

250v02 Using RVI/RVD Tutorial 1

RVDS 3.1

RealView ICE
&

RealView Trace
Quickstart Tutorial

250v02

250v02 Using RVI/RVD Tutorial 2

Contents

Contents ...2

Introduction..3

Section 1: RVDS and RVI Installation ..4

Section 2: Preparing for the Examples...13

2.1 – Building an Image (rebuilding the examples for your target)13

2.2 – Connecting to and Configuring your Target ...15

2.3 – Setting up RealView Debugger...20

Section 3: Using RealView ICE with RVD ...24

3.1 – Simple Hello World Project (RVD Basics) ..24

Section 4: Using RealView Trace with RVD ..40

4.1 – Configuring Trace ...40

4.2 – Performing Simple Trace Capture ..47

250v02 Using RVI/RVD Tutorial 3

Introduction

Aim

This tutorial will get you started using RealView ICE (RVI) and RealView Trace

(RVT) hardware with RealView Debugger (RVD) software. The versions used are:

• RVI host software v3.1

• RVI firmware v3.1

• RVD v3.1

It contains sections covering the essentials of installing and using:

• RealView ICE

• RealView Trace

Pre-requisites

The example code used in this tutorial will work with the memory map of an

ARM926EJ-S Platform Baseboard (PB926EJ-S), but is designed in such a way that it

can be ported to the memory map of your system with minimal effort. This platform

has 128MB of RAM at address 0x0 once the Boot Monitor has run, but the examples

should work with any target with at least 8KB of programmable memory at this

location.

Additional information

This tutorial does not provide detailed documentation of RVD, RVT and RVI. Full

documentation is provided with the products.

 References in the subsequent sections of the tutorial are identified by

 these boxes.

Further help can be accessed by pressing F1 from within RVD, or from the help menu.

Full documentation is available in PDF format. This can be found by going to Start

→ Programs → ARM → RealView Development Suite v3.1 → RVDS v3.1

Documentation Suite.

When working through this tutorial, of particular interest are:

• RealView Debugger v3.1 User Guide

• RealView ICE and RealView Trace v3.1 User Guide

• RealView Debugger v3.1 Trace User Guide

• RealView Compiler Tools v3.1 Linker and Utilities Guide

Other useful information can be found on the www.arm.com web site:

• Application Note 168: Tracing with RVD

(http://www.arm.com/documentation/Application_Notes/index.html)

o Contains a more advanced tutorial for RVD Trace

• FAQs (http://www.arm.com/support/devfaqsindex.html)

250v02 Using RVI/RVD Tutorial 4

o Answer common RVD, RVI and trace questions

Section 1: RVDS and RVI Installation

This section describes how to install the required software on your host PC, and

configure your RVI and RVT.

 RedHat Enterprise Linux 4 is the only Linux platform supported by

 RVDS 3.1. References to Linux in this tutorial apply to RHE4.

Install the RealView Development Suite (RVDS) software

Follow the instructions on the RealView Development Suite (RVDS) v3.1 CD for

installation. It is recommended that you install to the default location. If you are

installing on RedHat Enterprise Linux 4, you should use the setuplinux.bin installer.

On Linux you will need to edit your .bashrc file to include the line source

/<path>/RVDS31env.posh where <path> is your installation path.

After installing RVDS, RVD can be launched by:

• On Windows, navigating to Start → Programs → ARM → RealView

Development Suite v3.1 → RealView Debugger v3.1

• On Linux, by typing rvdebug at a command shell prompt (note that this

requires .bashrc to be updated as detailed above)

250v02 Using RVI/RVD Tutorial 5

RVD configuration files are stored at:

• On Windows, C:\Documents and
Settings\<username>\Application Data\ARM\rvdebug\3.1\

• On Linux, /home/<username>/.rvdebug/3.1/

 You can revert to the default configuration by starting RVD with the

 --cleanstart switch. At a command prompt, type

 rvdebug --cleanstart and press enter.

You can revert to the default configuration by starting RVD with the --cleanstart

switch (from a command line, type rvdebug --cleanstart and press enter).

Install the RealView ICE host software

Follow the instructions on the RealView ICE v3.1 CD for installation. Make sure that

you install the software in the folder you are using for all of your ARM RealView

tools. If you are installing on RedHat Enterprise Linux 4, you should use the

setuplinux.bin installer.

Connecting to your RealView ICE unit

You can connect to your RealView ICE unit using one of 3 methods:

- via a USB cable (Windows only)

- via a Local Area Network (LAN) with or without DHCP

- via an Ethernet cross-over cable

By default, RVI is preconfigured to work correctly via USB or a DHCP-enabled

network without additional configuration.

This document will briefly explain how to set up a connection via a USB cable.

If you are using Linux, you should connect to your RVI via Ethernet.

 To set up an ethernet connection on a DHCP-enabled network:

 - Follow step 1 below

 - Connect the RVI to your network using the supplied Ethernet cable

 - Follow on from step 5 below, noting that your RVI will appear under

 TCP/IP

 For a more detailed explanation, or for instructions for connecting via

 Ethernet, refer to Chapters 2 and 3 (‘Getting Started’ and ‘Configuring

 RealView ICE Networking’) of the RealView ICE and RealView Trace

 v3.1 User Guide.

Connection via USB

1. Plug the power supply for the RealView ICE into the unit.

250v02 Using RVI/RVD Tutorial 6

2. Connect the RealView ICE to your computer’s USB port using the supplied

cable.

3. Windows should automatically start the Found New Hardware Wizard. When

prompted, browse to the driver stored in the C:\Program Files\ARM\RVI\

Drivers\usb_driver\1.2\6\win_32-pentium folder.

4. Restart your computer and the RealView ICE unit.

5. Confirm that your RVI can be detected using the RVI Config IP utility. This

utility can be found at Start → Programs → ARM → RealView ICE v3.1 →

RealView ICE Config IP.

 In RVI Config IP, select RVI → Start Scan to scan for ICEs.

250v02 Using RVI/RVD Tutorial 7

Your RVI should be listed under USB. There may be other ICEs on your network

listed under TCP/IP.

 Right-click on your ICE and select Identify.

This should cause the LEDs on the front of your RVI unit to flash.

If you want to name your RVI, you can do this by right-clicking on the RVI, selecting

Configure, and entering a Host Name. Click Configure to confirm.

Install the RealView ICE firmware

You should update your RVI to the latest firmware, which can be found in your RVI

installation folder.

 Open the RVI Update utility. This utility can be found at Start →

 Programs → ARM → RealView ICE v3.1 → RealView ICE Update.

 Click on your ICE and select Connect.

250v02 Using RVI/RVD Tutorial 8

 Click on the ICE (Install Firmware) button with a green arrow in the

 top left of the window.

Install Firmware

250v02 Using RVI/RVD Tutorial 9

 Browse to the C:\Program Files\ARM\RVI\Firmware\3.1\23

 folder and select ARM-RVI-3.1.0-754-base.rvi. Click Open.

 Click Continue in the next dialog.

The firmware update will take around 2-3 minutes to complete.

 Browse to http://www.arm.com/support/downloads/rvi.html and

 download the latest RVI 3.1 patch. At the time of writing, the latest

 patch is RVI 3.1.1 (build 763). Extract the downloaded ZIP file to your

 hard drive.

 As before, click on the ICE button with a green arrow, and browse to

 the .rvi file that you just extracted. Select Open, and then Continue

 in the following dialog.

Patching will again take around 2-3 minutes to complete. After completion, your RVI

is now updated to the latest available RVI firmware revision.

Setting up RealView Trace

The RealView Trace unit should be securely mounted on the RVI unit. Note that the

Trace unit requires no additional software in order to work.

 Refer to section 6.4.2 (‘Connection Instructions’) of the RealView ICE

 and RealView Trace v3.1 User Guide. for more information on

 mounting the RVT unit onto the RVI unit.

Connecting the RealView ICE and RealView Trace to your target
hardware

Connect one end of the provided JTAG cable to the RealView ICE unit. Connect the

other end of the cable to the socket marked JTAG on the target board.

250v02 Using RVI/RVD Tutorial 10

Connect one end of the provided Trace cable to the small Trace ‘T piece’ adapter.

Plug the adapter into the MICTOR connector marked TRACE on your target. Connect

the other end of the cable to your RealView Trace (RVT).

The RealView Trace unit does not need additional power; it can obtain power directly

from the RealView ICE.

TRACE JTAG

250v02 Using RVI/RVD Tutorial 11

It is recommended that you use the LVDS JTAG probe in preference to the standard

JTAG cable, as the LVDS probe:

• Lets you debug systems with a faster JTAG clock (as long as the target permits

it). For TCK speeds of 20MHz or more you need to use the LVDS probe.

• Helps to avoid some issues related to weak JTAG signals, or JTAG signals

with interference.

• Has a longer cable, enabling debugging when the ICE is further away from the

target.

On some boards (including the PB926EJ-S), the JTAG and MICTOR connectors are

too close together to plug both the LVDS JTAG and Trace probes into the board. In

Power to

RVI (5V)

Ethernet /

USB

Power to

target

To

RVT
To

RVI

To

Trace

Probe
To

JTAG /

LVDS

Probe

Standard

JTAG

cable

LVDS

probe

250v02 Using RVI/RVD Tutorial 12

this case, you can plug the LVDS JTAG connector into the side of the Trace

connector, as shown below.

Trace

Probe

LVDS

Probe

250v02 Using RVI/RVD Tutorial 13

Section 2: Preparing for the Examples

This section prepares the debugger and the examples for the remainder of the tutorial.

2.1 – Building an Image (rebuilding the examples for
your target)

The examples in this tutorial make use of 3 pieces of code:

• A Hello World example that outputs text, making use of RVD’s STDIO tab

• A reset example, containing a vector table and some initialisation code, to

demonstrate running a program at reset time

• A version of the classic Dhrystone benchmark modified to run indefinitely, to

demonstrate trace capture

The code examples in this tutorial are provided with batch files that call the C

compiler (armcc) and linker (armlink) to build the images. You will need to invoke

the .bat batch files in each example folder in order to build an .axf image that can

be loaded to your target. These examples will work without modification on the

Versatile PB926EJ-S platform.

c:\rvds31_tutorial\PB926 These are the files for use with

 the PB926EJ-S board

The examples require 8KB of memory at address 0x8000. If you are working with a

PB926EJ-S, or another target board that meets this requirement, then you should skip

to the next section.

If you do not have 8KB of memory at address 0x8000, then you should follow the

remainder of this section, which gives more information on rebuilding the examples to

work with your target.

The address that armlink will link the image to execute from is specified by a scatter

file. The scatter files used for the examples all have the file extension .scat.

Scatterfiles describe where code and data are stored at load time and at run time. In

the example below, the scatter file is also used to locate the stack and heap.

LOAD 0x8000

{

 RAM +0

 {

 *(+RO,+RW,+ZI)

 }

 ARM_LIB_STACKHEAP +0x1000 ALIGN 32 EMPTY 0x1000

Modify this value

250v02 Using RVI/RVD Tutorial 14

 {

 }

}

This example scatter file creates one load region at 0x8000. Within this load region is

an execution region called RAM at address +0, indicating that the address is at an offset

of 0 from the load region address (i.e. 0x8000). This execution region contains all the

code and data for the image.

A second execution region is called ARM_LIB_STACKHEAP, and is marked as

+0x1000 ALIGN 32 so that it will be placed on the next 32 byte boundary that is >=

0x1000 bytes from the end of the RAM region. It is 0x1000 bytes in size and is

marked as EMPTY because it holds no code or data sections.

ARM_LIB_STACKHEAP is a key region name. In RVDS 3.0 and later, this execution

region name tells the linker where you want to place the stack and heap, causing the

linker to automatically link in all of the necessary code to set up the stack and heap

accordingly.

In this example the heap will grow upwards from the beginning of the region

ARM_LIB_STACKHEAP and the stack will grow downwards from the end of the region

ARM_LIB_STACKHEAP. The absolute addresses that the heap and stack grow from

will depend on the size of the RAM region.

In order to port this example to work with a target other than the PB926EJ-S, you

would simply need to adjust the LOAD address (0x8000) to be an address in RAM on

your target, allowing enough space above the chosen address to fit in the image

including the stack/heap region (8KB is recommended).

 Refer to Chapter 5 of the RVCT 3.1 Linker and Utilities Guide (‘Using

 Scatter-loading Description Files’) for more information on using

 scatterfiles.

After making changes to the scatterfile or to the tools’ command lines, you must

rebuild the image to implement these changes. This can be done by invoking the

.bat build script again.

250v02 Using RVI/RVD Tutorial 15

2.2 – Connecting to and Configuring your Target

 Start RealView Debugger by going to Start → Programs → ARM →

 RealView Development Suite v3.1 → RealView Debugger v3.1

 Select Target → Connect to Target…

 Click on the Add button to the right of the RealView-ICE entry in the

 Connect to Target window.

250v02 Using RVI/RVD Tutorial 16

 The RVConfig window appears. RVD should automatically detect your

 RealView ICE unit. If it does not, click on the green icon at the top-

 right hand corner of the RVConfig window to begin scanning.

 Select your RealView ICE unit from the list and click Connect.

Additional options will appear:

250v02 Using RVI/RVD Tutorial 17

Auto Configure Scan Chain causes the RVI to scan for devices in the target’s scan

chain. Each detected device is added to the tree diagram.

 Click the Auto Configure Scan Chain button.

Your target should appear in the list:

250v02 Using RVI/RVD Tutorial 18

If you are using a target that is not recognized by Auto Configure, you should select

Add Device… and navigate to the ARM core on which your target is based. If you are

manually configuring your target in this way, you will need to fully populate the scan

chain with Custom UNKNOWN (in Add Device…) entries if there are items other than

the core on the scan chain (e.g. DSPs, FPGAs etc).

 Select File→ Save, then select File → Exit to save your configuration

 and close the RVConfig window.

 Select your target underneath the RealView ICE entry in the

 Connection Control window.

 Select Connection → Connect from the menu to connect to your target.

 Double-clicking on the connection name (ARM926EJ-S_0) will also

 cause RVD to connect to your target.

250v02 Using RVI/RVD Tutorial 19

250v02 Using RVI/RVD Tutorial 20

2.3 – Setting up RealView Debugger

Line Numbers

Line numbers are used through this tutorial to identify specific source lines.

 If you do not already have source line numbering enabled, select Edit

 → Advanced → Show Line Numbers to display the source file line

 numbers in the code window.

Workspaces

Workspaces are used to store personalized settings – for example the layout of

individual windows within the main RVD window. You can dock/undock, resize and

move these windows by dragging them. There are ‘hot areas’ to the left, right and

bottom of the main RVD window. Dropping a window in one of these areas will

cause the window to be docked.

 - Select View → Registers to open a Registers window.

 - Drag the Registers window to the right hand edge of the screen so that

 it becomes docked.

250v02 Using RVI/RVD Tutorial 21

 - Select Target → Disconnect to disconnect from the target.

 - Select File → Workspace → Save Workspace to save the new layout.

 - Select File → Workspace → Save Settings on Exit to remove the tick

 next to this option.

RVD will now remember the window layout that you have just created, and will start

up without trying to connect to your target.

 See the FAQ ‘How can I use workspaces to control RVD's GUI?’

 on the ARM web site for more information on using Workspaces.

Semihosting

Semihosting is a mechanism that captures I/O requests made by code running on the

target (typically library code), and communicates these to the host system for

handling. For example, application printfs will by default appear within the debugger

console window.

 See Section 13.9 of the RealView Debugger v3.1 User Guide

 (‘Viewing semihosting controls for RealView ICE JTAG connections’)

 for more information on setting Semihosting options.

Vector catch is a mechanism that is used for catching exceptions that occur on the

core. It is implemented using dedicated logic, or instruction breakpoints if the core

that you are using does not implement this logic. This feature is particularly useful

when debugging code for which you have not yet written exception handlers.

250v02 Using RVI/RVD Tutorial 22

Semihosting and vector catch are controlled by RVD connection properties, and are

enabled by default.

 - Select Target → Connection Properties from the RVDmenu.

 - Browse to Advanced_information\Default\ARM_Config\

 - Ensure that Vector catch is set to True

 - In the Semihosting folder, ensure that Enabled is set to True

 - Select File → Save and Close to save any changes.

Changing settings in Connection Properties causes those settings to be applied to all

subsequent connections of that type.

 Changes made in Connection Properties do not affect any currently

 active connections. You must disconnect from your target before

 making changes and then reconnect afterwards.

Alternatively, you can enable/disable Semihosting in the Debug tab of the Registers

window. Settings made in this window are temporary and are lost when you

disconnect from the target.

250v02 Using RVI/RVD Tutorial 23

250v02 Using RVI/RVD Tutorial 24

Section 3: Using RealView ICE with RVD

This section provides an introduction to using the RealView ICE unit with RealView

Debugger to debug an application running on your target hardware.

3.1 – Simple Hello World Project (RVD Basics)

 Select Target→ Load Image… from the RVD main menu. Browse to

 hello.axf in the c:\rvds31_tutorial\PB926\Hello_World

 directory and click Open.

The main window now shows that the image is loaded. The red box indicates the

current execution position.

250v02 Using RVI/RVD Tutorial 25

Code Window Tabs

When RealView Debugger first loads an image, the main view contains a Disassembly

tab that displays disassembled code with interleaved C/C++ source lines. The current

location of the PC is shown (right click → Interleave Source to toggle source

interleaving).

If source code exists for the current location of the PC, you can toggle between

disassembly and source code views using the toolbar button below.

By default, RealView Debugger will show the scope relevant to the current context of

the PC.

 Select Debug → Run from the menu (F5).

Execution begins. The Output pane at the bottom of the RVD window shows the

StdIO tab which allows console I/O operations for the current image. The program

prints some text to the output window and ends.

 Select Target→ Reload Image to Target from the menu.

Toggle source

/ disassembly

view

250v02 Using RVI/RVD Tutorial 26

RVD will reload the image ready for debugging. Again the current execution position

is shown at main().

Registers Window

The RVD Registers window allows you to view and modify the contents of ARM

registers.

Of most interest are the tabs for the Core registers (r0 – r15 and the CPSR), the CP15

registers (e.g. enabling/disabling caches, mmu, branch prediction etc), and the Debug

registers (e.g. setting Top of Memory and enabling/disabling Semihosting).

The displays of registers r0-r15 can be used to modify the value of live variables

(variables that are currently in use) when the core is stopped, for example when you

are stepping through code or hit a breakpoint.

You can switch between different value formats by right-clicking on a register and

selecting Format from the context menu. The most common choices are Hex and

Decimal.

 Right-click on R0 and select Format → Decimal to change the format

 of R0 to decimal. Select the value next to R0 and enter a new value

 (e.g. 526).

Some of the registers are enumerated – for example the CP15 Control register.

 In the Registers window CP15 tab, double click on Control. Notice

 that by clicking on m/M you can enable/disable the MMU. Hover the

 mouse over each button to see what can be enabled/disabled.

250v02 Using RVI/RVD Tutorial 27

Another useful register that is enumerated is the CPSR (Current Program Status

Register) in the Core tab. This register manages enabling/disabling of interrupts, core

state (ARM or Thumb) and the current system mode.

Breakpoints

Breakpoints tell the debugger to stop the target when a particular event occurs. For

example, you can tell the debugger to stop execution on the target before a particular

instruction or C source code line is executed so that you can inspect and modify the

current state of the core. This is implemented either by temporarily replacing the

relevant instruction with a breakpoint instruction (a software breakpoint), or using

watchpoint units within the core that monitor the address and data buses (a hardware

breakpoint).

Software breakpoints can only be used on instructions that are in RAM, as they

involve the temporary substitution of a breakpoint instruction for the original

instruction. Hardware breakpoints can be used on any area of memory, including

flash or ROM.

250v02 Using RVI/RVD Tutorial 28

 See the FAQ ‘What is the difference between HW and SW

 breakpoints?’ on the ARM web site for more information on hardware

 and software breakpoints.

Hardware and software breakpoints can be conditional - the debugger will only stop

the core under certain conditions. For example, a breakpoint could be set so that the

debugger stops the core before a particular line of code is executed. A condition could

be added to this breakpoint such that the breakpoint is only hit when a particular value

is stored at a particular location in memory.

The simplest way to set a breakpoint is to double click in the grey margin to the left of

a line in the Disassembly tab or within a source file. This will set an instruction

breakpoint so that when the core is about to execute that assembly instruction or C

source line the debugger will halt execution. RVD will use a software breakpoint

where possible, otherwise a hardware breakpoint.

 Set a breakpoint on main() by double clicking in the margin to the left

 hand side of the Code window. From the RVD main menu select

 View→ Break/Tracepoints to view information about the breakpoints

 you have created.

250v02 Using RVI/RVD Tutorial 29

 Select Debug→ Run from the menu (F5).

Execution now halts at main() after initialisation of the C library.

 If the location where you want to set a breakpoint is in non-volatile

 memory (e.g. flash), you can explicitly set a hardware breakpoint.

 Set a new hardware breakpoint on subroutine() by selecting

 Debug→ Breakpoints→ Create Breakpoint… from the main menu.

 - Select Hardware Intsruction

 - Type subroutine for the location and click OK.

 Select Debug→ Run from the menu (F5).

Execution will halt at subroutine().

Tracepoints

Tracepoints are similar to breakpoints but instead of halting program execution will

start/stop trace capture. Note that you need to have the Trace Analyzer connected to

be able to create a tracepoint. Using the Trace Analyzer and the setting of tracepoints

are discussed in more detail in the Trace section of this tutorial.

Symbols Window

The RVD Symbols window allows you to browse through symbols contained in the

images currently loaded into the debugger.

250v02 Using RVI/RVD Tutorial 30

From the Symbols window you can conveniently locate a function, run to a function,

add a variable to the watch window or set a breakpoint.

 If the Symbols window is not already open, select View → Symbols

 from the RVD menu to display the Symbols window.

The format of the Filter at the top of the window is Image\Module\Function. You can

manually edit the filter, or double click on an item in the Images or Modules tab to

filter by that selection. Note that * is a wildcard to avoid filtering.

• The Images tab displays currently loaded images;
• The Modules tab displays modules contained in the currently filtered images;
• The Functions tab displays functions contained in the currently filtered

modules;
• The Variables tab displays variables contained in the currently filtered

functions.

Double clicking on a function name jumps to that function in the Disassembly tab.

 Select the Functions tab in the Symbols window and double-click on

 subroutine(). Notice that the main view changes to the

 Disassembly tab and shows the assembly code for the selected

 function.

250v02 Using RVI/RVD Tutorial 31

Double clicking on a variable name displays the address and value of that variable in

the Cmd tab. By default, the Variables tab does not display locals.

 - Select the Variables tab in the Symbols window

 - Right-click in the white space in the window and select Show Locals

 Double-click on MyInt to display its address and value in the Cmd

 tab.

 See the FAQ ‘How do I access the symbols in my image using RVD?’

 on the ARM web site for more information on the Symbols window

 and its tabs.

250v02 Using RVI/RVD Tutorial 32

Memory Window

The Memory window allows you to view the data in a particular area of memory, in a

configurable layout and format.

 - Find the address of MyInt from the Address column of the Symbols

 window Variables tab (0xA080 in the screenshots above in the

 Symbols Window section)

 - Enter the address into the Start address field in the Memory window

 and press enter.

 - Change the Format to Decimal

 - Step forward (press F11) until the yellow arrow points at line 15,

 (printf("%s from main\n", helloworldstr);).

 - Find the address of helloworldstr from the Address column of

 the Symbols window Variables tab.

 - Enter the address into the Start address field in the memory window

 and press enter.

250v02 Using RVI/RVD Tutorial 33

 - Change the Format to Hexadecimal and Data sizes to 1 byte.

 - Notice that the text that makes up the string helloworldstr is

 displayed on the right-hand side of the Memory window.

You can add new tabs to the Memory window by right-clicking on an existing tab and

selecting Duplicate View. Tabs can be closed by selecting Delete View.

 Select Debug → Set PC to Entry Point from the main menu, then press

 F5 to run to the breakpoint set earlier on main().

Watch Window

The Watch window allows you to keep track of specific variables.

 If the Watch window is not already open, select View → Watch from

 the RVD menu to display the Watch window.

250v02 Using RVI/RVD Tutorial 34

 Right-click on MyInt (on line 8 of Hello.c) in the main view and select

 Add Watch. Repeat for greeting and helloworldstr (lines 13 and

 9 respectively).

 - Press F11 (Step Into) 3 times so that the yellow arrow points to line

 15 (printf("%s from main\n", helloworldstr);).

 - Observe that as greeting and helloworldstr are initialised in

 the code, their values update in the Watch window.

As well as adding a variable to the Watch window from the variable’s context menu,

you can manually enter a variable name into the Watch window Name column. Note

that the core must be stopped for the values displayed to be updated.

250v02 Using RVI/RVD Tutorial 35

When watching a pointer (including a string/array), a + symbol will be displayed to

the left of the pointer name. Click on this to expand the display to show the contents

of an array, or, for a pointer, to show the value pointed to by that pointer.

 Click on the + next to the pointer greeting. Observe that the value

 pointed to by greeting is shown (the first character of the string, H).

 Click on the + next to the array name helloworldstr. Observe

 that the characters that make up the array are shown. The text string

 ends with the first NULL character (0x0) at helloworldstr[11].

The Watch window contains 4 tabs so that you can have a different set of variables

that you want to keep track of depending on which part of your image you are

currently working with. This is particularly useful when moving up / down the Call

Stack (see Call Stack below).

Call Stack

The execution scope or context determines the visibility of variables and functions. A

variable or function is referred to as in scope if the name can be accessed at the current

point of execution. The scope of a variable or function can be:

250v02 Using RVI/RVD Tutorial 36

• the current source file, for global variables and functions;

• the current function, for local variables

When you load an image, scope is initially set to the value of the PC, which is usually

the entry point of the image. As you step through the image and move into child

functions, the scope updates to continue to show the current context.

 - Select View → Call Stack from the RVD main menu.

The Call Stack window shows the hierarchical flow of a program and enables you to

trace back to the program’s status at an earlier point. By moving up to a previous

entry in the call stack, you can change the scope to be at the point where the child

function will return to. This works by retrieving from the stack local variables that

were active immediately before the function call took place.

 Double-click in the margin to the left of the subroutine()

 function definition (line 23) to set a breakpoint. Press F5 to run to this

 point in the program.

 - Double-click on the int main(void) Line #17 Col 2 entry

 in the Call Stack window.

 - Observe the output Scoped at level 1: (0x000080AC):

 HELLO\main Line 17:2 in the Cmd tab.

A blue arrow and a blue box show the new scope:

250v02 Using RVI/RVD Tutorial 37

 - A blue arrow and blue box indicates that the current scope is different

 from the location of the PC.

 - A yellow arrow and red box indicates that the current scope is the

 location of the PC.

You can also move up (to parent functions) and down (to child functions) the call

stack by entering the commands up and down in the RVD Command Line (see

Command Line below).

 As you move up and down the call stack, observe that the variables

 displayed in the Locals window change (select View → Locals if this

 window is not already open).

Variables in the Watch window that are local to a particular function also become

active / inactive as you move up / down the stack. You can make use of multiple

Watch windows, or the multiple tabs within an individual Watch window to isolate

variables that are relevant to a particular scope.

If the scope is at a location that corresponds to a source file then RVD automatically

opens that source file if the Home Page tab or another source file currently has the

focus.

Command Line

The Cmd tab in RVD displays the current status of the debugger. When you carry out

a GUI action, you will usually see a command-line equivalent echoed to this tab. You

can use these textual equivalents on the command-line (the grey bar at the bottom of

the Cmd tab). This is particularly useful when creating a script (see below).

250v02 Using RVI/RVD Tutorial 38

 Use the up and down commands to move up and down the call stack

 (see Call Stack above).

Simple Scripting

You can gather together a sequence of command line instructions into a script. This is

a plain text file that can be called automatically when you connect to a target, or on

demand. An example of automatically calling a script at connect time is given in the

Configuring Trace section of this tutorial.

To create and run a simple script:

• Carry out the GUI actions that you want to script
• After each GUI action, copy and paste the command echoed to the Cmd tab

into a text file
• Save the text file (e.g. MyScript.inc)
• Click on the Add Script toolbar button and browse to the script that you

created
• Click on the Run Script toolbar button to run the script

Scripts are most commonly used to perform target configuration on connection to a

target, or to perform the connection itself followed by some subsequent steps. The

example below shows the generation of a simple connection script.

 - Disconnect from your target (Target → Disconnect)

 - Right-click in the Cmd tab and select Clear to clear the existing

 output.

 - Connect to your target by double-clicking on the target in the Target

 → Connect to Target… dialog

 - Load the previous Hello.axf image via the Target → Load Image…

 dialog.

Add Script

Run Script

250v02 Using RVI/RVD Tutorial 39

 - Set a breakpoint on subroutine() by double-clicking in

 the margin to the left of the first line of the function definition (line 23)

 - Press F5 to run to the breakpoint

 - Observe that the above steps caused the following commands to

 appear in the Cmd tab, along with some additional information:
 connect "@ARM926EJ-S_0@RealView-ICE"
 load/r C:\rvds31_tutorial\PB926\Hello_World\Hello.axf
 binstr \HELLO\#25:0
 go

 - Paste these commands into a plain-text editor (not including the

 initial > character) and save the file as SimpleScript.inc at

 c:\rvds31_tutorial\PB926\

 - Disconnect from your target (Target → Disconnect)

 - Add the script that you just created using the Add Script toolbar

 button.

 - Run the script using the Run Script toolbar button.

 See the FAQ ‘RVD Scripting & Automation’ on the ARM web site for

 more information on scripting with RVD, including some example

 scripts.

250v02 Using RVI/RVD Tutorial 40

Section 4: Using RealView Trace with RVD

This section provides an introduction to using the RealView Trace unit with RealView

Debugger to perform trace capture.

 Application Note 168 ‘Tracing with RVD’ provides a more

 comprehensive walkthrough guide to tracing your target.

4.1 – Configuring Trace

When you have auto-configured (or manually configured) your target in RVD, you can

configure whether or not your target has an ETM (Embedded Trace Macrocell) or an

ETB (Embedded Trace Buffer). The PB926EJ-S contains an ETM, but no ETB.

 Click on Device Properties… in RVConfig.

 Ensure that ETM is selected, and ETB is deselected. Click OK.

250v02 Using RVI/RVD Tutorial 41

If your target contains an ETB (for example, the CM1136JF-S), then you can also

select ETB to use the on-chip buffer rather than the external RealView Trace unit.

Connect to your target, then open the RVD Analysis window.

 Select View → Analysis Window

From the Analysis window you can configure trace settings and view collected trace

data.

250v02 Using RVI/RVD Tutorial 42

 Connect the analyzer to your target by selecting Edit → Connect /

 Disconnect Analyzer

 Select Edit → Automatic Tracing Mode→ Instructions and Data from

 the menu in the Analysis window.

The debugger is now configured to automatically capture trace for both instructions &

data.

 Select Edit → Data Tracing Mode→ Data Only from the menu in the

 Analysis window.

250v02 Using RVI/RVD Tutorial 43

The debugger is now configured to capture both data values and addresses for data

trace capture.

Trace settings can be configured via the Configure ETM dialog, by selecting Edit →

Configure Analyzer Properties… from the Analysis window menu. For this tutorial

the default settings do not need to be changed.

 See Section 4.3 of the RealView Debugger v3.1 Trace User Guide

 (‘Configuring the ETM parameters’) for more information on

 ETM configuration options.

250v02 Using RVI/RVD Tutorial 44

A reduced trace buffer size will reduce the time taken for the debugger to retrieve the

trace data from the trace unit, but will limit the amount of data that can be captured. If

you are performing lots of single steps or will be stopping your target regularly, you

may want to set a small buffer size – perhaps as small as 1024 records. If you need to

capture trace data for the entire execution of a larger piece of code, you may want to

use the maximum buffer size. For this example we will set the buffer size to 65535

records. The maximum available buffer size for your trace hardware will be set

automatically when you first connect to your RealView Trace unit (at least 1 million

records).

 Select Edit → Set Trace Buffer Size… from the menu, and enter a

 buffer size of 65535 records. Click Set.

Trace analyzer connection and configuration can be carried out using a connection

script that can be associated with a connection. When you perform the instructions

above, notice that a command appears in the RVD Cmd tab for each step. You can

copy these instructions into a text editor and save the resulting script as a text file.

 Open Notepad and paste in the following commands:

 analyzer,connect // connect the Trace analyzer

250v02 Using RVI/RVD Tutorial 45

 analyzer,auto_both // inst & data auto tracing mode
 analyzer,dataonly // data only tracing for data
 etm_config,packauto // select auto trace buffer

 // packing
 analyzer,set_size=65535 // set trace buffer size to 65535

 // records

 Save the file as TraceConfig.inc at c:\rvds31_tutorial\PB926\

If you are using a target other than the PB926EJ-S, you may need to modify the above

commands.

You can tell RVD to run the script that you have created whenever you connect to a

target via RVI.

 - Go to Target → Connection Properties

 - Click on CONNECTION=RealView-ICE in the left hand pane

 - Browse to Advanced_Information\Default

 - Right click on Command in the right-hand pane and select Edit as

 Filename…

 - Browse to the script file that you just created and click Save

 - Right click on the Commands entry you just created and select Edit

 Value…

 - Insert the command inc in front of the path to the script file

 - Select File → Save and Close

If you now disconnect from and reconnect to your target, you should find that the

analyzer is automatically connected and configured for you.

250v02 Using RVI/RVD Tutorial 46

When you no longer want to run this script at connect time you will need to remove

the command you just created from Connection Properties. If you want to run the

script a single time, you can type inc ‘<full_path_to_script>’ on the RVD

command line.

NB: If you are working with a Versatile PB926EJ-S or AB926EJ-S development

board, you will need to reduce the core clock speed from 210MHz (default) to

140MHz in order to perform trace capture in both normal and half-rate tracing modes.

This can be done by running the following RVD script commands before you begin

your trace, either manually from the RVD command line, or by adding them to the

beginning of your trace configuration script (TraceConfig.inc):

 // unlock system registers
 setmem /32 0x10000020 =0x0000A05F
 // modify SYS_OSC0
 setmem /32 0x1000000C =0x00002C6C
 // lock system registers
 setmem /32 0x10000020 =0x00000000

Your system is now configured to the point where you can perform Auto Trace using

the ETM without setting any tracepoints. Trace capture will begin immediately when

your program begins execution and will continue until the target is stopped (e.g. at a

breakpoint). In the following examples tracepoints are used to specify a specific

region where tracing should be carried out, reducing the total amount of trace data

captured.

250v02 Using RVI/RVD Tutorial 47

4.2 – Performing Simple Trace Capture

 Select Target→ Load Image… from the RVD main menu. Browse to

 Dhry_Inf.axf in the c:\rvds31_tutorial\PB926\Infinite_Dhrystone

 directory.

 In the Process tab of the Process Control window (View → Process

 Control), expand Sources and double click on dhry_1.c to open that

 source file.

250v02 Using RVI/RVD Tutorial 48

In this example we will run an Automatic Trace. This uses no trace points for

specifying the trace range and so causes trace to be captured for the entire program

execution. It is possible to specify Instruction Only or Instruction and Data trace (see

previous section). If tracing data in addition to instructions, you may need to consider

the size of your trace buffer and the bandwidth of your trace port.

 Population of the trace buffer will automatically wrap back to the

 beginning of the buffer when it is filled.

 Right-click in the margin to the left of line 192 (if (Run_Index

 >= 10000)). Select Insert Breakpoint to set a breakpoint.

 Start executing the image by selecting Debug → Run (F5) from the

 menu.

 Execution halts on the breakpoint. Select View → Analysis Window

 from the RVD menu to view the captured trace.

250v02 Using RVI/RVD Tutorial 49

 Ensure that Data Value in Decimal is selected in the Trace Data menu,

 and Code Window Tracking is selected in the View menu.

The columns can be interpreted as follows:

Elem The element number in the current trace buffer. If a trace trigger has

been set then element 0 will appear at the trigger point. Otherwise

element 0 will appear as the last element.

Time/cycl The relative cycle number on which an element began execution.

Type Exec: An instruction that was executed

NoExec: A conditional instruction that was not executed

250v02 Using RVI/RVD Tutorial 50

R Data: A data read

W Data: A data write

Symbolic Gives the module name and line number for the corresponding source

code.

Address Indicates the address an instruction was fetched from, or the address

data was read from or written to.

 Scroll through the captured trace data to see the source code and

 disassembly synchronized with each line of trace data.

The same example can be run with a defined trace range where tracing will take place,

by placing markers, or tracepoints, in the code. The advantage of using tracepoints is

that you can capture trace data just for specific areas of interest in your code, and

avoid having that data overwritten by unwanted data when the trace buffer wraps.

 Right-click in the margin to the left of line 150 in dhry1.c (within the

 main for() loop in the body of main()). Select Insert

 Tracepoint…to display the New Tracepoint dialog.

 Select Start of Trace Range (Instruction and Data) from the list and

 click OK to set the tracepoint.

250v02 Using RVI/RVD Tutorial 51

 Right-click in the margin to the left of line 189 (Proc_2

 (&Int_1_Loc);). Select Insert Tracepoint…to display the

 Tracepoint List Selection dialog again.

 Select End of Trace Range (Instruction and Data) and click OK to set

 the trace stop point.

The source code display should now show the recently set trace and break points:

250v02 Using RVI/RVD Tutorial 52

 Select Debug → Set PC to Entry Point from the main menu, then press

 F5 to run to the breakpoint set earlier on line 192.

 Execution halts on the breakpoint. Select View → Analysis Window

 from the RVD menu to view the captured trace.

Start

of

Trace

Range

End

of

Trace

Range

Break

Point

250v02 Using RVI/RVD Tutorial 53

 Scroll through the captured trace data to see the source code and

 disassembly synchronized with each line of trace data.

 For a more in-depth trace tutorial, refer to Application Note 168

 ‘Tracing with RVD’ on the ARM web site.

250v02 Using RVI/RVD Tutorial 54

Summary

In this tutorial, you have:

• Installed RVDS and the RVI software

• Connected your RVI and RVT to your computer and target board

• Updated your RVI’s firmware

• Configured RVD

You have learnt:

• How to rebuild the example images

• Basic Scatterfile usage

• How to connect to your target

• How to debug a program using RVD

• How to use automatic trace

• How to define a trace range

