

 Copyright  2006 ARM Limited. All rights reserved.
 Open Access

Application Note 228

Implementing DMA on ARM SMP Systems

 Document number: ARM DAI 0228 A

Issued: 1
st
 August 2009

Copyright ARM Limited 2009

ii Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

Application Note 228
Implementing DMA on SMP Systems

Copyright © 2009 ARM Limited. All rights reserved.

 Release information

Change history

Date Issue Change

August 2009 A First release

 Proprietary notice

Words and logos marked with  and  are registered trademarks owned by ARM Limited, except as

otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the

trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document

may be adapted or reproduced in any material form except with the prior written permission of the copyright

holder.

The product described in this document is subject to continuous developments and improvements. All

particulars of the product and its use contained in this document are given by ARM in good faith. However,

all warranties implied or expressed, including but not limited to implied warranties of merchantability, or

fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable

for any loss or damage arising from the use of any information in this document, or any error or omission in

such information, or any incorrect use of the product.

 Confidentiality status

This document is Open Access. This document has no restriction on distribution.

 Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

 ARM web address

http://www.arm.com

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. iii
 Open Access

Table of Contents

1. Scope ..1-1

2. Cache coherency in multi-core processing systems...2-1

2.1 Coherency Protocols in ARM MPCore processors ...2-2

2.2 Coherency and non-CPU bus masters..2-6

3. Introduction to Direct Memory Access (DMA) ..3-7

3.1 DMA Basics ...3-7

3.2 Using DMA in cached systems..3-8

4. Considerations on using DMA..4-8

4.1 ARM11 MPCore ..4-8

4.2 Cortex-A9 MPCore ..4-8

4.3 The Accelerator Coherency Port (ACP) and I/O Coherency...............................4-8

5. Conclusion..5-8

 Scope

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 2-1
 Open Access

1. Scope

This Application Note explores the implications associated with performing Direct Memory

Access (DMA) operations on an ARM multi-core system such as the ARM11 MPCore and Cortex-

A9 MPCore.

The target audience for this document is kernel level programmers, device driver developers and

firmware designers that need to program at a low level on a coherent shared memory ARM

system. This document highlights features and behaviors of the underlying hardware and provides

guideline recommendations so that the developer can use and program the DMA engine efficiently

and avoid software design mistakes that would result in poor performance.

Examples given in this document are taken mainly from the Linux 2.6 OS kernel, but the concepts

apply to any modern Operating System that allows DMA.

2. Cache coherency in multi-core processing systems

The concept of Symmetric Multi-Processing (SMP) refers to a processor composed by two or more

equivalent cores sharing main memory with equal access rights to it. Generally an Operating

System would be running across all cores, transparently distributing tasks. When these cores

feature local caches, a mechanism must be used to keep them coherent.

Processors such as the ARM11 MPCore and the Cortex-A9 MPCore feature a hardware block

known as the Snoop Control Unit (SCU). When enabled, the SCU automatically maintains

coherency between the data caches local to each CPU.

2.1 Coherency Protocols in ARM MPCore processors

In a cached, shared memory, multi-core system, the mechanism implemented to maintain

coherency between all CPUs’ local caches is called the cache coherency protocol. The cache

coherency protocol is a state machine that governs the condition of each cache line in each core’s

cache at a given time. This is implemented by tagging all cache line with an identifier of their state

in respect to overall system coherency and cache lines in other cores. A hardware control unit

automatically manages the states.

The ARM11 MPCore and Cortex-A9 MPCore processors support the MESI cache coherency

protocol. In a correctly configured system, every cache line is dynamically marked with one of the

following states:

Modified (M)

The subject cache line is present only in the current cache and it is dirty (not up to date with the

next level of the memory hierarchy, L2 cache or main memory).

Exclusive (E)

The subject cache line is present only in the current cache, and it is clean (it is up to date with the

next level of the memory hierarchy, L2 cache or main memory).

Shared (S)

Indicates that the subject cache, other than being up to date with the next level of memory

hierarchy, is also stored (duplicated) in one or more other core’s caches.

Invalid (I)

The subject cache line is invalid.

Cache coherency in multi-core processing systems

2-2 Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

In an ARM MPCore processor, the coherency protocol is implemented and managed by the Snoop

Control Unit (SCU). The SCU effectively monitors the traffic between local L1 data caches and

the next level of the memory hierarchy. At boot time, each core can select to partake in the

coherency domain, in which case the SCU will maintain coherency between them.

An important fact about symmetric multi-core processors is that the detail of which process runs

on which core is controlled by the Operating System. In reality, unless explicit system calls bound

a task to a specific core (this is known as CPU affinity), the likelihood is that that task will at some

point migrate to a different core, along with its data as it is used.

In a literal implementation of the MESI cache coherence protocol, it is quite inefficient for a

migrated task to access memory locations that are stored in the L1 (write-back) cache of another

core. First the original core will need to invalidate and clean the relevant cache lines out to the next

level of the memory architecture. Once the data is available at a shared level of the memory

architecture (e.g. L2 or main memory), then it would be loaded into the new core.

CPU0 CPU2 CPU3CPU1

L1 D-cache L1 D-cache L1 D-cache L1 D-cache

SCU

Multicore with no cache-to-cache transfers

Extra read/write traffic

Note the above diagram is an illustration – ARM multi-core designs do not implement MESI in

this way.

Whilst maintaining compatibility with the MESI protocol, the ARM11 MPCore and Cortex-A9

MPCore processors implement performance and power optimizations that address this

shortcoming.

Direct Data Intervention (DDI): The SCU keeps a copy of all cores caches’ tag RAMs. This

enables it to efficiently detect if a cache line request by a core is in another core in the coherency

domain before looking for it in the next level of the memory hierarchy.

Cache-to-cache Migration: If the SCU finds that the cache line requested by one CPU is present

in another core, it will either copy it (if clean) or move it (if dirty) from the other CPU directly into

the requesting one, without interacting with external memory.

 Cache coherency in multi-core processing systems

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 2-3
 Open Access

In addition to the inherent performance benefits (in particular in a system without L2 cache), such

optimizations reduce memory traffic in and out the L1 cache subsystem, in turn reducing the

overall load on the interconnect, and reducing power consumption by eliminating interaction with

the external memories.

DDI and cache-to-cache transfers particularly benefit the real life example of running an SMP

operating system, where tasks and data can migrate between cores. It must be noted that

effectively they are a method of reducing the side-effect of poorly designed software: They should

not be relied upon when designing software for multi-core systems.

Techniques such as CPU task affinity are a more beneficial approach to improve system

performance, particularly for cache intensive activities such as device drivers operating DMA

(since they take advantage of warm caches). In reality, modern operating systems such as Linux

2.6 will try to keep tasks running on the same CPU (this practice is known as soft affinity).

Since Linux 2.5.80 the following system calls were introduced:

#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask);

int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask);

These system calls are Linux specific, and enable to bound task identified by its process identifier

to a subset of cores (using a mask).

Alongside NPTL (Native POSIX Thread Library), glibc version 2.3.4 provides non-standard

POSIX extensions to abstract the above system calls:

#include <pthread.h>

int pthread_attr_setaffinity_np(pthread_attr_t *, size_t, const cpu_set_t *);

int pthread_attr_getaffinity_np(pthread_attr_t *, size_t, cpu_set_t *);

These are not recommended for use since they are non-portable (hence the suffix –np).

Most modern Operating Systems and Real Time Operating Systems (RTOSs) provide system calls

that implement thread/process affinity.

Introduction to Direct Memory Access (DMA)

3-4 Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

2.2 Coherency and non-CPU bus masters

Modern embedded systems often feature multiple bus masters. Various levels of cache memories

are also adopted in order to provide the best performance. In this scenario, maintaining coherency

between the CPU and the data generated or consumed by I/O devices can be challenging, with an

optimal solution which depends on application and CPU cache subsystem characteristics.

Points to consider are:

• how much of the DMA data is actually processed by the CPU ?

• is the DMA data cached by the CPU (and, whether at L1 or L2 level) ?

• is there any I/O coherency?

Cortex-A9 is the first ARM application processor to offer full I/O coherency via the Accelerator

Coherence Port (ACP). This is discussed further in a dedicated section later in this document.

3. Introduction to Direct Memory Access (DMA)

3.1 DMA Basics

Direct memory access (DMA) is a vital part of many high-end systems. It allows additional bus

masters to read or write system memory independently of the CPU(s). DMA channels can transfer

blocks of data to or from devices with no CPU overhead.

The CPU manages DMA operations via a DMA controller unit. While the DMA transfer is in

progress, the CPU can continue executing code. When the DMA transfer is completed, the DMA

controller will signal the CPU with an interrupt.

Typical scenarios of block memory copy where DMA can be useful are network packet routing

and video streaming. DMA is a particular advantage in situations where the blocks to be

transferred are large or the transfer is a repetitive operation that would consume a large portion of

potentially useful CPU processing time.

3.2 Using DMA in cached systems

When using DMA in a cached system, the software designer/programmer must pay attention to the

behavior of the underlying memory subsystem. Using DMA in a cached system can have some

practical implications, both in single and multi-core processor configurations.

Consider a CPU with a cache and a DMA accessible external memory, with a write-back, rather

than write-through cache policy. A write-back cache will often contain more recent data than

system memory. If the cache is not cleaned before the external DMA engine reads the system

memory, the device will receive a stale value. Similarly, if the cached copy of the address is not

invalidated when a device writes a new value to the memory, then the CPU will operate on a stale

value.

In order to address the aforementioned scenarios, the following approaches are commonly adopted.

Conventional non-I/O-coherent systems (like the ARM11 MPCore) leave the responsibility to

software: the OS must ensure that the cache lines are cleaned before an outgoing DMA transfer is

started, and invalidated before a memory range affected by an incoming DMA transfer is accessed.

This introduces some overhead to the DMA operation, as most CPU cores require a loop to

invalidate each cache line individually. Often, this must be done separately for L1 and L2

memory. In particular L2 cleaning/flushing of a large region can be time consuming. The OS must

 Considerations on using DMA

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 4-5
 Open Access

also make sure that the memory range is not accessed by any other running threads in the

meantime (both in the single and multi-core cases).

I/O coherent systems (e.g. Cortex-A9 with ACP) implement a hardware mechanism where

accesses to shared DMA memory regions are routed to the cache controller which will invalidate

(for DMA reads) or cleans (for DMA writes) the relevant cache lines.

4. Considerations on using DMA

Most modern operating systems, including Linux, provide a DMA API capable of handling

coherency between CPUs and external devices accessing the same physical memory.

The following cases are possible in the context of Linux device drivers:

• Use uncached memory mapping from kernel space, usually allocated using

dma_alloc_coherent()

• Use uncached memory mapping from user space, usually created with

dma_mmap_coherent() (in the kernel driver)

• Use cached mapping and clean or invalidate it according to the operation needed

(dma_map_single() and dma_unmap_single())

When opting for un-cached memory mapping, the memory utilized can be configured either as

strongly ordered or normal uncached. Strongly ordered memory is memory configured to be un-

cached and un-buffered: the changes made by a CPU on a shared strongly order locations of

memory are immediately visible to all cores in the system (and do not require barriers). Normal

un-cached is buffered memory, so memory barriers will be required. The cache is cleaned and

invalidated when the mapping is created so there can be no stale data.

When using cached memory, the driver specifies the direction of the DMA operation

(FROM_DEVICE or TO_DEVICE) so that the cache is cleaned or invalidated accordingly. Using cached

memory mapping may be preferred in many circumstances (even where it gives rise to memory

coherency issues requiring extra software clean/invalidate operations) as it is likely to result in a

much more efficient set of bus accesses and faster overall performance.

Zero-copy DMA should be used wherever possible: User pages are mapped for DMA and the

transfer takes place from device memory directly into user space. A traditional (non-zero-copy)

solution would copy the data across several intermediate buffers between user and kernel spaces,

adding considerable overheads. Linux 2.6 supports zero-copy DMA functionality for all block

devices.

4.1 ARM11 MPCore

The ARM11 MPCore SCU does not handle coherency consequences of CP15 cache operations

like clean and invalidate. If these operations are performed on one CPU, they do not affect the

state of a cache line on a different CPU. This can result in unexpected behavior if, say, a line is

cleaned/invalidated but a subsequent access hits a stale copy in another CPU’s L1 through

snooping the ‘coherency domain’.

The different DMA use cases above require some (initial) memory allocation followed by one or

more CP15 cache operations. If the allocated memory was in use by a different CPU, the cache

lines might be in modified, exclusive or shared state on that CPU and so might not be present on

the current CPU running the DMA device driver.

As CP15 cache maintenance operations on the current CPU don't affect the cache of the other

CPU, there are several potential problems. Not all of these scenarios are likely with the Linux use

cases but may be seen in other systems.

• Another CPU writes the data to a cached memory buffer. The DMA restart operation is

done by the current CPU which does a cache clean operation. None of the modified cache

lines on the other CPU are cleaned, causing stale data to be transferred.

Considerations on using DMA

4-6 Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

• Current CPU invalidates the cache before an incoming DMA transfer writes new data.

The CPU then reads the transferred data from the cacheable memory location. If the cache

of another CPU contains an address within the DMA buffer, the SCU may take the stale

data directly from the cache on that CPU with no access to external memory.

• Current CPU writes to the uncached mapping but cache lines in the modified state on the

other CPU may be evicted to Level 2 cache or main memory, corrupting part of the data

written by the current CPU.

• An external device writes to memory, but cache lines in the modified state on another

CPU may be evicted, over-writing parts of the data written by the external device.

There are several solutions to accommodate DMA on ARM11 MPCore:

 a) Use uncached mappings for DMA memory

Uncached mappings can have performance implications, but are probably the best solution for

small DMA buffers. It is particularly appropriate if the DMA data is not frequently accessed.

 b) Use cached mappings but ensure that only one CPU deals with the
DMA memory directly (‘set affinity’).

The mechanism by which this may be done is OS specific, but in a typical SMP OS will involve

setting the CPU affinity of the user-space application associated with the DMA. Any IRQ used by

the device if the driver calls cache maintenance operations in the interrupt handler may also need

to be restricted to the same CPU.

In addition to the low-level Linux setaffinity calls, Linux cgroups may be usable to set a group

affinity without changing the application program.

 Considerations on using DMA

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 4-7
 Open Access

 c) Ensure cache lines are exclusive on driver CPU (‘read for
ownership’)

Use cached mappings but ensure that the relevant cache lines are exclusive to the current CPU or

in shared (NOT modified) state if they are on other CPUs. This requires the current CPU to

perform a read of every corresponding cache line for the entire DMA block of memory before any

clean/invalidate operations. This solution could be time-consuming, and assumes that it can be

guaranteed that the other CPU will not modify the buffer contents during or after this read-for-

ownership. It does however allow full SMP operation of the driver or application on any CPU.

The disadvantage of this approach is when very large blocks of data (much larger than the L1

cache) are being processed. The entire block must be read since the contents could exist in any

CPU’s L1 cache. This can cause thrashing in the driver’s cache. This technique is much better

suited to small blocks.

The following diagram illustrates the TO_DEVICE case where reads are required:

Considerations on using DMA

4-8 Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

In comparison, in the FROM_DEVICE case, a CPU needs to invalidate its caches before the

device transfers data into memory so that any dirty cache lines aren't evicted during the transfer

(which could corrupt transferred data) and there are no stale entries in the cache. Since dirty cache

lines or stale data may be present on other CPUs, a broadcast operation is normally required but

the equivalent optimization is to write (rather than read) a word in every cache line before

invalidating the cache (writing is needed to ensure that stale data on other CPUs is invalidated).

This is similar to the above diagram but with writes instead of reads, which force the lines to

become modified in the current CPU’s cache.

 d) Broadcast of cache maintenance operations

Broadcast the cache operations in software to the other CPUs using the Inter-Processor Interrupt

(IPI) mechanism. There are a number of hazards to be aware of:

• The CPU which initiates the cache operation must wait for the other CPUs to complete

the operation and issue a response to show that they have completed. This causes a delay

which can vary depend on the amount of other IRQ processing.

 Considerations on using DMA

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 4-9
 Open Access

• The IPI uses IRQ and cannot be done if interrupts are disabled on the current CPU. The

current Linux implementation allows the DMA operations to be broadcast with interrupts

disabled. Sending the IPI is protected by a spinlock. If the CPU sending the IPI cannot

acquire the spinlock and interrupts are disabled (it uses spin_trylock rather than

spin_lock), it means that another CPU is sending an IPI and it enters a polling mode for

receiving the IPI.

Linux supports this with 2.6.28-arm1 (ARM Ltd stable version on www.linux-arm.org) onwards.

An OS could combine support for “c) Ensure cache lines are exclusive on driver CPU” and “d)

Broadcast of cache maintenance operations”. For small blocks, (c) is performed, and for larger

blocks (d) is performed.

Technique Recommended for Not recommended for

a) Uncached mappings Infrequently or sparsely accessed DMA

data blocks

Simplest implementation

Correctness/reliability

Intensively accessed DMA blocks will

not benefit from caching, in which case

performance can suffer.

b) Set affinity Minimizing cache line migration

overheads

In complex applications, a manual

procedure will be required to map the

IRQ part of device drivers and user

processes to CPUs. Thorough testing

will be required.

In complex applications, the enforced

mapping of processes to CPUs might

mean that the maximum aggregate

performance is not achievable due to

unbalanced CPU loading.

c) Read for ownership Small DMA data blocks.

Can be done by OS kernel

Large DMA data blocks – must

read/write completely – will cause extra

memory traffic and potentially thrash

L1 cache.

d) Broadcast of cache maintenance

operations

Can be done by OS kernel

Currently done by Linux 2.6.28-arm1

Small DMA blocks – overhead of

synchronous IPI is likely to be

significant.

Performance – scheduling of IPI

depends on IRQ loading – process

blocks until all CPUs have responded.

Conclusion

5-10 Copyright  2009 ARM Limited. All rights reserved. ARM DAI 000A
 Open Access

4.2 Cortex-A9 MPCore

On Cortex-A9 MPCore, cache maintenance operations can be broadcast by hardware to other

CPUs in the inner shareable domain. This is highly recommended so that coherency issues may be

avoided.

Cache operations are only broadcast for addresses in the coherent (inner, shareable) domain.

Operations on Non-Shared addresses are not broadcast. The CPU on which the Cache operation is

performed does the Virtual to Physical address translation. The cache operation is then broadcast

to the other CPUs with the Physical address.

A CPU will send broadcast cache maintenance operations only when both SMP and FW bits are

set.

A CPU will receive the broadcast operations when its SMP bit is set, regardless of the FW bit

value.

The advantage of Cortex-A9’s hardware based approach, is that cached mappings can be used, and

the broadcast happens in hardware automatically with very low overhead. This increases the

performance and simplifies the software.

4.3 The Accelerator Coherency Port (ACP) and I/O Coherency

The Accelerator Coherency Port (ACP) is a optional feature of Cortex-A9, which provides an 64-

bit AXI slave port that can be connected to a DMA engine, providing the DMA access to the SCU

of Cortex-A9. Addresses on the ACP port are physical addresses which can be snooped by the

SCU to provide full I/O coherency. Reads on the ACP port will hit in any CPU’s L1 D-cache, and

writes on the ACP port will invalidate any stale data in L1 and write through to L2. This can gives

significant system performance benefits and power savings, as well as simplifying driver software.

The ACP allows a device, such as an external DMA, direct access to CPU-coherent data regardless

of where the data is in the CPU cache and memory hierarchy. It provides automatic coherency

similar to that provided inside the Cortex-A9 MP between the CPU’s L1 D-caches.

From a software perspective, writers of device drivers that use ACP do no need to perform cache

cleaning or flushing to ensure the L2/L3 memory system is up-to-date. Memory barriers (DMB)

may still be required to ensure correct ordering.

ARM Linux kernel can support arch_is_coherent(), which means all DMA I/O is coherent. In this

case, the internal Linux kernel clean/flush dma_cache_maint() calls are not required and the

dma_map_single(), dma_unmap_single() calls become much simpler.

Further discussion of ACP usage is outside the scope of this document.

5. Conclusion

Multi-core SMP-based ARM11 MPCore systems need careful implementation of DMA device

drivers to ensure highest performance. This application note has explored some possible

techniques:

• use uncached mappings

• set CPU affinity for driver/application

 Conclusion

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 5-11
 Open Access

• use ‘read for ownership’ for data block, to ensure lines are migrated to device driver’s

CPU

There is no single best recommended approach as it depends on the application: DMA block size,

access pattern from CPU, etc.

On Cortex-A9 based systems, there are significant enhancements that permit the highest I/O

performance using DMA:

• Broadcasting of cache maintenance operations

• ACP port for full coherent I/O

• Programmable prefetch engine (Cortex-A9 r2 and later) to minimize read latencies

