
Arm® Cortex®-M0 DesignStart™ Eval
Revision: r2p0

User Guide
Copyright © 2017 Arm Limited (or its affiliates). All rights reserved.
DUI 0926B (ID101717)

Arm Cortex-M0 DesignStart Eval
User Guide

Copyright © 2017 Arm Limited (or its affiliates). All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of Arm. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company.
Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and
supersedes the conflicting provisions of these terms. This document may be translated into other languages for
convenience, and you agree that if there is any conflict between the English version of this document and any
translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2017 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Change history

Date Issue Confidentiality Change

23 December 2015 A Non-Confidential First release for r1p0

25 September 2017 B Non-Confidential First release for r2p0
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. ii
ID101717 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. iii
ID101717 Non-Confidential

Contents
Arm Cortex-M0 DesignStart Eval User Guide

Preface
About this book .. vii
Feedback .. xi

Chapter 1 Introduction
1.1 About Cortex-M0 DesignStart Eval .. 1-2
1.2 Cortex-M0 DesignStart Eval directory structure .. 1-3
1.3 Limitations .. 1-5

Chapter 2 Functional Description
2.1 Example MCU system level design and design heirarchy 2-2
2.2 Example FPGA system level design and design heirarchy 2-5
2.3 Design files .. 2-7
2.4 Processor file location .. 2-9
2.5 Configuration options ... 2-10
2.6 Memory map .. 2-11
2.7 System controller ... 2-14
2.8 I/O pins .. 2-17
2.9 Interrupts and event functions ... 2-19
2.10 Clock and reset .. 2-21
2.11 SysTick support ... 2-22

Chapter 3 Example System Testbenches
3.1 About the testbench design ... 3-2
3.2 UART text output capturing and escape code ... 3-3

Chapter 4 Using the Simulation Environment
4.1 About the simulation environment ... 4-2
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. iv
ID101717 Non-Confidential

Contents
4.2 Files and directory structure .. 4-3
4.3 Setting up the simulation environment ... 4-5
4.4 Running a simulation in the simulation environment ... 4-6

Chapter 5 Software Examples
5.1 Available simulation tests .. 5-2
5.2 Creating a new test .. 5-3
5.3 Example header files and device driver files ... 5-4
5.4 Retargeting .. 5-6

Appendix A Revisions
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. v
ID101717 Non-Confidential

Preface

This preface introduces the Cortex-M0 DesignStart Eval User Guide. It contains the following
sections:
• About this book on page vii.
• Feedback on page xi.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. vi
ID101717 Non-Confidential

Preface
About this book
This book describes the information required for system design and RTL simulation using
Cortex-M0 DesignStart Eval.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for hardware engineers, software engineers, system integrators, and system
designers, who might not have previous experience of Arm products, but want to run a complete
example of a working system.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter describes Cortex-M0 DesignStart Eval and its features.

Chapter 2 Functional Description
This chapter describes the design and layout of Cortex-M0 DesignStart Eval.

Chapter 3 Example System Testbenches
This chapter describes the testbench components.

Chapter 4 Using the Simulation Environment
This chapter describes how to set up and run simulation tests.

Chapter 5 Software Examples
This chapter describes the example software tests and the device drivers.

Appendix A Revisions
This appendix describes the technical changes between released issues of this
book.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
for more information.

Conventions

This book uses the conventions that are described in:
• Typographical conventions on page viii.
• Timing diagrams on page viii.
• Signals on page ix.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. vii
ID101717 Non-Confidential

Preface
Typographical conventions

The following table describes the typographical conventions:

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and
they look similar to the bus change shown in Key to timing diagram conventions. If a timing
diagram shows a single-bit signal in this way then its value does not affect the accompanying
description.

Style Purpose

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the Arm glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. viii
ID101717 Non-Confidential

Preface
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by Arm and by third parties.

See Infocenter http://infocenter.arm.com, for access to Arm documentation.

See Arm CMSIS-Core http://www.arm.com/cmsis, for embedded software development
resources including the Cortex Microcontroller Software Interface Standard (CMSIS).
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. ix
ID101717 Non-Confidential

Preface
Arm publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• Arm® Cortex®-M System Design Kit Technical Reference Manual (DDI 0479).
• Arm® Cortex®-M0 Devices Generic User Guide (DUI 0497).
• Arm® Cortex®-M0 Technical Reference Manual (DDI 0432).
• Arm® Armv6-M Architecture Reference Manual (DDI 0419).
• Arm® AMBA®3 AHB-Lite Protocol (v1.0) Specification (IHI 0033).
• Arm® Cortex®-M0 DesignStart™ Eval FPGA User Guide (101125).
• Arm® Versatile™ Express Cortex®-M Prototyping System (V2M-MPS2 and V2M-MPS2+

Technical Reference Manual (100112).
• Application Note AN502 Adapter for Arduino for the Cortex®-M Prototyping System

(MPS2 and MPS2+) (DAI0502).

The following confidential books are only available to licensees:
• Arm® Cortex®-M0 Integration and Implementation Manual (DII 0238).
• Arm® Cortex®-M0 User Guide Reference Material (DUI 0467).
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. x
ID101717 Non-Confidential

Preface
Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, DUI 0926B.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
 Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality
of the represented document when used with any other PDF reader.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. xi
ID101717 Non-Confidential

Chapter 1
Introduction

This chapter introduces Cortex-M0 DesignStart Eval. It contains the following sections:
• About Cortex-M0 DesignStart Eval on page 1-2.
• Cortex-M0 DesignStart Eval directory structure on page 1-3.
• Limitations on page 1-5.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-1
ID101717 Non-Confidential

Introduction
1.1 About Cortex-M0 DesignStart Eval
Cortex-M0 DesignStart Eval provides developers an easy way to simulate SoC designs based
on the Cortex-M0 processor. It allows a system designer to design and test on a simulator and
then proceed with hardware prototyping using an FPGA.

The Cortex-M0 DesignStart Eval package is aimed at developers who are new to Arm or have
limited soft IP system design experience. The package includes the following:
• An Arm Cortex-M0 processor from DesignStart.
• An example system-level design for the Arm Cortex-M0 processor.
• An FPGA system design for the Arm Cortex-M0 processor, suitable for the Arm

Cortex-M Prototyping System (MPS2+).
• Reusable AMBA components for system-level development.

The Cortex-M0 processor from DesignStart:

• Is a fixed configuration of the Cortex-M0 processor, enabling low-cost easy access to
Cortex-M0 processor technology by offering a subset of the full product.

• Is delivered as a preconfigured and obfuscated, but synthesizable, Verilog version of the
full Cortex-M0 processor. It is not intended for production silicon. See Limitations on
page 1-5 for the Cortex-M0 processor from DesignStart configuration information.

The processor is flattened and obfuscated at the CORTEXM0INTEGRATION level, including
debug. A Cortex-M0 DesignStart FPGA image is also available for system prototyping with the
Arm® Versatile™ Express Cortex®-M Prototyping System, V2M-MPS2+. The Cortex-M0
DesignStart FPGA image offers an additional route for system design and prototyping on
hardware. To purchase the prototyping system, go to the Arm website http://www.arm.com/mps.

The Cortex-M0 processor is a highly deterministic, low gate count, 32-bit processor that
implements the Armv6-M architecture with zero deviation instruction determinism in zero
wait-state memory systems. While the three-stage pipeline allows for very low area
implementation, the Cortex-M0 processor is still capable of achieving performance figures of
2.33 CoreMarks/MHz. The Cortex-M0 processor programmers model is fully upwards
compatible with the Cortex-M0+, Cortex-M3, Cortex-M4, and Cortex-M7 processors for
portability.

For more information about:

• Using the Cortex-M0 DesignStart Eval system on the Cortex-M prototyping system, see
Arm® Cortex®-M0 DesignStart™ Eval FPGA user guide.

• Programming the Cortex-M0 processor, see the Arm® Cortex®-M0 Technical Reference
Manual.

• Software development on a Cortex-M0 device, see the Arm® Cortex®-M0 Devices Generic
User Guide. This is a generic device user-level reference document.

• The AMBA components that the design kit uses, see the Arm® Cortex®-M System Design
Kit Technical Reference Manual.

• The Arm architecture that the Cortex-M0 processor complies with, and the instruction set
and exception model it uses, see the Arm® Armv6-M Architecture Reference Manual.

• The AHB-Lite master interface that the Cortex-M0 processor implements, see the Arm®
AMBA®3 AHB-Lite Protocol (v1.0) Specification.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-2
ID101717 Non-Confidential

Introduction
1.2 Cortex-M0 DesignStart Eval directory structure
Table 1-1 describes the main directories of the design kit.

Figure 1-1 on page 1-4 shows the location of the main directories for Cortex-M0 DesignStart
Eval.

Table 1-1 Main directory descriptions

Directory name Directory contents

Recovery FPGA image, including enctrypted bitfile, BIOS, configuration and software binaries.

RevC FPGA design files (Verilog) and implementation flow.

cores/cortexm0_designstart_r2p0 Obfuscated Cortex-M0 Integration level.

logical Cortex-M System Design Kit (CMSDK) Verilog components including AHB-Lite and APB
infrastructure components, peripherals, the APB subsystem.

smm_common Common FPGA components and peripherals

software Software files. These include:
• CMSIS compatible C header files.
• Example program files for the example systems.
• An example device driver.

systems/cortex_m0_mcu Design files, testbench files, and simulation setup files for the CMSDK example system.

systems/fpga_testbench Testbench files, and simulation setup files for the FPGA example system.

documentation Documentation files.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-3
ID101717 Non-Confidential

Introduction
Figure 1-1 Main directories for Cortex-M0 DesignStart Eval

installation directory/

systems/

cortex_m0_mcu/

verilog/ Verilog and Verilog command files

rtl_sim/

testcodes/

<testname>

software/

cmsis/

CMSIS/

common/

demos/

dhry/

retarget/

bootloader/

scripts/

Common software files

Linker scripts and other utility scripts

cores/

validation/

Device/

ARM/

CMSDK_CM0/

CMSIS files, and header file for the example
system and the example device driver code

hello/ Software compilation setup files

cortexm0_designstart_r2p0/ Obfuscated Cortex-M0 Integration
logical/

cmsdk_ahb_slave_mux/

verilog/
cmsdk_ahb_slave_mux.v

<unit>/

verilog/

<unit>.v

Recovery/ FPGA control files
MB

HB10263C

SOFTWARE

Pre-built image and FPGA BIOS
Test code images

RevC/

SMM_MODS FPGA synthesis environment
fpga_top

synthesis

Verilog RTL for FPGA image
FPGA implementation flow
Location for the processor files

smm_common/

debug_tester/

verilog/

rtl_sim/

testcodes/

fpga_testbench CMSDK derrived FPGA system
Test run directory
Software compilation
Testbench verilog source

CMSDK debug test stimulus
(not integrated into flow)

CMSDK components

FPGA/MPS2+ peripherals

Test run directory
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-4
ID101717 Non-Confidential

Introduction
1.3 Limitations
You should not use the processor technology or the supporting deliverables as an indicator of
what is received under a full technology license of the Arm Cortex-M0 processor. Cortex-M0
DesignStart Eval provides an easy entry into the Arm ecosystem, rather than a complete solution
for all Cortex-M processor design scenarios.

Cortex-M0 DesignStart Eval does not support the implementation of the Cortex-M0 processor
into silicon. Any implementation of the Cortex-M0 processor into silicon requires you to obtain
Cortex-M0 DesignStart Pro, or take a full Cortex-M0 processor license from Arm.

A Cortex-M0 DesignStart Pro license offers the following:

• The Cortex-M0 processor.

• The Cortex-M System Design Kit.

• Simulation models for the Cortex-M0 processor

• A reference implementation flow for the Cortex-M0 processor.

If you are working on ASIC implementation, then Arm recommends that you license Cortex-M0
DesignStart Pro as early as possible.

1.3.1 Deliverables

The design kit does not include software compilation tools. You must license these products
separately.

You must not modify the obfuscated Cortex-M0 processor (cortexm0ds_logic.v).

You are only permitted to redistribute the following files (modified or original), with the original
headers unchanged, and any modifications clearly identified:

• fpga_top.v

• fpga_system.v

• user_partition.v

• cmsdk_mcu_system.v

You must not re-distribute any FPGA bit files or other representations of the design which are
produced from Cortex-M0 DesignStart Eval.

You are expected to modify the test code to support any modifications you make to your design.
You must not redistribute any test code or binaries from these deliverables unless it is developed
using mbed source code.

1.3.2 Processor support

The Cortex-M0 DesignStart Eval product supports a specific version of the Cortex-M0
processor. This DesignStart Cortex-M0 processor has no configuration options.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-5
ID101717 Non-Confidential

Introduction
Table 1-2 shows the differences in the features available in the full Cortex-M0 processor and the
Cortex-M0 processor from DesignStart.

1.3.3 Endian support

The Cortex-M0 DesignStart Eval example system and its peripherals are little-endian.

1.3.4 Platform

This release of the Cortex-M0 DesignStart Eval supports Linux and Unix for the simulation
process and FPGA synthesis. If you use Arm Keil Microcontroller Development Kit (MDK) for
software development, you can install the Cortex-M0 DesignStart Eval in a location that is
accessible from Linux, Unix, and Windows. Do this using one of the following procedures:
• Install the Cortex-M0 DesignStart Eval on a network drive that:

— A Linux or Unix terminal can access.
— Is mapped to a network drive on a Windows machine.

• Use a personal computer to do the following:
— Install virtualization software and install a guest Operating System (OS).
— Set up a shared folder to access the design kit through the host OS.
— Install the Cortex-M0 DesignStart Eval in the shared folder.

Then compile the software with Keil MDK in the Windows environment, and run the
simulations in the Linux or Unix environment.

To run the Cortex-M0 DesignStart Eval on other operating systems, modify the makefiles to
meet your specific requirements.

Table 1-2 Cortex-M0 processor and Cortex-M0 processor from DesignStart feature differences

Feature Full Cortex-M0 processor Cortex-M0 processor from
DesignStart

Verilog code Commented plain-text RTL Flattened and obfuscated RTL

AMBA®3 AHB-Lite interface Master and optional slave ports Master port only

Armv6-M instruction set Armv6-M instruction set support Armv6-M instruction set support

Multiplier options Fast single-cycle or small 32-cycle Fast single cycle multiplier

Nested vectored interrupt controller (NVIC) 1-32 interrupt inputs 32 interrupt inputs only

Wake-up Interrupt Controller (WIC) Optional None

Architectural clock gating Optional None

24-bit system timer, SysTick Optional reference clock Reference clock supported

Hardware debugger interface Optional Serial-Wire or JTAG Serial-Wire only

Hardware debug support Optional single step with up to four
breakpoints, up to two watchpoints and
PC sampling

Single step with four breakpoints, two
watchpoints and PC sampling

Low-power signaling and domains Optional state-retention power domains
and power control signaling

SLEEPING, TXEV and RXEV signaling
only
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 1-6
ID101717 Non-Confidential

Chapter 2
Functional Description

This chapter describes the design and layout of Cortex-M0 DesignStart Eval. It contains the
following sections:
• Example MCU system level design and design heirarchy on page 2-2.
• Example FPGA system level design and design heirarchy on page 2-5.
• Design files on page 2-7
• Processor file location on page 2-9.
• Configuration options on page 2-10.
• Memory map on page 2-11.
• System controller on page 2-14.
• I/O pins on page 2-17.
• Interrupts and event functions on page 2-19.
• Clock and reset on page 2-21.
• SysTick support on page 2-22.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-1
ID101717 Non-Confidential

Functional Description
2.1 Example MCU system level design and design heirarchy
The systems/cortex_m0_mcu/verilog/tb_cmsdk_mcu.v example system is a simple
microcontroller design, based on the example provided with the full CMSDK product. It differs
in its interrupt connectivity (which is aligned with the FPGA platform). You should use this
system if you are interested in RTL prototyping only, or wish to build your own system from
scratch. It contains the following:
• A single Cortex-M0 processor.
• Internal program memory.
• SRAM data memory.
• Boot loader.
• The following peripherals:

— Several timers.
— General Purpose Input Output (GPIO).
— Universal Asynchronous Receiver Transmitter (UART).
— Watchdog timer.

Figure 2-1 shows the top level view of the example system.

Figure 2-1 Example microcontroller system top level view

AHB Infrastructure including
several AHB components

System
controller

SysTick
reference

clock

cmsdk_ahb_ram
data memory

cmsdk_ahb_rom
program memory

cmsdk_ahb_rom
optional boot loader

cmsdk_mcu_clkctrl

cmsdk_
clkreset

Crystal
oscillator

cmsdk_mcu_system

cmsdk_mcu

cmsdk_mcu_pin_mux
I/O pin multiplexor and tristate buffers

XTAL2
XTAL1
NRST

cmsdk_ahb_
gpio

Port 1

Port 0System ROM
table

cmsdk_apb_subsystem

tb_cmsdk_mcu

UART
capture

CORTEXM0INTEGRATION
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-2
ID101717 Non-Confidential

Functional Description
Table 2-1 describes the items that the microcontroller contains.

Table 2-2 describes the items that are in the testbench but outside the microcontroller.

You can configure the system in a number of different ways.

The processor connects to the rest of the system through an AHB Lite interface.

Figure 2-2 on page 2-4 shows the interfaces of the Cortex-M0 example system.

Note
 In this design, the DAP and WIC modules are flattened into the CORTEXM0INTEGRATION
module. The DAP is configured for Serial Wire mode, and the WIC is configured as not present.

Table 2-1 Microcontroller items

Item Description

cmsdk_mcu The example microcontroller design. This level contains the behavioral memories and clock generation
components.

cmsdk_mcu_system The synthesizable level of the microcontroller design. This instantiates the Cortex-M0 processor.

CORTEXM0INTERGRATION The Cortex-M0 integration layer. This is obfuscated and flattened code.

cmsdk_apb_subsystem A subsystem of APB peripherals and APB infrastructure.

System controller Contains programmable registers for system control, for example memory remap.

SysTick reference clock SysTick reference clock generation logic.

cmsdk_ahb_gpio A low-latency GPIO with an AHB interface. Each GPIO module provides 16 I/O pins.

cmsdk_mcu_clkctrl The clock and reset generation logic behavioral model.

cmsdk_mcu_pin_mux The pin multiplexor and tristate buffers for the I/O ports.

cmsdk_ahb_rom A memory wrapper for the ROM to test the behavior of different implementations of memory. You can
modify the Verilog parameters to change the implementation.

cmsdk_ahb_ram A memory wrapper for the RAM to test the behavior of different implementations of memory. You can
modify the Verilog parameters to change the implementation.

cmsdk_ahb_cs_rom_table An example system level CoreSight ROM table that enables a debugger to identify the system as a
Cortex-M0 based system.

cmsdk_mcu_addr_decode Generates the HSELS for each memory mapped component based on the CMSDK address map.

Table 2-2 Testbench items

Item Descriptions

cmsdk_clkreset Generates clock and reset signals. XTAL1 runs at 50MHz. It asserts NRST LOW for 5ns at the start of the
simulation.

cmsdk_uart_capture Captures the text message from UART2 and displays the message during simulation. It displays each line
of the message after it receives a carriage return character. To reduce the simulation time, set the baud rate
to be same as the clock frequency. You must set the UART to high speed test mode.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-3
ID101717 Non-Confidential

Functional Description
Figure 2-2 Cortex-M0 example system

Table 2-3 describes the peripheral components that the system design includes.

The APB peripherals are instantiated in the APB subsystem block.

Low latency
GPIO

AHB
address
decoder

Parameterizable 10 to 1
AHB slave multiplexor

External

Remap

System
control ROM Boot

ROM RAM Default
slave

ROM
table

Watch
dog

Simple
Timer x 2

Dual
Timer

Simple
UART

AHB to
APB

bridge

Text
output

Simple
UART x 2

Common APB sub-system

16 to 1
multiplexor

Cortex-M0 processor

Cortex-M0
processor

core

Bus matrix

Nested
Vectored
Interrupt

Controller
(NVIC)

Interrupts

Cortex-M0 Integration

Table 2-3 Peripheral components

Item Descriptions

cmsdk_ahb_gpio Two low latency GPIO with AHB interfaces. Each GPIO module provides 16 I/O pins.

cmsdk_apb_timer A 32-bit timer.

cmsdk_apb_uart A UART.

cmsdk_apb_watchdog A watchdog component that is compatible with the watchdog in the AMBA design kit.

cmsdk_apb_dualtimers A dual timer module that is compatible with the dual timer in the AMBA design kit.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-4
ID101717 Non-Confidential

Functional Description
2.2 Example FPGA system level design and design heirarchy
The fpga_testbench system uses a modified CMSDK system, and extends this with the
peripherals required to support the interfaces present on the MPS2+ board. In the simulation, it
uses the same obfuscated CORTEXM0INTEGRATION level as us used by the simpler
cortex_m0_mcu system. Although the systems have a different structure, the software view of
the FPGA system is a superset of the example MCU system.

The peripherals present in the FPGA system include:

• Zero Bus Turnaround RAMS (ZBT RAMS).

• SRAMs.

• Pseudo-SRAM (PSRAM).

• Colour LCD Screen.

• SPI interface for Arduino Shield Adaptor.

• I2C interface for Arduino Shield Adpator.

• UARTs for Arduino Shield Adaptor.

Figure 2-3 on page 2-6 shows the top level view of the example FPGA system.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-5
ID101717 Non-Confidential

Functional Description
Figure 2-3 Example FPGA system top level view

There are differences between standard CMSDK system, Cortex-M3 DesignStart Eval and the
memory/interrupt mapping of the Cortex-M0 DesignStart Eval FPGA. You can use this FPGA
testbench to investigate the behavior of any system you design to target the MPS2+ platform,
but you may need to update the testbench support for any particular peripheral interface you
need to test.

fpga_top

user_partition

cmsdk_mcu_system

CORTEXM0INTEGRATION

Modified CMSDK
system

64 32 32

1616

UART capture Colour LCD
(SPI only)

ZBT RAM
Bank 0
(code)

ZBT RAM
Bank 1

ZBT RAM
Bank 2

fpga_tb

Ethernet_tb
(memory
mapped)

PSRAM

Source code Cortex-M0
processor from RTL testbench

goes here
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-6
ID101717 Non-Confidential

Functional Description
2.3 Design files
This section describes the following design files that are included in Cortex-M0 DesignStart
Eval:
• Verilog files for the cmsdk_mcu example system.
• Verilog files for the cortex_m0_mcu testbench.
• Verilog files for the FPGA design on page 2-8.
• Verilog files for the FPGA testbench on page 2-8.

2.3.1 Verilog files for the cmsdk_mcu example system

Table 2-4 describes the Verilog files that are included in the Cortex-M0 microcontroller.

2.3.2 Verilog files for the cortex_m0_mcu testbench

Table 2-5 describes the Verilog files that are included in the testbench.

Table 2-4 Verilog files for the Cortex-M0 microcontoller

File name Description

cmsdk_mcu.v Top level of the microcontroller

cmsdk_mcu_defs.v Constant definitions and configuration definitions for the example microcontroller

cmsdk_mcu_system.v Microcontroller system-level design

cmsdk_mcu_sysctrl.v Programmable register block for system-level control

cmsdk_mcu_stclkctrl.v SysTick reference clock generation logic

cmsdk_mcu_clkctrl.v Clock and reset control

cmsdk_mcu_pin_mux.v Pin multiplexer and tristate buffers for the I/O port

cmsdk_mcu_addr_decode.v Generates the HSELS for each memory mapped component based on the CMSDK address map

cmsdk_ahb_cs_rom_table.v CoreSight system level ROM table for CMSDK

Table 2-5 Verilog files for the Cortex-M0 microcontroller testbench

File name Description

tb_cmsdk_mcu.v Testbench of the example microcontroller

cmsdk_clkreset.v Clock and reset generator

cmsdk_uart_capture.v UART capture for text message display

tbench_M0_DS.vc Verilog command file for Cortex-M0 DesignStart Eval
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-7
ID101717 Non-Confidential

Functional Description
2.3.3 Verilog files for the FPGA design

Table 2-6 describes the major files for the FPGA design (not including the peripherals).

2.3.4 Verilog files for the FPGA testbench

Table 2-7 describes the Verilog files that are included in the testbench.

Table 2-6 Verilog files for the Cortex-M0 FPGA design

File name Description

fpga_top.v Top level of FPGA with I/O pins, PLL and ddr pad instances, reset control logic

fpga_system.v Wrapper level

user_partition.v Main system integration. Port muxing, memory device interfaces, gpio 2/3

cmsdk_mcu_system.v System based on CMSDK with additional peripherals integrated

cmsdk_mcu_stclkctrl.v Simple SysTick signal control

cmsdk_mcu_sysctrl.v Simple system control peripheral, PMU support tied off

cmsdk_ahb_cs_rom_table.v Standard CMSDK system ROM table

cmsdk_mcu_addr_decode.v Address decode for FPGA version of cmsdk_mcu_system

Table 2-7 Verilog files included in the Cortex-M0 FPGA testbench

File name Description

tb_fpga.v Testbench top level

cmsdk_uart_capture_ard.v UART capture/display module

tb_arduino_shield.v Wrapper for Arduino Shield components

arduino_adaptor.v Model of Arm adaptor for Arduino Shield

arduino_shield.v Testbench model of Arduino shield

GS8160Z36DT.v Memory model

core.v Memory model component

SPI_EEPROM.v Memory model

I2C_SRAM.v Memory model

IS66WVE409616BLL.v Memory model

scc_tb.v SCC interface wrapper example
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-8
ID101717 Non-Confidential

Functional Description
2.4 Processor file location
In a standard CMSDK environment, the location of the Verilog RTL files for the processors is
a subdirectory called cores. For Cortex-M0 DesignStart Eval the path is:

cores/cortexm0_designstart_r2p0/logical/

This directory contains a configuration of the Cortex-M0 processor (version r0p0), arranged as
a wrapper file CORTEXM0INTEGRATION.v and cortexm0ds_logic.v which contains the obfuscated
processor. If you have licensed the full Cortex-M0 processor, you can directly replace this
instance of the integration level by installing the full processor to
cores/at510_cortexm0_r0p0-03rel2, and changing the search paths to refer to this directory.

See Table 1-2 on page 1-6 for the configuration which was used to generate this processor.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-9
ID101717 Non-Confidential

Functional Description
2.5 Configuration options
The example microcontroller system contains several configurable options. You use Verilog
preprocessing definitions to set these options.

The file cortex_m0_mcu/verilog/cmsdk_mcu_defs.v contains the Verilog preprocessing
definitions. To remove a definition, comment-out the line of Verilog code that describes the
preprocessing definitions. The following table shows the Verilog preprocessing definitions.

Table 2-8 Verilog preprocessing definitions

Preprocessing macro Descriptions

ARM_CMSDK_BOOT_MEM_WS_N Defines the number of wait states for boot loader ROM non-sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_BOOT_MEM_WS_S Defines the number of wait states for boot loader ROM sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_ROM_MEM_WS_N Defines the number of wait states for program ROM non-sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_ROM_MEM_WS_S Defines the number of wait states for program ROM sequential accesses. See the Cortex-M System
Design Kit Technical Reference Manual.

ARM_CMSDK_RAM_MEM_WS_N Defines the number of wait states for RAM non-sequential accesses. See the Cortex-M System
Design Kit Technical Reference Manual.

ARM_CMSDK_RAM_MEM_WS_S Defines the number of wait states for RAM sequential accesses. See the Cortex-M System Design
Kit Technical Reference Manual.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-10
ID101717 Non-Confidential

Functional Description
2.6 Memory map
This section describes the system memory maps. It contains the following sections:
• AHB memory map.
• APB subsystem memory map on page 2-12.

2.6.1 AHB memory map

The AHB memory map has a 4GB linear address range, but peripherals only use part of the
memory space. If a bus master accesses an invalid memory location with a valid transfer, the
default slave replies with an error response to the bus master.

The following files contain the address decoding logic for the two systems. In order to modify
the memory map, you must modify the address decoding logic in these files.

• systems/cortex_m0_mcu/verilog/cmsdk_mcu_addr_decode.v

• RevC/SMM_M0DS/fpga_top/verilog/cmsdk_mcu_addr_decode.v

• RevC/SMM_M0DS/fpga_top/verilog/user_partition.v

If you require the example system program to execute from boot loader memory after power-up,
set the boot loader option. This enables the system remap feature. After the boot loader starts,
the program can switch off the remap feature to enable your program to execute from the start
of the memory.

Table 2-9 describes the AHB memory map for the RTL example system and the FPGA system.

Table 2-9 AHB memory map

Address Example system

0xF0220000-0xFFFFFFFF Unused, except for the private peripheral bus addresses in the Cortex-M0.

0xF0210000-0xF021FFFF (64KB) Unused

0xF0201000-0xF021FFFF Unused.

0xF0200000-0xF0200FFF (4KB) Unused.

0xF0000401-0xF01FFFFF Unused.

0xF0000000-0xF0000400 (4KB) System ROM table.

0x41110000-0xEFFFFFFF Unused, except for the private peripheral bus addresses in the Cortex-M0.

0x41100000-0x4110FFFF RTL example: Unused
FPGA: VGA Image

0x41000000-0x4100FFFF RTL example: Unused
FPGA: VGA Console

0x40200000-0x402FFFFF RTL example: Unused
FPGA: Memory mapped ethernet interface

0x40020000-0x4002FFFF APB subsystem for FPGA system

0x4001F000-0x4001FFFF (4KB) System controller registers.

0x40012000-0x4001EFFF Unused.

0x40013000-0x40013FFF CMSDK AHB GPIO #3 (only present in FPGA system)
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-11
ID101717 Non-Confidential

Functional Description
2.6.2 APB subsystem memory map

Table 2-10 describes the peripherals in the APB subsystem. These are implemented in the
cmsdk_apb_sybsystem_cm0ds module. Any access to a 'Not Used' location returns a read value of
0x00000000.

0x40012000-0x40012FFF CMSDK AHB GPIO #2 (only present in FPGA system)

0x40011000-0x40011FFF (4KB) CMSDK AHB GPIO #1

0x40010000-0x40010FFF (4KB) CMSDK AHB GPIO #0

0x40000000-0x4000FFFF (64KB) CMSDK subsystem APB peripherals

0x22000000-0x3FFFFFFF Unused.

0x21000000-0x21FFFFFF PSRAM (FPGA system only) 16 MB

0x20800000-0x20FFFFFF Unused

0x20000000-0x207FFFFF RTL example: (64KB) RAM
FPGA: ZBTSRAM 2 & 3, lower 4MB region implemented

0x01010000-0x1FFFFFFF Unused.

0x01000000-0x0100FFFF (64KB) Optional boot loader memory. Actual size 4KB, access above 4KB are aliased

0x00010000-0x00FFFFFF Unused.

0x00400000-0x007FFFFF RTL example: Unused
FPGA: Alias of ZBTSRAM1

0x00000000-0x003FFFFF RTL example: (64KB) Program memory
FPGA: Lower 32KB can be mapped to BlockRam, remainder is ZBTSRAM1

Table 2-9 AHB memory map (continued)

Address Example system

Table 2-10 APB subsystem peripherals

Address Item Notes

0x4000F000-0x4000FFFF APB expansion port 15 Not used, reserved for micro-DMA controller
configuration port

0x4000E000-0x4000EFFF APB expansion port 14 Not used

0x4000D000-0x4000DFFF APB expansion port 13 Not used

0x4000C000-0x4000CFFF APB expansion port 12 Not used

0x4000B000-0x4000BFFF APB test slave For validation of AHB to APB bridge, remove for real
implementation

0x4000A000-0x4000AFFF APB expansion port 10 Not Used

0x40009000-0x40009FFF UART4 -

0x40008000-0x40008FFF Watchdog -

0x40007000-0x40007FFF UART3 -

0x40006000-0x40006FFF UART2
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-12
ID101717 Non-Confidential

Functional Description
For more information on the APB subsystem, see the Cortex-M System Design Kit Technical
Reference Manual.

2.6.3 FPGA System Secondary APB

Table 2-11 describes the peripherals in the second APB subsystem which is only present in the
FPGA system. These are implemented in the fpga_apb_subsystem module. Any access to a 'Not
Used' location returns a read value of 0x00000000 (or an ERROR response in the RTL system where
there is no AHB decode for this memory region).

For more information on the APB subsystem, see the Cortex-M System Design Kit Technical
Reference Manual.

0x40005000-0x40005FFF UART1 -

0x40004000-0x40004FFF UART0 Used to retarget STDOUT in simulations and on FPGA.

0x40003000-0x40003FFF APB expansion port 3 Not Used

0x40002000-0x40002FFF Dual timer -

0x40001000-0x40001FFF Timer1 -

0x40000000-0x40000FFF Timer0 -

Table 2-10 APB subsystem peripherals (continued)

Address Item Notes

Table 2-11 Second APB subsystem peripherals (FPGA)

Address Notes

0x4002F000-0x40020FFF SSC Registers

0x4002E000-0x4002EFFF Reserved

0x4002D000-0x4002DFFF Reserved

0x4002C000-0x4002CFFF Reserved

0x4002B000-0x4002BFFF Reserved

0x4002A000-0x4002AFFF Shield1 I2S

0x40029000-0x40029FFF Shield0 I2S

0x40028000-0x40028FFF FPGA System control and IO control

0x40027000-0x40027FFF SPI4 (Shield 1)

0x40026000-0x40026FFF SPI3 (Shield 0)

0x40025000-0x40025FFF SPI2 (Shield ADC)

0x40024000-0x40024FFF Audio I2S (MPS2+ hardware audio)

0x40023000-0x40023FFF SBCon (Audio Configuration)

0x40022000-0x40022FFF SBCon (LCD module touch interface)

0x40021000-0x40021FFF PL022 SPI for LCD Display

0x40020000-0x40020FFF PL022 SPI
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-13
ID101717 Non-Confidential

Functional Description
2.7 System controller
This section describes the system controller. It contains the following sections:
• About the system controller.
• System controller block diagram.
• Programmers model on page 2-15.

2.7.1 About the system controller

The example system contains a simple system controller that provides:

• The ability to enable an automatic reset if the system locks up.

• Information about the cause of the last reset.

2.7.2 System controller block diagram

Figure 2-4 shows the example system controller.

Figure 2-4 Example system controller

Table 2-12 shows the non-AHB signals of the system controller.

FCLK
HCLK

HRESETn
PORESETn

HSEL
HADDR[11:0]
HTRANS[1:0]
HSIZE[2:0]
HWRITE
HREADY

HWDATA[31:0]
HREADYOUT

HRESP
HRDATA[31:0]

ECOREVNUM[3:0]

SYSRESETREQ
WDOGRESETREQ

REMAP
PMUENABLE
LOCKUPRESET

LOCKUP

cmsdk_mcu_sysctrl.v

Table 2-12 Example system controller non-AHB signals

Signals Descriptions

LOCKUP Tells the RSTINFO register that the cause of a system reset is because the processor enters the lockup state

SYSRESETREQ Enables a status register to capture the System Reset Request event

WDOGRESETREQ Enables a status register to capture the Watchdog Reset Request event

REMAP Enables the memory remap feature

PMUENABLE Enables the PMU for the WakeUp Interrupt Controller (WIC) mode deep sleep operation

LOCKUPRESET Enables the clock and reset controller to generate a system reset automatically if the system locks up
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-14
ID101717 Non-Confidential

Functional Description
The design provides a 4-bit ECOREVNUM input that is connected to peripheral ID register 3.
This would be used by a design taken to manufacture as a way to identify late ECO changes to
the design. For Cortex-M0 DesignStart Eval, this signal should be tied LOW.

2.7.3 Programmers model

Table 2-13 describes the system controller programmers model.

Table 2-13 System controller programmers model

Address Name Type Reset Descriptions

0x4001F000 REMAP RW 1 Bit 0:
1 Enable remap feature.
0 Disable remap feature.
Software symbol: CMSDK_SYSCON->REMAP

0x4001F004 PMUCTRL RW 0 Bit 0:
0 Disable PMU.
This bit is Read Only in Cortex-M0 DesignStart.
Software symbol CMSDK_SYSCON->PMUCTRL

0x4001F008 RESETOP RW 0 Bit 0:
1 Automatically generates system reset if the processor is in the

LOCKUP state.
0 Does not automatically generate reset when the processor is in the

LOCKUP state.
Software symbol CMSDK_SYSCON->RESETOP

0x4001F00C - - - Reserved

0x4001F010 RSTINFO RW 0 Bit 2 - If 1, processor LOCKUP caused the reset.
Bit 1 - If 1, Watchdog caused the reset.
Bit 0 - If 1, SYSRESETREQ caused the reset.
Write 1 to each bit to clear.
Software symbol CMSDK_SYSCON-> RSTINFO

0x4001FFD0 PID4 RO 0x04 Peripheral ID 4.
[7:4] Block count.
[3:0] jep106_c_code.

0x4001FFD4 PID5 RO 0x00 Peripheral ID 5, not used.

0x4001FFD8 PID6 RO 0x00 Peripheral ID 6, not used.

0x4001FFDC PID7 RO 0x00 Peripheral ID 7, not used.

0x4001FFE0 PID0 RO 0x26 Peripheral ID 0.
[7:0] Part number.

0x4001FFE4 PID1 RO 0xB8 Peripheral ID 1.
[7:4] jep106_id_3_0.
[3:0] Part number[11:8].

0x4001FFE8 PID2 RO 0x1B Peripheral ID 2.
[7:4] revision.
[3] jedec_used.
[2:0] jep106_id_6_4.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-15
ID101717 Non-Confidential

Functional Description
The PORESETn signal resets the RSTINFO register. The HRESETn signal resets all the other
resettable registers.

0x4001FFEC PID3 RO 0x-0 Peripheral ID 3.
[7:4] ECO revision number.
[3:0] Customer modification number.

0x4001FFF0 CID0 RO 0x0D Component ID 0.

0x4001FFF4 CID1 RO 0xF0 Component ID 1 (PrimeCell class).

0x4001FFF8 CID2 RO 0x05 Component ID 2.

0x4001FFFC CID3 RO 0xB1 Component ID 3.

Table 2-13 System controller programmers model (continued)

Address Name Type Reset Descriptions
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-16
ID101717 Non-Confidential

Functional Description
2.8 I/O pins
The example microcontroller has two 16-bit I/O ports and several debug signal connections.
You can switch several I/O port pins to an alternate function.

See the Cortex-M0 DesignStart Eval FPGA User Guide for details of the I/O when using the
FPGA system.

 Figure 2-5 shows the interface of the example microcontroller.

Figure 2-5 Example microcontroller interface

Table 2-14 describes the I/O of the example MicroController Unit (MCU).

cmsdk_mcu

Clock and
reset

signals

Debug signals,
JTAG included

Debug
signals

I/O port 0

I/O port 1

NRST

XTAL1

XTAL2

SWCLKTCK

SWDIOTMS

nNRST

TDI

TDO

P0[15:0]

P1[15:0]

Table 2-14 Example MCU I/O

Signal Direction Description

XTAL1 Input Crystal oscillator

XTAL2 Output Crystal oscillator feedback

NRST Input Reset, active LOW

P0[15:0] Bidirectional GPIO

P1[15:0] Bidirectional GPIO

nTRST Input JTAG reset, active LOWa

a. This signal is inactive unless you use the full Cortex-M0 processor,
and configure it for JTAG mode.

TDIa Input JTAG data ina

SWDIOTMS Bidirectional Serial Wire Data or JTAG TMS

SWCLKTCK Input Serial Wire clock or JTAG clock

TDOa Output JTAG data outa
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-17
ID101717 Non-Confidential

Functional Description
Table 2-15 shows the alternate functions of the GPIO1 and GPIO1[n] ports that support pin
multiplexing.

Before you use the I/O pins for alternate functions, you might want to program the
corresponding GPIO alternate function registers. This step might not be necessary when you use
the alternate function as an input.

Table 2-15 GPIO alternate functions

Pin Alternate function

GPIO[15:10] No alternate function.

GPIO[9] Timer 1 EXTIN. Always use as timer 1 external input. The GPIO 1 alternate function setting has no effect.

GPIO[8] Timer 0 EXTIN. Always use as timer 0 external input.The GPIO 1 alternate function setting has no effect.

GPIO[7] TSTART to MTB.

GPIO[6] TSTOP to MTB.

GPIO[5] UART2 TXD.

GPIO[4] UART2 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.

GPIO[3] UART1 TXD.

GPIO[2] UART1 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.

GPIO[1] UART0 TXD.

GPIO[0] UART0 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-18
ID101717 Non-Confidential

Functional Description
2.9 Interrupts and event functions
The example system contains:
• 32 Interrupt Request (IRQ) lines.
• One NonMaskable Interrupt (NMI).
• One event signal.

Note
 Cortex-M0 DesignStart Eval only supports 32 interrupts.

2.9.1 Interrupt assignments

Table 2-16 describes the interrupt assignments.

Table 2-16 Interrupt assignments

IRQ/NMI Device

NMI Watchdog

0 UART 0 receive interrupt

1 UART 0 transmit interrupt

2 UART 1 receive interrupt

3 UART 1 transmit interrupt

4 UART 2 receive interrupt

5 UART 2 transmit interrupt

6 UART3 Rx, GPIO0, GPIO2 combined

7 UART3 Tx, GPIO1, GPIO3 combined

8 Timer 0

9 Timer 1

10 Dual timer

11 SPI0, SPI1, SPI2, SPI3, SPI4 combined interrupt

12 Combined UART overflow interrupts

13 Ethernet interrupt (on FPGA system)

14 Audio I2S Interrupt (on FPGA system)

15 Touch Screen interrupt (on FPGA) and DMA interrupt if
present.

16 GPIO 0 bit 0 and UART4 Rx combined

17 GPIO 0 bit 1 and UART4 Tx combined

18-31 GPIO 0 bit 15 to GPIO 0 bit 2 individual interrupts
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-19
ID101717 Non-Confidential

Functional Description
2.9.2 Interrupt synchronization

If a peripheral generates an interrupt signal in a clock domain that is asynchronous to the
processor clock, you must synchronize the interrupt signal to the processor clock domain before
you connect it to the NVIC of the processor. Figure 2-6 shows an example circuit that performs
this synchronization.

Figure 2-6 IRQ synchronizer

Note
 The IRQ synchronizer only works with a level-triggered interrupt source, so the peripheral must
hold the interrupt signal HIGH until the processor clears the ISR interrupt signal.

The APB subsystem contains several example IRQ synchronizers to demonstrate their use. The
synchronizers are optional. They are only enabled if you set the Verilog parameter
INCLUDE_IRQ_SYNCHRONIZER to a non-zero value. This Verilog parameter is defined in the
apb_subsystem.v file. It is not overridden in the cmsdk_mcu_system.v file.

The example system design uses the same clock source for the processor clock HCLK and the
peripheral clocks PCLK and PCLKG. Therefore there is no asynchronous clock domain
boundary, so this parameter is set LOW.

2.9.3 Event

The Cortex-M0 processor has an RXEV input signal. If software uses the WFE instruction to put
the processor to sleep, an event received at RXEV wakes up the processor.

D QD QD Q

Synchronized
Interrupt signal
to the processor

Interrupt
source

Processor
clock
Reset

Extra D-type flip-flop to prevent
glitches generating an unwanted pulse

Prevents metastability
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-20
ID101717 Non-Confidential

Functional Description
2.10 Clock and reset
The example microcontroller uses a single reset and a single clock source. The clock and reset
controller performs:
• The reset synchronization of the reset input.
• The generation of the reset outputs.
• The clock generation for the peripheral subsystem.

See the Cortex-M0 DesignStart Eval FPGA User Guide for details of the clocks and resets when
using the FPGA system.

Figure 2-7 shows the clock and reset operation of the example microcontroller.

Figure 2-7 Example microcontroller clock and reset operation

The example only demonstrates a simple application scenario. Arm recommends that, for actual
silicon projects, you modify the clock controller design for device-specific testability and
clocking requirements.

The AHB to APB bridge in the APB subsystem permits the APB peripheral bus to run at a clock
rate that is derived from the AHB clock by PCLKEN. By default the example system ties HIGH
PCLKEN that connects to the AHB to APB bridge. Therefore PCLK is the same as HCLK. If
you require a slower APB clock, you must:
• Modify the Verilog file cmsdk_mcu_clkctrl.v to generate PCLKEN at a reduced rate.
• Use PCLKEN and clock gating logic to generate PCLK.

The Verilog file cmsdk_mcu_clkctrl.v is the clock and reset controller, and provides an example
of how to create a lower PCLK frequency. The ARM_CMSDK_SLOWSPEED_PCLK preprocessing
directive enables this feature. The Verilog file also provides a PCLKG clock signal used by the
APB interface logic in the peripherals. If there is no APB transfer activity, you can turn off the
PCLKG signal to reduce power. The AHB to APB bridge generates the APBACTIVE signal
that controls the generation of PCLKG.

Clock and reset
controller

cmsdk_mcu_clkctrl

HRESETn
FCLK

DBGRESETn

HRESETn

Processor status

System reset request,
Watchdog reset request

NRST
XTAL1
XTAL2

APBACTIVE

PRESETn

PCLK

PCLKG

Peripheral
subsystem

CORTEXMODS

HCLK
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-21
ID101717 Non-Confidential

Functional Description
2.11 SysTick support
The example system includes a simple divider to provide a reference clock for the SysTick
timer. The divider has a divide ratio of 1000. The system runs at 50MHz in simulation, so the
SysTick reference clock runs at 50KHz.

Table 2-17 describes the bit field values of the SysTick Calibration Value Register
(SYST_CALIB).

Note
 See the Armv6-M Architecture Reference Manual for more information about the
SYST_CALIB Register.

Table 2-17 STCALIB register bit field values

Signal SysTick->CALIB register field Value

STCALIB[25] NOREF (bit 31) 0 Reference clock is available

STCALIB[24] SKEW (bit 30) 1 Calibration value is not accurate

STCALIB[23:0] TENMS (bit 23 to 0) 0 Calibration value is not available
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 2-22
ID101717 Non-Confidential

Chapter 3
Example System Testbenches

This chapter describes the testbench components. It contains the following sections:
• About the testbench design on page 3-2.
• UART text output capturing and escape code on page 3-3.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 3-1
ID101717 Non-Confidential

Example System Testbenches
3.1 About the testbench design
Both of the example systems include a testbench to enable you to simulate the example
microcontroller designs with a supported Verilog simulator.

The testbenches include:
• A loop back connection for UART testing.
• A clock and reset generator.
• Text message capture by the UART.
• Arduino shield model components for the FPGA system.
• External memory models for the FPGA system.

Figure 2-1 on page 2-2 shows the testbench in use with an example system.

For the CMSDK mcu system simulation, XTAL1 runs at 50MHz. NRST is asserted LOW for
5ns at the beginning of the simulation.

The serial output of UART0 is connected to a UART capture module that can generate text
messages during simulation. See the cmsdk_uart_capture.v file. In the FPGA testbench this can
be used to control loopback functions in the testbench (although the provided tests do not
exersise this).
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 3-2
ID101717 Non-Confidential

Example System Testbenches
3.2 UART text output capturing and escape code
When a program wants to display a message in the simulation environment, it can execute the
printf or puts functions. It can also directly call the UART routines to output the message to
UART0. When it executes the printf or puts functions, the UART output routine executes
through retargeting code and outputs the characters to the serial output of UART0. The UART
capture module captures the input data and outputs the received characters when it receives the
Carriage Return (CR) character.

To reduce simulation time, the high-speed test mode of the example system UART outputs each
bit in one clock cycle. Therefore, the UART capture module captures the input data at one bit
per cycle. If the UART outputs serial data at a different speed, you must change the clock that
connects to the UART capture module.

You can also use the UART capture module to terminate a simulation. When it receives a
character value of 0x4, unless it receives this character immediately following the ESC (0x1B)
character, it stops the simulation using the $stop Verilog system task. Before the end of the
simulation, the UART capture module outputs a pulse on the SIMULATIONEND output to
enable you to use this signal to trigger other tasks or hardware logic before the end of a
simulation.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 3-3
ID101717 Non-Confidential

Chapter 4
Using the Simulation Environment

This chapter describes how to set up and run simulation tests. It contains the following sections:
• About the simulation environment on page 4-2.
• Files and directory structure on page 4-3.
• Setting up the simulation environment on page 4-5.
• Running a simulation in the simulation environment on page 4-6.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-1
ID101717 Non-Confidential

Using the Simulation Environment
4.1 About the simulation environment
The simulation environment in this example system enables you to start a system-level
simulation quickly. The simulation environment includes software files and simulation setup
makefiles.

The simulation environment supports the following Verilog simulators:
• Mentor ModelSim.
• Cadence NC Verilog.
• Synopsys VCS.

The makefile for setting up the simulation is created for the Linux platform.

You can compile the example software using any of the following:
• Arm Development Studio 5 (DS-5).
• Keil Microcontroller Development Kit (MDK).
• GNU Tools for Arm Embedded Processors (Arm GCC).

The Keil MDK is available only for the Windows platform. Therefore, to use Keil MDK you
must carry out the software compilation and the simulation in two separate stages. A limited
term license of Keil MDK is included with the Cortex-M0 DesignStart Eval product. You will
need to install this license to compile some of the tests that are provided.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-2
ID101717 Non-Confidential

Using the Simulation Environment
4.2 Files and directory structure
Figure 4-1 shows the layout of the directories in the example system.

Figure 4-1 Directories for simulation

Table 4-1 on page 4-4 describes the contents of several of the directories in Figure 4-1.

<Installation directory/>

software/

common/

demos/

retarget/

bootloader/
Common software files

scripts/

systems/

Other example systems

cortex_m0_mcu/

verilog/

rtl_sim/

makefile

testcodes/

hello/

makefile

[other test]/

makefile

validation/

cmsis/

CMSIS/

Device/

ARM/

CMSDK_CM0/

logical/

fpga_defs

fpga_testbench

verilog/

rtl_sim/

makefile

testcodes/

hello/

makefile

[other test]/

makefile
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-3
ID101717 Non-Confidential

Using the Simulation Environment
Table 4-1 Installation directory information

Directory name Directory contents

software/cmsis/CMSIS Example processor support files.

software/cmsis/Device/ARM/ Example device-specific processor support files and example system header
files, for example, CMSDK_CM0 for Cortex-M0.

systems/cortex_m0_mcu/verilog Verilog and Verilog command files.

systems/cortex_m0_mcu/rtl_sim/ Files for simulation that includes a makefile to compile the Verilog and run
the simulation. It also invokes a makefile in the testcodes directory to
compile the software.

systems/cortex_m0_mcu/testcodes/ Testcodes for software testing.

systems/cortex_m0_mcu/testcodes/<testname>/makefile Makefile for example testcodes, for DS-5 and Arm GCC.

systems/cortex_m0_mcu/testcodes/keil_multip
le/cm0ds_all.uvmpw

Keil MDK Multi-project workspace.

systems/fpga_testbench/verilog Verilog and Verilog command files.

systems/fpga_testbench/rtl_sim/ Files for simulation that includes a makefile to compile the Verilog and run
the simulation. It also invokes a makefile in the testcodes directory to
compile the software.

systems/fpga_testbench/testcodes/ Testcodes for software testing.

systems/fpga_testbench/testcodes/<testname>/
makefile

Makefile for example testcodes, for DS-5 and Arm GCC.

systems/fpga_testbench/testcodes/keil_multi
ple/cm0ds_all.uvmpw

Keil MDK Multi-project workspace.

software/common/demos C program codes for demonstration.

software/common/validation C program codes for functional tests.

software/common/bootloader Example boot loader.

software/common/dhry Dhrystone demonstration.

software/common/retarget Support files to handle printing.

software/common/scripts Linker scripts.

software/common/fpga_defs Header files and drivers for FPGA peripherals.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-4
ID101717 Non-Confidential

Using the Simulation Environment
4.3 Setting up the simulation environment
This section describes how to set up the simulation environment. It contains the following:
• Modifying the rtl_sim/makefile.
• Modifying configuration files.
• Setting up tools.

There are two similar simulation environments, for the simple RTL testbench in
systems/cortex_m0_mcu and the FPGA system in systems/fpga_testbench. Each environment
must be configured seperately, although they use a common software directory.

4.3.1 Modifying the rtl_sim/makefile

The makefile in the rtl_sim directory controls the following simulation operations:
• Compiling the RTL.
• Running the simulation in batch mode.
• Running the simulation in interactive mode.

You must specify several variables inside this makefile. Table 4-2 describes the variables.

Note
 • You do not have to edit all of these variables every time you run a different test. You can

override the makefile variables with command line options. For example, you can keep
the TESTNAME variable unchanged, and override it only when you run a simulation.

• See Run the simulation on page 4-8 for example test programs.

4.3.2 Modifying configuration files

The systems/cortex_m0_mcu/verilog/cmsdk_mcu_defs.v file specifies most of the configurations
of the example system. Arm recommends that you use the example MCU system to investigate
the impact of these parameterized configurations, the FPGA system is not validated to be
complete if the configuration is changed.

4.3.3 Setting up tools

The simulation requires one of the supported Verilog simulators and tools, for compiling and
assembling the software code.

Table 4-2 Makefile variables

Variable Descriptions

TESTNAME Name of software test to be executed, for example, hello or dhry. This name must match the software directory
name inside the systems/cortex_m0_mcu/testcodes/or systems/fpga_testbench/testcodes/ directory.

TEST_LIST List of tests available.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-5
ID101717 Non-Confidential

Using the Simulation Environment
4.4 Running a simulation in the simulation environment
This section describes how to run a simulation in the design toolkit. It contains the following
sections:
• Compile the RTL.
• Compile the test code.
• Run the simulation on page 4-8.

4.4.1 Compile the RTL

After you have configured the environment, you must compile the Verilog RTL in the rtl_sim
directory. To do this, use the following command:

<installation directory>/systems/cortex_m0_mcu/rtl_sim> make compile

This starts the compilation process. Depending on the system which you are using, one of the
following Verilog command files are used to specify the relevant source directories:

• systems/cortex_m0_mcu/verilog/tbench_M0_DS.vc

• systems/fpga_testbench/rtl_sim/tbench.vc

 The compile stage ignores the TESTNAME setting.

You can use the command line to override variables in the makefile. For example, the following
command line specifies that Modelsim is used for compilation:

<installation directory>/systems/cortex_m0_mcu/rtl_sim> make compile SIMULATOR=mti

4.4.2 Compile the test code

Software compilation for the FPGA testbench and the standard CMSDK mcu system differ,
primarily in their memory map. The FPGA testbench will compile with read-only and
read-write regions both targetting the code memory region starting at 0x00000000. For this
reason, the testcode directory structures are duplicated within each system directory. Note that
the cortex_m0_mcu system has a more exhaustive set of tests for the system. With the FPGA
system, testing has been performed using the Cortex-M Prototyping System testcode (the source
for this is provided with the MPS2+ platform).
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-6
ID101717 Non-Confidential

Using the Simulation Environment
Before you compile the software code, you might want to change some of the settings for the
software compilation. Each software test has a corresponding subdirectory in the
systems/<system>/testcodes directory. Inside each of these directories is a makefile for software
compilation. The makefiles support Arm DS-5, Keil MDK (as a placeholder for compilation)
and Arm GCC. Table 4-3 lists the settings contained in the makefiles.

Note
 A Keil-specific project file specifies the options for Keil MDK.

Use makefiles to compile your software. You can use one of the following makefiles:
• The makefile in testcodes/<testname>.
• The makefile in rtl_sim, software compilation only on page 4-8.

The makefile in testcodes/<testname>

Execute the following:

make all This starts the software compilation process for DS-5 or Arm GCC.

Table 4-3 Makefile settings

Variable Descriptions

TOOL_CHAIN This can be set to one of the following:
ds5 Arm DS-5.
gcc Arm GCC.
keil Keil MDK.
If you select keil, the make process pauses so you can manually continue the compilation from Keil MDK in the
Windows environment.

TESTNAME Name of the software test. This must match the directory name.

COMPILE_MICROLIB Use only for the DS-5 option.
0 Normal C runtime library. This is the default value.
1 MicroLIB, a C runtime library optimized for microcontroller applications.

USER_DEFINE A user-defined C preprocessing macros. Set to -DCORTEX_M0 for most test codes. This enables a piece of test code
to include the correct header for the processor when multiplex example systems share the test code. You can add
more preprocessing macros for your applications.

SOFTWARE_DIR Shared software directory

CMSIS_DIR Base location of all CMSIS source code.

DEVICE_DIR Device specific support files, for example, header files, and device driver files.

STARTUP_DIR Startup code location.

ARM_CC_OPTIONS Arm C Compiler options. Use only for the DS-5 option.

ARM_ASM_OPTIONS Arm Assembler options. Use only for the DS-5 option.

ARM_LINK_OPTIONS Arm Linker options. Use only for the DS-5 option.

GNU_CC_FLAGS gcc compile option. Use only for the Arm GCC option.

LINKER_SCRIPT Linker script location. Use only for the Arm GCC option.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-7
ID101717 Non-Confidential

Using the Simulation Environment
You can override the variable in the makefile, for example, by executing the following:

make all TOOL_CHAIN=ds5 COMPILE_MICROLIB=1
This causes the program to compile using DS-5 with the MicroLIB option
enabled.

make clean This cleans all intermediate files created during the compilation process invoked
by make all. If changes are made in code other than the testcode itself, for
example, in the CMSIS header files, running make clean ensures that these
changes are detected by a subsequent make all.

The makefile in rtl_sim, software compilation only

For example, in systems/cortex_m0_mcu/rtl_sim/, you can execute:

make code The makefile in the rtl_sim directory changes the current directory to the one
specified by the TESTNAME variable. By default there is no TESTNAME specified in the
makefile. If make code is executed without specifying a TESTNAME on the make
command line or by editing the makefile, a message is printed requesting a
TESTNAME to be specified.

You can use the command line to specify the software test that you want to run by executing the
following:

make code TESTNAME=hello
This causes the hello test and the bootloader code to compile. The process then
copies the compiled code images to the rtl_sim directory.

Note
 Use the make code option to debug compilation errors because this option does not invoke
simulation.

4.4.3 Run the simulation

After the RTL compilation, you can start the simulation in the systems/cortex_m0_mcu/rtl_sim/
directory using one of the following commands:
make sim For interactive simulation.
make run For batch mode simulation.

The makefile in the rtl_sim directory automatically invokes the makefiles in the testcodes
directories. Figure 4-2 on page 4-9 shows the interaction of the makefiles.

When you run an interactive simulation, you can step (and set breakpoints) in the Verilog code.
You can also log the signals in the design and investigate the hardware operation.

Note
 The make run and the make sim step automatically runs the make code operation. Therefore, if you
have previously compiled a test using make code with specific options, you must repeat the same
options when you invoke make run or make sim.

For example:
• make code TESTNAME=sleep_demo TOOL_CHAIN=ds5 COMPILE_MICROLIB=1

• make sim TESTNAME=sleep_demo TOOL_CHAIN=ds5 COMPILE_MICROLIB=1 SIMULATOR=vcs
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-8
ID101717 Non-Confidential

Using the Simulation Environment
If you do not do this, the software test might be recompiled without the previous configuration
settings. The command make code enables you to test that a program file compiles correctly. It
does not start the simulation.

Figure 4-2 Interaction of makefiles

The software directory contains shared header files and shared test programs.

To compile the software and run a simulation, execute make run TESTNAME=hello in the rtl_sim
directory:

• The makefile in the rtl_sim directory uses the makefile in the bootloader directory to
compile the boot loader code and copy the resulting image back to the rtl_sim directory.

• The makefile in the rtl_sim directory uses the makefile in the hello directory to compile
the hello world code and copy the resulting image back to the rtl_sim directory.

• The makefile in the rtl_sim directory starts the simulator.

If you set the software toolchain in the makefile to keil, this causes the make process to pause
and prompt you to compile your project in Keil MDK. You can resume the process by pressing
any key.

You can use command line options to override the makefile variables. For example:

• make sim TESTNAME=sleep_demo SIMULATOR=vcs TOOL_CHAIN=ds5

The last action of the simulation writes the value 0x4 to UART0. When the cmsdk_uart_capture
device captures this value, it triggers the simulation to stop.

<Installation directory/>

software/

common/

demos/

retarget/

bootloader/ Common software files

scripts/

systems/

<system>

verilog/

rtl_sim/

makefile

testcodes/

hello/

makefile

bootloader/

makefile

hello.c

validation/

cmsis/

CMSIS/

Device/

ARM/

CMSDK_CM0/
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-9
ID101717 Non-Confidential

Using the Simulation Environment
For example, the hello test results in the following output for the Cortex-M0 processor:

30490 ns UART: Hello world
52410 ns UART: ** TEST PASSED **
54270 ns UART: Test Ended
** Note: $stop : ../verilog/cmsdk_uart_capture.v(208)
Time: 54270 ns Iteration: 1 Instance: /tb_cmsdk_mcu/u_cmsdk_uart_capture
Break at ../verilog/cmsdk_uart_capture.v line 208
Stopped at ../verilog/cmsdk_uart_capture.v line 208
quit -f

The Verilog file cmsdk_uart_capture.v contains the text Test Ended that it displays before the
simulation stops. See Retargeting on page 5-6 for details on retargetting STDOUT.

To compile the testbench and run all the tests that the TEST_LIST variable specifies, execute the
following on the command line:

make all

You can use the command line to override several test parameters. For example, to specify the
VCS simulator execute the following:

make all SIMULATOR=vcs

4.4.4 Debugging tests

When you run tests in the simulation, you can only observe the verilog signals in the system,
and the processor architectural registers. There is no specific support for software debug, for
example connecting a debugger to the debug hardware which is being simulated. To debug your
software you can:

• Monitor the instruction fetches on the AHB bus.

• View the .lst files which are generated in the testcode directory.

• Use the processor simulator in Keil MDK.

A 'tarmac' trace of executed instructions is supported by the full Cortex-M0 processor (which
you can license as part of Cortex-M0 DesignStart Pro). Tarmac trace is also supported by the
cycle model which is included with the Cortex-M3 DesignStart Eval (although the two
DesignStart Eval systems are not directly interchangeable).
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 4-10
ID101717 Non-Confidential

Chapter 5
Software Examples

This chapter describes the example software tests and the device drivers. It contains the following
sections:
• Available simulation tests on page 5-2.
• Creating a new test on page 5-3.
• Example header files and device driver files on page 5-4.
• Retargeting on page 5-6.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-1
ID101717 Non-Confidential

Software Examples
5.1 Available simulation tests
Table 5-1 shows the example software tests that this design kit contains.

Some of the tests are timing dependent and are written for a system with zero wait states. The
test might fail if you change the wait states of the system.

The RTX OS is a feature in Keil MDK. The example software package includes a precompiled
hex file of the RTX demonstration test, therefore you can simulate this test without a Keil MDK
setup. For this test, the example software package includes the project files that you can modify
and recompile if you require.

The config_id.h header file in the testcodes/generic directory contains the defines for each of
the available functions in the Cortex-M0 processor. The values are set to match the fixed
configuration of the CortexM0 processor from DesignStart.

Table 5-1 Example software test list

TESTNAME Descriptions

hello Simple test to display the Hello world message. It uses the retargeting action that redirects printf
to the UART output.

interrupt_demo Demonstration of interrupt features. Only present in cortex_m0_mcu.

sleep_demo Demonstration of sleep features.

dhry Simple Dhrystone test.

self_reset_demo Demonstration of the self reset feature that uses the signal SYSRESETREQ.

dualtimer_demo Demonstration of the APB Dual Timer.

watchdog_demo Demonstration of the APB Watchdog.

rtx_demo Demonstration of the Keil RTX OS.

gpio_tests Tests the low latency AHB GPIO. Supports I/O GPIO.

timer_tests Tests the simple APB timer.

uart_tests Tests the simple APB UART. Only present in cortex_m0_mcu.

default_slaves_tests Tests the default slave activation. It accesses invalid memory locations.

gpio_driver_tests Simple test for the GPIO device driver functions. Only present in cortex_m0_mcu.

timer_driver_tests Simple test for the simple timer device driver functions.

uart_driver_tests Simple test for the UART device driver functions. Only present in cortex_m0_mcu.

apb_mux_tests Simple test for the APB slave multiplexer.

memory_tests Simple test for the system memory map. Only present in cortex_m0_mcu.

designstest_m0 Test of the peripherals specific to the FPGA system. Only present in fpga_testbench.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-2
ID101717 Non-Confidential

Software Examples
5.2 Creating a new test
You can add new tests to the testcodes directory. Use the hello test as a guide to the format you
can use. For example, you can use the following process to create a new test:

1. Create a new directory in the testcodes/ directory. For example:
a. cd <installation_directory>/systems/<system>/testcodes

b. mkdir mytest

2. Copy the files that are located in the hello/ directory to your new test directory, and then
rename the test file. For example:
a. cd mytest

b. cp ../hello/* .

c. mv hello.c mytest.c

3. Edit the makefile to rename hello.c to mytest.c

4. Ensure that the output hex file has the same name as the directory name, for example
mytest.hex. This enables the makefile in rtl_sim/ directory to copy the hex file to the
rtl_sim/ directory before the simulation starts.

5. If required, you can add the name of your new test to the TEST_LIST variable in the makefile
located in the rtl_sim/ directory.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-3
ID101717 Non-Confidential

Software Examples
5.3 Example header files and device driver files
The example software uses header files that are based on the Cortex Microcontroller Software
Interface Standard (CMSIS). The example software includes the following types of files:

• Generic Cortex-M0 processor header files, located in directory
software/cmsis/CMSIS/Include/.

• Device-specific header files, located in directory software/cmsis/Device/ARM/CMSDK_CM0/.

• Device-specific startup codes, located in directory cmsis/Device/ARM/CMSDK_CM0/Source/.

• Device-specific example device drivers, located in directory
cmsis/Device/ARM/CMSDK_CM0/.

Note
 You must update to the latest version of the CMSIS-Core files when preparing your own CMSIS
software packages. See Arm CMSIS-Core http://www.arm.com/cmsis.

Table 5-2 shows the generic Cortex-M0 processor support files.

Table 5-3 shows the device-specific header files.

Table 5-4 shows the device-specific startup codes.

Table 5-2 Generic Cortex-M0 processor support files

Filename Descriptions

core_cm0.h CMSIS 3.0 compatible header file for processor peripheral registers definitions.

core_cmInstr.h CMSIS 3.0 compatible header file for accessing special instructions.

core_cmFunc.h CMSIS 3.0 compatible header file for accessing special registers.

Table 5-3 Device-specific header files

Filename Descriptions

CMSDK_CM0.h CMSIS compatible device header file including register definitions

system_CMSDK_CM0.h CMSIS compatible header file for system functions

system_CMSDK_CM0.c CMSIS compatible program file for system functions

Table 5-4 Device-specific startup codes

Filename Descriptions

cmsis/Device/ARM/CMSDK_CM0/Source/ARM/startup_CMSDK_CM0.s CMSIS compatible startup code for Arm DS-5 or Keil MDK

cmsis/Device/ARM/CMSDK_CM0/Source/GCC/startup_CMSDK_CM0.s CMSIS compatible startup code for Arm GCC
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-4
ID101717 Non-Confidential

Software Examples
Table 5-5 shows the device-specific example device drivers.

To use these header files, you only have to include the device-specific header file CMSDK_CM0.h.
This file imports all the required header files. Because some of the shared program files in the
software/common directory also support different types of processor, these programs include the
following header code:

#ifdef CORTEX_M0
#include "CMSDK_CM0.h"
#endif

The makefile in directory systems/cortex_m0_mcu/testcodes/<testname> contains the
USER_DEFINE variable that defines the C preprocessing directive CORTEX_M0. This ensures that the
simulation uses the correct version of the header file.

Table 5-5 Device-specific example device drivers

Filename Descriptions

CMSDK_driver.h Header file for including driver code

CMSDK_driver.c Driver code implementation
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-5
ID101717 Non-Confidential

Software Examples
5.4 Retargeting
Several test programs use the printf and puts functions to display text messages during the
simulation. The retargeting code performs this function. It redirects text output to UART0. The
tb_uart_capture device in the testbench captures the text and outputs it to the simulation console
during the simulation.

You must ensure that your code calls UartStdOutInit() before any printf or similar functions
are called.

The retargeting is written to use the high-speed simulation mode of the CMSDK UART. If you
want to use the same retargetting in an actual FPGA (with realistic baud rates) you will need to
add a polling check whilst the characters are transmitted.

For the Arm DS-5 and Keil MDK environments, the retarget function for text output is fputc.
The retarget function for Arm GCC, and most gcc based C compilers, is the _write_r function.
These functions are located in file software/common/retarget/retarget.c.

Table 5-6 shows the files required for retargeting support.

The UART support files are uart_stdout.c and uart_stdout.h. Table 5-7 shows the UART
functions.

Table 5-6 Retargeting support files

Files Descriptions

software/common/retarget/retarget.c Retargeting implementation for Arm DS-5, Keil MDK, and Arm GCC

software/common/retarget/uart_stdout.h Header for UART functions used by retarget.c

software/common/retarget/uart_stdout.c Implementation of UART functions

Table 5-7 Support file functions

Function Descriptions

void UartStdOutInit(void) Initialize UART0 and GPIO0 (for pin multiplexing) for text message output.

char UartPutc(unsigned char my_ch) Output a single character to UART 0.

char UartGetc(void) Read a character from UART.

char UartEndSimulation(void) Terminate the simulation by sending value 0x4 to UART 0. When tb_uart_capture receives
this data it stops the simulation.
DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. 5-6
ID101717 Non-Confidential

DUI 0926B Copyright © 2017 Arm Limited (or its affiliates). All rights reserved. A-1
ID101717 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Issue A

Change Location Affects

First release for r1p0 - -

Table A-2 Differences between Issue A and Issue B

Change Location Affects

First release for r2p0 Across the whole document, updates to reflect change to
CORTEXM0INTEGRATION obfuscation, including
addition of debug.
FPGA Example system memory map added in Memory map
on page 2-11

r2p0

FPGA testbench described
in this document.

Example FPGA system level design and design heirarchy on
page 2-5
Chapter 3 Example System Testbenches
Chapter 4 Using the Simulation Environment
Chapter 5 Software Examples

r2p0

GCC and Keil toolchain
support added for FPGA
testbench.

Chapter 4 Using the Simulation Environment r2p0

	Arm Cortex-M0 DesignStart Eval User Guide
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About Cortex-M0 DesignStart Eval
	1.2 Cortex-M0 DesignStart Eval directory structure
	1.3 Limitations
	1.3.1 Deliverables
	1.3.2 Processor support
	1.3.3 Endian support
	1.3.4 Platform

	2: Functional Description
	2.1 Example MCU system level design and design heirarchy
	2.2 Example FPGA system level design and design heirarchy
	2.3 Design files
	2.3.1 Verilog files for the cmsdk_mcu example system
	2.3.2 Verilog files for the cortex_m0_mcu testbench
	2.3.3 Verilog files for the FPGA design
	2.3.4 Verilog files for the FPGA testbench

	2.4 Processor file location
	2.5 Configuration options
	2.6 Memory map
	2.6.1 AHB memory map
	2.6.2 APB subsystem memory map
	2.6.3 FPGA System Secondary APB

	2.7 System controller
	2.7.1 About the system controller
	2.7.2 System controller block diagram
	2.7.3 Programmers model

	2.8 I/O pins
	2.9 Interrupts and event functions
	2.9.1 Interrupt assignments
	2.9.2 Interrupt synchronization
	2.9.3 Event

	2.10 Clock and reset
	2.11 SysTick support

	3: Example System Testbenches
	3.1 About the testbench design
	3.2 UART text output capturing and escape code

	4: Using the Simulation Environment
	4.1 About the simulation environment
	4.2 Files and directory structure
	4.3 Setting up the simulation environment
	4.3.1 Modifying the rtl_sim/makefile
	4.3.2 Modifying configuration files
	4.3.3 Setting up tools

	4.4 Running a simulation in the simulation environment
	4.4.1 Compile the RTL
	4.4.2 Compile the test code
	4.4.3 Run the simulation
	4.4.4 Debugging tests

	5: Software Examples
	5.1 Available simulation tests
	5.2 Creating a new test
	5.3 Example header files and device driver files
	5.4 Retargeting

	A: Revisions

