
R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 1

Debugging High Performance Embedded Memories
Rob Aitken

Artisan Components
Sunnyvale, CA, USA
aitken@artisan.com

Abstract
Embedded memories fail because of defects, process variation and design marginality.

Finding root cause requires a solid design methodology, the correct design-for-debug
features, and a structured debug process. This paper/presentation will show some proven
techniques for doing this.

1. Introduction to memory debug

In their simplest abstraction, memories consist of rows and columns of bit cells, plus
access logic. Figure 1 shows a stylized example of a 4-bit memory. Cells rows (C0-C3)
are accessed horizontally by word lines, and vertically by pairs of bit lines (B0-B3 and
their complements). For a given memory access, the bit lines are precharged, and then the
appropriate word line is activated. For a read operation, the cell discharges either the true
or complement bit line, and the differential (as opposed to a solid logic signal) is then
sensed by the sense amplifiers and latched. For a write operation, the appropriate bit line
(true or complement) is discharged, and the 0 value is written into the bit cell. In practice,
most memories include a column multiplexing capability also, so that a physical row
contains multiple words (e.g. 4, 8, 16, 32, etc.).

Figure 1 Abstracted memory architecture

The total access time for a memory is split among these operations. The relative
importance of each depends on the array size, performance targets, and multiplexing
factors. Most memories are self-timed, and so two internal timing paths are important: the

Row
Select

Column Access/
Sense Amplifiers

Data I/O Buffers

Prechargers

Address
Decode,
Clock
Control

B0 B0
__

C0

B1 B1
__

C1

B2 B2
__

C2

B3 B3
__

C3

R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 2

self-timing path and the data timing path. The self-timing path is designed to track
process variations in the data path, independent of the nature of the clock signal (duty
cycle, slew, etc.). See [1][2] for more information on memory architecture and design.

In a custom memory design, each of these factors can be optimized for a given
application, providing the best tradeoff between performance area and power for that
application. In practice, though, special purpose memory generators create the vast
majority of memories. These generators use an architecture that is designed to cover a
large design space and achieve high performance at reasonable area. A standard generator
might produce memories from 512 bits to 512 Kbits (e.g. 256x2 to 8192x64). As a result,
the number of bit cells connected to a bit line can vary by a factor of 16, and the number
connected to a word line can vary by a factor of 32, with the driven capacitances varying
correspondingly. The word and column drivers are usually the same for all cases (they
must be sized for the largest instance), but the amount of time they will be on depends on
the individual instance layout (smaller memories can operate faster).

1.1 Yield
Yield has two main components: random (caused by process contamination such as

particles) and systematic (where circuit deformation is a product of its design). Neither is
inherently more important than the other. A systematic yield problem can cause observed
yield for one or more parts to be significantly lower than predicted yield, while a random
problem can cause excursions on a fab’s yield on all products at a given time. Systematic
yield issues require design changes, while random yield issues require improvements to
the process.

Repairability can improve memory yield, and addresses the immediate question of
how to get a given chip working, but it is not helpful for resolving the fundamental
problems, unless the failure information used for repair is also made available for yield
improvement.

1.2 Previous work
Bit map failure patterns have been used for many years to debug memories (e.g.

[3][4]). Successful embedded memory debug requires access to the memory, complete
failure information on a per-cell basis, and ideally the ability to develop and apply new
tests locally. Many of the necessary approaches are well-known to practitioners (e.g.
March tests), while others are more obscure. Successful debug requires knowledge of the
mapping of logical addresses to physical, as well as knowledge of physical attributes such
as bit line twisting. This paper concentrates on classifying observed failure information,
and assumes that access, test vectors, and response collection have been solved
elsewhere.

2. How memories fail

Three basic, but interrelated issues can cause memory failure: defects, process
variation, and design marginality.

2.1 Defects
Defects can disable a memory completely, or partially. A low resistance short on a

clock circuit, for example, will usually cause catastrophic failure. On the other hand, a

R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 3

short in a bit cell can be repaired, or if its resistance is high enough, not affect memory
operation at all. Memories are dense circuits, and defects are to be expected. They can
become a concern when yields are lower than predicted, when they appear to be related to
a systematic problem, or where they result in test escapes.

2.2 Process Variation
Memories are designed to tolerate a wide spread in process variation, at minimum that

characterized by the process SPICE models, but often much more than that. For example,
bitcell leakage variation of 5-10X over specified values is often tolerated, in order to
account for unexpected process drift, or to allow aggressive process skewing for high
performance products. When variation becomes excessive, though, failure will occur (if
for example, leakage gets too high, read current may be unable to create enough
differential on a bit line pair for correct sensing.

2.3 Design Marginality
Design marginality is in some ways a function of defects and process variation, along

with variation in operating environment. Product designs are specified to meet operating
standards across a range of defined variations. These variations are derived from the
expected customer operating variations and manufacturing variations. Common
variations include process, voltage, temperature, and transistor mismatch. Variations can
be global (between arrays) or local (within an array). In order to ensure that a circuit
functions properly across the operating range, it is necessary to stress variations beyond
the operating range. The difference between the design space defined by the stress
variations and the operating variations is its margin. Inadequate margin can result in
failure due to unintended conditions (e.g. IR drop, poor cooling, etc.), process changes
(intended or otherwise), or other stresses. In each case, a marginal design will fail where
one with more margin would not.

3. Debug basics: bitmaps, shmoos, data

Two key elements to successful debug are bitmaps, and shmoo plots [5]. Bitmaps
bound the circuitry affected by a problem, while shmoos characterize the relationship
between the problem and operating environment. In general, as much data as possible
should be collected prior to developing theories of root cause of a problem. Memories are
complex circuits and often fail for complex reasons. Data sources include silicon
measurement, EDA tools, foundries, and IP vendors. Particularly in a fabless model,
numerous organizations may be involved in identifying root cause of a problem.

3.1 General Issues
The nature of a failure gives some clues about what might cause it. The table below

discusses some of these. For each potential location, hints about when to suspect it are
given, along with exclusions. The exclusions are specific to the suspected values.

R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 4

Location When to suspect it When to exclude it
Bit cell Single cell failure

Odd-shaped contiguous group of
cell failures
Isolated cell failures

Non-random failure patterns

Bit cell contact Two/four adjacent cells failing
Bit line One or two adjacent columns

failing (whole or partial)
Entire I/O failing

Sense amp, I/O Block of columns fail
Word line,
drivers

Whole or partial row failure

Addressing One or more rows/columns
failing (whole or partial),
especially when separated by
regular spacing (e.g. 8, 16)

Clocking, control Entire memory, or substantial
portions of it, fail

4. Defect signatures

The classic defect signature is a single failing bit. As feature sizes shrink, some defects
are becoming larger than bit cells. Single point defects can also look like failing rows,
columns, or blocks of memory. Signatures of types of defects (e.g. resistive vias fail at
lower temperatures more often than high ones). The need to develop defect-specific tests,
especially for bit cell defects.
Defect When to suspect it When to exclude it
General No pattern to observed failures

when compared with process
variation

Regular, consistent failure pattern

Metal short Any failure mode
Fail behavior worse with
increasing temperature
Column failures more likely as
distance from sense amp
increases.
Linear static current relationship
to supply voltage (if measurable)

Bidirectional fails in bit cells or
bit lines during same test.

Break All cells above a point in a
column fail both directions
All cells to left or right of a point
in a row fail both directions

Failure point moves with
changing conditions.

Resistive
contact/via

Failure gets worse with
decreasing temperature
Failure occurs after multiple
repeats of same operation (e.g.
multiple reads on same cell)

R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 5

Scratch Mostly linear swath of cell
failures.

Parametric Failing cells are adjacent, but do
not follow architectural pattern
(e.g. 15 fails in one row, 16 in
the next, 14 in the third)

Regular, especially rectangular
failing pattern

5. Process variation signatures

Common variations: transistor length/Vt, metal width/thickness. Byproducts of these
variations are reduced performance, increased leakage, “weak” bits. How to find them
(e.g. to disprove a bit cell leakage problem, identify failures when all cells in a column
hold the same value; to stress leakage, read from a cell that holds the opposite value of all
others in a column).
Variation When to suspect it When to exclude it
General Wafer parametric data at or near

process limits
No pattern to failing devices
(some slow, some fast, some in
the middle)

Excess leakage Higher than expected Ioff
Failures at high temperature
Failures at fast process corner

Successful read of 1 when all
other bits in a column hold 0, plus
the inverse

6. Design margin signatures

Memory failures can result from design margin issues within the memory and within
the logic surrounding the memory. How to differentiate the two. Logic margin issues:
setup/hold time violations, IR drop, crosstalk. Relationship between process variation,
defects, and design margin.

Issue When to suspect it When to exclude it
General Failures only at extremes of

temperature, voltage, or process
variation

Not a regular signature, no pattern
to circuits that fail.

Logic problem Fail depends on values on
memory I/O, but not on memory
contents
Fail occurs during BIST or
normal operation, but not both

If failure can be isolated within
array

Setup problem Static timing analysis suggests
problem
Slowing clock rate fixes problem

Hold problem Static timing analysis suggests
problem
Problem more prevalent in fast
silicon

R. Aitken, Debugging High Performance Embedded Memories, SDD Workshop, 2004
 6

IR drop Narrow power buses
Few power connections
Problem worse when nearby
circuits switching

Power network is robustly and
regularly connected to memory

Crosstalk Failure dependent on unrelated
circuitry switching
Poor memory shielding

7. Design for debug features

As a consequence of increasing chip performance requirements and the inherent
complexity of integrating design IP from multiple sources, achieving timing closure is a
dominant problem in SoC design. In addition, measuring timing accurately needs to
consider signal integrity effects such as crosstalk, IR drop, and glitches. Careful analysis
using high quality tools is needed to avoid these during design. Finally, there is an issue
with built-in self-repair with respect to marginal timing issues: If a memory is tested at
start-up, its temperature will be lower than later during operation (e.g. 25C versus 100C).
Timing defects could be present, but not active, at the lower initial temperature.

These issues can be addressed within a memory for both debug and normal operation
by adjusting memory timing. Some generators provide an adjustable timing mechanism
to account for this. This works by delaying the timing of the self-timing path in the sense
amp circuitry, which allows the bit cells to have additional time to discharge either the bit
line or its complement, resulting in a higher differential voltage and a more robust read,
even for a weakened cell.

Outside the cell, debug features include the ability to generate special debug patterns,
or indeed any customized patterns, either from an external APG in a tester, or from BIST
circuitry.

In all cases, bitmapping capability is vital for successful memory debug. If this is not
present in BIST, some form of direct access needs to be provided.

8. Conclusions

Debugging memories is a complex task, but careful consideration during design and
careful analysis later can greatly simplify the problem.

9. References

[1] A. Sharma, Advanced Semiconductor Memories: Architectures, Designs, and
Applications, IEEE Press (Wiley), 2002.

[2] R.D. Adams, High Performance Memory Testing: Design Principles, Fault Modeling
and Self-Test, Kluwer, 2002.

[3] B.B. Sindahl, “ Interactive Graphical Analysis of Bit Fail Map Data Using Interactive
Pattern Recognition” , Proc. Int. Test Conf., pp. 687-695, 1987.

[4] T. Zanon et al, “Analysis of IC Manufacturing Process Deformations: An Automated
Approach Using SRAM Bit Fail Maps” , Proc. Int. Symp. Test and Failure Analysis,
pp. 232-241, Nov. 2003.

[5] K. Baker, J. van Beers, “Shmoo Plots - the Black Art of IC Test” , pp. 90-97, IEEE
Design and Test, No. 3, 1997.

