PrimeCell- Static Memory Controller
(PL350 series) Cycle Model

Version 9.1.0

User Guide

Non-Confidential

ARM

Copyright © 2016 ARM Limited. All rights reserved.
ARM DUI 1076A (ID120816)

PrimeCell Static Memory Controller (PL350 series) Cycle Model
User Guide

Copyright © 2017 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change

February 2017 A Non-Confidential Restamp release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM?”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. ii
ID120816 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

Contents

Chapter 1.
Using the Cycle Model in SoC Designer
PL350 Series Static Memory Controller Cycle Model Functionality 2
Fully Functional and Approximate Features 2
Unsupported Hardware Features i 3
Features Additional to the Hardware 3
Supported Memory TyPeS « . o v oot ittt e e 4
Adding and Configuring the SoC Designer Componentcvon... 5
SoC Designer Component Files 5
Adding the Cycle Model to the Component Library 6
Adding the Component to the SoC Designer Canvasccouvvnu.n... 6
Available Component ESL Ports i 7
Setting Component Parameters it 8
Debug Features e e 10
Register Information 10
Memory Information 13
Available Profiling Data e 13
ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. v

ID120816 Non-Confidential

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

Vi

Preface

A Cycle Model component is a library developed from ARM intellectual property (IP) that is
generated through Cycle Model Studio™. The Cycle Model then can be used within a virtual
platform tool, for example, SoC Designer.

About This Guide
This guide provides all the information needed to configure and use the Cycle Model in SoC
Designer.

Audience

This guide is intended for experienced hardware and software developers who create compo-
nents for use with SoC Designer. You should be familiar with the following products and tech-
nology:

* SoC Designer
» Hardware design verification

* Verilog or SystemVerilog programming language

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. vii
ID120816 Non-Confidential

Conventions

This guide uses the following conventions:

optional text.

Convention Description Example

courier Commands, functions, sparseMem_t SparseMemCreate-
variables, routines, and New () ;
code examples that are set
apart from ordinary text.

italic New or unusual words or Transactors provide the entry and exit
phrases appearing for the points for data ...
first time.

bold Action that the user per- Click Close to close the dialog.
forms.

<text> Values that you fill in, or <platform>/ represents the name of
that the system automati- various platforms.
cally supplies.

[text] Square brackets [] indicate | $CARBON_HOME/bin/modelstudio

[<filename>]

[textl | text2 |

The vertical bar | indicates
“OR,” meaning that you
can supply textl or text 2.

SCARBON_HOME/bin/modelstudio
[<name>.symtab.db |
<names>.ccfg]

Also note the following references:

» References to C code implicitly apply to C++ as well.

* File names ending in .cc, .cpp, or .cxx indicate a C++ source file.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.

Non-Confidential

viii

Further reading

This section lists related publications. The following publications provide information that
relate directly to SoC Designer:

* SoC Designer Installation Guide

* SoC Designer User Guide

* SoC Designer Standard Component Library Reference Manual

The following publications provide reference information about ARM® products:
* AMBA 3 AHB-Lite Overview

* AMBA Specification (Rev 2.0)

* AMBA AHB Transaction Level Modeling Specification

* Architecture Reference Manual

See http://infocenter.arm.com/help/index.jsp for access to ARM documentation.

The following publications provide additional information on simulation:

* IEEE 1666™ SystemC Language Reference Manual, (IEEE Standards Association)
e SPIRIT User Guide, Revision 1.2, SPIRIT Consortium.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

http://infocenter.arm.com/help/index.jsp

Glossary

AMBA

AHB

APB

AXI

Cycle Model

Cycle Model
Studio

CASI

CADI

CAPI

Component

ESL

HDL

RTL

SoC Designer

SystemC

Transactor

Advanced Microcontroller Bus Architecture. The ARM open standard on-chip
bus specification that describes a strategy for the interconnection and manage-
ment of functional blocks that make up a System-on-Chip (SoC).

Advanced High-performance Bus. A bus protocol with a fixed pipeline
between address/control and data phases. It only supports a subset of the func-
tionality provided by the AMBA AXI protocol.

Advanced Peripheral Bus. A simpler bus protocol than AXI and AHB. It is
designed for use with ancillary or general-purpose peripherals such as timers,
interrupt controllers, UARTs, and I/O ports.

Advanced eXtensible Interface. A bus protocol that is targeted at high perfor-
mance, high clock frequency system designs and includes a number of fea-
tures that make it very suitable for high speed sub-micron interconnect.

A software object created by the Cycle Model Studio (or Cycle Model Com-
piler) from an RTL design. The Cycle Model contains a cycle- and register-
accurate model of the hardware design.

Graphical tool for generating, validating, and executing hardware-accurate
software models. It creates a Cycle Model, and it also takes a Cycle Model as
input and generates a component that can be used in SoC Designer, Platform
Architect, or Accellera SystemC for simulation.

ESL API Simulation Interface, is based on the SystemC communication
library and manages the interconnection of components and communication
between components.

ESL API Debug Interface, enables reading and writing memory and register
values and also provides the interface to external debuggers.

ESL API Profiling Interface, enables collecting historical data from a compo-
nent and displaying the results in various formats.

Building blocks used to create simulated systems. Components are connected
together with unidirectional transaction-level or signal-level connections.

Electronic System Level. A type of design and verification methodology that
models the behavior of an entire system using a high-level language such as C
or C++.

Hardware Description Language. A language for formal description of elec-
tronic circuits, for example, Verilog.

Register Transfer Level. A high-level hardware description language (HDL)
for defining digital circuits.

High-performance, cycle accurate simulation framework which is targeted at
System-on-a-Chip hardware and software debug as well as architectural
exploration.

SystemC is a single, unified design and verification language that enables ver-
ification at the system level, independent of any detailed hardware and soft-
ware implementation, as well as enabling co-verification with RTL design.

Transaction adaptors. You add transactors to your component to connect your
component directly to transaction level interface ports for your particular plat-
form.

ARM DUI 1076A

ID120816

Copyright © 2016 ARM Limited. All rights reserved.

Non-Confidential

Chapter 1

Using the Cycle Model in SoC Designer

This chapter describes the functionality of the Cycle Model, and how to use it in SoC Designer.
It contains the following sections:

» PL350 Series Static Memory Controller Cycle Model Functionality
* Supported Memory Types

* Adding and Configuring the SoC Designer Component

* Available Component ESL Ports

* Setting Component Parameters

* Debug Features

* Available Profiling Data

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 1
ID120816 Non-Confidential

1.1 PL350 Series Static Memory Controller Cycle Model Functionality

The PL350 Series Cycle Model is fully parameterized so that it supports all configurations in a
single model. For a detailed description of the AXI protocol refer to the AMBA AXI Protocol
Specification.

The SoC Designer Cycle Model of the PL350 SMC provides visibility of the memory mapped
registers via the CADI register views. Transaction monitor probes can be hooked to any AXI
connection visualizing the transactions. Additionally the SoC Designer profiling interface is
used to collect transaction event information.

This section provides a summary of the functionality of the Cycle Model compared to that of
the hardware, and the performance and accuracy of the Cycle Model.

* Fully Functional and Approximate Features
* Unsupported Hardware Features

e Features Additional to the Hardware

1.1.1 Fully Functional and Approximate Features

The following features of the PL350 hardware are implemented in the PL350 Cycle Model, but
the exact behavior of the hardware implementation is not accurately reproduced because some
approximations and optimizations have been made for simulation performance:

* SRAM memory data widths of 8-bit, 16-bit, or 32-bit

* NAND memory data widths of 8-bit or 16-bit

* AXI data width of 32-bit or 64-bit

* Up to four chip selects per memory interface

* Configurable command, read data, and write data FIFO depths

* An additional pipeline stage within the format logic enables higher AXI clock frequencies
at the cost of an additional clock cycle of latency

* Configurable number of outstanding exclusive accesses

« APB interface is modeled as APB transaction interface. For more information on this, refer
to the RVModelLib MxAPB.pdf, which is provided in the AMBA2 package of the SoC
Designer Cycle Model Library. In particular, this APB interface does not contain reset and
clock ports. Instead of this, reset and clock ports are provided separately.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved. 2
Non-Confidential

1.1.2 Unsupported Hardware Features
The following features of the PL350 hardware are not implemented in the PL350 Cycle Model:

External Bus Interface (EBI) is not supported

AXI low-power interface

Asynchronous clocking mode is not supported
Asynchronous aclk and mclk and clock ratio between the two clocks
Multiplexed mode is not supported for SRAM memory
ECC interfaces and registers are not supported

ATPG signals

DFT

Integration test registers:

— int_outputs

— int_inputs

— int_cfg

1.1.3 Features Additional to the Hardware

The following features that are implemented in the PL.350 SMC Cycle Model to enhance usabil-
ity do not exist in the PL350 hardware:

The PL35x memory controller has the memory built into the Cycle Model, so you do not
need to provide a memory.

Debug and profiling features. For further information about debug and profiling features,
refer to “Debug Features” on page 1-10 and “Available Profiling Data” on page 1-13
respectively.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved. 3
Non-Confidential

1.1.4 Supported Memory Types
The following SRAM and NAND memories are currently supported.

1.1.4.1 SRAM Cycle Model

The SRAM Cycle Model is based on the Micron Cellular RAM (MT45W4MW 16BFB), which
supports asynchronous, page, and burst (synchronous) operation. For configuring SRAM, refer
to the Bus Configuration Register in the datasheet. The Burst Length, Latency Counter, Operat-
ing Mode, and Register Select fields of this register should be configured correctly. Other fields
should be left at their default values as they are not supported.

It can be configured for 8-bit, 16-bit, or 32-bit.

Memory Size:
8-bit: 0x100000 (1M)
16-bit: 0x200000 (2M)
32-bit: 0x400000 (4M)

Note that the SRAM Cycle Model does not support multiplexed mode.

1.1.4.2 NAND Cycle Model

The NAND Cycle Model is based on the Toshiba NAND (TC58DVMS82F1FT00), which sup-
ports the following modes:

* Serial Data Input

* Read Mode (1)

* Read Mode (2)

* Read Mode (3)

* Auto Program

+ Status Read

Note that the following modes are not supported:

¢ Reset
* Auto block erase
e ID Read

It can be configured for 8-bit or 16-bit.
Memory Size (8-bit or 16-bit):
Main Memory: 0x2000000 (32M)
Spare Memory: 0x100000 (1M)

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 4
ID120816 Non-Confidential

1.2 Adding and Configuring the SoC Designer Component

The following topics briefly describe how to use the component. See the SoC Designer User
Guide for more information.

* SoC Designer Component Files
* Adding the Cycle Model to the Component Library
* Adding the Component to the SoC Designer Canvas

1.2.1 SoC Designer Component Files

The component files are the final output from the Cycle Model Studio compile and are the input
to SoC Designer. There are two versions of the component; an optimized release version for
normal operation, and a debug version.

On Linux the debug version of the component is compiled without optimizations and includes
debug symbols for use with gdb. The release version is compiled without debug information
and is optimized for performance.

On Windows the debug version of the component is compiled referencing the debug runtime
libraries, so it can be linked with the debug version of SoC Designer. The release version is
compiled referencing the release runtime library. Both release and debug versions generate
debug symbols for use with the Visual C++ debugger on Windows.

The provided component files are listed below:

Table 1-1 SoC Designer Component Files

Platform File Description
Linux maxlib.lib<model name>.conf SoC Designer configuration file
lib<component name>.mx.so SoC Designer component runtime file
lib<component name>mx_DBG.so SoC Designer component debug file

Windows | maxlib.lib<model name>.windows.conf | SoC Designer configuration file
lib<component name>.mx.dll SoC Designer component runtime file

lib<component name>mx_DBG.dIl SoC Designer component debug file

Additionally, this User Guide PDF file is provided with the component.

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 5
ID120816 Non-Confidential

1.3 Adding the Cycle Model to the Component Library

The compiled Cycle Model component is provided as a configuration file (.conf). To make the
component available in the Component Window in SoC Designer Canvas, perform the follow-

ing steps:

1. Launch SoC Designer Canvas.

2. From the File menu, select Preferences.

3. Click on Component Library in the list on the left.

4. Under the Additional Component Configuration Files window, click Add.

5. Browse to the location where the SoC Designer Cycle Model is located and select the com-

6.
7.

ponent configuration file:
— maxlib.lib<model names>.conf (for Linux)
— maxlib.lib<model names>.windows.conf (for Windows)

Click OK.

To save the preferences permanently, click the OK & Save button.

The component is now available from the SoC Designer Component Window.

1.3.1 Adding the Component to the SoC Designer Canvas

Locate the component in the Component Window and drag it out to the Canvas.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved. 6
Non-Confidential

1.4 Available Component ESL Ports

The PL350 component has an APB transaction slave port, an AXI transaction slave port and
additional signal slave ports as shown below. The APB port is for configuring the component,
whereas the AXI port is for accessing the memory.

Table 1-2 describes the ESL ports that are exposed in SoC Designer. See the ARM PrimeCell®
Static Memory Controller (PL350) Technical Reference Manual for more information.

Table 1-2 ESL Component Ports

ESL Port

Description

Direction

Type

address_mask<x>!_<p>

2

Address mask tie-off for chip <n> for inter-
face <x>. This mask is applied to the AXI
address bits before the comparison with the
address_matchx_n value.

Input

Signal slave

address_match<x>!_<p>?

Address match tie-off for chip <n> for inter-
face <x>. This is the comparison value that
determines the chip select base address.

For example, address _match0 and
address_mask0 set up the address mapping
for memory interface 0.

Input

Signal slave

apb

APB port for memory mapped register
accesses. Refer to section A.4 of the PL350
Technical Reference Manual for the APB
signal list.

Input

APB transaction
slave

axi

AXI port for memory accesses. The port
implementation is compliant with the AXI
v2 protocol. Only one AXI master port is
allowed to connect to this port. Refer to sec-
tion A.3 of the PL350 Technical Reference
Manual for the AXI signal list.

Input

AXI transaction
slave

nand_booten <x> !

This signal enables nand booting functional-
ity.

Available only in configurations with
NAND interfaces (PL351/PL353).

Input

Signal slave

pclken

Clock enable for APB domain.

Input

Signal slave

remap_<x> !

This signal is used to remap the specified
chip to address 0x0.

Input

Signal slave

user_status

General purpose APB-accessible input port.

Input

Signal slave

clk-in

Clock slave port.

Input

Clock slave

smc_int

Combined interrupt output.

Output

Signal master

smc_int<x> !

Individual memory interrupt output.
Available only in configurations with multi-
ple memory interfaces (PL353/PL354).

Output

Signal master

user_config

General purpose APB-accessible output
port.

Output

Signal master

ARM DUI 1076A

Copyright © 2016 ARM Limited. All rights reserved.

Non-Confidential

1. Where <x> represents memory interface 0 or 1.
2. Where <n> indicates chip select 0 to 3.

All pins that are not listed in this table have been either tied or disconnected for performance
reasons.

Note: Some ESL component port values can be set using a component parameter. This
includes the ports nand_booten <x>, address _mask<x> <n>,
address_match<x>_<n>, and user_status. In those cases, the parameter value is used
whenever the ESL port is not connected. If the port is connected, the connection value
takes precedence over the parameter value.

1.5 Setting Component Parameters

You can change the settings of all the component parameters in SoC Designer Canvas, and of
some of the parameters in SoC Designer Simulator. To modify the Cycle Model parameters:

1. In the Canvas, right-click on the component and select Edit Parameters.... You can also
double-click the component. The Edit Parameters dialog box appears.

2. In the Parameters window, double-click the Value field of the parameter that you want to
modify.

3. Ifitis atext field, type a new value in the Value field. If a menu choice is offered, select the
desired option. The parameters are described in Table 1-3.

Table 1-3 Component Parameters

At Allowed L9
Parameter Name Description Values Default Value Runtime

address mask<x>2 <p>3 | Address mask for chip <n>for | 0x0 - OXFF 0x00 No
a a interface <x>.

address match<x>2 <u>2 | Address match for chip <n>for | 0x0 - OxFF 0x00 No
B a interface <x>.

Align Waveforms When set to true, waveforms true, false true No
dumped from the component are
aligned with the SoC Designer
simulation time. The reset
sequence, however, is not
included in the dumped data.

When set to false, the reset
sequence is dumped to the wave-
form data, however, the compo-
nent time is not aligned with the
SoC Designer time.

apb Base Address APB Region base address. The | 0x0 - 0x0 No
address must be on a 4KB OxFFFFFFFF
boundary.

apb Enable Debug When set to true writes APB true, false false Yes
Messages debug messages onto the SoC
Designer output window.

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 8
ID120816 Non-Confidential

Table 1-3 Component Parameters (continued)

L Allowed
; 1
Parameter Name Description Values Default Value | Runtime
apb Size APB region size. 0x0 - 0x100000000 No
OxFFFFFFFF

axi axi_size[0-5] These parameters are obsolete n/a size0 defaultis | No

and should be left at the default 0x100000000,

values.4 sizel-5 default is

0x0

axi axi_start[O-S] 0x00000000 No

axi Enable Debug When set to true writes AXI true, false false Yes

Messages debug messages onto the SoC

Designer output window.

Carbon DB Path Sets the directory path to the Not used empty No

database file.

Dump Waveforms Whether SoC Designer dumps true, false false Yes

waveforms for this component.

Enable Debug When set to true writes the true, false false Yes

Messages debug messages onto the SoC

Designer output window.

Maximum amber read Max value displayed as amber >0 30 Yes

latency for read latency profiling.

Maximum amber write Max value displayed as amber >0 30 Yes

latency for write latency profiling.

Maximum green read Max value displayed as green for | >0 20 Yes

latency read latency profiling.

Maximum green write Max value displayed as green for | >0 20 Yes

latency write latency profiling.

nand booten <x> 2 Enable NAND booting function- | 0, 1 0x0 No

a a ality for the memory interface.

pclken clock enable for APB domain. 0,1 0x1 Yes

user_status General purpose APB-accessible | 0x0 - OxFF 0x0 Yes

pin.

Waveform File > Name of the waveform file. string arm_cm_pl35x_ | No
<component_na
me>.ved

Waveform Timescale Sets the timescale to be used in | Many values in | 1 ns No

the waveform.

drop-down

1. Yes means the parameter can be dynamically changed during simulation, No means it can be changed only
when building the system, Resef means it can be changed during simulation, but its new value is taken into
account only at the next reset.

2. Where <x> represents memory interface 0 or 1.

3. Where <n> indicates chip select 0 to 3.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.

Non-Confidential

4. ARM recommends using the Memory Map Editor (MME) in SoC Designer, which provides centralized view-
ing and management of the memory regions available to the components in a system. For information about
migrating existing systems to use the MME, refer to Chapter 9 of the SoC Designer User Guide.

5. When enabled, SoC Designer writes accumulated waveforms to the waveform file in the following situations:
when the waveform buffer fills, when validation is paused and when validation finishes, and at the end of each
validation run.

1.6 Debug Features

The PL350 AXI Memory Controller Cycle Model has a debug interface (CADI) that allows the
user to view, manipulate and control the registers and memory in the SoC Designer Simulator or
any debugger that supports the CADI, for example, Model Debugger. A view can be accessed in
the SoC Designer Simulator or an instance of the Model Debugger can be attached by right
clicking on the Cycle Model and choosing the appropriate menu entry. The views shown in this
section are for the SoC Designer Simulator.

* Register Information

* Memory Information

1.6.1 Register Information

Registers are grouped into different sets according to functional area. For each enabled port of
the PL350 AXI Memory Controller Cycle Model, there is tab in the SoC Designer Simulator.

The set of available registers is similar among the different controller configuration (PL351,
PL352, etc.). The registers are described briefly in this section. See the ARM PrimeCell Static
Memory Controller (PL350) Technical Reference Manual for complete information.

The following Register tabs are supported:

* Memory Configuration Registers

* Chip Configuration Registers

» User Configuration Registers

* PrimeCell Configuration Registers

Each register has a pop-up tool tip attached to it, providing further details on the purpose and
behavior of the register. Some register values are displayed in a symbolic format by default. The

display format can be changed to hexadecimal or decimal from the Register view’s context
menu.

The AXI pin interface is displayed as a set of pseudo registers that are traceable. The integration
test registers are not modeled. Because more than one register view can be open simultaneously
it is possible to view several ports at the same time.

Breakpoints can be set on all registers. A breakpoint only triggers for value changes. Register
values can also be traced to be displayed in the waveform viewer.

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 10
ID120816 Non-Confidential

1.6.1.1 Memory Configuration Registers

Table 1-4 shows the Memory Configuration registers. Use these registers for the global config-
uration, and control of the operating state, of the SMC.

Table 1-4 Memory Configuration Registers

cycles during consecutive bursts, which enables the PSRAM
devices on memory interface 1 to initiate a refresh cycle.

Name Description Type

memc_status The Memory Controller Status register provides information on | read-only
the configuration of the memory controller, and also on the cur-
rent state of the memory controller.

memif cfg The Memory Interface Configuration register provides informa- | read-only
tion on the configuration of the memory interface.

memc_cfg set The Set Configuration register enables the SMC to be changed to | write-only
low-power state, and interrupts enabled.

direct_cmd The Direct Command register passes commands to the external | write-only
memory, and controls the updating of the chip configuration reg-
isters.

set_cycles The Set Cycles register contains values that are written to the write-only
SRAM or NAND registers when the SMC receives a write
request.

set_opmode The Set Opmode register is the holding register for the opmode | write-only
registers (see “Chip Configuration Registers” on page 1-11).

refresh_period 0 | The Refresh Period 0 register enables the SMC to insert idle read-write
cycles during consecutive bursts, which enables the PSRAM
devices on memory interface 0 to initiate a refresh cycle.

refresh period 1 | The Refresh Period 1 register enables the SMC to insert idle read-write

1.6.1.2 Chip Configuration Registers

Table 1-5 shows the CHIP_CFG Chip Configuration registers. These registers hold the operat-
ing parameters of each chip select. If the SMC is not configured to support all chip selects, the
corresponding registers are not implemented.

Table 1-5 Chip Configuration Registers

register for each chip supported.

Name Description Type

sram_cycles<x> <p> SRAM Cycles register. There is an instance of this | read-only
register for each SRAM chip supported.

nand cycles<x> <p> NAND Cycles register. There is an instance of this | read-only
register for each NAND chip supported.

opmode<x>_ <n> opmode register. There is an instance of the opmode | read-only

Where <x> represents memory interface 0 or 1, and <n> indicates chip select 0 to 3.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

11

1.6.1.3 User Configuration Registers

Table 1-6 shows the USER_CFG User Configuration registers. These registers provide general
purpose I/O for user-specific applications.

Table 1-6 User Configuration Registers

Name Description Type
user_status This register returns the state of the user status[7:0] primary read-only
inputs.
user_config This register sets the value of the user_config[7:0] primary out- | read-write
puts.

1.6.1.4 PrimeCell Configuration Registers

Table 1-7 shows the PrimeCell Identification registers. These registers enable the identification
of system components by software.

Table 1-7 PrimeCell ID Registers Summary

Register Description Type

periph_id 0 Peripheral Identification O register. Identifies the part | read-only
number of the peripheral.

periph_id 1 Peripheral Identification 1 register. Identifies the part | read-only
number and designer of the peripheral.

periph_id 2 Peripheral Identification 2 register. Identifies the revi- | read-only
sion and designer of the peripheral.

periph_id 3 Peripheral Identification 3 register. Identifies the con- | read-only
figuration of the peripheral.

peell_id 0 PrimeCell Identification 0 register. Determines the read-only
reset value.

peell_id 1 PrimeCell Identification 1 register. Determines the read-only
reset value.

peell id 2 PrimeCell Identification 2 register. Determines the read-only
reset value.

peell_id 3 PrimeCell Identification 3 register. Determines the read-only
reset value.

ARM DUI 1076A Copyright © 2016 ARM Limited. All rights reserved. 12

ID120816

Non-Confidential

1.6.2 Memory Information

Component parameters are used for debug access before the start of simulation, so program
loading uses the address_mask<x> <n> and address_match<x> <n> parameters values.
Once the simulation starts (cycle count > 0), debug access uses "opmode" register values.

1.7 Available Profiling Data

The PL35x component supports CAPI profiling. Profiling data is enabled, and can be viewed
using the Profiling Manager, which is accessible via the Debug menu in the SoC Designer Sim-
ulator. The profiling events are the ones that can be monitored in the hardware using counters.
The PL35x Cycle Model profiles the events shown in Table 1-8.

Table 1-8 PL350 Profiling Streams and Events

Stream Events X axis Y axis
Write Latency Green Cycle Write latency
Amber
Red
Read Latency Green Cycle Read latency
Amber
Red

The Write Latency is measured from the time of the write request on the AW channel to the time
of the response on the B channel. The Read Latency is measured in the same way, using the AR
and R channels. The latency values are assigned to buckets based on thresholds you can set
using component parameters.

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved. 13
Non-Confidential

ARM DUI 1076A
ID120816

Copyright © 2016 ARM Limited. All rights reserved.
Non-Confidential

14

	Preface
	Using the Cycle Model in SoC Designer
	1.1 PL350 Series Static Memory Controller Cycle Model Functionality
	1.1.1 Fully Functional and Approximate Features
	1.1.2 Unsupported Hardware Features
	1.1.3 Features Additional to the Hardware
	1.1.4 Supported Memory Types

	1.2 Adding and Configuring the SoC Designer Component
	1.2.1 SoC Designer Component Files

	1.3 Adding the Cycle Model to the Component Library
	1.3.1 Adding the Component to the SoC Designer Canvas

	1.4 Available Component ESL Ports
	1.5 Setting Component Parameters
	1.6 Debug Features
	1.6.1 Register Information
	1.6.2 Memory Information

	1.7 Available Profiling Data

