
Porting the ARM SNMP Agent
Version 1

Programmer’s Guide
Copyright © 2000 ARM Limited. All rights reserved.
ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, PRIMECELL, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change history

Date Issue Change

January 2000 A First release
ii Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Contents
Programmer’s Guide
Preface
About this book ...vi
Feedback ..ix

Chapter 1 Introduction
1.1 About the ARM SNMP Agent ...1-2
1.2 Terms and conventions ..1-3
1.3 System requirements ...1-4

Chapter 2 MIB Compiler
2.1 About the MIB Compiler ...2-2
2.2 Building the MIB Compiler ..2-3
2.3 Usage ...2-4
2.4 Input ...2-5
2.5 Output ..2-6
2.6 Updating MIBs ...2-9

Chapter 3 Porting the SNMP Agent
3.1 Setting up your source tree ..3-2
3.2 The target system ..3-5
3.3 Porting procedure ..3-6
3.4 GET operations and scalar variables ...3-15
ARM DUI 0120A © Copyright ARM Limited 2000. All rights reserved. iii

3.5 GETNEXTs and indexes ... 3-22
3.6 Custom SET operations .. 3-26

Chapter 4 Function Descriptions
4.1 SNMP Agent interface ... 4-2
4.2 User-required functions ... 4-6
4.3 SNMP port data ... 4-11
4.4 ASN.1 parse functions ... 4-15

Appendix A SNMP ARP Table Interface
A.1 atEntry table, annotated .. A-2

Appendix B Building the Demonstration Program
B.1 About the demonstration program... B-2
B.2 Requirements .. B-3
B.3 Installation procedure .. B-4
B.4 Building using ARM SDT for Windows .. B-5
B.5 Building using ARM SDT from the command line B-7
B.6 Running the SNMP Agent application ... B-8
iv © Copyright ARM Limited 2000. All rights reserved. ARM DUI 0120A

Preface

This preface introduces the ARM SNMP Agent porting procedure. It contains the
following sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. v

Preface

ers,

 to
nts

r

ms

About this book

This book is provided with the ARM SNMP Agent software.

It is assumed that you have the ARM SNMP Agent porting sources available as a
reference. It is also assumed that you have access to programmer guides for C and ARM
assembly language.

Intended audience

This Programmer’s Guide is written for experienced embedded systems programm
with a general understanding of what an SNMP Agent does. It is written for those
programmers who want to use the ARM SNMP Agent in their product.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the SNMP Agent, and
learn about the demonstration program and system requireme
for the SNMP Agent.

Chapter 2 MIB Compiler

Read this chapter for an overview of the MIB compiler, and fo
details on how to build and use the compiler.

Chapter 3 Porting the SNMP Agent

Read this chapter to learn how to port the ARM SNMP Agent,
step-by-step, to an embedded system.

Chapter 4 Function Descriptions

Read this chapter for a description of the functions and data ite
used to interface to the SNMP Agent core.

Appendix A SNMP ARP Table Interface

Read this appendix to see a heavily annotated example of the
atEntry table, a complete example of using an access_method
function (see Custom SET operations on page 3-26).

Appendix B Building the Demonstration Program

Read this appendix for complete instructions on building the
demonstration SNMP Agent shipped with ARM SNMP.
vi Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewriter bold
Denotes language keywords when used outside example code and ARM
processor signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on SNMP.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains reference information that is specific to the ARM SNMP Agent. For
additional information, refer to the following ARM publications:

• ARM Software Development Toolkit Reference Guide (ARM DUI 0041)

• ARM Software Development Toolkit User Guide (ARM DUI 0040)

• Porting TCP/IP Programmer’s Guide (ARM DUI 0079).
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. vii

Preface

k

1.

ed
Other publications

For other reference information relating to the ARM SNMP Agent, please refer to the
following:

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd
Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8).

• Rose, Marshall T., The Simple Book; An Introduction To Internet Management,
Revised, 2nd Edition, 1995, Prentice-Hall (ISBN 0-13-451659-1).

• RFC 1155, McCloghrie, K., Rose, M., "Structure and Identification of
Management Information for TCP/IP-based Internets", May 1990.

• RFC 1157, Case, J., Davin, J., Fedor, M., Schoffstall, M., "A Simple Networ
Management Protocol (SNMP)", May 1990.

• RFC 1212, McCloghrie, K., Rose, M., "Concise MIB Definitions", March 199

• RFC 1213, McCloghrie, K., Rose, M., “Management Information Base for
Network Management of TCP/IP-based internets: MIB-II", March 1991.

• RFC 1700, Postel, J., Reynolds, J., "Assigned Numbers", October 1994.

• RFC 2325, Slavitch, M., “Definitions of Managed Objects for Drip-Type Heat
Beverage Hardware Devices using SMIv2”, April 1998.
viii Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Preface

pened
Feedback

ARM Limited welcomes feedback on both the ARM SNMP Agent, and its
documentation.

Feedback on the ARM SNMP Agent

If you have any problems with the ARM SNMP Agent, please contact your supplier. To
help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually hap

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. ix

Preface
x Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 1
Introduction

This chapter introduces the SNMP Agent, and describes the demonstration program and
system requirements for the SNMP Agent. It contains the following sections:

• About the ARM SNMP Agent on page 1-2

• Terms and conventions on page 1-3

• System requirements on page 1-4.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM SNMP Agent

This technical reference is provided with the ARM portable Simple Network
Management Protocol (SNMP) sources. The purpose of this document is to provide
enough information to enable a moderately experienced C programmer, with a
reasonable understanding of SNMP, to integrate the ARM SNMP Agent into a product.
It is assumed you have experience with networking code, especially Transmission
Control Protocol/Internet Protocol (TCP/IP).

1.1.1 Demonstration program

It is assumed you have the ARM SNMP Agent demonstration program available as a
reference. This is provided as part of the SNMP Agent source code release. Currently,
the demonstration program is shipped for an ARM Development Board (PID7T), using
ARM’s Berkeley System Distribution (BSD) UNIX-derived ARM TCP/IP that compiles
with the ARM Software Development Toolkit (SDT) version 2.50. The ARM
Development Board (PID7T), SDT 2.50, and TCP/IP can be purchased from ARM. See
the web site http://www.arm.com.

SNMP demonstration program

The demonstration program implements an SNMP agent that supports the Management
Information Base-II (MIB) System and SNMP groups. See Appendix B Building the
Demonstration Program for complete details on building and running the
demonstration program.
1-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Introduction
1.2 Terms and conventions

In this document, the following terms are used:

Agent When used without other qualification, means the ARM SNMP Agent
code as ported to an embedded system.

ASN.1 Abstract Syntax Notation 1. Refers to a subset of the ISO/ITU-T
standard, as described in RFC 1155.

End user Refers to the person who ultimately uses your product.

Sockets Refers to the TCP/IP Application Program Interface (API) developed for
UNIX at the University of California, Berkeley.

The agent is delivered with example implementation notes for Sockets
because many embedded systems already have sockets. A copy of the
Sockets API documentation is available from ARM upon request.

Stack Means the TCP/IP and related code, as ported to an embedded system.

System Refers to the embedded system.

You Refers to the user or engineer who is porting the server.

Conventions used throughout the document, such as the use of bold or italic font, are
explained in Typographical conventions on page Preface-vii.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 1-3

Introduction

d for
ay

. In
e and
uire
ntain

 the
se that
es.

u can
en in

1.3 System requirements

To port the ARM SNMP Agent to another environment, you must have the following
resources available in the target environment:

• sufficient RAM (see Table 1-1 on page 1-5 for approximate values)

• a networking stack that supports User Datagram Protocol (UDP).

Note

An SNMP Agent-compatible TCP/IP stack is available, and this has been optimize
the ARM architecture. Contact your ARM supplier for details. Your target platform m
come with a suitable protocol stack.

1.3.1 MIB Variables

The MIB variables that you define and implement affect the system requirements
general, as more MIB variables are defined, more memory is required for both cod
data. Variables defined in a table, as part of an ASN.1 SEQUENCE, generally req
more code space and CPU power than nontabular variables. Code written to mai
the variables in structures produced by the ARM MIB Compiler -h option also tends to
be more efficient than code adapted to an existing system. Systems that maintain
implemented variables in hashed or ordered tables also tend to be faster than tho
do not, but they might require more memory to manage the hashed data structur

There is no easy way to determine the exact memory sizes required. However, yo
get a general idea by examining the demonstration program. Some figures are giv
Table 1-1 on page 1-5 for a MIB-II demonstration, which is part of the standard
package.

Note

The figures in Table 1-1 on page 1-5 are subject to change without notice, but are
current at the date of publication.
1-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Introduction
Note

When the demonstration is run, it also allocates six small packet buffers (128 bytes
each) and three large ones (600 bytes each) dynamically using malloc(). The memory
used by these packets should be added to the figures shown in the configuration in Table
1-1.

The program is compiled using ARM SDT 2.50, for the ARM7TDMI processor in
Thumb state, using options to optimize code size (rather than execution speed). It
implements MIB-II as described in RFC 1213. It does not have a TCP or Exterior
Gateway Protocol (EGP) layer, and therefore omits the group for this protocol as
allowed by the RFC.

You can cut the amount of space used by SNMP code and data by deleting groups of
variables from the MIB.

The sizes shown in Table 1-1 will change when compiled for other ARM cores. The
sizes generally increase when compiled for ARM state, or when optimized for speed
rather than code size.

1.3.2 Processing power

Processing power is another resource for which exact requirements are difficult to
quantify. The SNMP Agent requires only that it can reply to the requests of an SNMP
management station before the timer runs out. If the station sends only one request per
second, and allows one second for the reply, any processor will be adequate. However,
the stations sometimes send packets in bursts, and the CPU of the SNMP Agent has
tasks other than SNMP to perform. As discussed in MIB Variables on page 1-4, the
number and type of MIB variables implemented also has a major effect on CPU
requirements, as the table of variables has to be searched for each received request.

 Table 1-1 Memory sizes of the MIB-II demonstration

Use Bytes

SNMP Agent ROM space 7956

SNMP Agent RAM space 2760

SNMP variables ROM space
(includes var_ routine code)

13552

SNMP variables RAM space
(used by var_ routines)

80
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 1-5

Introduction
To assess processing power requirements, it is recommended that you first compare
requirements with those of similar systems. For embedded agents, the ARM SNMP
demonstration is intended to provide a starting point. You can add and delete variables
quickly using the MIB Compiler, and then test them on the ARM Development Board
(PID7T). You can run other processes simultaneously with the agent to determine the
effect of heavy SNMP work on the performance of the system.
1-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 2
MIB Compiler

This chapter gives an overview of the MIB Compiler. It also provides details on how it
is built, and how to use it. It contains the following sections:

• About the MIB Compiler on page 2-2

• Building the MIB Compiler on page 2-3

• Usage on page 2-4

• Input on page 2-5

• Output on page 2-6

• Updating MIBs on page 2-9.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-1

MIB Compiler

 the

ton

f
 be

P
Ds,
2.1 About the MIB Compiler

The ARM MIB Compiler is a program that takes a MIB file written in RFC
1155-compliant ASN.1 notation, containing the specification of the variables to be
managed, and produces one or more of these output files:

• Files containing C language source code files, that are useful for beginning
implementation of the SNMP MIB variables in the SNMP Agent. These files
contain skeleton routines that you need to fill in.

• A variables file that contains a table that links the MIB variables to the skele
routines.

• .h header files with the function prototypes and definitions for the above .c files.

• A numbers file, suitable for describing the MIB variables to an SNMP
management station.

Filling in the skeleton routines (also called stub routines) comprises a major portion o
the work involved in porting and maintaining your SNMP Agent. The routines can
quite complex, so a major portion of this chapter and the next (Chapter 3 Porting the
SNMP Agent) describes these routines. Generally, the most difficult part of an SNM
implementation is understanding what these routines do, how they index Object I
and how they access variables in tables.
2-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler
2.2 Building the MIB Compiler

The MIB Compiler is provided in source form. You will need to build mibcomp using
the native C compiler of your system. The sources consist of three .c files and one .h
header file:

main.c Is the system-dependent front end with the main() routine.

parse.c Reads MIB files.

parse.h Contains the defines for mibcomp.

tree.c Writes the output files.

These files should compile with little or no modification on most machines. They
include standard C library calls and header files. Makefiles are provided for Solaris,
GNU C, the Microsoft nmake facility, and ARMCC (for use with the ARMulator).

Note

The MIB Compiler is used regularly during the development of the SNMP Agent as
MIB variables are changed. Therefore, you must store the mibcomp executable in a
directory where it can be invoked by the makefiles that build your embedded system.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-3

MIB Compiler
2.3 Usage

The MIB Compiler command-line format is as follows:

mibcomp -i mibfile.mib [mibfile2.mib …] [-[chnvq]]

where:

-i mibfile.mib …

Is a space-separated list of text files containing the ASN.1 descriptions of
the MIBs to be compiled.

-c Outputs a .c C source file that contains skeleton C routines for parsing
the variables in each group within the MIB.

-h Produces a .h C header file that contains defines and function prototypes
for the .c file that is produced by the -c option.

-n Outputs a numbers file for each MIB, containing the numeric Object ID
(OID) and symbolic name and type for each variable within the MIB.

-v Outputs an snmpvars.c file, containing the SNMP variables table
(see Variables structure on page 2-7). The table contains all the variables
from all the MIB files.

-q Reduces the amount of detailed output from the MIB Compiler, making
it more suitable for use in script files or makefiles.

The MIB Compiler also supports the following options that might be useful when
working with other environments or tools:

-p Causes the C file produced by the MIB Compiler to be pre-ANSI, that is,
with simple prototypes.

-f Causes the C file produced by the MIB Compiler to use far pointer
references, for use with Intel x86-segmented environments.
2-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler

re:

d
2.4 Input

The MIB Compiler takes, as input, one or more MIB definition files as described in
RFC 1155. Several samples of these files are shipped with the ARM demonstration
program. These sample files were created using a simple text editor to edit out the
non-ASN.1 portions for the RFCs from which each MIB came. To be left with only
ASN.1 that is suitable for input to the MIB compiler, you must delete the following:

• all text preceding the DEFINITIONS ::= BEGIN line

• all text following the END line

• all page break text (footer, page break, and header).

If you want to define your own MIBs, the two most important decisions to make a

• which variables you want to manage

• how to organize these variables.

You then need to write the ASN.1 text to describe them, which is a straightforwar
process. After the MIB has been written in RFC 1155-compliant ASN.1, you can
compile and implement it like any standard MIB.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-5

MIB Compiler
2.5 Output

As discussed in About the MIB Compiler on page 2-2, the compiler will produce a .c
file, a .h header file, and a numbers file. Because these files are regenerated whenever
the MIB Compiler is run (that is, whenever the MIB is changed), you must not edit them
manually. The files are:

source.c This C source file contains stub routines for accessing MIB variables.
These are intended to be copied to your own source files and completed
there.

header.h This C header file includes prototypes for the C stub routines, and token
definitions for the MIB variables. They also contain suggested data
structures to hold the variables for each group or sequence in the MIB.

snmpvars.c

This file contains the table that maps the MIB variables and groups to the
stub routines that retrieve and set your variables. This file is produced
whenever the MIB Compiler is run with the -v flag.

The actual names for both header and source will be determined by the name given
on the DEFINITIONS line in the last input MIB file. For example, the DEFINITIONS
line in RFC 1213 is as follows:

RFC1213-MIB DEFINITIONS ::= BEGIN

This results in the file RFC1213.c. The names of the other output files are similarly
determined (RFC1213.h and RFC1213.num, in this case).

The snmpvars.c file contains the variables structure that the SNMP Agent code uses
to associate a .c routine with individual variables. For more details on the variables
structure, see Variables structure on page 2-7.

The .c file contains stubs for the C routines prototyped in the .h header file. These
routines are framed and commented. However, they are only empty frames with no
internal code. The areas where code needs to be added to actually implement the
variables are flagged with the text TODO. Part of implementing a new MIB requires that
you:

1. Copy these stubs into your own source files.

2. Replace the TODO lines with C code that performs the intended SET or GET
operation, and returns the correct values.

See GET operations and scalar variables on page 3-15, GETNEXTs and indexes on
page 3-22, and Custom SET operations on page 3-26 for more details.
2-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler

 you

e

 of
2.5.1 Variables structure

Discussion of the MIB Compiler output in this section assumes an understanding of
certain SNMP concepts, such as:

• lexicographic ordering

• Object IDs and their components

• MIB groups

• ASN.1 SEQUENCEs.

It is recommended that you become familiar with all of these concepts. One book
might find useful is The Simple Book; An Introduction To Internet Management,
Revised.

The internal routines of the ARM SNMP Agent access the MIB variables using th
variables table which the MIB Compiler produces in the snmpvars.c file. The
table, named variables, is an array of variable structures, reproduced below as
currently defined. You should refer to the source file snmp_var.h as the final authority.

struct variable {
oid name[DEF_VARLEN]; /* obj. identifier of variable */
u_char namelen; /* length of above */
char type; /* type of variable, INTEGER or

/* (octet) STRING */
u_char magic; /* passed to func. as a hint */
u_short acl; /* access control list for */

/* variable */
u_char *(*findVar)(); /* func. that finds variable */

};

One of these structures is defined for each accessible variable in the input MIBs.
Example 2-1 shows the example compiler output from the C file for the beginning
the MIB-II system group:

Example 2-1

struct variable variables[] = {
{{1,3,6,1,2,1,1,1,0}, 9, STRING, SYSDESCR, RONLY, var_system },
{{1,3,6,1,2,1,1,2,0}, 9, OBJID, SYSOBJECTID, RONLY, var_system },
{{1,3,6,1,2,1,1,3,0}, 9, TIMETICKS, SYSUPTIME, RONLY, var_system },
{{1,3,6,1,2,1,1,4,0}, 9, STRING, SYSCONTACT, RWRITE, var_system },

…

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-7

MIB Compiler

 this

e

4s.

nly or

riable

in
r for

e
The entry fields in the variables table are as follows, presented in order:

• The Object ID of the variable, stored as an array of unsigned values.

• The length of the Object ID (in this case, they all consist of nine values, but
length will vary).

• The ASN.1 type of the variable.

• A token that is passed to the access routine so it can determine which of th
variables in its group or sequence to act on. These magic tokens are also generated
by the MIB Compiler, and are unique within their group or sequence. They
usually start at 0, and then increment throughout the group or sequence by
This is so they can be used to index byte-wise into the suggested Group structures
produced for each MIB group in the .h header file. For more details, see
Suggested data structures on page 3-19.

• A field that controls access to the variable. This access can be either read-o
read/write.

• A pointer to a routine used to access the group or sequence of which the va
is a member, var_system() in this case, because all of these variables are
members of the system group.

The var_system() function is one of the functions prototyped and stubbed
by the MIB compiler. One of these routine stubs is generated by the compile
each group or sequence in the input MIBs.

The entries in the variables table are ordered lexicographically by Object ID so th
SNMP Agent code can do fast lookups on the table to find matching variables or
appropriate GETNEXT entries.
2-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler
2.6 Updating MIBs

During the course of most agent implementations, the MIB is changed. This is either
because the definitions in your private enterprise MIBs have evolved, or because the
industry standard MIBs have been updated. When this happens, you must edit the
existing C code to reflect the changes.

You should rerun the MIB Compiler to produce new variables, .c, and .h files. It is
recommended that you make the MIB sources (ASN.1 text files) dependencies in your
makefile, and include a build rule to run the MIB Compiler.

If you delete one or more variables, the system will compile and operate as before
(except without the deleted variable(s)). It is recommended that you delete or comment
out the stub-derived code that implemented the operations of the variable. If you change
the meaning of a variable, you will have to change the stub code accordingly.

If you create new variables, you must copy the new stubs from the output .c file into
your implementation file, and modify them to implement the required functionality.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-9

MIB Compiler
2-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 3
Porting the SNMP Agent

This chapter outlines what you need to do, step-by-step, to port the ARM SNMP Agent
to an embedded system. It contains the following sections:

• Setting up your source tree on page 3-2

• The target system on page 3-5

• Porting procedure on page 3-6

• GET operations and scalar variables on page 3-15

• GETNEXTs and indexes on page 3-22

• Custom SET operations on page 3-26.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-1

Porting the SNMP Agent

ent
3.1 Setting up your source tree

The ARM SNMP Agent source files belong to one of four groups, as described in this
section:

• Core files on page 3-3

• Port files on page 3-3

• MIB Compiler output files on page 3-4

• Your project files on page 3-4.

The structure shown in Figure 3-1 is for a typical project using the ARM SNMP Ag
with the ARM UDP/IP stack.

 Figure 3-1 Typical directory structure of source files

mib2.c mibcomp output (modified)

rfc1213.h mibcomp output

snmpvars.c mibcomp output

rfc1213.mib your project�s MIB-II file

your proj.mib your project�s MIB file

main.c your project�s main file

makefile your project�s makefile

... other project files

asn1.c core file

asn1.h core file

snmp.h core file

snmp_age.c core file

parse.h core file

snmp.c core file

your_project

snmp

...

snmp_aut.c core file

snmp_var.h core file

snmp_imp.h core file

snmpport.h port file

snmpsock.c port file

trap_out.c core file

snmpport.c port file

other files/directories
3-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
3.1.1 Core files

The ARM SNMP Agent core files are:

asn1.c Contains routines to parse and build ASN.1-encoded data.

snmp.c Contains routines to build SNMP Protocol Data Units (PDU) and
variables.

snmp_age.c

Contains the SNMP Agent interface routines.

snmp_aut.c

Contains authorization routines used to process community strings.

trap_out.c

Contains routines used to build and send traps from the SNMP Agent.

Note

These core files and their associated header files should not have to be modified for a
port. If you think they need to be changed, please contact ARM technical support before
changing them.

3.1.2 Port files

The ARM SNMP Agent port files are:

snmpport.c

Contains routines to interface the SNMP Agent to the ARM
low-overhead UDP API of the ARM TCP/IP stack.

snmpsock.c

Contains routines to interface the SNMP Agent to the ARM TCP/IP stack
using the Berkeley sockets API.

You must include either snmpport.c or snmpsock.c in your project, but not both.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-3

Porting the SNMP Agent
3.1.3 MIB Compiler output files

The MIB Compiler is used to parse the MIB files and generate C stub and header files,
and the snmpvars.c file that contains the SNMP variables table. Usually, you will not
need to modify the C header file or snmpvars.c after the MIB compiler has created
them. The C stubs file must be renamed (in Figure 3-1 on page 3-2, it has been renamed
to mib2.c), or the stubs must be copied to another source file, so that it will not be
overwritten if the MIB Compiler is used again. It is likely that you will make extensive
changes to these stub routines because they implement the interface between the SNMP
Agent variables and your embedded system.

3.1.4 Your project files

The remaining files implement the rest of your project and manage your build
environment. You also need access to your network system stack routines, either as a
library or in source form.
3-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
3.2 The target system

The ARM SNMP Agent is suitable for use either with an embedded Real-time
Operating System (RTOS), or in a polled or superloop environment.

If you are using an RTOS, you will typically establish a separate task for the SNMP
Agent, and arrange for the network task to pass incoming SNMP datagram messages to
the SNMP task by way of a mailbox or other message-passing facility. The SNMP task
processes these datagrams by stripping the network header layers, such as IP or UDP
headers, and passing the resultant ASN.1 data to the snmp_agt_parse() function for
processing. The snmp_agt_parse() function returns a response packet to be passed
to the network task for transmission back to the management station. It is usual for the
network stack and the SNMP Agent to be implemented as separate tasks in this
environment.

If you are using ARM TCP/IP as your network transport, it is possible to integrate the
SNMP Agent directly with the low-overhead UDP API. This allows you to have both
the SNMP Agent and the network stack running together as one task, with the UDP
stack making direct calls to the SNMP Agent, and the SNMP Agent directly calling the
UDP stack with the responses. This works well with both the superloop and RTOS-task
style of implementation discussed in Porting TCP/IP Programmer’s Guide.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-5

Porting the SNMP Agent

re 3-2.
3.3 Porting procedure

The ultimate purpose of any SNMP Agent is to implement a set of MIB variables which
can be read or set by network management applications. ARM provides the SNMP
layer. The porting programmer must join the SNMP code to a lower transport layer to
send and receive messages, and to an upper layer of code that resolves the individual
MIB variables into actual values or operations. You can accomplish this with the ARM
tools, as follows:

1. Determine what MIB variables are to be used. This involves selecting standard
MIBs from the RFCs and, possibly, writing proprietary MIB extensions.

2. Process the MIBs with the MIB Compiler to create skeletal stub C code files
containing variable routines for the port. This is discussed in Chapter 2 MIB
Compiler.

3. Compile the SNMP core source files (listed in Setting up your source tree on
page 3-2), and the TCP/IP source files, if needed, and link with the target system
and stub routines. You can test this with a call to snmp_agt_parse().

4. Modify the port files and complete the C code in the stub routines.

5. Compile the new variable routines and link them with the core SNMP files to
create an executable image for the new target system. Test and debug the code.

The work involved in porting the ARM agent to a new system involves:

• attaching the SNMP code to the transport layer API

• implementing the stub routines.

These steps are represented by the middle box and top box, respectively, in Figu

 Figure 3-2 Steps for porting the ARM SNMP Agent

UDP stack

SNMP to transport
UDP layer

ARM agent code and
MIB Compiler output

Product agent code
(such as filled in stubs)

Sockets (or similar)
UDP transport API
3-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

n

w

e to

3.3.1 SNMP Agent software interface

The ARM SNMP Agent core files interface to the UDP stack and the MIB variables
using the following routines and data structures:

• Functions and macros to implement

• Functions to call on page 3-8

• Data objects to implement on page 3-8.

Full details of their syntax can be found in Chapter 4 Function Descriptions.

Functions and macros to implement

You need to implement the following as functions in snmpport.c , or as macros in
snmpport.h (or ipport.h, if you are using the ARM TCP/IP stack):

send_trap_udp()

This function is called by the SNMP Agent when it has constructed a
SNMP trap message that it needs to send.

ip_myaddr()

This is called by the SNMP Agent when it needs to ascertain the IP
address of the piece of equipment on which it is running.

GetUptime()

This function is called by the SNMP Agent when it needs to know ho
long the system has been up and running.

MEMCPY() This macro copies bytes from one location to another.

MEMMOVE() This macro moves bytes from one location to another. It must be abl
allow for overlapping memory areas without corrupting the data.

dtrap() This function is used to trap to the debugger when the SNMP Agent
detects a problem.

ntohl(), ntohs(), htonl(), htons()
These are used for byte swapping on little-endian systems.

dprintf() This function is used by the SNMP Agent for printing debugging
information.

SNMPERROR()

This macro is used by the SNMP Agent for reporting errors.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-7

Porting the SNMP Agent
snmp_init()

Although this is not actually called by the SNMP Agent, you need to
implement this function and arrange for it to be called before any SNMP
UDP datagrams are passed to the SNMP Agent. This function performs
such tasks as opening a UDP endpoint and binding it to the SNMP port
(usually port 161). If your system is configured to support SNMP trap
messages, this function must also allocate a buffer in which trap
messages can be constructed by the agent.

Functions to call

When porting the ARM SNMP Agent, you will need to make calls to the following
functions, usually from code within the snmpport.c file:

snmp_agt_parse()

Is called when the UDP stack has received a datagram (usually on port
161) to be processed by the SNMP Agent.

snmp_trap()

Is called when an SNMP trap message should be constructed and sent, as
at system startup, for example, when a Cold Start trap is sent.

Data objects to implement

The SNMP Agent also requires the following data objects:

Table of MIB variables
int num_variables;
struct variable variables[];

This data, as produced by the MIB Compiler in snmpvars.c, need not
be modified.

Table of SNMP community strings and access permissions
int num_communities;
struct communityID communities[];

This data structure is usually implemented in snmpport.c. You need to
either include code in your main() routine, or alter the default strings
included in this table at compile time to change the SNMP communities
to which the SNMP Agent will respond. The demonstration program
shows one way of setting these strings from values held in Non Volatile
Random Access Memory (NVRAM).
3-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

his

 types
e that

s

nt

NMP
system.sysObjectID.0 value
int sys_id_len;
oid sys_id[];

This value must be set for the piece of equipment you are using. The
value is usually part of the
.iso.org.dod.internet.private.enterprises

(.1.3.6.1.4.1) tree. You need to obtain a Private Enterprise Number
from the Internet Assigned Numbers Authority (IANA). Please contact
IANA for more information and an application form.

SNMP usage statistics
struct snmp_mib SnmpMib

This structure is usually defined in snmpport.c. It is only needed if
MIB_COUNTERS is defined. In this case, it can be used by the SNMP
Agent to keep track of the numbers of various SNMP requests/responses
received. It can also be used to implement the SNMP group within
MIB-II (refer to the implementation of var_snmp() in the
demonstration program for an example of this).

3.3.2 Port-dependent files

Most of the work involved with porting SNMP involves modifying or recoding the
routines, definitions, and variables in the port files. These files are:

• nptypes.h

• snmpport.c

• snmpport.h

• MIB Compiler output files.

The header file nptypes.h defines a set of variable types used by the SNMP code. T
file is similar to types.h in UNIX systems. On most systems, the sample nptypes.h
header file from the demonstration program works. On some systems, all of these
may already be defined by other system header files. A few systems might requir
you edit the nptypes.h file to enable SNMP to work properly.

The header file snmpport.h contains definitions of a variety of SNMP limits (such a
the longest datagram size and the longest ObjectId size) and definitions which bind
the agent to the host system. This file is included in every C source file in the age
sources. Definitions of the protocol stack API and system library prototypes, for
example, must be included here to ensure they are applied uniformly across the S
Agent module.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-9

Porting the SNMP Agent

as
cal
he
 this

mple

le 3-2:
The MIB Compiler output files are described in Output on page 2-6. The majority of the
work in implementing an SNMP Agent involves writing code to fill in the stubs.

The SNMP Agent sources use a variety of definitions and C library calls. Where
possible, ANSI standards are used. However, some of the portability functions are
adapted from bespoke standards set by Berkeley Software Distribution (BSD) or
PC-DOS custom. Because not all embedded system development environments support
all of these standards, they are described in detail in this section. Working examples of
these are included in the demonstration program.

TRUE, FALSE, and NULL must be defined in the snmpport.h header file. To do this, it
is recommended that you include the standard C library file stdio.h inside
snmpport.h. Use the code in Example 3-1, which works in most C environments, if
stdio.h is impractical to use, or is missing.

Example 3-1

#ifndef TRUE
#define TRUE -1
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0
#endif

Four common macros are used for performing byte-order conversions between different
CPU architecture types:

• htons()

• htonl()

• ntohs()

• ntohl().

They can be either macros or functions. They accept 16-bit and 32-bit quantities
shown, and convert them from network format (big-endian) to the format of the lo
CPU. Most IP stacks already have these byte-ordering macros defined. If this is t
case, you must attempt to find the existing include file which defines them, and use
rather than duplicate them. The information in Example 3-2 on page 3-11 and Exa
3-3 on page 3-11 is provided in case these macros are not already available.

For big-endian systems, these can simply return the variable passed, as in Examp
3-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
Example 3-2

#define htonl(long_var) (long_var)
#define htons(short_var) (short_var)
#define ntohl(long_var) (long_var)
#define ntohs(short_var) (short_var)

Little-endian systems require the byte order to be swapped. You can use the lswap()
and bswap() functions provided with the ARM demonstration program, as shown in
Example 3-3.

Example 3-3

#define htonl(long_var) lswap(long_var)
#define htons(short_var) bswap(short_var)
#define ntohl(long_var) lswap(long_var)
#define ntohs(short_var) bswap(short_var)

The dtrap() and SNMPERROR() functions are debugging aids. The dtrap() function
is called by the SNMP code whenever it detects an event which should not have
occurred. The intention is for the dtrap() function or macro to attempt to trap to
whatever debugger is in use by the programmer. It must be treated as an embedded
breakpoint.

The SNMP code generally continues executing after calling dtrap(), but calls to the
dtrap() function usually indicate that something is wrong with the SNMP port.

Warning

No product based on this code should be shipped until all calls to dtrap() have been
eliminated. When you are ready to ship code, you can redefine the dtrap() functions
to a null function to slightly reduce code size.

For each port, you must define a data type for the individual subcomponents of an
SNMP Object ID (Sub-Id). This type is named oid, and is used throughout the SNMP
code. Generally, this is an unsigned 32-bit number. However, applications that only
have a small space into which they must fit, can shrink the variables table produced by
the MIB Compiler (and therefore save considerable static data memory) by making this
16 bits, or possibly eight bits. There must also be a definition of the maximum value
which can be placed in a Sub-Id. A typical definition is as follows:

typedef unsigned long oid;
#define MAX_SUBID 0x7fffffff
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-11

Porting the SNMP Agent
Note

Throughout the SNMP sources, the term Oid is used to refer to both a Sub-Id, as above,
or a complete SNMP Object ID.

Compile-time size limits

Because the agent is written without any internal calls to malloc() or free(), and
needs to save small amounts of dynamic data somewhere, it has several compile-time
size limits. These are described in this section, with recommended settings and
examples.

The SNMP Agent limits the maximum size, in bytes, required to hold an encoded
SNMP Object ID. The macro for this is MAX_OID_LEN. The real limit required is
determined by your MIB. The value 64, assigned in this example, is sufficient for most
applications.

#define MAX_OID_LEN 64 /* max length in bytes of encoded */
/* oid */

There is a limit on the maximum size to which a community string can grow. This
example sets it at 32 bytes:

#define MAX_COMMUNITY_SIZE 32 /* max length in bytes of a */
/* community */

This imposes a size limit on the various strings in the MIB-II System group. The port
can be rewritten to dynamically allocate memory for arbitrarily large strings:

#define SYS_STRING_MAX 256 /* max length of sys group */
/* strings */

It is assumed that every company which ships an SNMP-enabled product has an SNMP
Enterprise ID. This is a number assigned by IANA which uniquely identifies each
vendor of SNMP-managed devices. You must obtain such a number before you ship
your product. Occasionally, the contacts for reaching IANA change, but can be obtained
from the latest Assigned Numbers RFC (RFC 1700 at the time of publication). To send
traps or implement any basic MIB, the SNMP code will require an Enterprise ID. ARM
customers are permitted to use the ARM Enterprise ID during product development, but
they should obtain and recompile with their own identification prior to First Customer
Ship (FCS). The definition is:

#define ENTERPRISE 4128 /* ARM enterprise Number */
3-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
The ARM SNMP layer maintains packet counters as defined by MIB-II (RFC 1213).
For ports that do not require these counters, a small amount of space can be saved by
omitting them. The counters are enabled with the following define:

#define MIB_COUNTERS 1

Most ports limit the maximum buffer size that an SNMP packet can occupy. While the
best practical size varies depending on your IP stack and media, 484 is a recommended,
safe minimum. Ethernet-based or PPP-based systems can usually use 1400.

#define SNMPSIZ 1400 /* MAX size of an snmp packet */

If you use SNMP traps, you need to include the trap code with #defines as follows:

#define ENABLE_SNMP_TRAPS 1
#define V1_IP_SNMP_TRAPS 1

SNMP v2 traps might also be supported in the future if it becomes necessary to provide
support for them. The macro V2_IP_SNMP_TRAPS is reserved for this purpose.

The last macro from snmpport.h that porting engineers need to be aware of defines
the maximum number of trap targets the end user can configure. This macro controls
the size of a static table for trap target information.

#define MAX_TRAP_TARGETS 3

3.3.3 Testing

If you have not yet hooked up the protocol stack and want to unit test the SNMP Agent,
there is a simple method you can use:

1. Hardcode the SNMP packet data into a static buffer.

2. Pass a pointer to it to snmp_agt_parse(). The snmp_agt_parse() function
will return an SNMP reply in your output data buffer. A sample of code, Example
3-4 on page 3-14, is provided to demonstrate this. This example is provided for
instruction purposes only.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-13

Porting the SNMP Agent
Example 3-4 Parsing an SNMP request

/*
* quick.c
*
* Copyright (C) ARM Limited 1999. All rights reserved.
*
* Sample code to demonstrate a simple way to call the SNMP Agent core to parse
* an SNMP request.
*
*/

/* get system.sysDescr.0 (.1.3.6.1.2.1.1.1.0), using community ‘public’ */
unsigned char pkt[] = {
 0x30, 0x82, 0x00, ox2D, 0x02, 0x01, 0x00, 0x04, 0x06, 0x70,
 0x75, 0x62, 0x6c, 0x69, 0x63, 0xa0, 0x82, 0x00, 0x1e, 0x02,
 0x02, 0x72, 0x7b, 0x02, 0x01, 0x00, 0x02, 0x01, 0x00, 0x30,
 0x82, 0x00, 0x10, 0x30, 0x82, 0x00, 0x0c, 0x06, 0x08, 0x2b,
 0x06, 0x01, 0x02, 0x01, 0x01, 0x01, 0x00, 0x05, 0x00
};

#define SNMPSIZ 484
unsigned char snmpreply[SNMPSIZ];

void
testAgentParsing()
{

int reply_len;

dtrap(); // hook debugger before call...

reply_len = snmp_agt_parse(pkt, sizeof(pkt), snmpreply, SNMPSIZ);

dtrap(); // ...and once again afterwards
}

3-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

eived
the

le.

.

e
t
3.4 GET operations and scalar variables

The findVar() functions referred to in the variables[] array (see Variables
structure on page 2-7), are stubbed out in the MIB Compiler’s .c output file, and
prototyped in the .h header file. The stub for the System group,
.iso.org.dod.internet.mgmt.mib-2.system, is reproduced in Example 3-5:

Example 3-5

u_char *
var_system(

struct variable * vp, /* IN - pointer to variables[] array */
oid * name, /* IN/OUT - input name requested; output name found */
int * length, /* IN/OUT - length of input & output oids */
int oper /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
int * var_len) /* OUT - length of variable, or 0 if function */

{
// TODO: Add code here
return NULL; // default FAIL return.

}

This routine is called by the SNMP Agent code whenever an SNMP request is rec
with an Object ID that is matched up with the corresponding Object ID (name) of
routine in the variables table.

Note

The stub produced by the compiler does no work and returns only a NULL. The meaning
of the returned NULL varies depending on the setting of oper. If oper is nonzero, the
SNMP datagram is a SET or GET command, and the returned NULL indicates that an
exact match for the variable (passed in name) was not available. If oper is zero, the
request was a GETNEXT and the returned NULL means that no suitable GETNEXT Object
ID was found by the routine.

If the routine returns a non-NULL value, the return is a pointer to the data of the variab
The type of data pointed to is determined by the variable type in vp->type. In the case
of a non-NULL return, the name, length, and var_len variables must be set to convey
information about the data returned. The name is the Object ID of the returned variable
If the SNMP operation was a SET or GET (oper was nonzero), this is the same as the
name passed. If the operation was a GETNEXT, the porting programmer must update th
name field. In indexed sequences, this can be difficult. For more details, see the A
group example in the demonstration program, or see GETNEXTs and indexes on
page 3-22.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-15

Porting the SNMP Agent
You must modify the length variable to reflect the length of the name returned. The
var_len value must be set to the length, in bytes, of the variable data returned. For
32-bit numeric returns such as INTEGER, COUNT, and GAUGE, this is four. For Octet
strings and Object IDs, it is the length of the string.

As an example, the var_ routine for the System group of variables from MIB-II
implements the following variables:

SysDescr Read-only text string describing what the equipment is.

SysObjectID

Read-only Object Identifier, using your Private Enterprise Number.

SysUpTime Read-only measure of how long, in hundredths of a second, this system
has been running.

SysContact

Read/write text string describing who is responsible for this equipment.

SysName Read/write text string containing the network name of this equipment.

SysLocation

Read/write text string containing a description of where this equipment is
located.

SysServices

Read-only bitfield identifying the capabilities of this equipment.

This function declaration remains unchanged from the stub generated by the MIB
Compiler.

Example 3-6

u_char *
var_system(

struct variable *vp, /* IN - pointer to variables[] entry */
oid * name, /* IN/OUT - input name requested; output name found */
int * length, /* IN/OUT - length of input & output oids */
int oper, /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
int * var_len) /* OUT - length of variable, or 0 if function */

{

3-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
For a GET or SET operation, oper will be nonzero, and there must be an exact match
between the variable name in the request and the name entry in the variables[] table.
If they do not match, the request is not valid for this group. This is signaled by the var_
routine returning NULL. The SNMP core handles the task of returning a suitable
NOSUCHNAME error response. The use of the compare() function, which performs
lexicographic comparisons of ObjectIDs, is similar to the C library function
strncmp():

if (oper && (compare(name, *length, vp->name,
(int)vp->namelen) != 0))

return NULL;

The var_ routine needs to return the actual name of the variable found so that the
SNMP core can use it to create the response message. For a simple group such as the
System group, the SNMP core will have called the var_ routine with the correct entry
from the variables[] table. So, you need only copy the value from the vp variable
pointer into the name argument, and set the length of name with the length argument.
var_ routines that handle tables of information need to modify this name value (see
GETNEXTs and indexes on page 3-22 for details):

MEMCPY(name, vp->name, (int)vp->namelen * sizeof(oid));
*length = vp->namelen;

The default size of the data to be returned or set is a 32-bit long value. This is not
necessarily the best choice for the System group because most of its variables are
strings, but for the majority of groups, the variables will be INTEGER, COUNTER, or
GAUGE values, all of which are the size of a long. This value is overwritten in the
switch below for those situations where the size is not 32 bits:

*var_len = sizeof(long);

SET operations might require range checking. In the System group, the only modifiable
variables are strings, all of which have been statically allocated SYS_STRING_MAX
bytes of space. The SNMP core does not try to SET a variable that is read-only.
Therefore, the only checking that is required is that the strings passed in the SET request
fit in the buffer. The SNMP core performs this check if you fill in the set_parms
entries to enable range checking and to set the valid range (SET operations are described
in detail in Custom SET operations on page 3-26):

if (vp->acl == RWRITE) /* force string length check on sets */
{

set_parms.do_range = TRUE;
set_parms.hi_range = SYS_STRING_MAX;

 /* longest acceptable string */
set_parms.lo_range = 0; /* shortest acceptable string */

}

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-17

Porting the SNMP Agent
In the following example, the System group has been implemented as a scattered
collection of discrete variables, instead of using the recommended data structure
produced by the MIB Compiler. This means you must handle every variable within the
group as a special case, intead of relying on the auto-indexing feature that can be used
with the recommended data structure. Each of the special cases is handled through a
switch statement:

switch (vp->magic)
{

For STRING values, you must return the number of characters in the string, excluding
any terminating null character. For GET and GETNEXT, this determines the amount of
data that is copied from the variable and returned in the response packet:

case SYSDESCR: /* read-only string */
*var_len = strlen((char *)sys_descr);
return (u_char *)sys_descr;

For an Object Identifier, you must return the number of bytes, instead of the number of
subidentifiers. You can achieve this by multiplying the number of subidentifiers by the
size of a subidentifier:

case SYSOBJECTID:
*var_len = sys_id_len * sizeof(oid);

 return (u_char *)sys_id;

Modifiable strings are handled in exactly the same way as read-only strings. For ease of
coding, the length of the string is always returned, as for GET and GETNEXT operations.
However, the var_len value is ignored for SET operations, which make use of any
range limits specified in the set_parms structure:

case SYSCONTACT: /* read/write string */
*var_len = strlen((char *)sysContact);
return (u_char *)sysContact;

case SYSNAME: /* read/write string */
*var_len = strlen((char *)sysName);
return (u_char *)sysName;

case SYSLOCATION: /* read/write string */
*var_len = strlen((char *sysLocation;
return (u_char *)sysLocation;

The following error message indicates that you have neglected to handle one of the
variables in the switch statement:
3-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
default:
SNMPERROR(“var_system: Unknown magic number”);

}

/* Not Reached */
return NULL; /* default FAIL return. */

}

3.4.1 Suggested data structures

One method of optimizing both speed and size in the SNMP Agent is to use the
suggested structures for holding data associated with MIB variables in groups and
sequences. An example of how a large group can be implemented with minimal code is
the implementation of the MIB-II Internet Control Message Protocol (ICMP) group
from the demonstration program. All the ICMP counters in this group are maintained in
the suggested structure produced by the compiler in the .h header file. The C routine
needs only to use the magic number (also produced by the compiler) to index the ICMP
structure as a table, and return the 32-bit quantity at the indicated offset. The code is
reproduced in Example 3-7.

Magic numbers for the ICMP group and the suggested structure are produced
automatically by the compiler in the .h header file, as shown in Example 3-7.

Example 3-7 Tokens for the ICMP group

/* tokens for 'icmp' group */
#define ICMPINMSGS 0
#define ICMPINERRORS ICMPINMSGS+4
#define ICMPINDESTUNREACHS ICMPINERRORS+4
#define ICMPINTIMEEXCDS ICMPINDESTUNREACHS+4
#define ICMPINPARMPROBS ICMPINTIMEEXCDS+4
#define ICMPINSRCQUENCHS ICMPINPARMPROBS+4
#define ICMPINREDIRECTS ICMPINSRCQUENCHS+4
#define ICMPINECHOS ICMPINREDIRECTS+4
#define ICMPINECHOREPS ICMPINECHOS+4
#define ICMPINTIMESTAMPS ICMPINECHOREPS+4
#define ICMPINTIMESTAMPREPS ICMPINTIMESTAMPS+4
#define ICMPINADDRMASKS ICMPINTIMESTAMPREPS+4
#define ICMPINADDRMASKREPS ICMPINADDRMASKS+4
#define ICMPOUTMSGS ICMPINADDRMASKREPS+4
#define ICMPOUTERRORS ICMPOUTMSGS+4
#define ICMPOUTDESTUNREACHS ICMPOUTERRORS+4
#define ICMPOUTTIMEEXCDS ICMPOUTDESTUNREACHS+4
#define ICMPOUTPARMPROBS ICMPOUTTIMEEXCDS+4
#define ICMPOUTSRCQUENCHS ICMPOUTPARMPROBS+4
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-19

Porting the SNMP Agent
#define ICMPOUTREDIRECTS ICMPOUTSRCQUENCHS+4
#define ICMPOUTECHOS ICMPOUTREDIRECTS+4
#define ICMPOUTECHOREPS ICMPOUTECHOS+4
#define ICMPOUTTIMESTAMPS ICMPOUTECHOREPS+4
#define ICMPOUTTIMESTAMPREPS ICMPOUTTIMESTAMPS+4
#define ICMPOUTADDRMASKS ICMPOUTTIMESTAMPREPS+4
#define ICMPOUTADDRMASKREPS ICMPOUTADDRMASKS+4

The suggested structure is shown in Example 3-8.

Example 3-8 MIB table for the ICMP group

/* MIB table for ’icmp’ group */

struct icmp_mib {
u_long icmpInMsgs;
u_long icmpInErrors;
u_long icmpInDestUnreachs;
u_long icmpInTimeExcds;
u_long icmpInParmProbs;
u_long icmpInSrcQuenchs;
u_long icmpInRedirects;
u_long icmpInEchos;
u_long icmpInEchoReps;
u_long icmpInTimestamps;
u_long icmpInTimestampReps;
u_long icmpInAddrMasks;
u_long icmpInAddrMaskReps;
u_long icmpOutMsgs;
u_long icmpOutErrors;
u_long icmpOutDestUnreachs;
u_long icmpOutTimeExcds;
u_long icmpOutParmProbs;
u_long icmpOutSrcQuenchs;
u_long icmpOutRedirects;
u_long icmpOutEchos;
u_long icmpOutEchoReps;
u_long icmpOutTimestamps;
u_long icmpOutTimestampReps;
u_long icmpOutAddrMasks;
u_long icmpOutAddrMaskReps;

};
3-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
The var_icmp() function is based on a stub produced by the compiler in the .c file.
It handles all 26 ICMP group variables, and requires less than ten lines of code to be
added to the stub, as shown in Example 3-9.

Example 3-9

u_char *
var_icmp(

struct variable *vp, // IN - pointer to variables[] entry
oid *name, // IN/OUT - input name requested; output name found
int *length, // IN/OUT - length of input & output oids
intoper, // IN - TRUE if exact match is required (for GETs)
int *var_len) // OUT - length of variable, or 0 if function

{
 u_char * cp; // return pointer

if(oper && /* GET or SET ObjectIDs must match exactly */
(compare(name, *length, vp->name, (int)vp->namelen) !=0))

return NULL; /* return NULL if not exact match */

/* The next two lines set the return variables. These are
actually only needed for GETNEXTs - GETs and SETs already have
an exact match. */
memcpy(name, vp->name, (int)vp->namelen * sizeof(oid));
*length = vp->namelen;
var_len = sizeof(long); / default length */

cp = (u_char*)&icmp_mib;
return(cp + vp->magic);

}

It is not always practical to rewrite an existing system to use the suggested structures.
The IP stack used with the demonstration program was written before the MIB
compiler, and therefore the System group example in GET operations and scalar
variables on page 3-15 ignores the suggested structure. The suggested structure was
retrofitted on the ICMP protocol code. Each structure must be considered individually
to determine whether it is worth the effort to use the suggested structures.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-21

Porting the SNMP Agent
3.5 GETNEXTs and indexes

After the ported agent can generate a reply to a request, the remainder of the port, and
most of the ongoing development, involves implementing the stub routines. Because
this section and the next can be considered advanced stub coding, it is recommended
you review Chapter 2 MIB Compiler (starting with Output on page 2-6, where stub
routines are first introduced) before reading the remainder of this section.

A MIB indexed variable is a variable that is part of a table, as opposed to the simpler
scalar variables (non-indexed). Scalar variables, such as those described in the
examples in Chapter 2 MIB Compiler, only occur once in an SNMP Agent. For
example, each agent only has one System group, and by extension, one sysDescr, one
sysObject, and one sysUptime. Conversely, indexed variables (tables or ASN.1
SEQUENCEs) can occur multiple times. For example, the MIB-II Interfaces table has
a complete set of interface variables for each network interface in the machine. A router
with four ethernet cards has four ifIndexes, four ifDescrs, and four
ifPhysAddresses. MIB-II stipulates that these are indexed by arbitrarily assigned
numbers, 1-4 in this case. The four ifDescr instances are represented as ifDescr.1,
ifDescr.2, ifDescr.3, and ifDescr.4. The actual Object IDs are formed by
appending the index (in this case, as in most cases, an ASN.1 INTEGER) to the base
Object ID.

An ARM stub routine for an indexed group has to do some extra work in addition to the
work done for scalar variables. It has to determine if the Object ID passed has a valid
index for the request. This can be problematic when the request is a SET or GETNEXT
request. A SET operation might have to create a new table entry if the requested index
does not already exist. A GETNEXT operation has to generate the lexicographically next
variable ID, which might or might not be another instance of the same variable. If it is
another instance of the same variable, it might not have a numerically adjacent index
value. SET operations are discussed in more detail in Custom SET operations on
page 3-26.

Example 3-10 on page 3-23, with accompanying instructions, contains the
var_ifEntry() variables routine from the demonstration program, from the file
mib2.c. It is the first routine in the file to handle an indexed set of variables.
3-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
Example 3-10

u_char *
var_ifEntry(

struct variable *vp, /* IN - pointer to variables[] entry */
oid *name, /* IN/OUT - input name requested; outputname found */
int *length, /* IN/OUT - length of input and output oids */
int oper, /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
int *var_len) /* OUT - length of variable, or 0 if function */

{

Rather than simply checking for an exact match on GETs and SETs as in the
earlier scalar examples, you must check to see if the index passed as the last component
of the array pointed to by name (the Object ID from the received packet) is a valid index.
For GETs or SETs, this means it must exactly match one of your indexes. For GETNEXTs,
it might be an exact match, or it might be an Object ID that is lexicographically lower
than a valid response. It must have at least a partial match of a valid interface table
Object ID, otherwise the SNMP core code would not have called this function with it.
Because the SNMP core code does not know anything about your interface hardware,
that information must be used here to put together the SNMP reply:

1. You must first declare some scratch local variables. These include an Object ID
buffer, newname[], in which you must build trial Object ID names based on your
interfaces. These will be passed to the compare() routine (a strcmp()-like
routine for Object IDs) to determine if you have a suitable candidate for a reply:

unsigned interface;
oid newname[MAX_NAME_LEN];
IFMIB ifp;
int result;

2. Copy the Object ID in the variables table into newname[]. vp->name is the
Object ID in the variables table that is lexicographically just below the Object ID
in the received packet:

memcpy((char *)newname, (char *)vp->name,
(int)vp->namelen * sizeof(oid));

3. For each interface in the machine, build an Object ID in newname[] with that
interface’s index and run it through compare():

for(interface = 0; interface < ifNumber; interface++)
/* find "next" interface */
{

newname[10] = (oid)(interface + 1);
result = compare(name, *length, newname,
(int)vp->namelen);
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-23

Porting the SNMP Agent
/* if the operation is a SET or GET and the ObjectIDs
match, */
/* break out of the loop */

if(oper && (result == 0))
break;

If the operation is a GETNEXT and newname is lexicographically greater than the
received name, you have found the reply to the GETNEXT.

By finding the first valid Object ID for an interface which is greater than the Object ID
in the Received packet, you have your GETNEXT reply:

if(!oper && (result < 0))
break;

}

/* If you looped through all the interfaces without a match, */
/* return NULL; the SNMP core will try the var_ routine for */
/* the next group or table */

 if (interface >= ifNumber) return(NULL);

/* The rest of the routine is similar to examples for the */
/* scalar groups */

memcpy((char *)name, (char *)newname,
(int)vp->namelen * sizeof(oid));
*length = vp->namelen;
var_len = sizeof(long); / default to 32 bit return */

ifp = nets[interface]->n_mib;

switch (vp->magic)
{

/* handle special cases which are not simple 32-bit counters */
/* from the interface’s MIB */

case IFINDEX: /* you store them 0 thru n-1, snmp wants */
/* 1 through n */

long_return = ifp->ifIndex + 1;
return (u_char *)&long_return;

case IFDESCR:
*var_len = strlen(ifp->ifDescr);
return (u_char *)ifp->ifDescr;

case IFPHYSADDRESS:
*var_len = nets[interface]->n_hal;
3-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
return (u_char *)ifp->ifPhysAddress;
case IFSPECIFIC: /* could be Oid of ethernet MIB */

*var_len = sizeof(oid00);
return((u_char*)oid00);

default: /* return 32 bit counter from table */
return (u_char *)(((char *)ifp) + vp->magic);

}
}

Note

Not all indexes are sequentially numbered integers as in Example 3-10 on page 3-23. A
table can be indexed by any sequence of numbers. For example, the interfaces in that
example can be numbered 4, 58, and 99. In this case, the for() loop would have to look
these up somehow, perhaps even having to perform a sort first. Alternatively, the for()
loop has to examine all the entries in the table, keeping a record of the most preferable
option. Examples of the latter technique are given in the mib2.c file of the
demonstration program.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-25

Porting the SNMP Agent

o set
pts to
s a

ism to
 create

g is
3.6 Custom SET operations

SET operations are similar to GET operations in that they usually require an exact match
of the Object ID. However, SETs are more complex because they may need to:

• determine if a particular SET operation is legal

• perform an action such as disabling a network interface

• create new entries in SNMP tables.

You can encounter problems when trying to set an illegal value or type, or trying t
a nonexistent variable when this is not allowed. The SNMP core can detect attem
set illegal types (for example, trying to set a counter using a string), and generate
BADVALUE error response to the SNMP station that sent the request.

If your var_ routine returns NULL, the SNMP core generates a NOSUCHNAME error
response to the SNMP station that sent the request. You should use this mechan
indicate when an attempt has been made to either set a non-existent variable, or
a new, invalid table entry.

If all that is required for the SET operation is for the data value from the SET request to
be written into a memory location, your var_ routine must optionally establish range
checking values, and return a pointer to the location to be written. Range checkin
enabled using the range fields of the global set_parms structure:

struct SetParms {
…
int do_range;
long hi_range;
long lo_range;

};

extern struct SetParms set_parms;

The set_parms structure is cleared to zero before your var_ routine is called.

If your var_ routine sets set_parms.do_range to nonzero, and the value being set is
a numeric type, it must have a value between set_parms.lo_range and
set_parms.hi_range , inclusive.

If set_parms.do_range is nonzero, and the value being set is a string or Object
Identifier, the length of the string or Object ID must be greater than or equal to
set_parms.lo_range , and less than or equal to set_parms.hi_range .

If the value to be set is outside the .lo and .hi range, the SNMP core will generate a
BADVALUE error response to the SNMP station that sent the request. If
set_parms.do_range is zero, no range checking is performed.
3-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent
You can see an example of range checking with string values in the System group var_
routine, var_system(), in mib2.c.

In some cases, you might be required to do more than set an existing variable. For
example, you might want to send a message to another task, manipulate some hardware,
or create a new entry in a table such as a route table. You can accomplish this by using
the other fields of the set_parms structure:

struct SetParms {
int (*access_method)(u_char *, u_char, int, u_char *, int);
struct variable *vp;
oid *name;
…

};

If your var_ routine sets the access_method function pointer in the set_parms
structure, and returns a non-NULL value, the SNMP core does not attempt to perform the
SET operation for you. Instead, it calls the function pointed to by access_method . If
the do_range field is nonzero, the usual range checking is performed before the
access_method function is called.

The access_method function must return one of the following SNMP_ERR_ values
from snmp.h :

SNMP_ERR_NOERROR

No error. The SET operation succeeded.

SNMP_ERR_TOOBIG

The SNMP packet (either the request or response) is too large.

SNMP_ERR_NOSUCHNAME

The variable in the request does not exist, or cannot be created.

SNMP_ERR_BADVALUE

The value to be set is invalid, or of the wrong type.

SNMP_ERR_READONLY

The specified variable is read-only (see the note following this list).

SNMP_ERR_GENERR

Some unspecified generic error occurred.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-27

Porting the SNMP Agent
Note

If the MIB description of a variable indicates that it is read-only, the SNMP core calls
the var_ routine, but does not call your access_method function. You rarely need to
generate SNMP_ERR_READONLY error responses.

If you are using an access_method function, your var_ routine must still return a
pointer that the SNMP core uses to retrieve the set value. This value is obtained by the
SNMP core and returned in the response packet to the SNMP station that sent the
request.

For a fully annotated example of using the access_method function, see atEntry table,
annotated on page A-2.
3-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 4
Function Descriptions

This chapter describes the functions and data items used to interface to the SNMP Agent
core. It contains the following sections:

• SNMP Agent interface on page 4-2

• User-required functions on page 4-6

• SNMP port data on page 4-11

• ASN.1 parse functions on page 4-15.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-1

Function Descriptions
4.1 SNMP Agent interface

The functions snmp_agt_parse() and snmp_trap() comprise the external interface
to the portable SNMP Agent. For examples of how to call these functions, refer to either
of the following:

snmpport.c Uses the ARM low-overhead UDP/IP stack to interface to the SNMP
Agent.

snmpsock.c Uses traditional Berkeley Sockets to interface to the SNMP Agent.

4.1.1 snmp_agt_parse()

This function is called by the transport stack (or an implementation routine on top of the
transport stack) when an SNMP datagram for the SNMP Agent is received. An example
of this is a UDP packet with destination port 161. This routine is the sole entry point to
the agent from the protocol stack.

Syntax

int snmp_agt_parse(u_char *inbuf, unsigned inlength,
u_char *outbuf, unsigned outlength)

where:

inbuf Is a pointer to the beginning of the SNMP datagram.

inlength Is the length of inbuf data.

outbuf Is a pointer to a buffer for a possible reply.

outlength Is the length of outbuf.

Return value

Returns one of the following:

0 If there is no reply data in outbuf.

Number of bytes in the outbuf snmp reply
If there is reply data in outbuf.
4-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
Usage

The incoming SNMP data is passed in the pointer inbuf, with the length of the
datagram specified by inlength. The inbuf pointer must point to the first byte of the
ASN.1 data (usually 0x30), and not to a UDP or IP header.

All processing of the SNMP datagram is done during the call to snmp_agt_parse().

The snmp_agt_parse() function might leave a reply to the datagram in the buffer
indicated by outbuf, so it must be big enough to hold any expected reply. According
to RFC 1157, the minimum size of this buffer must be 484 bytes. For embedded systems
whose primary interface is Ethernet or PPP, a size of 1460 is recommended. In any case,
the size of this buffer must not be less than the value of the SNMPSIZ macro defined in
the snmpport.h header file.

If snmp_agt_parse() returns a nonzero length, the calling code must make sure the
reply data in outbuf is sent back to the party that sent the SNMP request. On UDP, this
involves preserving the incoming port value and IP address.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-3

Function Descriptions
4.1.2 snmp_trap()

This function takes the passed parameters and builds and sends an SNMP v1 trap. The
trap is built in a static buffer provided when snmp_init() is called. A trap packet is
sent to each of the hosts in the trap_targets[] table.

The structure trapVar is defined in the header file snmp_imp.h. The current version
is reproduced here, but you must refer to the file version when writing code.

struct trapVar { /* struct for each trap variable */
oid varName[MAX_OID_LEN];/* ObjectId of variable */
unsigned varNameLen; /* oid components in varName */
u_char varType; /* ASN.1 type of variable */
unsigned varValLen; /* octets in variable data field */
u_char *varBuf; /* the actual variable data */
unsigned varBufLen; /* used only by snmp_parse_trap() */

};

Syntax

int snmp_trap(int trapType, intspecificType,
int specificVarCount,
struct trapVar *specificVars)

where:

trapType Is one of the predefined SNMP traps, in the range 1-6.

If trapType is not 6 (vendor-specific trap), the remaining variables are
ignored by SNMP, and may be 0 or NULL.

specificType

Is a vendor-specific type. These are defined by the vendor.

specificVarCount

Is the number of entries in specificVars.

specificVars

Is a pointer to an array of trapVar structures.
4-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
Return value

Returns one of the following:

0 If there is a parse error.

The length of the trap image built in the passed buffer
Otherwise.

Usage

To send a vendor-specific trap with variables attached, you need to allocate (either
statically or dynamically) space for an array of these structures, one per variable. You
then need to fill in the values for your trap variables prior to calling snmp_trap().
After the snmp_trap() call returns, the trapVar array can be freed or re-used.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-5

Function Descriptions

o the
fit

s that
4.2 User-required functions

As part of the port work, you must provide the functions described in this section. Most
are referenced at other places in the manual, but they are described in detail here. The
functions are:

• SNMPERROR()

• send_trap_udp() on page 4-7

• GetUptime() on page 4-8

• snmp_upc() on page 4-9

• snmp_init() on page 4-10.

4.2.1 SNMPERROR()

This function is called by the SNMP code when it detects an error that is specific t
SNMP protocol. The SNMPERROR() function is meant to print messages for the bene
of the programmer during product development. It can be #ifdefed out before
shipping, or its output can be directed to an error log or user console. On system
support printf(), SNMPERROR() can be #defined to printf(), as shown in the
example below.

Syntax

void SNMPERROR(char *msg)

where:

msg Is the error message text to print.

Return value

None.

Example

#define SNMPERROR(msg) printf("SNMP ERROR: %s\n", msg);
4-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
4.2.2 send_trap_udp()

This function is called by the SNMP core code to send the standard traps, such as
authentication failure. Because send_trap_udp() is called from the SNMP core, you
must not change the name and function parameters. This routine simply has to send the
trap buffer passed to the IP address specified at UDP port 162. It is usually a very small
routine.

Syntax

int send_trap_udp(u_char *out_data, int out_len,
ip_addr trap_target)

where:

out_data Is a pointer to the SNMP trap packet to be sent.

out_len Is the length of the data pointed to by out_data.

trap_target

Is a 32-bit IP address of the host to which the trap is sent.

Return value

Returns one of the following:

0 If successful.

–1 If not successful.

The standard SNMP Agent code ignores this return. However, special ports have been
implemented which take other action (such as paging an operator) when trap sends fail.

Example

See the code in snmpport.c or snmpsock.c for examples of how to implement this
function.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-7

Function Descriptions
4.2.3 GetUptime()

This function is called from the SNMP Agent trap generation code to timestamp
outgoing traps. Ports which implement MIB-II, including the demonstration program,
also use it for the sysUptime variable in the system group.

Syntax

u_long GetUptime(void)

Return value

Returns a 32-bit unsigned value containing the number of SNMP TIMETICKS (in .01
second, that is, 100th of a second, intervals) since the system was last rebooted.

Example

u_long
GetUptime()
{

return (100L * cticks / TPS);
}

4-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
4.2.4 snmp_upc()

This function is only used if you are using the low-overhead UDP interface of the ARM
TCP/IP stack to implement your SNMP Agent. If this is the case, you have to define
PREBIND_AGENT in your ipport.h file. This causes the UDP demultiplexor to call
snmp_upc() with UDP datagrams received on the SNMP port, UDP port 161. This
function has to pass these datagrams to snmp_agt_parse() so that the SNMP core
can parse them and build a response packet, which snmp_upc() must then send back
to the originating station using udp_send(). These responses must be sent to the UDP
port on the remote host from which the request was received. This is passed as the
argument port.

Syntax

int snmp_upc(PACKET p, unshort port)

where:

p Is a PACKET defined by the ARM TCP/IP stack to be a pointer to a
network packet structure, with nb_prot pointing to the start of the
SNMP data, and nb_len indicating the number of bytes in the packet.

port Is the UDP port number (in local-byte order) on the remote station from
which the packet was received.

Return value

Returns one of the following:

ENP_NOT_MINE

If the SNMP Agent is not active.

0 If no errors occurred.

other ENP_ code
If other errors occurred.

Example

An example of snmp_upc() for use with the low-overhead UDP interface to ARM
TCP/IP is available in the snmpport.c file.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-9

Function Descriptions
4.2.5 snmp_init()

This function is called from the ip_start() function of the ARM TCP/IP stack if
INCLUDE_SNMP has been defined in your ipport.h file. If you are not using ARM
TCP/IP with the ARM SNMP stack, you need to arrange for this function to be called
from your startup code. The snmp_init() function must create a UDP network
endpoint, such as a socket, and bind it to the SNMP port, UDP port 161. This function
must also initialize other resources used by the SNMP stack, such as the trap buffer
required for sending SNMP trap messages (see Trap buffer on page 4-13). If your
system is implementing traps, the snmp_init() function must also send an initial
COLDSTART trap to all of the trap targets.

Syntax

int snmp_init(void)

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

Example

Sample snmp_init() functions are available in the snmpport.c and snmpsock.c
files.
4-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

ived,

part of

4.3 SNMP port data

When porting ARM SNMP to your own environment, you will need to provide certain
data structures in addition to the variables[] array discussed in Variables structure
on page 2-7. You can declare these variables either in the snmpport.c file, or
elsewhere in your application-specific code. The data structures you need to provide
are:

• SNMP MIB

• Communities

• System identifier on page 4-12

• Trap targets on page 4-13

• Trap buffer on page 4-13.

4.3.1 SNMP MIB

If you are implementing the SNMP group from MIB-II, you need to #define
MIB_COUNTERS in your snmpport.h file and provide this structure. The structure
SnmpMib is used by the SNMP Agent to track the number and type of requests rece
enabling these statistics to be retrieved using an SNMP station. SnmpMib is declared in
your snmpport.c file.

Syntax

#ifdef MIB_COUNTERS
struct snmp_mib SnmpMib;
#endif

4.3.2 Communities

The SNMP Agent authorizes requests based on the community string passed as
the request. The table of allowed communities is defined in your snmpport.c file, and
consists of the actual table of communityID structures and a count of the number of
table entries used.

Syntax

struct communityId communities[] = {
"public", RONLY,
"private", RWRITE,

};

int num_communities = (sizeof(communities)/sizeof(struct
communityId));
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-11

Function Descriptions

ted

e of

our
ated
Example

The demonstration program snmpdemo shows how these values can be initialized to
static default values in snmpport.c, and then overridden by values read from a
configuration file in the main() routine at system startup.

4.3.3 System identifier

The System group of variables requires a variable, SysObjectID. This is an object
identifier that uniquely describes the vendor’s authoritative identification of the
network management subsystem contained in the equipment. This value is alloca
within the Structure of Management Information (SMI) enterprises subtree
(1.3.6.1.4.1), and provides a simple and unambiguous way to determine the typ
equipment being managed. For example, if vendor Elements, Inc. is assigned enterprise
number 4242, they use the subtree 1.3.6.1.4.1.4242, and can assign identifiers to
different products and product families, for example:

1.3.6.1.4.1.4242.1
For Routers.

1.3.6.1.4.1.4242.1.1
For its Hydrogen Router.

1.3.6.1.4.1.4242.1.2
For its Oxygen Router.

1.3.6.1.4.1.4242.2
For Switches.

1.3.6.1.4.1.4242.2.1
For its Helium Switch.

1.3.6.1.4.1.4242.3
For Hubs.

1.3.6.1.4.1.4242.3.1
For its Nitrogen Hub.

You must obtain a unique Enterprise ID number for your company, and manage y
own subtree of identifiers for your products. Currently, enterprise numbers are alloc
by Internet Assigned Numbers Authority (IANA), who can be contacted at website
http://www.iana.org.
4-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
Syntax

oid sys_id[] = {1, 3, 6, 1, 4, 1, ENTERPRISE, 1, 1};
unsigned sys_id_len = sizeof(sys_id)/sizeof)oid);

where:

ENTERPRISE

Is #defined in snmpport.h as your enterprise number.

Example

The demonstration program snmpdemo uses the ARM enterprise number (#define
ENTERPRISE 4128 in snmpport.h) to set the system identifier in snmpport.c. You
can use the ARM enterprise number while developing your product, but you must
obtain your own enterprise number before your product is shipped.

4.3.4 Trap targets

The file trap_out.c declares an array of MAX_TRAP_TARGETS trap_target
structures. This array must be initialized by your startup code in main() to contain the
IP address and community string to be used for each intended recipient of SNMP trap
messages. MAX_TRAP_TARGETS is defined in the snmpport.h file.

Syntax

struct trap_target trap_targets[MAX_TRAP_TARGETS] = {0};

Example

The demonstration program snmpdemo shows how these values can be initialized to a
NULL list in trap_out.c, and then overridden by values read from a configuration
file in the main() routine at system startup.

4.3.5 Trap buffer

If your system is sending SNMP trap messages, it needs some workspace in which to
build them. Your snmp_init() function in snmpport.c must allocate a buffer, either
dynamically or statically, and assign trap_buffer to point to it. The variable
trap_buffer_len must be set to the length of the buffer. The two variables
trap_buffer and trap_buffer_len are declared for you in trap_out.c. You
simply need to assign the correct values to them.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-13

Function Descriptions
Syntax

unsigned trap_buffer_len = 0;
u_char * trap_buffer;

Example

The snmp_init() code in snmpport.c and snmpsock.c shows one way to initialize
these variables.
4-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

e

.1

y
4.4 ASN.1 parse functions

If you are using an access_method function to implement a special SET operation,
you will need to use these asn_parse functions to determine the value that is to be set.
The parse functions are:

• asn_parse_int()

• asn_parse_string() on page 4-17

• asn_parse_objid() on page 4-18

• asn_parse_null() on page 4-19.

4.4.1 asn_parse_int()

This function parses a 32-bit integer value from an ASN.1 INTEGER type.

Syntax

u_char *asn_parse_int(u_char *data, unsigned *datalength,
u_char *type, long *intp,
unsigned intsize)

where:

data Points to the start of the object.

datalength

Points to the number of valid bytes available in data. On return, it points
to the number of valid bytes left in data.

type Points to a location that, on return, is filled with the ASN.1 type of th
data.

intp Points to a location that, on return, is filled with the value of the ASN
data.

intsize Must, on entry, contain the size, in bytes, of the location pointed to b
intp. For asn_parse_int(), this must be the value 4.

On entry, datalength is input as the number of valid bytes following data. On exit,
it is returned as the number of valid bytes following the end of this object.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-15

Function Descriptions
Return value

Returns one of the following:

Pointer to the first byte past the end of this object (start of the next object)
If successful.

NULL On any error.
4-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
4.4.2 asn_parse_string()

This function parses a sequence of bytes from an ASN.1 OCTET STRING type.

Syntax

u_char *asn_parse_string(u_char *data, unsigned *datalength,
u_char *type, u_char *string, unsigned *strlength)

where:

data Points to the start of the object.

datalength

Points to the number of valid bytes available in data. On return, it points
to the number of valid bytes left in data.

type Points to a location that, on return, is filled with the ASN.1 type of the
data.

string Points to a location that, on return, is filled with the value of the ASN.1
data.

strlength Must, on entry, contain the size, in bytes, of the location pointed to by
string. On exit, this contains the number of characters placed at
location string.

On entry, datalength is input as the number of valid bytes following data. On exit,
it is returned as the number of valid bytes following the end of this object.

Note

string will not be null-terminated. That is, there is no \0 character appended to the
string.

Return value

Returns one of the following:

Pointer to the first byte past the end of this object (start of the next object)
If successful.

NULL On any error.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-17

Function Descriptions
4.4.3 asn_parse_objid()

This function parses a sequence of object identifiers from an ASN.1 OBJECT ID type.

Syntax

u_char *asn_parse_objid(u_char *data, unsigned *datalength
u_char *type, oid *objid,
unsigned *objidlength)

where:

data Points to the start of the object.

datalength

Points to the number of valid bytes available in data. On return, this
points to the number of valid bytes left in data.

type Points to a location that, on return, is filled with the ASN.1 type of the
data.

objid Points to an area of at least MAX_OID_LEN bytes that is, on return, filled
with the value of the ASN.1 data.

objidlength

Contains, on return, the number of subidentifiers placed in objid.

On entry, datalength is input as the number of valid bytes following data. On exit,
it is returned as the number of valid bytes following the end of this object.

Return value

Returns one of the following:

Pointer to the first byte past the end of this object (start of the next object)
If successful.

NULL On any error.
4-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions
4.4.4 asn_parse_null()

This function parses an ASN.1 NULL object.

Syntax

u_char *asn_parse_null(u_char *data,
unsigned *datalength, u_char *type)

where:

data Points to the start of the object.

datalength

Points to the number of valid bytes available in data. On return, this
points to the number of valid bytes left in data.

type Points to a location which is, on return, filled with the ASN.1 type of the
data (ASN_NULL).

On entry, datalength is input as the number of valid bytes following data. On exit,
it is returned as the number of valid bytes following the end of this object.

Return value

Returns one of the following:

Pointer to the first byte past the end of this object (start of the next object)
If successful.

NULL On any error.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-19

Function Descriptions
4-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Appendix A
SNMP ARP Table Interface

This appendix provides a heavily annotated example of the atEntry table, which
allows existing entries to be modified, and new entries to be created. The atEntry table
is a complete example of using an access_method function (see Custom SET
operations on page 3-26). This appendix contains the following section:

• atEntry table, annotated on page A-2.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-1

SNMP ARP Table Interface
A.1 atEntry table, annotated

Example 1-1 atEntry table

/*
 * The atEntry table is the SNMP interface to the IP stack’s ARP table. It
 * allows entries to be modified, and also allows new entries to be created.
 * The IP stack’s ARP table is not kept in any sorted order, so some work is
 * required to implement GETNEXT correctly. This table has three variables per
 * row, all of which are modifiable:
 *
 * - the interface number
 * - the physical media address
 * - the logical network address.
 *
 * The atEntry table is indexed by the interface index, by a constant 1, and
 * by the network address, which means that an index into this table is
 * actually six subidentifiers long:
 *
 * <ifIndex>.1.<ipaddr>.<ipaddr>.<ipaddr>.<ipaddr>
 */
int add_atEntry(u_char *, u_char, int, u_char *, int);

/* Use #defines to help with extracting values from the object identifier
*/
#define VAR_AT_IFACE_OID 10
#define VAR_AT_NETTYPE_OID 11
#define VAR_AT_IPADDR_OID 12
#define VAR_AT_OID_LENGTH 16

u_char *
var_atEntry(
 struct variable * vp, /* IN - pointer to variables[] entry */
 oid * name, /* IN/OUT - input name requested; output name found */
 int * length, /* IN/OUT - length of input and output oids */
 int oper, /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
 int * var_len) /* OUT - length of variable, or 0 if function */
{
/* scratch workspace needed to keep track of the best fit found so far */
oid lowest[DEF_VARLEN]; /* "best fit" object Id */
oid current[DEF_VARLEN];
struct arptabent * atp; /* scratch pointer to table entries */
struct arptabent * lowarp = NULL; /* lowest entry we found */
int i;
u_char * cp;
A-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface
 /* SET operations are handled separately from GET and GETNEXT operations */
 if(oper == SET_OP)
 {
 /*
 * The full OID of the requested variable should be:
 *
 * .1.3.6.1.2.1.3.1.1.<var>.<IfIndex>.1.<IpAddr>.<IpAddr>.<IpAdd>.<IpAddr>
 *
 * which is 16 subidentifiers long. If not, you cannot process this request.
 */
 if(*length != VAR_AT_OID_LENGTH) /* MUST have complete index! */
 return NULL; /* NOSUCHNAME error reply */

 /*
 * You need to use a helper function, add_atEntry(), to do the work.
 * This requires that you set up the set_parms structure to point to
 * this function, with the requested variable name and the entry from
 * the variables[] table.
 */
 set_parms.access_method = add_atEntry;
 set_parms.vp = vp;
 set_parms.name = name;

 /*
 * When the access_method function add_atEntry() returns, the SNMP
 * core needs to be able to obtain the actual value set. The SNMP
 * core obtains that value from the location pointed to by the return
 * value of this, the var_ routine, using the size set in var_len.
 *
 * At this point, you do not know which ARP table entry you are going
 * to access, so you must return a pointer to a static data area, which
 * the access_method will fill in with the correct value.
 */
 switch(vp->magic)
 {
 case ATIFINDEX:
 case ATNETADDRESS:
 /* interface index and IP address are 32-bit values */
 *var_len = sizeof(long);

 /* this is where the actual value is when */
 /* add_atEntry() returns */
 return (u_char*)&long_return;

 case ATPHYSADDRESS:
 /* the size of a MAC address is 6 bytes */
 *var_len = 6;
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-3

SNMP ARP Table Interface
 /* this is where the actual value is when */
 /* add_atEntry() returns */
 return return_buf;
 }
 }

 /*
 * The rest of the work for a SET operation is handled within the
 * access_method function add_atEntry(). The remainder of the
 * var_atEntry() routine implements GET and GETNEXT operations, and shows
 * how to handle the situation where the underlying data has no natural
 * ordering.
 */

 /*
 * Fill in basic name for ‘current’ from the variable that
 * the SNMP core matched against
 */
 MEMCPY((char *)current, (char *)vp->name, VAR_AT_OID_LENGTH *sizeof(oid));

 /* scan the ARP table for closest match */
 for(atp = arp_table; atp < arp_table + MAXARPS; atp++)
 {
 if(!atp->t_pro_addr) /* ignore this entry if not valid */
 continue;

 /*
 * For each valid entry in the ARP table, generate an OID describing
 * that entry
 */
 current[VAR_AT_NETTYPE_OID] = 1; /* type is IP address */

 /* copy IP address into current. */
 cp = (u_char*)&atp->t_pro_addr;
 for(i = VAR_AT_IPADDR_OID; i < VAR_AT_OID_LENGTH; i++)
 current[i] = *cp++;

 /* set interface index in objId */
 current[VAR_AT_IFACE_OID] = (oid)(GET_NET_NUM(atp->net) + 1L);

 /*
 * A GET operation will require an exact match of the requested
 * variable with the synthesized name. If there is a match, make
 * a copy of the matching name, and keep a pointer to the appropriate
 * ARP table entry.
 */
 if (oper) /* operation is GET */
A-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface
 {
 if (compare(current, VAR_AT_OID_LENGTH, name, *length) == 0)
 {
 MEMCPY((char *)lowest, (char *)current,
 VAR_AT_OID_LENGTH * sizeof(oid));
 lowarp = atp;
 break; /* no need to search further */
 }
 }
 /*
 * A GETNEXT operation is looking for an entry that is
 * lexicographically greater than the requested variable. If the
 * synthesized name is greater than the requested name, and less
 * than the current best fit that you have found, then it is a
 * better fit than the current best fit. In this case, make a
 * copy of the name, and keep a pointer to the ARP table entry.
 */
 else /* caller wants closest match */
 {
 if ((compare(current, VAR_AT_OID_LENGTH, name, *length) > 0) &&
 (!lowarp ||

(compare(current, VAR_AT_OID_LENGTH, lowest, VAR_AT_OID_LENGTH) < 0)))
 {
 MEMCPY((char *)lowest, (char *)current,
 VAR_AT_OID_LENGTH * sizeof(oid));
 lowarp = atp;
 }
 }
 } /* end for at_mib loop*/

 /*
 * By this point, one of the following will have been found:
 *
 * - an exact match for a GET operation
 * - the nearest next variable for a GETNEXT operation
 * - nothing at all, indicating that there is no next entry in this table.
 *
 * If there is no next entry, return NULL, so that the SNMP core can call
 * the var_routine for the next variable in the variables[] table.
 */
 if(!lowarp)
 return(NULL); /* no match */

 /*
 * For a successful GET or GETNEXT operation, return the actual variable
 * instance found in name, and the length of the variable name in length.
 */
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-5

SNMP ARP Table Interface
 MEMCPY((char *)name, (char *)lowest, VAR_AT_OID_LENGTH * sizeof(oid));
 *length = VAR_AT_OID_LENGTH;

 /*
 * Finally, return a pointer to the location where the variable’s value
 * can be found. Note that long_return is a static data item, and not a
 * local variable.
 */
 switch(vp->magic)
 {
 case ATIFINDEX:
 *var_len = sizeof long_return;
 long_return = (unsigned long)lowest[VAR_AT_IFACE_OID];
 return (u_char *)&long_return;

 case ATPHYSADDRESS:
 *var_len = 6;
 return (u_char *)lowarp->t_phy_addr;

 case ATNETADDRESS:
 *var_len = 4;
 return (u_char *)&lowarp->t_pro_addr;

 default:
 SNMPERROR("var_AtEntry: bad magic number");
 }

 return NULL;
}

/*
 * "access_method" function: Arp table add entry routine.
 * Returns an snmp error from snmp.h (0 == no error)
 *
 * The add_atEntry() function is called by the SNMP core after the
 * var_atEntry() function has returned a non-NULL value (indicating that the
 * variable exists), and after the SNMP core has verified the access
 * permissions are valid, that is, after the SNMP core has verifired that the
 * desired variable is in fact a modifiable one.
 *
 * This routine is called with pointers to the value to set from the SET
 * request packet, and to the location at which to set the variable, as
 * returned by the var_atEntry() function. The variables[] table entry for the
 * variable to be set is passed by way of the set_parms structure
 */
int
add_atEntry(
A-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface
 u_char *var_val, /* pointer to asn1-encoded set value*/
 u_char var_val_type, /* asn1 type of set value */
 int var_val_len, /* length of set value */
 u_char *statP, /* pointer returned by var_atEntry */
 int statLen) /* *var_len from var_atEntry */
{
unsigned iface; /* interface from ObjectId index */
ip_addr arp_ip; /* IP address fronm ObjectID index */
struct arptabent *atp; /* scratch pointer to table entries */
u_char mac_buf[6]; /* temporary storage for MAC address */
unsigned asnbuf_len; /* for use by asn1 parser */
u_char asn_type; /* for use by asn1 parser */

/* obtain a pointer to the variable to be set */
struct variable *vp = set_parms.vp;

 /*
 * An IP address and an interface number index the ATTable.
 * Extract these index values from the Object ID from the SET request
 * (stored in set_parms by the var_atEntry() function).
 *
 * The oid2bytes() function will convert a sequence of object
 * identifiers into a sequence of bytes. The following code
 * illustrates how it is used to convert the four OIDs representing
 * the IP address index into an ipaddr variable, arp_ip. arp_ip will
 * be in network-byte order (big-endian), not local-host byte order.
 */
 oid2bytes((char*)&arp_ip, set_parms.name + VAR_AT_IPADDR_OID, 4);

 /*
 * Extract the interface number from the OID
 */
 iface = (int)*(set_parms.name + VAR_AT_IFACE_OID);

 /*
 * It is recommended that you perform range checking whenever practical.
 * The following code illustrates how you should check that the
 * interface index passed in the request does not exceed the number of
 * interfaces in the system. Within SNMP, the interface index values
 * start at one (not zero), therefore you must also check that you have
 * not received a request to use interface zero:
 */
 if(iface < 1 || iface > ifNumber)
 {
 if(vp->magic == ATIFINDEX)
 return SNMP_ERR_BADVALUE;

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-7

SNMP ARP Table Interface
else
 return SNMP_ERR_NOSUCHNAME;
 }

 /*
 * Use the index values passed to see if there is already an ARP table
 * entry that can be overwritten.
 */
 for(atp = arp_table; atp < arp_table + MAXARPS; atp++)
 if(atp->t_pro_addr == arp_ip)
 break;

 /*
 * If there is no pre-existing entry, you must create one
 */
 if(atp >= &arp_table[MAXARPS])
 {
 atp = make_arp_entry(arp_ip, nets[iface-1]);
 }

 /*
 * The make_arp_entry() function never fails. It locates an empty
 * ARP table entry and uses that, or it uses the least-recently
 * used table entry.
 *
 * atp will now point to a valid ARP table entry. Use the asn_parse_
 * functions to parse the actual value passed in the SNMP SET request
 * to discover what value to set. The asn_ functions expect to be
 * passed a pointer to the number of bytes left in the buffer to be
 * parsed, and will update that value by subtracting the number of bytes
 * used to parse the current value. This function gets passed the length
 * of the data part of the asn.1 sequence, which excludes the two bytes
 * of header/length information. For the asn_ funtions to be able to
 * work correctly, add two to the passed var_val_len, and use that
 * as the value passed into the asn_ function.
 */

 asnbuf_len = var_val_len + 2;

 /*
 * For each variable that can be set, parse the value passed in the SET
 * request message.
 */

 switch (vp->magic)
 {
 case ATIFINDEX:
A-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface
 /*
 * The interface index is passed as an integer. SNMP indexes the
 * interfaces starting at one. The TCP/IP stack indexes them starting
 * at zero, so ensure that you compensate for this.
 */
 asn_parse_int(var_val, &asnbuf_len, &asn_type, (long *)&long_return,
 sizeof(long_return));

 if(long_return < 1 || long_return > (long)ifNumber)
 return SNMP_ERR_BADVALUE;

 atp->net = nets[(int)long_return-1];
 break;

 case ATPHYSADDRESS:
 /*
 * The MAC address is coded as an OCTET STRING, which is parsed into
 * mac_buf. The system expects a MAC address to be no more than six
 * bytes long, so it is checked here to prevent buffer overflow.
 * The undocumented convention for the AT group is that attempting to
 * set a null MAC address should result in the table entry being
 * deleted. The IP stack represents an unused ARP table entry by
 * the protocol address field being set to zero. Therefore,
 * legitimate lengths for the OCTET STRING are zero and six bytes.
 */
 if(var_val_len && var_val_len != 6)
 return SNMP_ERR_BADVALUE;

 asn_parse_string(var_val, &asnbuf_len, &asn_type, mac_buf,
 (unsigned*)&var_val_len);

 if(var_val_len == 0)
 atp->t_pro_addr = 0L; /* mark it deleted */
 else
 MEMCPY(atp->t_phy_addr, mac_buf, 6);
 break;

 case ATNETADDRESS:
 /*
 * The Network Address (Protocol Address) is an OCTET STRING of
 * length four. The asn_parse_ functions do not check that the
 * type they are parsing matches the data that is being parsed,
 * so you can use the asn_parse_int() function to parse the
 * OCTET STRING into an integer variable. The asn_parse_int()
 * function also handles the conversion from network-byte order
 * to local-host byte order. However, the ARP table entry is
 * expected to be stored in network-byte order, so you must
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-9

SNMP ARP Table Interface
 * change the value back to network-byte order
 */
 asn_parse_int(var_val, &asnbuf_len, &asn_type, (long *)&long_return,
 sizeof(long_return));
 atp->t_pro_addr = htonl(long_return);
 break;

 default: /* should not happen */
 dtrap();
 }

 /*
 * Each of the cases above has left the value that was set in the global
 * variable whose address was returned by the var_artEntry() function. This
 * value is obtained by the SNMP core and is used to create the
 * response message that is sent back to the SNMP station that originated the
 * request.
 *
 * The final step is to let the SNMP core know that no errors occured.
 */
 return SNMP_ERR_NOERROR;

 USE_ARG(statLen);
 USE_ARG(statP);
 USE_ARG(var_val_type);
}

A-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Appendix B
Building the Demonstration Program

This appendix details the requirements, installation procedure, and steps required to
build the demonstration program. Instructions are provided for using both ARM SDT
for Windows and ARM SDT for command-line environments.

This chapter contains the following sections:

• About the demonstration program on page B-2

• Requirements on page B-3

• Installation procedure on page B-4

• Building using ARM SDT for Windows on page B-5

• Building using ARM SDT from the command line on page B-7

• Running the SNMP Agent application on page B-8.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-1

Building the Demonstration Program

s

B.1 About the demonstration program

The demonstration SNMP Agent shipped with ARM SNMP implements all of the
following:

• a subset of MIB-II from RFC 1213

• a modified version of the Coffee Pot MIB, extracted from RFC 2325

• an application-specific extension that has been appended to the RFC 1213 .mib
file.

The MIB Compiler is used to generate the .h header file, the .c stubs file, a .num
numbers file, and the snmpvars.c file. However, the demonstration agent only make
use of the snmpvars.c file and the .h header file.

The .c stubs file is replaced by mib2.c which contains example implementations of
the MIB-II, Coffee Pot MIB, and the application-specific var_ and
access_method() routines for the following groups:

• MIB-II System group

• MIB-II Interfaces group

• MIB-II ifEntry group

• MIB-II atEntry group

• MIB-II ip group

• MIB-II ipAddrEntry group

• MIB-II ipRouteEntry group

• MIB-II ipNetToMediaEntry group

• MIB-II icmp group

• MIB-II tcp group

• MIB-II tcpConnEntry group (not implemented)

• MIB-II udp group

• MIB-II udpEntry group

• MIB-II egp group (not implemented)

• MIB-II egpNeighEntry group (not implemented)

• MIB-II snmp group

• application-specific MIB snmpDemo group

• Coffee Pot MIB coffee group

• Coffee Pot MIB potMonitor group.
B-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program
B.2 Requirements

You need the following products to build the demonstration program:

• ARM TCP/IP

• ARM PPP (optional)

• ARM SNMP Agent

• ARM Development Board (PID7T), with Ethernet Kit

• ARM SDT, version 2.50 or later

• Multi-ICE or EmbeddedICE interface.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-3

Building the Demonstration Program
B.3 Installation procedure

Install the ARM TCP/IP software by following the detailed instructions in Porting
TCP/IP Programmer’s Guide provided with the ARM TCP/IP software. Check that you
can compile and run programs on the ARM Development Board (PID7T).

Unpack the ARM SNMP Agent software into the directory containing the ARM TCP/IP
sources. You should now have a directory structure similar to:

Note

There might be other directories for PPP, and other ARM networking protocols that you
have purchased.

CharGen

mibcomp

inet

snmp

snmpdemo
tcp
B-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program
B.4 Building using ARM SDT for Windows

This section details the steps you need to take to build the MIB Compiler and
demonstration SNMP Agent using ARM SDT in a Windows environment.

B.4.1 Building the MIB Compiler

To build the MIB Compiler:

1. Using the ARM Project Manager (APM), open the mibcomp.apj file in the
…\mibcomp directory.

2. Select Build mibcomp.apj from the Project menu. The MIB Compiler should
build without errors or warnings.

B.4.2 Compiling the example MIB files

To compile the example MIB files:

1. Select Debug mibcomp.apj from the Project menu. This invokes the ARM
Debugger for Windows (ADW).

Note

You may have to reconfigure the ADW to use the ARMulator, configured for
little-endian ARM7 operation, if your ARM Development Board (PID7T) is not
configured for little-endian operation with an ARM7 compatible core, or if it has
insufficient memory to compile the MIB files.

2. In ADW, select Set Command Line Arguments from the Options menu.

3. In the command-line arguments box, enter:
-i ..\snmpdemo\rfc1213.mib ..\snmpdemo\rfc2325.mib -chnvq

4. Click OK.

5. Select Go from the Execute menu. You should see output similar to the
following:

MIB compiler v1.4.2
Copyright (C) ARM Limited 1999. All Rights Reserved.
Copyright 1996 by InterNiche Technologies Inc.
Copyright 1993 by NetPort Software
Parsed 450 objects

6. If you reconfigured the ADW to use the ARMulator, change it back to use the
ARM Development Board (PID7T) again.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-5

Building the Demonstration Program
7. Exit ADW.

8. Move the four output files (coffee_p.c, coffee_p.h, coffee_p.num, and
snmpvars.c) from the …\mibcomp directory to the …\snmpdemo directory.

B.4.3 Building the SNMP Agent application

To build the ARM SNMP Agent application:

1. Using the APM, open the snmpdemo.apj file in the …\snmpdemo directory.

2. Select the appropriate project for your configuration (for example, ARM or
Thumb, or big-endian or little-endian).

3. Select Build… from the Project menu. The SNMP Agent project should build
without errors or warnings.
B-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program
B.5 Building using ARM SDT from the command line

To build the MIB Compiler and demonstration SNMP Agent application using ARM
SDT in a command-line environment, you must do the following:

1. Change the directory to …\snmpdemo.

2. Edit the makefile.

3. Uncomment the WHICHVARIANTS= line, and fill in the variant(s) you would like
to build. You can choose from the following:

• ArmLittleDebug

• ArmLittleRelease

• ArmBigDebug

• ArmBigRelease

• ThumbLittleDebug

• ThumbLittleRelease

• ThumbBigDebug

• ThumbBigRelease.

4. Do one of the following:

• run make -s all (UNIX systems)

• run armmake -s all (PC systems).

The SNMP Agent project should build without errors or warnings.
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-7

Building the Demonstration Program
B.6 Running the SNMP Agent application

To run the SNMP Agent application:

1. Edit the ether.nv file and set valid IP addressing options, and SNMP
community and trap target information, before running the snmpdemo.axf file
on the ARM Development Board (PID7T).

2. Use your preferred SNMP network management software to interrogate the
SNMP Agent.
B-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
About the MIB Compiler 2-2
Abstract Syntax Notation 1. See ASN.1.
access_method() 3-27, 3-28, A-1, A-6,

B-2
add_atEntry A-2, A-6
ADW B-5
agent 1-3
APM B-5, B-6
ARM Debugger for Windows. See

ADW.
ARM Development Board (PID7T)

1-2, 1-6, B-3, B-4, B-5, B-8
ARM Project Manager. See APM.
ARM Software Development Toolkit.

See SDT.
ArmBigDebug B-7
ArmBigRelease B-7
ARMCC 2-3
ArmLittleDebug B-7
ArmLittleRelease B-7
armmake B-7

ARMulator 2-3, B-5
ARM7 B-5
asn1.c 3-3
ASN.1 1-3, 2-2, 2-5, 2-8
ASN.1 INTEGER 3-22, 4-15
ASN.1 NULL 4-19
ASN.1 OBJECT ID 4-18
ASN.1 OCTET 4-17
ASN.1 parse functions 4-15

asn_parse_int() 4-15
asn_parse_null() 4-19
asn_parse_objid() 4-18
asn_parse_string() 4-17

ASN.1 SEQUENCE 2-7, 3-22
atEntry A-1

B
BADVALUE 3-26
Berkeley Software Distribution. See

BSD.
Big-endian 3-10

BSD 3-10
Building the demonstration program

command line B-7
Windows B-5

Building the MIB Compiler 2-3, B-5
Building the SNMP Agent application

B-6

C
Calling functions 3-8
Coffee Pot MIB B-2
coffee_p.c B-6
coffee_p.h B-6
coffee_p.num B-6
Cold Start trap 3-8, 4-10
Communities 4-11
communityID 3-8, 4-11
compare() 3-17, 3-23
Compiling the example MIB files B-5
Core files 3-3

asn1.c 3-3
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. Index-1

Index
snmp.c 3-3
snmp_age.c 3-3
snmp_aut.c 3-3
trap_out.c 3-3

COUNT 3-16
COUNTER 3-17
CPU requirements 1-5
Custom SET operations 3-26

D
data 4-15, 4-17, 4-18, 4-19
Data objects to implement 3-8
datalength 4-15, 4-17, 4-18, 4-19
Demonstration program 1-2

building B-5, B-7
requirements B-3

Demonstration program overview B-2
Demultiplexor 4-9
do_range 3-17, 3-26
dprintf() 3-7
dtrap() 3-7, 3-11

E
EmbeddedICE B-3
ENABLE_SNMP_TRAPS 3-13
ENP_ code 4-9
ENP_NOT_MINE 4-9
ENTERPRISE 3-12, 4-13
Enterprise identification number 3-12,

4-12, 4-13
Example implementation routines B-2

F
FALSE 3-10
findVar() 3-15
free() 3-12
Functions to call 3-8
Functions to implement 3-7

G
GAUGE 3-16, 3-17

GET 2-6, 3-15, 3-17, 3-18, 3-23, 3-24,
3-26

GETNEXT 2-6, 2-8, 3-15, 3-18, 3-22,
3-23, 3-24

GetUptime() 3-7, 4-8
GNU C 2-3

H
hi_range 3-17, 3-26
htonl() 3-7, 3-10
htons() 3-7, 3-10

I
IANA 3-12, 4-12
ICMP 3-19, 3-21
icmp_mib 3-20
ifDescr 3-22
ifIndex 3-22
ifPhysAddress 3-22
Implementing

functions 3-7
macros 3-7

Implementing data objects 3-8
inbuf 4-2
INCLUDE_SNMP 4-10
Indexed variable 3-22
Indexes 3-22
inlength 4-2
Input 2-5
Installation procedure (demonstration

program) B-4
INTEGER 3-16, 3-17
Interface 4-2
Interfaces table 3-22
Internet Assigned Numbers Authority.

See IANA.
Internet Control Message Protocol. See

ICMP.
intp 4-15
intsize 4-15
ipport.h 3-7, 4-9, 4-10
ip_myaddr() 3-7
ip_start() 4-10

L
length 3-15, 3-16, 3-17
Lexicographic comparison 3-17, 3-22
Lexicographic ordering 2-7, 2-8
Little-endian 3-11
Low-overhead UDP 3-5, 4-9
lo_range 3-17, 3-26

M
Macros to implement 3-7
magic 3-18, 3-19
main() 3-8, 4-12, 4-13
main.c 2-3
make B-7
Makefile 2-3, B-7

armmake B-7
malloc() 3-12
Management Information Base. See

MIB.
MAX_COMMUNITY_SIZE 3-12
MAX_OID_LEN 3-12, 4-18
MAX_SUBID 3-11
MAX_TRAP_TARGETS 3-13, 4-13
MEMCPY() 3-7
MEMMOVE() 3-7
Memory sizes 1-5
MIB B-2

Compiler 1-4, B-2, B-5, B-7
building 2-3
input 2-5
output 2-6
output files 3-4
overview 2-2
usage 2-4
variables structure 2-7

files 2-2, 2-5
compiling B-5

groups 2-7
MIB II 1-2, 1-5
updating 2-9
variables 1-4, 2-2, 3-7, 3-8, 3-19

MIB Compiler 1-6
mibcomp 2-3
mibcomp.apj B-5
mib2.c 3-4, 3-22, 3-25, 3-27, B-2
MIB_COUNTERS 3-9, 3-13, 4-11
Index-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Index
Microsoft nmake 2-3
msg 4-6
Multi-ICE B-3

N
name 3-15, 3-16, 3-17, 3-23, 3-27
nb_len 4-9
nb_prot 4-9
nmake 2-3
Non-Volatile Random Access Memory
NOSUCHNAME 3-17, 3-26, 3-27
nptypes.h 3-9
ntohl() 3-7, 3-10
ntohs() 3-7, 3-10
NULL 3-10, 3-15, 3-17, 3-24, 3-26,

4-13
Numbers file 2-4
Numbers files 2-6
num_communities 3-8, 4-11
num_variables 3-8
NVRAM 3-8

O
Object Identifier 2-4, 2-7, 2-8, 3-11,

3-15, 3-16, 3-17, 3-18, 3-22, 3-23
Object ID. See Object Identifier
objid 4-18
objidlength 4-18
Octet strings 3-16
OID. See Object Identifier.
oper 3-15, 3-16, 3-17
outbuf 4-2, 4-3
outlength 4-2
Output 2-6
out_data 4-7
out_len 4-7
Overview

demonstration program B-2

P
PACKET 4-9
parse.c 2-3
parse.h 2-3

PID7T 1-2, 1-6, B-3, B-4, B-5, B-8
port 4-9
Port data 4-11
Port files 3-3

snmpport.c 3-3
snmpsock.c 3-3

Port-dependent files 3-9
Porting procedure 3-6
PPP B-3, B-4
PREBIND_AGENT 4-9
printf() 4-6
Private Enterprise Number 3-9, 3-16
Procedure

installing the demonstration program
B-4

R
Range checking 3-17, 3-26
Read-only 2-8
Read/write 2-8
Real-time Operating System. See

RTOS.
Recommended data structure 3-18
Requirements for the demonstration

program B-3
RTOS 3-5
Running the SNMP Agent application

B-8

S
Scalar variables 3-15, 3-22
SDT 1-2, B-1, B-3, B-5, B-7
send_trap_udp() 3-7, 4-7
SET 2-6, 3-15, 3-17, 3-18, 3-22, 3-23,

3-24, 3-26
SetParms 3-26, 3-27
set_parms 3-17, 3-18, 3-27
set_parms.do_range 3-26
set_parms.lo_range 3-26
Skeleton routines 2-2
SMI 4-12
SNMP access permissions 3-8
SNMP Agent application

building B-6
running B-8

SNMP Agent interface 4-2
SNMP community strings 3-8
SNMP demonstration program 1-2,

B-1
SNMP MIB 4-11
SNMP port data 4-11
SNMP usage statistics 3-9
snmpdemo 4-12, 4-13
snmpdemo.apj B-6
snmpdemo.axf B-8
SNMPERROR() 3-7, 3-11, 4-6
SnmpMib 3-9, 4-11
snmpport.c 3-3, 3-7, 3-8, 3-9, 4-2, 4-7,

4-9, 4-10, 4-11, 4-12, 4-13, 4-14
snmpport.h 3-7, 3-9, 3-10, 3-13, 4-3,

4-11, 4-13
SNMPSIZ 3-13, 4-3
snmpsock.c 3-3, 4-2, 4-7, 4-10, 4-14
snmpvars.c 2-4, 2-6, 2-7, 3-4, B-2, B-6
snmp.c 3-3
snmp.h 3-27
snmp_age.c 3-3
snmp_agt_parse() 3-5, 3-6, 3-8, 3-13,

4-2, 4-3, 4-9
snmp_aut.c 3-3
SNMP_ERR_ values 3-27

SNMP_ERR_BADVALUE 3-27
SNMP_ERR_GENERR 3-27
SNMP_ERR_NOERROR 3-27
SNMP_ERR_NOSUCHNAME

3-27
SNMP_ERR_READONLY 3-27,

3-28
SNMP_ERR_TOOBIG 3-27

snmp_imp.h 4-4
snmp_init() 3-8, 4-4, 4-10, 4-13, 4-14
snmp_mib 3-9, 4-11
snmp_trap() 3-8, 4-2, 4-4, 4-5
snmp_upc() 4-9
snmp_var.h 2-7
Sockets 1-3, 4-10
Software interface 3-7
Solaris 2-3
Source files 3-2
specificType 4-4
specificVarCount 4-4
specificVars 4-4
stack 1-3
stdio.h 3-10
ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. Index-3

Index
STRING 3-18
string 4-17
strlength 4-17
strncmp() 3-17
struct variable 2-7
Structure of Management Information.

See SMI.
Stub routines 2-2, 3-4, 3-22
Sub-id 3-11
Suggested data structures 3-19
SysContact 3-16
SysDescr 3-16
SysLocation 3-16
SysName 3-16
SysObjectID 3-16, 4-12
SysServices 3-16
System identifier 4-12
System requirements 1-4
system.sysObjectID.0 value 3-9
SysUpTime 3-16
sys_id 4-13
sys_id_len 3-9, 4-13
SYS_STRING_MAX 3-12, 3-17

T
Target system 3-5
TCP/IP B-3
Testing 3-13
ThumbBigDebug B-7
ThumbBigRelease B-7
ThumbLittleDebug B-7
ThumbLittleRelease B-7
TIMETICKS 4-8
TODO 2-6
Trap 4-4, 4-7, 4-13
Trap buffer 4-7, 4-10, 4-13
Trap targets 4-13
trapType 4-4
trapVar 4-4, 4-5
trap_buffer 4-13, 4-14
trap_buffer_len 4-13, 4-14
trap_out.c 3-3, 4-13
trap_target 4-7, 4-13
tree.c 2-3
TRUE 3-10
type 4-15, 4-17, 4-18, 4-19
types.h 3-9

U
UDP 1-4, 3-7
udp_send() 4-9
Unknown magic number 3-19
Updating MIBs 2-9
Usage 2-4
User-required functions 4-6

V
varBuf 4-4
varBufLen 4-4
Variables

length 3-15, 3-16, 3-17
name 3-15, 3-16, 3-17, 3-23, 3-27
oper 3-15, 3-16, 3-17
structure 2-6, 2-7
table 3-23
varBuf 4-4
varBufLen 4-4
varName 4-4
varNameLen 4-4
varType 4-4
varValLen 4-4
var_len 3-15, 3-16
vp 3-15, 3-16, 3-27

Variants
ArmBigDebug B-7
ArmBigRelease B-7
ArmLittleDebug B-7
ArmLittleRelease B-7
ThumbBigDebug B-7
ThumbBigRelease B-7
ThumbLittleDebug B-7
ThumbLittleRelease B-7

varName 4-4
varNameLen 4-4
varType 4-4
varValLen 4-4
var_ routine 3-17, 3-26, 3-27, B-2
var_atEntry A-2
var_icmp() 3-21
var_ifEntry() 3-22
var_len 3-15, 3-16, 3-17, 3-18
var_snmp() 3-9
var_system() 3-27
vp 3-15, 3-16, 3-27

V1_IP_SNMP_TRAPS 3-13
V2_IP_SNMP_TRAPS 3-13

Symbols
.iso.org.dod.internet.private.enterprises

3-9
Index-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM SNMP Agent
	Feedback on this book

	Introduction
	1.1 About the ARM SNMP Agent
	1.1.1 Demonstration program

	1.2 Terms and conventions
	1.3 System requirements
	1.3.1 MIB Variables
	1.3.2 Processing power

	MIB Compiler
	2.1 About the MIB Compiler
	2.2 Building the MIB Compiler
	2.3 Usage
	2.4 Input
	2.5 Output
	2.5.1 Variables structure

	2.6 Updating MIBs

	Porting the SNMP Agent
	3.1 Setting up your source tree
	3.1.1 Core files
	3.1.2 Port files
	3.1.3 MIB Compiler output files
	3.1.4 Your project files

	3.2 The target system
	3.3 Porting procedure
	3.3.1 SNMP Agent software interface
	3.3.2 Port-dependent files
	3.3.3 Testing

	3.4 GET operations and scalar variables
	3.4.1 Suggested data structures

	3.5 GETNEXTs and indexes
	3.6 Custom SET operations

	Function Descriptions
	4.1 SNMP Agent interface
	4.1.1 snmp_agt_parse()
	4.1.2 snmp_trap()

	4.2 User-required functions
	4.2.1 SNMPERROR()
	4.2.2 send_trap_udp()
	4.2.3 GetUptime()
	4.2.4 snmp_upc()
	4.2.5 snmp_init()

	4.3 SNMP port data
	4.3.1 SNMP MIB
	4.3.2 Communities
	4.3.3 System identifier
	4.3.4 Trap targets
	4.3.5 Trap buffer

	4.4 ASN.1 parse functions
	4.4.1 asn_parse_int()
	4.4.2 asn_parse_string()
	4.4.3 asn_parse_objid()
	4.4.4 asn_parse_null()

	SNMP ARP Table Interface
	A.1 atEntry table, annotated

	Building the Demonstration Program
	B.1 About the demonstration program
	B.2 Requirements
	B.3 Installation procedure
	B.4 Building using ARM SDT for Windows
	B.4.1 Building the MIB Compiler
	B.4.2 Compiling the example MIB files
	B.4.3 Building the SNMP Agent application

	B.5 Building using ARM SDT from the command line
	B.6 Running the SNMP Agent application

