Porting the ARM SNMP Agent

Version 1

Programmer’s Guide

ARM

Copyright © 2000 ARM Limited. All rights reserved.
ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change history

Date Issue Change

January 2000 A First release

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, PRIMECELL, AMBA, Angel, ARMulator, Embeddedl CE, Model Gen, Multi-ICE,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Contents

Programmer’s Guide

Chapter 1

Chapter 2

Chapter 3

Preface
ADOUL thiS DOOK ..vevviiiiiiiiiiiiiccc e Vi
FEEADACK .. .coiii it e e e e e e e e n e e e e e aaaarae ix
Introduction
11 About the ARM SNMP AQENE ...cccuviiiiiie e 1-2
1.2 Terms and CONVENTIONSuuuiiiiiiiiieieieeeeeee e e es e ee s e e e e reaeaeaeeeaeaaneas 1-3
1.3 SYSLEM FEQUIFEMENESeiiiiiiieiiiiiiie ettt e et e e e e e e e e 1-4

MIB Compiler

2.1 About the MIB COMPIIEEco..eiiiiiiiiii e
2.2 Building the MIB Compiler
2.3 USBIJE ..ottt et e e e e e e s e s

2.4 INPUL e
2.5 OULPUL ettt e e s et e e e e e e e s e e snr e e e e e e
2.6 UPAALING MIBS ...ttt ettt e e ettt e e e et e e e e saeeee

Porting the SNMP Agent

3.1 Setting UP YOUF SOUICE trEEuueiieii ettt e e e e
3.2 The target system

3.3 Porting procedure

3.4 GET operations and scalar variables

ARM DUI 0120A

© Copyright ARM Limited 2000. All rights reserved. iii

Chapter 4

Appendix A

Appendix B

35 GETNEXTS @nd iNAEXES ...cuiiiiiiieeiiieie ettt 3-22
3.6 Custom SET operations

Function Descriptions

4.1 SNMP AQENt INTEITACEoiiiiiiiiiie e e 4-2
4.2 User-required FUNCHONSooiiiiiiiiie e 4-6
4.3 SNMP POt ALA ...eeeiiiieiiiieiii e 4-11
4.4 ASN.1 PArse fUNCLONScccvviiiiiieiiiee e 4-15

SNMP ARP Table Interface
A.l atEntry table, annotatedcccooiiiiiie i A-2

Building the Demonstration Program

B.1 About the demonstration Programcocuee e eiiiee i
B.2 REQUIFEIMENLES ..ottt et e e e e e neeeeee s
B.3 Installation procedurecccceeiiiiiieiiniiiineen.

B.4 Building using ARM SDT for Windows
B.5 Building using ARM SDT from the command line
B.6 Running the SNMP Agent applicationcccoccveeiiiiiiiiiieneeenee e

© Copyright ARM Limited 2000. All rights reserved. ARM DUI 0120A

Preface

This preface introduces the ARM SNMP Agent porting procedure. It contains the
following sections:

. About this book on page vi
. Feedback on page ix.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved.

Preface

About this book
This book is provided with the ARM SNMP Agent software.

It is assumed that you have the ARM SNMP Agent porting sources available as a
reference. It isalso assumed that you have accessto programmer guidesfor C and ARM
assembly language.

Intended audience

ThisProgrammer’s Guide is written for experienced embedded systems programmers,
with a general understanding of what an SNMP Agent does. It is written for those
programmers who want to use the ARM SNMP Agent in their product.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the SNMP Agent, and to
learn about the demonstration program and system requirements
for the SNMP Agent.

Chapter 2 MIB Compiler
Read this chapter for an overview of the MIB compiler, and for
details on how to build and use the compiler.

Chapter 3 Porting the SNMP Agent
Read this chapter to learn how to port the ARM SNMP Agent,
step-by-step, to an embedded system.

Chapter 4 Function Descriptions
Read this chapter for a description of the functions and data items
used to interface to the SNMP Agent core.

Appendix A S\MP ARP Table Interface

Read this appendix to see a heavily annotated example of the
at Ent ry table, a complete example of usingaaness_net hod
function (se€Custom SET operations on page 3-26).

Appendix B Building the Demonstration Program

Read this appendix for complete instructions on building the
demonstration SNMP Agent shipped with ARM SNMP.

Vi Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Preface

Typographical conventions

Further reading

The following typographical conventions are used in this book:

t ypewr it er Denotestext that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewr it er Denotes apermitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or option
name.

typewiter italic

Denotes arguments to commands and functions where the argument isto
be replaced by a specific value.

italic Highlights important notes, introduces special terminol ogy, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewiter bold

Denotes |anguage keywords when used outside example code and ARM
processor signal names.

This section lists publications from both ARM Limited and third parties that provide
additional information on SNMP.

ARM periodically provides updates and corrections to its documentation. See
ht t p: / / www. ar m comfor current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://ww. arm conf DevSupp/ Sal es+Support/faqg. ht m

ARM publications

Thisbook containsreferenceinformation that is specific tothe ARM SNMP Agent. For
additional information, refer to the following ARM publications:

. ARM Software Development Toolkit Reference Guide (ARM DUI 0041)
. ARM Software Development Toolkit User Guide (ARM DUI 0040)
. Porting TCP/IP Programmer’s Guid@dRM DUI 0079).

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. vii

Preface

Other publications

For other reference information relating to the ARM SNMP Agent, please refer to the
following:

Kernighan, Brian W. and Ritchie, Dennis Nihe C Programming Language, 2nd
Edition, 1988, Prentice-Hall (ISBN 0-13-110370-8).

Rose, Marshall T.The Smple Book; An Introduction To Internet Management,
Revised, 2nd Edition, 1995, Prentice-Hall (ISBN 0-13-451659-1).

RFC 1155, McCloghrie, K., Rose, M., "Structure and ldentification of
Management Information for TCP/IP-based Internets"”, May 1990.

RFC 1157, Case, J., Davin, J., Fedor, M., Schoffstall, M., "A Simple Network
Management Protocol (SNMP)", May 1990.

RFC 1212, McCloghrie, K., Rose, M., "Concise MIB Definitions", March 1991.

RFC 1213, McCloghrie, K., Rose, M., “Management Information Base for
Network Management of TCP/IP-based internets: MIB-II", March 1991.

RFC 1700, Postel, J., Reynolds, J., "Assigned Numbers", October 1994.

RFC 2325, Slavitch, M., “Definitions of Managed Objects for Drip-Type Heated
Beverage Hardware Devices using SMIv2”, April 1998.

viii

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Feedback

Preface

ARM Limited welcomes feedback on both the ARM SNMP Agent, and its
documentation.

Feedback on the ARM SNMP Agent

If you have any problemswith the ARM SNMP Agent, please contact your supplier. To
help them provide arapid and useful response, please give:

Feedback on this book

details of the release you are using

details of the platform you are running on, such as the hardware platform,
operating system type and version

a small standalone sample of code that reproduces the problem

a clear explanation of what you expected to happen, and what actually happene
the commands you used, including any command-line options

sample output illustrating the problem

the version string of the tool, including the version number and date.

If you have any comments on this book, please send emeail ta a@r m comgiving:

the document title

the document number

the page number(s) to which your comments apply
a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. ix

Preface

X Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 1
Introduction

Thischapter introducesthe SNM P Agent, and describes the demonstration program and
system requirements for the SNMP Agent. It contains the following sections:

. About the ARM SNMP Agent on page 1-2
. Terms and conventions on page 1-3
. System requirements on page 1-4.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 1-1

Introduction

11

About the ARM SNMP Agent

Thistechnical reference is provided with the ARM portable Simple Network
Management Protocol (SNMP) sources. The purpose of this document isto provide
enough information to enable a moderately experienced C programmer, with a
reasonable understanding of SNMP, to integrate the ARM SNM P Agent into a product.
It is assumed you have experience with networking code, especially Transmission
Control Protocol/Internet Protocol (TCF/IP).

111 Demonstration program

It is assumed you have the ARM SNMP Agent demonstration program available asa
reference. Thisis provided as part of the SNMP Agent source code release. Currently,
the demonsgtration program is shipped for an ARM Development Board (PID7T), using
ARM’sBerkeley System Distribution (BSD) UNIX-derived ARM TCP/IPthat compiles
with the ARM Software Development Toolkit (SDT) version 2.50. The ARM
Development Board (PID7T), SDT 2.50, and TCP/IP can be purchased from ARM. See
theweb siteht t p: / / www. ar m com

SNMP demonstration program

The demonstration program implements an SNM P agent that supports the Management
Information Base-11 (MIB) System and SNMP groups. See Appendix B Building the
Demonstration Program for complete details on building and running the
demonstration program.

1-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Introduction

1.2 Terms and conventions
In this document, the following terms are used:

Agent When used without other qualification, meansthe ARM SNMP Agent
cade as ported to an embedded system.

ASN.1 Abstract Syntax Notation 1. Refers to a subset of the ISO/ITU-T
standard, as described in RFC 1155.

End user Refers to the person who ultimately uses your product.

Sockets Refersto the TCP/IP Application Program Interface (API) devel oped for
UNIX at the University of California, Berkeley.

The agent is delivered with example implementation notes for Sockets
because many embedded systems already have sockets. A copy of the
Sockets APl documentation is available from ARM upon request.

Stack Means the TCP/IP and related code, as ported to an embedded system.
System Refers to the embedded system.
You Refersto the user or engineer who is porting the server.

Conventions used throughout the document, such as the use of bold or italic font, are
explained in Typographical conventions on page Preface-vii.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 1-3

Introduction

1.3

131

System requirements

To port the ARM SNMP Agent to another environment, you must have the following
resources available in the target environment:

. sufficient RAM (see Table 1-1 on page 1-5 for approximate values)
. a networking stack that suppotdser Datagram Protocol (UDP).

Note

An SNMP Agent-compatible TCP/IP stack is available, and this has been optimized for
the ARM architecture. Contact your ARM supplier for details. Your target platform may
come with a suitable protocol stack.

MIB Variables

The MIB variables that you define and implement affect the system requirements. In
general, as more MIB variables are defined, more memory is required for both code and
data. Variables defined in a table, as part of an ASN.1 SEQUENCE, generally require
more code space and CPU power than nontabular variables. Code written to maintain
the variables in structures produced by the ARM MIB Comphewption also tends to

be more efficient than code adapted to an existing system. Systems that maintain the
implemented variables in hashed or ordered tables also tend to be faster than those that
do not, but they might require more memory to manage the hashed data structures.

There is no easy way to determine the exact memory sizes required. However, you can
get a general idea by examining the demonstration program. Some figures are given in
Table 1-1 on page 1-5 for a MIB-Il demonstration, which is part of the standard
package.

Note

The figures in Table 1-1 on page 1-5 are subject to change without notice, but are
current at the date of publication.

1-4

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Introduction

Table 1-1 Memory sizes of the MIB-Il demonstration

Use Bytes
SNMP Agent ROM space 7956
SNMP Agent RAM space 2760
SNMP variables ROM space 13552

(includesvar _ routine code)

SNMP variables RAM space 80
(used by var _ routines)

Note

When the demonstration isrun, it also allocates six small packet buffers (128 bytes
each) and three large ones (600 bytes each) dynamically using nal | oc() . Thememory
used by these packets should be added to the figures shown in the configurationin Table
1-1.

The program is compiled using ARM SDT 2.50, for the ARM7TDMI processor in
Thumb state, using options to optimize code size (rather than execution speed). It
implements MIB-I11 as described in RFC 1213. It does not have a TCP or Exterior
Gateway Protocol (EGP) layer, and therefore omits the group for this protocol as
allowed by the RFC.

You can cut the amount of space used by SNMP code and data by deleting groups of
variables from the MIB.

The sizes shown in Table 1-1 will change when compiled for other ARM cores. The
sizes generally increase when compiled for ARM state, or when optimized for speed
rather than code size.

1.3.2 Processing power

Processing power is another resource for which exact requirements are difficult to
guantify. The SNMP Agent requires only that it can reply to the requests of an SNMP
management station before the timer runs out. If the station sends only one request per
second, and allows one second for the reply, any processor will be adequate. However,
the stations sometimes send packets in bursts, and the CPU of the SNMP Agent has
tasks other than SNM P to perform. As discussed in MIB Variables on page 1-4, the
number and type of MIB variables implemented also has a major effect on CPU
requirements, as the table of variables has to be searched for each received request.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 1-5

Introduction

To assess processing power requirements, it is recommended that you first compare
requirements with those of similar systems. For embedded agents, the ARM SNMP
demonstration isintended to provide a starting point. You can add and delete variables
quickly using the MIB Compiler, and then test them on the ARM Development Board
(PID7T). You can run other processes simultaneously with the agent to determine the
effect of heavy SNMP work on the performance of the system.

1-6

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 2
MIB Compiler

This chapter gives an overview of the MIB Compiler. It also provides details on how it
is built, and how to useit. It contains the following sections:

. About the MIB Compiler on page 2-2

. Building the MIB Compiler on page 2-3
. Usage on page 2-4

. Input on page 2-5

. Output on page 2-6

. Updating MIBs on page 2-9.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 2-1

MIB Compiler

2.1 About the MIB Compiler

The ARM MIB Compiler is aprogram that takes a MIB file written in RFC
1155-compliant ASN.1 notation, containing the specification of the variables to be
managed, and produces one or more of these output files:

. Files containing C language source code files, that are useful for beginning the
implementation of the SNMP MIB variables in the SNMP Agent. These files
containskeleton routines that you need to fill in.

. A variablesfile that contains a table that links the MIB variables to the skeleton
routines.

. . h header files with the function prototypes and definitions for the abofites.

. A numbersfile, suitable for describing the MIB variables to an SNMP
management station.

Filling in the skeleton routines (also callgdb routines) comprises a major portion of
the work involved in porting and maintaining your SNMP Agent. The routines can be
quite complex, so a major portion of this chapter and the next (Chapteti8g the

SNMP Agent) describes these routines. Generally, the most difficult part of an SNMP
implementation is understanding what these routines do, how they index Object IDs,
and how they access variables in tables.

2-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler

2.2 Building the MIB Compiler

The MIB Compiler is provided in source form. You will need to build mi bconp using
the native C compiler of your system. The sources consist of three. ¢ filesand one. h
header file:

mai n. c Is the system-dependent front end with the mai n() routine.
parse. c Reads MIB files.

par se. h Contains the defines for mi bconp.

tree.c Writes the output files.

These files should compile with little or no modification on most machines. They
include standard C library calls and header files. Makefiles are provided for Solaris,
GNU C, the Microsoft nnake facility, and ARMCC (for use with the ARMulator).

Note

The MIB Compiler is used regularly during the development of the SNMP Agent as
MIB variables are changed. Therefore, you must store the mi bconp executablein a
directory where it can be invoked by the makefiles that build your embedded system.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 2-3

MIB Compiler

2.3 Usage

The MIB Compiler command-line format is as follows:

m bconp -i nmibfile.mib [mibfile2. mb ..][-[chnvq]]

where:

- mbfile.mb ...

Isaspace-separated list of text files containing the ASN. 1 descriptions of
the MIBs to be compiled.

-c Outputsa.c C source file that contains skeleton C routines for parsing
the variables in each group within the MIB.

-h Producesa.h C header filethat contains defines and function prototypes
for the .c filethat is produced by the-c option.

-n Outputs a numbers file for each MIB, containing the numeric Object ID
(OID) and symbolic name and type for each variable within the MIB.

-v Outputs an snmpvars.c ~ file, containing the SNMP variables table
(see Variables structure on page 2-7). Thetable contains all the variables
from al the MIB files.

-q Reduces the amount of detailed output from the MIB Compiler, making
it more suitable for use in script files or makefiles.

The MIB Compiler also supports the following options that might be useful when

working with other environments or tools:

-p Causesthe C file produced by the MIB Compiler to be pre-ANSI, that is,
with simple prototypes.

- Causes the C file produced by the MIB Compiler to usef ar pointer
references, for use with Intel x86-segmented environments.

2-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

2.4 Input

MIB Compiler

The MIB Compiler takes, as input, one or more MIB definition files as described in
RFC 1155. Severa samples of these files are shipped with the ARM demonstration
program. These sample files were created using a simple text editor to edit out the
non-ASN.1 portions for the RFCs from which each MIB came. To be left with only
ASN.1 that is suitable for input to the MIB compiler, you must delete the following:

. all text preceding thBEFI NI TI ONS : : = BEG Nline
. all text following theEND line
. all page break text (footer, page break, and header).

If you want to define your own MIBs, the two most important decisions to make are:
. which variables you want to manage
. how to organize these variables.

You then need to write the ASN.1 text to describe them, which is a straightforward
process. After the MIB has been written in RFC 1155-compliant ASN.1, you can
compile and implement it like any standard MIB.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 2-5

MIB Compiler

2.5

Output

As discussed in About the MIB Compiler on page 2-2, the compiler will produce a. ¢
file, a. h header file, and anumbersfile. Because these files are regenerated whenever
theMIB Compiler isrun (that is, whenever the MIB is changed), you must not edit them
manually. The files are;

source.c This C source file contains stub routines for accessing MIB variables.
These are intended to be copied to your own source files and completed
there.

header. h This C header file includes prototypes for the C stub routines, and token
definitions for the MIB variables. They also contain suggested data
structures to hold the variables for each group or sequence in the MIB.

snnpvars. c
Thisfile containsthe table that mapsthe MIB variables and groupsto the
stub routines that retrieve and set your variables. Thisfileis produced
whenever the MIB Compiler is run with the - v flag.

The actual names for both header and sour ce will be determined by the name given
on the DEFI NI TI ONS linein the last input MIB file. For example, the DEFI NI TI ONS
linein RFC 1213 is asfollows:

RFC1213-M B DEFINITIONS ::= BEG N

Thisresultsin the file RFC1213. c¢. The names of the other output files are similarly
determined (RFC1213. h and RFC1213. num in this case).

Thesnnpvars. c file contains the variables structure that the SNMP Agent code uses
to associate a. ¢ routine with individual variables. For more details on the variables
structure, see Variables structure on page 2-7.

The. c file contains stubs for the C routines prototyped in the. h header file. These
routines are framed and commented. However, they are only empty frames with no
internal code. The areas where code needs to be added to actually implement the
variables are flagged with the text TODO. Part of implementing anew MIB requires that
you:

1. Copy these stubsinto your own source files.

2. Replacethe TODOlines with C code that performs the intended SET or GET
operation, and returns the correct values.

See GET operations and scalar variables on page 3-15, GETNEXTs and indexes on
page 3-22, and Custom SET operations on page 3-26 for more details.

2-6

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

251

Variables structure

MIB Compiler

Discussion of the MIB Compiler output in this section assumes an understanding of

certain SNM P concepts, such as:

. lexicographic ordering

. Object IDs and their components
. MIB groups

. ASN.1 SEQUENCEs.

It is recommended that you become familiar with all of these concepts. One book you
might find useful isSThe Smple Book; An Introduction To Internet Management,

Revised.

The internal routines of the ARM SNMP Agent access the MIB variables using the

var i abl es table which the MIB Compiler

produces in #@mpvar s. c file. The

table, namedari abl es, is an array of variable structures, reproduced below as
currently defined. You should refer to the sourcesfilep_var . h as the final authority.

struct variable {

oi d nanme[DEF_VARLEN]; /*
u_char nanel en; [*
char type; /*

/*
u_char magi c; /*
u_short acl; /*

/*
u_char *(*findvar)(); /*

I

obj. identifier of variable */
I ength of above */
type of variable,

(octet) STRING */

passed to func. as a hint

access control list for */
variable */

func. that finds variable */

| NTEGER or

*/

One of these structures is defined for each accessible variable in the input MIBs.
Example 2-1 shows the example compiler output from the C file for the beginning of

the MIB-II system group:

struct variable variables[] =
{{1,3,6,1,2,1,1,1, 0},

Example 2-1

{

9, STRING SYSDESCR, RONLY, var_system},
2,1,1,2,0}, 9, OBJID, SYSOBJECTI D, RONLY, var_system},
2,1,1,3,0}, 9, TIMETICKS, SYSUPTI ME, RONLY, var_system},
2,1,1,4,0}, 9, STRING SYSCONTACT, RWRITE, var_system},

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved.

2-7

MIB Compiler

Theentry fieldsinthevari abl es table are asfollows, presented in order:

The Object ID of the variable, stored as an array of unsigned values.

The length of the Object ID (in this case, they all consist of nine values, but this
length will vary).

The ASN.1 type of the variable.

A token that is passed to the access routine so it can determine which of the
variables in its group or sequence to act on. Thmegéc tokens are also generated
by the MIB Compiler, and are unique within their group or sequence. They
usually start at 0, and then increment throughout the group or sequence by 4s.
This is so they can be used to index byte-wise into the sug@estaa structures
produced for each MIB group in thé header file. For more details, see
Suggested data structures on page 3-19.

A field that controls access to the variable. This access can be either read-only or
read/write.

A pointer to a routine used to access the group or sequence of which the variable
is a membervar _syst en() in this case, because all of these variables are
members of the system group.

Thevar _syst en() function is one of the functions prototyped and stubbed in
by the MIB compiler. One of these routine stubs is generated by the compiler for
each group or sequence in the input MIBs.

The entries in theari abl es table are ordered lexicographically by Object ID so the
SNMP Agent code can do fast lookups on the table to find matching variables or
appropriatesETNEXT entries.

2-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

MIB Compiler

2.6 Updating MIBs

During the course of most agent implementations, the MIB is changed. Thisis either
because the definitions in your private enterprise MIBs have evolved, or because the
industry standard MIBs have been updated. When this happens, you must edit the
existing C code to reflect the changes.

You should rerun the MIB Compiler to produce new variables, . ¢, and . h files. It is
recommended that you make the M 1B sources (ASN.1 text files) dependenciesin your
makefile, and include a build rule to run the MIB Compiler.

If you delete one or more variables, the system will compile and operate as before
(except without the deleted variable(s)). It isrecommended that you delete or comment
out the stub-derived code that implemented the operations of thevariable. If you change
the meaning of avariable, you will have to change the stub code accordingly.

If you create new variables, you must copy the new stubs from the output . ¢ fileinto
your implementation file, and modify them to implement the required functionality.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 2-9

MIB Compiler

2-10

Copyright © 2000 ARM Limited. All rights reserved.

ARM DUI 0120A

Chapter 3
Porting the SNMP Agent

This chapter outlines what you need to do, step-by-step, to port the ARM SNMP Agent
to an embedded system. It contains the following sections:

. Setting up your source tree on page 3-2

. Thetarget system on page 3-5

. Porting procedure on page 3-6

. GET operations and scalar variables on page 3-15
. GETNEXTs and indexes on page 3-22

. Custom SET operations on page 3-26.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-1

Porting the SNMP Agent

3.1 Setting up your source tree

The ARM SNMP Agent source files belong to one of four groups, as described in this
section:

. Corefiles on page 3-3

. Port files on page 3-3

. MIB Compiler output files on page 3-4

. Your project files on page 3-4.

The structure shown in Figure 3-1 is for a typical project using the ARM SNMP Agent
with the ARM UDP/IP stack.

snmp
—asn1l.c core file
—asn1.h core file
—parse.h core file
—snmp.c core file
—snmp.h core file

——snmp_age.c core file
—snmp_aut.c core file
—snmp_imp.h core file

—snmp_var.h core file
—trap_out.c core file
——snmpport.c port file
——snmpport.h port file

—snmpsock.c port file

+——— your_project

—mib2.c mibcomp output (modified)
—rfc1213.h mibcomp output
——snmpvars.c mibcomp output
—main.c your project’s main file
—makefile your project’s makefile

—rfc1213.mib your project’s MIB-II file
——your proj.mib your project’s MIB file

—... other project files

L ... other files/directories

Figure 3-1 Typical directory structure of source files

3-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

3.11 Core files
The ARM SNMP Agent corefiles are:
asnl.c Contains routines to parse and build ASN.1-encoded data.

snnp. ¢ Contains routines to build SNMP Protocol Data Units (PDU) and
variables.

snnp_age. ¢
Contains the SNMP Agent interface routines.

snnp_aut. c
Contains authorization routines used to process community strings.

trap_out.c
Contains routines used to build and send traps from the SNMP Agent.

— Note

These core files and their associated header files should not have to be modified for a
port. If you think they need to be changed, please contact ARM technical support before
changing them.

3.1.2 Port files
The ARM SNMP Agent port files are:

snnpport.c

Contains routines to interface the SNMP Agent to the ARM
low-overhead UDP API of the ARM TCP/IP stack.

snnpsock. ¢

Containsroutinesto interface the SNMP Agent to the ARM TCP/IP stack
using the Berkeley sockets API.

You must include either snppor t . ¢ or snnpsock. ¢ in your project, but not both.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-3

Porting the SNMP Agent

3.1.3 MIB Compiler output files

The MIB Compiler isused to parse the MIB files and generate C stub and header files,
andthesnnpvar s. c filethat containsthe SNMP variablestable. Usualy, you will not
need to modify the C header file or snnpvar s. ¢ after the MIB compiler has created
them. The C stubsfile must be renamed (in Figure 3-1 on page 3-2, it has been renamed
tomi b2. ¢), or the stubs must be copied to another source file, so that it will not be
overwritten if the MIB Compiler isused again. Itislikely that you will make extensive
changesto these stub routines because they implement the interface between the SNM P
Agent variables and your embedded system.

3.14 Your project files

The remaining files implement the rest of your project and manage your build
environment. You also need access to your network system stack routines, either asa
library or in source form.

3-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

3.2 The target system

The ARM SNMP Agent is suitable for use either with an embedded Real-time
Operating System (RTOS), or in a polled or superloop environment.

If you are using an RTOS, you will typically establish a separate task for the SNMP
Agent, and arrange for the network task to passincoming SNM P datagram messages to
the SNMP task by way of amailbox or other message-passing facility. The SNMP task
processes these datagrams by stripping the network header layers, such as IP or UDP
headers, and passing theresultant ASN.1 datato thesnnp_agt _par se() function for
processing. Thesnnp_agt _par se() function returns a response packet to be passed
to the network task for transmission back to the management station. It is usual for the
network stack and the SNMP Agent to be implemented as separate tasksin this
environment.

If you are using ARM TCP/IP as your network transport, it is possible to integrate the
SNMP Agent directly with the low-overhead UDP API. This alows you to have both
the SNMP Agent and the network stack running together as one task, with the UDP
stack making direct callsto the SNMP Agent, and the SNMP Agent directly calling the
UDP stack with the responses. Thisworks well with both the superloop and RTOS-task
style of implementation discussed in Porting TCP/IP Programmer’s Guide

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-5

Porting the SNMP Agent

3.3 Porting procedure

The ultimate purpose of any SNMP Agent isto implement aset of MIB variableswhich
can be read or set by network management applications. ARM provides the SNMP
layer. The porting programmer must join the SNMP code to alower transport layer to
send and receive messages, and to an upper layer of code that resolves the individual
MIB variablesinto actual values or operations. You can accomplish thiswith the ARM
tools, asfollows:

1. Determine what MIB variables are to be used. Thisinvolves selecting standard
MIBs from the RFCs and, possibly, writing proprietary MIB extensions.

2. Processthe MIBs with the MIB Compiler to create skeletal stub C code files
containing variable routines for the port. Thisis discussed in Chapter 2 MIB
Compiler.

3. Compile the SNMP core source files (listed in Setting up your source tree on
page 3-2), and the TCP/IP source files, if needed, and link with the target system
and stub routines. You can test thiswith acall tosnnp_agt _parse().

4. Maodify the port files and complete the C code in the stub routines.

5. Compile the new variable routines and link them with the core SNMP filesto
create an executable image for the new target system. Test and debug the code.

The work involved in porting the ARM agent to a new system involves:

. attaching the SNMP code to the transport layer API

. implementing the stub routines.

These steps are represented by the middle box and top box, respectively, in Figure 3-2.

Product agent code
(such as filled in stubs)

ARM agent code and
MIB Compiler output

SNMP to transport
UDP layer

Sockets (or similar)
UDP transport API

UDP stack

Figure 3-2 Steps for porting the ARM SNMP Agent

3-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

3.3.1 SNMP Agent software interface

The ARM SNMP Agent core filesinterface to the UDP stack and the MIB variables
using the following routines and data structures:

. Functions and macros to implement

. Functionsto call on page 3-8

. Data objects to implement on page 3-8.

Full details of their syntax can be found in ChaptEudction Descriptions.

Functions and macros to implement

You need to implement the following as functionsimpport. c , or as macros in
snmpport. h (ori pport. h, if you are using the ARM TCP/IP stack):

send_trap_udp()

This function is called by the SNMP Agent when it has constructed an
SNMP trap message that it needs to send.

i p_nmyaddr ()
This is called by the SNMP Agent when it needs to ascertain the IP
address of the piece of equipment on which it is running.

Get Upt i me()
This function is called by the SNMP Agent when it needs to know how
long the system has been up and running.

MEMCPY() This macro copies bytes from one location to another.

MEMMOVE() This macro moves bytes from one location to another. It must be able to
allow for overlapping memory areas without corrupting the data.

dtrap() This function is used to trap to the debugger when the SNMP Agent
detects a problem.

nt ohl (), ntohs(),htonl (), htons()
These are used for byte swapping on little-endian systems.

dprintf() This function is used by the SNMP Agent for printing debugging
information.

SNVPERROR()
This macro is used by the SNMP Agent for reporting errors.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-7

Porting the SNMP Agent

snnp_init()
Although thisis not actually called by the SNMP Agent, you need to
implement this function and arrangefor it to be called before any SNMP
UDP datagrams are passed to the SNMP Agent. This function performs
such tasks as opening a UDP endpoint and binding it to the SNMP port
(usually port 161). If your system is configured to support SNMP trap
messages, this function must also allocate a buffer in which trap
messages can be constructed by the agent.

Functions to call

When porting the ARM SNMP Agent, you will need to make calls to the following
functions, usually from code within the snnpport . c file:

snnp_agt _parse()
Is called when the UDP stack has received a datagram (usually on port
161) to be processed by the SNMP Agent.

snnp_trap()
Is called when an SNM P trap message should be constructed and sent, as
at system startup, for example, when a Cold Start trap is sent.

Data objects to implement
The SNMP Agent also requires the following data objects:

Tableof MIB variables

i nt numvari abl es;
struct variable variables[];

This data, as produced by the MIB Compiler in snnmpvar s. c, need not
be modified.

Table of SNM P community strings and access per missions

int num.conmunities;
struct communityl D conmunities[];

This data structureis usually implemented in snnppor t . ¢. You need to
either include code in your mai n() routine, or ater the default strings
included in thistable at compile time to change the SNMP communities
to which the SNMP Agent will respond. The demonstration program
shows one way of setting these strings from values held in Non \olatile
Random Access Memory (NVRAM).

3-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

system.sysObjectl D.0 value
int sys_id_|len;
oid sys_ id[];

This value must be set for the piece of equipment you are using. The
valueisusualy part of the
.iso.org.dod.internet.private.enterprises
(.1.3.6.1.4.1) tree. You need to obtain a Private Enter prise Number
from the Internet Assigned Numbers Authority (IANA). Please contact
IANA for more information and an application form.

SNM P usage statistics
struct snnp_mb SnnpM b

This structure is usually defined in snnpport . c. It isonly needed if

M B_COUNTERS is defined. In this case, it can be used by the SNMP
Agent to keep track of the numbers of various SNM P requests/responses
received. It can also be used to implement the SNMP group within
MIB-II (refer to the implementation of var _snnp() inthe
demonstration program for an example of this).

3.3.2 Port-dependent files

Most of the work involved with porting SNMP involves modifying or recoding the
routines, definitions, and variables in the port files. Thesefiles are:

. nptypes. h

. snnpport.c

. snnpport.h

. MIB Compiler output files.

The header filapt ypes. h defines a set of variable types used by the SNMP code. This
file is similar tot ypes. h in UNIX systems. On most systems, the sampteypes. h
header file from the demonstration program works. On some systems, all of these type
may already be defined by other system header files. A few systems might require tha
you edit thenpt ypes. h file to enable SNMP to work properly.

The header filennppor t . h contains definitions of a variety of SNMP limits (such as
the longest datagram size and the lon@bgsect | d size) and definitions which bind

the agent to the host system. This file is included in every C source file in the agent
sources. Definitions of the protocol stack APl and system library prototypes, for
example, must be included here to ensure they are applied uniformly across the SNM¥
Agent module.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-9

Porting the SNMP Agent

TheMIB Compiler output files are described in Output on page 2-6. The mgjority of the
work in implementing an SNMP Agent involves writing code to fill in the stubs.

The SNMP Agent sources use a variety of definitions and C library calls. Where
possible, ANSI standards are used. However, some of the portability functions are
adapted from bespoke standards set by Berkeley Software Distribution (BSD) or
PC-DOS custom. Because not all embedded system devel opment environments support
all of these standards, they are described in detail in this section. Working exampl es of
these are included in the demonstration program.

TRUE, FALSE, and NULL must be defined in the snnppor t . h header file. To do this, it
is recommended that you include the standard C library file st di o. h inside
snmppor t . h. Use the code in Example 3-1, which works in most C environments, if
st di 0. h isimpractical to use, or ismissing.

Example 3-1

#i f ndef TRUE

#define TRUE -1

#defi ne FALSE 0

#endi f

#i f ndef NULL

#define NULL (void*)O0
#endi f

Four common macros are used for performing byte-order conversions between different
CPU architecture types:

. ht ons()
. ht onl ()
. nt ohs()
. nt ohl ().

They can be either macros or functions. They accept 16-bit and 32-bit quantities as
shown, and convert them from network format (big-endian) to the format of the local
CPU. Most IP stacks already have these byte-ordering macros defined. If this is the
case, you must attempt to find the existing include file which defines them, and use this
rather than duplicate them. The information in Example 3-2 on page 3-11 and Example
3-3 on page 3-11 is provided in case these macros are not already available.

For big-endian systems, these can simply return the variable passed, as in Example 3-2:

3-10

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

Example 3-2

#define htonl (1 ong_var) (long_var)
#define htons(short_var) (short_var)
#define ntohl (1 ong_var) (Iong_var)
#define ntohs(short_var) (short_var)

Little-endian systems require the byte order to be swapped. You can use the | swap()
and bswap() functions provided with the ARM demonstration program, as shown in
Example 3-3.

Example 3-3

#define htonl (1 ong_var) |swap(long_var)
#define htons(short_var) bswap(short_var)
#define ntohl (1 ong_var) |swap(long_var)
#defi ne ntohs(short_var) bswap(short_var)

Thedt rap() and SNMPERROR() functionsare debugging aids. Thedt r ap() function
is called by the SNMP code whenever it detects an event which should not have
occurred. Theintention isfor the dt r ap() function or macro to attempt to trap to
whatever debugger isin use by the programmer. It must be treated as an embedded
breakpoint.

The SNMP code generally continues executing after calling dt r ap() , but calls to the
dt rap() function usually indicate that something is wrong with the SNMP port.

—— Warning

No product based on this code should be shipped until all callsto dt r ap() have been
eliminated. When you are ready to ship code, you can redefinethedt r ap() functions
to anull function to dlightly reduce code size.

For each port, you must define a data type for the individual subcomponents of an
SNMP Object ID (Sub-Id). Thistypeisnamed oi d, and is used throughout the SNMP
code. Generally, thisis an unsigned 32-bit number. However, applications that only
have asmall space into which they must fit, can shrink the variables table produced by
the MIB Compiler (and therefore save considerable static datamemory) by making this
16 bits, or possibly eight bits. There must also be a definition of the maximum value
which can be placed in a Sub-ld. A typical definitionisasfollows:

typedef unsigned |ong oid;
#defi ne MAX SUBI D Ox7fffffff

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-11

Porting the SNMP Agent

Note

Throughout the SNMP sources, theterm O d isused to refer to both a Sub-1d, as above,
or acomplete SNMP Object ID.

Compile-time size limits

Because the agent is written without any internal callsto mal | oc() orfree(),and
needs to save small amounts of dynamic data somewhere, it has several compile-time
size limits. These are described in this section, with recommended settings and
examples.

The SNMP Agent limits the maximum size, in bytes, required to hold an encoded
SNMP Object ID. The macro for thisisMAX_Q D_LEN. Thereal limit required is
determined by your MIB. The value 64, assigned in this example, is sufficient for most
applications.

#define MAX_ O D_LEN 64 /* max length in bytes of encoded */
/* oid */

Thereis alimit on the maximum size to which a community string can grow. This
example setsit at 32 bytes:

#define MAX COWUNITY_SIZE 32 /* max length in bytes of a */
/* community */

Thisimposes asize limit on the various strings in the MIB-11 System group. The port
can be rewritten to dynamically allocate memory for arbitrarily large strings:

#define SYS_STRING MAX 256 /* max | ength of sys group */
/* strings */

It isassumed that every company which ships an SNM P-enabled product hasan SNMP
Enterprise ID. Thisis anumber assigned by IANA which uniquely identifies each
vendor of SNMP-managed devices. You must obtain such a number before you ship
your product. Occasionally, the contactsfor reaching |ANA change, but can be obtained
from the latest Assigned Numbers RFC (RFC 1700 at the time of publication). To send
traps or implement any basic M1B, the SNMP code will require an Enterprise |ID. ARM
customersare permitted to usethe ARM Enterprise | D during product development, but
they should obtain and recompile with their own identification prior to First Customer
Ship (FCS). The definition is:

#define ENTERPRI SE 4128 [* ARM enterprise Nunber */

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

3.3.3

Testing

Porting the SNMP Agent

The ARM SNMP layer maintains packet counters as defined by MIB-11 (RFC 1213).
For ports that do not require these counters, a small amount of space can be saved by
omitting them. The counters are enabled with the following define:

#define M B_COUNTERS 1

Most ports limit the maximum buffer size that an SNM P packet can occupy. While the
best practical size varies depending on your | P stack and media, 484 is arecommended,
safe minimum. Ethernet-based or PPP-based systems can usually use 1400.

#defi ne SNWPS| Z 1400 /* MAX size of an snmp packet */
If you use SNMP traps, you need to include the trap code with #def i nes as follows:

#defi ne ENABLE_SNWVP_TRAPS 1
#define V1_IP_SNMP_TRAPS 1

SNMPv2 traps might also be supported in the futureif it becomes necessary to provide
support for them. The macro V2_1 P_SNMP_TRAPS is reserved for this purpose.

Thelast macro from snnppor t . h that porting engineers need to be aware of defines
the maximum number of trap targets the end user can configure. This macro controls
the size of a static table for trap target information.

#defi ne MAX_TRAP_TARGETS 3

If you have not yet hooked up the protocol stack and want to unit test the SNMP Agent,
thereis a simple method you can use:

1. Hardcode the SNMP packet datainto a static buffer.

2. Passapointertoittosnnp_agt _parse(). Thesnnp_agt_parse() function
will return an SNMP reply in your output data buffer. A sample of code, Example
3-4 on page 3-14, is provided to demonstrate this. This exampleis provided for
instruction purposes only.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-13

Porting the SNMP Agent

Example 3-4 Parsing an SNMP request

/*

* quick.c

* Copyright (C) ARMLimted 1999. Al rights reserved.

*

* Sanple code to denonstrate a sinple way to call the SNVMP Agent core to parse

an SNWVP request.
*/

/* get system.sysDescr.0 (.1.3.6.1.2.1.1.1.0), using community ‘public’ */
unsigned char pkt[] = {

0x30, 0x82, 0x00, ox2D, 0x02, 0x01, 0x00, 0x04, 0x06, 0x70,

0x75, 0x62, 0Ox6c, 0x69, 0x63, 0xa0, 0x82, 0x00, Ox1e, 0x02,

0x02, 0x72, 0x7b, 0x02, 0x01, 0x00, 0x02, 0x01, 0x00, 0x30,

0x82, 0x00, 0x10, 0x30, 0x82, 0x00, 0x0c, 0x06, 0x08, 0x2b,

0x06, 0x01, 0x02, 0x01, 0x01, 0x01, Ox00, 0x05, 0x00

h

#define SNMPSIZ 484
unsigned char snmpreply[SNMPSIZ];

void
testAgentParsing()
{ int reply_len;
dtrap(); /I hook debugger before call...
reply_len = snmp_agt_parse(pkt, sizeof(pkt), snmpreply, SNMPSIZ);

dtrap(); /I ...and once again afterwards

3-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

3.4 GET operations and scalar variables

Thefindvar () functionsreferredtointhevari abl es[] array (see Variables
structure on page 2-7), are stubbed out in the MIB Compiler’s output file, and
prototyped in the h header file. The stub for the System group,
.iso.org.dod.internet.ngnt.mn b-2.systemis reproduced in Example 3-5:

Example 3-5
u_char *
var _system
struct variable * vp, /* IN - pointer to variables[] array */
oid * nane, /* INQUT - input name requested; output nanme found */
int * |ength, /* INQUT - length of input & output oids */
i nt oper /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
int * var_len) /* QUT - length of variable, or O if function */
{
// TODO Add code here
return NULL; /] default FAIL return.
}

This routine is called by the SNMP Agent code whenever an SNMP request is receivec
with an Object ID that is matched up with the corresponding Object ID (hame) of the
routine in the variables table.

—— Note

The stub produced by the compiler does no work and returns NolyaThe meaning
of the returnedNULL varies depending on the settingopkr . If oper is nonzero, the
SNMP datagram is 8ET or GET command, and the returnsdLL indicates that an
exact match for the variable (passedane) was not available. Bper is zero, the
request was @ETNEXT and the returnedULL means that no suitabBETNEXT Object
ID was found by the routine.

If the routine returns a noXLL value, the return is a pointer to the data of the variable.
The type of data pointed to is determined by the variable type st ype. In the case

of a nonNULL return, thenane, | engt h, andvar_I en variables must be set to convey
information about the data returned. Taere is the Object ID of the returned variable.

If the SNMP operation wasSET or GET (oper was honzero), this is the same as the
nane passed. If the operation waSEINEXT, the porting programmer must update the
nane field. In indexed sequences, this can be difficult. For more details, see the At
group example in the demonstration program, oIGEENEXTs and indexes on

page 3-22.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-15

Porting the SNMP Agent

You must maodify the / engt h variable to reflect the length of the name returned. The
var_I en value must be set to the length, in bytes, of the variable data returned. For
32-bit numeric returns such as | NTEGER, COUNT, and GAUGE, thisis four. For Octet
strings and Object IDs, it is the length of the string.

As an example, the var_routine for the System group of variables from MIB-I|
implements the following variables:

SysDescr Read-only text string describing what the equipment is.

SysObj ectI D
Read-only Object Identifier, using your Private Enterprise Number.

SysUpTi ne Read-only measure of how long, in hundredths of a second, this system
has been running.

SysCont act
Read/write text string describing who is responsible for this equipment.

SysNane Read/write text string containing the network name of this equipment.

SysLocati on

Read/writetext string containing adescription of wherethisequipmentis
located.

SysServi ces
Read-only bitfield identifying the capabilities of this equipment.

This function declaration remains unchanged from the stub generated by the MIB
Compiler.

Example 3-6

u_char *
var _syst en(

struct variable *vp, /* IN- pointer to variables[] entry */

oid * nane, /* INQUT - input name requested; output name found */
int * length, [* INQUT - length of input & output oids */
i nt oper, /* IN - NEXT_OP (=0), GET_OP (=1), or SET_OP (=-1) */
int * var_len) /* QUT - length of variable, or O if function */

{

3-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

For a GET or SET operation, oper will be nonzero, and there must be an exact match
between the variable namein therequest and thenameentry inthevari abl es[] table.
If they do not match, therequest isnot valid for thisgroup. Thisissignaled by thevar _
routine returning NULL. The SNMP core handles the task of returning a suitable
NOSUCHNANE error response. The use of the conpar e() function, which performs
lexicographic comparisons of ObjectIDs, is similar to the C library function

strncnp():

if (oper &% (conpare(name, *length, vp->nane,
(int)vp->nanelen) '=0))
return NULL;

Thevar _ routine needs to return the actual name of the variable found so that the
SNMP core can use it to create the response message. For a simple group such asthe
System group, the SNMP corewill have called the var _ routine with the correct entry
fromthevari abl es[] table. So, you need only copy the value from the vp variable
pointer into the nane argument, and set the length of nane with the I engt h argument.
var _ routines that handle tables of information need to modify this nane value (see
GETNEXTs and indexes on page 3-22 for details):

MEMCPY(name, vp->nane, (int)vp->nanelen * sizeof(oid));
*| ength = vp->nanel en;

The default size of the data to be returned or set is a 32-bit | ong value. Thisis not
necessarily the best choice for the System group because most of its variables are
strings, but for the majority of groups, the variables will be | NTEGER, COUNTER, or
GAUGE values, all of which arethe size of al ong. Thisvalueisoverwritten in the
swi t ch below for those situations where the size is not 32 hits:

*var_len = sizeof (l1ong);

SET operations might require range checking. In the System group, the only modifiable
variables are strings, all of which have been statically allocated SYS_STRI NG_MAX
bytes of space. The SNMP core does not try to SET avariable that is read-only.
Therefore, the only checking that isrequired isthat the strings passed in the SET request
fit in the buffer. The SNMP core performs this check if you fill intheset _par s
entriesto enablerange checking and to set the valid range (SET operations are described
in detail in Custom SET operations on page 3-26):

if (vp->acl == RWRITE) /* force string | ength check on sets */
{
set _parms. do_range = TRUE
set _parms. hi _range = SYS_STRI NG_NAX
/* longest acceptable string */
set_parns.lo_range = 0; /* shortest acceptable string */
}

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-17

Porting the SNMP Agent

In the following example, the System group has been implemented as a scattered
collection of discrete variables, instead of using the recommended data structure
produced by the MIB Compiler. This means you must handle every variable within the
group as a special case, intead of relying on the auto-indexing feature that can be used
with the recommended data structure. Each of the special casesis handled through a
Swi t ch statement:

switch (vp->nmagic)

{

For STRI NG values, you must return the number of charactersin the string, excluding
any terminating null character. For GET and GETNEXT, this determines the amount of
datathat is copied from the variable and returned in the response packet:

case SYSDESCR /* read-only string */
*var_len = strlen((char *)sys_descr);
return (u_char *)sys_descr;

For an Object Identifier, you must return the number of bytes, instead of the number of
subidentifiers. You can achieve this by multiplying the number of subidentifiers by the
size of a subidentifier:

case SYSOBJECTI D
*var_len = sys_id_len * sizeof(oid);
return (u_char *)sys_id;

Modifiable strings are handled in exactly the same way asread-only strings. For ease of
coding, the length of the string isaways returned, asfor GET and GETNEXT operations.
However, the var _| en value isignored for SET operations, which make use of any
range limits specified in the set _par s structure:

case SYSCONTACT: /* read/write string */
*var_len = strlen((char *)sysContact);
return (u_char *)sysContact;

case SYSNAME: /* read/write string */
*var_len = strlen((char *)sysNane);
return (u_char *)sysName;

case SYSLOCATI ON: /* read/write string */
*var_len = strlen((char *syslLocati on;
return (u_char *)syslLocation;

The following error message indicates that you have neglected to handle one of the
variablesinthe swi t ch statement:

3-18

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

defaul t:
SNMPERROR(“var_system: Unknown magic number”);
}

/* Not Reached */

return NULL; /* default FAIL return. */

3.4.1 Suggested data structures

One method of optimizing both speed and size in the SNMP Agent isto use the
suggested structures for holding data associated with MIB variablesin groups and
seguences. An example of how alarge group can be implemented with minimal codeis
the implementation of the MIB-II Internet Control Message Protocol (ICMP) group
from the demonstration program. All the ICMP countersin this group are maintained in
the suggested structure produced by the compiler inthe .h header file. The C routine
needs only to use the magic number (al so produced by the compiler) toindex the ICMP
structure as atable, and return the 32-bit quantity at the indicated offset. The code is

reproduced in Example 3-7.

Magic numbers for the ICMP group and the suggested structure are produced
automatically by the compiler in the .h header file, as shown in Example 3-7.

Example 3-7 Tokens for the ICMP group

/* tokens for 'icmp' group */
#define ICMPINMSGS

#define ICMPINERRORS

#define ICMPINDESTUNREACHS
#define ICMPINTIMEEXCDS
#define ICMPINPARMPROBS
#define ICMPINSRCQUENCHS
#define ICMPINREDIRECTS
#define ICMPINECHOS

#define ICMPINECHOREPS
#define ICMPINTIMESTAMPS
#define ICMPINTIMESTAMPREPS
#define ICMPINADDRMASKS
#define ICMPINADDRMASKREPS
#define ICMPOUTMSGS

#define ICMPOUTERRORS

#define ICMPOUTDESTUNREACHS

#define ICMPOUTTIMEEXCDS
#define ICMPOUTPARMPROBS
#define ICMPOUTSRCQUENCHS

0
ICMPINMSGS+4
ICMPINERRORS+4
ICMPINDESTUNREACHS+4
ICMPINTIMEEXCDS+4
ICMPINPARMPROBS+4
ICMPINSRCQUENCHS+4
ICMPINREDIRECTS+4
ICMPINECHOS+4
ICMPINECHOREPS+4
ICMPINTIMESTAMPS+4
ICMPINTIMESTAMPREPS+4
ICMPINADDRMASKS+4
ICMPINADDRMASKREPS+4
ICMPOUTMSGS+4
ICMPOUTERRORS+4
ICMPOUTDESTUNREACHS+4
ICMPOUTTIMEEXCDS+4
ICMPOUTPARMPROBS+4

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-19

Porting the SNMP Agent

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

| CMPOUTREDI RECTS

I CMPOUTECHOS

I CMPOUTECHOREPS

I CMPOUTTI MESTAMPS

I CMPOUTTI MESTAMPREPS
| CMPOUTADDRNVASKS

| CMPOUT ADDRNVASKREPS

| CMPOUT SRCQUENCHS+4

| CMPOUTREDI RECTS+4

| CMPOUTECHOS+4

I CMPOUTECHOREPS+4

| CMPQUTTI MESTAMPS+4

| CMPQUTTI MESTAMPREPS+4
| CMPOUT ADDRMASKS+4

The suggested structure is shown in Example 3-8.

Example 3-8 MIB table for the ICMP group

/* MB table for "icnp’ group */

struct icnp_mib {

u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong
u_l ong

I

cnpl nMsgs;

cnpl nErrors,;

cnpl nDest Unr eachs;
cnpl nTi neExcds

cnpl nPar nPr obs;
cnpl nSrcQuenchs;
cnpl nRedi rect s;
cnpl nEchos

cnpl nEchoReps;

cnpl nTi mest anps;
cnpl nTi nest anpReps;
cnpl nAddr Masks;
cnpl nAddr MaskReps;
cmpQut Msgs;

cmpQut Errors;
cnpQut Dest Unr eachs;
cnpQut Ti neExcds
cnpQut Par nPr obs;
cnpQut SrcQuenchs
cnpQut Redi rect s;
cnpQut Echos;

cnpQut EchoReps;
cnpQut Ti mest anps;
cnpQut Ti mest anpReps
cnpQut Addr Masks;
cnpQut Addr MaskReps;

3-20 Copyright © 2000 ARM Limited. All rights reserved.

ARM DUI 0120A

Porting the SNMP Agent

Thevar _i cnp() functionis based on a stub produced by the compiler in the. c file.
It handles all 26 ICMP group variables, and requires less than ten lines of code to be
added to the stub, as shown in Example 3-9.

Example 3-9
u_char *
var _i cnmp(
struct variable *vp, // IN- pointer to variables[] entry
oi d *narne, /1 INQUT - input name requested; output name found
int *length, /1 INNQUT - length of input & output oids
i nt oper, /[l IN- TRUE if exact match is required (for GETs)
int *var_|en) // OQUT - length of variable, or O if function
{
u_char * cp; [/ return pointer
i f(oper && /* GET or SET nhjectlDs nmust match exactly */

(conpare(nane, *length, vp->nane, (int)vp->nanelen) !=0))
return NULL; /* return NULL if not exact match */

/* The next two lines set the return variables. These are
actually only needed for GETNEXTs - GETs and SETs al ready have
an exact match. */

mencpy(name, vp->nane, (int)vp->nanelen * sizeof(oid));

*| ength = vp->nanel en;

var_len = sizeof(long); / default length */

cp = (u_char*) & cnp_m b;
return(cp + vp->nmgic);

It is not aways practical to rewrite an existing system to use the suggested structures.
The I P stack used with the demonstration program was written before the MI1B
compiler, and therefore the System group example in GET operations and scalar
variables on page 3-15 ignores the suggested structure. The suggested structure was
retrofitted on the ICMP protocol code. Each structure must be considered individually
to determine whether it is worth the effort to use the suggested structures.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-21

Porting the SNMP Agent

35 GETNEXTs and indexes

After the ported agent can generate areply to a request, the remainder of the port, and
most of the ongoing development, involves implementing the stub routines. Because
this section and the next can be considered advanced stub coding, it is recommended
you review Chapter 2 MIB Compiler (starting with Output on page 2-6, where stub
routines are first introduced) before reading the remainder of this section.

A MIB indexed variableis avariable that is part of atable, as opposed to the simpler
scalar variables (non-indexed). Scalar variables, such as those described in the
examples in Chapter 2 MIB Compiler, only occur oncein an SNMP Agent. For
example, each agent only has one System group, and by extension, onesysDescr , one
sysObj ect , and one sysUpt i me. Conversely, indexed variables (tables or ASN.1
SEQUENCES) can occur multiple times. For example, the MIB-I11 Interfaces table has
acompl ete set of interface variablesfor each network interface in the machine. A router
with four ethernet cards hasfour i f | ndexes, four i f Descr s, and four

i f PhysAddr esses. MIB-II stipulates that these are indexed by arbitrarily assigned
numbers, 1-4 in this case. Thefour i f Descr instances are represented asi f Descr . 1,
i fDescr.2,ifDescr.3,andifDescr. 4. The actual Object IDs are formed by
appending the index (in this case, asin most cases, an ASN.1 INTEGER) to the base
Object ID.

An ARM stub routinefor an indexed group has to do some extrawork in addition to the
work done for scalar variables. It has to determine if the Object ID passed has avalid
index for the request. This can be problematic when the request is a SET or GETNEXT
request. A SET operation might have to create a new table entry if the requested index
does not already exist. A GETNEXT operation hasto generate the lexicographically next
variable ID, which might or might not be another instance of the ssme variable. If itis
another instance of the same variable, it might not have a numerically adjacent index
value. SET operations are discussed in more detail in Custom SET operations on

page 3-26.

Example 3-10 on page 3-23, with accompanying instructions, contains the
var _i f Entry() variables routine from the demonstration program, from thefile
mi b2. c. Itisthefirst routinein the file to handle an indexed set of variables.

3-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

Example 3-10

u_char *
var _i fEntry(

struct variable *vp, /* IN- pointer to variables[] entry */

oi d *nane,
int */ength,

i nt oper,

int *var_Ilen)

[* INQUT - input name requested; outputnane found */
[* INOQUT - length of input and output oids */

/* IN - NEXT_OP (=0), CGET_OP (=1), or SET_OP (=-1) */
/* QUT - length of variable, or O if function */

Rather than simply checking for an exact match on GETs and SETs asin the

earlier scalar examples, you must check to seeif theindex passed as thelast component
of thearray pointed to by nane (the Object I D from the received packet) isavalidindex.
For GETsor SETSs, thismeansit must exactly match one of your indexes. For GETNEXTS,
it might be an exact match, or it might be an Object ID that is lexicographically lower
than avalid response. It must have at least a partial match of avalid interface table
Object 1D, otherwise the SNMP core code would not have called this function with it.
Because the SNMP core code does not know anything about your interface hardware,
that information must be used here to put together the SNMP reply:

1. Youmust first declare some scratch local variables. These include an Object ID
buffer, newnare[], in which you must buildtrial Object |D names based on your
interfaces. These will be passed to the conpar e() routine (ast rcnp() -like
routine for Object IDs) to determine if you have a suitable candidate for areply:

unsi gned interface;

oid newname[MAX_NAMVE_LEN] ;
|FM B ifp;

int resul t;

2. Copy the Object ID in the variables table into newnane[| . vp- >nane isthe
Object ID inthevariablestable that islexicographically just below the Object ID
in the received packet:

mencpy((char *)newnane, (char *)vp->nane,
(int)vp->nanel en * sizeof (0id));

3. For each interface in the machine, build an Object ID in newnane[] with that
interface’s index and run it through conpar e() :

for(interface = 0; interface < ifMNunber; interface++)
/* find "next" interface */
{

newnane[10] = (oid)(interface + 1);

result = conmpare(nanme, *|ength, newnane,

(i nt)vp->nanel en);

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 3-23

Porting the SNMP Agent

/* if the operation is a SET or CGET and the (bjectlDs
mat ch, */
/* break out of the |oop */

if(oper && (result == 0))
br eak;

If the operation is a GETNEXT and newnane is lexicographically greater than the
received name, you have found the reply to the GETNEXT.

By finding the first valid Object ID for an interface which is greater than the Object ID
in the Received packet, you have your GETNEXT reply:

if(loper && (result < 0))
br eak;

}

/* 1f you | ooped through all the interfaces without a match, */
/* return NULL; the SNWMP core will try the var_ routine for */
/* the next group or table */

if (interface >= ifNunber) return(NULL);

/* The rest of the routine is simlar to exanples for the */
/* scal ar groups */

mencpy((char *)nane, (char *)newnane,

(int)vp->nanel en * sizeof(0id));

*| ength = vp->nanel en;

var_|len = sizeof (1ong); / default to 32 bit return */

ifp = nets[interface]->n_m b;

switch (vp->nagic)

{

/* handl e speci al cases which are not sinple 32-bit counters */
[* from the interface’s MIB */

case IFINDEX: /* you store them 0 thru n-1, snmp wants */
* 1 through n */
long_return = ifp->ifindex + 1;
return (u_char *)&long_return;
case IFDESCR:
*var_len = strlen(ifp->ifDescr);
return (u_char *)ifp->ifDescr;
case IFPHYSADDRESS:
*var_len = nets[interface]->n_hal;

3-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

return (u_char *)ifp->ifPhysAddress;

case | FSPECI FI C /* could be Gd of ethernet MB */
*var _| en = sizeof (0i d00);
return((u_char*)oi doo);

defaul t: /* return 32 bit counter fromtable */
return (u_char *)(((char *)ifp) + vp->nmagic);

}

}

—— Note

Not all indexes are sequentially numbered integers asin Example 3-10 on page 3-23. A
table can be indexed by any sequence of numbers. For example, the interfacesin that
exampl e can be numbered 4, 58, and 99. Inthiscase, thef or () loop would havetolook
these up somehow, perhaps even having to perform asort first. Alternatively, thef or ()
loop hasto examine all the entriesin the table, keeping arecord of the most preferable
option. Examples of the latter technique are given inthe mi b2. c file of the
demonstration program.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-25

Porting the SNMP Agent

3.6 Custom SET operations

SET operations are similar to GET operationsin that they usually require an exact match
of the Object ID. However, SETs are more complex because they may need to:

. determine if a particula8ET operation is legal
. perform an action such as disabling a network interface
. create new entries in SNMP tables.

You can encounter problems when trying to set an illegal value or type, or trying to set
a nonexistent variable when this is not allowed. The SNMP core can detect attempts to
set illegal types (for example, trying to set a counter using a string), and generates a
BADVAL UE error response to the SNMP station that sent the request.

If your var _ routine returns NULL, the SNMP core generat®&©8UCHNAVE error

response to the SNMP station that sent the request. You should use this mechanism to
indicate when an attempt has been made to either set a non-existent variable, or create
a new, invalid table entry.

If all that is required for th8ET operation is for the data value from &€ request to

be written into a memory location, youdtr _ routine must optionally establish range
checking values, and return a pointer to the location to be written. Range checking is
enabled using the range fields of the glatel_par ns structure:

struct SetParns {

int do_range;
long hi_range;
long lo_range;

}
extern struct SetParms set_parms;
Theset_parms structureis cleared to zero before your var_ routineis called.

If your var_ routinesetsset_parms.do_range tononzero, and thevaluebeing set is
anumeric type, it must have a value between set_parms.lo_range and
set_parms.hi_range , inclusive.

If set_parms.do_range isnonzero, and the value being set is a string or Object
Identifier, the length of the string or Object ID must be greater than or equal to
set_parms.lo_range , and less than or equal to set_parms.hi_range

If the valueto be set is outsidethe .lo and .hi range, the SNMP core will generate a
BADVALUEerror response to the SNMP station that sent the request. If
set_parms.do_range iszero, ho range checking is performed.

3-26

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Porting the SNMP Agent

You can see an example of range checking with string valuesin the System groupvar _
routineg, var _systen(), inm b2. c.

In some cases, you might be required to do more than set an existing variable. For
exampl e, you might want to send amessage to another task, mani pul ate some hardware,
or create anew entry in atable such as aroute table. You can accomplish this by using
the other fields of the set _par ns structure:

struct SetParns {
int (*access_nethod)(u_char *, u_char, int, u_char *, int);
struct variable *vp;
oid *nane;

k

If your var_ routine sets the access_method function pointer in the set_parms
structure, and returnsanon-NULLvalue, the SNM P core does not attempt to perform the
SET operation for you. Instead, it calls the function pointed to by access_method . If
thedo_range field isnonzero, the usual range checking is performed before the
access_method function iscalled.

The access_method function must return one of the following SNMP_ERR values
from snmp.h :

SNMP_ERR_NOERROR
No error. The SET operation succeeded.

SNMP_ERR_TOOBIG
The SNMP packet (either the request or response) istoo large.

SNMP_ERR_NOSUCHNAME
The variablein the request does not exist, or cannot be created.

SNMP_ERR_BADVALUE
Thevaueto be setisinvalid, or of the wrong type.

SNMP_ERR_READONLY
The specified variable is read-only (see the note following this list).

SNMP_ERR_GENERR
Some unspecified generic error occurred.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 3-27

Porting the SNMP Agent

Note

If the MIB description of avariable indicatesthat it is read-only, the SNMP core calls
thevar _ routine, but does not call your access_met hod function. You rarely need to
generate SNMP_ERR_READONLY error responses.

If you are using an access_net hod function, your var _ routine must till return a
pointer that the SNM P core usesto retrieve the set value. Thisvalueis obtained by the
SNMP core and returned in the response packet to the SNMP station that sent the
request.

For afully annotated example of usingtheaccess_net hod function, seeatEntry table,
annotated on page A-2.

3-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Chapter 4

Function Descriptions

Thischapter describesthe functionsand dataitems used to interfaceto the SNMP Agent
core. It contains the following sections:

SNMP Agent interface on page 4-2
User-required functions on page 4-6
S\MP port data on page 4-11
ASN.1 parse functions on page 4-15.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-1

Function Descriptions

4.1 SNMP Agent interface

Thefunctionssnnp_agt _par se() andsnnp_trap() comprisetheexternal interface
to the portable SNMP Agent. For examples of how to call thesefunctions, refer to either
of the following:

snnpport . ¢ Usesthe ARM low-overhead UDP/IP stack to interface to the SNMP
Agent.

snmpsock. ¢ Usestraditional Berkeley Sockets to interface to the SNMP Agent.

41.1 snmp_agt_parse()

Thisfunctioniscalled by thetransport stack (or an implementation routine on top of the
transport stack) when an SNM P datagram for the SNMP Agent isreceived. An example
of thisisa UDP packet with destination port 161. This routineisthe sole entry point to
the agent from the protocol stack.

Syntax

int snnp_agt_parse(u_char *inbuf, unsigned inlength,
u_char *outbuf, unsigned outl ength)

where:

i nbuf Is a pointer to the beginning of the SNM P datagram.
inlength Isthelength of i nbuf data

out buf Is apointer to a buffer for a possible reply.

out | engt h Isthelength of out buf.

Return value
Returns one of the following:
0 If thereisno reply datain out buf.

Number of bytesin the out buf snmp reply
If thereisreply datain out buf.

4-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

Usage

Theincoming SNMP datais passed in the pointer i nbuf, with the length of the
datagram specified by i n/ engt h. Thei nbuf pointer must point to the first byte of the
ASN.1 data (usually 0x30), and not to a UDP or IP header.

All processing of the SNMP datagram is done during the call to snnp_agt _parse() .

Thesnnp_agt _par se() function might leave areply to the datagram in the buffer
indicated by out buf, so it must be big enough to hold any expected reply. According
to RFC 1157, the minimum size of thisbuffer must be 484 bytes. For embedded systems
whose primary interfaceis Ethernet or PPP, asize of 1460 isrecommended. In any case,
the size of this buffer must not be less than the value of the SNMPSI Z macro defined in
the snnppor t . h header file.

If snnp_agt _par se() returns anonzero length, the calling code must make sure the
reply datain out buf issent back to the party that sent the SNMP request. On UDP, this
involves preserving the incoming port value and | P address.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-3

Function Descriptions

4.1.2

snmp_trap()

This function takes the passed parameters and builds and sends an SNMP v1 trap. The
trap isbuilt in a static buffer provided when snnp_i ni t () iscalled. A trap packet is
sent to each of the hostsinthetrap_t ar get s[] table.

The structuret r apVar isdefined in the header file snnp_i np. h. The current version
is reproduced here, but you must refer to the file version when writing code.

struct trapVar { /* struct for each trap variable */
oid var Name[MAX_O D _LEN];/* Oojectld of variable */
unsi gned var NanelLen; /* oid conponents in varNane */
u_char var Type; /* ASN. 1 type of variable */
unsi gned var Val Len; /* octets in variable data field */
u_char *var Buf ; /* the actual variable data */
unsi gned var Buf Len; /* used only by snnp_parse_trap() */

b
Syntax

int snnp_trap(int trapType, intspecificType,
int specificVvarCount,
struct trapVar *specificVars)

where:

trapType |soneof the predefined SNMP traps, in the range 1-6.
If t rapType isnot 6 (vendor-specific trap), the remaining variables are
ignored by SNMP, and may be 0 or NULL.

speci ficType
Is avendor-specific type. These are defined by the vendor.

speci fi cVar Count
Is the number of entriesin speci fi cVars.

specificVars
Isapointer to an array of t r apVar structures.

4-4

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

Return value
Returns one of the following:
0 If thereis aparse error.

Thelength of the trap image built in the passed buffer
Otherwise.

Usage

To send a vendor-specific trap with variables attached, you need to allocate (either
statically or dynamically) space for an array of these structures, one per variable. You
then need to fill in the values for your trap variables prior to calling snnp_t rap() .
After thesnnp_t rap() call returns, thet r apVar array can be freed or re-used.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-5

Function Descriptions

4.2 User-required functions

As part of the port work, you must provide the functions described in this section. Most
are referenced at other places in the manual, but they are described in detail here. The
functions are:

. SNMPERROR()

. send_trap_udp() on page 4-7
. GetUptime() on page 4-8

. snmp_upc() on page 4-9

. snmp_init() on page 4-10.

42.1 SNMPERROR()

This function is called by the SNMP code when it detects an error that is specific to the
SNMP protocol. Th&NMPERROR() function is meant to print messages for the benefit

of the programmer during product development. It catilielef ed out before

shipping, or its output can be directed to an error log or user console. On systems that
supportpri nt f () , SNMPERROR() can betdefi ned toprintf (), as shown in the
example below.

Syntax

voi d SNVMPERROR(char *nsg)

where:

nmsg Is the error message text to print.

Return value

None.

Example

#defi ne SNMPERROR(msQ) printf("SNVMP ERROR %s\n", nsQ);

4-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

422 send_trap_udp()

Thisfunction is called by the SNMP core code to send the standard traps, such as
authentication failure. Becausesend_t r ap_udp() iscaled fromthe SNMP core, you
must not change the name and function parameters. This routine simply hasto send the
trap buffer passed to the 1P address specified at UDP port 162. It isusually avery small
routine.

Syntax

int send_trap_udp(u_char *out_data, int out_Ien,
i p_addr trap_target)

where:
out_data Isapointer tothe SNMP trap packet to be sent.
out_Ien Isthe length of the data pointed to by out _dat a.

trap_target
Isa 32-bit |P address of the host to which the trap is sent.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

The standard SNMP Agent code ignores this return. However, special ports have been
implemented which take other action (such as paging an operator) when trap sendsfail.
Example

Seethecodein snnpport. ¢ or snnpsock. ¢ for examples of how to implement this
function.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-7

Function Descriptions

4.2.3 GetUptime()

Thisfunction is called from the SNMP Agent trap generation code to timestamp
outgoing traps. Ports which implement MIB-I1, including the demonstration program,
also useit for thesysUpt i me variable in the system group.

Syntax

u_l ong Get Uptinme(void)

Return value

Returns a 32-bit unsigned val ue containing the number of SNMP TI METI CKS (in .01
second, that is, 100th of a second, intervals) since the system was last rebooted.
Example

u_l ong
Get Upti me()

return (100L * cticks / TPS);

4-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

424 snmp_upc()

Function Descriptions

Thisfunctionisonly used if you are using the low-overhead UDP interface of the ARM
TCP/IP stack to implement your SNMP Agent. If thisisthe case, you have to define
PREBI ND_AGENT in your i pport . h file. This causes the UDP demultiplexor to call
snmp_upc() with UDP datagrams received on the SNMP port, UDP port 161. This
function has to pass these datagramsto snnp_agt _par se() so that the SNMP core
can parse them and build a response packet, which snnp_upc() must then send back
to the originating station using udp_send() . These responses must be sent to the UDP
port on the remote host from which the request was received. Thisis passed as the
argument port .

Syntax

int snnp_upc(PACKET p, unshort port)

where:

p Isa PACKET defined by the ARM TCP/IP stack to be apointer to a
network packet structure, with nb_pr ot pointing to the start of the
SNMP data, and nb_| en indicating the number of bytesin the packet.

port Isthe UDP port number (in local-byte order) on the remote station from

which the packet was received.

Return value
Returns one of the following:

ENP_NOT_M NE
If the SNMP Agent is not active.

0 If no errors occurred.
other ENP_ code

If other errors occurred.
Example

An example of snnp_upc() for use with the low-overhead UDP interface to ARM
TCP/IPisavailablein the snmpport . c file.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-9

Function Descriptions

4.2.5

snmp_init()

Thisfunction is called fromthei p_start () function of the ARM TCP/IP stack if

I NCLUDE_SNMP has been defined in your i pport . h file. If you are not using ARM
TCP/IP with the ARM SNMP stack, you need to arrange for this function to be called
from your startup code. The snnp_i ni t () function must create a UDP network
endpoint, such as a socket, and bind it to the SNMP port, UDP port 161. This function
must also initialize other resources used by the SNMP stack, such as the trap buffer
required for sending SNMP trap messages (see Trap buffer on page 4-13). If your
system isimplementing traps, the snnp_i ni t () function must also send an initial
COLDSTART trap to all of the trap targets.

Syntax

int snnp_init(void)

Return value

Returns one of the following:
0 If successful.

-1 If not successful.

Example

Samplesnnp_i ni t () functionsare availableinthesnnpport. c and snnpsock. c
files.

4-10

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

4.3 SNMP port data

4.3.1 SNMP MIB

When porting ARM SNMP to your own environment, you will need to provide certain
data structuresin addition to thevar i abl es[] array discussed in Variables structure
on page 2-7. You can declare these variables either in the snnpport . c file, or
elsewhere in your application-specific code. The data structures you need to provide
are:

. SNMP MIB

. Communities

. Systemidentifier on page 4-12

. Trap targets on page 4-13

. Trap buffer on page 4-13.

If you are implementing the SNMP group from MIB-II, you needdef i ne

M B_COUNTERS in yoursnnppor t . h file and provide this structure. The structure
SnmpM b is used by the SNMP Agent to track the number and type of requests received
enabling these statistics to be retrieved using an SNMP statigpM b is declared in
yoursnnpport . c file.

Syntax

#i f def M B_COUNTERS
struct snnp_m b SnnmpM b;
#endi f

4.3.2 Communities

The SNMP Agent authorizes requests based on the community string passed as part
the request. The table of allowed communities is defined insyogrpor t . c file, and
consists of the actual table @§mmuni t yI D structures and a count of the number of
table entries used.

Syntax

struct communityld communities[] = {
"public", RONLY,
"private", RWRITE,

b

int numconmmunities = (sizeof (communities)/sizeof(struct
conmuni tyld));

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-11

Function Descriptions

Example

The demonstration program snnpdeno shows how these values can be initialized to
static default valuesin snippor t . ¢, and then overridden by values read from a
configuration filein the mai n() routine at system startup.

4.3.3 System identifier

The System group of variables requires avariable, Sysbj ect | D. Thisis an object
identifier that uniquely describes the vendor’s authoritative identification of the
network management subsystem contained in the equipment. This value is allocated
within the Sructure of Management Information (SMI) enterprises subtree

(1. 3.6. 1. 4. 1), and provides a simple and unambiguous way to determine the type of
equipment being managed. For example, if veBtiaments, Inc. is assigned enterprise
number 4242, they use the subtte8. 6. 1. 4. 1. 4242, and can assign identifiers to
different products and product families, for example:

1.3.6.1.4.1.4242.1
For Routers.

1.3.6.1.4.1.4242. 1.1
For its Hydrogen Router.

1.3.6.1.4.1.4242.1.2
For its Oxygen Router.

1.3.6.1.4.1.4242.2
For Switches.

1.3.6.1.4.1.4242.2.1
For its Helium Switch.

1.3.6.1.4.1.4242. 3
For Hubs.

1.3.6.1.4.1.4242.3.1
For its Nitrogen Hub.

You must obtain a unique Enterprise ID number for your company, and manage your
own subtree of identifiers for your products. Currently, enterprise numbers are allocated
by Internet Assigned Numbers Authority (IANA), who can be contacted at website
http://ww.iana. org.

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

4.3.4 Trap targets

435 Trap buffer

Function Descriptions

Syntax
oi d sys_id[] = {1, 3, 6, 1, 4, 1, ENTERPRISE, 1, 1};
unsi gned sys_id_len = sizeof (sys_id)/sizeof)oid);
where:
ENTERPRI SE

Is#def i ned in snnpport . h asyour enterprise number.
Example

The demonstration program snnpdeno uses the ARM enterprise number (#def i ne
ENTERPRI SE 4128 insnnpport . h) to set the system identifier in snnpport. c. You
can use the ARM enterprise number while developing your product, but you must
obtain your own enterprise number before your product is shipped.

Thefiletrap_out . c declaresan array of MAX_TRAP_TARGETS trap_t ar get
structures. Thisarray must beinitialized by your startup codein mai n() to contain the
I P address and community string to be used for each intended recipient of SNMP trap
messages. MAX_TRAP_TARGETS is defined in thesnnpport . h file.

Syntax

struct trap_target trap_targets[MAX_TRAP_TARCETS] = {0};

Example

The demonstration program snnpdeno shows how these values can beinitialized to a
NULL listintrap_out . c, and then overridden by values read from a configuration
fileinthemai n() routine at system startup.

If your system is sending SNMP trap messages, it needs some workspace in which to
build them. Your snnp_i ni t () functioninsnnpport . c must allocate abuffer, either
dynamically or statically, and assignt r ap_buf f er to point toit. The variable
trap_buf f er _I en must be set to the length of the buffer. The two variables
trap_buffer andtrap_buffer_| en aredeclared for youintrap_out.c. You
simply need to assign the correct values to them.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-13

Function Descriptions

Syntax

unsi gned trap_buffer_len = 0;
u_char * trap_buffer;
Example

Thesnnp_i ni t () codeinsnnpport. c and snnpsock. ¢ showsoneway toinitialize
these variables.

4-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

4.4 ASN.1 parse functions

If you are using an access_net hod function to implement aspecial SET operation,
you will need to usetheseasn_par se functionsto determine the value that isto be set.
The parse functions are:

. asn_parse_int()

. asn_parse string() on page 4-17
. asn_parse _objid() on page 4-18
. asn_parse _null() on page 4-19.

4.4.1 asn_parse_int()

This function parses a 32-bit integer value from an ASNIIEGER type.

Syntax

u_char *asn_parse_int(u_char *data, unsigned *datal ength,
u_char *type, long *intp,
unsi gned i ntsize)

where:

dat a Points to the start of the object.

dat al engt h
Points to the number of valid bytes availablgan a. On return, it points
to the number of valid bytes left tfat a.

type Points to a location that, on return, is filled with the ASN.1 type of the
data.

intp Points to a location that, on return, is filled with the value of the ASN.1
data.

intsize Must, on entry, contain the size, in bytes, of the location pointed to by
i nt p. Forasn_parse_i nt (), this must be the value

On entry,dat al engt h is input as the number of valid bytes followidgt a. On exit,
it is returned as the number of valid bytes following the end of this object.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. 4-15

Function Descriptions

Return value
Returns one of the following:

Pointer to thefirst byte past the end of thisobject (start of the next object)
If successful.

NULL On any error.

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

4.4.2 asn_parse_string()

This function parses a sequence of bytes from an ASN.1 OCTET STRI NGtype.

Syntax

u_char *asn_parse_string(u_char *data, unsigned *datal ength,
u_char *type, u_char *string, unsigned *strlength)

where:
dat a Points to the start of the object.

dat al engt h

Pointsto the number of valid bytesavailablein dat a. Onreturn, it points
to the number of valid bytes|eft in dat a.

type Points to alocation that, on return, is filled with the ASN.1 type of the
data.

string Points to alocation that, on return, is filled with the value of the ASN.1
data.

strlength Must, onentry, contain the size, in bytes, of the location pointed to by
st ri ng. On exit, this contains the number of characters placed at
location st ri ng.

On entry, dat al engt h isinput as the number of valid bytes following dat a. On exit,
it is returned as the number of valid bytes following the end of this object.

—— Note

st ring will not be null-terminated. That is, there is no \0 character appended to the
string.

Return value
Returns one of the following:

Pointer to thefirst byte past the end of this object (start of the next object)
If successful.

NULL On any error.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-17

Function Descriptions

4.4.3 asn_parse_objid()

This function parses a sequence of object identifiers from an ASN.1 OBJECT | Dtype.

Syntax

u_char *asn_parse_objid(u_char *data, unsigned *datal ength
u_char *type, oid *objid,
unsi gned *obj i dl engt h)

where:

dat a Points to the start of the object.

dat al engt h
Points to the number of valid bytes available in data. On return, this
points to the number of valid bytes|eft in dat a.

type Points to alocation that, on return, is filled with the ASN.1 type of the
data
objid Pointsto an area of at least MAX_Q D_LEN bytesthat is, on return, filled

with the value of the ASN.1 data.

obj i dl engt h
Contains, on return, the number of subidentifiers placed in obj i d.

On entry, dat al engt h isinput as the number of valid bytes following dat a. On exit,
it is returned as the number of valid bytes following the end of this object.

Return value

Returns one of the following:

Pointer to thefirst byte past the end of this object (start of the next abject)
If successful.

NULL On any error.

4-18

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Function Descriptions

4.4.4 asn_parse_null()

This function parsesan ASN.1 NULL object.

Syntax

u_char *asn_parse_nul |l (u_char *data,
unsi gned *dat al ength, u_char *type)

where:
dat a Points to the start of the object.

dat al engt h

Points to the number of valid bytes available in dat a. On return, this
points to the number of valid bytes|eft in dat a.

type Pointsto alocation whichis, on return, filled with the ASN.1 type of the
data (ASN_NULL).

On entry, dat al engt h isinput as the number of valid bytes following dat a. On exit,
it is returned as the number of valid bytes following the end of this object.

Return value

Returns one of the following:

Pointer to thefirst byte past the end of this object (start of the next object)
If successful.

NULL On any error.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. 4-19

Function Descriptions

4-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Appendix A
SNMP ARP Table Interface

This appendix provides a heavily annotated example of theat Ent r y table, which
allowsexisting entriesto be modified, and new entriesto be created. Theat Ent r y table
isacomplete example of using an access_net hod function (see Custom SET
operations on page 3-26). This appendix contains the following section:

. atEntry table, annotated on page A-2.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. A-1

SNMP ARP Table Interface

A.l atEntry table, annotated

Example 1-1 atEntry table

The atEntry table is the SNW interface to the IP stack’s ARP table. It
allows entries to be nodified, and also allows new entries to be created.
The I P stack’s ARP table is not kept in any sorted order, so sone work is
required to inplenent GETNEXT correctly. This table has three variabl es per
row, all of which are nodifi abl e:

the interface nunber
- the physical nedia address
the | ogi cal network address.

The atEntry table is indexed by the interface index, by a constant 1, and
by the network address, which nmeans that an index into this table is
actual ly six subidentifiers |ong:

<i f I ndex>. 1. <i paddr >. <i paddr >. <i paddr >. <i paddr >

E I I S I R B S N T R B S

/
int add_atEntry(u_char *, u_char, int, u_char *, int);

/* Use #defines to help with extracting values fromthe object identifier
*/

#defi ne VAR AT | FACE O D 10
#def i ne VAR AT _NETTYPE O D 11
#defi ne VAR AT | PADDR O D 12
#define VAR _AT_O D_LENGTH 16
u_char *

var _at Ent ry(
struct variable * vp, /* IN- pointer to variables[] entry */

oid * nane, /* INQUT - input name requested; output name found */
int * |length, /* INQUT - length of input and output oids */

i nt oper, /* IN - NEXT_OP (=0), CET_OP (=1), or SET_OP (=-1) */
int * var_|en) /* QUT - length of variable, or O if function */

{

/* scratch workspace needed to keep track of the best fit found so far */
oid | owest [DEF_VARLEN]; /* "best fit" object Id */
oi d current [DEF_VARLEN] ;

struct arptabent * atp; /* scratch pointer to table entries */
struct arptabent * lowarp = NULL; /* lowest entry we found */
int i;

u_char * cp;

A-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface

/* SET operations are handl ed separately from GET and GETNEXT operations */
i f(oper == SET_OP)
{
* The full O D of the requested variabl e should be:
* .1.3.6.1.2.1.3.1. 1. <var > <| f | ndex>. 1. <I| pAddr >. <I pAddr >. <I pAdd>. <I pAddr >

* which is 16 subidentifiers long. If not, you cannot process this request.

*/

if(*length '= VAR AT_O D LENGTH) /* MJST have conpl ete index! */
return NULL; /* NOSUCHNAME error reply */

/*

* You need to use a hel per function, add_atEntry(), to do the work.

* This requires that you set up the set_parns structure to point to
* this function, with the requested variable name and the entry from
* the variables[] table.

*/

set _parns. access_net hod = add_at Entry;

set_parns.vp = vp;

set _parns. nanme = nane;

* When the access_nethod function add_atEntry() returns, the SNW

* core needs to be able to obtain the actual value set. The SNWP

* core obtains that value fromthe | ocation pointed to by the return
* value of this, the var_ routine, using the size set in var_len.

* At this point, you do not know which ARP table entry you are going
* to access, SO you nmust return a pointer to a static data area, which

* the access_nmethod will fill in with the correct val ue.
*/
swi t ch(vp->nagi c)

{
case ATI FI NDEX:

case ATNETADDRESS:
/* interface index and |IP address are 32-bit values */
*var _|l en = sizeof (long);

/* this is where the actual value is when */
/[* add_atEntry() returns */
return (u_char*)& ong_return;

case ATPHYSADDRESS:
/* the size of a MAC address is 6 bytes */
*var_len = 6;

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-3

SNMP ARP Table Interface

/* this is where the actual value is when */
/* add_atEntry() returns */
return return_buf;

}
}
/*
* The rest of the work for a SET operation is handled within the
* access_nethod function add_atEntry(). The remai nder of the
* var_atEntry() routine inplements GET and GETNEXT operations, and shows
* how to handl e the situation where the underlying data has no natural
* orderi ng.
*/
/*
* Fill in basic nane for ‘current’ fromthe variable that
* the SNWP core natched agai nst
*/

MEMCPY((char *)current, (char *)vp->name, VAR AT_O D LENGTH *si zeof (0id));

/* scan the ARP table for closest match */
for(atp = arp_table; atp < arp_table + MAXARPS; atp++)
{
if(latp->t_pro_addr) /* ignore this entry if not valid */
conti nue;

/*

* For each valid entry in the ARP table, generate an O D describing
* that entry

*/

current[VAR AT_NETTYPE O D] = 1; /* type is |IP address */

/* copy |IP address into current. */

cp = (u_char*)&atp->t_pro_addr;

for(i = VAR AT IPADDR O D; i < VAR AT O D LENGTH; i ++)
current[i] = *cp++;

/* set interface index in objld */
current[VAR AT_| FACE_ O D] = (oid)(GET_NET_NUM at p->net) + 1L);

/*

* A CGET operation will require an exact match of the requested

* variable with the synthesized nane. If there is a match, make

* a copy of the matching nane, and keep a pointer to the appropriate
* ARP table entry.

*/

if (oper) /* operation is CET */

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface

{
if (conpare(current, VAR AT _O D LENGTH, nane, *length) == 0)
{
MEMCPY((char *)Ilowest, (char *)current,
VAR _AT_O D _LENGTH * sizeof(o0id));
| owarp = atp;
break; /* no need to search further */
}
}
/*

* A GETNEXT operation is looking for an entry that is

* | exicographically greater than the requested variable. If the
* gsynt hesi zed nane is greater than the requested nanme, and | ess
* than the current best fit that you have found, then it is a

* petter fit than the current best fit. In this case, make a

* copy of the nane, and keep a pointer to the ARP table entry.

*/
else /* caller wants closest match */
{
if ((conpare(current, VAR AT_O D _LENGTH, nanme, *length) > 0) &&
('lowarp ||
(conpare(current, VAR AT _O D _LENGTH, |owest, VAR AT OD LENGTH < 0)))
{
MEMCPY((char *)Ilowest, (char *)current,
VAR_AT_QO D LENGTH * sizeof (oid));
| owarp = atp;
}
}
} /* end for at_mb | oop*/
/*
* By this point, one of the following will have been found:

* - an exact match for a GET operation
* - the nearest next variable for a GETNEXT operation
* - nothing at all, indicating that there is no next entry in this table.

* |f there is no next entry, return NULL, so that the SNMP core can call
* the var_routine for the next variable in the variables[] table.
*/
i f (!l owarp)
return(NULL); /* no match */

/*
* For a successful GET or GETNEXT operation, return the actual variable
* instance found in narme, and the length of the variable name in | ength.
*/

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-5

SNMP ARP Table Interface

MEMCPY((char *)name, (char *)lowest, VAR AT_O D LENGTH * sizeof (0id));
*l ength = VAR _AT_O D _LENGTH,

/*
Finally, return a pointer to the |location where the variable's val ue
* can be found. Note that long_return is a static data item and not a
* | ocal variable.
*/
swi t ch(vp->magi c)
{
case ATI FI NDEX:
*var _| en = sizeof |long_return;
long_return = (unsigned |ong)l owest[VAR AT | FACE_ A D ;
return (u_char *)& ong_return;

case ATPHYSADDRESS:
*var_|len = 6;
return (u_char *)I|owarp->t_phy_addr;

case ATNETADDRESS:
*var _|len = 4;
return (u_char *)& owarp->t_pro_addr;

defaul t:
SNVPERROR("var _AtEntry: bad nmagi ¢ nunber");

}

return NULL;
}
/*
* "access_met hod" function: Arp table add entry routine.
* Returns an snnp error fromsnnp.h (0 == no error)

* The add_atEntry() function is called by the SNMP core after the

* var_atEntry() function has returned a non-NULL val ue (indicating that the
* variable exists), and after the SNMP core has verified the access

* perm ssions are valid, that is, after the SNWP core has verifired that the
* desired variable is in fact a nodifiable one.

* This routine is called with pointers to the value to set fromthe SET

* request packet, and to the location at which to set the variable, as

* returned by the var_atEntry() function. The variables[] table entry for the
* variable to be set is passed by way of the set_parms structure

*/

int

add_at Entry(

A-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface

u_char *var _val, /* pointer to asnl-encoded set val ue*/
u_char var_val type, /* asnl type of set value */
int var_val _len, [/* length of set value */
u_char *statP, /* pointer returned by var_atEntry */
i nt st at Len) [* *var_len fromvar_atEntry */
{
unsi gned i f ace; /* interface from Cbjectld index */
i p_addr arp_ip; [* I P address fronm Obj ect| D i ndex */
struct arptabent *atp; /* scratch pointer to table entries */
u_char mac_buf[6]; /* tenporary storage for MAC address */
unsi gned asnbuf _| en; /* for use by asnl parser */
u_char asn_type; /* for use by asnl parser */

/* obtain a pointer to the variable to be set */
struct variable *vp = set_parns. vp;

/*

* An | P address and an interface nunber index the ATTabl e.

* Extract these index values fromthe Cbject ID fromthe SET request
* (stored in set_parns by the var_atEntry() function).

* The oi d2bytes() function will convert a sequence of object

* jdentifiers into a sequence of bytes. The foll owi ng code

* jllustrates howit is used to convert the four O Ds representing

* the | P address index into an ipaddr variable, arp_ip. arp_ip wll
* be in network-byte order (big-endian), not |ocal-host byte order.
*/

oi d2bytes((char*)&rp_i p, set_parns. nane + VAR AT_| PADDR O D, 4);

/*

* Extract the interface nunber fromthe QD

*/

iface = (int)*(set_parms. name + VAR AT _| FACE A D);

/*
* |t is recommended that you performrange checki ng whenever practical.
* The followi ng code illustrates how you should check that the

* interface index passed in the request does not exceed the nunber of
* interfaces in the system Wthin SNW, the interface index val ues
* start at one (not zero), therefore you nust also check that you have
* not received a request to use interface zero:
*

/
if(iface <1 || iface > ifNunber)
{

i f(vp->magi c == ATI FI NDEX)

return SNVP_ERR BADVALUE;

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-7

SNMP ARP Table Interface

el se
return SNVP_ERR NOSUCHNAME;
}

/*
* Use the index values passed to see if there is already an ARP table
* entry that can be overwitten.
*/
for(atp = arp_table; atp < arp_table + MAXARPS; atp++)
i f(atp->t_pro_addr == arp_ip)
br eak;

/*
* |f there is no pre-existing entry, you nust create one
*/

if(atp >= &arp_tabl e[MAXARPS])

{

}

atp = make_arp_entry(arp_ip, nets[iface-1]);

* The make_arp_entry() function never fails. It |ocates an enpty
* ARP table entry and uses that, or it uses the least-recently
* used table entry.

* atp will now point to a valid ARP table entry. Use the asn_parse_

* functions to parse the actual value passed in the SNWP SET request

* to discover what value to set. The asn_ functions expect to be

* passed a pointer to the nunber of bytes left in the buffer to be

* parsed, and will update that value by subtracting the nunber of bytes
* used to parse the current value. This function gets passed the |length
* of the data part of the asn.l1l sequence, which excludes the two bytes
* of header/length information. For the asn_ funtions to be able to

* work correctly, add two to the passed var_val _|en, and use that

* as the val ue passed into the asn_ function

asnbuf len = var _val _len + 2

/*

* For each variable that can be set, parse the value passed in the SET
* request nessage

*/

switch (vp->nmagic)
{
case ATI FI NDEX:

Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

SNMP ARP Table Interface

/*
* The interface index is passed as an integer. SNWVP indexes the
* interfaces starting at one. The TCP/IP stack indexes themstarting
* at zero, so ensure that you conpensate for this
*/
asn_parse_int(var_val, &asnbuf_len, &asn_type, (long *)& ong_return,
si zeof (1 ong_return));

if(long_return <1 || long_return > (long)ifNunber)
return SNVP_ERR _BADVALUE;

atp->net = nets[(int)long_return-1];
br eak;

case ATPHYSADDRESS:

/*
* The MAC address is coded as an OCTET STRING which is parsed into
* mac_buf. The system expects a MAC address to be no nore than six
* pytes long, so it is checked here to prevent buffer overflow
* The undocunented convention for the AT group is that attenpting to
* set a null MAC address should result in the table entry being
* deleted. The IP stack represents an unused ARP table entry by
* the protocol address field being set to zero. Therefore,
* |egitimate |l engths for the OCTET STRING are zero and six bytes.
*/
if(var_val _len && var_val _len != 6)

return SNVP_ERR BADVALUE

asn_parse_string(var_val, &asnbuf_len, &asn_type, nac_buf,
(unsi gned*) &var _val _| en);

i f(var_val _len == 0)

atp->t _pro_addr = OL; /* mark it deleted */
el se

MEMCPY(at p- >t _phy_addr, nmac_buf, 6);
br eak;

case ATNETADDRESS
/*
* The Network Address (Protocol Address) is an OCTET STRI NG of
* length four. The asn_parse_ functions do not check that the
* type they are parsing matches the data that is being parsed,
* S0 you can use the asn_parse_int() function to parse the
* OCTET STRING into an integer variable. The asn_parse_int()
* function al so handl es the conversion from network-byte order
* to local -host byte order. However, the ARP table entry is
* expected to be stored in network-byte order, so you nust

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. A-9

SNMP ARP Table Interface

* change the val ue back to network-byte order

*/

asn_parse_int(var_val, &asnbuf_len, &asn_type, (long *)& ong_return,
si zeof (1 ong_return));

atp->t_pro_addr = htonl (Il ong_return);

br eak;

defaul t: /* shoul d not happen */
dtrap();

}

/*

* Each of the cases above has left the value that was set in the gl obal

* variabl e whose address was returned by the var_artEntry() function. This

* value is obtained by the SNMP core and is used to create the

* response nessage that is sent back to the SNWP station that originated the
* request.

* The final step is to let the SNMP core know that no errors occured.
*/
return SNVP_ERR NOERROR;

USE_ARQ(st at Len) ;
USE_ARG st at P) ;
USE_ARGE var _val _type);

A-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Appendix B
Building the Demonstration Program

This appendix details the requirements, installation procedure, and steps required to
build the demonstration program. Instructions are provided for using both ARM SDT
for Windows and ARM SDT for command-line environments.

This chapter contains the following sections:

. About the demonstration program on page B-2

. Requirements on page B-3

. Installation procedure on page B-4

. Building using ARM SDT for Windows on page B-5

. Building using ARM SDT from the command line on page B-7
. Running the SNMP Agent application on page B-8.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-1

Building the Demonstration Program

B.1 About the demonstration program
The demonstration SNMP Agent shipped with ARM SNMP implements al of the
following:
. a subset of MIB-II fronRFC 1213
. a modified version of th€offee Pot MIB, extracted fronRFC 2325
. an application-specific extension that has been appendedRE@#213 . ni b
file.
The MIB Compiler is used to generate theheader file, thec stubs file, a num
numbers file, and thennpvar s. c file. However, the demonstration agent only makes
use of thesnnpvars. c file and the h header file.
The. c stubs file is replaced byi b2. ¢ which contains example implementations of
the MIB-II, Coffee Pot MIB, and the application-specifiar _ and
access_net hod() routines for the following groups:
. MIB-Il System group
. MIB-II Interfaces group
. MIB-Il i f Ent ry group
. MIB-II at Ent ry group
. MIB-II i p group
. MIB-II i pAddr Ent ry group
. MIB-Il i pRout eEnt ry group
. MIB-II i pNet ToMedi aEnt ry group
. MIB-II i cp group
. MIB-II t cp group
. MIB-II t cpConnEnt ry group (not implemented)
. MIB-II udp group
. MIB-II udpEntry group
. MIB-II egp group (not implemented)
. MIB-IlI egpNei ghEnt ry group (not implemented)
. MIB-Il snmp group
. application-specific MIBsnnmpDeno group
. Coffee Pot MIB coffee group
. Coffee Pot MIBpot Moni t or group.
B-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program

B.2 Requirements

You need the following products to build the demonstration program:
. ARM TCP/IP

. ARM PPP (optional)

. ARM SNMP Agent

. ARM Development Board (PID7T), with Ethernet Kit

. ARM SDT, version 2.50 or later

. Multi-ICE or EmbeddedICE interface.

ARM DUI 0120A Copyright © 2000 ARM Limited. All rights reserved. B-3

Building the Demonstration Program

B.3 Installation procedure

Install the ARM TCP/IP software by following the detailed instructions in Porting
TCP/IP Programmer’s Guidprovided with the ARM TCP/IP software. Check that you
can compile and run programs on the ARM Development Board (PID7T).

Unpack the ARM SNMP Agent softwareinto thedirectory containingthe ARM TCP/IP
sources. You should now have a directory structure similar to:

—CharGen
—inet
—mibcomp
—snmp
—snmpdemo
—tcp

Note
There might be other directoriesfor PPP, and other ARM networking protocolsthat you
have purchased.

B-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program

B.4 Building using ARM SDT for Windows

This section details the steps you need to take to build the MI1B Compiler and
demonstration SNMP Agent using ARM SDT in a Windows environment.

B.4.1 Building the MIB Compiler

To build the MIB Compiler:

1.

2.

Using the ARM Project Manager (APM), open the mi bconp. apj fileinthe
...\mibcomp directory.

Select Build mibcomp.apj from the Project menu. The MIB Compiler should
build without errors or warnings.

B.4.2 Compiling the example MIB files

To compile the example MIB files:

1

Select Debug mibcomp.apj from the Project menu. Thisinvokesthe ARM
Debugger for Windows (ADW).

Note

You may have to reconfigure the ADW to use the ARMulator, configured for
little-endian ARM7 operation, if your ARM Development Board (PID7T) is not
configured for little-endian operation with an ARM7 compatible core, or if it has
insufficient memory to compile the MIB files.

In ADW, select Set Command Line Arguments from the Options menu.

In the command-line arguments box, enter:
-i .\snmpdemo\rfc1213.mib ..\snmpdemo\rfc2325.mib -chnvq

Click OK.

Select Go from the Execute menu. You should see output similar to the
following:

MIB compiler v1.4.2

Copyright (C) ARM Limited 1999. All Rights Reserved.
Copyright 1996 by InterNiche Technologies Inc.
Copyright 1993 by NetPort Software

Parsed 450 objects

If you reconfigured the ADW to use the ARMulator, change it back to use the
ARM Development Board (PID7T) again.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. B-5

Building the Demonstration Program

7. Exit ADW.

8. Move the four output files (cof f ee_p. ¢, cof f ee_p. h, cof f ee_p. num and
snmpvar s. c¢) from the ...\mibcomp directory to the ...\snmpdemodirectory.

B.4.3 Building the SNMP Agent application
To build the ARM SNMP Agent application:

1. Using the APM, open the snmpdemo.apj filein the...\snmpdemodirectory.

2. Select the appropriate project for your configuration (for example, ARM or
Thumb, or big-endian or little-endian).

3. Select Build... from the Project menu. The SNMP Agent project should build
without errors or warnings.

B-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Building the Demonstration Program

B.5 Building using ARM SDT from the command line

To build the MIB Compiler and demonstration SNM P Agent application using ARM
SDT in a command-line environment, you must do the following:

1
2.

Change the directory to ...\snmpdema

Edit the makefile.

Uncomment the WHICHVARIANTS=ine, and fill in the variant(s) you would like
to build. You can choose from the following:

ArnLittl eDebug
ArnLittl eRel ease
Ar nBi gDebug

Ar nBi gRel ease
ThunbLi tt | eDebug
ThunbLi tt| eRel ease
ThunbBi gDebug
ThunmbBi gRel ease.

Do one of the following:

L]

runmake -s all (UNIX systems)
runar nmake -s all (PC systems).

The SNMP Agent project should build without errors or warnings.

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved. B-7

Building the Demonstration Program

B.6 Running the SNMP Agent application
To run the SNMP Agent application:

1. Edittheet her. nv fileand set valid |P addressing options, and SNMP
community and trap target information, before running the snnpdeno. axf file
on the ARM Development Board (PID7T).

2. Useyour preferred SNMP network management software to interrogate the
SNMP Agent.

B-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0120A

Index

Theitemsin thisindex are listed in a phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

About the MIB Compiler 2-2

Abstract Syntax Notation 1. See ASN.1.

access_method() 3-27, 3-28, A-1, A-6,
B-2

add_atEntry A-2, A-6

ADW B-5

agent 1-3

APM B-5, B-6

ARM Debugger for Windows. See
ADW.

ARM Development Board (PID7T)
1-2, 1-6, B-3, B-4, B-5, B-8

ARM Project Manager. See APM.

ARM Software Development Toolkit.
See SDT.

ArmBigDebug B-7

ArmBigRelease B-7

ARMCC 2-3

ArmLittleDebug B-7

ArmLittleRelease B-7

armmake B-7

ARMulator 2-3, B-5
ARM7 B-5
asnl.c 3-3
ASN.1 1-3,2-2,2-5,2-8
ASN.1INTEGER 3-22,4-15
ASN.INULL 4-19
ASN.10OBJECT ID 4-18
ASN.1OCTET 4-17
ASN.1 parse functions 4-15
asn_parse_int() 4-15
asn_parse_null() 4-19
asn_parse objid() 4-18
asn_parse_string() 4-17
ASN.1 SEQUENCE 2-7, 3-22
atEntry A-1

B

BADVALUE 3-26

Berkeley Software Distribution. See
BSD.

Big-endian 3-10

BSD 3-10
Building the demonstration program
command line B-7
Windows B-5
Building the MIB Compiler 2-3, B-5
Building the SNMP Agent application
B-6

C

Calling functions 3-8
Coffee Pot MIB B-2
coffee p.c B-6
coffee p.h B-6
coffee_p.num B-6
Cold Start trap 3-8, 4-10
Communities 4-11
communitylD 3-8, 4-11
compare() 3-17, 3-23
Compiling the example MIB files B-5
Corefiles 3-3

asnl.c 3-3

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved.

Index-1

Index

snmp.c 3-3
shmp_age.c 3-3
snmp_aut.c 3-3
trap_out.c 3-3
COUNT 3-16
COUNTER 3-17
CPU requirements 1-5
Custom SET operations 3-26

D

data 4-15, 4-17,4-18, 4-19

Data objects to implement 3-8

datalength 4-15, 4-17, 4-18, 4-19

Demonstration program 1-2
building B-5, B-7
requirements B-3

Demonstration program overview B-2

Demultiplexor 4-9

do_range 3-17, 3-26

dprintf() 3-7

dtrap() 3-7,3-11

E

EmbeddedICE B-3

ENABLE_SNMP_TRAPS 3-13

ENP_code 4-9

ENP_NOT_MINE 4-9

ENTERPRISE 3-12, 4-13

Enterprise identification number 3-12,
4-12,4-13

Example implementation routines B-2

F

FALSE 3-10
findvar() 3-15

free() 3-12
Functionstocall 3-8
Functionsto implement 3-7

G

GAUGE 3-16, 3-17

GET 2-6,3-15,3-17, 3-18, 3-23, 3-24,
3-26

GETNEXT 2-6, 2-8, 3-15, 3-18, 3-22,
3-23,3-24

GetUptime() 3-7, 4-8

GNUC 2-3

H

hi_range 3-17, 3-26
htonl() 3-7,3-10
htons() 3-7, 3-10

IANA 3-12,4-12

ICMP 3-19, 3-21

icmp_mib 3-20

ifDescr 3-22

ifindex 3-22

ifPhysAddress 3-22

Implementing

functions 3-7
macros 3-7

Implementing data objects 3-8

inbuf 4-2

INCLUDE_SNMP 4-10

Indexed variable 3-22

Indexes 3-22

inlength 4-2

Input 2-5

Installation procedure (demonstration
program) B-4

INTEGER 3-16, 3-17

Interface 4-2

Interfacestable 3-22

Internet Assigned Numbers Authority.
See |ANA.

Internet Control Message Protocol. See
ICMP.

intp 4-15

intsize 4-15

ipport.h 3-7, 4-9, 4-10

ip_myaddr() 3-7

ip_start() 4-10

L

length 3-15, 3-16, 3-17

L exicographic comparison 3-17, 3-22
Lexicographic ordering 2-7, 2-8
Little-endian 3-11

Low-overhead UDP 3-5, 4-9
lo_range 3-17, 3-26

M

Macrosto implement 3-7
magic 3-18, 3-19
main() 3-8, 4-12,4-13
main.c 2-3
make B-7
Makefile 2-3,B-7
armmake B-7
malloc() 3-12
Management Information Base. See
MIB.
MAX_COMMUNITY_SIZE 3-12
MAX_OID_LEN 3-12,4-18
MAX_SUBID 3-11
MAX_TRAP_TARGETS 3-13,4-13
MEMCPY() 3-7
MEMMOVE() 3-7
Memory sizes 1-5
MIB B-2
Compiler 1-4, B-2, B-5, B-7
building 2-3
input 2-5
output 2-6
output files 3-4
overview 2-2
usage 2-4
variables structure 2-7
files 2-2,2-5
compiling B-5
groups 2-7
MIBII 1-2,1-5
updating 2-9
varisbles 1-4, 2-2, 3-7, 3-8, 3-19
MIB Compiler 1-6
mibcomp 2-3
mibcomp.apj B-5
mib2.c 3-4, 3-22, 3-25, 3-27, B-2
MIB_COUNTERS 3-9, 3-13, 4-11

Index-2

Copyright © 2000 ARM Limited. All rights reserved.

ARM DUI 0120A

Microsoft nmake 2-3

msg 4-6
Multi-ICE B-3
N

name 3-15, 3-16, 3-17, 3-23, 3-27

nb_len 4-9

nb_prot 4-9

nmake 2-3

Non-Volatile Random Access Memory

NOSUCHNAME 3-17, 3-26, 3-27

nptypes.h 3-9

ntohl() 3-7,3-10

ntohs() 3-7,3-10

NULL 3-10, 3-15, 3-17, 3-24, 3-26,
4-13

Numbersfile 2-4

Numbersfiles 2-6

num_communities 3-8, 4-11

num_variables 3-8

NVRAM 3-8

O

Object Identifier 2-4, 2-7, 2-8, 3-11,
3-15, 3-16, 3-17, 3-18, 3-22, 3-23
Object ID. See Object Identifier
objid 4-18
objidlength 4-18
Octet strings 3-16
OID. See Object Identifier.
oper 3-15, 3-16, 3-17
outbuf 4-2, 4-3
outlength 4-2
Output 2-6
out_data 4-7
out_len 4-7
Overview
demonstration program B-2

P

PACKET 4-9
parse.c 2-3
parseh 2-3

PID7T 1-2, 1-6, B-3, B-4, B-5, B-8
port 4-9
Port data 4-11
Port files 3-3
snmpport.c 3-3
snmpsock.c 3-3
Port-dependent files 3-9
Porting procedure 3-6
PPP B-3, B-4
PREBIND_AGENT 4-9
printf() 4-6
Private Enterprise Number 3-9, 3-16
Procedure
installingthedemonstration program
B-4

R

Range checking 3-17, 3-26

Read-only 2-8

Read/write 2-8

Real-time Operating System. See
RTOS.

Recommended data structure 3-18

Requirements for the demonstration
program B-3

RTOS 3-5

Running the SNMP Agent application
B-8

S

Scalar variables 3-15, 3-22
SDT 1-2,B-1, B-3, B-5, B-7
send_trap_udp() 3-7,4-7
SET 2-6, 3-15, 3-17, 3-18, 3-22, 3-23,
3-24,3-26
SetParms 3-26, 3-27
set_ parms 3-17, 3-18, 3-27
set_parms.do_range 3-26
set_parms.lo_range 3-26
Skeleton routines 2-2
SMI 4-12
SNMP access permissions 3-8
SNMP Agent application
building B-6
running B-8

Index

SNMP Agent interface 4-2
SNMP community strings 3-8
SNMP demonstration program 1-2,
B-1
SNMPMIB 4-11
SNMP port data 4-11
SNMP usage statistics 3-9
snmpdemo 4-12, 4-13
snmpdemo.ap] B-6
snmpdemo.axf B-8
SNMPERROR() 3-7,3-11, 4-6
SnmpMib 3-9, 4-11
snmpport.c 3-3, 3-7, 3-8, 3-9, 4-2, 4-7,
4-9, 4-10, 4-11, 4-12, 4-13, 4-14
snmpport.h 3-7, 3-9, 3-10, 3-13, 4-3,
4-11, 4-13
SNMPSIZ 3-13,4-3
snmpsock.c 3-3, 4-2, 4-7, 4-10, 4-14
snmpvars.c 2-4,2-6, 2-7, 3-4, B-2, B-6
snmp.c 3-3
snmp.h 3-27
shmp_age.c 3-3
snmp_agt_parse() 3-5, 3-6, 3-8, 3-13,
4-2,4-3,4-9
snmp_aut.c 3-3
SNMP_ERR_ values 3-27
SNMP_ERR_BADVALUE 3-27
SNMP_ERR_GENERR 3-27
SNMP_ERR_NOERROR 3-27
SNMP_ERR_NOSUCHNAME
3-27
SNMP_ERR_READONLY 3-27,
3-28
SNMP_ERR_TOOBIG 3-27
snmp_imp.h 4-4
snmp_init() 3-8, 4-4, 4-10, 4-13, 4-14
snmp_mib 3-9, 4-11
snmp_trap() 3-8, 4-2,4-4,4-5
snmp_upc() 4-9
snmp_var.h 2-7
Sockets 1-3, 4-10
Softwareinterface 3-7
Solaris 2-3
Sourcefiles 3-2
specificType 4-4
specificVarCount 4-4
specificVars 4-4
stack 1-3
stdio.h 3-10

ARM DUI 0120A

Copyright © 2000 ARM Limited. All rights reserved.

Index-3

Index

STRING 3-18

string 4-17

strlength 4-17

strncmp() 3-17

struct variable 2-7

Structure of Management Information.
See SMI.

Stub routines 2-2, 3-4, 3-22

Sub-id 3-11

Suggested data structures 3-19

SysContact 3-16

SysDescr 3-16

SysLocation 3-16

SysName 3-16

SysObjectlID 3-16, 4-12

SysServices 3-16

System identifier 4-12

System requirements 1-4

system.sysObject|D.0 value 3-9

SysUpTime 3-16

sys id 4-13

sys id len 3-9,4-13

SYS STRING_MAX 3-12, 3-17

T

Target system 3-5
TCP/IP B-3

Testing 3-13
ThumbBigDebug B-7
ThumbBigRelease B-7
ThumbLittleDebug B-7
ThumbLittleRelease B-7
TIMETICKS 4-8

TODO 2-6

Trap 4-4,4-7,4-13

Trap buffer 4-7,4-10, 4-13
Trap targets 4-13
trapType 4-4

trapVar 4-4,4-5
trap_buffer 4-13,4-14
trap_buffer_len 4-13,4-14
trap_out.c 3-3,4-13
trap_target 4-7, 4-13
treec 2-3

TRUE 3-10

type 4-15,4-17, 4-18, 4-19
typesh 3-9

U

UDP 1-4, 3-7

udp_send() 4-9

Unknown magic number 3-19
Updating MIBs 2-9

Usage 2-4

V1 IP_SNMP_TRAPS 3-13
V2 IP_SNMP_TRAPS 3-13

Symbols

.iso.org.dod.internet.private.enterprises
39

User-required functions 4-6

Vv

varBuf 4-4
varBufLen 4-4
Variables
length 3-15, 3-16, 3-17
name 3-15, 3-16, 3-17, 3-23, 3-27
oper 3-15, 3-16, 3-17
structure 2-6, 2-7
table 3-23
varBuf 4-4
varBufLen 4-4
varName 4-4
varNameLen 4-4
varType 4-4
varValLen 4-4
var_len 3-15, 3-16
vp 3-15, 3-16, 3-27
Variants
ArmBigDebug B-7
ArmBigRelease B-7
ArmLittleDebug B-7
ArmLittleRelease B-7
ThumbBigDebug B-7
ThumbBigRelease B-7
ThumbLittleDebug B-7
ThumbLittleRelease B-7
varName 4-4
varNameLen 4-4
varType 4-4
varValen 4-4
var_routine 3-17, 3-26, 3-27, B-2
var_atEntry A-2
var_icmp() 3-21
var_ifEntry() 3-22
var_len 3-15, 3-16, 3-17, 3-18
var_snmp() 3-9
var_system() 3-27
vp 3-15, 3-16, 3-27

Index-4 Copyright © 2000 ARM Limited. All rights reserved.

ARM DUI 0120A

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM SNMP Agent
	Feedback on this book

	Introduction
	1.1 About the ARM SNMP Agent
	1.1.1 Demonstration program

	1.2 Terms and conventions
	1.3 System requirements
	1.3.1 MIB Variables
	1.3.2 Processing power

	MIB Compiler
	2.1 About the MIB Compiler
	2.2 Building the MIB Compiler
	2.3 Usage
	2.4 Input
	2.5 Output
	2.5.1 Variables structure

	2.6 Updating MIBs

	Porting the SNMP Agent
	3.1 Setting up your source tree
	3.1.1 Core files
	3.1.2 Port files
	3.1.3 MIB Compiler output files
	3.1.4 Your project files

	3.2 The target system
	3.3 Porting procedure
	3.3.1 SNMP Agent software interface
	3.3.2 Port-dependent files
	3.3.3 Testing

	3.4 GET operations and scalar variables
	3.4.1 Suggested data structures

	3.5 GETNEXTs and indexes
	3.6 Custom SET operations

	Function Descriptions
	4.1 SNMP Agent interface
	4.1.1 snmp_agt_parse()
	4.1.2 snmp_trap()

	4.2 User-required functions
	4.2.1 SNMPERROR()
	4.2.2 send_trap_udp()
	4.2.3 GetUptime()
	4.2.4 snmp_upc()
	4.2.5 snmp_init()

	4.3 SNMP port data
	4.3.1 SNMP MIB
	4.3.2 Communities
	4.3.3 System identifier
	4.3.4 Trap targets
	4.3.5 Trap buffer

	4.4 ASN.1 parse functions
	4.4.1 asn_parse_int()
	4.4.2 asn_parse_string()
	4.4.3 asn_parse_objid()
	4.4.4 asn_parse_null()

	SNMP ARP Table Interface
	A.1 atEntry table, annotated

	Building the Demonstration Program
	B.1 About the demonstration program
	B.2 Requirements
	B.3 Installation procedure
	B.4 Building using ARM SDT for Windows
	B.4.1 Building the MIB Compiler
	B.4.2 Compiling the example MIB files
	B.4.3 Building the SNMP Agent application

	B.5 Building using ARM SDT from the command line
	B.6 Running the SNMP Agent application

