
ARM7TDMI (Rev 3) Core Processor
Product Overview
Copyright © 2000, 2001. All rights reserved.
ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
ARM7TDMI (Rev 3) Core Processor
Product Overview

Copyright © 2000, 2001. All rights reserved.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of
their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.
2 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
1 Applications and benefits

Applications

• personal digital assistants

• cell phones

• pagers

• automotive

• modems

• personal audio products.

Benefits

• designed specifically for ASIC and ASSP integration

• supports the Thumb® instruction set to enable 32-bit performance at 16-bit, or even 8-bit
cost and increased code density

• high performance allows system designers to integrate more functionality into both price
and power sensitive applications

• very low power consumption

• wide range of development tools from ARM and third party suppliers.

Performance

• 0.9MIPS/MHz

• Typical power consumption:

— at 0.25µm; <0.80mW/MHz

— at 0.18µm; <0.25mW/MHz

• Typical size:

— at 0.25µm; 1.00mm2

— at 0.18µm; 0.53mm2
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 3

ARM7TDMI (Rev 3) Core Processor
2 The ARM7 family

The ARM7 family includes the ARM7TDMI, ARM7TDMI-S, ARM720T, and ARM7EJ-S
processors.

The ARM7TDMI core is the industry’s most widely used 32-bit embedded risc microprocessor
solution. optimized for cost and power-sensitive applications, the ARM7TDMI solution
provides the low power consumption, small size, and high performance needed in portable,
embedded applications.

The ARM7TDMI-s core is the synthesizable version of the ARM7TDMI core, available in both
verilog and vhdl, ready for compilation into processes supported by in-house or commercially
available synthesis libraries. Optimized for flexibility and featuring an identical feature set to
the hard macrocell, it improves time-to-market by reducing development time while allowing
for increased design flexibility, and enabling >>98% fault coverage.

The ARM720T hard macrocell contains the ARM7TDMI core, 8kb unified cache, and a
Memory Management Unit (MMU) that allows the use of protected execution spaces and virtual
memory. This macrocell is compatible with leading operating systems including windows ce,
linux, palm os, and symbian os.

The ARM7EJ-S processor is a synthesizable core that provides all the benefits of the
ARM7TDMI – low power consumption, small size, and the thumb instruction set – while also
incorporating ARM’s latest DSP extensions and Jazelle technology, enabling acceleration of
java-based applications.

2.1 Compatible with the ARM9™, ARM9E™, and ARM10™ families, and StrongARM® architecture

software written for the ARM7TDMI processor is 100% binary-compatible with other members
of the ARM7 family and forwards-compatible with the ARM9, ARM9E, and ARM10 families,
as well as products in intel’s StrongARM and xscale architectures. This gives designers a choice
of software-compatible processors with strong price-performance points. Support for the ARM
architecture today includes:

• operating systems such as windows ce, linux, palm os, and the symbian os

• more than 40 real-time operating systems, including qnx, wind river’s vxworks, and
mentor graphics’ vrtx

• cosimulation tools from leading eda vendors

• a variety of software development tools.
4 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
Figure 1 ARM7TDMI core diagram

Scan control

Instruction

decoder and

logic control

Instruction pipeline

Read data register

Thumb instruction controller

Write data register

nENOUT

DBE

nENIN

B
b
u
s

32-bit ALU

Barrel shifter

32 x 8

Multiplier

D[31:0]

A
L
U

b
u
s

Register bank

(31 x 32-bit registers)

(6 status registers)

A
b
u
s

Address

incrementer

Address register

P
C

b
u
s

A[31:0]
ALE ABE

In
c
re

m
e
n
te

r
b
u
s

DBGRQI

BREAKPTI

DBGACK

ECLK

nEXEC

ISYNC

BL[3:0]

APE

MCLK

nWAIT

nRW

MAS[1:0]

nIRQ

nFIQ

nRESET

ABORT

nTRANS

nMREQ

nOPC

SEQ

LOCK

nCPI

CPA

CPB

nM[4:0]

TBE

TBIT

1
En

DIN[31:0] DOUT[31:0]
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 5

ARM7TDMI (Rev 3) Core Processor
3 ARM7TDMI

The ARM7TDMI core is based on the von neumann architecture with a 32-bit data bus that
carries both instructions and data. Load, store, and swap instructions can access data from
memory. Data can be 8-bit, 16-bit, and 32-bit.

3.1 Instruction pipeline

The ARM7TDMI core uses a three-stage pipeline to increase the flow of instructions to the
processor. This allows multiple simultaneous operations to take place and continuous operation
of the processing and memory systems.

The instructions are executed in three stages:

• fetch

• decode

• execute.

3.2 Memory interface

The ARM7TDMI memory interface is designed to allow optimum performance potential and
minimize memory usage. Speed critical control signals are pipelined to allow system control
functions to exploit the fast-burst access modes supported by many memory technologies.

the ARM7TDMI has four basic types of memory cycle:

• internal

• nonsequential

• sequential

• coprocessor register transfer.

There is also the option to use either a single bidirectional data bus or two separate unidirectional
data input and output buses.

3.3 Memory formats

The ARM7TDMI can be configured to treat stored words in either big-endian or little-endian
format.

3.4 Performance, code density and operating states

The ARM7TDMI core supports two operating states and instruction sets:

• ARM state for 32-bit, word-aligned instructions

• thumb state for 16-bit, halfword-aligned instructions.

The ARM instruction set allows a program to achieve maximum performance with the
minimum number of instructions. The simpler thumb instruction set offers much increased code
density reducing memory requirement. Code can switch between the ARM and thumb
instruction sets on any procedure call.

The majority of ARM7TDMI instructions are executed in a single cycle. These are shown in
Table 1 on page 8.
6 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
3.5 Operating modes

The ARM7TDMI core has seven modes of operation:

• User mode is the usual program execution state

• Fast Interrupt (FIQ) mode supports data transfer or channel processes to allow very fast
interrupt processing and to preserve values across interrupt calls

• Interrupt (IRQ) mode is used for general purpose interrupt handling

• Supervisor mode is a protected mode for the operating system

• Abort mode is entered after a data or instruction prefetch abort

• System mode is a privileged user mode for the operating system

• Undefined mode is entered when an undefined instruction is executed.

3.6 Coprocessors

Up to 16 coprocessors can be connected to an ARM7TDMI system.

3.7 Debug features

The ARM7TDMI processor core incorporates hardware extensions for advanced debugging
features to simplify the development of application software, operating systems, and hardware.
The debug extensions allow the core to be forced into debug state.

The internal state of the ARM7TDMI core can be examined using a jtag interface to allow the
insertion of instructions into the core pipeline and avoid using the external data bus.

A typical debug system comprises:

• a debug host (a computer running a toolkit from ARM or third party)

• a protocol converter to serve as the communications point between the high-level
commands issued by the debug host and the low-level commands of the jtag interface

• the target core, ARM7TDMI.

The ARM7TDMI core includes an internal functional unit known as the embeddedice logic. The
embeddedice logic is configured to monitor ARM7TDMI core activity for specific instruction
fetches and data accesses. Execution halts when the values pre-programmed match the current
values causing a breakpoint or watchpoint, respectively. Configuration is done through a
dedicated scan chain via the JTAG interface.

The ARM7TDMI can also be connected to an Embedded Trace Macrocell (ETM). The etm
provides comprehensive debug and trace facilities by allowing information on the processor’s
state to be captured before and after a specific event, whilst the core runs at full speed. A
dedicated, configurable trace port and fifo allow the compressed trace data to be read out by an
external trace port analyser without affecting the processor.

3.8 Instruction speed summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical
cycle, one instruction can be using the data path while the next is being decoded and the one
after that is being fetched. For this reason Table 1 on page 8 presents the incremental number of
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 7

ARM7TDMI (Rev 3) Core Processor
cycles required by an instruction, rather than the total number of cycles for which the instruction
uses part of the processor. Elapsed time, in cycles, for a routine can be calculated from the
figures listed in Table 1.

These figures assume that the instruction is actually executed. Unexecuted instructions take one
sequential cycle. In Table 1:

• n is the number of words transferred

• m is 1 if bits [32:8] of the multiplier operand are all zero or all one

• m is 2 if bits [32:16] of the multiplier operand are all zero or all one

• m is 3 if bits [31:24] of the multiplier operand are all zero or all one

• b is the number of cycles spent in the coprocessor busy-wait loop

• n is a nonsequential memory cycles is a sequential memory cycle

• i is an internal memory cycle

• c is a coprocessor register transfer memory cycle.

3.9 signals

Table 2 on page 9 lists and describes all of the signals used for the ARM7TDMI.

Table 1 ARM instruction speed summary

Instruction Cycle count Additional

Data Processing 1S + 1I for SHIFT(Rs)

+ 1S + 1N if R15 written

MSR, MRS 1S -

LDR 1S+1N+1I + 1S + 1N if R15 loaded

STR 2N -

LDM nS+1N+1I + 1S + 1N if R15 loaded

STM (n-1)S+2N -

SWP 1S+2N+1I -

B,BL 2S+1N -

SWI 2S+1N -

MUL,MLA 1S+mI -

MUL 1S+mI -

MLA 1S+(m+1)I -

MULL 1S+(m+1)I -

MLAL 1S+(m+2)I -

CDP 1S+bI -

LDC,STC (n-1)S+2N+bI -

MCR 1N+bI+1C -

MRC 1S+(b+1)I+1C -
8 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
Table 2 Signal Descriptions

Name Type Description

A[31:0]
Address bus

Output This is the 32-bit address bus. ALE, ABE and APE are used to control when the address bus is
valid.

ABEAddress bus
enable

Input The address bus drivers are disabled when this is LOW, putting the address bus into a high
impedance state. This also controls the LOCK, MAS[1:0], nRW, nOPC, and nTRANS
signals in the same way. ABE must be tied HIGH if there is no system requirement to disable
the address drivers.

ABORT

Memory abort

Input The memory system uses this signal to tell the processor that a requested access is not allowed.

ALE

Address latch
enable

Input This signal is provided for backwards compatibility with older ARM processors; for new
designs, if address re-timing is required, ARM recommends the use of APE, and for ALE to be
connected HIGH.

The address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS signals are latched when this
is held LOW. This allows these address signals to be held valid for the complete duration of a
memory access cycle. For example, when interfacing to ROM, the address must be valid until
after the data has been read.

APE

Address timing
pipeline enable

Input Selects whether the address bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC signals
operate in pipelined (APE is HIGH) or de-pipelined mode (APE is LOW). Pipelined mode is
particularly useful for DRAM systems, where it is desirable to provide the address to the
memory as early as possible, to allow longer periods for address decoding and the generation
of DRAM control signals. In this mode, the address bus does not remain valid to the end of the
memory cycle. De-pipelined mode can be useful for SRAM and ROM access. Here the address
bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC signals must be kept stable throughout
the complete memory cycle. However, this does not provide optimum performance.

BIGEND

Big-endian
configuration

Input Selects how the processor treats bytes in memory: HIGH for big-endian format; LOW for
little-endian.

BL[3:0]

Byte latch control

Input The values on the data bus is latched on the falling edge of MCLK when these signals are
HIGH. For most designs these signals should be tied HIGH.

BREAKPT

Breakpoint

Input A conditional request for the processor to enter debug state is made by placing this signal
HIGH. If the memory access at that time is an instruction fetch, the processor enters debug state
only if the instruction reaches the execution stage of the pipeline. If the memory access is for
data, the processor enters debug state after the current instruction completes execution. This
allows extension of the internal breakpoints provided by the EmbeddedICE logic.

BUSDIS

Bus disable

Output When INTEST is selected on scan chain 0, 4, or 8 this is HIGH. It can be used to disable
external logic driving onto the bidirectional data bus during scan testing. This signal changes
after the falling edge of TCK.

BUSEN

Data bus
configuration

Input A static configuration signal that selects whether the bidirectional data bus (D[31:0]) or the
unidirectional data busses (DIN[31:0] and DOUT[31:0]) are used for transfer of data between
the processor and memory. When BUSEN is LOW, D[31:0] is used; DOUT[31:0] is driven to
a value of zero, and DIN[31:0] is ignored, and should be tied LOW. When BUSEN is HIGH,
DIN[31:0] and DOUT[31:0] are used; D[31:0] is ignored and must be left unconnected.

COMMRX

Communications
channel receive

Output When the communications channel receive buffer is full this is HIGH. This signal changes after
the rising edge of MCLK.
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 9

ARM7TDMI (Rev 3) Core Processor
COMMTX

Communications
channel transmit

Output When the communications channel transmit buffer is empty this is HIGH. This signal changes
after the rising edge of MCLK.

CPA

Coprocessor absent

Input Placed LOW by the coprocessor if it is capable of performing the operation requested by the
processor.

CPB

Coprocessor busy

Input Placed LOW by the coprocessor when it is ready to start the operation requested by the
processor.

It is sampled by the processor when MCLK goes HIGH in each cycle in which nCPI is LOW.

D[31:0]

Data bus

Input/
Output

Used for data transfers between the processor and external memory.During read cycles input
data must be valid on the falling edge of MCLK.During write cycles output data remains valid
until after the falling edge of MCLK.This bus is always driven except during read cycles,
irrespective of the value of BUSEN. Consequently it must be left unconnected if using the
unidirectional data busses.

DBE

Data bus enable

Input Must be HIGH for data to appear on either the bi-directional or unidirectional data output bus.
When LOW the bidirectional data bus is placed into a high impedance state and data output is
prevented on the unidirectional data output bus.It can be used for test purposes or in shared bus
systems.

DBGACK

Debug
acknowledge

Output When the processor is in a debug state this is HIGH.

DBGEN

Debug enable

Input A static configuration signal that disables the debug features of the processor when held LOW.
This signal must be HIGH to allow the EmbeddedICE logic to function.

DBGRQ
Debug request

Input A request for the processor to enter debug state after executing the current instruction is made
by placing this signal HIGH.

DBGRQI

Internal debug
request

Output This is the logical OR of DBGRQ and bit 1 of the debug control register.

DIN[31:0]

Data input bus

Input Unidirectional bus used to transfer instructions and data from the memory to the processor. This
bus is only used when BUSEN is HIGH; if unused then it should be tied LOW.This bus is
sampled during read cycles on the falling edge of MCLK.

DOUT[31:0]

Data output bus

Output Unidirectional bus used to transfer data from the processor to the memory system. This bus is
only used when BUSEN is HIGH; otherwise it is driven to a value of zero.During write cycles
the output data becomes valid while MCLK is LOW, and remains valid until after the falling
edge of MCLK.

DRIVEBS

Boundary scan cell
enable

Output Controls the multiplexors in the scan cells of an external boundary scan chain. This must be left
unconnected, if an external boundary scan chain is not connected.

ECAPCLK

EXTEST capture
clock

Output Only used on the ARM7TDMI test chip, and must otherwise be left unconnected.

ECAPCLKBS

EXTEST capture
clock for boundary
scan

Output Used to capture the device inputs of an external boundary scan chain during EXTEST. When
scan chain 3 is selected, the current instruction is EXTEST and the TAP controller state machine
is in the CAPTURE- DR state, then this signal is a pulse equal in width to TCK2. This must be
left unconnected, if an external boundary scan chain is not connected.

Table 2 Signal Descriptions (continued)

Name Type Description
10 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
ECLK

External clock
output

Output In normal operation, this is simply MCLK, optionally stretched with nWAIT, exported from the
core. When the core is being debugged, this is DCLK, which is generated internally from TCK.

EXTERN0

External input 0

Input This is connected to the EmbeddedICE logic and allows breakpoints and watchpoints to be
dependent on an external condition.

EXTERN1

External input 1

Input This is connected to the EmbeddedICE logic and allows breakpoints and watchpoints to be
dependent on an external condition.

HIGHZ

High impedance

Output When the HIGHZ instruction has been loaded into the TAP controller this signal is HIGH.

ICAPCLKBS

INTEST capture
clock

Output This is used to capture the device outputs in an external boundary scan chain during INTEST.
This must be left unconnected, if an external boundary scan chain is not connected.

IR[3:0]

TAP controller
instruction register

Output Reflects the current instruction loaded into the TAP controller instruction register. These bits
change on the falling edge of TCK when the state machine is in the UPDATE-IR state.

ISYNC
Synchronous
interrupts

Input Set this HIGH if nIRQ and nFIQ are synchronous to the processor clock; LOW for
asynchronous interrupts.

LOCK

Locked operation

Output When the processor is performing a locked memory access this is HIGH. This is used to prevent
the memory controller allowing another device to access the memory. It is active only during
the data swap (SWP) instruction. This is one of the signals controlled by APE, ALE and ABE.

MAS[1:0]
Memory access size

Output Used to indicate to the memory system the size of data transfer (byte, halfword or word)
required for both read and write cycles, become valid before the falling edge of MCLK and
remain valid until the rising edge of MCLK during the memory cycle. The binary values 00,
01, and 10 represent byte, halfword and word respectively (11 is reserved).This is one of the
signals controlled by APE, ALE and ABE.

MCLK
Memory clock
input

Input This is the main clock for all memory accesses and processor operations. The clock speed can
be reduced to allow access to slow peripherals or memory. Alternatively, the nWAIT can be
used with a free-running MCLK to achieve the same effect.

nCPI

Not coprocessor
instruction

Output LOW when a coprocessor instruction is processed. The processor then waits for a response from
the coprocessor on the CPA and CPB lines. If CPA is HIGH when MCLK rises after a request
has been initiated by the processor, then the coprocessor handshake is aborted, and the
processor enters the undefined instruction trap.If CPA is LOW at this time, then the processor
will enters a busy-wait period until CPB goes LOW before completing the coprocessor
handshake.

nENIN

NOT enable input

Input This must be LOW for the data bus to be driven during write cycles. Can be used in conjunction
with nENOUT to control the data bus during write cycles.

nENOUT

Not enable output

Output During a write cycle, this signal is driven LOW before the rising edge of MCLK, and remains
LOW for the entire cycle. This can be used to aid arbitration in shared bus applications.

nENOUTI
Enable output
internal

Output During a coprocessor register transfer C-cycle from the EmbeddedICE communications
channel coprocessor to the ARM core, this signal goes LOW. This can be used to aid arbitration
in shared bus systems.

Table 2 Signal Descriptions (continued)

Name Type Description
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 11

ARM7TDMI (Rev 3) Core Processor
nEXEC
Not executed

Output When the instruction in the execution unit is not being executed because, for example, it has
failed its condition code check, this is HIGH.

nFIQ

Not fast interrupt
request

Input Taking this LOW causes the processor to be interrupted if the appropriate enable in the
processor is active. The signal is level-sensitive and must be held LOW until a suitable response
is received from the processor. nFIQ can be synchronous or asynchronous to MCLK,
depending on the state of ISYNC.

nHIGHZ
Not HIGHZ

Output When the current instruction is HIGHZ this signal is LOW. This is used to place the scan cells
of that scan chain in the high impedance state. This must be left unconnected, if an external
boundary scan chain is not connected.

nIRQ

Not interrupt
request

Input As nFIQ, but with lower priority. Can be taken LOW to interrupt the processor when the
appropriate enable is active. nIRQ can be synchronous or asynchronous to MCLK, depending
on the state of ISYNC.

nM[4:0]
Not processor mode

Output These are the inverse of the internal status bits indicating the current processor mode.

nMREQ

Not memory
request

Output When the processor requires memory access during the following cycle this is LOW.

nOPC
Not op-code fetch

Output When the processor is fetching an instruction from memory this is LOW. This is one of the
signals controlled by APE, ALE and ABE.

nRESET
Not reset

Input Used to start the processor from a known address. A LOW level causes the instruction being
executed to terminate abnormally.This signal must be held LOW for at least two clock cycles,
with nWAIT held HIGH. When LOW the processor performs internal cycles with the address
incrementing from the point where reset was activated. The address overflows to zero if
nRESET is held beyond the maximum address limit. When HIGH for at least one clock cycle,
the processor restarts from address 0.

nRW

Not read or Write

Output When the processor is performing a read cycle, this is LOW. This is one of the signals controlled
by APE, ALE and ABE.

nTDOEN

Not TDO enable

Output When serial data is being driven out on TDO this is LOW. Normally used as an output enable
for a TDO pin in a packaged part.

nTRANSNot
memory translate

Output When the processor is in User mode, this is LOW. It can be used either to tell the memory
management system when address translation is turned on, or as an indicator of non-User mode
activity.This is one of the signals controlled by APE, ALE and ABE.

nTRST

Not test reset

Input Reset signal for the boundary scan logic. This pin must be pulsed or driven LOW to achieve
normal device operation, in addition to the normal device reset, nRESET.

nWAIT
Not wait

Input When LOW the processor extends an access over a number of cycles of MCLK, which is useful
for accessing slow memory or peripherals. Internally, nWAIT is logically ANDed with MCLK
and must only change when MCLK is LOW.If nWAIT is not used it must be tied HIGH.

PCLKBS

Boundary scan
update clock

Output This is used by an external boundary scan chain as the update clock. This must be left
unconnected, if an external boundary scan chain is not connected.

Table 2 Signal Descriptions (continued)

Name Type Description
12 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
RANGEOUT0

EmbeddedICE
RANGEOUT0

Output When the EmbeddedICE watchpoint unit 0 has matched the conditions currently present on the
address, data, and control busses, then this is HIGH. This signal is independent of the state of
the watchpoint enable control bit.RANGEOUT0 changes when ECLK is LOW.

RANGEOUT1

EmbeddedICE
RANGEOUT1

Output As RANGEOUT0 but corresponds to the EmbeddedICE watchpoint unit 1.

RSTCLKBS

Boundary scan reset
clock

Output When either the TAP controller state machine is in the RESET state or when nTRST is LOW,
then this is HIGH. This can be used to reset external boundary scan cells.

SCREG[3:0]
Scan chain register

Output These reflect the ID number of the scan chain currently selected by the TAP controller. These
change on the falling edge of TCK when the TAP state machine is in the UPDATE-DR state.

SDINBS

Boundary scan
serial input data

Output This provides the serial data for an external boundary scan chain input. It changes from the
rising edge of TCK and is valid at the falling edge of TCK.

SDOUTBS

Boundary scan
serial output data

Input Accepts serial data from an external boundary scan chain output, synchronized to the rising
edge of TCK. This must be tied LOW, if an external boundary scan chain is not connected.

SEQ
Sequential address

Output When the address of the next memory cycle is closely related to that of the last memory access,
this is HIGH. In ARM state the new address can be for the same word or the next; in THUMB
state, the same halfword or the next.It can be used, in combination with the low-order address
lines, to indicate that the next cycle can use a fast memory mode (for example DRAM page
mode) or to bypass the address translation system.

SHCLKBS
Boundary scan shift
clock, phase one

Output Used to clock the master half of the external scan cells and follows TCK1 when in the
SHIFT-DR state of the state machine and scan chain 3 is selected. When not in the SHIFT-DR
state or when scan chain 3 is not selected, this clock is LOW.

SHCLK2BS

Boundary scan shift
clock, phase two

Output As SHCLKBS but follows TCK2 instead of TCK1. This must be left unconnected, if an
external boundary scan chain is not connected.

TAPSM[3:0]

TAP controller state
machine

Output These reflect the current state of the TAP controller state machine. These bits change on the
rising edge of TCK.

TBE
Test bus enable

Input When LOW, D[31:0], A[31:0], LOCK, MAS[1:0], nRW, nTRANS, and nOPC are set to high
impedance.

TBIT

Thumb bit

Output When the processor is executing the THUMB instruction set, this is HIGH; LOW when
executing the ARM instruction set.

TCK
Test clockInput

Clock signal for all test circuitry. When in debug state, this is used to generate DCLK, TCK1
and TCK2.

TCK1

Test clock, phase
one

Output HIGH when TCK is HIGH (slight phase lag due to the internal clock non-overlap).

TCK2
Test clock, phase
two

Output HIGH when TCK is LOW (slight phase lag due to the internal clock non-overlap). It is the
non-overlapping complement of TCK1.

Table 2 Signal Descriptions (continued)

Name Type Description
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 13

ARM7TDMI (Rev 3) Core Processor
TDI
Test data input

Input Serial data for the scan chains.

TDO

Test data output

Output Serial data from the scan chains.

TMS

Test mode select

Input Mode select for scan chains.

VDD
Power supply

Power Provide power to the device.

VSS

Ground

Power These connections are the ground reference for all signals.

Table 2 Signal Descriptions (continued)

Name Type Description
14 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
4 ARM Architecture v4T

4.1 ARM7TDMI processor core

The ARM7TDMI processor core implements the ARMv4T Instruction Set Architecture (ISA).
This is a superset of the ARMv4 ISA which adds support for the 16-bit Thumb instruction set.
Software using the Thumb instruction set is compatible with all members of the ARM Thumb
family, including ARM9, ARM9E, and ARM10 families.

4.2 Registers

The ARM7TDMI core consists of a 32-bit datapath and associated control logic. This datapath
contains 31 general-purpose 32-bit registers, 7 dedicated 32-bit registers coupled to a
barrel-shifter, Arithmetic Logic Unit, and multiplier.

4.3 Modes and exceptions

The ARM7TDMI supports seven modes of operation:

• User mode

• Fast Interrupt (FIQ)

• Interrupt (IRQ)

• Supervisor mode

• Abort mode

• Undefined mode

• System mode.

All modes other than User are privileged modes. These are used to service hardware interrupts,
exceptions, and software interrupts. Each privileged mode has an associated Saved Program
Status Register (SPSR). This register is use to save the state of the Current Program Status
Register (CPSR) of the task immediately before the exception occurs.

In these privileged modes, mode-specific banked registers are available. These are automatically
restored to their original values on return to the previous mode and the saved CPSR restored
from the SPSR.

System mode does not have any banked registers. It uses the User mode registers. System mode
runs tasks that require a privileged processor mode and allows them to invoke all classes of
exception.

4.4 Processor states

The ARM7TDMI processor can be in one of two states:

ARM state

In ARM state, 16 general registers and one or two status registers are accessible at any one time.
The registers available to the programmer in each mode, in ARM state, are illustrated in Figure 2
on page 16.
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 15

ARM7TDMI (Rev 3) Core Processor
Figure 2 Register organization in ARM state

Thumb state

In Thumb state, eight general registers, the Program Counter (PC), Stack Pointer (SP), Link
Register (LR), and Current Program Status Register (CPSR) are accessible. The registers
available to the programmer in each mode, in Thumb state, are illustrated in Figure 3 on
page 17.

ARM-state general registers and program counter

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

System and User

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM-state program status registers
= banked register

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r13_svc

r14_svc

r15 (PC)

Supervisor

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_abt

r14_abt

r15 (PC)

Abort

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_irq

r14_irq

r15 (PC)

IRQ

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_und

r14_und

r15 (PC)

Undefined

r8

r9

r10

r11

r12

General registers

Program counter

Program status
registers
16 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
Figure 3 Register organization in Thumb state

4.5 Exceptions

The ARM7TDMI supports seven types of exception:

• FIQ – fast interrupt

• IRQ – normal interrupt

• Data abort

• Prefetch abort

• Software interrupt

• Undefined instruction

• Reset.

All exceptions have banked registers for R14 and R13. After an exception, R14 holds the return
address for exception processing. This address is used both to return after the exception is
processed and to address the instruction that caused the exception.

R13 is banked across exception modes to provide each exception handler with a private stack
pointer. The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can
begin without the need to save or restore these registers.

4.6 Status registers

All other processor states are held in status registers. The current operating processor status is
in the CPSR. The CPSR holds:

• four ALU flags (Negative, Zero, Carry, and Overflow)

• an interrupt disable bit for each of the FIQ and IRQ interrupts

• a bit to indicate ARM or Thumb execution state

• five bits to encode the current processor mode.

Thumb state general registers and program counter

System and User

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Thumb state program status registers
= banked register

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

Supervisor

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

Abort

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

Undefined

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 17

ARM7TDMI (Rev 3) Core Processor
The program status register format is shown in Figure 4 on page 19.

4.7 Conditional execution

All ARM instructions are conditionally executed and can optionally update the four condition
code flags (Negative, Zero, Carry, and Overflow) according to their result. Fifteen conditions
are implemented.

4.8 Classes of instructions

The ARM and Thumb instruction sets can be divided into four broad classes of instruction:

• data processing instructions

• load and store instructions

• branch instructions

• coprocessor instructions.

4.9 Data processing instructions

The data processing instructions operate on data held in general-purpose registers. Of the two
source operands, one is always a register. The other has two basic forms:

• an immediate value

• a register value, optionally shifted.

If the operand is a shifted register the shift amount can have an immediate value or the value of
another register. Four types of shift can be specified. Most data processing instructions can
perform a shift followed by a logical or arithmetic operation.

Multiply instructions come in two classes:

• normal, 32-bit result

• long, 64-bit result variants.

Both types of multiply instruction can optionally perform an accumulate operation.

4.10 Load and store instructions

Single or multiple registers can be loaded and stored at one time.

Load and store single register instructions can transfer a 32-bit word, a 16-bit halfword, or an
8-bit byte between memory and a register. Byte and halfword loads can be automatically zero
extended or sign extended as they are loaded.

Load and store instructions have three primary addressing modes:

• offset

• pre-indexed

• post-indexed.

The address is formed by adding or subtracting an immediate or register- based offset to or from
a base register. Register-based offsets can also be scaled with shift operations. Pre-indexed and
post-indexed addressing modes update the base register with the result of the offset calculation.

As the PC is a general-purpose register, a 32-bit value can be loaded directly into the PC to
perform a jump to any address in the 4GB memory space.
18 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
Load and store multiple instructions perform a block transfer of any number of the general
purpose registers to or from memory. Four addressing modes are provided:

• pre-increment addressing

• post-increment addressing

• pre-decrement addressing

• post-decrement addressing.

The base address is specified by a register value (that can be optionally updated after the
transfer). As the subroutine return address and the PC values are in general-purpose registers,
very efficient subroutine calls can be constructed.

Figure 4 Program status register format

4.11 Branch instructions

As well as allowing any data processing or load instruction to change control flow (by
modifying the PC) a standard branch instruction is provided with 24-bit signed offset, allowing
forward and backward branches of up to 32MB. Branch with Link (BL) allows efficient
subroutine calls, and preserves the address of the instruction after the branch in R14 (the Link
Register or LR). This allows a move instruction to put the LR in to the PC and return to the
instruction after the branch.The third type of branch (BX) switches between ARM and Thumb
instruction sets. The return address can be preserved in the LR as an option.

4.12 Coprocessor

There are three types of coprocessor instructions:

• coprocessor data processing instructions invoke a coprocessor specific internal operation

• coprocessor register transfer instructions allow a coprocessor value to be transferred to or
from an ARM register

• coprocessor data transfer instructions transfer coprocessor data to or from memory, where
the ARM calculates the memory address of the transfer.

N

31

Z

30

C

29

V

28

�

27

�

26

�

25

�

24

�

23

�

8

I

7

F

6

M4

4

M3

3

M2

2

M1

1

M0

0

Reserved

Condition

code flags Control bits

Mode bits

State bit

FIQ disable

IRQ disable

Overflow

Carry or borrow or extend

Zero

Negative or less than

T

5

ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 19

ARM7TDMI (Rev 3) Core Processor
5 System Issues and Third Party Support

This section contains:

• JTAG debug

• AMBA bus architecture

• AMBA Design Kit

• Everything you need

• Current support.

5.1 JTAG debug

The internal state of the ARM7TDMI is examined through a JTAG-style serial interface. This
allows instructions to be serially inserted into the pipeline of the core without using the external
data bus. For example, when in debug state, a Store-Multiple (STM) instruction can be inserted
into the pipeline. This exports the contents of the ARM7TDMI registers. This data can be
serially shifted out without affecting the rest of the system.

5.2 AMBA bus architecture

The ARM7 Thumb family processors are designed for use with the Advanced Microcontroller
Bus Architecture (AMBA) multi-master on-chip bus architecture. AMBA is an open standard
that describes a strategy for the interconnection and management of functional blocks that
makes up a System-on-Chip (SoC). The AMBA specification defines three buses:

• Advanced System Bus (ASB)

• Advanced High-performance Bus (AHB)

• Advanced Peripheral Bus (APB).

ASB and AHB are used to connect high-performance system modules. APB offers a simpler
interface for low-performance peripherals.

5.3 AMBA Design Kit

ARM’s AMBA Design Kit product is a versatile toolkit aimed at enabling the successful
creation of AMBA-based SoC designs.

The AMBA Design Kit includes an AHB ‘wrapper’ to enable the ARM7TDMI to be connected
directly to the AHB system bus.

5.4 Everything you need

ARM provides a wide range of products and services to support its processor families, including
software development tools, development boards, models, applications software, training, and
consulting services.The ARM architecture today enjoys broad third-party support. The ARM7
Thumb family processors’ strong software compatibility with existing ARM devices ensures
that users benefit immediately from existing support.

5.5 Current support

Support for the ARM Architecture today includes:

• ARM Developer Suite (ADS)

— integrated development environment

— C, C++, assembly, simulators and windowing source-level debugger
20 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

ARM7TDMI (Rev 3) Core Processor
— available on Windows95, Windows NT, and Unix

• ARM Multi-ICE™ JTAG interface

— allows EmbeddedICE software debug of ARM processor systems

• ARMulator, an instruction accurate software simulator

• Development boards

• Design Signoff Models provide signoff quality ASIC-simulation

• Software toolkits available from ARM, RedHat/GNU, Greenhills, JavaSoft, MetaWare,
and WindRiver allowing software development in C, C++, Java, FORTRAN, Pascal, Ada,
and assembly

• More than 40 Real Time Operating Systems including:

— Windriver VxWorks

— Mentor Graphics VRTX

— WindRiver pSOSystem

• The following major Operating Systems:

— Microsoft Windows CE

— Linux

— Palm OS

— Symbian OS.

• Application software components:

— speech and image compression

— software modem

— Chinese character input network protocols

— Digital AC3 decode

— MPEG3 encode and decode

— MPEG4 decode and encode.

• Hardware and software cosimulation tools from leading EDA Vendors.

For more information, see www.arm.com
ARM DVI 0027B Copyright © 2000, 2001. All rights reserved. 21

ARM7TDMI (Rev 3) Core Processor
22 Copyright © 2000, 2001. All rights reserved. ARM DVI 0027B

	ARM7TDMI (Rev 3) Core Processor
	1 Applications and benefits
	2 The ARM7 family
	2.1 Compatible with the ARM9™, ARM9E™, and ARM10™ families, and StrongARM® architecture

	3 ARM7TDMI
	3.1 Instruction pipeline
	3.2 Memory interface
	3.3 Memory formats
	3.4 Performance, code density and operating states
	3.5 Operating modes
	3.6 Coprocessors
	3.7 Debug features
	3.8 Instruction speed summary
	3.9 signals

	4 ARM Architecture v4T
	4.1 ARM7TDMI processor core
	4.2 Registers
	4.3 Modes and exceptions
	4.4 Processor states
	4.5 Exceptions
	4.6 Status registers
	4.7 Conditional execution
	4.8 Classes of instructions
	4.9 Data processing instructions
	4.10 Load and store instructions
	4.11 Branch instructions
	4.12 Coprocessor

	5 System Issues and Third Party Support
	5.1 JTAG debug
	5.2 AMBA bus architecture
	5.3 AMBA Design Kit
	5.4 Everything you need
	5.5 Current support

