
ARM® Mali™-T600 Series GPU OpenCL
Version 2.0

Developer Guide
Copyright © 2012-2013 ARM. All rights reserved.
DUI0538F (ID012914)

ARM Mali-T600 Series GPU OpenCL
Developer Guide

Copyright © 2012-2013 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

12 July 2012 A Confidential First release

07 November 2012 D Confidential Second release

27 February 2013 E Non-confidential Third release

03 December 2013 F Non-confidential Fourth release
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. ii
ID012914 Non-Confidential

Contents
ARM Mali-T600 Series GPU OpenCL Developer
Guide

Preface
About this book .. vii
Feedback .. ix

Chapter 1 Introduction
1.1 About GPU compute .. 1-2
1.2 About OpenCL ... 1-3
1.3 About the Mali-T600 Series GPU Linux OpenCL driver .. 1-4
1.4 About the Mali OpenCL SDK ... 1-5

Chapter 2 Parallel Processing Concepts
2.1 Types of parallelism ... 2-2
2.2 Concurrency .. 2-4
2.3 Limitations of parallel processing ... 2-5
2.4 Embarrassingly parallel applications ... 2-6
2.5 Mixing different types of parallelism ... 2-7

Chapter 3 OpenCL Concepts
3.1 About OpenCL ... 3-2
3.2 OpenCL applications ... 3-3
3.3 OpenCL execution model .. 3-4
3.4 OpenCL data processing ... 3-5
3.5 The OpenCL memory model ... 3-8
3.6 The Mali GPU memory model ... 3-9
3.7 OpenCL concepts summary .. 3-10
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. iii
ID012914 Non-Confidential

Contents
Chapter 4 Developing an OpenCL Application
4.1 Software and hardware required for OpenCL development 4-2
4.2 Development stages .. 4-3

Chapter 5 Execution Stages of an OpenCL Application
5.1 About the execution stages ... 5-2
5.2 Finding the available compute devices .. 5-4
5.3 Initializing and creating OpenCL contexts ... 5-5
5.4 Creating a command queue .. 5-6
5.5 Creating OpenCL program objects .. 5-7
5.6 Building a program executable .. 5-8
5.7 Creating kernel and memory objects ... 5-9
5.8 Executing the kernel .. 5-10
5.9 Reading the results .. 5-12
5.10 Cleaning up .. 5-13

Chapter 6 Converting Existing Code to OpenCL
6.1 Profile your application .. 6-2
6.2 Analyzing code for parallelization .. 6-3
6.3 Parallel processing techniques in OpenCL .. 6-6
6.4 Using parallel processing with non-parallelizable code ... 6-11
6.5 Dividing data for OpenCL .. 6-12

Chapter 7 Retuning Existing OpenCL Code for Mali GPUs
7.1 About retuning existing OpenCL code for Mali GPUs .. 7-2
7.2 Differences between desktop based architectures and Mali GPUs 7-3
7.3 Procedure for retuning existing OpenCL code for Mali GPUs 7-5

Chapter 8 Optimizing OpenCL for Mali GPUs
8.1 The optimization process for OpenCL applications ... 8-2
8.2 Load balancing between the application processor and the Mali GPU 8-3
8.3 Sharing memory between I/O devices and OpenCL ... 8-4

Chapter 9 OpenCL Optimizations List
9.1 General optimizations .. 9-2
9.2 Memory optimizations .. 9-4
9.3 Kernel optimizations .. 9-7
9.4 Code optimizations .. 9-9
9.5 Execution optimizations ... 9-12
9.6 Reducing the effect of serial computations .. 9-13

Chapter 10 The Mali OpenCL SDK

Appendix A OpenCL Data Types

Appendix B OpenCL Built-in Functions
B.1 Work-item functions ... B-2
B.2 Math functions ... B-3
B.3 half_ and native_ math functions ... B-4
B.4 Integer functions .. B-5
B.5 Common functions ... B-6
B.6 Geometric functions ... B-7
B.7 Relational functions ... B-8
B.8 Vector data load and store functions ... B-9
B.9 Synchronization ... B-10
B.10 Asynchronous copy functions .. B-11
B.11 Atomic functions .. B-12
B.12 Miscellaneous vector functions .. B-13
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. iv
ID012914 Non-Confidential

Contents
B.13 Image read and write functions .. B-14

Appendix C OpenCL Extensions
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. v
ID012914 Non-Confidential

Preface

This preface introduces the Mali-T600 Series GPU OpenCL Developer Guide. It contains the
following sections:
• About this book on page vii.
• Feedback on page ix.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. vi
ID012914 Non-Confidential

Preface
About this book
This book is for Mali-T600 Series GPU OpenCL.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This guide is written for software developers with experience in C or C-like languages who want
to develop OpenCL applications for Mali-T600 Series GPUs.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to OpenCL and the Mali OpenCL SDK.

Chapter 2 Parallel Processing Concepts
Read this for an introduction to parallel processing concepts.

Chapter 3 OpenCL Concepts
Read this for a description of the OpenCL concepts.

Chapter 4 Developing an OpenCL Application
Read this for a description of the development stages of an OpenCL application.

Chapter 5 Execution Stages of an OpenCL Application
Read this for a description of the execution stages of an OpenCL application.

Chapter 6 Converting Existing Code to OpenCL
Read this for a description of how to convert existing code to OpenCL.

Chapter 7 Retuning Existing OpenCL Code for Mali GPUs
Read this for a description of how to retune existing OpenCL code for the
Mali-T600 Series GPUs.

Chapter 8 Optimizing OpenCL for Mali GPUs
Read this for a description of how to optimize OpenCL for the
Mali-T600 Series GPUs.

Chapter 9 OpenCL Optimizations List
Read this for a list of optimizations for OpenCL on the Mali-T600 Series GPUs.

Chapter 10 The Mali OpenCL SDK
Read this for an introduction to the Mali OpenCL SDK.

Appendix A OpenCL Data Types
Read this for a list of the data types available.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. vii
ID012914 Non-Confidential

Preface
Appendix B OpenCL Built-in Functions
Read this for a list of the OpenCL built-in functions implemented in the
Mali-T600 Series GPU Linux OpenCL driver.

Appendix C OpenCL Extensions
Read this for a list of extensions the Mali-T600 Series GPU Linux OpenCL driver
supports.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Typographical conventions

This book uses the following typographical conventions:

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

• OpenCL 1.1 Specification, www.khronos.org
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. viii
ID012914 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, DUI0538F.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. ix
ID012914 Non-Confidential

Chapter 1
Introduction

This chapter introduces GPU compute, OpenCL, the Mali-T600 Series GPU Linux OpenCL
driver, and the Mali OpenCL SDK. It contains the following sections:
• About GPU compute on page 1-2.
• About OpenCL on page 1-3.
• About the Mali-T600 Series GPU Linux OpenCL driver on page 1-4.
• About the Mali OpenCL SDK on page 1-5.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 1-1
ID012914 Non-Confidential

Introduction
1.1 About GPU compute
GPU compute, or General Purpose computing on Graphics Processing Units (GPGPU), is the
practice of using the parallel computing power of a GPU for tasks other than 3D graphics
rendering.

Application processors are designed to execute a single thread as quickly as possible. This sort
of processing typically includes scalar operations and control code.

GPUs are designed to execute many threads at the same time. They run compute intensive data
processing tasks in parallel that contain relatively little control code. GPUs typically contain
many more processing elements than application processors so can compute at a much higher
rate than application processors.

OpenCL is the first open standard language to enable developers to run general purpose
computing tasks on GPUs, application processors, and other types of processors.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 1-2
ID012914 Non-Confidential

Introduction
1.2 About OpenCL
The Open Computing Language (OpenCL) is an open standard for writing applications to run
on heterogeneous multi-processor systems. OpenCL provides a single development
environment for applications that can run on different processors.

OpenCL includes a platform-independent C99-based language for writing functions called
kernels that execute on OpenCL devices, and APIs that define and control the platforms.

OpenCL enables you to execute some applications faster by moving intensive data processing
routines to the GPU instead of the application processor.

OpenCL makes multiprocessor applications easier to write because it manages the execution of
your application across multiple application processors and GPUs.

The OpenCL language includes vectors and built in functions that enable you to easily utilize
the features of accelerators.

OpenCL is an open standard developed by the Khronos Group, http://www.khronos.org.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 1-3
ID012914 Non-Confidential

Introduction
1.3 About the Mali-T600 Series GPU Linux OpenCL driver
The Mali-T600 Series GPU Linux OpenCL driver is the implementation of OpenCL for the
Mali-T600 Series GPUs. In this document, it is known as the Mali OpenCL driver.

The Mali OpenCL driver:

• Supports OpenCL version 1.1, Full Profile.

• Is binary-compatible with OpenCL 1.0 applications. This includes compatibility with the
APIs deprecated in OpenCL 1.1.

Note
 The Mali OpenCL driver is for the Mali-T600 Series GPUs. It does not support the Mali-300,
Mali-400, or Mali-450 GPUs.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 1-4
ID012914 Non-Confidential

Introduction
1.4 About the Mali OpenCL SDK
The Mali OpenCL SDK contains code examples and tutorials to help you understand OpenCL
development.

See Chapter 10 The Mali OpenCL SDK.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 1-5
ID012914 Non-Confidential

Chapter 2
Parallel Processing Concepts

Parallel processing is the processing of computations on multiple processors simultaneously.
OpenCL enables applications to use hardware resources such as GPUs to accelerate
computations with parallel processing.

This chapter introduces the main concepts of parallel processing. It contains the following
sections:
• Types of parallelism on page 2-2.
• Concurrency on page 2-4.
• Limitations of parallel processing on page 2-5.
• Embarrassingly parallel applications on page 2-6.
• Mixing different types of parallelism on page 2-7.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-1
ID012914 Non-Confidential

Parallel Processing Concepts
2.1 Types of parallelism
There are the following types of parallelism:

Data parallelism
In a data-parallel application, data is divided into data elements that can be
processed in parallel. Multiple data elements are read and processed
simultaneously by different processors.
The data being processed must be in data structures that can be read and written
in parallel.
An example of a data parallel application is rendering three dimensional graphics.
The generated pixels are independent so the computations required to generate
them can be performed in parallel. This sort of parallelism is very fine grained and
there can be hundreds or thousands of threads active simultaneously.
OpenCL is primarily used for data parallel processing.

Task parallelism
Task parallelism is where the application is broken up into tasks and these tasks
are executed in parallel. Task parallelism is also known as functional parallelism.
An example of an application that can use task parallelism is playing an on-line
video. To display a web page your device must do several tasks:
• Run a network stack that performs communication.
• Request data from external server.
• Read data from external server.
• Parse data.
• Decode video data.
• Decode audio data.
• Draw video frames.
• Play audio data.
Figure 2-1 shows parts of an application and operating system that operate
simultaneously when playing an on-line video.

Figure 2-1 Task parallel processing

Pipelines
Pipelines process data in a series of stages. In a pipeline the stages can operate
simultaneously but they do not process the same data. A pipeline typically has a
relatively small number of stages.

Parse data

Decode
video

Playback
sound

Operating
system

Request data from
external server

Read data from
external server

Decode
sound

Draw video
frame

Network stack
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-2
ID012914 Non-Confidential

Parallel Processing Concepts
An example of a pipeline is a video recorder application that must perform the
following stages:
1. Capture image data from an image sensor and measure light levels.
2. Modify the image data to correct for lens effects.
3. Modify the contrast, color balance, and exposure of the image data.
4. Compress the image
5. Add the data to video file.
6. Write the video file to storage.
These stages must be performed in order but they can be all be operating on data
from a different video frame at the same time.
Figure 2-2 shows parts of an application that can operate simultaneously as a
pipeline playing a video from the internet.

Figure 2-2 Pipeline processing

Correct
image for

lens effects

Modify:
Contrast

Color balance
Exposure

Compress
image

Write video
file to

storage

Capture
data

 from image
sensor

Add data to
video file
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-3
ID012914 Non-Confidential

Parallel Processing Concepts
2.2 Concurrency
Concurrent applications have multiple operations in progress at the same time. These can
operate in parallel or in serial using a time sharing system.

In a concurrent application multiple tasks are typically trying to share the same data. Access to
this data must be managed carefully otherwise there can be complex problems such as:
Race conditions

A race condition occurs when two or more threads try to modify the value of one
variable at the same time. The final value of the variable should always be the
same, but when a race condition occurs the variable can get a different value
depending on the order of the writes.

Deadlocks A deadlock occurs when two threads become blocked by each other and neither
thread can progress with their operations. This can happen when the threads each
obtain a lock that the other thread requires.

Live locks Live locks are similar to a deadlocks but the threads keep running. However,
because of the lock the threads can never complete their task.

A concurrent data structure is a data structure that can be accessed by multiple tasks without
causing concurrency problems.

Data parallel applications use concurrent data structures. These are the sorts of data structures
that you typically use in OpenCL.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-4
ID012914 Non-Confidential

Parallel Processing Concepts
2.3 Limitations of parallel processing
There are limitations of parallel processing that you must consider when developing parallel
applications.

For example, if your application parallelizes perfectly, executing the application on 10
processors makes it run 10 times faster.

Applications rarely parallelize perfectly because part of the application is serial. This serial
component imposes a limit on the amount of parallelization the application can use.

Amdahl’s law describes the speedup you can get from parallel processing. The formula for
Amdahl’s law is shown in Figure 2-3 where the terms in the equation are;
S Fraction of the application that is serial.
P Fraction of the application that is parallelizable.
N Number of processors.

Figure 2-3 Formula for Amdahl’s law

Figure 2-4 shows the speedup that different numbers of processors provide for applications with
different serial components.

Figure 2-4 Speedup for application with different serial components

The biggest speedups are achieved with relatively small numbers of processors. However, as the
number of processors rises the gains reduce.

You cannot avoid Amdahl’s law in your application but you can reduce the impact. See
Reducing the effect of serial computations on page 9-13.

For high performance with a large number of processors the application must have a very small
serial component. These sorts of applications are said to be embarrassingly parallel. See
Embarrassingly parallel applications on page 2-6.

1
Speedup =

S +
P
N

Processors
2 4 10

10 X

6 X

4 X

2 X

1 X

6 8

Speedup

1

8 X

0

10% serial

5% serial

20% serial

Perfect scaling
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-5
ID012914 Non-Confidential

Parallel Processing Concepts
2.4 Embarrassingly parallel applications
If an application can be parallelized across a large number of processors easily, it is said to be
embarrassingly parallel.

An example of an embarrassingly parallel application is rendering three dimensional graphics.
The pixels are completely independent so they can be computed and drawn in parallel.

OpenCL is ideally suited for developing and executing embarrassingly parallel applications.

Figure 2-5 Embarrassingly parallel processing

Figure 2-5 shows an image divided into many small parts. These parts can all be processed
simultaneously.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-6
ID012914 Non-Confidential

Parallel Processing Concepts
2.5 Mixing different types of parallelism
You can mix these types of parallelism in your applications. For example, an audio synthesizer
might use a combination of all three types of parallelism:
• Task parallelism computes the notes independently.
• A pipeline of audio generation and processing modules creates the sound of an individual

note.
• Within the pipeline some stages can use data parallelism to accelerate the computation of

processing.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 2-7
ID012914 Non-Confidential

Chapter 3
OpenCL Concepts

This chapter describes the OpenCL concepts. It contains the following sections:
• About OpenCL on page 3-2.
• OpenCL applications on page 3-3.
• OpenCL execution model on page 3-4.
• OpenCL data processing on page 3-5.
• The OpenCL memory model on page 3-8.
• The Mali GPU memory model on page 3-9.
• OpenCL concepts summary on page 3-10.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-1
ID012914 Non-Confidential

OpenCL Concepts
3.1 About OpenCL
OpenCL is an open standard that enables you to use the parallel processing capabilities of
multiple types of processors including application processors, GPUs, and other computing
devices.

OpenCL specifies an API for parallel programming that is designed for portability:
• It uses an abstracted memory and execution model.
• There is no requirement to know the application processor or GPU instruction set.
• There is scope for specific hardware optimizations.

Functions executing on OpenCL devices are called kernels. These are written in a language
called OpenCL C that is based on C99.

The Mali-T600 Series GPUs support OpenCL 1.1, Full Profile.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-2
ID012914 Non-Confidential

OpenCL Concepts
3.2 OpenCL applications
OpenCL applications consist of the following parts:

Application, or host, side code
• Calls the OpenCL APIs.
• Compiles the CL kernels.
• Allocates memory buffers to pass data into and out of the OpenCL kernels.
• Sets up command queues.
• Sets up dependencies between the tasks.
• Sets up the NDRanges that the kernels execute over.

OpenCL kernels
• Written in OpenCL C language.
• Perform the parallel processing.
• Runs on the compute devices such as GPU shader cores.

You must write both of these parts correctly to get the best performance.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-3
ID012914 Non-Confidential

OpenCL Concepts
3.3 OpenCL execution model
The OpenCL execution model includes:
• Kernels that run on compute devices.
• A host application that runs on the application processor.

The host application
The host application manages the execution of the kernels by setting up command
queues for:
• Memory commands.
• Kernel execution commands.
• Synchronization.

The context
The host application defines the context for the kernels. The context includes:
• The kernels.
• Compute devices.
• Program objects.
• Memory objects.

Operation of OpenCL kernels
A kernel is a block of code that is executed on a compute device in parallel with
other kernels. Kernels operate in the following sequence:
1. A kernel is defined in a host application.
2. The host application submits the kernel for execution on a compute device.

A compute device can be an application processor, GPU, or another type of
processor.

3. When the application issues a command to submit a kernel, OpenCL
creates the NDRange of work-items.

4. An instance of the kernel is created for each element in the NDRange. This
enables each element to be processed independently in parallel.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-4
ID012914 Non-Confidential

OpenCL Concepts
3.4 OpenCL data processing
This section describes OpenCL data processing. It contains the following sections:
• Work-items and the NDRange.
• OpenCL work-groups on page 3-6.
• Identifiers in OpenCL on page 3-7.

3.4.1 Work-items and the NDRange

The data processed by OpenCL is in an index space of work-items. The work-items are
organized in an N-Dimensional Range (NDRange) where:
• N is the number of dimensions minus one.
• N can be zero, one, or two.

One kernel instance is executed for each work-item in the index space.

Figure 3-1 shows NDRanges with one, two and three dimensions.

Figure 3-1 NDRanges and work-items

You group work-items into work-groups for processing. Figure 3-2 on page 3-6 shows a three
dimensional NDRange that is split into 16 work-groups each with 16 work-items.

Work-items
One dimensional

NDRange

Two dimensional
NDRange

Three dimensional
NDRange

Work items

Work-items
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-5
ID012914 Non-Confidential

OpenCL Concepts
Figure 3-2 Work-items and work-groups.

3.4.2 OpenCL work-groups

Work-groups have a number of properties and limitations:

Properties of work-groups
• Work-groups are independent of each other.
• You can issue multiple work-groups for execution in parallel.
• The work-items in a work-group can communicate with each other using

shared data buffers. You must synchronize access to these buffers.

Limitations of work-groups
Work-groups typically do not directly share data. They can share data using
global memory.
The following are not supported across different work-groups:
• Barriers.
• Dependencies.
• Ordering.
• Coherency.
Global atomics are available but these can be slower than local atomics.

Work-items in a work-group
The work-items in a work-group can do the following:
• Perform barrier operations to synchronize execution points.

For example:
barrier(CLK_LOCAL_MEM_FENCE); // Wait for all kernels in
 // this work-group to catch up

• Use local atomic operations.
• Access shared memory.

Work-items

Work-groups
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-6
ID012914 Non-Confidential

OpenCL Concepts
3.4.3 Identifiers in OpenCL

There are a number of identifiers in OpenCL:

global ID Every work-item has a unique global ID that identifies it within the index space.

local ID Within each work-group, each work-item has a unique local ID that identifies it
within its work-group.

work-group ID
Each work-group has a unique work-group ID.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-7
ID012914 Non-Confidential

OpenCL Concepts
3.5 The OpenCL memory model
The OpenCL memory model contains a number of components. Figure 3-3 shows the OpenCL
memory model.

Figure 3-3 OpenCL memory model

Private memory
• Private memory is specific to a work-item.
• It is not visible to other work-items.

Local memory
• Local to a work-group.
• Accessible by the work-items in the work-group.
• Consistent to all work-items in the work-group.
• Accessed with the __local keyword.

Constant memory
• A memory region used for objects allocated and initialized by the host.
• Accessible as read-only by all work-items.

Global memory
• Accessible to all work-items executing in a context,
• Accessible to the host using read, write, and map commands.
• Consistent across work-items in a single work-group.
• Implements a relaxed consistency, shared memory model.
• There are no guarantee of memory consistency between different

work-groups.
• Accessed with the __global keyword.

Global memory

Local memory

Private
memory

Private
memory

Work-group

Constant memory

Work-item Work-item

Local memory

Private
memory

Private
memory

Work-group

Work-item Work-item
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-8
ID012914 Non-Confidential

OpenCL Concepts
3.6 The Mali GPU memory model
The Mali GPU has a different memory model to desktop workstations:

Desktop Traditional desktop workstations have physically separate global, local and
private memories.
Typically a graphics-card has its own local memory.
Data must be copied to the local memory and back again.

Mali GPU Mali GPUs have a unified memory system.
Local and private memory is physically global memory.
Moving data from global to local or private memory typically does not improve
performance.
The traditional copying of data is not required.

Each compute device, that is the shader cores, have their own data caches.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-9
ID012914 Non-Confidential

OpenCL Concepts
3.7 OpenCL concepts summary
OpenCL primarily uses data parallel processing. OpenCL uses the following terminology:

• Computations in OpenCL are performed by pieces of code called kernels that execute on
compute devices. Compute devices can be application processors, GPUs, or other types of
processors.

• The data processed by OpenCL is in an index space of work-items. The work-items are
organized in an NDRange.

• One kernel instance is executed for each work-item in the index space.

• Kernels instances execute in parallel.

• Work-items group together to form work-groups. The work-items in a work-group can
communicate with each other using shared data buffers, but access to the buffers must be
synchronised.

• Work-groups typically do not directly share data with each other. They can share data
using global memory.

• Issue multiple work-groups for execution in parallel.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 3-10
ID012914 Non-Confidential

Chapter 4
Developing an OpenCL Application

This chapter describes the development stages of an OpenCL application. It contains the
following sections:
• Software and hardware required for OpenCL development on page 4-2.
• Development stages on page 4-3.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 4-1
ID012914 Non-Confidential

Developing an OpenCL Application
4.1 Software and hardware required for OpenCL development
To develop OpenCL applications for Mali GPUs, you require:
• A platform with a Mali-T600 Series GPU.
• An implementation of OpenCL for the Mali-T600 Series GPU.

You can develop on other hardware platforms with implementations of OpenCL but you cannot
use them to estimate performance on a Mali-T600 Series GPU.

Implementations of OpenCL are available for a number of operating systems.

For a list of available hardware and the OpenCL drivers for the Mali-T600 Series GPUs see Mali
developer center, www.malideveloper.arm.com.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 4-2
ID012914 Non-Confidential

Developing an OpenCL Application
4.2 Development stages
These are the stages for developing an OpenCL application:

Determine what you want to parallelize
The first step when deciding to use OpenCL is to look at what your application
does and identify the parts of the application that can run in parallel. This is often
the hardest part of developing an OpenCL application. See Analyzing code for
parallelization on page 6-3.

Note
 Only convert the parts of an application to OpenCL where there is likely to be a

benefit. Profile your application to find the most active parts and consider these
parts for conversion.

Write kernels
OpenCL applications consists of a set of kernel functions. You must write the
kernels that perform the computations.

Write infrastructure for kernels
OpenCL applications require infrastructure to set-up and run the kernels.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 4-3
ID012914 Non-Confidential

Chapter 5
Execution Stages of an OpenCL Application

This chapter describes the execution stages of an OpenCL application. It contains the following
sections:
• About the execution stages on page 5-2.
• Finding the available compute devices on page 5-4.
• Initializing and creating OpenCL contexts on page 5-5.
• Creating a command queue on page 5-6.
• Creating OpenCL program objects on page 5-7.
• Building a program executable on page 5-8.
• Creating kernel and memory objects on page 5-9.
• Executing the kernel on page 5-10.
• Reading the results on page 5-12.
• Cleaning up on page 5-13.

Note
 This chapter provides an overview of the execution stages of an OpenCL application. It is not
intended as a comprehensive lesson in OpenCL.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-1
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.1 About the execution stages
This section describes a high level view of the OpenCL execution stages. Your OpenCL
application must obtain information about your hardware then setup the runtime environment.
The following sections describe these steps:
• Platform setup.
• Runtime setup.

5.1.1 Platform setup

You use the platform API to:

• Determine what OpenCL devices are available.
Query to find out what OpenCL devices are available on the system using OpenCL
platform layer functions. See Finding the available compute devices on page 5-4.

• Set up the OpenCL context.
Create and set up a OpenCL context and one or more command queues to schedule
execution of your kernels. See Initializing and creating OpenCL contexts on page 5-5.

5.1.2 Runtime setup

You use the runtime API to:

• Create a command queue.
See Creating a command queue on page 5-6.

• Compile and build your program objects.
Issue commands to compile and build your source code and extracts kernel objects from
the compiled code.
You must follow this sequence of commands:
1. The program object is created either by calling clCreateProgramWithSource() or

clCreateProgramWithBinary(). clCreateProgramWithSource() creates the program
object from the kernel source code. clCreateProgramWithBinary() creates the
program with a pre-compiled binary file.

2. Call the clBuildProgram() function to compile the program object for the specific
devices on the system.

See Creating OpenCL program objects on page 5-7.

• Build a program executable.
See Building a program executable on page 5-8.

• Create the Kernel and memory objects.
1. Call the clCreateKernel() function for each kernel, or call the

clCreateKernelsInProgram() function to create kernel objects for all the kernels in
the OpenCL application.

2. Use the OpenCL API to allocate memory buffers. You can use the map() and unmap()
operations to enable both the application processor and the Mali GPU to access the
data.

See Creating kernel and memory objects on page 5-9.

• Enqueue and execute the kernels.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-2
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
Enqueue to the command queues the commands that control the sequence and
synchronization of kernel execution, mapping and unmapping of memory, and
manipulation of memory objects.
To execute a kernel function, you must do the following:
1. Call clSetKernelArg() for each parameter in the kernel function definition to set the

kernel parameter values.
2. Determine the work-group size and index space to use to execute the kernel.
3. Enqueue the kernel for execution in the command queue.
See Executing the kernel on page 5-10.

• Enqueue commands that make the results from the work-items available to the host.
Reading the results on page 5-12.

• Clean up.
Cleaning up on page 5-13.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-3
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.2 Finding the available compute devices
To set up OpenCL you must choose compute devices. Call clGetDeviceIDs() to query the
OpenCL driver for a list of devices on the machine that support OpenCL. You can restrict your
search to a particular type of device or to any combination of device types. You must also
specify the maximum number of device IDs that you want returned.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-4
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.3 Initializing and creating OpenCL contexts
After you know the available OpenCL devices on the machine and have at least one valid device
ID, you can create an OpenCL context. The context groups devices together to enable memory
objects to be shared across different compute devices.

Pass the device information to the clCreateContext() function. For example:

// Create an OpenCL context

context = clCreateContext(NULL, 1, &device_id, notify_function, NULL, &err);
if (err != CL_SUCCESS)
{
 Cleanup();
 return 1;
}

You can optionally specify an error notification callback function when creating an OpenCL
context. Leaving this parameter as a NULL value results in no error notification being registered.

Providing a callback function can be useful if you want to receive runtime errors for the
particular OpenCL context. For example:

// Optionally user_data can contain contextual information
// Implementation specific data of size cb, can be returned in private_info

void context_notify(const char *notify_message, const void *private_info,
 size_t cb, void *user_data)
{
 printf("Notification:\n\t%s\n", notify_message);
}

DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-5
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.4 Creating a command queue
After creating your OpenCL context, use clCreateCommandQueue() to create a command queue.
For example:

// Create a command-queue on the first device available
// on the created context

commandQueue = clCreateCommandQueue(context, &device);
if (commandQueue == NULL)
{
 Cleanup();
 return 1;
}

If you have multiple OpenCL devices, such as an application processor and a GPU, you must:
1. Create a command queue for each device.
2. Divide up the work.
3. Submit commands separately to each device.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-6
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.5 Creating OpenCL program objects
The program object encapsulates:
• Your OpenCL program source.
• The latest successfully built program executable.
• The build options.
• The build log.
• A list of devices the program is built for.

The program object is loaded with the kernel source code and then the code is compiled on the
devices attached to the context. All kernel functions must be identified in the application source
with the __kernel qualifier. OpenCL applications can also include functions you can call from
your kernel functions.

Load the OpenCL C kernel source and create an OpenCL program object from it.

To create a program object use the clCreateProgramWithSource() function. For example:

// Create OpenCL program

program = clCreateProgramWithSource(context, device, “<kernel source>”);
if (program == NULL)
{
 Cleanup();
 return 1;
}

There are different options for building OpenCL programs:

• You can create a program object directly from the source code of an OpenCL application
and compile it at runtime. Do this at application startup to save compute resources while
the application is running.

• To avoid compilation at runtime, you can build a program object with a previously built
binary.

Note
 Applications with pre-built program objects are not portable.

Creating a program object from a binary is a similar process to creating a program object from
source code, except that you must supply the binary for each device that you want to execute
the kernel on. Use the clCreateProgramWithBinary() function to do this.

Use the clGetProgramInfo() function to obtain the binary after you have generated it.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-7
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.6 Building a program executable
After you have created a program object, you must build a program executable from the contents
of the program object. Use the clBuildProgram() function to build your executable.

Compile all kernels in the program object:

err = clBuildProgram(program, 1, &device_id, "", NULL, NULL);
if (err == NULL)
{
 Cleanup();
 return 1;
}

DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-8
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.7 Creating kernel and memory objects
This section describes creating kernel and memory objects. It contains the following sections:
• Creating kernel objects.
• Creating memory objects.

5.7.1 Creating kernel objects

Call the clCreateKernel() function to create a single kernel object, or call the
clCreateKernelsInProgram() function to create kernel objects for all the kernels in the OpenCL
application. For example:

// Create OpenCL kernel

kernel = clCreateKernel(program, “<kernel_name>", NULL);
if (kernel == NULL)
{
 Cleanup();
 return 1;
}

5.7.2 Creating memory objects

After you have created and registered your kernels, send the program data to the kernels:
1. Package the data in a memory object.
2. Associate the memory object with the kernel.

There are two types of memory objects:

Buffer objects
Simple blocks of memory.

Image objects
These are structures specifically for representing 2D or 3D images. These are
opaque structures, that is, you cannot see the implementation details of these
structures.

To create buffer objects, use the clCreateBuffer() function. To create image objects, use the
clCreateImage2D() or clCreateImage3D() functions.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-9
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.8 Executing the kernel
This section describes the stages in executing the kernel. It contains the following sections:
• Determining the data dimensions.
• Determining the optimal global work size.
• Determining the local work-group size.
• Enqueuing kernel execution on page 5-11.
• Executing kernels on page 5-11.

5.8.1 Determining the data dimensions

If your data is an image x pixels wide by y pixels high, it is a two-dimensional data set. If you
are dealing with spatial data that involves the x, y, and z position of nodes, it is a
three-dimensional data set.

The number of dimensions in the original data set does not have to be the same in OpenCL. You
can for example, process a three dimensional data set as a single dimensional data set in
OpenCL.

5.8.2 Determining the optimal global work size

The global work size is the total number of work-items required for all dimensions combined.

You can change the global work size by processing multiple data items in a single work-item.
The new global worksize is then the original global work size divided by the number of data
items processed by each work-item.

The global work size must be large if you want to ensure high performance. Typically the
number is several thousand but the ideal number depends on the number of shader cores in your
device.

5.8.3 Determining the local work-group size

You can specify the size of the work-group that OpenCL uses when you enqueue a kernel to
execute on a device. To do this, you must know the maximum work-group size permitted by the
OpenCL device your work-items execute on. To find the maximum work-group size for a
specific kernel, use the clGetKernelWorkGroupInfo() function and request the
CL_KERNEL_WORK_GROUP_SIZE property.

If your application is not required to share data among work-items, set the local_work_size
parameter to NULL when enqueuing your kernel. This enables the OpenCL driver to determine
the most efficient work-group size for your kernel.

To get the maximum possible work-group size in each dimension, call clGetDeviceInfo() with
CL_DEVICE_MAX_WORK_ITEM_SIZES. This is for the simplest kernel and dimensions might be lower
for more complex kernels. The product of the dimensions of your work group might limit the
size of the work group

To get the total work-group size call clGetKernelWorkGroupInfo() with
CL_KERNEL_WORK_GROUP_SIZE. If the maximum work-group size for a kernel is lower than 128
performance is reduced. If this is the case, try simplifying the kernel.

The work-group size for each dimension must divide evenly into the total data-size for that
dimension. That is, the x size of the work-group must divide evenly into the x size of the total
data. If this requirement means padding the work-group with extra work-items, ensure the
additional work-items return immediately and do no work.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-10
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.8.4 Enqueuing kernel execution

When you have identified the dimensions necessary to represent your data, the necessary
work-items for each dimension, and an appropriate work-group size, enqueue the kernel for
execution using clEnqueueNDRangeKernel(). For example:

size_t globalWorkSize[1] = { ARRAY_SIZE };
size_t localWorkSize[1] = { 4 } ;

// Queue the kernel up for execution across the array

errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorkSize,
 localWorkSize, 0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
 printf("Error queuing kernel for execution.\n");
 Cleanup();
 return 1;
}

5.8.5 Executing kernels

Queuing the kernel for execution does not mean that it executes immediately. The kernel
execution is put into the command queue for later processing by the device. The call to
clEngueueNDRangeKernel() is not a blocking call and returns before the kernel has executed. It
can sometimes return before the kernel has started executing.

It is possible to make a kernel wait for execution until previous events are finished. You can
specify certain kernels wait until other specific kernels are completed before executing.

Kernels are executed in the order they are enqueued unless the property
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE is set when the command queue is created.

Kernels that are enqueued to an in-order queue automatically wait for kernels that were
previously enqueued on the same queue. You are not required to write any code to synchronize
them.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-11
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.9 Reading the results
After your kernels have finished execution, you must make the result accessible to the host.

To access the results from the kernel, use clEnqueueMapBuffer() to map the buffer into host
memory. For example:

local_buffer = clEnqueueMapBuffer(queue, buffer, CL_FALSE, CL_MAP_READ, 0,
 (sizeof(unsigned char) * buffer_size), num_deps, deps[1], NULL, &err);

ASSERT(CL_SUCCESS == err);

Note
 This call does not guarantee to make the buffer available until you call clFinish().

If you change the third parameter of clFinish() or clEnqueueBuffer(), CL_FALSE to CL_TRUE, the
call becomes a blocking call and the read is completed before clEnqueueMapBuffer() returns.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-12
ID012914 Non-Confidential

Execution Stages of an OpenCL Application
5.10 Cleaning up
When the application no longer requires the various objects associated with the OpenCL
runtime and context, you must free these resources. Use the following functions to release your
OpenCL objects. These functions decrement the reference count for the associated object:
• clReleaseMemObject().
• clReleaseKernel().
• clReleaseProgram().
• clReleaseCommandQueue().
• clReleaseContext().

Ensure the reference counts for all OpenCL objects reach zero when your application no longer
requires them. You can obtain the reference count by querying the object. For example, by
calling clGetMemObjectInfo().
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 5-13
ID012914 Non-Confidential

Chapter 6
Converting Existing Code to OpenCL

This section describes converting existing code to OpenCL. It contains the following sections:
• Profile your application on page 6-2.
• Analyzing code for parallelization on page 6-3.
• Parallel processing techniques in OpenCL on page 6-6.
• Using parallel processing with non-parallelizable code on page 6-11.
• Dividing data for OpenCL on page 6-12.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-1
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.1 Profile your application
Profile your application to find the most compute intensive parts. These are the parts that might
be worth porting to OpenCL.

The proportion of an application that requires high performance is typically a relatively small
part of the code. This is the part of the code that can probably make best use of OpenCL. Porting
any more of the application to OpenCL is unlikely to provide a benefit.

You can use profilers such as DS-5™ to profile your application. You can download DS-5 from
the Mali developer web site, http://www.malideveloper.arm.com
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-2
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.2 Analyzing code for parallelization
This section describes how to analyze compute intensive code for parallelization. It contains the
following sections:
• About analyzing code for parallelization.
• Look for data parallel operations.
• Look for operations with few dependencies
• Analyze loops on page 6-4.

6.2.1 About analyzing code for parallelization

When you have identified the most compute intensive parts of your application, analyze the
code to see if you can run it in parallel.

Parallelizing code can be the following:

Straight forward
Parallelizing the code requires small modifications. See Use the global ID instead
of the loop counter on page 6-6.

Difficult Parallelizing the code requires complex modifications. See Compute values in a
loop with a formula instead of using counters on page 6-7.

Difficult and includes dependencies
Parallelizing the code requires complex modifications and the use of techniques
to avoid dependencies. See the following sections:
• Compute values per frame on page 6-7.
• Perform computations with dependencies in multiple-passes on page 6-8.
• Pre-compute values to remove dependencies on page 6-8.

Appears to be impossible
If parallelizing the code appears to be impossible, this only means that a particular
code implementation cannot be parallelized.
The purpose of code is to perform a function. There might be different algorithms
that perform the same function but work in a different ways. Some of these might
be parallelizable.
Investigate different alternatives to the algorithms and data structures the code
uses. These might make parallelization possible.
See Using parallel processing with non-parallelizable code on page 6-11.

6.2.2 Look for data parallel operations

Look for tasks that do large numbers of operations that:
• Complete without sharing data.
• Do not depend on the results from each other.

These types of operations are data parallel so are ideal for OpenCL.

6.2.3 Look for operations with few dependencies

If tasks have few dependencies, it might be possible to run them in parallel.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-3
ID012914 Non-Confidential

Converting Existing Code to OpenCL
Dependencies between tasks prevent parallelization because it forces tasks to be performed
sequentially. If the code has dependencies, consider:
• Is there a way to remove the dependencies?
• Can you delay the dependencies to later in execution?

6.2.4 Analyze loops

Loops are good targets for parallelization because they repeat computations many times, often
independently.

Loops that process a small number of elements
If the loop only processes a relatively small number of elements it might not be
appropriate for data parallel processing.
It might be better to parallelize these sorts of loops with task parallelism on one
or more application processors.

Nested loops
If the loop is part of a series of nested loops and the total number of iterations is
large, this loop is probably appropriate for parallel processing.

Perfect loops
Look for loops that:
• Process thousands of items.
• Have no dependencies on previous iterations.
• Accesses data independently in each iteration.
These types of loops are data parallel so are ideal for OpenCL.

Simple loop parallelization
If the loop includes a variable that is incremented based on a value from the
previous iteration, this is a dependency between iterations that prevents
parallelization.
See if you can work out a formula that enables you to compute the value of the
variable based on the main loop counter.
In OpenCL work-items are processed in parallel, not in a sequential loop.
However, work-item processing acts in a similar way to a loop.
Every work-item has a unique global id that identifies it and you can use this
value in place of a loop counter. See Use the global ID instead of the loop counter
on page 6-6.
It is also possible to have loops within work-items but these are independent of
other work-items.

Loops that require data from previous iterations
If your loop involves dependencies based on data processed by a previous
iteration, this is a more complex problem.
Can the loop be restructured to remove the dependency? If not, it might not be
possible to parallelize the loop.
There are a number of techniques that help you deal with dependencies. See if you
can use these techniques to parallelize the loop. See Parallel processing
techniques in OpenCL on page 6-6.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-4
ID012914 Non-Confidential

Converting Existing Code to OpenCL
Non-parallelizable loops
If the loop contains dependencies that you cannot remove, investigate alternative
methods of performing the computation. These might be parallelizable.
See Using parallel processing with non-parallelizable code on page 6-11.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-5
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.3 Parallel processing techniques in OpenCL
This section describes parallel processing techniques you can use in OpenCL. It contains the
following sections:
• Use the global ID instead of the loop counter.
• Compute values in a loop with a formula instead of using counters on page 6-7.
• Compute values per frame on page 6-7.
• Perform computations with dependencies in multiple-passes on page 6-8.
• Pre-compute values to remove dependencies on page 6-8.
• Use software pipelining on page 6-9.
• Use task parallelism on page 6-9.

6.3.1 Use the global ID instead of the loop counter

In OpenCL you use kernels to perform the equivalent of loop iterations. This means there is no
loop counter to use in computations.

The global ID of the work-item provides the equivalent of the loop counter. Use the global ID
to perform any computations based on the loop counter.

Note
 You can include loops in OpenCL kernels but they can only iterate over the data for that
work-item, not the entire NDRange.

The following example shows a simple loop in C that assigns the value of the loop counter to
each array element.

Loop example in C:
The following loop fills an array with numbers.
void SetElements(void)
{
int loop_count;
int my_array[4096];

for (loop_count = 0; loop_count < 4096; loop_count++)
{
my_array[loop_count] = loop_count;
}

printf("Total %d\n", loop_count);
}

This loop is parallelizable because the loop elements are all independent. There is no main loop
counter loop_count in the OpenCL kernel so it is replaced by the global ID.

The equivalent code in an OpenCL kernel:
__kernel void example(__global int * restrict my_array)
{
 int id;
 id = get_global_id(0);
 my_array[id] = id;
}

DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-6
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.3.2 Compute values in a loop with a formula instead of using counters

If you are using work-items in place of loop iterations, compute variables based on the value of
the global ID rather using than a loop counter. The global ID of the work-item provides the
equivalent of the loop counter.

6.3.3 Compute values per frame

If your application requires continuous updates of data elements and there are dependencies
between them, try breaking the computations into discrete units and perform one iteration per
image frame displayed.

For example, the image shown in Figure 6-1 is of an application that runs a continuous physics
simulation of a flag.

Figure 6-1 Flag simulation

The flag is made up of a grid of nodes that are connected to the neighboring nodes. These are
shown in Figure 6-2.

Figure 6-2 Flag simulation grid
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-7
ID012914 Non-Confidential

Converting Existing Code to OpenCL
The simulation runs as a series of iterations. In one iteration all the nodes are updated and the
image is redrawn.

The following operations are performed in each iteration:
1. The node values are read from a buffer A.
2. A physics simulation computes the forces between the nodes.
3. The position and forces on the nodes are updated and stored into buffer B.
4. The flag image is drawn.
5. Buffer A and buffer B are switched.

In this case splitting the computations into iterations also splits the dependencies. The data
required for one frame is computed in the previous frame.

Some types of simulation require many iterations for relatively small movements. If this is the
case try computing multiple iterations before drawing frames.

6.3.4 Perform computations with dependencies in multiple-passes

If your application requires continuous updates of data elements and there are dependencies
between them, try breaking the computations into discrete units and perform the computations
in multiple stages.

This technique extends the technique described in Compute values per frame on page 6-7 by
breaking up computations more.

Divide the data elements into odd and even fields. This divides the dependencies so the entire
computation can be performed in stages. The processing alternates between computing the odd
then the even fields.

For example, this technique can be used in neural network simulation.

The individual neurons are arranged in a three dimensional grid. Computing the state for a
neuron involves reading inputs from the surrounding neurons. This means each neuron has
dependencies on the state of the surrounding neurons.

To execute the simulation, the three dimensional grid is divided into layers and executed in the
following manner:
1. The even node values are read.
2. The odd layers are computed and the results stored.
3. The odd node values are read.
4. The even layers are computed and the results stored.

6.3.5 Pre-compute values to remove dependencies

If part of your computation is serial, see if it can be removed and performed separately.

For example, the audio synthesis technique Frequency Modulation (FM) works by reading an
audio waveform called the carrier. The rate the waveform is read at is dependent on another
waveform called the modulator.

The carrier values are read by a pointer to generate the output waveform. The position of the
pointer is computed by taking the previous value and moving it by an amount determined by the
value of the modulator waveform.

The position of the pointer has a dependency on the previous value and that value has a
dependency on the value before it. This series of dependencies makes the algorithm difficult or
impossible to parallelize.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-8
ID012914 Non-Confidential

Converting Existing Code to OpenCL
Another approach is to consider that the pointer is moving through the carrier waveform at a
fixed speed and the modulator is adding or subtracting an offset. This can be computed in
parallel but the offsets are incorrect because they do not take account of the dependencies on
previous offsets.

The computation of the correct offsets is a serial process. If you pre-compute these values the
remaining computation can be parallelized. The parallel component reads from the generated
offset table and uses this to read the correct value from the carrier waveform.

There is a potential problem with this example. The offset table must be re-computed every time
the modulating waveform changes. This is an example of Amdahl’s law. The amount of parallel
computation possible is limited by the speed of the serial computation.

6.3.6 Use software pipelining

Software pipelines are a parallel processing technique that enable multiple data elements to be
processed simultaneously by breaking the computation into a series of sequential stages.

Pipelines are common in both hardware and software. For example, application processors and
GPUs use hardware pipelines. The graphics standards OpenGL ES is based on a virtual pipeline.

In a pipeline a complete process is divided into a series of stages. A data element is processed
in a stage and the results are then passed to the next stage.

Because of the sequential nature of a pipeline only one stage is used at a time by a particular
data element. This means the other stages can process other data elements.

You can use software pipelines in your application to process different data elements.

For example, a game requires many different operations to happen. A game might use a similar
pipeline to this:
1. Input read from player.
2. Game logic computes the progress of the game.
3. Scene objects moved based on the results of the game logic.
4. Physics engine computes positions of all objects in the scene.
5. Game uses OpenGL ES to draw objects on screen.

6.3.7 Use task parallelism

Task or functional parallelism involves breaking an application up by function into different
tasks.

For example, an online game can take advantage of task parallelism. To run an online game your
device performs several functions:
• Communicate with an external server.
• Read player input.
• Update the game state.
• Generate sound effects.
• Play music.
• Update the display.

These tasks require synchronisation but are otherwise largely independent operations. This
means you can execute the tasks in parallel on separate processors.

Another example of task parallelism is Digital Television (DTV). At any time the television
might be performing several of the following operations:
• Downloading program.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-9
ID012914 Non-Confidential

Converting Existing Code to OpenCL
• Recording program.
• Updating program guide.
• Displaying options.
• Reading from media storage device.
• Playing program.
• Decoding video stream.
• Playing audio.
• Scaling image to correct size.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-10
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.4 Using parallel processing with non-parallelizable code
If you cannot parallelize your code there is still the possibility that you can use parallel
processing.

Most code is written to run on application processors that run sequentially. The code uses serial
algorithms and non-concurrent data structures. Parallelizing this sort of code can be difficult or
impossible.

The fact the code cannot be parallelized only means this specific implementation cannot be
parallelized. It does not mean the problem cannot be solved in a parallel way.

Investigate the following approaches:

Use parallel versions of your data structures and algorithms
Many common data structures and algorithms that use them are non-concurrent.
This prevents you from parallelizing the code.
There are parallel versions of many common data structures and algorithms. You
might be able to use these in place of the originals to parallelize the code.
See Use concurrent data structures on page 6-12.

Solve the problem in a different way
Take a step back and think about what problem the code solves.
Look at the problem and investigate alternative ways of solving it. There might
be alternative solutions that use algorithms and data structures that are
parallelizable.
To do this think in terms of the purpose of the code and data structures.
Typically the aim of code is to process or transform data. It takes a certain input
and produces a certain output.
• Can the data you want to process be broken up into small data elements?
• Can these data elements be placed into a concurrent data structure?
• Can you process the data elements independently?
If the answer to these are yes, then you can probably solve your problem with
OpenCL.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-11
ID012914 Non-Confidential

Converting Existing Code to OpenCL
6.5 Dividing data for OpenCL
This section describes dividing data for processing with OpenCL. It contains the following
sections:
• About dividing data for OpenCL.
• Use concurrent data structures.
• Data division examples.

6.5.1 About dividing data for OpenCL

Data is divided up so it can be computed in parallel with OpenCL. The data is divided into the
following hierarchy of levels:
• At the highest level the data is divided into an NDRange. The total number of elements in

the NDRange is known as the global work size.
• The NDRange is divided into work-groups.
• Each work-group is divided into work-items.

See Chapter 3 OpenCL Concepts.

6.5.2 Use concurrent data structures

OpenCL executes hundreds or thousands of individual kernel instances so the processing and
data structures must be parallelizable to that degree.

This means you must use data structures that permit multiple data elements to be read and
written simultaneously and independently. These are known as concurrent data structures.

Many common data structures are non-concurrent. This makes parallelizing the code difficult.
For example, the following data structures are typically non-concurrent for writing data:
• Linked list.
• Hash table.
• Btree.
• Map.

This does not mean you cannot use these data structures. For example, these data structures can
be all be read in parallel without any issues.

Work-items can also write to these data structures but you must be aware of a number of
restrictions:

• Work-items can access any data structure that is read-only.

• Work-items can write to any data structure providing the work-items write to different
elements.

• Work-items cannot change the links in the data structure if they might impact other
elements.

• Work-items can change the links in the data structure with atomic instructions provided
that multiple atomic instructions do not access the same data.

There are parallel versions of many commonly used data structures.

6.5.3 Data division examples

The following are examples of data in different dimensions that you can process with OpenCL:
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-12
ID012914 Non-Confidential

Converting Existing Code to OpenCL
Note
 These examples map the problems into the NDRanges with the same number of dimensions.
OpenCL does not require that you do this. You can for example, map a one-dimensional
problem onto a two or three-dimensional NDRange.

One dimensional data
An example of one dimensional data is audio. Audio is represented as a series of
samples. Changing the volume of the audio is a parallel task because the operation
is performed independently per sample.
In this case the NDRange is the total number of samples in the audio. Each
work-item can be one sample and a work-group is a collection of samples.
Audio can also be processed with vectors. If your audio samples are 16-bit, you
can make a work-item represent 8 samples and process 8 of them at a time with
vector instructions.

Two dimensional data
An image is a natural fit for OpenCL because you can process a 1600 by 1200
pixel image by mapping it onto an two dimensional NDRange of 1600 by 1200.
The total number of work-items is the total number of pixels in the image, that is,
1920000.
The NDRange is divided into work-groups where each work-group is also a two
dimensional array. The number of work-groups must divide into the NDRange
exactly.
If each work-item processes a single pixel, a work-group size of 8 by 16 has the
size of 128. This work-group size fits exactly into the NDRange on both the x and
y axis. To process the image you require 15000 work-groups of 128 work-items
each.
You can vectorize this example by processing all the color channels in a single
vector. If the channels are 8-bit values you can process multiple pixels in a single
vector. If each vector processes 4 pixels, this means each work-item processes 4
pixels and you require 4 time fewer work-items to process the entire image. This
means your NDRange can be reduced to 400 by 1200 and you only require 3750
work-groups to process the image.

Three dimensional data
You can use three dimensional data to model the behavior of materials in the real
world. For example, you can model the behavior of concrete for building by
simulating the stresses in a three dimensional data set. You can use the data
produced to determine the size and design of the concrete you require to hold a
specific load.
You can use this technique in games to model the physics of objects. When an
object is broken the physics simulation makes the process of breaking more
realistic.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 6-13
ID012914 Non-Confidential

Chapter 7
Retuning Existing OpenCL Code for Mali GPUs

This chapter describes how to retune existing OpenCL code for Mali GPUs. It contains the
following sections:
• About retuning existing OpenCL code for Mali GPUs on page 7-2.
• Differences between desktop based architectures and Mali GPUs on page 7-3.
• Procedure for retuning existing OpenCL code for Mali GPUs on page 7-5.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-1
ID012914 Non-Confidential

Retuning Existing OpenCL Code for Mali GPUs
7.1 About retuning existing OpenCL code for Mali GPUs
OpenCL is a portable language but it is not always performance portable. This means that
OpenCL can work on many different types of compute device but performance is not preserved.

Existing OpenCL is typically tuned for specific architectures such as desktop GPUs. To achieve
better performance on Mali GPUs you must retune the code for the Mali GPUs.

The procedure to convert OpenCL code to run optimally on Mali GPUs is:
1. Analyze the code.
2. Locate and remove optimizations for alternative compute devices.
3. Vectorize the code.
4. Optimize the code for the Mali GPU.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-2
ID012914 Non-Confidential

Retuning Existing OpenCL Code for Mali GPUs
7.2 Differences between desktop based architectures and Mali GPUs
This section describes the differences between desktop based GPU and Mali GPUs. It contains
the following sections:
• About desktop based GPU architectures.
• About the architecture of the Mali-T600 Series GPUs.
• Programming a Mali-T600 Series GPU on page 7-4.

7.2.1 About desktop based GPU architectures

Desktop GPUs have:
• Large chip area.
• A large numbers of shader cores.
• Very high bandwidth memories.

These are possible because desktop GPUs have a large power budget.

Desktop GPUs have shader architectures that put threads into thread groups. These are known
as warps or wavefronts.

This mechanism means the threads must operate in lock-step. If they do not, for example, if
there is a branch in the code and threads take different directions, the threads are said to be
divergent.

When threads are divergent the two operations are split and must be computed twice. This
halves the processing speed.

Memory on desktop GPUs is organized in a hierarchy. Data is loaded from main memory into
local memories. The local memories are organized in banks that are split so there is one per
thread in the thread group. Threads can access banks reserved for other threads but when this
happens accesses are serialized reducing performance.

7.2.2 About the architecture of the Mali-T600 Series GPUs

The Mali-T600 Series GPUs contains one to eight identical shader cores. Each shader core
supports up to 256 concurrently executing threads.

Each shader core contains:
• Two or four arithmetic pipelines.
• One load-store pipeline.
• One texture pipeline.

Note
 OpenCL typically only uses the Arithmetic or Load-Store execution pipelines. The texture
pipeline is only used for reading image data types.

The peak throughput of each shader core is two arithmetic instruction words and one load-store
instruction word per cycle.

The Mali-T600 Series GPUs use a VLIW (Very Long Instruction Word) architecture. Each
instruction word contain multiple operations. The Mali-T600 Series GPUs also use SIMD
(Single Instruction Multiple Data), so that most arithmetic instructions operate on multiple data
elements simultaneously.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-3
ID012914 Non-Confidential

Retuning Existing OpenCL Code for Mali GPUs
Each thread uses only one of the Arithmetic or Load-Store execution pipes at any point in time.
Two instructions from the same thread execute in sequence. The next instruction from the
program executes after the completion of the previous instruction.

7.2.3 Programming a Mali-T600 Series GPU

In some respects, programming a Mali-T600 Series GPU is easier than programming a desktop
GPU:

• On a Mali GPU the global and local OpenCL address spaces are mapped to the same
physical memory and are backed by L1 and L2 caches. This means you are not required
to use explicit data copies or implement the associated barrier synchronization.

• All threads have individual program counters. This means that branch divergence is not a
major issue. This is not the case for warp or wavefront based architectures.

Note
 In OpenCL each work-item maps to a thread.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-4
ID012914 Non-Confidential

Retuning Existing OpenCL Code for Mali GPUs
7.3 Procedure for retuning existing OpenCL code for Mali GPUs
This section describes the procedure for retuning existing OpenCL code for Mali GPUs. It
contains the following sections:
• Analyze code.
• Locate and remove device optimizations.
• Optimizing your OpenCL code for Mali GPUs on page 7-6.

7.3.1 Analyze code

If you did not write the code yourself, you must analyze it to find out exactly what it does.

Try to understand the following:
• What is the purpose of the code?
• How does the algorithm work?
• What would the code look like if there were no optimizations?

The answers to these questions can act as a guide to help you remove the device specific
optimizations.

These questions can be difficult to answer because highly optimized code can be very complex.

7.3.2 Locate and remove device optimizations

There are optimizations for alternative compute devices that have no effect on Mali GPUs or
reduce performance.

To retune the code for a Mali GPU you must first remove all of the following types of
optimizations to create a non device-specific reference implementation;

Use of local or private memory
Mali GPUs use caches instead of local memories. OpenCL local and private
memories are mapped into main memory. There is therefore no performance
advantage using local or private memories on a Mali GPU.
You can use local or private memories as temporary storage but memory copies
to or from the memories are an expensive operation. Using local or private
memories can reduce performance on Mali GPUs.
If your code copies data into a local or private memory, processes it, then writes
it out again the copies both waste performance and power.
There are circumstances when copying does not waste performance. For
example, if data is processed during a copy to local or private memory and used
by a single work-group.
In this case the data can only be used by a single work-group. If you want the data
to be accessed by multiple work-groups do not do any copies and keep the data in
global memory.

Barriers Data transfers to or from local or private memories are typically synchronized
with barriers. If you remove copy operations to or from these memories, also
remove the associated barriers.

Cache size optimizations
Some code optimizes reads and writes to ensure data fits into cache lines. This is
a very useful optimization for both increasing performance and reducing power
consumption. However, the code is likely to be optimized for cache line sizes that
are different then those used by a Mali GPU.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-5
ID012914 Non-Confidential

Retuning Existing OpenCL Code for Mali GPUs
If the code is optimized for the wrong cache line size there might be unnecessary
cache flushes and this can decrease performance.
The Mali-T600 Series GPUs use a 64 byte line size. Try retuning the code to this
line size.

Use of scalars
Some GPUs work with scalars whereas Mali GPUs can also use vectors. Vectors
process multiple elements simultaneously enabling higher data throughput.

Optimizations for warps or wavefronts
Some GPU architectures group work-items together into what are called warps or
wavefronts. All the work-items in a warp must proceed in lock-step together in
these architectures and this means branches can perform badly.
Mali GPUs do not use warps or wavefronts so remove any optimizations for them.

Modifications for memory bank conflicts
Some GPUs include per-warp memory banks. If the code includes optimizations
to avoid conflicts in these memory banks, remove them.

Optimizations for divergent threads
Threads on a Mali GPU are independent and can diverge without any
performance impact. If your code contains optimizations or workarounds for
divergent threads in warps or wavefronts, remove them.

7.3.3 Optimizing your OpenCL code for Mali GPUs

To optimize the code for a Mali GPU see Chapter 8 Optimizing OpenCL for Mali GPUs.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 7-6
ID012914 Non-Confidential

Chapter 8
Optimizing OpenCL for Mali GPUs

This chapter describes the procedure to optimize applications for OpenCL for the
Mali-T600 Series GPUs. It contains the following sections:
• The optimization process for OpenCL applications on page 8-2.
• Load balancing between the application processor and the Mali GPU on page 8-3.
• Sharing memory between I/O devices and OpenCL on page 8-4.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 8-1
ID012914 Non-Confidential

Optimizing OpenCL for Mali GPUs
8.1 The optimization process for OpenCL applications
This section describes the steps to take to optimize an OpenCL application. It contains the
following sections:
• Measure individual kernels.
• Select the kernels that take the most time.
• Analyze the kernels.
• Measure individual parts of the kernel.

To optimize your application, you must first identify the most computationally intensive parts
of your application. In an OpenCL application that means identifying the kernels that take the
most time.

To identify the most computationally intensive kernels you must individually measure the time
taken by each kernel:

8.1.1 Measure individual kernels

Go through your kernels one at a time and:
1. Measure the time of a number of runs.
2. Average the results.

Note
 It is important that you measure the time of kernels on their own to get accurate measurements.

Do a dummy run of the kernel the first time to ensure the memory is allocated. Ensure this is
outside of your timing loop.

The allocation of some buffers in certain cases is delayed until the first time they are used. This
can cause the first kernel run to be slower than subsequent runs.

8.1.2 Select the kernels that take the most time

Select the kernels that have the longest run-time and optimize these. Optimizing any other
kernels has little impact on overall performance.

8.1.3 Analyze the kernels

Analyze the kernels to see if they contain computationally expensive operations:
• Measure how many reads and writes there are in the kernel. For high performance do as

many computations per memory access as possible.
• Use the Off-line Shader Compiler to check the balancing between the different pipelines.

8.1.4 Measure individual parts of the kernel

If you cannot determine the compute intensive part of the kernel by analysis, you can isolate it
by measuring different parts of the kernel individually.

You can do this by removing different code blocks and measuring the performance difference
each time.

The section of code that takes the most time is the most intensive. Consider how this code can
be rewritten.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 8-2
ID012914 Non-Confidential

Optimizing OpenCL for Mali GPUs
8.2 Load balancing between the application processor and the Mali GPU
If you can, ensure that both the application processor and Mali GPU run in parallel:

Do not use clFinish() for synchronization
Sometimes the application processor must access data written by the Mali GPU.
You can do this is with clFinish() but this introduces delays because calls to
clFinish() wait until the Mali GPU job completes. During that time, the
application processor is idle.
Avoid this if possible because it serializes execution.

Do not use any of the clEnqueueMap() operations with a blocking call
Where possible, use clWaitForEvents() or callbacks to ensure that the application
processor and Mali GPU can work in parallel.
Something similar the following works well:
1. Split work into many parts.
2. For each part:

a. Do application processor processing for part X.
b. Submit the OpenCL work-items for part X.

3. For each part:
a. Wait for OpenCL work-items for part X to complete using

clWaitForEvents.
b. Do more work on the application processor.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 8-3
ID012914 Non-Confidential

Optimizing OpenCL for Mali GPUs
8.3 Sharing memory between I/O devices and OpenCL
For an I/O device to share memory with OpenCL you must allocate the memory in OpenCL with
CL_MEM_ALLOC_HOST_PTR.

You must allocate the memory in OpenCL with CL_MEM_ALLOC_HOST_PTR because it ensures the
memory pages are always mapped into physical memory.

If you allocate the memory on the application processor, the OS might not allocate physical
memory to the pages until they are used for the first time. Errors occur if an I/O device attempts
to use unmapped pages.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 8-4
ID012914 Non-Confidential

Chapter 9
OpenCL Optimizations List

This chapter lists a number of optimizations to use when writing OpenCL for the
Mali-T600 series GPUs. It contains the following sections:
• General optimizations on page 9-2.
• Memory optimizations on page 9-4.
• Kernel optimizations on page 9-7.
• Code optimizations on page 9-9.
• Execution optimizations on page 9-12.
• Reducing the effect of serial computations on page 9-13.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-1
ID012914 Non-Confidential

OpenCL Optimizations List
9.1 General optimizations
ARM recommends the following:

Use the best processor for the job
GPUs are designed for parallel processing. Application processors are designed
for high speed serial computations and can also perform parallel computation in
a cluster configuration.
All applications contain sections that perform control functions and others that
perform computation.
• Use OpenCL for the parallelizable compute functions.
• Control and serial functions are best performed on your application

processor.
See Chapter 6 Converting Existing Code to OpenCL.

Compile the kernel once at the start of your application
Ensure you compile the kernel once at the start of your application. This can
reduce the fixed overhead significantly.

Enqueue a large number of work-items
To get maximum use of all the Mali GPU shader cores you must enqueue a large
number of work-items. For a Mali-T604 this is a minimum of 4096 work-items.
If you can perform your computation with fewer shader cores you can save power
by enqueueing fewer work-items.

Process large amounts of data
You must be processing a relatively large amount of data to get the benefit of
OpenCL. This is because of the fixed overheads of starting OpenCL tasks. The
exact size of data set where you start to see benefits depends on the processor you
are running your OpenCL code on.

Align data on 128-bit or 16 byte boundaries
Align data on 128-bit or 16 byte boundaries. This can improve the speed of
loading and saving data. If you can, align data on 64-byte boundaries. This
ensures data fits evenly into the cache.

Use the correct data types
Check each variable to see what range it requires.
If accuracy is not critical, instead of an int, see if a short, ushort, or char works
in its place.
For example, if you add two relatively small numbers you probably do not require
an int. However, check in case an overflow might occur.
• Only use float values if you require their additional range. For example, if

you require very small or very large numbers.
• An advantage of using smaller variables is more operations can be

performed per cycle.

Use the right image data type
You can store image and other data as images or as buffers:
• If your algorithm can be vectorized, use buffers.
• If your algorithm requires interpolation or automatic edge clamping, use

images.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-2
ID012914 Non-Confidential

OpenCL Optimizations List
Use asynchronous operations
If possible, use asynchronous operations between the Mali GPU and the
application processor. For example:
• Do not make the application processor wait for results.
• Ensure the application processor has other operations to process before it

requires results from the Mali GPU.
• Ensure the application processor does not interact with OpenCL kernels

when they are executing.

Do not merge buffers as an optimization
Merging multiple buffers into a single buffer as an optimization is unlikely to
provide a performance benefit.
For example, if you have two input buffers you can merge them into a single
buffer and use offsets to compute addresses of data. however this means every
kernel must perform the offset calculations.
It is better to use two buffers and pass the addresses to the kernel as a pair of
kernel arguments.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-3
ID012914 Non-Confidential

OpenCL Optimizations List
9.2 Memory optimizations
This section describes memory optimizations. It contains the following sections:
• Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory on page 9-4.
• Do not allocate memory buffers created with malloc() for OpenCL applications on

page 9-5.
• Do not create buffers with CL_MEM_USE_HOST_PTR if possible on page 9-5.

9.2.1 About memory optimizations

OpenCL originated in desktop systems where the application processor and the GPU have
separate memories. To use OpenCL in these systems you must allocate buffers to copy data to
and from the separate memories.

Systems with Mali GPUs typically have a shared memory so you are not required to copy data.
However, OpenCL assumes the memories are separate and buffer allocation involves memory
copies. This is wasteful because copies take time and consume power.

To avoid the copies, use the OpenCL API to allocate memory buffers and use map() and unmap()
operations. These operations enable both the application processor and the Mali GPU to access
the data without any copies.

Table 9-1 shows the different cl_mem_flags parameters in clCreateBuffer(),

ARM recommends the following:

• Do not use private or local memory to improve memory read performance.

• If your kernel is memory bandwidth bound try using a simple formula to compute
variables instead of reading from memory. This saves memory bandwidth and might be
faster.

• If your kernel is compute bound try reading from memory instead of computing variables.
This saves computations and might be faster.

9.2.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory

The Mali GPU can access the memory buffers created by
clCreateBuffer(CL_MEM_ALLOC_HOST_PTR). This is the preferred method to allocate buffers
because data copies are not required. This method of allocating buffers is shown in Figure 9-1.

Table 9-1 Parameters for clCreateBuffer()

Parameter Description

CL_MEM_ALLOC_HOST_PTR This is a hint to the driver indicating that the buffer is accessed on the host
side. To use the buffer on the application processor side, you must map this
buffer and write the data into it. This is the only method that does not involve
coping data. If you must fill in an image that is processed by the GPU, this
is the best way to avoid a copy.

CL_MEM_COPY_HOST_PTR Copies the contents of the host_ptr argument into memory allocated by the
driver.

CL_MEM_USE_HOST_PTR Copies the content of the host memory pointer into the buffer when the first
kernel using this buffer starts running. This flag enforces memory
restrictions that can reduce performance. Avoid using this if possible.
When a map is executed the memory must be copied back to the provided
host pointer. This significantly increases the cost of map operations.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-4
ID012914 Non-Confidential

OpenCL Optimizations List
Figure 9-1 Memory buffer created by clCreateBuffer(CL_MEM_ALLOC_HOST_PTR)

Note
 • You must make the initial memory allocation through the OpenCL API.

• If OpenCL calls are repeatedly interleaved with application processor activity, the
pointers that access buffers on the CPU might change.

• Always use the latest pointer returned. This is because the pointer returned is not
guaranteed to be the same value every time you call the function on a particular buffer.

9.2.3 Do not allocate memory buffers created with malloc() for OpenCL applications

The Mali GPU cannot access the memory buffers created by malloc() because they are not
mapped into the memory space of the Mali GPU. This is shown in Figure 9-2.

Figure 9-2 Memory buffer created by malloc()

9.2.4 Do not create buffers with CL_MEM_USE_HOST_PTR if possible

The Mali GPU can access the memory buffers created by clCreateBuffer(CL_MEM_USE_HOST_PTR)
but buffers created this way must have data copied into them by the application processor. These
copy operations are computationally expensive so it is best to avoid this method of allocating
buffers if possible. This method of allocating buffers is shown in Figure 9-3.

Global
memory

Buffer created by
clCreateBuffer()

Application
processor Mali GPU

CL_MEM_ALLOC_HOST_PTR

Mali GPU and
Application

processor can
both access

memory buffer

Global
memory

Buffer created by
malloc()

Application
processor Mali GPU

Mali GPU
cannot access
memory buffer
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-5
ID012914 Non-Confidential

OpenCL Optimizations List
Figure 9-3 Memory buffer created by clCreateBuffer(CL_MEM_USE_HOST_PTR)

Global
memory

Buffer created by
clCreateBuffer()

Application
processor Mali GPU

Buffer created by
malloc()

Copy

CL_MEM_USE_HOST_PTR

Memory buffer
requires

memory copy
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-6
ID012914 Non-Confidential

OpenCL Optimizations List
9.3 Kernel optimizations
ARM recommends the following:

• If your kernel has no preference for the work-group size, pass NULL to the local work size
argument of the clEnqueueNDRangeKernel().

• If possible, use work-group sizes that are a power of two. These are more efficient on the
Mali-T600 Series GPUs. The maximum work-group size is typically 256 but this is not
possible for all kernels and the driver suggests another size. A work-group size of 64 is
the smallest size guaranteed to be available for all kernels.
If possible, use a work-group size of 128 or 256. These make optimal use of the hardware
in the Mali-T600 Series GPUs. If the maximum work-group size is below 128, your kernel
might be too complex.

• Some kernels require work-groups for synchronisation of the work-items within the
work-group with barriers. These typically require a specific work-group size.
In cases where synchronisation between work-items are not required, the choice of the
size of the work-groups depends on the most efficient size for the device. Pass in NULL to
enable OpenCL to pick the optimal size.

• Use clGetKernelWorkGroupInfo() to check if the device can execute a kernel that requires
a minimum of inter-thread communication. If the device cannot execute the kernel, the
algorithm must be implemented as a multi-pass algorithm. This involves enqueuing
multiple kernels.

• If you have multiple kernels that work in a sequence, consider combining them into a
single kernel. If you combine kernels be careful of dependencies between them.
However, do not combine the kernels if there are widening data dependencies.
For example, If you have kernels A and B. Kernel B takes an input produced by kernel A.
If a kernel A is merged with a kernel B to form kernel C then C can only input any constant
data plus the output from the part that was previously kernel A.
Kernel C cannot use the output from kernel A n-1, because it is not guaranteed that A n-1
has been executed. This is because the order of execution of work-items is not guaranteed.
Typically this means that the coordinate systems for A and B are the same.

• Avoid splitting kernels. If you are required to split a kernel, split it into as few kernels as
possible.

• If your kernels are small, use data with a single dimension and ensure the work-group size
is a power of two.

Use vector operations in kernel code
Use vector operations in kernel code to help the compiler to map them to vector
instructions.

Use a sufficient number of concurrent threads
Use a sufficient number of concurrent threads to hide the execution latency of
instructions.
The number of concurrent threads that the shader core executes depends on the
number of active registers your kernel uses. The higher the number of registers,
the smaller the number of concurrent threads.
The number of registers used is determined by the compiler based on the
complexity of the kernel, and how many live variables the kernel has at one time.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-7
ID012914 Non-Confidential

OpenCL Optimizations List
To reduce the number of registers:
• Try reducing the number of live variables in your kernel.
• Use a large NDRange so there are a large number of work-items.
• Make sure the variables are large, for example, use vectors.
Experiment with this to find what suits your application. You can use the off-line
compiler to produce statistics for your kernels to assist with this.

Minimize thread divergence
It is beneficial to minimize thread divergence, this improves data locality for
caching.
To minimize thread divergence avoid the following:
• Variable length loops.
• Asymmetric conditional blocks.

Ensure the kernels exit at the same time
Branches are computationally cheap on Mali GPUs. This means you can use
loops in kernels without any performance impact.
Your kernel can include different code segments but try to ensure the kernels exit
at the same time.
A workaround to this is to use the bucket algorithm.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-8
ID012914 Non-Confidential

OpenCL Optimizations List
9.4 Code optimizations
ARM recommends the following:

Do not calculate constants in kernels
• Use defines for constants.
• If the values are only known at runtime, calculate them in the host

application and pass them as arguments to the kernel.
For example, height-1.

Make your kernel code as simple as possible
Make your kernel code as simple as possible. This assists the auto-vectorization
process.

Vectorize your code
Mali GPUs compute with vectors. These enable you to perform multiple
operations per instruction.
Vectorizing your code makes the best use of the Mali GPU hardware so ensure
you vectorize your code for maximum performance.
The shader cores in the Mali-T600 Series GPUs contain 128-bit wide vector
registers. Vectorize the algorithms in your kernels to make best use of the Mali
GPU hardware.

Vectorize incrementally
Vectorize in incremental steps. For example, start processing one pixel at a time,
then two, then four.

Use vector loads and saves
Use vector loads to load as much data as possible in a single operation. These
enable you to load 128-bits at a time. Do the same for saving data.
For example, if you are loading char values, use the built-in function vload16() to
load 16-bytes at a time.

Use vector loads and saves for scalar data
Use vector load VLOAD instructions on arrays of data even if you do not process the
data as vectors. This enables you to load multiple data elements with a single
instruction. A vector load of 128-bits takes the same amount of time as loading a
single character. Multiple loads of single characters are likely to cause cache
thrashing and this reduces performance. Do the same for saving data.

Do as many operations per load as possible
Operations that perform multiple computations per element of data loaded are
typically good for programming in OpenCL:
• Try to re-use data already loaded.
• Use as many arithmetic instructions as possible per load.
Use the off-line compiler to produce statistics for your kernels and check the ratio
between arithmetic instructions and loads.

Use the built-in functions
Many of the built-in functions are implemented as fast hardware instructions. See
Appendix B OpenCL Built-in Functions for a list of built-in functions with
relative speed ratings.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-9
ID012914 Non-Confidential

OpenCL Optimizations List
Use the precise versions of built-in functions
Use the precise versions of built-in functions.
In most cases the half_ or native_ versions of built-in functions provide no extra
performance. The following functions are exceptions:
• native_sin().
• native_cos().
• native_tan().
• native_divide().
• native_exp().
• native_sqrt().
• half_sqrt().
See half_ and native_ math functions on page B-4.

Use _sat() functions instead of min() or max()
_sat() functions automatically take the maximum or minimum values if the
values are too high or too low for representation. You are not required to add
additional min() or max() code.

Use shift instead of a divide
If you are dividing by a power of two use a shift instead of a divide.

Note
 • This only works for powers of two.

• Divide and shift use different methods of rounding negative numbers.

Avoid conversions from float to int
Conversions from float to int are relatively expensive so avoid them if possible.

Avoid processing single values
Avoid writing kernels that operate on single bytes or other small values. Write
kernels that work on vectors.

Avoid writing kernels that use a large number of live variables
Avoid writing kernels that use a large number of live variables. Using too many
live variables can impact performance and limits the maximum workgroup size.

Experiment to see how fast you can get your algorithm to execute
There are many variables that determine how well an application performs. Some
of the interactions between variables can be very complex and it is difficult to
predict how they impact performance.
Experiment with your OpenCL kernels to see how fast they can run:
Data types

Use the smallest data types for your calculation as possible.
For example if your data does not exceed 16-bits do not use 32-bit
types. You can fit eight 16-bit words into a 128-bit wide vector but only
four 32-bit words.

Load store types
Try changing the amount of data processed per work-item,
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-10
ID012914 Non-Confidential

OpenCL Optimizations List
Data arrangement
Change the data arrangement to make maximum use of the Mali GPU
caches.

Maximise data loaded
Always load as much data in a single operation as possible. Use
128-bit wide vector loads to load as many data items as possible, per
load.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-11
ID012914 Non-Confidential

OpenCL Optimizations List
9.5 Execution optimizations
ARM recommends the following:

• If you are building from source, cache binaries on the storage device.

• If you know the kernels you are using when your application initializes, call
clCreateKernelsInProgram() to initiate the finalizing compile as soon as possible.
Doing this ensures that when you use kernels in the future, they start faster because the
existing finalized binary is used.

• If you use callbacks to prompt the processor to continue processing data resulting from
the execution of a kernel, ensure the callbacks are set before you flush the queue.
If you do not do this, the callbacks might occur at the end of a larger batch of work, later
than they might have based on actual completion of work.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-12
ID012914 Non-Confidential

OpenCL Optimizations List
9.6 Reducing the effect of serial computations
You can reduce the impact of serial components in your application by reducing and optimizing
the computations:
• Use memory mapping instead of memory copies to transfer data.
• Optimize the communication code that sends and receives data to reduce latency.
• Keep messages small. Reduce communication overhead by sending only the data that is

absolutely required.
• Ensure the size of memory blocks used for communication are a power of 2. This makes

the data more cacheable.
• If possible, send more data in a smaller number of transfers.
• Compute values instead of reading them from memory. A simple computation is likely to

be faster than reading from memory.
• Do serial computations on the application processors. These are optimized for low latency

tasks.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 9-13
ID012914 Non-Confidential

Chapter 10
The Mali OpenCL SDK

The Mali OpenCL SDK includes the following tutorials to help you understand OpenCL
development:

Hello World Tutorial
This tutorial provides a basic introduction to OpenCL and vectorization.

Template Tutorial
This tutorial provides an OpenCL template that you can use as a starting point to
develop an OpenCL application.

Memory Optimizations
The Memory Optimizations directory contains a Data Sharing tutorial that
demonstrates efficient sharing of memory between a Mali-T600 Series GPU and
an application processor.

Sobel Filter Tutorial
This tutorial demonstrates the use of the Sobel image filter. This is a simple
convolution filter used primarily for edge detection algorithms.

FIR Float Filter Tutorial
This tutorial demonstrates the use of a floating point Finite Input Response (FIR)
image filter. You can use this for pixelization or noise reduction.

Mandelbrot Tutorial
This tutorial demonstrates the use of calculating the Mandelbrot set to produce
fractal patterns.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 10-1
ID012914 Non-Confidential

The Mali OpenCL SDK
SGEMM Tutorial
This tutorial demonstrates the use of Single-Precision General Matrix
Multiplication (SGEMM) in OpenCL.

The Mali OpenCL SDK is available from the Mali developer center,
http://www.malideveloper.arm.com
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. 10-2
ID012914 Non-Confidential

Appendix A
OpenCL Data Types

This appendix lists the data types available in OpenCL. These types are all natively supported
on Mali GPUs.

The OpenCL types are used in OpenCL C. The API types are equivalents for use in your
application. Use these to ensure the correct data is used and it is aligned on 128-bit or 16 byte
boundaries.

Vector sizes of 128-bits are optimal. Vector sizes greater than 128-bits are broken into 128-bit
parts and operated on separately. For example, an add of two 256-bit vectors takes twice as long
as an add of two 128-bit vectors. You can use vector sizes less than 128-bit without issue.

The disadvantage of using vectors greater than 128-bits is that they can increase code size.
Increased code size uses more instruction cache space and this can reduce performance.

Converting between vector types has no performance cost on a Mali GPU. For example,
converting a vector of 8-bit values to 16-bit values:

ushort8 a; uchar8 b;
a = convert_ushort16(b);
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. A-1
ID012914 Non-Confidential

OpenCL Data Types
Table A-1 shows built-in scalar data types.

Table A-2 shows built-in vector data types where n = 2,3,4,8, or 16.

Table A-1 Built-in scalar data types

Types for OpenCL kernels Types for application Description

bool - true (1) or false (0)

char cl_char 8-bit signed

unsigned char, uchar cl_uchar 8-bit unsigned

short cl_short 16-bit signed

unsigned short, ushort cl_ushort 16-bit unsigned

int cl_int 32-bit signed

unsigned int, uint cl_uint 32-bit unsigned

long cl_long 64-bit signed

unsigned long, ulong cl_ulong 64-bit unsigned

float cl_float 32-bit float

half cl_half 16-bit float, for storage only

size_t - 32-bit or 64-bit unsigned integer

ptrdiff_t - 32-bit or 64-bit unsigned integer

intptr_t - signed integer

uintptr_t - unsigned integer

void void void

Table A-2 Built-in vector data types

OpenCL Type API type for
application Description

charn cl_charn 8-bit signed

ucharn cl_ucharn 8-bit unsigned

shortn cl_shortn 16-bit signed

ushortn cl_ushortn 16-bit unsigned

intn cl_intn 32-bit signed

uintn cl_uintn 32-bit unsigned

longn cl_longn 64-bit signed

ulongn cl_ulongn 64-bit unsigned

floatn cl_floatn 32-bit float
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. A-2
ID012914 Non-Confidential

OpenCL Data Types
Table A-3 shows other built-in data types.

Table A-4 shows reserved data types. Do not use these in your OpenCL kernel code.

Table A-3 Other built-in data types

OpenCL Type Description

image2d_t 2D image handle

image3d_t 3D image handle

sampler_t sampler handle

event_t event handle

Table A-4 Reserved data types

OpenCL Type Description

booln boolean vector

double, doublen 64-bit float, vector

halfn 16-bit, vector

quad, quadn 128-bit float, vector

complex half, complex halfn, imaginary half, imaginary halfn 16-bit complex, vector

complex float, complex floatn, imaginary float, imaginary floatn 32-bit complex, vector

complex double, complex doublen, imaginary double, imaginary doublen 64-bit complex, vector

complex quad, complex quadn, imaginary quad, imaginary quadn 128-bit complex, vector

floatnxm n*m matrix of 32-bit floats

doublenxm n*m matrix of 64-bit floats

long double, long doublen 64-bit - 128-bit float, vector

long long, long longnb 128-bit signed

unsigned long long, ulong long, ulonglongn 128-bit unsigned
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. A-3
ID012914 Non-Confidential

Appendix B
OpenCL Built-in Functions

This appendix lists the OpenCL built-in functions. It contains the following sections:
• Work-item functions on page B-2.
• Math functions on page B-3.
• half_ and native_ math functions on page B-4.
• Integer functions on page B-5.
• Common functions on page B-6.
• Geometric functions on page B-7.
• Relational functions on page B-8.
• Vector data load and store functions on page B-9.
• Synchronization on page B-10.
• Asynchronous copy functions on page B-11.
• Atomic functions on page B-12.
• Miscellaneous vector functions on page B-13.
• Image read and write functions on page B-14.

The functions listed have a relative speed rating. The ratings are from A to C, where A is the
fastest.

Note
 Ratings for memory accesses are separate from arithmetic operations. An A rated memory
operation might be equivalent to a C rated arithmetic operation.
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-1
ID012914 Non-Confidential

OpenCL Built-in Functions
B.1 Work-item functions
Table B-1 lists the work-item functions.

Table B-1 Work-item functions

Function Speed

get_work_dim() A

get_global_size() A

get_global_id() A

get_local_size() A

get_local_id() A

get_num_groups() A

get_group_id() A

get_global_offset() A
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-2
ID012914 Non-Confidential

OpenCL Built-in Functions
B.2 Math functions
Table B-2 lists the math functions.

Table B-2 Math functions

Function Speed Function Speed Function Speed

fabs() A acos() B acosh() C

ceil() A acospi() B asinh() C

fdim() A asin() B atanh() C

fmax() A asinpi() B copysign() C

fmin() A atan() B erfc() C

mad() A atan2() B erf() C

maxmag() A atanpi() B fmod() C

minmag() A atan2pi() B fract() C

rint() A cbrt() B frexp() C

round() A cos() B hypot() C

trunc() A cosh() B ilogb() C

- - cospi() B ldexp() C

- - exp() B lgamma() C

- - exp2() B lgamma_r() C

- - exp10() B log() C

- - expml() B log10() C

- - floor() B log1p() C

- - fma() B logb() C

- - log2() B modf() C

- - pow() B nan() C

- - pown() B nextafter() C

- - powr() B remainder() C

- - rsqrt() B remquo() C

- - sin() B rootn() C

- - sincos() B sinh() C

- - sinpi() B tan() C

- - sqrt() B tanh() C

- - - - tanpi() C

- - - - tgamma() C
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-3
ID012914 Non-Confidential

OpenCL Built-in Functions
B.3 half_ and native_ math functions
Typically, on most architectures there is a trade-off between accuracy and speed. The
Mali-T600 Series GPUs implement the full precision variants of the math functions at full speed
so you are not required to make this trade-off.

The half_ and native_ variants of the math functions are provided for portability. See Math
functions on page B-3.

Table B-3 lists the half_ and native_ math functions.

Note
 In most cases the half_ or native_ versions of built-in functions provide no extra performance.
The following functions are exceptions:
• native_sin().
• native_cos().
• native_tan().
• native_divide().
• native_exp().
• native_sqrt().
• half_sqrt().

Table B-3 half_ and native_ math functions

half_ functions native_ functions

half_cos() native_cos()

half_divide() native_divide()

half_exp() native_exp()

half_exp2() native_exp2()

half_exp10() native_exp10()

half_log() native_log()

half_log2() native_log2()

half_log10() native_log10()

half_powr() native_powr()

half_recip() native_recip()

half_rsqrt() native_rsqrt()

half_sin() native_sin()

half_sqrt() native_sqrt()

half_tan() native_tan()
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-4
ID012914 Non-Confidential

OpenCL Built-in Functions
B.4 Integer functions
Table B-4 lists the integer functions.

Table B-4 Integer functions

Function Speed

abs() A

abs_diff() A

add_sat() A

hadd() A

rhadd() A

clz() A

max() A

min() A

sub_sat() A

mad24(), identical to 32-bit multiply accumulate A

mul24(), identical to 32-bit multiplies A

clamp() B

mad_hi() B

mul_hi() B

mad_sat() B

rotate() B

upsample() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-5
ID012914 Non-Confidential

OpenCL Built-in Functions
B.5 Common functions
Table B-5 lists the common functions.

Table B-5 Common functions

Function Speed

max() A

min() A

step() A

clamp() B

degrees() B

mix() B

radians() B

smoothstep() B

sign() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-6
ID012914 Non-Confidential

OpenCL Built-in Functions
B.6 Geometric functions
Table B-6 lists the geometric functions.

Table B-6 Geometric functions

Function Speed

dot() A

normalize() B

fast_distance() B

fast_length() B

fast_normalize() B

cross() B

distance() B

length() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-7
ID012914 Non-Confidential

OpenCL Built-in Functions
B.7 Relational functions
Table B-7 lists the relational functions.

Table B-7 Relational functions

Function Speed

any() A

all() A

bitselect() A

select() A

isequal() A

isnotequal() A

isgreater() A

isgreaterequal() A

isless() A

islessequal() A

islessgreater() A

isfinite() B

isinf() B

isnan() B

isnormal() B

isordered() B

isunordered() B

signbit() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-8
ID012914 Non-Confidential

OpenCL Built-in Functions
B.8 Vector data load and store functions
Table B-8 lists the vector data load and store functions. These are all speed A.

Table B-8 Vector data load and store functions

Function Speed

vload() A

vstore() A

vload_half() A

vstore_half() A

vloada_half() A

vstorea_half() A
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-9
ID012914 Non-Confidential

OpenCL Built-in Functions
B.9 Synchronization
The barrier() function has no speed rating because it must wait for multiple work-items to
complete. The time this takes determines the length of time the function takes in your
application. This also depends on a number of factors such as:
• The number of work-items in the work-groups being synchronized,
• How much the work-items diverge.

Table B-9 lists the synchronization functions.

Note
 ARM recommends you do not use barriers, especially in small kernels.

Table B-9 Synchronization functions

Function Speed

barrier() -

mem_fence() A

read_mem_fence() A

write_mem_fence() A
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-10
ID012914 Non-Confidential

OpenCL Built-in Functions
B.10 Asynchronous copy functions
Table B-10 lists the asynchronous copy functions. These have no speed rating because the copy
speed depends on the size of the data copied.

Table B-10 Asynchronous copy functions

Function

async_work_group_copy()

async_work_group_strided_copy()

wait_group_events()

prefetch()
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-11
ID012914 Non-Confidential

OpenCL Built-in Functions
B.11 Atomic functions
Table B-11 lists the atomic functions.

Table B-11 Atomic Functions

Function Speed

atomic_add() B

atomic_sub() B

atomic_xchg() B

atomic_inc() B

atomic_dec() B

atomic_cmpxchg() B

atomic_min() B

atomic_max() B

atomic_and() B

atomic_or() B

atomic_xor() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-12
ID012914 Non-Confidential

OpenCL Built-in Functions
B.12 Miscellaneous vector functions
Table B-12 lists the miscellaneous vector functions.

Table B-12 Miscellaneous vector functions

Function Speed

vec_step() A

shuffle() A

shuffle2() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-13
ID012914 Non-Confidential

OpenCL Built-in Functions
B.13 Image read and write functions
Table B-13 lists the image read and write functions.

Table B-13 Image read and write functions

Function Speed

read_imagef() A

read_imagei() A

read_imageui() A

write_imagef() A

write_imagei() A

write_imageui() A

get_image_width() B

get_image_height() B

get_image_depth() B

get_image_channel_data_type() B

get_image_channel_order() B

get_image_dim() B
DUI0538F Copyright © 2012-2013 ARM. All rights reserved. B-14
ID012914 Non-Confidential

DUI0538F Copyright © 2012-2013 ARM. All rights reserved. C-1
ID012914 Non-Confidential

Appendix C
OpenCL Extensions

The Mali OpenCL driver supports the following extensions:
• cl_khr_byte_addressable_store.

• egl_khr_cl_event.
• cl_khr_egl_event.
• cl_khr_egl_image.
• cl_khr_global_int32_base_atomics.
• cl_khr_global_int32_extended_atomics.
• cl_khr_int64_base_atomics.
• cl_khr_int64_extended_atomics.
• cl_khr_local_int32_base_atomics.
• cl_khr_local_int32_extended_atomics.

	ARM Mali-T600 Series GPU OpenCL Developer Guide
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographical conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About GPU compute
	1.2 About OpenCL
	1.3 About the Mali-T600 Series GPU Linux OpenCL driver
	1.4 About the Mali OpenCL SDK

	2: Parallel Processing Concepts
	2.1 Types of parallelism
	2.2 Concurrency
	2.3 Limitations of parallel processing
	2.4 Embarrassingly parallel applications
	2.5 Mixing different types of parallelism

	3: OpenCL Concepts
	3.1 About OpenCL
	3.2 OpenCL applications
	3.3 OpenCL execution model
	3.4 OpenCL data processing
	3.4.1 Work-items and the NDRange
	3.4.2 OpenCL work-groups
	3.4.3 Identifiers in OpenCL

	3.5 The OpenCL memory model
	3.6 The Mali GPU memory model
	3.7 OpenCL concepts summary

	4: Developing an OpenCL Application
	4.1 Software and hardware required for OpenCL development
	4.2 Development stages

	5: Execution Stages of an OpenCL Application
	5.1 About the execution stages
	5.1.1 Platform setup
	5.1.2 Runtime setup

	5.2 Finding the available compute devices
	5.3 Initializing and creating OpenCL contexts
	5.4 Creating a command queue
	5.5 Creating OpenCL program objects
	5.6 Building a program executable
	5.7 Creating kernel and memory objects
	5.7.1 Creating kernel objects
	5.7.2 Creating memory objects

	5.8 Executing the kernel
	5.8.1 Determining the data dimensions
	5.8.2 Determining the optimal global work size
	5.8.3 Determining the local work-group size
	5.8.4 Enqueuing kernel execution
	5.8.5 Executing kernels

	5.9 Reading the results
	5.10 Cleaning up

	6: Converting Existing Code to OpenCL
	6.1 Profile your application
	6.2 Analyzing code for parallelization
	6.2.1 About analyzing code for parallelization
	6.2.2 Look for data parallel operations
	6.2.3 Look for operations with few dependencies
	6.2.4 Analyze loops

	6.3 Parallel processing techniques in OpenCL
	6.3.1 Use the global ID instead of the loop counter
	6.3.2 Compute values in a loop with a formula instead of using counters
	6.3.3 Compute values per frame
	6.3.4 Perform computations with dependencies in multiple-passes
	6.3.5 Pre-compute values to remove dependencies
	6.3.6 Use software pipelining
	6.3.7 Use task parallelism

	6.4 Using parallel processing with non-parallelizable code
	6.5 Dividing data for OpenCL
	6.5.1 About dividing data for OpenCL
	6.5.2 Use concurrent data structures
	6.5.3 Data division examples

	7: Retuning Existing OpenCL Code for Mali GPUs
	7.1 About retuning existing OpenCL code for Mali GPUs
	7.2 Differences between desktop based architectures and Mali GPUs
	7.2.1 About desktop based GPU architectures
	7.2.2 About the architecture of the Mali-T600 Series GPUs
	7.2.3 Programming a Mali-T600 Series GPU

	7.3 Procedure for retuning existing OpenCL code for Mali GPUs
	7.3.1 Analyze code
	7.3.2 Locate and remove device optimizations
	7.3.3 Optimizing your OpenCL code for Mali GPUs

	8: Optimizing OpenCL for Mali GPUs
	8.1 The optimization process for OpenCL applications
	8.1.1 Measure individual kernels
	8.1.2 Select the kernels that take the most time
	8.1.3 Analyze the kernels
	8.1.4 Measure individual parts of the kernel

	8.2 Load balancing between the application processor and the Mali GPU
	8.3 Sharing memory between I/O devices and OpenCL

	9: OpenCL Optimizations List
	9.1 General optimizations
	9.2 Memory optimizations
	9.2.1 About memory optimizations
	9.2.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory
	9.2.3 Do not allocate memory buffers created with malloc() for OpenCL applications
	9.2.4 Do not create buffers with CL_MEM_USE_HOST_PTR if possible

	9.3 Kernel optimizations
	9.4 Code optimizations
	9.5 Execution optimizations
	9.6 Reducing the effect of serial computations

	10: The Mali OpenCL SDK
	A: OpenCL Data Types
	B: OpenCL Built-in Functions
	B.1 Work-item functions
	B.2 Math functions
	B.3 half_ and native_ math functions
	B.4 Integer functions
	B.5 Common functions
	B.6 Geometric functions
	B.7 Relational functions
	B.8 Vector data load and store functions
	B.9 Synchronization
	B.10 Asynchronous copy functions
	B.11 Atomic functions
	B.12 Miscellaneous vector functions
	B.13 Image read and write functions

	C: OpenCL Extensions

