
ARM® Cortex®-M0 DesignStart™ RTL
Testbench

Revision: r1p0

User Guide
Copyright © 2015 ARM. All rights reserved.
ARM DUI 0926A (ID062017)

ARM Cortex-M0 DesignStart RTL Testbench
User Guide

Copyright © 2015 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of ARM. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document
unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other
company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version
of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the
EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks
of their respective owners. Please follow ARM’s trademark usage guidelines at
http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2015 ARM. All rights reserved. ARM Limited or its affiliates.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Change history

Date Issue Confidentiality Change

28 September 2015 A Non Confidential First draft for r1p0
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. ii
ID062017 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. iii
ID062017 Non-Confidential

Contents
ARM Cortex-M0 DesignStart RTL Testbench User
Guide

Preface
About this book .. vii
Feedback .. xi

Chapter 1 Introduction
1.1 About Cortex-M0 DesignStart Kit ... 1-2
1.2 Cortex-M0 DesignStart Design Kit directory structure ... 1-3
1.3 Limitations of the design kit ... 1-5

Chapter 2 Functional Description
2.1 System-level design and design hierarchy .. 2-2
2.2 Design files .. 2-5
2.3 Processor file location .. 2-6
2.4 Configuration options ... 2-7
2.5 Memory map .. 2-8
2.6 System controller ... 2-10
2.7 I/O pins .. 2-13
2.8 Interrupts and event functions ... 2-15
2.9 Clock and reset .. 2-17
2.10 SysTick support ... 2-18

Chapter 3 Example System Testbench
3.1 About the testbench design ... 3-2
3.2 UART text output capturing and escape code ... 3-3
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. iv
ID062017 Non-Confidential

Contents
Chapter 4 Using the Simulation Environment
4.1 About the simulation environment ... 4-2
4.2 Files and directory structure .. 4-3
4.3 Setting up the simulation environment ... 4-5
4.4 Running a simulation in the simulation environment ... 4-6

Chapter 5 Software Examples
5.1 Available simulation tests .. 5-2
5.2 Creating a new test .. 5-3
5.3 Example header files and device driver files ... 5-4
5.4 Retargeting .. 5-6

Chapter 6 Synthesis
6.1 Implementation overview ... 6-2
6.2 Directory structure and files ... 6-3
6.3 Implementation flow ... 6-4
6.4 Timing constraints .. 6-5

Appendix A Revisions
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. v
ID062017 Non-Confidential

Preface

This preface introduces the Cortex-M0 DesignStart Design Kit Example System Guide. It contains
the following sections:
• About this book on page vii.
• Feedback on page xi.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. vi
ID062017 Non-Confidential

Preface
About this book
This book is for the Cortex-M0 DesignStart Design Kit.

Implementation obligations

This book is designed to help you implement an ARM product. The extent to which the
deliverables can be modified or disclosed is governed by the contract between ARM and the
Licensee. There might be validation requirements which, if applicable, are detailed in the
contract between ARM and the Licensee and which, if present, must be complied with prior to
the distribution of any devices incorporating the technology described in this document.
Reproduction of this document is only permitted in accordance with the licenses granted to the
Licensee.

ARM assumes no liability for your overall system design and performance. Verification
procedures defined by ARM are only intended to verify the correct implementation of the
technology licensed by ARM, and are not intended to test the functionality or performance of
the overall system. You or the Licensee are responsible for performing system level tests.

You are responsible for applications that are used in conjunction with the ARM technology
described in this document, and to minimize risks, adequate design and operating safeguards
must be provided for by you. Publishing information by ARM in this book of information
regarding third party products or services is not an express or implied approval or endorsement
of the use thereof.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for hardware engineers, software engineers, system integrators, and system
designers, who might not have previous experience of ARM products, but want to run a
complete example of a working system.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the Cortex-M0 DesignStart Design Kit and its
features.

Chapter 2 Functional Description
Read this for a description of the design and layout of the design kit.

Chapter 3 Example System Testbench
Read this for a description of the testbench components.

Chapter 4 Using the Simulation Environment
Read this for a description of how to set up and run simulation tests.

Chapter 5 Software Examples
Read this for a description of the example software tests and the device drivers.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. vii
ID062017 Non-Confidential

Preface
Chapter 6 Synthesis
Read this for a description of how to run synthesis for the example system.

Appendix A Revisions
Read this for a description of the technical changes between released issues of this
book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

See ARM Glossary http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Conventions

This book uses the conventions that are described in:
• Typographical conventions.
• Timing diagrams.
• Signals on page ix.

Typographical conventions

The following table describes the typographical conventions:

Timing diagrams

The figure named Key to timing diagram conventions on page ix explains the components used
in timing diagrams. Variations, when they occur, have clear labels. You must not assume any
timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Style Purpose

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the ARM glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. viii
ID062017 Non-Confidential

Preface
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and
they look similar to the bus change shown in Key to timing diagram conventions. If a timing
diagram shows a single-bit signal in this way then its value does not affect the accompanying
description.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter http://infocenter.arm.com, for access to ARM documentation.

See ARM CMSIS-Core http://www.arm.com/cmsis, for embedded software development
resources including the Cortex Microcontroller Software Interface Standard (CMSIS).

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. ix
ID062017 Non-Confidential

Preface
ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARM® Cortex®-M System Design Kit Technical Reference Manual (ARM DDI 0479).
• ARM® Cortex®-M0 Devices Generic User Guide (ARM DUI 0497).
• ARM® Cortex®-M0 Technical Reference Manual (ARM DDI 0432).
• ARM® ARMv6-M Architecture Reference Manual (ARM DDI 0419).
• ARM® AMBA®3 AHB-Lite Protocol (v1.0) Specification (ARM IHI 0033).

The following confidential books are only available to licensees:
• ARM® Cortex®-M0 Integration and Implementation Manual (ARM DII 0238).
• ARM® Cortex®-M0 User Guide Reference Material (ARM DUI 0467).
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. x
ID062017 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DUI 0926A.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. xi
ID062017 Non-Confidential

Chapter 1
Introduction

This chapter introduces the Cortex-M0 DesignStart Design Kit. It contains the following sections:
• About Cortex-M0 DesignStart Kit on page 1-2.
• Cortex-M0 DesignStart Design Kit directory structure on page 1-3.
• Limitations of the design kit on page 1-5.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-1
ID062017 Non-Confidential

Introduction
1.1 About Cortex-M0 DesignStart Kit
The Cortex-M0 DesignStart Kit is intended for system Verilog design and simulation of a
prototype SoC based on the Cortex-M0 processor.

The DesignStart Design Kit has:
• An ARM Cortex-M0 processor from DesignStart.
• An example system-level design for the ARM Cortex-M0 processor.
• Reusable AMBA components for system-level development.

The Cortex-M0 processor from DesignStart:

• Is a fixed configuration of the Cortex-M0 processor, enabling low-cost easy access to
Cortex-M0 processor technology by offering a subset of the full product.

• Is delivered as a preconfigured and obfuscated, but synthesizable, Verilog version of the
full Cortex-M0 processor. It does not have debug capability, as this is not used in
simulation, and is not intended for production silicon. See Limitations of the design kit on
page 1-5 for the Cortex-M0 processor from DesignStart configuration information.

A Cortex-M0 DesignStart FPGA image is also available for system prototyping with the ARM
Versatile™ Express Cortex-M Prototyping System, V2M-MPS2. The Cortex-M0 DesignStart
FPGA image offers an additional route for system design and prototyping on hardware and does
include the debug unit. To purchase the prototyping system, go to the ARM website
http://www.arm.com/products/tools/development-boards/versatile-express/cortex-m-prototypi
ng-system.php.

The Cortex-M0 processor is a highly deterministic, low gate count, 32-bit processor that
implements the ARMv6-M architecture with zero deviation instruction determinism in zero
wait-state memory systems. While the three-stage pipeline allows for very low area
implementation, the Cortex-M0 processor is still capable of achieving performance figures of
2.33 CoreMarks/MHz. The Cortex-M0 processor programmers model is fully upwards
compatible with the Cortex-M0+, Cortex-M3, Cortex-M4, and Cortex-M7 processors for
portability.

For more information about:

• Programming the Cortex-M0 processor, see the ARM® Cortex®-M0 Technical Reference
Manual.

• Software development on a Cortex-M0 device, see the ARM® Cortex®-M0 User Guide
Reference Material. This is a generic device user-level reference document.

• The AMBA components that the design kit uses, see the ARM® Cortex®-M System Design
Kit Technical Reference Manual.

• The ARM architecture that the Cortex-M0 processor complies with, and the instruction
set and exception model it uses, see the ARM® ARMv6-M Architecture Reference Manual.

• The AHB-Lite master interface that the Cortex-M0 processor implements, see the ARM®
AMBA®3 AHB-Lite Protocol (v1.0) Specification.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-2
ID062017 Non-Confidential

Introduction
1.2 Cortex-M0 DesignStart Design Kit directory structure
Table 1-1 describes the main directories of the design kit.

Figure 1-1 on page 1-4 shows the location of the file directories in the design kit.

Table 1-1 Main directory descriptions

Directory name Directory contents

logical Verilog components including AHB-Lite and APB infrastructure components, peripherals, the APB
subsystem.

systems Design files, testbench files, and simulation setup files for the example system.

implementation_tsmc_ce018fg Synthesis setup files for the example system. The files support the Synopsys Design Compiler.

software Software files. These include:
• CMSIS compatible C header files.
• Example program files for the example systems.
• An example device driver.

documentation Documentation files.

cores This is the location for processor core files.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-3
ID062017 Non-Confidential

Introduction
Figure 1-1 Directory structure

installation directory/
logical/

cmsdk_ahb_slave_mux/
verilog/

cmsdk_ahb_slave_mux.v
cmsdk_ahb_default_slave/

verilog/
cmsdk_ahb_default_slave.v

systems/
cortex_m0_mcu/

verilog/ Verilog and Verilog command files
rtl_sim/

simulation directory/
testcodes/

<testname>
implementation_tsmc_ce018fg/

cortex_m0_mcu_system_synopsys/
Synthesis scripts for synthesizable parts of the
example system

software/
cmsis/

CMSIS/

common/
demos/
dhry/
retarget/
bootloader/

scripts/

Common software files

Linker scripts and other utility scripts
cores/ Location for the processor files

validation/

Device/
ARM/

CMSDK_CM0/

CMSIS files, and header file for the example system
and the example device driver code

hello/ Software compilation setup files

cortexm0_designstart_r1p0/ Obfuscated Cortex-M0 RTL

documentation/
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-4
ID062017 Non-Confidential

Introduction
1.3 Limitations of the design kit
This section describes the limitations of the design kit. You should not use the processor
technology or the supporting deliverables as an indicator of what is received under a full
technology license of the ARM Cortex-M0 processor.

1.3.1 Deliverables

The design kit does not include software compilation tools. You must license these products
separately.

1.3.2 Processor support

The design kit supports the Cortex-M0 processor from DesignStart.

Table 1-2 shows the differences in the features available in the full Cortex-M0 processor and the
Cortex-M0 processor from DesignStart.

1.3.3 Endian support

The Cortex-M0 processor example system and its peripherals in the design kit are little-endian.

1.3.4 Platform

This release of the Cortex-M0 DesignStart Design Kit supports Linux and Unix for the
simulation process and the synthesis process. If you use Keil MDK-ARM for software
development, you can install the design kit in a location that is accessible from Linux, Unix, and
Windows. Do this using one of the following procedures:
• Install the design kit on a network drive that:

— A Linux or Unix terminal can access.

Table 1-2 Cortex-M0 processor and Cortex-M0 processor from DesignStart feature differences

Feature Full Cortex-M0 processor Cortex-M0 processor from
DesignStart

Verilog code Commented plain-text RTL Flattened and obfuscated RTL

AMBA®3 AHB-Lite interface Master and optional slave ports Master port only

ARMv6-M instruction set ARMv6-M instruction set support ARMv6-M instruction set support

Multiplier options Fast single-cycle or small 32-cycle Fast single cycle multiplier

Nested vectored interrupt controller (NVIC) 1-32 interrupt inputs 32 interrupt inputs only

Wake-up Interrupt Controller (WIC) Optional None

Architectural clock gating Optional None

24-bit system timer, SysTick Optional reference clock Reference clock supported

Hardware debugger interface Optional Serial-Wire or JTAG None

Hardware debug support Optional single step with up to four
breakpoints, up to two watchpoints and
PC sampling

None

Low-power signaling and domains Optional state-retention power domains
and power control signaling

SLEEPING, TXEV and RXEV signaling
only
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-5
ID062017 Non-Confidential

Introduction
— Is mapped to a network drive on a Windows machine.
• Use a personal computer to do the following:

— Install virtualization software and install a guest Operating System (OS).
— Set up a shared folder to access the design kit through the host OS.
— Install the design kit in the shared folder.

Then compile the software with Keil MDK-ARM in the Windows environment, and run the
simulations in the Linux or Unix environment.

To run the design kit on other operating systems, modify the makefiles to meet your specific
requirements.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 1-6
ID062017 Non-Confidential

Chapter 2
Functional Description

This chapter describes the design and layout of the design kit. It contains the following sections:
• System-level design and design hierarchy on page 2-2.
• Design files on page 2-5.
• Processor file location on page 2-6.
• Configuration options on page 2-7.
• Memory map on page 2-8.
• System controller on page 2-10.
• I/O pins on page 2-13.
• Interrupts and event functions on page 2-15.
• Clock and reset on page 2-17.
• SysTick support on page 2-18.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-1
ID062017 Non-Confidential

Functional Description
2.1 System-level design and design hierarchy
The example system is a simple microcontroller design. It contains the following:
• A single Cortex-M0 processor.
• Internal program memory.
• SRAM data memory.
• Boot loader.
• The following peripherals:

— Several timers.
— General Purpose Input Output (GPIO).
— Universal Asynchronous Receiver Transmitter (UART).
— Watchdog timer.

Figure 2-1 shows the top level view of the example system.

Figure 2-1 Example microcontroller system top level view

Table 2-1 describes the items that the microcontroller contains.

CORTEXM0DS
Processor

AHB Infrastructure including
several AHB components

System
controller

SysTick
reference

clock

cmsdk_ahb_ram
data memory

cmsdk_ahb_rom
program memory

cmsdk_ahb_rom
optional boot loader

cmsdk_mcu_clkctrl

cmsdk_
clkreset

Crystal
oscillator

cmsdk_mcu_system

cmsdk_mcu

cmsdk_mcu_pin_mux
I/O pin multiplexor and tristate buffers

XTAL2
XTAL1
NRST

cmsdk_ahb_
gpio

Port 1

Port 0System ROM
table

cmsdk_apb_subsystem

tb_cmsdk_mcu

UART
capture

CORTEXM0INTEGRATION

Table 2-1 Microcontroller items

Item Description

cmsdk_mcu The example microcontroller design. This level contains the behavioral memories and clock generation
components.

cmsdk_mcu_system The synthesizable level of the microcontroller design. This instantiates the Cortex-M0 processor.

CORTEXM0INTERGRATION Instantiates the CORTEXM0DS layer.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-2
ID062017 Non-Confidential

Functional Description
Table 2-2 describes the items that are in the testbench but outside the microcontroller.

You can configure the system in a number of different ways.

The processor connects to the rest of the system through an AHB Lite interface.

Figure 2-2 on page 2-4 shows the interfaces of the Cortex-M0 example system.

Note
 In this design kit the DAP and WIC are not included. Empty files are included to indicate how
the DAP and WIC are integrated in a full release.

CORTEXM0DS The Cortex-M0 Integration layer. This is obfuscated code.

cmsdk_apb_subsystem A subsystem of APB peripherals and APB infrastructure.

System controller Contains programmable registers for system control, for example memory remap.

SysTick reference clock SysTick reference clock generation logic.

cmsdk_ahb_gpio A low-latency GPIO with an AHB interface. Each GPIO module provides 16 I/O pins.

cmsdk_mcu_clkctrl The clock and reset generation logic behavioral model.

cmsdk_mcu_pin_mux The pin multiplexor and tristate buffers for the I/O ports.

cmsdk_ahb_rom A memory wrapper for the ROM to test the behavior of different implementations of memory. You can
modify the Verilog parameters to change the implementation.

cmsdk_ahb_ram A memory wrapper for the RAM to test the behavior of different implementations of memory. You can
modify the Verilog parameters to change the implementation.

cmsdk_ahb_cs_rom_table An example system level CoreSight ROM table that enables a debugger to identify the system as a
Cortex-M0 based system.

cmsdk_mcu_addr_decode Generates the HSELS for each memory mapped component based on the CMSDK address map.

Table 2-1 Microcontroller items (continued)

Item Description

Table 2-2 Testbench items

Item Descriptions

cmsdk_clkreset Generates clock and reset signals. XTAL1 runs at 50MHz. It asserts NRST LOW for 5ns at the start of the
simulation.

cmsdk_uart_capture Captures the text message from UART2 and displays the message during simulation. It displays each line
of the message after it receives a carriage return character. To reduce the simulation time, set the baud rate
to be same as the clock frequency. You must set the UART in the design kit to high speed test mode.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-3
ID062017 Non-Confidential

Functional Description
Figure 2-2 Cortex-M0 example system

Table 2-3 describes the design kit peripheral components that the system design includes.

The APB peripherals are instantiated in the APB subsystem block.

Low latency
GPIO

AHB
address
decoder

Parameterizable 10 to 1
AHB slave multiplexor

External

Remap

System
control ROM Boot

ROM RAM Default
slave

ROM
table

Watch
dog

Simple
Timer x 2

Dual
Timer

Simple
UART

AHB to
APB

bridge

Text
output

Simple
UART x 2

Common APB sub-system

16 to 1
multiplexor

Cortex-M0 processor

Cortex-M0
processor

core

Bus matrix

Nested
Vectored
Interrupt

Controller
(NVIC)

Interrupts

Cortex-M0 Integration

Table 2-3 Design kit peripheral components

Item Descriptions

cmsdk_ahb_gpio Two low latency GPIO with AHB interfaces. Each GPIO module provides 16 I/O pins.

cmsdk_apb_timer A 32-bit timer.

cmsdk_apb_uart A UART.

cmsdk_apb_watchdog A watchdog component that is compatible with the watchdog in the AMBA design kit.

cmsdk_apb_dualtimers A dual timer module that is compatible with the dual timer in the AMBA design kit.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-4
ID062017 Non-Confidential

Functional Description
2.2 Design files
This section describes the following design files that are included in the design kit:
• Verilog files for the cmsdk_mcu example system.
• Verilog files for the cortex_m0_mcu testbench.
• Other files.

2.2.1 Verilog files for the cmsdk_mcu example system

Table 2-4 describes the Verilog files that are included in the Cortex-M0 microcontroller.

2.2.2 Verilog files for the cortex_m0_mcu testbench

Table 2-5 describes the Verilog files that are included in the testbench.

2.2.3 Other files

See Chapter 4 Using the Simulation Environment for information on the simulation setup and
the test codes to run simulations.

Table 2-4 Verilog files for the Cortex-M0 microcontoller

File name Description

cmsdk_mcu.v Top level of the microcontroller

cmsdk_mcu_defs.v Constant definitions and configuration definitions for the example microcontroller

cmsdk_mcu_system.v Microcontroller system-level design

cmsdk_mcu_sysctrl.v Programmable register block for system-level control

cmsdk_mcu_stclkctrl.v SysTick reference clock generation logic

cmsdk_mcu_clkctrl.v Clock and reset control

cmsdk_mcu_pin_mux.v Pin multiplexer and tristate buffers for the I/O port

cmsdk_mcu_addr_decode.v Generates the HSELS for each memory mapped component based on the CMSDK address map

cmsdk_ahb_cs_rom_table.v CoreSight system level ROM table for CMSDK

Table 2-5 Verilog files for the Cortex-M0 microcontroller testbench

File name Description

tb_cmsdk_mcu.v Testbench of the example microcontroller

cmsdk_clkreset.v Clock and reset generator

cmsdk_uart_capture.v UART capture for text message display

tbench_M0_DS.vc Verilog command file for Cortex-M0 DesignStart
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-5
ID062017 Non-Confidential

Functional Description
2.3 Processor file location
The location of the Verilog RTL files for the processors is a subdirectory called cores. For
Cortex-M0 DesignStart RTL path is:
• cores/cortexm0_designstart_r1p0/logical/.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-6
ID062017 Non-Confidential

Functional Description
2.4 Configuration options
The example microcontroller system contains several configurable options. You use Verilog
preprocessing definitions to set these options.

The file cortex_m0_mcu/verilog/cmsdk_mcu_defs.v contains the Verilog preprocessing
definitions. To remove a definition, comment-out the line of Verilog code that describes the
preprocessing definitions. The following table shows the Verilog preprocessing definitions.

Table 2-6 Verilog preprocessing definitions

Preprocessing macro Descriptions

ARM_CMSDK_BOOT_MEM_WS_N Defines the number of wait states for boot loader ROM non-sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_BOOT_MEM_WS_S Defines the number of wait states for boot loader ROM sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_ROM_MEM_WS_N Defines the number of wait states for program ROM non-sequential accesses. See the Cortex-M
System Design Kit Technical Reference Manual.

ARM_CMSDK_ROM_MEM_WS_S Defines the number of wait states for program ROM sequential accesses. See the Cortex-M System
Design Kit Technical Reference Manual.

ARM_CMSDK_RAM_MEM_WS_N Defines the number of wait states for RAM non-sequential accesses. See the Cortex-M System
Design Kit Technical Reference Manual.

ARM_CMSDK_RAM_MEM_WS_S Defines the number of wait states for RAM sequential accesses. See the Cortex-M System Design
Kit Technical Reference Manual.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-7
ID062017 Non-Confidential

Functional Description
2.5 Memory map
This section describes the system memory maps. It contains the following sections:
• AHB memory map.
• APB subsystem memory map on page 2-9.

2.5.1 AHB memory map

The AHB memory map has a 4GB linear address range, but the system only uses part of the
memory space. If a bus master accesses an invalid memory location with a valid transfer, the
default slave replies with an error response to the bus master.

The file cmsdk_mcu_system.v contains the address decoding logic. If you modify the memory
map, you must also modify the address decoding logic in this file.

If you require the example system program to execute from boot loader memory after power-up,
set the boot loader option. This enables the system remap feature. After the boot loader starts,
the program can switch off the remap feature to enable your program to execute from the start
of the memory.

Table 2-7 describes the AHB memory map with and without the remap function.

Table 2-7 AHB memory map

Address Without remap

0xF0220000-0xFFFFFFFF Unused, except for the private peripheral bus addresses in the Cortex-M0.

0xF0210000-0xF021FFFF (64KB) Unused

0xF0201000-0xF021FFFF Unused.

0xF0200000-0xF0200FFF (4KB) Unused.

0xF0000401-0xF01FFFFF Unused.

0xF0000000-0xF0000400 (4KB) System ROM table.

0x40020000-0xEFFFFFFF Unused, except for the private peripheral bus addresses in the Cortex-M0.

0x4001F000-0x4001FFFF (4KB) System controller registers.

0x40012000-0x4001EFFF Unused.

0x40011000-0x40011FFF (4KB) Unused.

0x40010000-0x40010FFF (4KB) Unused

0x40000000-0x4000FFFF (64KB) APB subsystem peripherals.

0x20010000-0x3FFFFFFF Unused.

0x20000000-0x2000FFFF (64KB) RAM.

0x01010000-0x1FFFFFFF Unused.

0x01000000-0x0100FFFF (64KB) Optional boot loader memory. Actual size 4KB, access above 4KB wraps round.

0x00010000-0x00FFFFFF Unused.

0x00000000-0x0000FFFF (64KB) Program memory.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-8
ID062017 Non-Confidential

Functional Description
2.5.2 APB subsystem memory map

Table 2-8 describes the peripherals in the APB subsystem.

For more information on the APB subsystem, see the Cortex-M System Design Kit Technical
Reference Manual.

Table 2-8 APB subsystem peripherals

Address Item Notes

0x4000F000-0x4000FFFF APB expansion port 15 Connected to micro DMA controller configuration port

0x4000E000-0x4000EFFF APB expansion port 14 Not used

0x4000D000-0x4000DFFF APB expansion port 13 Not used

0x4000C000-0x4000CFFF APB expansion port 12 Not used

0x4000B000-0x4000BFFF APB test slave For validation of AHB to APB bridge

0x40009000-0x4000AFFF Not used Ports on APB slave multiplexer disabled

0x40008000-0x40008FFF Watchdog -

0x40007000-0x40007FFF Not used Port on APB slave multiplexer disabled

0x40006000-0x40006FFF UART2 Stdout text message for simulations

0x40005000-0x40005FFF UART1 -

0x40004000-0x40004FFF UART0 -

0x40003000-0x40003FFF Not used Port on APB slave multiplexer disabled

0x40002000-0x40002FFF Dual timer -

0x40001000-0x40001FFF Timer1 -

0x40000000-0x40000FFF Timer0 -
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-9
ID062017 Non-Confidential

Functional Description
2.6 System controller
This section describes the system controller. It contains the following sections:
• About the system controller.
• System controller block diagram.
• Programmers model on page 2-11.

2.6.1 About the system controller

The example system contains a simple system controller that provides:

• The ability to enable an automatic reset if the system locks up.

• Information about the cause of the last reset.

2.6.2 System controller block diagram

Figure 2-3 shows the example system controller.

Figure 2-3 Example system controller

Table 2-9 shows the non-AHB signals of the system controller.

FCLK
HCLK

HRESETn
PORESETn

HSEL
HADDR[11:0]
HTRANS[1:0]
HSIZE[2:0]
HWRITE
HREADY

HWDATA[31:0]
HREADYOUT

HRESP
HRDATA[31:0]

ECOREVNUM[3:0]

SYSRESETREQ
WDOGRESETREQ

REMAP
PMUENABLE
LOCKUPRESET

LOCKUP

cmsdk_mcu_sysctrl.v

Table 2-9 Example system controller non-AHB signals

Signals Descriptions

LOCKUP Tells the RSTINFO register that the cause of a system reset is because the processor enters the lockup state

SYSRESETREQ Enables a status register to capture the System Reset Request event

WDOGRESETREQ Enables a status register to capture the Watchdog Reset Request event

REMAP Enables the memory remap feature

PMUENABLE Enables the PMU for the WakeUp Interrupt Controller (WIC) mode deep sleep operation

LOCKUPRESET Enable the clock and reset controller to generate a system reset automatically if the system locks up
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-10
ID062017 Non-Confidential

Functional Description
The design provides a 4-bit ECOREVNUM input that is connected to peripheral ID register 3.
It indicates the revision changes during an Engineering Change Order (ECO) of the chip design
process. You can tie this signal LOW, or connect it to special tie-off cells so that you can change
the ECO revision number in a silicon netlist, or at a lower level, for example the silicon mask.

2.6.3 Programmers model

Table 2-10 describes the system controller programmers model.

Table 2-10 System controller programmers model

Address Name Type Reset Descriptions

0x4001F000 REMAP RW 1 Bit 0:
1 Enable remap feature.
0 Disable remap feature.
Software symbol: CMSDK_SYSCON->REMAP

0x4001F004 PMUCTRL RW 0 Bit 0:
1 Enable PMU. If not present the value of this bit is ignored.
0 Disable PMU.
Not available for Cortex-M0 DesignStart.
Software symbol CMSDK_SYSCON->PMUCTRL

0x4001F008 RESETOP RW 0 Bit 0:
1 Automatically generates system reset if the processor is in the

LOCKUP state.
0 Does not automatically generate reset when the processor is in the

LOCKUP state.
Software symbol CMSDK_SYSCON->RESETOP

0x4001F00C - - - Reserved

0x4001F010 RSTINFO RW 0 Bit 2 - If 1, processor LOCKUP caused the reset.
Bit 1 - If 1, Watchdog caused the reset.
Bit 0 - If 1, SYSRESETREQ caused the reset.
Write 1 to each bit to clear.
Software symbol CMSDK_SYSCON-> RSTINFO

0x4001FFD0 PID4 RO 0x04 Peripheral ID 4.
[7:4] Block count.
[3:0] jep106_c_code.

0x4001FFD4 PID5 RO 0x00 Peripheral ID 5, not used.

0x4001FFD8 PID6 RO 0x00 Peripheral ID 6, not used.

0x4001FFDC PID7 RO 0x00 Peripheral ID 7, not used.

0x4001FFE0 PID0 RO 0x26 Peripheral ID 0.
[7:0] Part number.

0x4001FFE4 PID1 RO 0xB8 Peripheral ID 1.
[7:4] jep106_id_3_0.
[3:0] Part number[11:8].
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-11
ID062017 Non-Confidential

Functional Description
The PORESETn signal resets the RSTINFO register. The HRESETn signal resets all the other
resettable registers.

0x4001FFE8 PID2 RO 0x1B Peripheral ID 2.
[7:4] revision.
[3] jedec_used.
[2:0] jep106_id_6_4.

0x4001FFEC PID3 RO 0x-0 Peripheral ID 3.
[7:4] ECO revision number.
[3:0] Customer modification number.

0x4001FFF0 CID0 RO 0x0D Component ID 0.

0x4001FFF4 CID1 RO 0xF0 Component ID 1 (PrimeCell class).

0x4001FFF8 CID2 RO 0x05 Component ID 2.

0x4001FFFC CID3 RO 0xB1 Component ID 3.

Table 2-10 System controller programmers model (continued)

Address Name Type Reset Descriptions
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-12
ID062017 Non-Confidential

Functional Description
2.7 I/O pins
The example microcontroller has two 16-bit I/O ports and several debug signal connections.
You can switch several I/O port pins to an alternate function. Figure 2-4 shows the interface of
the example microcontroller.

Figure 2-4 Example microcontroller interface

Table 2-11 describes the I/O of the example MicroController Unit (MCU).

cmsdk_mcu

Clock and
reset

signals

Debug signals,
JTAG is not

included

Debug
signals

I/O port 0

I/O port 1

NRST

XTAL1

XTAL2

SWCLKTCK

SWDIOTMS

nNRST

TDI

TDO

P0[15:0]

P1[15:0]

Table 2-11 Example MCU I/O

Signal Direction Description

XTAL1 Input Crystal oscillator

XTAL2 Output Crystal oscillator feedback

NRST Input Reset, active LOW

P0[15:0] Input GPIO

P1[15:0] Input GPIO

nTRSTa

a. This signal is always present and connects to a dummy DAP
module. The dummy DAP is present to show how it is
integrated in the full processor.

Input JTAG reset, active LOWb

b. This signal is only present when you select the JTAG option.

TDIa Input JTAG data inb

SWDIOTMSa Input Serial Wire Data or JTAG TMS

SWCLKTCKa Input Serial Wire clock or JTAG clock

TDOa Output JTAG data outb
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-13
ID062017 Non-Confidential

Functional Description
Table 2-12 shows the alternate functions of the GPIO 1 ports that support pin multiplexing.

Before you use the I/O pins for alternate functions, you might want to program the
corresponding GPIO alternate function registers. This step might not be necessary when you use
the alternate function as an input.

Table 2-12 GPIO alternate functions

Pin Alternate function

GPIO 1 [15:10] No alternate function.

GPIO 1 [9] Timer 1 EXTIN. Always use as timer 1 external input. The GPIO 1 alternate function setting has no effect.

GPIO 1 [8] Timer 0 EXTIN. Always use as timer 0 external input.The GPIO 1 alternate function setting has no effect.

GPIO 1 [7] TSTART to MTB.

GPIO 1 [6] TSTOP to MTB.

GPIO 1 [5] UART2 TXD.

GPIO 1 [4] UART2 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.

GPIO 1 [3] UART1 TXD.

GPIO 1 [2] UART1 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.

GPIO 1 [1] UART0 TXD.

GPIO 1 [0] UART0 RXD. Always use as UART input. The GPIO 1 alternate function setting has no effect.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-14
ID062017 Non-Confidential

Functional Description
2.8 Interrupts and event functions
The example system contains:
• 32 Interrupt Request (IRQ) lines.
• One NonMaskable Interrupt (NMI).
• One event signal.

Note
 The Cortex-M0 DesignStart only supports 32 interrupts.

2.8.1 Interrupt assignments

Table 2-13 describes the interrupt assignments.

2.8.2 Interrupt synchronization

If a peripheral generates an interrupt signal in a clock domain that is asynchronous to the
processor clock, you must synchronize the interrupt signal to the processor clock domain before
you connect it to the NVIC of the processor. Figure 2-5 on page 2-16 shows an example circuit
that performs this synchronization.

Table 2-13 Interrupt assignments

IRQ/NMI Device

NMI Watchdog

0 UART 0 receive interrupt

1 UART 0 transmit interrupt

2 UART 1 receive interrupt

3 UART 1 transmit interrupt

4 UART 2 receive interrupt

5 UART 2 transmit interrupt

6 GPIO 0 combined interrupt for AHB GPIO and I/O port GPIO

7 GPIO 1 combined interrupt for AHB GPIO and I/O port GPIO

8 Timer 0

9 Timer 1

10 Dual timer

11 Not used

12 UART 0 overflow interrupt

13 UART 1 overflow interrupt

14 UART 2 overflow interrupt

15 Not used

16-31 GPIO 0 individual interrupts
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-15
ID062017 Non-Confidential

Functional Description
Figure 2-5 IRQ synchronizer

Note
 The IRQ synchronizer only works with a level-triggered interrupt source, so the peripheral must
hold the interrupt signal HIGH until the processor clears the ISR interrupt signal.

The APB subsystem contains several example IRQ synchronizers to demonstrate their use. The
synchronizers are optional. They are only enabled if you set the Verilog parameter
INCLUDE_IRQ_SYNCHRONIZER to a non-zero value. This Verilog parameter is defined in the
apb_subsystem.v file. It is not overridden in the cmsdk_mcu_system.v file.

The example system design uses the same clock source for the processor clock HCLK and the
peripheral clocks PCLK and PCLKG. Therefore there is no asynchronous clock domain
boundary, so this parameter is set LOW.

2.8.3 Event

The Cortex-M0 processor has an RXEV input signal. If software uses the WFE instruction to put
the processor to sleep, an event received at RXEV wakes up the processor.

D QD QD Q

Synchronized
Interrupt signal
to the processor

Interrupt
source

Processor
clock
Reset

Extra D-type flip-flop to prevent
glitches generating an unwanted pulse

Prevents metastability
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-16
ID062017 Non-Confidential

Functional Description
2.9 Clock and reset
The example microcontroller uses a single reset and a single clock source. The clock and reset
controller performs:
• The reset synchronization of the reset input.
• The generation of the reset outputs.
• The clock generation for the peripheral subsystem.

Figure 2-6 shows the clock and reset operation of the example microcontroller.

Figure 2-6 Example microcontroller clock and reset operation

The example only demonstrates a simple application scenario. ARM recommends that, for
actual silicon projects, you modify the clock controller design for device-specific testability and
clocking requirements.

The AHB to APB bridge in the APB subsystem permits the APB peripheral bus to run at a clock
rate that is derived from the AHB clock by PCLKEN. By default the example system ties HIGH
PCLKEN that connects to the AHB to APB bridge. Therefore PCLK is the same as HCLK. If
you require a slower APB clock, you must:
• Modify the Verilog file cmsdk_mcu_clkctrl.v to generate PCLKEN at a reduced rate.
• Use PCLKEN and clock gating logic to generate PCLK.

The Verilog file cmsdk_mcu_clkctrl.v is the clock and reset controller, and provides an example
of how to create a lower PCLK frequency. The ARM_CMSDK_SLOWSPEED_PCLK preprocessing
directive enables this feature. The Verilog file also provides a PCLKG clock signal used by the
APB interface logic in the peripherals. If there is no APB transfer activity, you can turn off the
PCLKG signal to reduce power. The AHB to APB bridge generates the APBACTIVE signal
that controls the generation of PCLKG.

Clock and reset
controller

cmsdk_mcu_clkctrl

HRESETn
FCLK

DBGRESETn

HRESETn

Processor status

System reset request,
Watchdog reset request

NRST
XTAL1
XTAL2

APBACTIVE

PRESETn

PCLK

PCLKG

Peripheral
subsystem

CORTEXMODS

HCLK
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-17
ID062017 Non-Confidential

Functional Description
2.10 SysTick support
The example system includes a simple divider to provide a reference clock for the SysTick
timer. The divider has a divide ratio of 1000. The system runs at 50MHz in simulation, so the
SysTick reference clock runs at 50KHz.

Table 2-14 describes the bit field values of the SysTick Calibration Value Register
(SYST_CALIB).

Note
 See the ARMv6-M Architecture Reference Manual for more information about the
SYST_CALIB Register.

Table 2-14 STCALIB register bit field values

Signal SysTick->CALIB register field Value

STCALIB[25] NOREF (bit 31) 0 Reference clock is available

STCALIB[24] SKEW (bit 30) 1 Calibration value is not accurate

STCALIB[23:0] TENMS (bit 23 to 0) 0 Calibration value is not available
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 2-18
ID062017 Non-Confidential

Chapter 3
Example System Testbench

This chapter describes the testbench components. It contains the following sections:
• About the testbench design on page 3-2.
• UART text output capturing and escape code on page 3-3.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 3-1
ID062017 Non-Confidential

Example System Testbench
3.1 About the testbench design
The example system includes a testbench to enable you to simulate the example microcontroller
with a supported Verilog simulator.

The testbench includes:
• A loop back connection for UART testing.
• A clock and reset generator.
• Text message capture by the UART.

Figure 2-1 on page 2-2 shows the testbench in use with an example system.

For simulation, XTAL1 runs at 50MHz. NRST is asserted LOW for 5ns at the beginning of the
simulation.

UART0 connects to UART1 in a crossover arrangement so you can test the serial
communication. The serial output of UART2 is connected to a UART capture module that can
generate text messages during simulation. See the cmsdk_uart_capture.v file.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 3-2
ID062017 Non-Confidential

Example System Testbench
3.2 UART text output capturing and escape code
When a program wants to display a message in the simulation environment, it can execute the
printf or puts functions. It can also directly call the UART routines to output the message to
UART2. When it executes the printf or puts functions, the UART output routine executes
through retargeting code and outputs the characters to the serial output of UART2. The UART
capture module captures the input data and outputs the received characters when it receives the
Carriage Return (CR) character.

To reduce simulation time, the high-speed test mode of the example system UART outputs each
bit in one clock cycle. Therefore, the UART capture module captures the input data at one bit
per cycle. If the UART outputs serial data at a different speed, you must change the clock that
connects to the UART capture module.

You can also use the UART capture module to terminate a simulation. When it receives a
character value of 0x4, unless it receives this character immediately following the ESC (0x1B)
character, it stops the simulation using the $stop Verilog system task. Before the end of the
simulation, the UART capture module outputs a pulse on the SIMULATIONEND output to
enable you to use this signal to trigger other tasks or hardware logic before the end of a
simulation.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 3-3
ID062017 Non-Confidential

Chapter 4
Using the Simulation Environment

This chapter describes how to set up and run simulation tests. It contains the following sections:
• About the simulation environment on page 4-2.
• Files and directory structure on page 4-3.
• Setting up the simulation environment on page 4-5.
• Running a simulation in the simulation environment on page 4-6.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-1
ID062017 Non-Confidential

Using the Simulation Environment
4.1 About the simulation environment
The simulation environment in this example system enables you to start a system-level
simulation quickly. The simulation environment includes software files and simulation setup
makefiles.

The simulation environment supports the following Verilog simulators:
• Mentor ModelSim.
• Cadence NC Verilog.
• Synopsys VCS.

The makefile for setting up the simulation is created for the Linux platform.

You can compile the example software using any of the following:
• ARM Development Studio 5 (DS-5).
• Keil Microcontroller Development Kit (MDK).
• GNU Tools for ARM Embedded Processors (ARM GCC).

The Keil MDK is available only for the Windows platform. Therefore, to use Keil MDK you
must carry out the software compilation and the simulation in two separate stages.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-2
ID062017 Non-Confidential

Using the Simulation Environment
4.2 Files and directory structure
Figure 4-1 shows the layout of the directories in the example system.

Figure 4-1 Directories for simulation

Table 4-1 describes the contents of several of the directories in Figure 4-1.

<Installation directory/>

software/

common/

demos/

retarget/

bootloader/

Common software files

scripts/

systems/

Other example systems

cortex_m0_mcu/

verilog/

rtl_sim/

makefile

testcodes/

hello/

makefile

[other test]/

makefile

validation/

cmsis/

CMSIS/

Device/

ARM/

CMSDK_CM0/

logical/

romtable_tests/

debug_tests/

Table 4-1 Installation directory information

Directory name Directory contents

software/cmsis/CMSIS Example processor support files.

software/cmsis/Device/ARM/ Example device-specific processor support files and example system header
files, for example, CMSDK_CM0 for Cortex-M0.

systems/cortex_m0_mcu/verilog Verilog and Verilog command files.

systems/cortex_m0_mcu/rtl_sim/ Files for simulation that includes a makefile to compile the Verilog and run
the simulation. It also invokes a makefile in the testcodes directory to
compile the software.

systems/cortex_m0_mcu/testcodes/ Testcodes for software testing.

systems/cortex_m0_mcu/testcodes/<testname>/makefile Makefile for example testcodes, for DS-5 and ARM GCC.

software/common/demos C program codes for demonstration.

software/common/validation C program codes for functional tests.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-3
ID062017 Non-Confidential

Using the Simulation Environment
software/common/bootloader Example boot loader.

software/common/dhry Dhrystone demonstration.

software/common/retarget Support files to handle printing.

software/common/scripts Linker scripts.

Table 4-1 Installation directory information (continued)

Directory name Directory contents
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-4
ID062017 Non-Confidential

Using the Simulation Environment
4.3 Setting up the simulation environment
This section describes how to set up the simulation environment. It contains the following:
• Modifying the rtl_sim/makefile.
• Modifying configuration files.
• Setting up tools.

4.3.1 Modifying the rtl_sim/makefile

The makefile in the rtl_sim directory controls the following simulation operations:
• Compiling the RTL.
• Running the simulation in batch mode.
• Running the simulation in interactive mode.

You must specify several variables inside this makefile. Table 4-2 describes the variables.

Note
 • You do not have to edit all of these variables every time you run a different test. You can

override the makefile variables with command line options. For example, you can keep
the TESTNAME variable unchanged, and override it only when you run a simulation.

• See Run the simulation on page 4-8 for example test programs.

4.3.2 Modifying configuration files

The systems/cortex_m0_mcu/verilog/cmsdk_mcu_defs.v file specifies most of the configurations
of the example system.

4.3.3 Setting up tools

The simulation requires one of the supported Verilog simulators and tools, for compiling and
assembling the software code.

Table 4-2 Makefile variables

Variable Descriptions

TESTNAME Name of software test to be executed, for example, hello or dhry. This name must match the software directory
name inside the systems/cortex_m0_mcu/testcodes/ directory.

TEST_LIST List of tests available.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-5
ID062017 Non-Confidential

Using the Simulation Environment
4.4 Running a simulation in the simulation environment
This section describes how to run a simulation in the design toolkit. It contains the following
sections:
• Compile the RTL.
• Compile the test code.
• Run the simulation on page 4-8.

4.4.1 Compile the RTL

After you have configured the environment, you must compile the Verilog RTL in the rtl_sim
directory. To do this, use the following command:

<installation directory>/systems/cortex_m0_mcu/rtl_sim> make compile

This starts the compilation process. The process uses a Verilog command file that the value of
parameter CPU_PRODUCT determines. The compile stage ignores the TESTNAME setting.

You can use the command line to override variables in the makefile. For example, the following
command line specifies that Modelsim is used for compilation:

<installation directory>/systems/cortex_m0_mcu/rtl_sim> make compile SIMULATOR=mti

4.4.2 Compile the test code

Before you compile the software code, you might want to change some of the settings for the
software compilation. Each software test has a corresponding subdirectory in the
systems/cortex_m0_mcu/testcodes directory. Inside each of these directories is a makefile for
software compilation. The makefiles support ARM DS-5 and ARM GCC. Table 4-3 lists the
settings contained in the makefiles.

Table 4-3 Makefile settings

Variable Descriptions

TOOL_CHAIN This can be set to one of the following:
ds5 ARM Development Suite.
gcc ARM GCC.
keil Keil Microcontroller Development Suite.
If you select keil, the make process pauses so you can manually continue the compilation from Keil MDK in the
Windows environment.

TESTNAME Name of the software test. This must match the directory name.

COMPILE_MICROLIB Use only for the DS-5 option.
0 Normal C runtime library. This is the default value.
1 MicroLIB, a C runtime library optimized for microcontroller applications.

USER_DEFINE A user-defined C preprocessing macros. Set to -DCORTEX_M0 for most test codes. This enables a piece of test code
to include the correct header for the processor when multiplex example systems share the test code. You can add
more preprocessing macros for your applications.

SOFTWARE_DIR Shared software directory

CMSIS_DIR Base location of all CMSIS source code.

DEVICE_DIR Device specific support files, for example, header files, and device driver files.

STARTUP_DIR Startup code location.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-6
ID062017 Non-Confidential

Using the Simulation Environment
Note
 A Keil-specific project file specifies the options for Keil MDK.

Use makefiles to compile your software. You can use one of the following makefiles:
• The makefile in testcodes/<testname>.
• The makefile in rtl_sim, software compilation only.

The makefile in testcodes/<testname>

Execute the following:

make all This starts the software compilation process for DS-5 or ARM GCC.

You can override the variable in the makefile, for example, by executing the following:

make all TOOL_CHAIN=ds5 COMPILE_MICROLIB=1
This causes the program to compile using DS-5 with the MicroLIB option
enabled.

make clean This cleans all intermediate files created during the compilation process invoked
by make all. If changes are made in code other than the testcode itself, for
example, in the CMSIS header files, running make clean ensures that these
changes are detected by a subsequent make all.

The makefile in rtl_sim, software compilation only

For example, in systems/cortex_m0_mcu/rtl_sim/, you can execute:

make code The makefile in the rtl_sim directory changes the current directory to the one
specified by the TESTNAME variable. By default there is no TESTNAME specified in the
makefile. If make code is executed without specifying a TESTNAME on the make
command line or by editing the makefile, a message is printed requesting a
TESTNAME to be specified.

You can use the command line to specify the software test that you want to run by executing the
following:

make code TESTNAME=hello
This causes the hello test and the bootloader code to compile. The process then
copies the compiled code images to the rtl_sim directory.

ARM_CC_OPTIONS ARM C Compiler options. Use only for the DS-5 option.

ARM_ASM_OPTIONS ARM Assembler options. Use only for the DS-5 option.

ARM_LINK_OPTIONS ARM Linker options. Use only for the DS-5 option.

GNU_CC_FLAGS gcc compile option. Use only for the ARM GCC option.

LINKER_SCRIPT Linker script location. Use only for the ARM GCC option.

Table 4-3 Makefile settings (continued)

Variable Descriptions
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-7
ID062017 Non-Confidential

Using the Simulation Environment
Note
 Use the make code option to debug compilation errors because this option does not invoke
simulation.

4.4.3 Run the simulation

After the RTL compilation, you can start the simulation in the systems/cortex_m0_mcu/rtl_sim/
directory using one of the following commands:
make sim For interactive simulation.
make run For batch mode simulation.

The makefile in the rtl_sim directory automatically invokes the makefiles in the testcodes
directories. Figure 4-2 shows the interaction of the makefiles.

Note
 The make run and the make sim step automatically runs the make code operation. Therefore, if you
have previously compiled a test using make code with specific options, you must repeat the same
options when you invoke make run or make sim.

For example:
• make code TESTNAME=sleep_demo TOOL_CHAIN=ds5 COMPILE_MICROLIB=1

• make sim TESTNAME=sleep_demo TOOL_CHAIN=ds5 COMPILE_MICROLIB=1 SIMULATOR=vcs

If you do not do this, the software test might be recompiled without the previous configuration
settings. The command make code enables you to test that a program file compiles correctly. It
does not start the simulation.

Figure 4-2 Interaction of makefiles

<Installation directory/>

software/

common/

demos/

retarget/

bootloader/ Common software files

scripts/

systems/

cortex_m0_mcu/

verilog/

rtl_sim/

makefile

testcodes/

hello/

makefile

bootloader/

makefile

hello.c

validation/

cmsis/

CMSIS/

Device/

ARM/

CMSDK_CM0/
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-8
ID062017 Non-Confidential

Using the Simulation Environment
The software directory contains shared header files and shared test programs.

To compile the software and run a simulation, execute make run TESTNAME=hello in the rtl_sim
directory:

• The makefile in the rtl_sim directory uses the makefile in the bootloader directory to
compile the boot loader code and copy the resulting image back to the rtl_sim directory.

• The makefile in the rtl_sim directory uses the makefile in the hello directory to compile
the hello world code and copy the resulting image back to the rtl_sim directory.

• The makefile in the rtl_sim directory starts the simulator.

If you set the software toolchain in the makefile to keil, this causes the make process to pause
and prompt you to compile your project in Keil MDK. You can resume the process by pressing
any key.

You can use command line options to override the makefile variables. For example:

• make sim TESTNAME=sleep_demo SIMULATOR=vcs TOOL_CHAIN=ds5

The last action of the simulation writes the value 0x4 to UART2. When the cmsdk_uart_capture
device captures this value, it triggers the simulation to stop.

For example, the hello test results in the following output for the Cortex-M0 processor:

30490 ns UART: Hello world
52410 ns UART: ** TEST PASSED **
54270 ns UART: Test Ended
** Note: $stop : ../verilog/cmsdk_uart_capture.v(208)
Time: 54270 ns Iteration: 1 Instance: /tb_cmsdk_mcu/u_cmsdk_uart_capture
Break at ../verilog/cmsdk_uart_capture.v line 208
Stopped at ../verilog/cmsdk_uart_capture.v line 208
quit -f

The Verilog file cmsdk_uart_capture.v contains the text Test Ended that it displays before the
simulation stops.

To compile the testbench and run all the tests that the TEST_LIST variable specifies, execute the
following on the command line:

make all

You can use the command line to override several test parameters. For example, to specify the
VCS simulator execute the following:

make all SIMULATOR=vcs
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 4-9
ID062017 Non-Confidential

Chapter 5
Software Examples

This chapter describes the example software tests and the device drivers. It contains the following
sections:
• Available simulation tests on page 5-2.
• Creating a new test on page 5-3.
• Example header files and device driver files on page 5-4.
• Retargeting on page 5-6.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-1
ID062017 Non-Confidential

Software Examples
5.1 Available simulation tests
Table 5-1 shows the example software tests that this design kit contains.

Some of the tests are timing dependent and are written for a system with zero wait states. The
test might fail if you change the wait states of the system.

The RTX OS is a feature in the Keil MDK-ARM. The example software package includes a
precompiled hex file of the RTX demonstration test, therefore you can simulate this test without
a Keil MDK-ARM setup. For this test, the example software package includes the project files
that you can modify and recompile if you require.

The config_id.h header file in the testcodes/generic directory contains the defines for each of
the available functions in the Cortex-M0 processor. The values are set to match the fixed
configuration of the CortexM0 processor from DesignStart.

Table 5-1 Example software test list

TESTNAME Descriptions

hello Simple test to display the Hello world message. It uses the retargeting action that redirects printf
to the UART output.

interrupt_demo Demonstration of interrupt features.

sleep_demo Demonstration of sleep features.

dhry Simple Dhrystone test.

self_reset_demo Demonstration of the self reset feature that uses the signal SYSRESETREQ.

dualtimer_demo Demonstration of the APB Dual Timer.

watchdog_demo Demonstration of the APB Watchdog.

rtx_demo Demonstration of the Keil RTX OS.

gpio_tests Tests the low latency AHB GPIO. Supports I/O GPIO.

timer_tests Tests the simple APB timer.

uart_tests Tests the simple APB UART.

default_slaves_tests Tests the default slave activation. It accesses invalid memory locations.

gpio_driver_tests Simple test for the GPIO device driver functions.

timer_driver_tests Simple test for the simple timer device driver functions.

uart_driver_tests Simple test for the UART device driver functions.

apb_mux_tests Simple test for the APB slave multiplexer.

memory_tests Simple test for the system memory map.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-2
ID062017 Non-Confidential

Software Examples
5.2 Creating a new test
You can add new tests to the testcodes directory. Use the hello test as a guide to the format you
can use. For example, you can use the following process to create a new test:

1. Create a new directory in the testcodes/ directory. For example:
a. cd <installation_directory>/systems/cortex_m0_mcu/testcodes

b. mkdir mytest

2. Copy the files that are located in the hello/ directory to your new test directory, and then
rename the test file. For example:
a. cd mytest

b. cp ../hello/* .

c. mv hello.c mytest.c

3. Edit the makefile to rename hello.c to mytest.c

4. Ensure that the output hex file has the same name as the directory name, for example
mytest.hex. This enables the makefile in rtl_sim/ directory to copy the hex file to the
rtl_sim/ directory before the simulation starts.

5. If required, you can add the name of your new test to the TEST_LIST variable in the makefile
located in the rtl_sim/ directory.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-3
ID062017 Non-Confidential

Software Examples
5.3 Example header files and device driver files
The example software uses header files that are based on the Cortex Microcontroller Software
Interface Standard (CMSIS). The example software includes the following types of files:

• Generic Cortex-M0 processor header files, located in directory
software/cmsis/CMSIS/Include/.

• Device-specific header files, located in directory software/cmsis/Device/ARM/CMSDK_CM0/.

• Device-specific startup codes, located in directory cmsis/Device/ARM/CMSDK_CM0/Source/.

• Device-specific example device drivers, located in directory
cmsis/Device/ARM/CMSDK_CM0/.

Note
 You must update to the latest version of the CMSIS-Core files when preparing your own CMSIS
software packages. See ARM CMSIS-Core http://www.arm.com/cmsis.

Table 5-2 shows the generic Cortex-M0 processor support files.

Table 5-3 shows the device-specific header files.

Table 5-4 shows the device-specific startup codes.

Table 5-2 Generic Cortex-M0 processor support files

Filename Descriptions

core_cm0.h CMSIS 3.0 compatible header file for processor peripheral registers definitions.

core_cmInstr.h CMSIS 3.0 compatible header file for accessing special instructions.

core_cmFunc.h CMSIS 3.0 compatible header file for accessing special registers.

Table 5-3 Device-specific header files

Filename Descriptions

CMSDK_CM0.h CMSIS compatible device header file including register definitions

system_CMSDK_CM0.h CMSIS compatible header file for system functions

system_CMSDK_CM0.c CMSIS compatible program file for system functions

Table 5-4 Device-specific startup codes

Filename Descriptions

cmsis/Device/ARM/CMSDK_CM0/Source/ARM/startup_CMSDK_CM0.s CMSIS compatible startup code for ARM DS-5 or Keil
MDK

cmsis/Device/ARM/CMSDK_CM0/Source/GCC/startup_CMSDK_CM0.s CMSIS compatible startup code for ARM GCC
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-4
ID062017 Non-Confidential

Software Examples
Table 5-5 shows the device-specific example device drivers.

To use these header files, you only have to include the device-specific header file CMSDK_CM0.h.
This file imports all the required header files. Because some of the shared program files in the
software/common directory also support different types of processor, these programs include the
following header code:

#ifdef CORTEX_M0
#include "CMSDK_CM0.h"
#endif

The makefile in directory systems/cortex_m0_mcu/testcodes/<testname> contains the
USER_DEFINE variable that defines the C preprocessing directive CORTEX_M0. This ensures that the
simulation uses the correct version of the header file.

Table 5-5 Device-specific example device drivers

Filename Descriptions

CMSDK_driver.h Header file for including driver code

CMSDK_driver.c Driver code implementation
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-5
ID062017 Non-Confidential

Software Examples
5.4 Retargeting
Several test programs use the printf and puts functions to display text messages during the
simulation. The retargeting code performs this function. It redirects text output to UART2. The
tb_uart_capture device in the testbench captures the text and outputs it to the simulation console
during the simulation.

For the ARM DS-5 and Keil MDK environments, the retarget function for text output is fputc.
The retarget function for ARM GCC, and most gcc based C compilers, is the _write_r function.
These functions are located in file software/common/retarget/retarget.c.

Table 5-6 shows the files required for retargeting support.

The UART support files are uart_stdout.c and uart_stdout.h. Table 5-7 shows the UART
functions.

Table 5-6 Retargeting support files

Files Descriptions

software/common/retarget/retarget.c Retargeting implementation for ARM DS-5, Keil MDK, and ARM GCC

software/common/retarget/uart_stdout.h Header for UART functions used by retarget.c

software/common/retarget/uart_stdout.c Implementation of UART functions

Table 5-7 Support file functions

Function Descriptions

void UartStdOutInit(void) Initialize UART2 and GPIO1 (for pin multiplexing) for text message output.

char UartPutc(unsigned char my_ch) Output a single character to UART 2.

char UartGetc(void) Read a character from UART.

char UartEndSimulation(void) Terminate the simulation by sending value 0x4 to UART 2. When tb_uart_capture receives
this data it stops the simulation.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 5-6
ID062017 Non-Confidential

Chapter 6
Synthesis

This chapter describes how to run synthesis for the example system. It contains the following
sections:
• Implementation overview on page 6-2.
• Directory structure and files on page 6-3.
• Implementation flow on page 6-4.
• Timing constraints on page 6-5.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-1
ID062017 Non-Confidential

Synthesis
6.1 Implementation overview
The design kit includes a set of example scripts to enable synthesis of the cmsdk_mcu_system. The
example scripts support Synopsys Design Compiler. The scripts in the design kit provide a
simple setup to enable you to quickly obtain area and timing information from the design:

• They do not include all required steps for a complete implementation flow.

• They do not support SRPG implementation and handle the whole design as one single
power domain.

• They must not be used for design signoff.

Three main steps are provided in the scripts:

1. Synthesis, which is handled by cmsdk_mcu_system_syn.tcl.

2. DFT scan insertion, which is handled by cmsdk_mcu_system_dft.tcl.

3. Logical Equivalence Checking (LEC) of the netlist against the Verilog model, which is
handled by cmsdk_mcu_system_fm.tcl.

Note
 This script does not handle Automatic Test Pattern Generation (ATPG).

The design kit uses the design level cmsdk_mcu_system because it contains all parts of the systems
except the blocks that might affect DFT, for example, reset and clock generation logic, and
memories. You must synthesize the clock and reset generation logic separately to avoid issues
with scan test control. In addition, you might want to modify the clock and reset logic, and the
PMU to your own requirements for system-level power management.

The memory blocks included in the design kit are behavioral model, and therefore not suitable
for synthesis.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-2
ID062017 Non-Confidential

Synthesis
6.2 Directory structure and files
Figure 6-1 shows the file directories in the synthesis environment.

Figure 6-1 Implementation directories

Table 6-1 shows the directories in the synthesis environment.

Table 6-2 shows the contents of the scripts/ directory.

<Installation directory/>

implementation_tsmc_ce018fg/

cortex_m0_mcu_system_synopsys/

scripts/

data/

reports/

synthesis/

dft/

logs/

work/

lec/

Table 6-1 Implementation directories

Directories Descriptions

scripts/ Location of the synthesis scripts.

data/ Location of the data generated from the synthesis process.

reports/ Location of the report files.

logs/ Location of the synthesis log file.

work/ Location of the temporary files generated from the elaboration of the design. ARM recommends that you clear the
contents of this directory before you run a new synthesis.

Table 6-2 Contents of the scripts/ directory

Files Descriptions

cmsdk_mcu_system_syn.tcl Main script for the synthesis process

cmsdk_mcu_system_dft.tcl Main script for the DFT scan chain insertion process

cmsdk_mcu_system_tech.tcl Setup for the cell library and technology specific parameters

cmsdk_mcu_system_verilog.tcl Specifies the Verilog files for synthesis, including the library-specific clock gate model

cmsdk_mcu_system_verilog-rtl.tcl Specifies the Verilog files for LEC, including the generic RTL clock gate model

design_config.tcl Configuration of the synthesis

cmsdk_mcu_system_clocks.tcl Clock generation script

cmsdk_mcu_system_constraints.tcl Constraints of the design, for example, timing

cmsdk_mcu_system_fm.tcl Main script for Logical Equivalence Checking (LEC)

cmsdk_mcu_system_reports.tcl Main script for the design report generation
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-3
ID062017 Non-Confidential

Synthesis
6.3 Implementation flow
The implementation flow includes the following steps:

1. Customize the synthesis script for the targeted cell library.

2. Customize the synthesis script for the timing constraints and configuration.

3. Perform the synthesis.

4. Review the result.

You must customize the synthesis scripts before starting synthesis, as Table 6-3 shows.

Table 6-3 Synthesis script descriptions

Script name Description

cmsdk_mcu_system_tech.tcl Update this file to match the cell library installation path in your environment. Also, update this
file if you use a different semiconductor process or use different process-related constraints.

cmsdk_mcu_system_verilog.tcl Update this file to define the design files you want to synthesize.

cmsdk_mcu_system_constraints.tcl Update this file if your timing requirements of the design are different from the default settings,
for example the input and output constraints.

design_config.tcl Update this file if you change the configuration of your design.
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-4
ID062017 Non-Confidential

Synthesis
6.4 Timing constraints
This section describes the following timing issues of a design:
• Maximum frequency.
• Input and output delay
• Combinatorial paths on page 6-7.
• Running the makefile on page 6-7.

6.4.1 Maximum frequency

The default synthesis scripts target a frequency of 50MHz on a 0.18µm Ultra Low Leakage
(ULL) process. Although the Cortex-M0 processor is capable of running at higher frequencies,
the extra bus infrastructure results in longer timing paths.

You can also increase the maximum clock frequency if you relax the timing constraints of the
memory interface.

6.4.2 Input and output delay

The input delay and output delay of the interface ports define their timing constraints. Figure 6-2
shows the input delays and output delays of the interface ports.

Figure 6-2 Input and output delays

Table 6-4 on page 6-6 describe the default input and output delay setting in the example
synthesis script. The higher the percentage value, the tighter the timing requirement.

D Q delay delay D Q delay D Q delay D Qdelay

Input
delay

Output
delay

Design boundary

100% of a
clock cycle

100% of a
clock cycle
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-5
ID062017 Non-Confidential

Synthesis
Table 6-4 shows the timing constraints for the FCLK domain and HCLK domain interface
signals.

Table 6-4 Timing constraints for FCLK and HCLK

Interface Signals Type Descriptions Input
delay

Output
delay

Memory AHB HADDR[31:0]
HTRANS[1:0]
HSIZE[2:0]
HWRITE
HWDATA[31:0]
HREADY

Output
Output
Output
Output
Output
Output

Address
Transfer type
Transfer size
Transfer direction
Write data
Transfer ready

50%
50%
50%
50%
60%
30%

SRAM AHB sram_hsel
sram_hreadyout
sram_hrdata[31:0]
sram_hresp

Output
Input
Input
Input

Device select for SRAM
SRAM ready
SRAM read data
SRAM response

40%
60%
60%

50%

CPU status SYSRESETREQ
LOCKUP

Output
Output
Output
Output

System reset request
Core is locked up

50%
50%

Reset WDOGRESETREQ
LOCKUPRESET
HRESETn
PORESETn
DBGRESETn
PRESETn

Output
Output
Input
Input
Input
Input

Watchdog reset request
Reset system when locked up
AHB reset
Power on reset
Debug reset
APB reset

60%
60%
60%
60%

50%
50%

UART uart0_rxd
uart0_txd
uart0_txen
uart1_rxd
uart1_txd
uart1_txen
uart2_rxd
uart2_txd
uart2_txen

Input
Output
Output
Input
Output
Output
Input
Output
Output

UART0 receive data
UART0 transmit data
UART0 transmit enable
UART1 receive data
UART1 transmit data
UART1 transmit enable
UART2 receive data
UART2 transmit data
UART2 transmit enable

60%

60%

60%

60%
60%

60%
60%

60%
60%

Timer timer0_extin
timer1_extin

Input
Input

Timer0 external input
Timer1 external input

60%
60%

GPIO p0_in[15:0]
p0_out[15:0]
p0_outend[15:0]
p0_altfunc[15:0]
p1_in[15:0]
p1_out[15:0]
p1_outend[15:0]
p1_altfunc[15:0]

Input
Output
Output
Output
Input
Output
Output
Output

GPIO port0 input
GPIO port0 output
GPIO port0 output enable
GPIO port0 alternate function
GPIO port1 input
GPIO port1 output
GPIO port1 output enable
GPIO port1 alternate function

60%

60%

60%
60%
60%

60%
60%
60%
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-6
ID062017 Non-Confidential

Synthesis
6.4.3 Combinatorial paths

Figure 6-3 shows a combinatorial path in the design that affects the input and output constraints.

Figure 6-3 HREADY path

Because of this signal path, the example script sets the HREADY output delay value to only
30%.

6.4.4 Running the makefile

The makefile is located in implementation_tsmc_ce018fg/cortex_m0_mcu_system_synopsys. This
makefile performs synthesis and Design For Test (DFT), and generates a log file. Use the
makefile as follows:

make synthesis Performs synthesis using the topological features.

make dft Inserts DFT into the netlist after synthesis.

make lec_synthesis Performs LEC on the synthesized netlist.

make lec_dft Performs LEC on the DFT netlist.

make front Performs both the synthesis and DFT steps.

make analysis Performs both the LEC steps on the synthesized and DFT netlists.

make all Performs all steps, that is, synthesis, DFT, LEC synthesis, and LEC DFT.

make clean Cleans all the report directories, log files, and database information to be
removed, ready for a new run.

flash_readyout

sram_readyout

boot_readyout

HREADY

Design boundary
ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. 6-7
ID062017 Non-Confidential

ARM DUI 0926A Copyright © 2015 ARM. All rights reserved. A-1
ID062017 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Issue A

Change Location Affects

First release - -

	ARM Cortex-M0 DesignStart RTL Testbench User Guide
	Contents
	Preface
	About this book
	Implementation obligations
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About Cortex-M0 DesignStart Kit
	1.2 Cortex-M0 DesignStart Design Kit directory structure
	1.3 Limitations of the design kit
	1.3.1 Deliverables
	1.3.2 Processor support
	1.3.3 Endian support
	1.3.4 Platform

	2: Functional Description
	2.1 System-level design and design hierarchy
	2.2 Design files
	2.2.1 Verilog files for the cmsdk_mcu example system
	2.2.2 Verilog files for the cortex_m0_mcu testbench
	2.2.3 Other files

	2.3 Processor file location
	2.4 Configuration options
	2.5 Memory map
	2.5.1 AHB memory map
	2.5.2 APB subsystem memory map

	2.6 System controller
	2.6.1 About the system controller
	2.6.2 System controller block diagram
	2.6.3 Programmers model

	2.7 I/O pins
	2.8 Interrupts and event functions
	2.8.1 Interrupt assignments
	2.8.2 Interrupt synchronization
	2.8.3 Event

	2.9 Clock and reset
	2.10 SysTick support

	3: Example System Testbench
	3.1 About the testbench design
	3.2 UART text output capturing and escape code

	4: Using the Simulation Environment
	4.1 About the simulation environment
	4.2 Files and directory structure
	4.3 Setting up the simulation environment
	4.3.1 Modifying the rtl_sim/makefile
	4.3.2 Modifying configuration files
	4.3.3 Setting up tools

	4.4 Running a simulation in the simulation environment
	4.4.1 Compile the RTL
	4.4.2 Compile the test code
	4.4.3 Run the simulation

	5: Software Examples
	5.1 Available simulation tests
	5.2 Creating a new test
	5.3 Example header files and device driver files
	5.4 Retargeting

	6: Synthesis
	6.1 Implementation overview
	6.2 Directory structure and files
	6.3 Implementation flow
	6.4 Timing constraints
	6.4.1 Maximum frequency
	6.4.2 Input and output delay
	6.4.3 Combinatorial paths
	6.4.4 Running the makefile

	A: Revisions

