
ARM® Compiler
Version 6.00

Errors and Warnings Reference Guide
Copyright © 2014 ARM. All rights reserved.
ARM DUI 0807A (ID031214)

ARM Compiler
Errors and Warnings Reference Guide

Copyright © 2014 ARM. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Description Issue Confidentiality Change

14 March 2014 A Non-Confidential ARM Compiler v6.00 Release
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. ii
ID031214 Non-Confidential

ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. iii
ID031214 Non-Confidential

Contents
ARM Compiler Errors and Warnings Reference
Guide

Chapter 1 Conventions and Feedback

Chapter 2 armasm Errors and Warnings
2.1 List of the armasm error and warning messages ... 2-2

Chapter 3 Linker Errors and Warnings
3.1 Suppressing armlink error and warning messages .. 3-2
3.2 List of the armlink error and warning messages .. 3-3

Chapter 4 ELF Image Converter Errors and Warnings
4.1 List of the fromelf error and warning messages ... 4-2

Chapter 5 Librarian Errors and Warnings
5.1 List of the armar error and warning messages .. 5-2

Chapter 6 Other Errors and Warnings
6.1 Internal faults and other unexpected failures ... 6-2
6.2 List of other error and warning messages ... 6-3

Chapter 1
Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• Your name and company.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 1-1
ID031214 Non-Confidential

Conventions and Feedback
• The serial number of the product.
• Details of the release you are using.
• Details of the platform you are using, such as the hardware platform,

operating system type and version.
• A small standalone sample of code that reproduces the problem.
• A clear explanation of what you expected to happen, and what actually

happened.
• The commands you used, including any command-line options.
• Sample output illustrating the problem.
• The version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DUI 0807A.
• If viewing online, the topic names to which your comments apply.
• If viewing a PDF version of a document, the page numbers to which your

comments apply.
• A concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center http://infocenter.arm.com/help/index.jsp.
• ARM Technical Support Knowledge Articles

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html.
• ARM Support and Maintenance

http://www.arm.com/support/services/support-maintenance.php.
• ARM Glossary

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 1-2
ID031214 Non-Confidential

Chapter 2
armasm Errors and Warnings

The error and warning messages for the assembler, armasm, are listed in the following topic:

• List of the armasm error and warning messages on page 2-2.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-1
ID031214 Non-Confidential

armasm Errors and Warnings
2.1 List of the armasm error and warning messages
The error and warning messages for armasm are:

A1017E :INDEX: cannot be used on a pc-relative expression

The :INDEX: expression operator has been applied to a PC-relative expression,
most likely a program label. :INDEX: returns the offset from the base register in a
register-relative expression.
If you require the offset of a label called <label> within an area called <areaname>,
use <label> - <areaname>.
See the following in the armasm User Guide:
• Unary operators on page 10-21.

A1020E Bad predefine: <directive>

The operand to the --predefine or --pd command-line option was not recognized.
The directive must be enclosed in quotes if it contains spaces, for example on
Windows:
--predefine "versionnum SETA 5"

If the SETS directive is used, the argument to the directive must also be enclosed
in quotes, which might require escaping depending on the operating system and
shell. For example:
--predefine "versionstr SETS \"5A\""

A1021U No input file

No input file was specified on the command line. This might be because there was
no terminating quote on a quoted argument.

A1042E Unrecognized APCS qualifier '<qualifier>'

There is an error in the argument given to the --apcs command-line option. Check
the spelling of <qualifier>.

A1056E Target cpu '<cpu>' not recognized

The name given in the --cpu command-line option is not a recognized processor
name. Check the spelling of the argument.
Use --cpu=list to list the supported processors and architectures.

A1067E Output file specified as '<filename1>', but it has already been specified
as '<filename2>'

More than one output file, -o filename, has been specified on the command line.
Misspelling a command-line option can cause this.

A1071E Cannot open listing file '<filename>': <reason>

The file given in the --list <filename> command-line option could not be
opened. This could be because the given name is not valid, there is no space, a
read-only file with the same name already exists, or the file is in use by another
process. Check that the correct path for the file is specified.

A1072E The specified listing file '<filename>' must not be a .s or .o file

The filename argument to the --list command-line option has an extension that
indicates it is a source or object file. This might be because the filename argument
was accidentally omitted from the command line. Check that the correct argument
is given to the --list command-line option.

A1073E The specified output file '<filename>' must not be a source file
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-2
ID031214 Non-Confidential

armasm Errors and Warnings
The object file specified on the command line has a filename extension that
indicates it is a source file. This might be because the object filename was
accidentally omitted from the command line.

A1074E The specified depend file '<filename>' must not be a source file

The filename argument to the --depend command-line option has an extension
that indicates it is a source (.s) file. This might be because the filename argument
was accidentally omitted from the command line. Check that the correct
arguments are given.

A1075E The specified errors file '<filename>' must not be a source file

The filename argument to the --errors command-line option has an extension
that indicates it is a source (.s) file. This might be because the filename argument
was accidentally omitted from the command line. Check that the correct
arguments are given.

A1085W Forced user-mode LDM/STM must not be followed by use of banked R8-R14

The ARM architecture does not permit you to access the banked registers in the
instruction following a User registers LDM or STM. Adding a NOP immediately after
the LDM or STM is one way to avoid this.
For example:
stmib sp, {r0-r14}^ ; Return a pointer to the frame in a1.
mov r0, sp

change to:
stmib sp, {r0-r14}^ ; Return a pointer to the frame in a1.
nop
mov r0, sp

A1088W Faking declaration of area AREA |$$$$$$$|

This is reported when no AREA directive is specified (see A1105E).

A1105E Area directive missing

This is reported when no AREA directive is specified (see also A1088W).

A1110E Expected constant expression

A constant expression was expected after, for example, SETA.
See the following in the armasm User Guide:
• Numeric expressions on page 10-16.

A1113E Expected string expression

A string expression was expected after, for example, SETS.
See the following in the armasm User Guide:
• String expressions on page 10-14.

A1119E MEND not allowed within conditionals

MEND means END of Macro (not the English word mend).
See the following in the armasm User Guide:
• Use of macros on page 7-31.

A1135E Area name missing

AREA names starting with any non-alphabetic character must be enclosed in bars,
for example change:
AREA 1_DataArea, CODE, READONLY
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-3
ID031214 Non-Confidential

armasm Errors and Warnings
to:
AREA |1_DataArea|, CODE, READONLY

A1137E Unexpected characters at end of line

This is given when extra characters that are not part of an instruction are found on
an instruction line.
For example:
ADD r0, r0, r1 comment

You can change this to:
ADD r0, r0, r1 ; comment

A1142E Subtractive relocations not supported for <entity> format output

This can occur when subtracting symbols that are in different areas, for example:
IMPORT sym1
IMPORT sym2
DCD (sym2 - sym1)

A1150E Bad symbol, not defined or external

This typically occurs in the following cases:
• When the current file requires an INCLUDE of another file to define some

symbols, for example:
"init.s", line 2: Error: A1150E: Bad symbol
2 00000000 DCD EBI_CSR_0

typically requires a definitions file to be included, for example:
INCLUDE targets/eb40.inc

• When the current file requires IMPORT for some symbols, for example:
"init.s", line 4: Error: A1150E: Bad symbol
4 00000000 LDR r0, =||Image$$RAM$$ZI$$Limit||

typically requires the symbol to be imported, for example:
IMPORT ||Image$$RAM$$ZI$$Limit||

A1151E Bad register name symbol

Example:
MCR p14, 3, R0, Cr1, Cr2

The coprocessor registers CR must be labeled as a lowercase c for the code to
build. The ARM register can be r or R:
MCR p14, 3, r0, c1, c2

or
MCR p14, 3, R0, c1, c2

A1158E Illegal line start, should be blank

Some directives, for example, ENTRY, IMPORT, EXPORT, and GET must be on a line
without a label at the start of the line. This error is given if a label is present.

A1159E Label missing from line start

Some directives, for example, FUNCTION or SETS, require a label at the start of the
line, for example:
my_func FUNCTION

or
label SETS

This error is given if the label is missing.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-4
ID031214 Non-Confidential

armasm Errors and Warnings
A1160E Bad local label number

A numeric local label is a number in the range 0-99, optionally followed by a
name.
See the following in the armasm User Guide:
• Numeric local labels on page 10-12.

A1163E Unknown opcode <name> , expecting opcode or Macro

The most common reasons for this are:
• Forgetting to put some white space on the left hand side margin, before the

instruction, for example change:
MOV PC,LR

to
 MOV PC,LR

• Mistyping the opcode:
 ADDD

instead of
 ADD

A1164E Opcode not supported on selected processor

The processor selected on the armasm command line does not support this
instruction. See the ARM Architecture Reference Manuals
http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.refer
ence/index.html#reference.

A1170E Immediate 0x<adr> out of range for this operation, must be below (0x<adr>)

This error is given when DCB, DCW or DCWU directives are used with immediates that
are too large.
See the following in the armasm Reference Guide:
• DCB on page 10-24.
• DCW and DCWU on page 10-32.

A1173E ADR/L cannot be used on external symbols

The ADR and ADRL pseudo-instructions can only be used with labels within the same
code area. To load an out-of-area address into a register, use LDR instead.

A1176E Branch offset 0x<val> out of range. Permitted values are 0x<mini> to
0x<maxi>

Branches are PC-relative, and have a limited range. If you are using numeric local
labels, you can use the ROUT directive to limit their scope. This helps to avoid
referring to the wrong label by accident.
See the following in the armasm User Guide:
• Numeric local labels on page 10-12.

A1186E Code generated in data area

An instruction has been assembled into a data area. This can happen if you have
omitted the CODE attribute on the AREA directive.
See the following in the armasm Reference Guide:
• AREA on page 10-14.

A1198E Unknown operand

This can occur when an operand is accidentally mistyped.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-5
ID031214 Non-Confidential

armasm Errors and Warnings
For example:
armasm init.s -g -PD "ROM_RAM_REMAP SETL {FALS}"

must be:
armasm init.s -g -PD "ROM_RAM_REMAP SETL {FALSE}"

See the following in the armasm User Guide:
• Assembly time substitution of variables on page 10-6.

A1202E No pre-declaration of substituted symbol '<name>'

See the following in the armasm User Guide:
• Assembly time substitution of variables on page 10-6.

A1206E Registers should be listed in increasing register number order

This warning is given if registers in, for example, LDM or STM instructions are not
specified in increasing order and the --checkreglist option is used.

A1207E Bad or unknown attribute

This error is given when an invalid attribute is given in the AREA directive. For
example:
AREA test,CODE,READONLY,HALFWORD

HALFWORD is invalid, so remove it.
See the following in the armasm Reference Guide:
• AREA on page 10-14.

A1219E Bad APSR, CPSR or SPSR designator

For example:
 MRS r0, PSR

You must specify whether to use the CPSR or SPSR, for example:
 MRS r0, CPSR

A1247E BLX from ARM code to ARM code, use BL

This occurs when there is a BLX label branch from A32 code to A32 code within
this assembly file. This is not permitted because BLX label always results in a
change of instruction set state. The usual solution is to use BL instead.

A1248E BLX from Thumb code to Thumb code, use BL

This occurs when there is a BLX label branch from T32 code to T32 code within
this assembly file. This is not permitted because BLX label always results in a
change of instruction set state. The usual solution is to use BL instead.

A1254E Halfword literal values not supported

Example:
 LDRH R3, =constant

Change the LDRH into LDR, which is the standard way of loading constants into
registers.

A1261E MRS cannot select fields, use APSR, CPSR or SPSR directly

This is caused by an attempt to use fields for CPSR or SPSR with an MRS
instruction, such as:
MRS r0, CPSR_c

A1283E Literal pool too distant, use LTORG to assemble it within 1KB
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-6
ID031214 Non-Confidential

armasm Errors and Warnings
For T32 code, the literal pool must be within 1KB of the LDR instruction to access
it. See A1284E and A1471W.

A1284E Literal pool too distant, use LTORG to assemble it within 4KB

For A32 code, the literal pool must be within 4KB of the LDR instruction to access
it. To solve this, add an LTORG directive into your assembly source file at a
convenient place.
See the following in the armasm User Guide:
• Load addresses to a register using LDR Rd, =label on page 7-18.
See the following in the armasm Reference Guide:
• LTORG on page 10-66.

A1313W Missing END directive at end of file

The assembler requires an END directive to know when the code in the file
terminates. You can add comments or other such information in free format after
this directive.

A1322E Unaligned transfer of PC, destination address must be 4 byte aligned,
otherwise result is UNPREDICTABLE

This error is reported when you try to use an LDR instruction to load the PC from
a non word-aligned address. This gives an UNPREDICTABLE result. For example:
AREA Example, CODE
LDR pc, [pc, #6] ; Error – offset must be a multiple of 4
END

A1327E Non portable instruction (LDM with writeback and base in register list,
final value of base unpredictable)

In the LDM instruction, if the base register <Rn> is specified in <registers>, and base
register writeback is specified, the final value of <Rn> is UNKNOWN.

A1328E Non portable instruction (STM with writeback and base not first in
register list, stored value of base unpredictable)

In the STM instruction, if <Rn> is specified in <registers> and base register
writeback is specified:
• If <Rn> is the lowest-numbered register specified in <register_list>, the

original value of <Rn> is stored.
• Otherwise, the stored value of <Rn> is UNKNOWN.

A1329E Unpredictable instruction (forced user mode transfer with write-back to
base)

This is caused by an instruction such as PUSH {r0}^ where the ^ indicates access
to user registers. Writeback to the base register is not available with this
instruction.
Instead, the base register must be updated separately. For example:
 SUB sp, sp,#4
 STMID sp, {r0}^

Another example is replacing STMFD R0!, {r13, r14}^ with:
 SUB r0, r0,#8
 STM r0, {r13, r14}^

See also A1085W.

A1355U A Label was found which was in no AREA

This can occur if no white space precedes an assembler directive.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-7
ID031214 Non-Confidential

armasm Errors and Warnings
Assembler directives must be indented. For example use:
 IF :DEF: FOO
 ; code
 ENDIF

instead of:
IF :DEF: FOO
 ; code
ENDIF

Symbols in the left-hand column are assumed to be labels.

A1356E Instruction not supported on targeted CPU

This occurs if you try to use an instruction that is not supported by the default
architecture or processor for armasm.
For example:
 SMULBB r0,r0,r1 ;

can be assembled with:
armasm --cpu 5TE

See the ARM Architecture Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.refer
ence/index.html#reference.

A1429E Expected register list

The assembler reports this when FRAME SAVE and FRAME RESTORE directives are not
given register lists.
See the following in the armasm Reference Guide:
• FRAME RESTORE on page 10-46.
• FRAME SAVE on page 10-48.

A1431E Frame directives are not accepted outside of PROCs/FUNCTIONs

See the following in the armasm User Guide:
• Frame directives on page 7-38.

A1433E Only the writeback form of this instruction exists

The addressing mode specified for the instruction did not include the writeback
specifier (that is, a '!' after the base register), but the instruction set only supports
the writeback form of the instruction. Either use the writeback form, or replace
with instructions that have the required behavior.

A1435E {PCSTOREOFFSET} is not defined when assembling for an architecture

{PCSTOREOFFSET} is only defined when assembling for a processor, not for an
architecture.

A1437E {ARCHITECTURE} is undefined

{ARCHITECTURE} is only defined when assembling for an architecture, not for a
processor.

A1446E Bad or unknown attribute '<attr>'. Use --apcs /interwork instead

Example:
 AREA test1, CODE, READONLY
 AREA test, CODE, READONLY, INTERWORK
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-8
ID031214 Non-Confidential

armasm Errors and Warnings
This code might have originally been intended to work with the legacy ARM
Software Development Toolkit (SDT). The INTERWORK area attribute is obsolete.
To eliminate the warning:
• Remove the ", INTERWORK" from the AREA line.
• Assemble with armasm --apcs /interwork foo.s instead

A1447W Missing END directive at end of file, but found a label named END

This is caused by the END directive not being indented.

A1450E Deprecated form of PSR field specifier used (use _cxsf for future
compatibility)

armasm supports the full range of MRS and MSR instructions, in the form:
 MRS(cond) Rd, CPSR
 MRS(cond) Rd, SPSR
 MSR(cond) CPSR_fields, Rm
 MSR(cond) SPSR_fields, Rm
 MSR(cond) CPSR_fields, #immediate
 MSR(cond) SPSR_fields, #immediate

where fields can be any combination of cxsf.
Earlier releases of the assembler permitted other forms of the MSR instruction to
modify the control field and flags field:
• cpsr or cpsr_all, control and flags field.
• cpsr_flg, flags field only.
• cpsr_ctl, control field only.
Similar control and flag settings apply for SPSR.
These forms are deprecated and must not be used. If your legacy code contains
them, the assembler reports:
Deprecated form of PSR field specifier used (use _cxsf)

To avoid the warning, in most cases you can modify your code to use _c, _f, _cf
or _cxsf instead.
See the following in the armasm User Guide:
• Conditional execution in A32 code on page 8-3.
• Conditional execution in T32 code on page 8-4.
• General-purpose registers in AArch32 state on page 4-6.
• Access to the inline barrel shifter in AArch32 state on page 4-18.
See also the FAQ armasm: use of MRS and MSR instructions ('Deprecated form
of PSR field specifier')
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3724.html.

A1454E FRAME STATE RESTORE directive without a corresponding FRAME STATE REMEMBER

See the following in the armasm User Guide:
• Frame directives on page 7-38.
See the following in the armasm Reference Guide:
• FRAME STATE REMEMBER on page 10-49.
• FRAME STATE RESTORE on page 10-50.

A1456W INTERWORK area directive is obsolete. Continuing as if --apcs /inter
selected

Example:
 AREA test, CODE, READONLY, INTERWORK
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-9
ID031214 Non-Confidential

armasm Errors and Warnings
This code might have originally been intended to work with SDT. The INTERWORK
area attribute is obsolete. To eliminate the warning:
1. Remove the ", INTERWORK" from the AREA line.
2. Assemble with armasm --apcs /interwork foo.s instead.

A1457E Cannot mix INTERWORK and NOINTERWORK code areas in same file

INTERWORK and (default) NOINTERWORK code areas cannot be mixed in the same file.
This code might have originally been intended to work with SDT. The INTERWORK
area attribute is obsolete in the ARM Compiler toolchain.
Example:
 AREA test1, CODE, READONLY
 …
 AREA test2, CODE, READONLY, INTERWORK

To eliminate the error:
1. Move the two AREAs into separate assembly files such as, for example,

test1.s and test2.s.
2. Remove the ", INTERWORK" from the AREA line in test2.s.
3. Assemble test1.s with armasm --apcs /nointerwork.
4. Assemble test2.s with armasm --apcs /interwork.
5. At link time, the linker adds any necessary interworking veneers.

A1459E Cannot B or BL to a register

This form of the instruction is not permitted. See the ARM Architecture Reference
Manual for the permitted forms.

A1461E Specified processor or architecture does not support Thumb instructions

It is likely that you are specifying an architecture or processor using the --cpu
option and then incorporating T32 code in the AREA that is generating this error.
For example, in the following command line, the selected architecture, ARMv4,
does not support T32 code:
armasm --cpu 4 code.s

A1466W Operator precedence means that expression would evaluate differently in C

armasm has always evaluated certain expressions in a different order to C. This
warning might help C programmers from being caught out when writing in
assembly language.
To avoid the warning, either:
• Modify the code to make the evaluation order explicit (that is, add more

brackets).
• Suppress the warning with --unsafe switch.
See the following in the armasm User Guide:
• Operator precedence on page 10-29.

A1469E FRAME STATE REMEMBER directive without a corresponding FRAME STATE RESTORE

See the following in the armasm User Guide:
• Frame directives on page 7-38.
See the following in the armasm Reference Guide:
• FRAME STATE REMEMBER on page 10-49.
• FRAME STATE RESTORE on page 10-50.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-10
ID031214 Non-Confidential

armasm Errors and Warnings
A1471W Directive <directive> may be in an executable position

This can occur with, for example, the LTORG directive (see A1283E and A1284E).
LTORG instructs the assembler to dump literal pool DCD data at this position.
To prevent this warning from occurring, the data must be placed where the
processor cannot execute them as instructions. A good place for an LTORG is
immediately after an unconditional branch, or after the return instruction at the
end of a subroutine.
As a last resort, you could add a branch over the LTORG, to avoid the data being
executed, for example:
 B unique_label
 LTORG
unique_label

A1477E This register combination results in UNPREDICTABLE behavior

This error is generated when you are assembling an instruction that has
UNPREDICTABLE results on execution. You must rewrite your code to avoid this
UNPREDICTABLE behavior. For example, the following instructions all cause this
error when assembling to T32, and the target architecture is ARMv6T2 or later:
ADD sp, r0, #100 ; error - UNPREDICTABLE use of SP
CMP pc, #1 ; error - UNPREDICTABLE use of PC
PUSH {r0, pc} ; error - use of an UNPREDICTABLE register combination

A1479W Requested alignment <alignreq> is greater than area alignment <align>,
which has been increased

This is warning about an ALIGN directive that has a coarser alignment boundary
than its containing AREA. This is not permitted. To compensate, the assembler
automatically increases the alignment of the containing AREA for you. A simple
test case that gives the warning is:
 AREA test, CODE, ALIGN=3
 ALIGN 16
 mov pc, lr
 END

In this example, the alignment of the AREA (ALIGN=3) is 2^3=8 byte boundary, but
the mov pc,lr instruction is on a 16-byte boundary, causing the error.

Note
 The two alignment types are specified in different ways.

This warning can also occur when using AREA ... ALIGN=0 to align a code section
on a byte boundary. This is not possible. Code sections can only be aligned on:
• A four-byte boundary for A32 code, so use "ALIGN=2".
• A two-byte boundary for T32 code, so use "ALIGN=1".
See the following in the armasm Reference Guide:
• ALIGN on page 10-12.
• AREA on page 10-14.

A1484W Obsolete shift name 'ASL', use LSL instead

The ARM architecture does not have an ASL shift operation. The ARM barrel
shifter only has the following shift types:
• ROR.
• ASR.
• LSR.
• LSL.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-11
ID031214 Non-Confidential

armasm Errors and Warnings
An arithmetic (that is, signed) shift left is the same as a logical shift left, because
the sign bit always gets shifted out.
If the name ASL is used, the assembler reports this warning and converts the ASL to
LSL.
See the following in the armasm Reference Guide:
• --unsafe on page 2-67.
• ASR, LSL, LSR, ROR, and RRX on page 3-41.

A1486E ADR/ADRL of a symbol in another AREA is not supported in ELF

The ADR and ADRL pseudo-instructions can only be used with labels within the same
code section. To load an out-of-area address into a register, use LDR instead.

A1487W Obsolete instruction name 'ASL', use LSL instead

This warning is given when the ASL instruction is used in pre-UAL T32 code, that
is, when you assemble using the --16 command-line option, or you use the CODE16
directive. See the corresponding A32 ASL message A1484W.

A1490E <CPU> is undefined

{CPU} is only defined by assembling for a processor and not an architecture.

A1491W Internal error: Found relocation at offset <offset> with incorrect
alignment

This might indicate an assembler fault. Contact your supplier.

A1495W Target of branch is a data address

armasm determines the type of a symbol and detects branches to data. Specify
--diag-suppress 1495 to suppress this warning.

A1496W Absolute relocation of ROPI address with respect to symbol '<symbol>' at
offset <offset> may cause link failure

This warning relates to a feature that is unsupported in ARM Compiler 6.0.

A1497W Absolute relocation of RWPI address with respect to symbol '<symbol>' at
offset <offset> may cause link failure

This warning relates to a feature that is unsupported in ARM Compiler 6.0.

A1498E Unexpected characters following Thumb instruction

For example:
 ADD r0, r0, r1

is accepted as a valid instruction, for both A32 and T32, but:
 ADD r0, r0, r1, ASR #1

is a valid instruction for A32, but not for T32. The unexpected characters are ",
ASR #1".

A1546W Stack pointer update potentially breaks 8 byte stack alignment

Example:
PUSH {r0}

The stack must be eight-byte aligned on an external boundary so pushing an odd
number of registers causes this warning. This warning is suppressed by default.
To enable this warning use --diag_warning 1546.
See the following in the armasm Reference Guide:
• --diag_warning on page 2-24.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-12
ID031214 Non-Confidential

armasm Errors and Warnings
A1547W PRESERVE8 directive has automatically been set

Example:
PUSH {r0,r1}

This warning is given because you have not explicitly set the PRESERVE8 directive,
but the assembler has set it automatically. This warning is suppressed by default.
To enable this warning use --diag_warning 1547.
See the following in the armasm Reference Guide:
• --diag_warning on page 2-24.
• REQUIRE8 and PRESERVE8 on page 10-79.

A1548W Code contains LDRD/STRD indexed/offset from SP but REQUIRE8 is not set

Example:
PRESERVE8
STRD r0,[sp,#8]

This warning is given when the REQUIRE8 directive is not set when required.
See the following in the armasm Reference Guide:
• REQUIRE8 and PRESERVE8 on page 10-79.

A1549W Setting of REQUIRE8 but not PRESERVE8 is unusual

Example:
PRESERVE8 {FALSE}
REQUIRE8
STRD r0,[sp,#8]

A1563W Instruction stalls CPU for <stalls> cycle(s)

The assembler can give information about possible interlocks in your code caused
by the pipeline of the processor chosen by the --cpu option. To do this assemble
with armasm --diag_warning 1563

Note
 If the --cpu option specifies a multi-issue processor such as Cortex®-A8, the

interlock warnings are unreliable.

See also warning A1746W.

A1581W Added <no_padbytes> bytes of padding at address <address>

The assembler warns by default when padding bytes are added to the generated
code. This occurs whenever an instruction or directive is used at an address that
requires a higher alignment, for example, to ensure A32 instructions start on a
four-byte boundary after some T32 instructions, or where there is a DCB followed
by DCD.
For example:
 AREA Test, CODE, READONLY
 THUMB
T32Code
 MOVS r0, #1
 ADR r1, A32Prog
 BX r1
; ALIGN ; <<< add to avoid the first warning
 ARM
A32Prog
 ADD r0,r0,#1
 BX LR
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-13
ID031214 Non-Confidential

armasm Errors and Warnings
 DCB 0xFF
 DCD 0x1234
 END

Results in the warnings:
A1581W: Added 2 bytes of padding at address 0x6

8 00000008 ARM

A1581W: Added 3 bytes of padding at address 0x11

13 00000014 DCD 0x1234

The warning can also occur when using ADR in T32-only code. The ADR T32
pseudo-instruction can only load addresses that are word aligned, but a label
within T32 code might not be word aligned. Use ALIGN to ensure four-byte
alignment of an address within T32 code.
See the following in the armasm Reference Guide:
• ADR (PC-relative) on page 3-32.
• ADR (register-relative) on page 3-34.
• DCB on page 10-24.
• DCD and DCDU on page 10-25.
• ALIGN on page 10-12.

A1609W MOV <rd>,pc instruction does not set bit zero, so does not create a return
address

This warning is caused when the current value of the PC is copied into a register
while executing in T32 state. An attempt to create a return address in this way
fails because bit[0] is not set. Attempting a BX branch to this instruction causes a
state change (to A32).
To create a return address, you can use:
 MOV r0, pc
 ADDS r0, #1

This warning can then be safely suppressed with:
--diag-suppress 1609

A1616E Instruction, offset, immediate or register combination is not supported by
the current instruction set

This can be caused by attempting to use an invalid combination of operands. For
example, in T32 code:
MOV r0, #1 ; /* Not permitted */
MOVS r0, #1 ; /* Ok */

See the following in the armasm Reference Guide:
• Chapter 3 A32 and T32 Instructions.

A1627W BL from ARM code to Thumb code

This occurs when there is a branch from A32 code to T32 code, or from T32 to
A32 within this file. The usual solution is to move the T32 code into a separate
assembly file. Then, at link-time, the linker adds any necessary interworking
veneers.

A1630E Specified processor or architecture does not support ARM instructions

ARM M-profile processors, for example Cortex-M3 and Cortex-M1, implement
only the T32 instruction set, not the A32 instruction set. It is likely that the
assembly file contains some A32-specific instructions and is being built for one
of these processors.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-14
ID031214 Non-Confidential

armasm Errors and Warnings
A1645W Substituted <old> with <new>

armasm can warn when it substitutes an instruction when assembling.
For example:
• ADD negative_number is the same as SUB positive_number.
• MOV negative_number is the same as MVN positive_number.
• CMP negative_number is the same as CMN positive_number.
For the T32 instruction set, UNPREDICTABLE single register LDMs are transformed
into LDRs.
This warning is suppressed by default, but can be enabled with --diag_warning
1645

For example:
 AREA foo, CODE
 ADD r0, #-1
 MOV r0, #-1
 CMP r0, #-1

When assembled with:
armasm --diag_warning 1645

the assembler reports:
Warning: A1645W: Substituted ADD with SUB
3 00000000 ADD r0, #-1
Warning: A1645W: Substituted MOV with MVN
4 00000004 MOV r0, #-1
Warning: A1645W: Substituted CMP with CMN
5 00000008 CMP r0, #-1

and the resulting code generated is:
foo
0x00000000: e2400001 ..@. SUB r0,r0,#1
0x00000004: e3e00000 MVN r0,#0
0x00000008: e3700001 ..p. CMN r0,#1

A1647E Bad register name symbol, expected Integer register

An integer (core) register is expected at this point in the syntax.

A1648E Bad register name symbol, expected Wireless MMX SIMD register

This message relates to Wireless MMX.

A1649E Bad register name symbol, expected Wireless MMX Status/Control or General
Purpose register

This message relates to Wireless MMX.

A1650E Bad register name symbol, expected any Wireless MMX register

This message relates to Wireless MMX.

A1651E TANDC, TEXTRC and TORC instructions with destination register other than
R15 is undefined

This message relates to Wireless MMX.

A1658W Support for <opt> is deprecated

The option passed to armasm is deprecated. Use armasm --help to view a summary
of the available options.
See the following in the armasm Reference Guide:
• armasm command-line options on page 2-3.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-15
ID031214 Non-Confidential

armasm Errors and Warnings
A1694E Instruction cannot be conditional in the current instruction set

Conditional instructions are not permitted in the specified instruction set. The
instruction MOVEQ, for example, is permitted in A32 code, and in T32 code in
architectures in which the IT instruction is available.

A1745W This register combination is DEPRECATED and may not work in future
architecture revisions

This warning is generated when all of the following conditions are satisfied:
• You are using a deprecated register combination, for example:

PUSH {r0, pc}

• You are assembling for a target architecture that supports 32-bit T32
instructions, in other words ARMv6T2 or later.

• You are assembling to A32 code.

Note
 • When assembling to T32, rather than A32 code, and the target architecture

is ARMv6T2 or later, the assembler generates error A1477E instead.
• When assembling for an architecture or processor that does not support

32-bit T32 instructions, in other words ARM architectures before
ARMv6T2, by default no diagnostic is emitted.

A1746W Instruction stall diagnostics may be unreliable for this CPU

This warning is shown when you enable message A1563W for a processor that is
not modeled accurately by the assembler. It indicates that you cannot rely on the
output of A1563W when improving your code.
See also warning A1563W.

A1762E Branch offset 0x<val> out of range of 16-bit Thumb branch, but offset
encodable in 32-bit Thumb branch

This is caused when assembling for T32 if an offset to a branch instruction is too
large to fit in a 16-bit branch. The .W suffix can be added to the instruction to
instruct the assembler to generate a 32-bit branch.

A1763W Inserted an IT block for this instruction

This indicates that the assembler has inserted an IT block to permit a number of
conditional instructions in T32 code. For example:
 MOVEQ r0,r1

This warning is off by default. It can be enabled using --diag_warning A1763.

A1764W <name> instructions are deprecated in architecture <arch> and above

A1765E Size of padding value on ALIGN must be 1, 2 or 4 bytes

This is caused when the optional padsize attribute is used with an ALIGN directive,
but has an incorrect size. It does not refer to the parameter to align to. The
parameter can be any power of 2 from 2^0 to 2^31

A1786W This instruction using SP is deprecated and may not work in future
architecture revisions

This warning is generated when all of the following conditions are satisfied:
• You explicitly use the SP in a deprecated way, for example:

ADD sp, r0, #100
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-16
ID031214 Non-Confidential

armasm Errors and Warnings
• You are assembling for a target architecture that supports 32-bit T32
instructions, in other words ARMv6T2 or later.

• You are assembling to A32 code.
ARM deprecates the explicit use of the SP in A32 instructions in any way that is
not possible in the corresponding T32 instruction. Such deprecated register uses
are still possible in A32 instructions for backwards compatibility and you can
suppress this warning by using the assembler command-line option
--diag_suppress=1786. However, ARM recommends you modify your code,
because it might not work in future architecture revisions.
You can replace the deprecated use of the SP shown in the example with a
sequence like:
ADD r1, r0, #100
MOV sp, r1

Note
 • When assembling to T32, rather than A32 code, and the target architecture

is ARMv6T2 or later, the assembler generates error A1477E instead.
• When assembling for an architecture or processor that does not support

32-bit T32 instructions, in other words ARM architectures before
ARMv6T2, by default no diagnostic is emitted.

A1788W Explicit use of PC in this instruction is deprecated and may not work in
future architecture revisions

This warning is generated when all of the following conditions are met:
• You explicitly use the PC in a deprecated way, for example:

CMP pc, #1

• You are assembling for a target architecture that supports 32-bit T32
instructions, in other words ARMv6T2 or later.

• You are assembling to A32 code.
ARM deprecates most explicit uses of the PC in A32 instructions, although they
are still possible for backwards compatibility. You can suppress this warning by
using the assembler command-line option --diag_suppress=1788. However, ARM
recommends you modify your code, because it might not work in future
architecture revisions.

Note
 • When assembling to T32 rather than A32 code, and the target architecture

is ARMv6T2 or later, the assembler generates error A1477E instead.
• When assembling for an architecture or processor that does not support

32-bit T32 instructions, in other words ARM architectures before
ARMv6T2, by default no diagnostic is emitted.

A1790W Writeback ignored in Thumb LDM loading the base register

This is caused by incorrectly adding an exclamation mark to indicate base register
writeback.
For example:
LDM r0!, {r0-r4}

is not a legal instruction because r0 is the base register and is also in the
destination register list. In this case, the assembler ignores the writeback and
generates:
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-17
ID031214 Non-Confidential

armasm Errors and Warnings
LDM r0, {r0-r4}

A1809W Instruction aligns PC before using it; section ought to be at least 4 byte
aligned

This warning is generated when all the following conditions apply:
• You are using a PC-relative offset in a T32 instruction that requires the PC

to be word-aligned.
• The code section containing this instruction has less than 4-byte alignment.
• The instruction is not relocated at link time (because of a relocation emitted

by the assembler).
If these conditions are all met, and the code section containing this instruction is
not placed at a 4-byte aligned address when linking, the instruction might operate
on or with the wrong address at runtime. This is because the instruction aligns the
PC to a 4-byte address before using it.
The following example shows an LDR instruction in T32 that is diagnosed by this
warning because the section has an alignment of 2 bytes:
AREA ||.text||, CODE, READONLY, ALIGN=1
THUMB
LDR r0, [pc, #8] ; gives warning A1809W

A1847E Expression requiring more than one relocation not allowed

This can occur during the assembly of A32 instructions when trying to access data
in another area. For example, using:
LDR r0, [pc, #label - . - 8]

or its equivalent:
LDR r0, [pc, #label-{PC}-8]

where label is defined in a different AREA.
Change your code to use the simpler, equivalent syntax:
LDR r0, label

This works if label is either in the same area or in a different area.

A1875E Register Rn must be from R0 to R7 in this instruction

Change the specified register to be in the range R0 to R7.

A1903E Line not seen in first pass; cannot be assembled

This occurs if an instruction or directive does not appear in pass 1 but appears in
pass 2 of the assembler.
The following example shows when a line is not seen in pass 1:
 AREA x,CODE
 [:DEF: foo
num EQU 42 ; assembler does not see this line during pass 1 because
 ; foo is not defined at this point during pass 1
]
foo DCD num
 END

A1907W Test for this symbol has been seen and may cause failure in the second
pass.

This diagnostic is suppressed by default. Enable it to identify situations that might
result in errors A1903E, A1909E, or A1908E.

A1908E Label '<name>' value inconsistent: in pass 1 it was <val1>; in pass 2 it
was <val2>
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-18
ID031214 Non-Confidential

armasm Errors and Warnings
The following example generates this error because in pass 1 the value of x is
0x0004+r9, and in pass 2 the value of x is 0x0000+r0:
 map 0, r0
 if :lnot: :def: sym
 map 0, r9
 field 4
 endif
x field 4
sym LDR r0, x

A1909E Line not seen in second pass; cannot be assembled

This occurs if an instruction or directive appears in pass 1 but does not appear in
pass 2 of the assembler.
The following example shows when a line is not seen in pass 2:
 AREA x,CODE
 [:LNOT: :DEF: foo
 MOV r1, r2 ; assembler does not see this line during pass 2 because
 ; foo is already defined
]
foo MOV r3, r4
 END
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 2-19
ID031214 Non-Confidential

Chapter 3
Linker Errors and Warnings

The following topics describe the error and warning messages for the linker, armlink:
• Suppressing armlink error and warning messages on page 3-2.
• List of the armlink error and warning messages on page 3-3.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-1
ID031214 Non-Confidential

Linker Errors and Warnings
3.1 Suppressing armlink error and warning messages
All linker warnings are suppressible with --diag_suppress. For example:

--diag_suppress 6306

Some errors such as L6220E, L6238E, and L6784E can be downgraded to a warning by using:

--diag_warning
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-2
ID031214 Non-Confidential

Linker Errors and Warnings
3.2 List of the armlink error and warning messages
The error and warning messages for armlink are:

L6000U Out of memory.

For details on why you might see this error, and possible solutions, see the
description for error L6815U.

L6002U Could not open file <filename>: <reason>

This indicates that the linker was unable to open a file specified on the linker
command line. This can indicate a problem accessing the file or a fault with the
command line specified. Some common occurrences of this message are:
• L6002U: Could not open file /armlib/{libname}: No such file or

directory

Specify the library path with --libpath.
See the following in the armlink Reference Guide:
— --libpath on page 2-77.

• Error : armlink : L6002: Could not open file errors=ver.txt

Caused by the double-dash (--) missing from in front of errors=ver.txt. If
you do not prefix options with -- or - the linker treats them as input files
and fails the link step because it is unable to load all the specified files. The
correct switch is --errors=ver.txt

L6003U Could not write to file <filename>.

A file I/O error occurred while reading, opening, or writing to the specified file.

L6004U Incomplete library member list <list> for <library>.

This can occur where there is whitespace in the list of library objects.
The following example fails:
armlink x.lib(foo.o, bar.o)
Fatal error: L6004U: Missing library member in member list for x.lib.

The following example succeeds:
armlink x.lib(foo.o,bar.o)

Another less common occurrence is caused by a corrupt library, or possibly a
library in an unsupported format.

L6006U Overalignment value not specified with OVERALIGN attribute for execution
region <regionname>.

See the following in the armlink Reference Guide:
• Syntax of an input section description on page 4-24
See the following in armlink User Guide:
• Overalignment of execution regions and input sections on page 8-59.

L6007U Could not recognize the format of file <filename>.

The linker can recognize object files in the ELF format, and library files in AR
formats. The specified file is either corrupt, or is in a file format that the linker
cannot recognize.

L6008U Could not recognize the format of member <mem> from <lib>.

The linker can recognize library member objects in the ELF file format. The
specified library member is either corrupt, or is in a file format that the linker
cannot recognize.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-3
ID031214 Non-Confidential

Linker Errors and Warnings
L6009U File <filename> : Endianness mismatch.

The endianness of the specified file or object did not match the endianness of the
other input files. The linker can handle input of either big endian or little endian
objects in a single link step, but not a mixed input of some big and some little
endian objects.

L6010U Could not reopen stderr to file <filename>: <reason>

A file I/O error occurred while reading, opening, or writing to the specified file.

L6011U Invalid integer constant : <number>.

Specifying an illegal integer constant causes this. An integer can be entered in
hexadecimal format by prefixing &, 0x, or 0X.

L6015U Could not find any input files to link.

The linker must be provided with at least one object file to link.
For example, if you try to link with:
armlink lib.a -o foo.axf

the linker reports this error.
You must instead use, for example:
armlink foo_1.o foo_2.o lib.a -o foo.axf

L6016U Symbol table missing/corrupt in object/library <object>.

This can occur when linking with libraries built with the GNU tools. This is
because GNU ar can generate incompatible information.
The workaround is to replace ar with armar and use the same command line
arguments. Alternatively, the error is recoverable by using armar -s to rebuild the
symbol table.

L6017U Library <library> symbol table contains an invalid entry, no member at
offset 0x<offset>.

The library might be corrupted. Try rebuilding it.

L6022U Object <objname> has multiple <table>.

The object file is faulty or corrupted. This might indicate a compiler fault. Contact
your supplier.

L6024U Library <library> contains an invalid member name.

The file specified is not a valid library file, is faulty or corrupted. Try rebuilding it.

L6025U Cannot extract members from a non-library file <library>.

The file specified is not a valid library file, is faulty or corrupted. Try rebuilding it.

L6026U ELF file <filename> has neither little or big endian encoding

The ELF file is invalid. Try rebuilding it.

L6027U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) has
invalid/unknown type.

This might indicate a compiler fault. Contact your supplier.

L6028U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) has invalid
offset.

This might indicate a compiler fault. Contact your supplier.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-4
ID031214 Non-Confidential

Linker Errors and Warnings
L6029U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is wrt
invalid/missing symbol.

The relocation is with respect to a symbol that is either:
• Invalid or missing from the object symbol table.
• A symbol that is not suited to be used by a relocation.
This might indicate a compiler fault. Contact your supplier.

L6030U Overalignment <overalignment> for region <regname> must be at least 4 and
a power of 2

See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.
• Syntax of an input section description on page 4-24
See the following in armlink User Guide:
• Overalignment of execution regions and input sections on page 8-59.

L6031U Could not open scatter description file <filename>: <reason>

An I/O error occurred while trying to open the specified file. This could be
because of an invalid filename.

L6034U Symbol <symbolname> in <objname> has invalid value.

This is most often caused by a section-relative symbol having a value that exceeds
the section boundaries.

L6035U Relocation #<rel_class>:<rel_number> in ZI Section <objname>(<secname>)
has invalid type.

ZI Sections cannot have relocations other than of type R_ARM_NONE.

L6036U Could not close file <filename>: <reason>

An I/O error occurred while closing the specified file.

L6037U '<arg>' is not a valid argument for option '<option>'.

The argument is not valid for this option. This could be because of a spelling
error, or because of the use of an unsupported abbreviation of an argument.

L6038U Could not create a temporary file to write updated SYMDEFS.

An I/O error occurred while creating the temporary file required for storing the
SYMDEFS output.

L6039W Relocation from #<rel_class>:<rel_number> in <objname>(<secname>) with
respect to <symname>. Skipping creation of R-type relocation. No
corresponding R-type relocation exists for type <rel_type>.

--reloc is used with objects containing relocations that do not have a
corresponding R-type relocation.

L6041U An internal error has occurred (<clue>).

Contact your supplier.

L6042U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is wrt a
mapping symbol(#<idx>, Last Map Symbol = #<last>).

Relocations with respect to mapping symbols are not permitted. This might
indicate a compiler fault. Contact your supplier.

L6043U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is with
respect to an out of range symbol(#<val>, Range = 1-<max>).
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-5
ID031214 Non-Confidential

Linker Errors and Warnings
Relocations can only be made with respect to symbols in the range (1-n), where
n is the number of symbols.

L6064E ELF Executable file <filename> given as input on command line

This might be because you specified an object file as output from the compiler
without specifying the -c compiler option. For example:
armclang file.c -o file.o

armlink --force_scanlib file.o -o file.axf

L6065E Load region <name> (size <size>) is larger than maximum writable
contiguous block size of 0x80000000.

The linker attempted to write a segment larger than 2GB. The size of a segment
is limited to 2GB.

L6176E A negative max_size cannot be used for region <regname> without the EMPTY
attribute.

Only regions with the EMPTY attribute are permitted to have a negative
max-size.

L6177E A negative max_size cannot be used for region <regname> which uses the
+offset form of base address.

Regions using the +offset form of base address are not permitted to have a
negative max-size.

L6188E Special section <sec1> multiply defined by <obj1> and <obj2>.

A special section is one that can only be used once, such as "Veneer$$Code".

L6195E Cannot specify both '<attr1>' and '<attr2>' for region <regname>

See the following in the armlink Reference Guide:
• Load region attributes on page 4-8.
• Execution region attributes on page 4-13.
• Address attributes for load and execution regions on page 4-16..
• Inheritance rules for load region address attributes on page 4-20
• Inheritance rules for execution region address attributes on page 4-21.
• Inheritance rules for the RELOC address attribute on page 4-22.

L6200E Symbol <symbolname> multiply defined by <object1> and <object2>.

A common example where this occurs:
Symbol __stdout multiply defined (by retarget.o and stdio.o).

means that there are two conflicting definitions of __stdout present in retarget.o
and stdio.o. The one in retarget.o is your own definition. The one in stdio.o is
the default implementation, which was probably linked-in inadvertently.
stdio.o contains a number symbol definitions and implementations of file
functions like fopen, fclose, and fflush.
stdio.o is being linked-in because it satisfies some unresolved references.
To identify why stdio.o is being linked-in, you must use the verbose link option
switch. For example:
armlink [... your normal options...] --verbose --list err.txt

Then study err.txt to see exactly what the linker is linking in, from where, and
why.
You might have to either:
• Eliminate the calls like fopen, fclose, and fflush.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-6
ID031214 Non-Confidential

Linker Errors and Warnings
• Re-implement the _sys_xxxx family of functions.
See the following in the ARM C and C++ Libraries and Floating-Point Support
User Guide:
• Tailoring input/output functions in the C and C++ libraries on page 2-88.

L6201E Object <objname> contains multiple entry sections.

The input object specifies more than one entry point. Use the --entry
command-line option to select the entry point to use.
See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6202E <objname>(<secname>) cannot be assigned to non-root region '<regionname>'

A root region is a region that has an execution address the same as its load
address. The region does not therefore require moving or copying by the
scatter-load initialization code.
Certain sections must be placed in a root region in the image, including:
• __main.o

• The linker-generated table (Region$$Table)
• Scatter-loading (__scatter*.o) objects from the library
• Decompressor (__dc*.o) objects from the library.
If a required section is not placed in a root region, the linker reports, for example:
anon$$obj.o(Region$$Table) cannot be assigned to a non-root region 'RAM'.

You can use InRoot$$Sections to include all required sections in a root region:
ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections
 ; that must be in a root region
 ; for example, __main.o, __scatter*.o,
 ; dc*.o and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

L6203E Entry point (<address>) lies within non-root region <regionname>.

The image entry point must correspond to a valid instruction in a root-region of
the image.

L6204E Entry point (<address>) does not point to an instruction.

The image entry point you specified with the --entry command-line option must
correspond to a valid instruction in the root-region of the image.
See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6205E Entry point (<address>) must be word aligned for ARM instructions.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-7
ID031214 Non-Confidential

Linker Errors and Warnings
This message is displayed because the image entry point you specified with the
--entry command-line option is not word aligned. For example, you specified
--entry=0x8001 instead of --entry=0x8000.
See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6206E Entry point (<address>) lies outside the image.

The image entry point you specified with the --entry command-line option is
outside the image. For example, you might have specified an entry address of
0x80000 instead of 0x8000, as follows:
armlink --entry=0x80000 test.o -o test.axf

See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6208E Invalid argument for --entry command: '<arg>'

See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6209E Invalid offset constant specified for --entry (<arg>)

See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6210E Image cannot have multiple entry points. (<address1>,<address2>)

One or more input objects specifies more than one entry point for the image. Use
the --entry command-line option to select the entry point to use.
See the following in the armlink Reference Guide:
• --entry on page 2-46.

L6211E Ambiguous section selection. Object <objname> contains more than one
section.

This can occur when using the linker option --keep on an assembler object that
contains more than one AREA. The linker must know which AREA you want to keep.
To solve this, use more than one --keep option to specify the names of the AREAs
to keep, such as:
 --keep boot.o(vectors) --keep boot.o(resethandler) …

Note
 Using assembler files with more than one AREA might give other problems

elsewhere, so this is best avoided.

L6213E Multiple First section <object2>(<section2>) not allowed.
<object1>(<section1>) already exists.

Only one FIRST section is permitted.

L6214E Multiple Last section <object2>(<section2>) not allowed.
<object1>(<section1>) already exists.

Only one LAST section is permitted.

L6215E Ambiguous symbol selection for --First/--Last. Symbol <symbol> has more
than one definition.

See the following in the armlink Reference Guide:
• --first on page 2-53.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-8
ID031214 Non-Confidential

Linker Errors and Warnings
• --last on page 2-75.

L6216E Cannot use base/limit symbols for non-contiguous section <secname>

The exception-handling index tables generated by the compiler are given the
section name .ARM.exidx. For more information, see Exception Handling ABI for
the ARM Architecture
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html.
At link time these tables must be placed in the same execution region and be
contiguous. If you explicitly place these sections non-contiguously using specific
selector patterns in your scatter file, then this error message is likely to occur. For
example:
LOAD_ROM 0x00000000
{
 ER1 0x00000000
 {
 file1.o (+RO) ; from a C++ source
 * (+RO)
 }
 ER2 0x01000000
 {
 file2.o (+RO) ; from a C++ source
 }
 ER3 +0
 {
 * (+RW, +ZI)
 }
}

This might produce the following error if exception-handling index tables are in
both file1.o and file2.o, because the linker cannot place them in separate
regions:
Error: L6216E: Cannot use base/limit symbols for non-contiguous section
.ARM.exidx

Also, the .init_array sections must be placed contiguously within the same
region for their base and limit symbols to be accessible.
The corrected example is:
LOAD_ROM 0x00000000
{
 ER1 0x00000000
 {
 file1.o (+RO) ; from a C++ source
 * (.ARM.exidx) ; Section .ARM.exidx must be placed explicitly,
 ; otherwise it is shared between two regions, and
 ; the linker is unable to decide where to place it.
 *(.init_array) ; Section .init_array must be placed explicitly,
 ; otherwise it is shared between two regions, and
 ; the linker is unable to decide where to place it.
 * (+RO)
 }
 ER2 0x01000000
 {
 file2.o (+RO) ; from a C++ source
 }
 ER3 +0
 {
 * (+RW, +ZI)
 }
}

ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-9
ID031214 Non-Confidential

Linker Errors and Warnings
In the corrected example, the base and limit symbols are contained in .init_array
in a single region.
For more information, see the following in ARM C and C++ Libraries and
Floating-Point Support User Guide:
• How C and C++ programs use the library functions on page 2-52.
• C++ initialization, construction and destruction on page 2-54.

L6217E Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to <symbol>. R_ARM_SBREL32 relocation to imported symbol

L6218E Undefined symbol <symbol> (referred from <objname>).

Some common examples where this can occur are:
• User Error. Somebody has referenced a symbol and has either forgotten to

define it or has incorrectly defined it.
• Undefined symbol __ARM_switch8 or __ARM_ll_<xxxx> functions

The helper functions are automatically generated into the object file by the
compiler.

Note
 An undefined reference error can, however, still be generated if linking

objects from legacy projects where the helper functions are in the h_xxx
libraries (h indicates that these are compiler helper libraries, rather than
standard C library code).
Re-compile the object or ensure that these libraries can be found by the
linker.

• When attempting to refer to a function/entity in C from a function/entity in
C++. This is caused by C++ name mangling, and can be avoided by
marking C functions extern "C".

• Undefined symbol thunk{v:0,-44} to Foo_i::~Foo_i() (referred from
Bar_i.o)

The symbol thunk{v:0,-44} to Foo_i::~Foo_i() is a wrapper function
round the regular Foo_i::~Foo_i().
Foo_i is a derived class of some other base class, therefore:
— It has a base-class vtable for when it is referred to by a pointer to that

base class.
— The base-class vtable has an entry for the thunk.
— The destructor thunk is output when the actual (derived class)

destructor is output.
Therefore, to avoid the error, ensure this destructor is defined.

L6219E <type> section <object1>(<section1>) attributes {<attributes>}
incompatible with neighboring section <object2>(<section2>).

This error occurs when the default ordering rules used by the linker (RO followed
by RW followed by ZI) are violated. This typically happens when one uses +FIRST
or +LAST, for example in a scatter file, attempting to force RW before RO.

L6220E <type> region <regionname> size (<size> bytes) exceeds limit (<limit>
bytes).

Example:
Execution region ROM_EXEC size (4208184 bytes) exceeds limit (4194304
bytes).
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-10
ID031214 Non-Confidential

Linker Errors and Warnings
This can occur where a region has been given an (optional) maximum length in
the scatter file, but this size of the code/data being placed in that region has
exceeded the given limit. This error is suppressible with --diag_suppress 6220.
For example, this might occur when using .ANYnum selectors with the ALIGN
directive in a scatter file to force the linker to insert padding. You might be able
to fix this using the --any_contingency option.
See the following in the armlink User Guide:
• Placement of unassigned sections with the .ANY module selector on

page 8-25.
See the following in the armlink Reference Guide:
• --any_contingency on page 2-5.
• --diag_suppress on page 2-36.

L6221E <type1> region <regionname1> with <addrtype1> range [<base1>,<limit1>)
overlaps with <type2> region <regionname2> with <addrtype2> range
[<base2>,<limit2>).

This error can occur even though information in the scatter-loading description
file and map information generated by the linker indicates that the execution
regions do not overlap.
Example test.s file
 AREA area1, CODE
 BX lr

 AREA area2, READWRITE, NOINIT
 SPACE 10

 AREA area3, READWRITE
 DCD 10
 END

Example scatter.txt file
LR1 0x8000
{
 ER1 +0
 {
 *(+ro)
 }
 ER2 +0
 {
 *(+zi)
 }
 ER3 +0
 {
 *(+rw)
 }
}

Built with:
armasm test.s
armlink -o test.axf --scatter scatter.txt test.o

Generates:
Warning: L6221E: Execution region ER2 with Execution range
[0x00008004,0x00008010) overlaps with Execution region ER3 with Load range
[0x00008004,0x00008008).
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-11
ID031214 Non-Confidential

Linker Errors and Warnings
The linker might emit warning message L6221E when an execution region base
address overlaps with the load address of another region. This could be because
of an incorrect scatter file. The memory map of the image has a load view and an
execution view, described by the scatter-loading file. A non-ZI section must have
a unique load address and in most cases must have a unique execution address.
The linker does not assign space to ZI execution regions. Therefore this warning
might be because a load region LR2 with a relative base address immediately
follows a ZI execution region in a load region LR1.
Because the overlapping part might not have real code or data inside, the warning
might be harmless.
You can use the following linker options to find out the addresses of each region,
to identify which regions overlap with a load region:
--load_addr_map_info --map --list=map.txt

You can do one of the following:
• Ignore the warning, only if after analysis it is possible to determine that the

execution region is not going to corrupt the load region that has not yet been
copied to its execution region address. Also, debug the application to
confirm that it initializes and executes correctly.

• Adjust the base addresses of the execution regions.
• Use the FIXED scatter-loading attribute to make the load regions and

execution regions have the same base addresses. The armlink User Guide
and the armlink Reference Guide provide more information about the FIXED
attribute.

See the following in the armlink User Guide:
• Using the FIXED attribute to create root regions on page 8-16.
See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.
• Scatter files containing relative base address load regions and a ZI

execution region on page 4-38.

L6222E Partial object cannot have multiple ENTRY sections, <e_oname>(<e_sname>)
and <oname>(<sname>).

Where objects are being linked together into a partially-linked object, only one of
the sections in the objects can have an entry point.

Note
 It is not possible in this case to use the linker option --entry to select one of the

entry points.

L6223E Ambiguous selectors found for <objname>(<secname>) from Exec regions
<region1> and <region2>.

This occurs if the scatter file specifies <objname>(<secname>) to be placed in more
than one execution region. This can occur accidentally when using wildcards (*).
The solution is to make the selections more specific in the scatter file.

L6224E Could not place <objname>(<secname>) in any Execution region.

This occurs if the linker can not match an input section to any of the selectors in
your scatter file. You must correct your scatter file by adding an appropriate
selector.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-12
ID031214 Non-Confidential

Linker Errors and Warnings
See the following in armlink User Guide:
• Section placement with the linker on page 4-18.

L6227E Using --reloc with --rw-base without --split is not allowed.

See the following in the armlink Reference Guide:
• --reloc on page 2-103.
• --rw_base on page 2-108.
• --split on page 2-118.

L6234E <ss> must follow a single selector.

For example, in a scatter file:
:
* (+FIRST, +RO)
:

+FIRST means place this (single) section first. Selectors that can match multiple
sections (for example, +RO or +ENTRY) are not permitted to be used with +FIRST (or
+LAST). If used together, the error message is generated.

L6235E More than one section matches selector - cannot all be FIRST/LAST.

See the following in the armlink User Guide:
• Placing sections with FIRST and LAST attributes on page 4-20.
See the following in the armlink Reference Guide:
• Syntax of an input section description on page 4-24.

L6236E No section matches selector - no section to be FIRST/LAST.

The scatter file specifies a section to be +FIRST or +LAST, but that section does not
exist, or has been removed by the linker because it believes it to be unused. Use
the linker option --info unused to reveal which objects are removed from your
project. Example:
ROM_LOAD 0x00000000 0x4000
{
 ROM_EXEC 0x00000000
 {
 vectors.o (Vect, +First) << error here
 * (+RO)
 }
 RAM_EXEC 0x40000000
 {
 * (+RW, +ZI)
 }
}

Some possible solutions are:
• Ensure vectors.o is specified on the linker command-line.
• Link with --keep vectors.o to force the linker not to remove this, or switch

off this optimization entirely, with --no_remove. ARM does not recommend
this.

• ARM recommends that you add the ENTRY directive to vectors.s, to tell the
linker that it is a possible entry point of your application such as, for
example:
AREA Vect, CODE
ENTRY ; define this as an entry point
Vector_table
...

Then link with --entry Vector_table to define the real start of your code.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-13
ID031214 Non-Confidential

Linker Errors and Warnings
See the following in the armlink User Guide:
• Placing sections with FIRST and LAST attributes on page 4-20.
See the following in the armlink Reference Guide:
• --entry on page 2-46.
• --info on page 2-61.
• --keep on page 2-70.
• --remove, --no_remove on page 2-105.
• Syntax of an input section description on page 4-24.
See the following in the armasm Reference Guide:
• ENTRY on page 10-35.

L6238E <objname>(<secname>) contains invalid call from '<attr1>' function to
'<attr2>' function <sym>.

This linker error is given where a stack alignment conflict is detected in object
code. The ABI for the ARM Architecture suggests that code maintains eight-byte
stack alignment at its interfaces. This permits efficient use of LDRD and STRD
instructions (in ARM Architecture 5TE and later) to access eight-byte aligned
double and long long data types.
Symbols such as ~PRES8 and REQ8 are Build Attributes of the objects:
• PRES8 means the object PREServes eight-byte alignment of the stack.
• ~PRES8 means the object does NOT preserve eight-byte alignment of the

stack (~ meaning NOT).
• REQ8 means the object REQuires eight-byte alignment of the stack.
This link error typically occurs in two cases:
• Where assembler code (that does not preserve eight-byte stack alignment)

calls compiled C/C++ code (that requires eight-byte stack alignment).
• Where attempting to link legacy objects that were compiled with older tools

with objects compiled with recent tools. Legacy objects that do not have
these attributes are treated as ~PRES8, even if they do actually happen to
preserve eight-byte alignment.

For example:
Error: L6238E: foo.o(.text) contains invalid call from '~PRES8' function
to 'REQ8' function foobar

This means that there is a function in the object foo.o (in the section named .text)
that does not preserve eight-byte stack alignment, but which is trying to call
function foobar that requires eight-byte stack alignment.
A similar warning that might be encountered is:
Warning: L6306W: '~PRES8' section foo.o(.text) should not use the address
of 'REQ8' function foobar

where the address of an external symbol is being referred to.
There are two possible solutions to work-around this issue:
• Rebuild all your objects/libraries.

If you have any assembler files, you must check that all instructions
preserve eight-byte stack alignment, and if necessary, correct them.
For example, change:
STMFD sp!, {r0-r3, lr} ; push an odd number of registers

to
STMFD sp!, {r0-r3, r12, lr} ; push even number of registers
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-14
ID031214 Non-Confidential

Linker Errors and Warnings
The assembler automatically marks the object with the PRES8 attribute if all
instructions preserve eight-byte stack alignment, so it is no longer
necessary to add the PRESERVE8 directive to the top of each assembler file.

• If you have any legacy objects/libraries that cannot be rebuilt, either
because you do not have the source code, or because the old objects must
not be rebuilt (for example, for qualification/certification reasons), then
you must inspect the legacy objects to check whether they preserve
eight-byte alignment or not.
Use fromelf -c to disassemble the object code. C/C++ code compiled with
ADS 1.1 or later normally preserves eight-byte alignment, but assembled
code does not.
If your objects do indeed preserve eight-byte alignment, then the linker
error L6238E can be suppressed with the use of --diag_suppress 6238 on
the linker command line.
By using this, you are effectively guaranteeing that these objects are PRES8.
The linker warning L6306W is suppressible with --diag_suppress 6306.

See also 8 Byte Stack Alignment
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4127.html.

L6239E Cannot call non-interworking <t2> symbol '<sym>' in <obj2> from <t1> code
in <obj1>(<sec1>)

Example:
Cannot call non-interworking ARM symbol 'ArmFunc' in object foo.o from
THUMB code in bar.o(.text)

This problem can be caused by foo.c not being compiled with the option --apcs
/interwork, to enable A32 code to call T32 code (and T32 to A32) by
linker-generated interworking veneers.

L6241E <objname>(<secname>) cannot use the address of '<attr1>' function <sym> as
the image contains '<attr2>' functions.

When linking with '--strict', the linker reports conditions that might fail as
errors, for example:
Error: L6241E: foo.o(.text) cannot use the address of '~IW' function main
as the image contains 'IW' functions.

IW means interworking, and ~IW means non-interworking.

L6242E Cannot link object <objname> as its attributes are incompatible with the
image attributes.

Each object file generated by the compilation tools includes a set of attributes that
indicates the options that it was built with. The linker checks the attributes of each
object file it processes. If it finds attributes that are incompatible with those of
object files it has loaded previously, it generates this error.
There are three common reasons for this error, each of which produces a different
message:
• Error: L6242E: Cannot link object foo.o as its attributes are

incompatible with the image attributes.
require four-byte alignment of eight-byte datatypes clashes with
require eight-byte alignment of eight-byte data types.

This can occur when you try to link objects built using ARM Compiler
toolchain with objects built using ADS or RVCT 1.2. In ADS and RVCT
1.2, double and long long data types were 4-byte aligned (unless you used
the -Oldrd compiler option or the __align keyword). Subsequently, the ABI
changed, so that double and long long data types are 8-byte aligned.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-15
ID031214 Non-Confidential

Linker Errors and Warnings
This change means that ADS and RVCT 1.2 objects and libraries using
double or long long data types are not directly compatible with objects and
libraries built using later toolchain versions, and so the linker reports an
attribute clash.

• Error: L6242E: Cannot link object foo.o as its attributes are
incompatible with the image attributes.
... pure-endian double clashes with mixed-endian double.

This can occur when you are linking objects built using the ARM Compiler
toolchain with legacy SDT objects or objects built using either of the legacy
compiler options --fpu softfpa or --fpu fpa. (These options are only
supported in RVCT 2.1 and earlier). SDT used a non-standard format for
little-endian double and big-endian long long. However ARM Compiler
toolchain uses industry-standard double and long long types. If you attempt
to link object files that use the different formats for little-endian double and
big-endian long long then the linker reports this error.
ARM recommends you rebuild your entire project using the ARM
Compiler toolchain.

• Error: L6242E: Cannot link object foo.o as its attributes are
incompatible with the image attributes.
... FPA clashes with VFP.

This error typically occurs when you attempt to link objects built with
different --fpu options. ARM recommends you rebuild your entire project
using the same --fpu options.

See Are legacy objects and libraries compatible with my project?
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3639.html.

L6243E Selector only matches removed unused sections - no section to be
FIRST/LAST.

All sections matching this selector have been removed from the image because
they were unused. For more information, use --info unused.

L6248E <objname>(<secname>) in <attr1> region '<r1>' cannot have <rtype>
relocation to <symname> in <attr2> region '<r2>'.

This error relates to a feature that is unsupported in ARM Compiler 6.0.

L6254E Invalid SYMDEF type : <type>.

The content of the symdefs file is invalid.
See the following in armlink User Guide:
• Symdefs file format on page 7-21.

L6255E Could not delete file <filename>: <reason>

An I/O error occurred while trying to delete the specified file. The file was either
read-only, or was not found.

L6257E <object>(<secname>) cannot be assigned to overlaid Execution region
'<ername>'.

This message indicates a problem with the scatter file.
See the following in the armlink Reference Guide:
• Chapter 4 Formal syntax of the scatter file.

L6258E Entry point (<address>) lies in an overlaid Execution region.

This message indicates a problem with the scatter file.
See the following in the armlink Reference Guide:
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-16
ID031214 Non-Confidential

Linker Errors and Warnings
L6259E Reserved Word '<name>' cannot be used as a <type> region name.

<name> is a reserved word, so choose a different name for your region.

L6260E Multiple load regions with the same name (<regionname>) are not allowed.

This message indicates a problem with the scatter file.
See the following in the armlink Reference Guide:
• Chapter 4 Formal syntax of the scatter file.

L6261E Multiple execution regions with the same name (<regionname>) are not
allowed.

This message indicates a problem with the scatter file.
See the following in the armlink Reference Guide:
• Chapter 4 Formal syntax of the scatter file.

L6263E <addr> address of <regionname> cannot be addressed from <pi_or_abs> Region
Table in <regtabregionname>

The Region Table contains information used by the C-library initialization code
to copy, decompress, or create ZI. This error message is given when the scatter
file specifies an image structure that cannot be described by the Region Table.
The error message is most common when PI and non-PI Load Regions are mixed
in the same image.

L6265E Non-PI Section <obj>(<sec>) cannot be assigned to PI Exec region <er>.

This might be caused by explicitly specifying the wrong ARM library on the
linker command-line. Either:
• Remove the explicit specification of the ARM library.
• Replace the library, for example, c_t.l, with the correct library.

L6266E RWPI Section <obj>(<sec>) cannot be assigned to non-PI Exec region <er>.

This error relates to a feature that is unsupported in ARM Compiler 6.0.

L6271E Two or more mutually exclusive attributes specified for Load region
<regname>

This message indicates a problem with the scatter file.

L6272E Two or more mutually exclusive attributes specified for Execution region
<regname>

This message indicates a problem with the scatter file.

L6273E Section <objname>(<secname>) has mutually exclusive attributes (READONLY
and ZI)

This message indicates a problem with the object file.

L6275E COMMON section <obj1>(<sec1>) does not define <sym> (defined in
<obj2>(<sec2>))

Given a set of COMMON sections with the same name, the linker selects one of them
to be added to the image and discards all others. The selected COMMON section must
define all the symbols defined by any rejected COMMON section, otherwise a symbol
that was defined by a rejected section would become undefined again. The linker
generates an error if the selected copy does not define a symbol that a rejected
copy does. This error is normally caused by a compiler fault. Contact your
supplier.

L6276E Address <addr> marked both as <s1>(from <sp1>(<obj1>) via <src1>) and
<s2>(from <sp2>(<obj2>) via <src2>).
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-17
ID031214 Non-Confidential

Linker Errors and Warnings
The image cannot contain contradictory mapping symbols for a given address,
because the contents of each word in the image are uniquely typed as A32 ($a) or
T32 ($t) code, DATA ($d), or NUMBER. It is not possible for a word to be both
A32 code and DATA. This might indicate a compiler fault. Contact your supplier.

L6280E Cannot rename <sym> using the given patterns.

See the following in the armlink Reference Guide:
• RENAME on page 3-5.

L6281E Cannot rename both <sym1> and <sym2> to <newname>.

See the following in the armlink Reference Guide:
• RENAME on page 3-5.

L6282E Cannot rename <sym> to <newname> as a global symbol of that name exists
(defined) in <obj>).

See the following in the armlink Reference Guide:
• RENAME on page 3-5.

L6283E Object <objname> contains illegal local reference to symbol <symbolname>.

An object cannot contain a reference to a local symbol, because local symbols are
always defined within the object itself.

L6285E Non-relocatable Load region <lr_name> contains R-Type dynamic relocations.
First R-Type dynamic relocation found in <object>(<secname>) at offset
0x<offset>.

This error occurs where there is a PI reference between two separate segments, if
the two segments can be moved apart at runtime. When the linker sees that the
two sections can be moved apart at runtime it generates a relocation (an R-Type
relocation) that can be resolved if the sections are moved from their statically
linked address. However the linker faults this relocation (giving error L6285E)
because PI regions must not have relocations with respect to other sections as this
invalidates the criteria for being position independent.

L6286E Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to {symname|%s}. Value(<val>) out of range(<range>) for (<rtype>)

This error typically occurs in the following situations:
• In handwritten assembly code, where there are not enough bits within the

instruction opcode to hold the offset to a symbol.
For example, the offset range is +/-4095 for an A32 state LDR/STR
instruction.

• When the linker is having difficulty placing veneers around a large code
section in your image.
When the linker places a veneer near a very large section it must decide
whether to place the veneer before or after the section. When the linker has
placed the veneer it might have to place more veneers, which could be
placed between the original veneer and its target. This would increase the
distance between the veneer and its target.
The linker automatically allows for modest increases in distances between
veneers and their targets. However, a large number of veneers placed
between the original veneer and its target might result in the target moving
out of range. If this occurs the linker generates message L6286E.To work
around this you can move large code sections away from areas where the
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-18
ID031214 Non-Confidential

Linker Errors and Warnings
linker is placing many veneers. This can be done either by placing large
sections in their own regions or by placing them first in the region they are
located in using the +FIRST directive in the scatter-loading description file.
For example:
LOAD 0x0A000000 0x1000000
{

ROM1 +0x0
{

*(+RO)
}

}

Can be changed to:
LOAD 0x0A000000 0x1000000{

ROM1 +0x0
{

*(+RO)
}
ROM1A +0x0
{

large.o (+RO)
}

}

• When .ARM.exidx exception-handling index tables are placed in different
execution regions, or too far from exception handling code.
The .ARM.exidx exception-handling index tables must be located in a single
execution region. Also, the distance from these tables to the C++ code that
uses C++ exception handling must be within the range -0x40000000 to
0x3fffffff. Otherwise, the linker reports the following error:
L6286: Value(0x9ff38980) out of range(-0x40000000 - 0x3fffffff) for

relocation #0 (R_ARM_PREL31), wrt symbol xxx in XXXX.o(.ARM.exidx)

This behavior is specified in the ARM Exception Handling ABI (EHABI).
The EHABI states that the R_ARM_PREL31 relocation, which .ARM.exidx uses,
does not use the highest bit (bit 31) for calculating the relocation.
The most likely cause of this is that C++ code, that must access the
.ARM.exidx sections, has been split and placed into separate execution
regions, outside of the valid range (-0x40000000 to 0x3fffffff).
To resolve this error, if you have memory between the separated execution
regions, place the .ARM.exidx section there with the selector *(.ARM.exidx).
For example:
LOAD_ROM 0x00000000
{

ER1 0x00000000 ;the distance from ER2 to ER1 is out of range
{

file1.o (+RO) ; from a C++ source
* (+RO)

}
ERx 0x30000000
{

*(.ARM.exidx) ; ARM.exidx to ER1 and ER2 both in range
}
ER2 0x60000000
{

file2.o (+RO) ; from a C++ source
}
ER3 +0
{

* (+RW, +ZI)
}

ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-19
ID031214 Non-Confidential

Linker Errors and Warnings
Otherwise, try placing the code into an execution region close enough to the
tables (within the range of -0x40000000 to 0x3fffffff).

In other cases, make sure you have the latest patch installed from Downloads
https://silver.arm.com/browse.
For more information see Value out of range for relocation
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3553.html.

L6287E Illegal alignment constraint (<align>) specified for <objname>(<secname>).

An illegal alignment was specified for an ELF object.

L6291E Cannot assign Fixed Execution Region <ername> Load Address:<addr>. Load
Address must be greater than or equal to next available Load
Address:<load_addr>.

See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6292E Ignoring unknown attribute '<attr>' specified for region <regname>.

This error message is specific to execution regions with the FIXED attribute. FIXED
means make the load address the same as the execution address. The linker can
only do this if the execution address is greater than or equal to the next available
load address within the load region.
See the following in the armlink User Guide:
• Using the FIXED attribute to create root regions on page 8-16.
See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6294E <type> region <regionname> spans beyond 32 bit address space (base <base>,
size <size> bytes).

This error message relates to a problem with the scatter file.

L6296E Definition of special symbol <sym1> is illegal as symbol <sym2> is
absolute.

See L6188E.

L6300W Common section <object1>(<section1>) is larger than its definition
<object2>(<section2>).

This might indicate a compiler fault. Contact your supplier.

L6301W Could not find file <filename>: <reason>

The specified file was not found in the default directories.

L6302W Ignoring multiple SHLNAME entry.

There can be only one SHLNAME entry in an edit file. Only the first such entry is
accepted by the linker. All subsequent SHLNAME entries are ignored.

L6304W Duplicate input file <filename> ignored.

The specified filename occurred more than once in the list of input files.

L6305W Image does not have an entry point. (Not specified or not set due to
multiple choices.)

The entry point for the ELF image was either not specified, or was not set because
there was more than one section with an entry point linked-in. You must use linker
option --entry to specify the single, unique entry, for example:
--entry 0x0
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-20
ID031214 Non-Confidential

Linker Errors and Warnings
or
--entry <label>

The label form is typical for an embedded system.

L6306W '<attr1>' section <objname>(<secname>) should not use the address of
'<attr2>' function <sym>.

See L6238E.

L6307W Relocation #<rel_class>:<rel_num> in <objname>(<secname>) with respect to
<sym>. Branch to unaligned destination.

L6308W Could not find any object matching <membername> in library <libraryname>.

The name of an object in a library is specified on the link-line, but the library does
not contain an object with that name.

L6309W Library <libraryname> does not contain any members.

A library is specified on the linker command-line, but the library does not contain
any members.

L6310W Unable to find ARM libraries.

This is most often caused by incorrect arguments to --libpath or an invalid value
for an environment variable.
Set the correct path with either the --libpath linker option or the environment
variable. The default path for a Windows installation is:
install_directory\lib

Ensure this path does not include:
• \armlib.
• \cpplib.
• Any trailing slashes (\) at the end. These are added by the linker

automatically.
Use --verbose or --info libraries to display where the linker is attempting to
locate the libraries.
See the following in the armlink Reference Guide:
• --info on page 2-61.
• --libpath on page 2-77.
• --verbose on page 2-144.

L6311W Undefined symbol <symbol> (referred from <objname>).

See L6218E.

L6313W Using <oldname> as an section selector is obsolete. Please use <newname>
instead.

For example, use of IWV$$Code within the scatter file is obsolete. Replace
IWV$$Code with Veneer$$Code.

L6314W No section matches pattern <module>(<section>).

Example:
No section matches pattern foo.*o(ZI).

This can occur for the following reasons:
• The file foo.o is mentioned in your scatter file, but it is not listed on the

linker command-line. To resolve this, add foo.o to the link-line.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-21
ID031214 Non-Confidential

Linker Errors and Warnings
• You are trying to place the ZI data of foo.o using a scatter file, but foo.o
does not contain any ZI data. To resolve this, remove the +ZI attribute from
the foo.o line in your scatter file.

• You have used __attribute__((section(address))) in your source code to
place code and data at a specific address. You have also specified
*(.ARM.__AT_address) in a scatter file, but you have not specified the
address with the same number of hexadecimal digits. For example, you
might have specified __attribute__((section(0x10000))) in your source
code, but you specified the section name as *(.ARM.__AT_0x00010000) in the
scatter file.

See the following in the armlink User Guide:
• Methods of placing functions and data at specific addresses on page 8-17.
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.

L6315W Ignoring multiple Build Attribute symbols in Object <objname>.

An object can contain at most one absolute BuildAttribute$$... symbol. Only the
first such symbol from the object symbol table is accepted by the linker. All
subsequent ones are ignored.

L6316W Ignoring multiple Build Attribute symbols in Object <objname> for section
<sec_no>

An object can contain at most one BuildAttribute$$... symbol applicable to a
given section. Only the first such symbol from the object symbol table is accepted
by the linker. All subsequent ones are ignored.

L6318W <objname>(<secname>) contains branch to a non-code symbol <sym>.

This warning means that in the (usually assembler) file, there is a branch to a
non-code symbol (in another AREA) in the same file. This is most likely a branch
to a label or address where there is data, not code.
For example:
 AREA foo, CODE
 B bar
 AREA bar, DATA
 DCD 0
 END

This results in the message:
init.o(foo) contains branch to a non-code symbol bar.

If the destination has no name:
BL 0x200 ; Branch with link to 0x200 bytes ahead of PC

the following message is displayed:
bootsys.o(BOOTSYS_IVT) contains branch to a non-code symbol <Anonymous
Symbol>.

This warning can also appear when linking objects generated by GCC. GCC uses
linker relocations for references internal to each object. The targets of these
relocations might not have appropriate mapping symbols that permit the linker to
determine whether the target is code or data, so a warning is generated. By
contrast, armclang resolves all such references at compile-time.

L6319W Ignoring <cmd> command. Cannot find section <objname>(<secname>).

For example, when building a Linux application, you might have:
--keep *(.init_array)
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-22
ID031214 Non-Confidential

Linker Errors and Warnings
on the linker command-line in your makefile, but this section might not be present
when building with no C++, in which case this warning is reported:
Ignoring --keep command. Cannot find section *(.init_array)

You can often ignore this warning, or suppress it with --diag_suppress 6319.

L6324W Ignoring <attr> attribute specified for Load region <regname>.

This attribute is applicable to execution regions only. If specified for a Load
region, the linker ignores it.

L6325W Ignoring <attr> attribute for region <regname> which uses the +offset form
of base address.

This attribute is not applicable to regions using the +offset form of base address.
If specified for a region, which uses the +offset form, the linker ignores it.
A region that uses the +offset form of base address inherits the PI, RELOC, or
OVERLAY attributes from either:
• The previous region in the description.
• The parent load region if it is the first execution region in the load region.
See the following in the armlink Reference Guide:
• Inheritance rules for load region address attributes on page 4-20.
• Inheritance rules for execution region address attributes on page 4-21.
• Inheritance rules for the RELOC address attribute on page 4-22.

L6326W Ignoring ZEROPAD attribute for non-root execution region <ername>.

ZEROPAD only applies to root execution regions. A root region is a region whose
execution address is the same as its load address, and so does not require moving
or copying at run-time.
See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6329W Pattern <module>(<section>) only matches removed unused sections.

All sections matching this pattern have been removed from the image because
they were unused. For more information, use --info unused.
See the following in the armlink User Guide:
• Elimination of unused sections on page 5-4.
See the following in the armlink Reference Guide:
• --info on page 2-61.

L6330W Undefined symbol <symbol> (referred from <objname>). Unused section has
been removed.

This means that an unused section has had its base and limit symbols referenced.
For more information, use --info unused.
See the following in the armlink User Guide:
• Elimination of unused sections on page 5-4.
See the following in the armlink Reference Guide:
• --info on page 2-61.

L6334W Overalignment <overalignment> for region <regname> cannot be negative.

See the following in the armlink User Guide:
• Overalignment of execution regions and input sections on page 8-59.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-23
ID031214 Non-Confidential

Linker Errors and Warnings
L6335W ARM interworking code in <objname>(<secname>) may contain invalid
tailcalls to ARM non-interworking code.

The compiler is able to perform tailcall optimization for improved code size and
performance. However, there is a problematic sequence for Architecture 4T code
where a T32 IW function calls (by a veneer) an A32 IW function, which tailcalls
an A32 not-IW function. The return from the A32 not-IW function can pop the
return address off the stack into the PC instead of using the correct BX instruction.
The linker can detect this situation and report this warning.
T32 IW tailcalls to T32 not-IW do not occur because T32 tailcalls with B are so
short ranged that they can only be generated to functions in the same ELF section
which must also be T32.
The warning is pessimistic in that an object might contain invalid tailcalls, but the
linker cannot be sure because it only looks at the attributes of the objects, not at
the contents of their sections.
To avoid the warning, either rebuild your objects with interworking enabled, or
manually inspect the A32 IW function to check for tailcalls (that is, where
function calls are made using an ordinary branch B instruction), to check whether
this is a real problem. This warning can be suppressed with --diag_suppress
L6335W.

L6339W Ignoring RELOC attribute for execution region <er_name>.

Execution regions cannot explicitly be given RELOC attribute. They can only gain
this attribute by inheriting from the parent load region or the previous execution
region if using the +offset form of addressing.
See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6340W options first and last are ignored for link type of <linktype>

The --first and --last options are meaningless when creating a partially-linked
object.

L6370E cpu <cpu> is not compatible with fpu <fpu>

See the following in the armlink Reference Guide:
• --cpu on page 2-29.
• --fpu on page 2-57.

L6384E No Load Execution Region of name <region> seen yet at line <line>.

This might be because you have used the current base address in a limit
calculation in a scatter file. For example:
ER_foo 0 ImageBase(ER_foo)

L6387E Load Region Expressions can only be used in ScatterAssert expressions on
line <line>

See the following in the armlink Reference Guide:
• ScatterAssert function and load address related functions on page 4-40.

L6388E ScatterAssert expression <expr> failed on line <line>

See the following in the armlink Reference Guide:
• ScatterAssert function and load address related functions on page 4-40.

L6390E Conditional operator (expr) ? (expr) : (expr) on line <line> has no :
(expr).
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-24
ID031214 Non-Confidential

Linker Errors and Warnings
See the following in the armlink Reference Guide:
• About Expression evaluation in scatter files on page 4-32.
• Expression rules in scatter files on page 4-34.

L6404W FILL value preferred to combination of EMPTY, ZEROPAD and PADVALUE for
Execution Region <name>.

See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6405W No .ANY selector matches Section <name>(<objname>).

See the following in the armlink User Guide:
• Placement of unassigned sections with the .ANY module selector on

page 8-25.

L6406W No space in execution regions with .ANY selector matching Section
<name>(<objname>).

This occurs if there is not sufficient space in the scatter file regions containing
.ANY to place the section listed. You must modify your scatter file to ensure there
is sufficient space for the section.
See the following in the armlink User Guide:
• Placement of unassigned sections with the .ANY module selector on

page 8-25.

L6407W Sections of aggregate size 0x<size> bytes could not fit into .ANY
selector(s).

This warning identifies the total amount of image data that cannot be placed in
any .ANY selectors.
For example, .ANY(+ZI) is placed in an execution region that is too small for the
amount of ZI data:
ROM_LOAD 0x8000
{
 ROM_EXEC 0x8000
 {
 .ANY(+RO,+RW)
 }
 RAM +0 0x{...} <<< region max length is too small
 {
 .ANY(+ZI)
 }
}

See the following in the armlink User Guide:
• Placement of unassigned sections with the .ANY module selector on

page 8-25.

L6411E No compatible library exists with a definition of startup symbol <name>.

The compiler does not generate $$Lib$Request symbols when building objects, so
armlink does not automatically link with the ARM libraries, resulting in this
message.
Invoke armlink with --force_scanlib to link with the ARM libraries. When
compiling and linking in one step, the compiler automatically passes this option
to armlink.
See the following in the armlink Reference Guide:
• --force_scanlib on page 2-55.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-25
ID031214 Non-Confidential

Linker Errors and Warnings
L6414E --ropi used without --rwpi or --rw-base.

This error relates to options that are unsupported in ARM Compiler 6.0.

L6415E Could not find a unique set of libraries compatible with this image.
Suggest using the --cpu option to select a specific library.

See the following in the armlink Reference Guide:
• --cpu on page 2-29.

L6422U PLT generation requires an architecture with ARM instruction support.

For the linker to generate PLT, you must be using a target that supports the A32
instruction set. For example, the linker cannot generate PLT for a Cortex-M3
target.

L6429U Attempt to set maximum number of open files to <val> failed with error
code <error>.

An attempt to increase the number of file handles armlink can keep open at any
one time has failed.

L6443W Data Compression for region <region> turned off. Region contains reference
to symbol <symname> which depends on a compressed address.

The linker requires the contents of a region to be fixed before it can be
compressed and cannot modify it after it has been compressed. Therefore a
compressible region cannot refer to a memory location that depends on the
compression process.

L6463U Input Objects contain <archtype> instructions but could not find valid
target for <archtype> architecture based on object attributes. Suggest
using --cpu option to select a specific cpu.

See the following in the armlink Reference Guide:
• --cpu on page 2-29.

L6464E Only one of --dynamic_debug, --emit-relocs and --emit-debug-overlay-relocs
can be selected.

See the following in the armlink Reference Guide:
• --emit_debug_overlay_relocs on page 2-42.
• --emit_relocs on page 2-45.

L6468U Only --pltgot=direct or --pltgot=none supported for --base_platform with
multiple Load Regions containing code.

See the following in the armlink Reference Guide:
• --base_platform on page 2-12.
• --pltgot on page 2-99.

L6469E --base_platform does not support RELOC Load Regions containing non RELOC
Execution Regions. Please use +0 for the Base Address of Execution Region
<ername> in Load Region <lrname>.

See the following in the armlink Reference Guide:
• --base_platform on page 2-12.
• Inheritance rules for the RELOC address attribute on page 4-22.

L6471E Branch Relocation <rel_class>:<idx> in section <secname> from object
<objname> refers to ARM Absolute <armsym> symbol from object <armobjname>,
Suppress error to treat as a Thumb address.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-26
ID031214 Non-Confidential

Linker Errors and Warnings
Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Branch refers to ARM Absolute Symbol defined in <armobjname>,
Suppress error to treat as a Thumb address.

L6475W IMPORT/EXPORT commands ignored when --override_visibility is not specified

The symbol you are trying to export, either with an EXPORT command in a steering
file or with the --undefined_and_export command-line option, is not exported
because of low visibility.
See the following in the armlink Reference Guide:
• --override_visibility on page 2-93.
• --undefined_and_export on page 2-136.
• EXPORT on page 3-2.

L6629E Unmatched parentheses expecting) but found <character> at position <col>
on line <line>

This message indicates a parsing error in the scatter file.

L6630E Invalid token start expected number or (but found <character> at position
<col> on line <line>

This message indicates a parsing error in the scatter file.

L6631E Division by zero on line <line>

This message indicates an expression evaluation error in the scatter file.

L6632W Subtraction underflow on line <line>

This message indicates an expression evaluation error in the scatter file.

L6634E Pre-processor command in '<filename>'too long, maximum length of
<max_size>

This message indicates a problem with pre-processing the scatter file.

L6635E Could not open intermediate file '<filename>' produced by pre-processor:
<reason>

This message indicates a problem with pre-processing the scatter file.

L6636E Pre-processor step failed for '<filename>'

This message indicates a problem with pre-processing the scatter file.

L6637W No input objects specified. At least one input object or library(object)
must be specified.

At least one input object or library(object) must be specified.

L6638U Object <objname> has a link order dependency cycle, check sections with
SHF_LINK_ORDER

L6640E PDTTable section not least static data address, least static data section
is <secname>

This error relates to features that are unsupported in ARM Compiler 6.0.

L6643E The virtual function elimination information in section <sectionname>
refers to the wrong section.

This message might indicate a compiler fault. Contact your supplier.

L6644E Unexpectedly reached the end of the buffer when reading the virtual
function elimination information in section <oepname>(<sectionname>).

This message might indicate a compiler fault. Contact your supplier.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-27
ID031214 Non-Confidential

Linker Errors and Warnings
L6645E The virtual function elimination information in section
<oepname>(<sectionname>) is incorrect: there should be a relocation at
offset <offset>.

This message might indicate a compiler fault. Contact your supplier.

L6646W The virtual function elimination information in section
<oepname>(<sectionname>) contains garbage from offset <offset> onwards.

This message might indicate a compiler fault. Contact your supplier.

L6647E The virtual function elimination information for
<vcall_objectname>(<vcall_sectionname>) incorrectly indicates that section
<curr_sectionname>(object <curr_objectname>), offset <offset> is a
relocation (to a virtual function or RTTI), but there is no relocation at
that offset.

This message might indicate a compiler fault. Contact your supplier.

L6649E EMPTY region <regname> must have a maximum size.

See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6654E Rejected Local symbol <symname> referred to from a non group member
<objname>(<nongrpname>)

This message might indicate a compiler fault. Contact your supplier.

L6656E Internal error: the vfe section list contains a non-vfe section called
<oepname>(<secname>).

This message might indicate a compiler fault. Contact your supplier.

L6664W Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is with
respect to a symbol(#<idx> before last Map Symbol #<last>).

L6665W Neither Lib$$Request$$armlib Lib$$Request$$cpplib defined, not searching
ARM libraries.

The following code produces this warning:
 AREA Block, CODE, READONLY
 EXPORT func1
 ;IMPORT || Lib$$Request$$armlib||
 IMPORT printf
func1
 LDR r0,=string
 BL printf
 BX lr
 AREA BlockData, DATA
string DCB "mystring"
 END

The linker has not been told to look in the libraries and so cannot find the symbol
printf.
This also causes an error:
L6218E: Undefined symbol printf (referred from L6665W.o).

If you do not want the libraries, then ignore this message. Otherwise, to fix both
the error and the warning uncomment the line:
IMPORT || Lib$$Request$$armlib||

Note
 Use the --force_scanlib option to tell armlink to link with the ARM libraries.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-28
ID031214 Non-Confidential

Linker Errors and Warnings
See the following in the armlink Reference Guide:
• --force_scanlib on page 2-55.

L6707E Padding value not specified with PADVALUE attribute for execution region
<regionname>.

See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.

L6720U Exception table <spname> from object <oepname> present in image,
--noexceptions specified.

See the following in the armlink Reference Guide:
• --exceptions, --no_exceptions on page 2-48.

L6738E Relocation #<rel_class>:<relocnum> in <oepname>(<secname>) with respect to
<wrtsym> is a GOT-relative relocation, but _GLOBAL_OFFSET_TABLE_ is
undefined.

Some GNU produced images can refer to the symbol named
_GLOBAL_OFFSET_TABLE_. If there are no GOT Slot generating relocations and the
linker is unable to pick a suitable address for the GOT base the linker issues this
error message.

L6747W Raising target architecture from <oldversion> to <newversion>.

If the linker detects objects that specify the obsolete ARMv3, it upgrades these to
ARMv4 to be usable with ARM libraries.

L6765W Shared object entry points must be ARM-state when linking architecture 4T
objects.

This can occur when linking with GNU C libraries. The GNU startup code crt1.o
does not have any build attributes for the entry point, so the linker cannot
determine which execution state (A32 or T32) the code runs in. Because the GNU
C library startup code is A32 code, you can safely ignore this warning, or suppress
it with --diag_suppress 6765.

L6783E Mapping symbol #<symnum> '<msym>' in <oepname>(<secnum>:<secname>) defined
at the end of, or beyond, the section size (symbol offset=0x<moffset>,
section size=0x<secsize>)

This indicates that the address for a section points to a location at the end of or
outside of the ELF section. This can be caused by an empty inlined data section
and indicates there might be a problem with the object file. You can use
--diag_warning 6783 to suppress this error.

L6784E Symbol #<symnum> '<symname>' in <oepname>(<secnum>:<secname>) with value
<value> has size 0x<size> that extends to outside the section.

The linker encountered a symbol with a size that extends outside of its containing
section.

L6788E Scatter-loading of execution region <er1name> to [<base1>,<limit1>) will
cause the contents of execution region <er2name> at [<base2>,<limit2>) to
be corrupted at run-time.

This might occur during the placement of an execution region when
scatter-loading takes place. It happens if an execution region is put in a position
where it overwrites partially or wholly itself or another execution region.
For example, this works:
LOAD_ROM 0x0000 0x4000
{
 EXEC1 0x0000 0x4000
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-29
ID031214 Non-Confidential

Linker Errors and Warnings
 {
 * (+RO)
 }
 EXEC2 0x4000 0x4000
 {
 * (+RW,+ZI)
 }
}

This generates the error:
LOAD_ROM 0x0000 0x4000
{
 EXEC1 0x4000 0x4000
 {
 * (+RW,+ZI)
 }
 EXEC2 0x0000 0x4000
 {
 * (+RO)
 }
}

It reports:
Error: L6788E: Scatter-loading of execution region EXEC2 will cause the
contents of execution region EXEC2 to be corrupted at run-time.

See the following in the armlink User Guide:
• Chapter 8 Using scatter files.

L6799E Expecting Landing Pad reference at offset 0x<offset> in Function
Specification descriptor <oepname>(<secname>).

A landing pad is code that cleans up after an exception has been raised. If the
linker detects old-format exception tables, it automatically converts them to the
new format.
This message does not appear unless you are using a later version of the linker
with an earlier version of the compiler.

L6800W Cannot convert generic model personality routine at 0x<offset>
<oepname>(<secname>).

A personality routine unwinds the exception handling stack. If the linker detects
old-format exception tables then it automatically converts them to the new
format. This message indicates a fault in the compiler. Contact your supplier.

L6801E <objname>(<secname>) containing <secarmthumb> code cannot use the address
of '~IW (The user intended not all code should interwork)' <funarmthumb>
function <sym>.

The linker can diagnose where a non-interworking (~IW) function has its address
taken by code in the other state. This error is disabled by default, but can be
enabled by linking with --strict. The error can be downgraded to a warning with
--diag_warning 6801 and subsequently suppressed completely if required with
--diag_suppress 6801

Where code, for example, in a.c uses the address of a non-interworking function
in t.c:
armclang --target=armv8a-arm-none-eabi -marm -c a.c
armclang --target=armv8a-arm-none-eabi -mthumb -c t.c
armlink --force_scanlib t.o a.o --strict

reports:
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-30
ID031214 Non-Confidential

Linker Errors and Warnings
Error: L6801E: a.o(.text) containing ARM code cannot use the address of
'~IW' Thumb function foo.

L6810E Relocation <rel_class>:<idx> in <objname>(<secname>) is of obsolete type
<rtype>

Relocation errors and warnings are most likely to occur if you are linking object
files built with previous versions of the ARM tools.
To show relocation errors and warnings use the --strict_relocations switch.
This option enables you to ensure ABI compliance of objects. It is off by default,
and deprecated and obsolete relocations are handled silently by the linker.
See the following in the armlink Reference Guide:
• --strict_relocations, --no_strict_relocations on page 2-124.

L6813U Could not find Symbol <symname> to rename to <newname>.

See the following in the armlink Reference Guide:
• RENAME on page 3-5.

L6815U Out of memory. Allocation Size:<alloc_size> System Size:<system_size>.

This error provides information about the amount of memory available and the
amount of memory required to perform the link step.
This error occurs because the linker does not have enough memory to link your
target object. This is not common, but might be triggered for a number of reasons,
such as:
• Linking very large objects or libraries together.
• Generating a large amount of debug information.
• Having very large regions defined in your scatter file.
In these cases, your workstation might run out of virtual memory.
This issue might also occur if you use the FIXED scatter-loading attribute. The
FIXED attribute forces an execution region to become a root region in ROM at a
fixed address. The linker might have to add padding bytes between the end of the
previous execution region and the FIXED region, to generate the ROM image. The
linker might run out of memory if large amounts of padding are added when the
address of the FIXED region is far away from the end of the execution region. The
link step might succeed if the gap is reduced.
See the following in the armlink Reference Guide:
• Execution region attributes on page 4-13.
See the following in the armlink User Guide:
• Using the FIXED attribute to create root regions on page 8-16.
While the linker can generate images of almost any size, it requires a larger
amount of memory to run and finish the link. Try the following solutions to
improve link-time performance, to avoid the Out of memory error:
1. Shut down all non-essential applications and processes when you are

linking.
For example, if you are running under Eclipse, try running your linker from
the command-line, or exiting and restarting Eclipse between builds.

2. Use the --no_debug linker option.
This command tells the linker to create the object without including any
debug information. See the following in the armlink Reference Guide:
• --debug, --no_debug on page 2-32.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-31
ID031214 Non-Confidential

Linker Errors and Warnings
Note
 It is not possible to perform source level debugging if you use this option.

3. Reduce debug information.
There are methods you can use to try and reduce debug information. See
-Onum in the armclang Reference Guide.
You can also use the fromelf utility to strip debug information from objects
and libraries that you do not have to debug. See the following in the fromelf
User Guide:
• --strip=option[,option,...] on page 4-68.

4. Use partial linking.
You can use partial linking to split the link stage over a few smaller
operations. Doing this also stops duplication of the object files in memory
in the final link.
See the following in the armlink Reference Guide:
• --partial on page 2-97.

5. Increase memory support on Windows operating systems.
On some Windows operating systems it is possible to increase the virtual
address space from 2GB (the default) to 3GB. For more information, see
the article Memory Support and Windows Operating Systems at Microsoft
Developer Network http://msdn.microsoft.com/.

6. Use the --no_eager_load_debug linker option.
This option causes the linker to remove debug section data from memory
after object loading. This lowers the peak memory usage of the linker at the
expense of some linker performance, because much of the debug data has
to be loaded again when the final image is written.
See the following in the armlink Reference Guide:
• --eager_load_debug, --no_eager_load_debug on page 2-40.

If you are still experiencing the same problem, raise a support case.

L6828E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<symname>, Branch source address <srcaddr> cannot reach next available
pool at [<pool_base>,<pool_limit>). Please use the --veneer_pool_size
option to increase the contingency.

The --veneer_inject_type=pool veneer generation model requires branches to
veneers in the pool to be able to reach the pool limit, which is the highest possible
address a veneer can use. If a branch is later found that cannot reach the pool limit,
and armlink is able to fit all the veneers in the pool into the lower pool limit, then
armlink reduces the pool limit to accommodate the branch. Error message L6828
is issued only if armlink is unable to lower the pool limit.
See the following in the armlink Reference Guide:
• --veneer_inject_type on page 2-141.

L6915E Library reports error: <msg>

The message is typically one of the following:
• Error: L6915E: Library reports error: scatter-load file declares no

heap or stack regions and __user_initial_stackheap is not defined.

or
Error: L6915E: Library reports error: The semihosting
__user_initial_stackheap cannot reliably set up a usable heap region
if scatter loading is in use
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-32
ID031214 Non-Confidential

Linker Errors and Warnings
It is most likely that you have not re-implemented
__user_setup_stackheap() or you have not defined ARM_LIB_STACK or
ARM_LIB_HEAP regions in the respective scatter file.

Note
 __user_setup_stackheap() supersedes the deprecated function

__user_initial_stackheap().

See the following in the ARM C and C++ Libraries and Floating-Point
Support Reference Guide:
— __user_setup_stackheap() on page 2-58.
See the following in the armlink User Guide:
— Reserving an empty region on page 8-55.

• Error: L6915E: Library reports error: __use_no_semihosting was
requested but <function> was referenced.

Where <function> represents __user_initial_stackheap, _sys_exit,
_sys_open, _sys_tmpnam, _ttywrch, system, remove, rename,
_sys_command_string, time, or clock
This error can appear when retargeting semihosting-using functions, to
avoid any SVC/BKPT instructions being linked-in from the C libraries.
Ensure that no semihosting-using functions are linked in from the C library.
To resolve this, you might have to provide your own implementations of
these C library functions.
The emb_sw_dev directory contains examples of how to re-implement some
of the more common semihosting-using functions. See the file retarget.c.
See the following in the ARM C and C++ Libraries and Floating-Point
Support User Guide:
— Using the libraries in a nonsemihosting environment on page 2-35.

Note
 The linker does not report any semihosting-using functions, such as

__semihost(), in your own application code.

To identify which semihosting-using functions are still being linked-in
from the C libraries:
— Link with armlink --verbose --list err.txt
— Search err.txt for occurrences of __I_use_semihosting

For example:
…
Loading member sys_exit.o from c_4.l.
reference : __I_use_semihosting
definition: _sys_exit
…

This shows that the semihosting-using function _sys_exit is linked-in
from the C library. To prevent this, you must provide your own
implementation of this function.

• Error: L6915E: Library reports error:__use_no_heap was requested,
but <reason> was referenced

If <reason> represents malloc, free, __heapstats, or __heapvalid, the use of
__use_no_heap conflicts with these functions.

• Error: L6915E: Library reports error:__use_no_heap_region was
requested, but <reason> was referenced
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-33
ID031214 Non-Confidential

Linker Errors and Warnings
If <reason> represents malloc, free, __heapstats, __heapvalid, or
__argv_alloc, the use of __use_no_heap_region conflicts with these
functions.

L6971E <objname>(<secname>) type <type> incompatible with <prevobj>(<prevname>)
type <prevtype> in er <ername>.

You might see this message when placing __at sections with a scatter file.
See the following in the armlink User Guide:
• Methods of placing functions and data at specific addresses on page 8-17.
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.

L6974E AT section <name> does not have a base address.

See the following in the armlink User Guide:
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.

L6980W FIRST and LAST ignored for <objname>(<secname>) with required base
address.

See the following in the armlink User Guide:
• Placing sections with FIRST and LAST attributes on page 4-20.

L6981E __AT incompatible with BPABI and SystemV Image types

See the following in the armlink User Guide:
• Restrictions on placing __at sections on page 8-41.

L6982E AT section <objname>(<spname>) with base <base> limit <limit> overlaps
address range with AT section <obj2name>(<sp2name>) with base <base2>
limit <limit2>.

See the following in the armlink User Guide:
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.

L6983E AT section <objname>(<spname>) with required base address <base> out of
range for ER <ername> with base <erbase> and limit <erlimit>.

This can occur if you specify __attribute__((section(.ARM.__at_address))) in
your code, the address is outside the range of all execution regions specified in
your scatter file, and you specify --no_autoat option on the linker command-line.
In this case, the address part of .ARM.__at_address must be within an execution
region. For example:
int x1 __attribute__((section(.ARM.__at_0x4000))); // defined in
function.c

; scatter file
LR1 0x0
{
 ...
 function.o(.ARM.__at_0x4000)
 ...
}

See the following in the armlink User Guide:
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-34
ID031214 Non-Confidential

Linker Errors and Warnings
See the following in the armlink Reference Guide:
• --autoat, --no_autoat on page 2-11.

L6984E AT section <objname>(<spname>) has required base address <base> which is
not aligned to section alignment <alignment>.

See the following in the armlink User Guide:
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.

L6985E Unable to automatically place AT section <objname>(<spname>) with required
base address <base>. Please manually place in the scatter file using the
--no_autoat option.

This can occur if you specify __attribute__((section(.ARM.__at_address))) in
your code, the address is outside the range of all execution regions specified in
your scatter file, and you specify --autoat option on the linker command-line. In
this case, the address part of .ARM.__at_address must be within an execution
region, and you must specify the --no_autoat option on the linker command-line.
See the following in the armlink User Guide:
• Placement of sections at a specific address with

__attribute__((section(".ARM.__at_address"))) on page 8-40.
See the following in the armlink Reference Guide:
• --autoat, --no_autoat on page 2-11.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 3-35
ID031214 Non-Confidential

Chapter 4
ELF Image Converter Errors and Warnings

The following topic describes the error and warning messages for the ELF image converter,
fromelf:

• List of the fromelf error and warning messages on page 4-2.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 4-1
ID031214 Non-Confidential

ELF Image Converter Errors and Warnings
4.1 List of the fromelf error and warning messages
The error and warning messages for fromelf are:

Q0122E Could not open file '<filename>': <reason>

If <reason> is Invalid argument, this might be because you have invalid characters
on the command-line. For example, on Windows you might have used the escape
character \ when specifying a filter with an archive file:
fromelf --elf --strip=all t.a\(test*.o\) -o filtered/

On Windows, use:
fromelf --elf --strip=all t.a(test*.o) -o filtered/

See the following in the fromelf User Guide:
• input_file on page 4-48.

Q0128E File i/o failure.

This error can occur if you specify a directory for the --output command-line
option, but you did not terminate the directory with a path separator. For example,
--output=my_elf_files/.
See the following in the fromelf User Guide:
• --output=destination on page 4-57.

Q0131E Invalid ELF identification number found.

This error is given if you attempt to use fromelf on a file which is not in ELF
format, or which is corrupted. Object (.o) files and executable (.axf) files are in
ELF format.

Q0147E Failed to create Directory <dir>: <reason>

If <reason> is File exists, this might be because you have specified a directory that
has the same name as a file that already exists. For example, if a file called
filtered already exists, then the following command produces this error:
fromelf --elf --strip=all t.a(test*.o) -o filtered/

The path separator character / informs fromelf that filtered is a directory.
See the following in the fromelf User Guide:
• --output=destination on page 4-57.

Q0171E Invalid st_name index into string table <idx>.

See Q0131E.

Q0172E Invalid index into symbol table <idx>.

See Q0131E.

Q0186E This option requires debugging information to be present

The --fieldoffsets option requires the image to be built with dwarf debug tables.

Q0425W Incorrectly formed virtual function elimination header in file

This might indicate a compiler fault. Contact your supplier.

Q0426E Error reading vtable information from file

This might indicate a compiler fault. Contact your supplier.

Q0427E Error getting string for symbol in a vtable

This might indicate a compiler fault. Contact your supplier.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 4-2
ID031214 Non-Confidential

ELF Image Converter Errors and Warnings
Q0448W Read past the end of the compressed data while decompressing section
'<secname>' #<secnum> in <file>

This might indicate an internal fault. Contact your supplier.

Q0449W Write past the end of the uncompressed data buffer of size <bufsize> while
decompressing section '<secname>' #<secnum> in <file>

This might indicate an internal fault. Contact your supplier.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 4-3
ID031214 Non-Confidential

Chapter 5
Librarian Errors and Warnings

The following topic describes the error and warning messages for the ARM Librarian, armar:

• List of the armar error and warning messages on page 5-2.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 5-1
ID031214 Non-Confidential

Librarian Errors and Warnings
5.1 List of the armar error and warning messages
The error and warning messages for armar are:

L6874W Minor variants of archive member '<member>' include no base variant

Minor variants of the same function exist within a library. Find the two equivalent
objects and remove one of them.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 5-2
ID031214 Non-Confidential

Chapter 6
Other Errors and Warnings

The following topics describe error and warning messages that might be displayed by any of the
tools:
• Internal faults and other unexpected failures on page 6-2.
• List of other error and warning messages on page 6-3.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 6-1
ID031214 Non-Confidential

Other Errors and Warnings
6.1 Internal faults and other unexpected failures
Internal faults indicate that the tool has failed an internal consistency check or has encountered
some unexpected input that it could not deal with. They might point to a potential issue in the
tool itself.

For example:

Internal fault: [0x76fd03:600448]

contains:

• The message description (Internal fault).

• A six hexadecimal digit fault code for the error that occurred (0x76fd03).

• The version number (60 is ARM Compiler 6.0).

• The build number (0448 in this example).

If you see an internal fault, contact your supplier.

To facilitate the investigation, try to send only the single source file or function that is causing
the error, plus the command-line options used.

It might be necessary to preprocess the file (that is, to take account of files added with #include).
To do this, pass the file through the preprocessor as follows:

armclang <options> –E sourcefile.c > PPsourcefile.c

where <options> are your normal compile switches, such as -O2, -g, -I, -D, but without -c.

Check that the error is still reproducible with the preprocessed file by compiling it with:

armclang <options> -c PPsourcefile.c

and then provide the PPsourcefile.c file and the <options> to your supplier.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 6-2
ID031214 Non-Confidential

Other Errors and Warnings
6.2 List of other error and warning messages
The following error and warning messages can be produced by any of the tools.

Note
 When the message is displayed, the X prefixing the message number is replaced by the
appropriate letter relating to the application. For example, the code X3900U, is displayed as
L3900U by the linker when you have specified an unrecognized option.

X3900U Unrecognized option '<dashes><option>'.

<option> is not recognized by the tool. This could be because of a spelling error
or the use of an unsupported abbreviation of an option.

X3903U Argument '<argument>' not permitted for option '<option>'.

Possible reasons include malformed integers or unknown arguments.
ARM DUI 0807A Copyright © 2014 ARM. All rights reserved. 6-3
ID031214 Non-Confidential

	ARM Compiler Errors and Warnings Reference Guide
	Contents
	1: Conventions and Feedback
	2: armasm Errors and Warnings
	2.1 List of the armasm error and warning messages

	3: Linker Errors and Warnings
	3.1 Suppressing armlink error and warning messages
	3.2 List of the armlink error and warning messages

	4: ELF Image Converter Errors and Warnings
	4.1 List of the fromelf error and warning messages

	5: Librarian Errors and Warnings
	5.1 List of the armar error and warning messages

	6: Other Errors and Warnings
	6.1 Internal faults and other unexpected failures
	6.2 List of other error and warning messages

