8 t sigldx);

You can use getsig at any time to see the current signal values for any channel.

Note: Any set method calls performed in the same phase as getSig are not reflected,
because the current signals are updated in the subsequent Communicate phase.

J uint32 t getRXDATFLITData (uint8 t idx);

getRXDATFLITData IS the same as getsig, but provides an easier way to retrieve a
particular byte of data on the RXDAT channel. idx points to the 32-bit data word being
referenced.

8.2.3.8.1 chnlldx/sigldx values
The chn11dx values are of type cHI CHANNEL.

The sig1dx values are of type cHI <channel> SIGNAL INDEX (Where channel iS REQ,
RSP, SNP, or DAT). These types are defined in the provided include file cur_T1m.h.

8.2.3.9 Methods for Getting and Setting Control Signals
The following are convenience methods for Control signals:

. void setTXSACTIVE (bool wval);

. void setTXLINKACTIVEREQ (bool wval);
. void setRXLINKACTIVEACK (bool wval);
. bool getTXSACTIVE () ;

. bool getRXSACTIVE () ;

e bool getTXLINKACTIVEREQ
e bool getRXLINKACTIVEREQ
e bool getTXLINKACTIVEACK
L] bool getRXLINKACTIVEACK

’

()

();
0);
0

’

8.2.3.10 Methods for Clearing Signals

clear is a convenience function that clears all signals on all channels. It should only be called
during Update:

. volid clear():;

8.2.3.11 Methods related to Connect and Disconnect

Connect and disconnect are used during the interconnect phase in SoC Designer Plus and are
utilized by the SoC Designer Simulator. For normal usage, these functions do not need to be
called by a user (client) of the node interface classes.

o void connect (CASITransactionIF* iface);

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

18

° void disconnect (CASITransactionIF* iface);

8.2.3.12 Methods for Address and Bit Width Configuration

Call this method during Initialization to set up the data bit width, protocol ID, and protocol Name
of the CHI master port:

e void init(uint32 t dataWidth, uint32 t protocolID, const string
protocolName) ;

The protocolName must be “CHI”. The protocollD must be one of the following constants
defined by the node interface (the requester and slave nodes must match):

CHI_RNF_PROTOCOL_ID
CHI_RNI_PROTOCOL_ID
CHI_RND_PROTOCOL_ID
CHI_SNF_PROTOCOL_ID

8.2.3.13 Reset Methods
Call these methods during Reset to ensure proper state before running again:

° vold reset () ;
° virtual bool saveData(eslapi::CASIODataStreamé& os);
° virtual bool restoreData(eslapi::CASIIDataStreamé& 1is);

9 Interface Supporting Full System Coherent Memory
Views

To support full system coherent memory views, the CHI Master and Slave ports implement the
interface pebugreverseIF, Which includes the function debugTransactionReverse. ThiS
function resides in Protocols/CHI/Include/DebugReverseIF.h.

Refer to the SoC Designer Plus User Guide for more information about full system coherent
memory views, and to the MxScript Reference Manual for details about how CADIMemWrite
and CADIMemRead support full system coherent memory views.

9.1 Master Port Example Implementation
Following is an example class implementation of the CHI_XTOR_TPORT port:

#include "CHI RequesterDefs.h"
#include "CHI XTOR TPort.cpp"

eslapi::CASIStatus
CHI S2T TM::debugTransactionReverse (eslapi::CASITransactionInfo *info)

{

if (debugReverseCallback != NULL)
{

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

return debugReverseCallback (owner module, info);
}
else{

return eslapi::CASI_ STATUS NOTSUPPORTED;

eslapi::CAInterface* CHI S2T TM::ObtainInterface(eslapi::if name t ifName,
eslapi::if rev t minRev,

eslapi::if rev t* actualRev)

eslapi::CAInterface *intf = MxTransactionMaster::ObtainInterface (ifName,
minRev, actualRev);

if (intf == NULL)
{

intf = DebugReverselF::0btainInterface (ifName, minRev, actualRev);

}

return intf;

9.2 Slave Port Example Implementation
Following is an example class implementation of the CHI_XTOR_TPORT port:

#include "CHI SlaveDefs.h"
#include "CHI XTOR TPort.cpp"

eslapi::CASIStatus
CHI T2S TS::debugTransactionReverse (eslapi::CASITransactionInfo *info) {

eslapi::if rev t actualRev;
if (getMaster () != NULL)
{

DebugReverselF* master p = dynamic cast<DebugReverseIF*>(getMaster()-
>ObtainInterface ("DebugReverselIF", 0, &actualRev));

if (master p != NULL)
{
return master p->debugTransactionReverse (info);
}
else
{
return eslapi::CASI STATUS NOTSUPPORTED;
}
lelse{

return eslapi::CASI_STATUS NOTSUPPORTED;

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

20

eslapi::CAInterface* CHI T2S TS::ObtainInterface(eslapi::if name t ifName,
eslapi::if rev t minRev,

eslapi::if rev t* actualRev)

eslapi::CAInterface *intf = CASITransactionSlave::ObtainInterface (ifName,
minRev, actualRev);

if (intf == NULL)
{
intf = DebugReverselF::0btainInterface (ifName, minRev, actualRev);

}

return intf;

10 Interface Supporting Fast Debug Access

Fast debug access is a form of debug access which ignores the BUS width. This is mainly used

for loading larger application images into CPUs.
To support fast debug access, the CHI Master and Slave ports implement the interface

fast_debug_access_if, which includes the function debugTransactionReverse. This function

resides in MaxSim/eslapi/CASITypes.h.

10.1Slave Port Example Implementation

The fast_debug_access_if interface is implemented on slave ports only. The following is an
example implementation:

#include "CHI_ SlaveDefs.h"
#include "CHI XTOR TPort.cpp"

#include "maxsimCompatibility.h"

eslapi::CASIStatus
CHI XTOR TPORT::debugTransaction (eslapi::CASIDebugTransactionInfo *info)

{
if (owner->mfDbaCb.fastDebugAccess != NULL)
return CarbonDebugFunctionsToDebugAccess (owner->mfDbaCb, info);
else

{

// Normal debug access

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

21

11 Technical Support

Use the following information for obtaining technical support on Carbon SoC Designer Plus.

Carbon Design Systems, Inc.

125 Nagog Park

Acton, MA 01720

Voice: +1-978-264-7399

Asia: +81-3-5524-1288

Fax: +1-978-264-9990

Email: support@carbondesignsystems.com
Web: www.carbondesignsystems.com

Voice mail is available after hours. You may also access our on-line feedback form any time from
the Support page of the Carbon web site.

ARM DUI 0954 Copyright© 2016 ARM Limited. All Rights Reserved
Non-Confidential

22

mailto:support@carbondesignsystems.com
http://www.carbondesignsystems.com/

	1 Introduction
	2 Requirements
	3 Suggested Reading
	4 Restrictions and Limitations
	5 Bundle Contents
	6 Models
	6.1 CHIToAXI4*
	6.2 CHI_to_CHI*
	6.3 CHI_Stub
	6.3.1 CHI_Stub Macros

	7 Probes
	7.1 Tracer Probe
	7.2 Breakpoint Probe
	7.3 Monitor Probe

	8 AMBA CHI Port Interfaces
	8.1 Port Classes
	8.1.1 Class Derivations

	8.2 Node Interface
	8.2.1 Link Layer Virtual Channels
	8.2.2 Signaling interface
	8.2.3 Interface Methods
	8.2.3.1 Methods for Driving Transactions
	8.2.3.2 Notification Handler Methods
	8.2.3.3 Transmit Request Methods
	8.2.3.4 Transmit Response Methods
	8.2.3.5 Transmit Snoop Methods
	8.2.3.6 Transmit Data Methods
	8.2.3.7 Methods for Setting Receiver LCredit Signals
	8.2.3.8 Methods for Getting and Setting Signal Values
	8.2.3.8.1 chnlIdx/sigIdx values

	8.2.3.9 Methods for Getting and Setting Control Signals
	8.2.3.10 Methods for Clearing Signals
	8.2.3.11 Methods related to Connect and Disconnect
	8.2.3.12 Methods for Address and Bit Width Configuration
	8.2.3.13 Reset Methods

	9 Interface Supporting Full System Coherent Memory Views
	9.1 Master Port Example Implementation
	9.2 Slave Port Example Implementation

	10 Interface Supporting Fast Debug Access
	10.1 Slave Port Example Implementation

	11 Technical Support

