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Abstract 
Embedded memories fail because of defects, process variation and design marginality. 

Finding root cause requires a solid design methodology, the correct design-for-debug 
features, and a structured debug process. This paper/presentation will show some proven 
techniques for doing this. 

1. Introduction to memory debug 

In their simplest abstraction, memories consist of rows and columns of bit cells, plus 
access logic. Figure 1 shows a stylized example of a 4-bit memory. Cells rows (C0-C3) 
are accessed horizontally by word lines, and vertically by pairs of bit lines (B0-B3 and 
their complements). For a given memory access, the bit lines are precharged, and then the 
appropriate word line is activated. For a read operation, the cell discharges either the true 
or complement bit line, and the differential (as opposed to a solid logic signal) is then 
sensed by the sense amplifiers and latched. For a write operation, the appropriate bit line 
(true or complement) is discharged, and the 0 value is written into the bit cell. In practice, 
most memories include a column multiplexing capability also, so that a physical row 
contains multiple words (e.g. 4, 8, 16, 32, etc.). 

Figure 1 Abstracted memory architecture 

The total access time for a memory is split among these operations. The relative 
importance of each depends on the array size, performance targets, and multiplexing 
factors. Most memories are self-timed, and so two internal timing paths are important: the 
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self-timing path and the data timing path. The self-timing path is designed to track 
process variations in the data path, independent of the nature of the clock signal (duty 
cycle, slew, etc.). See [1][2] for more information on memory architecture and design. 

In a custom memory design, each of these factors can be optimized for a given 
application, providing the best tradeoff between performance area and power for that 
application. In practice, though, special purpose memory generators create the vast 
majority of memories. These generators use an architecture that is designed to cover a 
large design space and achieve high performance at reasonable area. A standard generator 
might produce memories from 512 bits to 512 Kbits (e.g. 256x2 to 8192x64). As a result, 
the number of bit cells connected to a bit line can vary by a factor of 16, and the number 
connected to a word line can vary by a factor of 32, with the driven capacitances varying 
correspondingly. The word and column drivers are usually the same for all cases (they 
must be sized for the largest instance), but the amount of time they will be on depends on 
the individual instance layout (smaller memories can operate faster). 

1.1 Yield  
Yield has two main components: random (caused by process contamination such as 

particles) and systematic (where circuit deformation is a product of its design). Neither is 
inherently more important than the other. A systematic yield problem can cause observed 
yield for one or more parts to be significantly lower than predicted yield, while a random 
problem can cause excursions on a fab’s yield on all products at a given time. Systematic 
yield issues require design changes, while random yield issues require improvements to 
the process. 

Repairability can improve memory yield, and addresses the immediate question of 
how to get a given chip working, but it is not helpful for resolving the fundamental 
problems, unless the failure information used for repair is also made available for yield 
improvement. 

1.2 Previous work 
Bit map failure patterns have been used for many years to debug memories (e.g. 

[3][4]). Successful embedded memory debug requires access to the memory, complete 
failure information on a per-cell basis, and ideally the ability to develop and apply new 
tests locally. Many of the necessary approaches are well-known to practitioners (e.g. 
March tests), while others are more obscure. Successful debug requires knowledge of the 
mapping of logical addresses to physical, as well as knowledge of physical attributes such 
as bit line twisting. This paper concentrates on classifying observed failure information, 
and assumes that access, test vectors, and response collection have been solved 
elsewhere. 

2. How memories fail 

Three basic, but interrelated issues can cause memory failure: defects, process 
variation, and design marginality.  

2.1 Defects 
Defects can disable a memory completely, or partially. A low resistance short on a 

clock circuit, for example, will usually cause catastrophic failure. On the other hand, a 
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short in a bit cell can be repaired, or if its resistance is high enough, not affect memory 
operation at all. Memories are dense circuits, and defects are to be expected. They can 
become a concern when yields are lower than predicted, when they appear to be related to 
a systematic problem, or where they result in test escapes. 

2.2 Process Variation 
Memories are designed to tolerate a wide spread in process variation, at minimum that 

characterized by the process SPICE models, but often much more than that. For example, 
bitcell leakage variation of 5-10X over specified values is often tolerated, in order to 
account for unexpected process drift, or to allow aggressive process skewing for high 
performance products. When variation becomes excessive, though, failure will occur (if 
for example, leakage gets too high, read current may be unable to create enough 
differential on a bit line pair for correct sensing.  

2.3 Design Marginality  
Design marginality is in some ways a function of defects and process variation, along 

with variation in operating environment. Product designs are specified to meet operating 
standards across a range of defined variations. These variations are derived from the 
expected customer operating variations and manufacturing variations. Common 
variations include process, voltage, temperature, and transistor mismatch. Variations can 
be global (between arrays) or local (within an array). In order to ensure that a circuit 
functions properly across the operating range, it is necessary to stress variations beyond 
the operating range. The difference between the design space defined by the stress 
variations and the operating variations is its margin. Inadequate margin can result in 
failure due to unintended conditions (e.g. IR drop, poor cooling, etc.), process changes 
(intended or otherwise), or other stresses. In each case, a marginal design will fail where 
one with more margin would not. 

 

3. Debug basics: bitmaps, shmoos, data 

Two key elements to successful debug are bitmaps, and shmoo plots [5]. Bitmaps 
bound the circuitry affected by a problem, while shmoos characterize the relationship 
between the problem and operating environment. In general, as much data as possible 
should be collected prior to developing theories of root cause of a problem. Memories are 
complex circuits and often fail for complex reasons. Data sources include silicon 
measurement, EDA tools, foundries, and IP vendors. Particularly in a fabless model, 
numerous organizations may be involved in identifying root cause of a problem. 

3.1 General Issues 
The nature of a failure gives some clues about what might cause it. The table below 

discusses some of these. For each potential location, hints about when to suspect it are 
given, along with exclusions. The exclusions are specific to the suspected values. 
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Location When to suspect it When to exclude it 
Bit cell  Single cell failure 

Odd-shaped contiguous group of 
cell failures 
Isolated cell failures 

Non-random failure patterns 

Bit cell contact Two/four adjacent cells failing  
Bit line One or two adjacent columns 

failing (whole or partial) 
Entire I/O failing 

Sense amp, I/O Block of columns fail  
Word line, 
drivers 

Whole or partial row failure  

Addressing One or more rows/columns 
failing (whole or partial), 
especially when separated by 
regular spacing (e.g. 8, 16) 

 

Clocking, control Entire memory, or substantial 
portions of it, fail 

 

 

4. Defect signatures 

The classic defect signature is a single failing bit. As feature sizes shrink, some defects 
are becoming larger than bit cells. Single point defects can also look like failing rows, 
columns, or blocks of memory. Signatures of types of defects (e.g. resistive vias fail at 
lower temperatures more often than high ones). The need to develop defect-specific tests, 
especially for bit cell defects. 
Defect When to suspect it When to exclude it 
General No pattern to observed failures 

when compared with process 
variation 

Regular, consistent failure pattern 

Metal short  Any failure mode 
Fail behavior worse with 
increasing temperature 
Column failures more likely as 
distance from sense amp 
increases. 
Linear static current relationship 
to supply voltage (if measurable) 

Bidirectional fails in bit cells or 
bit lines during same test. 

Break All cells above a point in a 
column fail both directions 
All cells to left or right of a point 
in a row fail both directions 

Failure point moves with 
changing conditions. 

Resistive 
contact/via 

Failure gets worse with 
decreasing temperature 
Failure occurs after multiple 
repeats of same operation (e.g. 
multiple reads on same cell) 
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Scratch Mostly linear swath of cell 
failures. 

 

Parametric Failing cells are adjacent, but do 
not follow architectural pattern 
(e.g. 15 fails in one row, 16 in 
the next, 14 in the third) 

Regular, especially rectangular 
failing pattern 

 

5.  Process variation signatures 

Common variations: transistor length/Vt, metal width/thickness. Byproducts of these 
variations are reduced performance, increased leakage, “weak”  bits. How to find them 
(e.g. to disprove a bit cell leakage problem, identify failures when all cells in a column 
hold the same value; to stress leakage, read from a cell that holds the opposite value of all 
others in a column). 
Variation When to suspect it When to exclude it 
General Wafer parametric data at or near 

process limits 
No pattern to failing devices 
(some slow, some fast, some in 
the middle) 

Excess leakage Higher than expected Ioff 
Failures at high temperature 
Failures at fast process corner 

Successful read of 1 when all 
other bits in a column hold 0, plus 
the inverse 

 

6. Design margin signatures 

Memory failures can result from design margin issues within the memory and within 
the logic surrounding the memory. How to differentiate the two. Logic margin issues: 
setup/hold time violations, IR drop, crosstalk. Relationship between process variation, 
defects, and design margin. 

 
 

Issue When to suspect it When to exclude it 
General Failures only at extremes of 

temperature, voltage, or process 
variation 

Not a regular signature, no pattern 
to circuits that fail. 

Logic problem Fail depends on values on 
memory I/O, but not on memory 
contents 
Fail occurs during BIST or 
normal operation, but not both 

If failure can be isolated within 
array 

Setup problem Static timing analysis suggests 
problem 
Slowing clock rate fixes problem 

 

Hold problem Static timing analysis suggests 
problem 
Problem more prevalent in fast 
silicon 
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IR drop Narrow power buses 
Few power connections 
Problem worse when nearby 
circuits switching 

Power network is robustly and 
regularly connected to memory 

Crosstalk Failure dependent on unrelated 
circuitry switching 
Poor memory shielding 

 

 

7. Design for debug features 

As a consequence of increasing chip performance requirements and the inherent 
complexity of integrating design IP from multiple sources, achieving timing closure is a 
dominant problem in SoC design. In addition, measuring timing accurately needs to 
consider signal integrity effects such as crosstalk, IR drop, and glitches. Careful analysis 
using high quality tools is needed to avoid these during design. Finally, there is an issue 
with built-in self-repair with respect to marginal timing issues: If a memory is tested at 
start-up, its temperature will be lower than later during operation (e.g. 25C versus 100C). 
Timing defects could be present, but not active, at the lower initial temperature. 

These issues can be addressed within a memory for both debug and normal operation 
by adjusting memory timing. Some generators provide an adjustable timing mechanism 
to account for this. This works by delaying the timing of the self-timing path in the sense 
amp circuitry, which allows the bit cells to have additional time to discharge either the bit 
line or its complement, resulting in a higher differential voltage and a more robust read, 
even for a weakened cell. 

Outside the cell, debug features include the ability to generate special debug patterns, 
or indeed any customized patterns, either from an external APG in a tester, or from BIST 
circuitry. 

In all cases, bitmapping capability is vital for successful memory debug. If this is not 
present in BIST, some form of direct access needs to be provided. 

8. Conclusions 

Debugging memories is a complex task, but careful consideration during design and 
careful analysis later can greatly simplify the problem. 
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