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1. Scope 

This Application Note explores the implications associated with performing Direct Memory 

Access (DMA) operations on an ARM multi-core system such as the ARM11 MPCore and Cortex-

A9 MPCore. 

The target audience for this document is kernel level programmers, device driver developers and 

firmware designers that need to program at a low level on a coherent shared memory ARM 

system. This document highlights features and behaviors of the underlying hardware and provides 

guideline recommendations so that the developer can use and program the DMA engine efficiently 

and avoid software design mistakes that would result in poor performance. 

Examples given in this document are taken mainly from the Linux 2.6 OS kernel, but the concepts 

apply to any modern Operating System that allows DMA. 

 

2. Cache coherency in multi-core processing systems 

The concept of Symmetric Multi-Processing (SMP) refers to a processor composed by two or more 

equivalent cores sharing main memory with equal access rights to it. Generally an Operating 

System would be running across all cores, transparently distributing tasks. When these cores 

feature local caches, a mechanism must be used to keep them coherent. 

Processors such as the ARM11 MPCore and the Cortex-A9 MPCore feature a hardware block 

known as the Snoop Control Unit (SCU). When enabled, the SCU automatically maintains 

coherency between the data caches local to each CPU.  

 

2.1 Coherency Protocols in ARM MPCore processors 

In a cached, shared memory, multi-core system, the mechanism implemented to maintain 

coherency between all CPUs’ local caches is called the cache coherency protocol. The cache 

coherency protocol is a state machine that governs the condition of each cache line in each core’s 

cache at a given time. This is implemented by tagging all cache line with an identifier of their state 

in respect to overall system coherency and cache lines in other cores. A hardware control unit 

automatically manages the states. 

The ARM11 MPCore and Cortex-A9 MPCore processors support the MESI cache coherency 

protocol. In a correctly configured system, every cache line is dynamically marked with one of the 

following states: 

Modified (M) 

The subject cache line is present only in the current cache and it is dirty (not up to date with the 

next level of the memory hierarchy, L2 cache or main memory). 

Exclusive  (E) 

The subject cache line is present only in the current cache, and it is clean (it is up to date with the 

next level of the memory hierarchy, L2 cache or main memory).  

Shared (S) 

Indicates that the subject cache, other than being up to date with the next level of memory 

hierarchy, is also stored (duplicated) in one or more other core’s caches.  

Invalid (I) 

The subject cache line is invalid. 
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In an ARM MPCore processor, the coherency protocol is implemented and managed by the Snoop 

Control Unit (SCU). The SCU effectively monitors the traffic between local L1 data caches and 

the next level of the memory hierarchy. At boot time, each core can select to partake in the 

coherency domain, in which case the SCU will maintain coherency between them. 

An important fact about symmetric multi-core processors is that the detail of which process runs 

on which core is controlled by the Operating System. In reality, unless explicit system calls bound 

a task to a specific core (this is known as CPU affinity), the likelihood is that that task will at some 

point migrate to a different core, along with its data as it is used. 

In a literal implementation of the MESI cache coherence protocol, it is quite inefficient for a 

migrated task to access memory locations that are stored in the L1 (write-back) cache of another 

core. First the original core will need to invalidate and clean the relevant cache lines out to the next 

level of the memory architecture. Once the data is available at a shared level of the memory 

architecture (e.g. L2 or main memory), then it would be loaded into the new core.  

 

CPU0 CPU2 CPU3CPU1

L1 D-cache L1 D-cache L1 D-cache L1 D-cache

SCU

Multicore with no cache-to-cache transfers

Extra read/write traffic

 

Note the above diagram is an illustration – ARM multi-core designs do not implement MESI in 

this way. 

 

Whilst maintaining compatibility with the MESI protocol, the ARM11 MPCore and Cortex-A9 

MPCore processors implement performance and power optimizations that address this 

shortcoming. 

Direct Data Intervention (DDI): The SCU keeps a copy of all cores caches’ tag RAMs. This 

enables it to efficiently detect if a cache line request by a core is in another core in the coherency 

domain before looking for it in the next level of the memory hierarchy. 

Cache-to-cache Migration: If the SCU finds that the cache line requested by one CPU is present 

in another core, it will either copy it (if clean) or move it (if dirty) from the other CPU directly into 

the requesting one, without interacting with external memory. 
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In addition to the inherent performance benefits (in particular in a system without L2 cache), such 

optimizations reduce memory traffic in and out the L1 cache subsystem, in turn reducing the 

overall load on the interconnect, and reducing power consumption by eliminating interaction with 

the external memories. 

DDI and cache-to-cache transfers particularly benefit the real life example of running an SMP 

operating system, where tasks and data can migrate between cores. It must be noted that 

effectively they are a method of reducing the side-effect of poorly designed software: They should 

not be relied upon when designing software for multi-core systems. 

Techniques such as CPU task affinity are a more beneficial approach to improve system 

performance, particularly for cache intensive activities such as device drivers operating DMA 

(since they take advantage of warm caches). In reality, modern operating systems such as Linux 

2.6 will try to keep tasks running on the same CPU (this practice is known as soft affinity). 

Since Linux 2.5.80 the following system calls were introduced: 

#include <sched.h> 

int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); 

int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); 

These system calls are Linux specific, and enable to bound task identified by its process identifier 

to a subset of cores (using a mask). 

Alongside NPTL (Native POSIX Thread Library), glibc version 2.3.4 provides non-standard 

POSIX extensions to abstract the above system calls: 

#include <pthread.h> 

int pthread_attr_setaffinity_np(pthread_attr_t *, size_t, const cpu_set_t *); 

int pthread_attr_getaffinity_np(pthread_attr_t *, size_t, cpu_set_t *); 

These are not recommended for use since they are non-portable (hence the suffix –np). 

Most modern Operating Systems and Real Time Operating Systems (RTOSs) provide system calls 

that implement thread/process affinity. 
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2.2 Coherency and non-CPU bus masters 

Modern embedded systems often feature multiple bus masters. Various levels of cache memories 

are also adopted in order to provide the best performance. In this scenario, maintaining coherency 

between the CPU and the data generated or consumed by I/O devices can be challenging, with an 

optimal solution which depends on application and CPU cache subsystem characteristics. 

Points to consider are: 

• how much of the DMA data is actually processed by the CPU ? 

• is the DMA data cached by the CPU (and, whether at L1 or L2 level) ? 

• is there any I/O coherency? 

Cortex-A9 is the first ARM application processor to offer full I/O coherency via the Accelerator 

Coherence Port (ACP).  This is discussed further in a dedicated section later in this document.  

 

3. Introduction to Direct Memory Access (DMA) 

3.1 DMA Basics 

 

Direct memory access (DMA) is a vital part of many high-end systems. It allows additional bus 

masters to read or write system memory independently of the CPU(s). DMA channels can transfer 

blocks of data to or from devices with no CPU overhead.  

The CPU manages DMA operations via a DMA controller unit. While the DMA transfer is in 

progress, the CPU can continue executing code. When the DMA transfer is completed, the DMA 

controller will signal the CPU with an interrupt.  

Typical scenarios of block memory copy where DMA can be useful are network packet routing 

and video streaming.  DMA is a particular advantage in situations where the blocks to be 

transferred are large or the transfer is a repetitive operation that would consume a large portion of 

potentially useful CPU processing time. 

3.2 Using DMA in cached systems 

When using DMA in a cached system, the software designer/programmer must pay attention to the 

behavior of the underlying memory subsystem. Using DMA in a cached system can have some 

practical implications, both in single and multi-core processor configurations. 

Consider a CPU with a cache and a DMA accessible external memory, with a write-back, rather 

than write-through cache policy. A write-back cache will often contain more recent data than 

system memory. If the cache is not cleaned before the external DMA engine reads the system 

memory, the device will receive a stale value. Similarly, if the cached copy of the address is not 

invalidated when a device writes a new value to the memory, then the CPU will operate on a stale 

value. 

In order to address the aforementioned scenarios, the following approaches are commonly adopted. 

Conventional non-I/O-coherent systems (like the ARM11 MPCore) leave the responsibility to 

software: the OS must ensure that the cache lines are cleaned before an outgoing DMA transfer is 

started, and invalidated before a memory range affected by an incoming DMA transfer is accessed. 

This introduces some overhead to the DMA operation, as most CPU cores require a loop to 

invalidate each cache line individually.  Often, this must be done separately for L1 and L2 

memory.  In particular L2 cleaning/flushing of a large region can be time consuming. The OS must 
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also make sure that the memory range is not accessed by any other running threads in the 

meantime (both in the single and multi-core cases). 

I/O coherent systems (e.g. Cortex-A9 with ACP) implement a hardware mechanism where 

accesses to shared DMA memory regions are routed to the cache controller which will invalidate 

(for DMA reads) or cleans (for DMA writes) the relevant cache lines. 

4. Considerations on using DMA 

Most modern operating systems, including Linux, provide a DMA API capable of handling 

coherency between CPUs and external devices accessing the same physical memory.  

The following cases are possible in the context of Linux device drivers: 

• Use uncached memory mapping from kernel space, usually allocated using 

dma_alloc_coherent()  

• Use uncached memory mapping from user space, usually created with 

dma_mmap_coherent() (in the kernel driver) 

• Use cached mapping and clean or invalidate it according to the operation needed 

(dma_map_single() and dma_unmap_single()) 

When opting for un-cached memory mapping, the memory utilized can be configured either as 

strongly ordered or normal uncached. Strongly ordered memory is memory configured to be un-

cached and un-buffered: the changes made by a CPU on a shared strongly order locations of 

memory are immediately visible to all cores in the system (and do not require barriers). Normal 

un-cached is buffered memory, so memory barriers will be required. The cache is cleaned and 

invalidated when the mapping is created so there can be no stale data.  

When using cached memory, the driver specifies the direction of the DMA operation 

(FROM_DEVICE or TO_DEVICE) so that the cache is cleaned or invalidated accordingly. Using cached 

memory mapping may be preferred in many circumstances (even where it gives rise to memory 

coherency issues requiring extra software clean/invalidate operations) as it is likely to result in a 

much more efficient set of bus accesses and faster overall performance. 

Zero-copy DMA should be used wherever possible: User pages are mapped for DMA and the 

transfer takes place from device memory directly into user space. A traditional (non-zero-copy) 

solution would copy the data across several intermediate buffers between user and kernel spaces, 

adding considerable overheads. Linux 2.6 supports zero-copy DMA functionality for all block 

devices. 

 

4.1 ARM11 MPCore 

The ARM11 MPCore SCU does not handle coherency consequences of CP15 cache operations 

like clean and invalidate. If these operations are performed on one CPU, they do not affect the 

state of a cache line on a different CPU.  This can result in unexpected behavior if, say, a line is 

cleaned/invalidated but a subsequent access hits a stale copy in another CPU’s L1 through 

snooping the ‘coherency domain’. 

The different DMA use cases above require some (initial) memory allocation followed by one or 

more CP15 cache operations. If the allocated memory was in use by a different CPU, the cache 

lines might be in modified, exclusive or shared state on that CPU and so might not be present on 

the current CPU running the DMA device driver.  

As CP15 cache maintenance operations on the current CPU don't affect the cache of the other 

CPU, there are several potential problems. Not all of these scenarios are likely with the Linux use 

cases but may be seen in other systems. 

• Another CPU writes the data to a cached memory buffer.  The DMA restart operation is 

done by the current CPU which does a cache clean operation. None of the modified cache 

lines on the other CPU are cleaned, causing stale data to be transferred. 
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• Current CPU invalidates the cache before an incoming DMA transfer writes new data. 

The CPU then reads the transferred data from the cacheable memory location. If the cache 

of another CPU contains an address within the DMA buffer, the SCU may take the stale 

data directly from the cache on that CPU with no access to external memory. 

• Current CPU writes to the uncached mapping but cache lines in the modified state on the 

other CPU may be evicted to Level 2 cache or main memory, corrupting part of the data 

written by the current CPU. 

• An external device writes to memory, but cache lines in the modified state on another 

CPU may be evicted, over-writing parts of the data written by the external device. 

There are several solutions to accommodate DMA on ARM11 MPCore: 

 a) Use uncached mappings for DMA memory 

Uncached mappings can have performance implications, but are probably the best solution for 

small DMA buffers.  It is particularly appropriate if the DMA data is not frequently accessed. 

 b) Use cached mappings but ensure that only one CPU deals with the 
DMA memory directly (‘set affinity’). 

The mechanism by which this may be done is OS specific, but in a typical SMP OS will involve 

setting the CPU affinity of the user-space application associated with the DMA. Any IRQ used by 

the device if the driver calls cache maintenance operations in the interrupt handler may also need 

to be restricted to the same CPU. 

In addition to the low-level Linux setaffinity calls, Linux cgroups may be usable to set a group 

affinity without changing the application program. 



  Considerations on using DMA 

ARM DAI 000A Copyright  2009 ARM Limited. All rights reserved. 4-7 
 Open Access 

 

 c) Ensure cache lines are exclusive on driver CPU (‘read for 
ownership’) 

Use cached mappings but ensure that the relevant cache lines are exclusive to the current CPU or 

in shared (NOT modified) state if they are on other CPUs. This requires the current CPU to 

perform a read of every corresponding cache line for the entire DMA block of memory before any 

clean/invalidate operations.  This solution could be time-consuming, and assumes that it can be 

guaranteed that the other CPU will not modify the buffer contents during or after this read-for-

ownership.  It does however allow full SMP operation of the driver or application on any CPU. 

The disadvantage of this approach is when very large blocks of data (much larger than the L1 

cache) are being processed.  The entire block must be read since the contents could exist in any 

CPU’s L1 cache.  This can cause thrashing in the driver’s cache.  This technique is much better 

suited to small blocks. 

The following diagram illustrates the TO_DEVICE case where reads are required: 
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In comparison, in the FROM_DEVICE case, a CPU needs to invalidate its caches before the 

device transfers data into memory so that any dirty cache lines aren't evicted during the transfer 

(which could corrupt transferred data) and there are no stale entries in the cache. Since dirty cache 

lines or stale data may be present on other CPUs, a broadcast operation is normally required but 

the equivalent optimization is to write (rather than read) a word in every cache line before 

invalidating the cache (writing is needed to ensure that stale data on other CPUs is invalidated).  

This is similar to the above diagram but with writes instead of reads, which force the lines to 

become modified in the current CPU’s cache. 

  

 d) Broadcast of cache maintenance operations 

Broadcast the cache operations in software to the other CPUs using the Inter-Processor Interrupt 

(IPI) mechanism. There are a number of hazards to be aware of: 

• The CPU which initiates the cache operation must wait for the other CPUs to complete 

the operation and issue a response to show that they have completed.  This causes a delay 

which can vary depend on the amount of other IRQ processing. 
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• The IPI uses IRQ and cannot be done if interrupts are disabled on the current CPU. The 

current Linux implementation allows the DMA operations to be broadcast with interrupts 

disabled. Sending the IPI is protected by a spinlock. If the CPU sending the IPI cannot 

acquire the spinlock and interrupts are disabled (it uses spin_trylock rather than 

spin_lock), it means that another CPU is sending an IPI and it enters a polling mode for 

receiving the IPI. 

 

Linux supports this with 2.6.28-arm1 (ARM Ltd stable version on www.linux-arm.org) onwards. 

An OS could combine support for “c) Ensure cache lines are exclusive on driver CPU” and “d) 

Broadcast of cache maintenance operations”.  For small blocks, (c) is performed, and for larger 

blocks (d) is performed. 

 

 

 

Technique Recommended for Not recommended for 

a) Uncached mappings Infrequently or sparsely accessed DMA 

data blocks 

Simplest implementation 

Correctness/reliability 

Intensively accessed DMA blocks will 

not benefit from caching, in which case 

performance can suffer. 

b) Set affinity Minimizing cache line migration 

overheads 

 

In complex applications, a manual 

procedure will be required to map the 

IRQ part of device drivers and user 

processes to CPUs.  Thorough testing 

will be required. 

In complex applications, the enforced 

mapping of processes to CPUs might 

mean that the maximum aggregate 

performance is not achievable due to 

unbalanced CPU loading. 

c) Read for ownership Small DMA data blocks. 

Can be done by OS kernel 

Large DMA data blocks – must 

read/write completely – will cause extra 

memory traffic and potentially thrash 

L1 cache. 

d) Broadcast of cache maintenance 

operations 

Can be done by OS kernel 

Currently done by Linux 2.6.28-arm1 

Small DMA blocks – overhead of 

synchronous IPI is likely to be 

significant. 

Performance – scheduling of IPI 

depends on IRQ loading –  process 

blocks until all CPUs have responded. 
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4.2 Cortex-A9 MPCore 

On Cortex-A9 MPCore, cache maintenance operations can be broadcast by hardware to other 

CPUs in the inner shareable domain. This is highly recommended so that coherency issues may be 

avoided. 

Cache operations are only broadcast for addresses in the coherent (inner, shareable) domain. 

Operations on Non-Shared addresses are not broadcast. The CPU on which the Cache operation is 

performed does the Virtual to Physical address translation. The cache operation is then broadcast 

to the other CPUs with the Physical address.  

A CPU will send broadcast cache maintenance operations only when both SMP and FW bits are 

set. 

A CPU will receive the broadcast operations when its SMP bit is set, regardless of the FW bit 

value. 

The advantage of Cortex-A9’s hardware based approach, is that cached mappings can be used, and 

the broadcast happens in hardware automatically with very low overhead.  This increases the 

performance and simplifies the software. 

 

 

 

4.3 The Accelerator Coherency Port (ACP) and I/O Coherency 

The Accelerator Coherency Port (ACP) is a optional feature of Cortex-A9, which provides an 64-

bit AXI slave port that can be connected to a DMA engine, providing the DMA access to the SCU 

of Cortex-A9. Addresses on the ACP port are physical addresses which can be snooped by the 

SCU to provide full I/O coherency.  Reads on the ACP port will hit in any CPU’s L1 D-cache, and 

writes on the ACP port will invalidate any stale data in L1 and write through to L2.  This can gives 

significant system performance benefits and power savings, as well as simplifying driver software.  

The ACP allows a device, such as an external DMA, direct access to CPU-coherent data regardless 

of where the data is in the CPU cache and memory hierarchy. It provides automatic coherency 

similar to that provided inside the Cortex-A9 MP between the CPU’s L1 D-caches.  

From a software perspective, writers of device drivers that use ACP do no need to perform cache 

cleaning or flushing to ensure the L2/L3 memory system is up-to-date.  Memory barriers (DMB) 

may still be required to ensure correct ordering. 

ARM Linux kernel can support arch_is_coherent(), which means all DMA I/O is coherent.  In this 

case, the internal Linux kernel clean/flush dma_cache_maint() calls are not required and the 

dma_map_single(), dma_unmap_single() calls become much simpler. 

Further discussion of ACP usage is outside the scope of this document. 

 

5. Conclusion 

 

Multi-core SMP-based ARM11 MPCore systems need careful implementation of DMA device 

drivers to ensure highest performance.  This application note has explored some possible 

techniques: 

• use uncached mappings 

• set CPU affinity for driver/application 
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• use ‘read for ownership’ for data block, to ensure lines are migrated to device driver’s 

CPU 

 

There is no single best recommended approach as it depends on the application: DMA block size, 

access pattern from CPU, etc. 

On Cortex-A9 based systems, there are significant enhancements that permit the highest I/O 

performance using DMA: 

• Broadcasting of cache maintenance operations 

• ACP port for full coherent I/O 

• Programmable prefetch engine (Cortex-A9 r2 and later) to minimize read latencies 

 

 

 


