
ARM® Compiler
Version 5.04

Getting Started Guide

Copyright © 2010-2013 ARM. All rights reserved.
ARM DUI0529J

ARM® Compiler
Getting Started Guide
Copyright © 2010-2013 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 28 May 2010 Non-Confidential ARM Compiler v4.1 Release

B 30 September 2010 Non-Confidential Update 1 for ARM Compiler v4.1

C 28 January 2011 Non-Confidential Update 2 for ARM Compiler v4.1 Patch 3

D 30 April 2011 Non-Confidential ARM Compiler v5.0 Release

E 29 July 2011 Non-Confidential Update 1 for ARM Compiler v5.0

F 30 September 2011 Non-Confidential ARM Compiler v5.01 Release

G 29 February 2012 Non-Confidential Document update 1 for ARM Compiler v5.01 Release

H 27 July 2012 Non-Confidential ARM Compiler v5.02 Release

I 31 January 2013 Non-Confidential ARM Compiler v5.03 Release

J 27 November 2013 Non-Confidential ARM Compiler v5.04 Release

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted
or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com

Contents
ARM® Compiler Getting Started Guide

Preface
About this book 8

Chapter 1 Overview of ARM® Compiler
1.1 About ARM® Compiler 1-12
1.2 Host platform support for ARM® Compiler 1-14
1.3 Changing to the 64-bit linker 1-15
1.4 About the toolchain documentation 1-16
1.5 Licensed features of ARM® Compiler .. 1-17
1.6 Standards compliance in ARM® Compiler 1-18
1.7 Compliance with the ABI for the ARM Architecture (Base Standard) 1-19
1.8 GCC compatibility provided by ARM® Compiler .. 1-20
1.9 Toolchain environment variables 1-21
1.10 ARM architectures supported by the toolchain 1-24
1.11 ARM® Compiler support on 64-bit host platforms .. 1-25
1.12 Considerations when using the 64-bit linker 1-26
1.13 Special characters on the command line .. 1-27
1.14 Rules for specifying command-line options 1-28
1.15 Order of options on the command line .. 1-29
1.16 Methods of specifying command-line options 1-30
1.17 Precedence of command-line options when using them in a text file 1-31
1.18 Portability of source files between hosts 1-32
1.19 TMP and TMPDIR environment variables for temporary file directories 1-33

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 3
Non-Confidential

1.20 Autocompletion of command-line options 1-34
1.21 About specifying Cygwin paths in compilation tools on Windows 1-35
1.22 Rogue Wave documentation 1-36
1.23 Further reading 1-37

Chapter 2 Getting Started with the Compilation Tools
2.1 About the ARM compilation tools .. 2-40
2.2 The ARM compiler command 2-41
2.3 The ARM linker command 2-43
2.4 The ARM assembler command 2-44
2.5 The fromelf image converter command 2-45

Appendix A Getting Started Guide Document Revisions
A.1 Revisions for Getting Started Guide .. Appx-A-47

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 4
Non-Confidential

List of Figures
ARM® Compiler Getting Started Guide

Figure 1-1 Rogue Wave HTML documentation .. 1-36
Figure 2-1 A typical tool usage flow diagram ... 2-40

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 5
Non-Confidential

List of Tables
ARM® Compiler Getting Started Guide

Table 1-1 Environment variables used by the toolchain ... 1-21
Table A-1 Differences between Issue I and Issue J .. Appx-A-47
Table A-2 Differences between issue H and issue I .. Appx-A-47
Table A-3 Differences between Issue F and Issue H .. Appx-A-47
Table A-4 Differences between Issue E and Issue F ... Appx-A-47
Table A-5 Differences between Issue D and Issue E .. Appx-A-48
Table A-6 Differences between Issue C and Issue D .. Appx-A-48
Table A-7 Differences between Issue A and Issue B .. Appx-A-48

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 6
Non-Confidential

Preface

This preface introduces the ARM® Compiler Getting Started Guide.

It contains the following:

• About this book on page 8.

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 7
Non-Confidential

About this book
ARM Compiler Getting Started Guide. This manual provides an overview of the ARM Compiler
tools, standards supported, and compliance with the ARM Application Binary Interface (ABI).
Available as a PDF.

Using this book

This book is organized into the following chapters:

Chapter 1 Overview of ARM® Compiler

Gives general information about ARM® Compiler.

Chapter 2 Getting Started with the Compilation Tools

Describes how to create an application using the tools provided by ARM Compiler.

Appendix A Getting Started Guide Document Revisions

Describes the technical changes that have been made to the Getting Started Guide.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM
meaning differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific
value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code
fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined
in the ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

 Preface
 About this book

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 8
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title.
• The number ARM DUI0529J.
• The page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 9
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of ARM® Compiler

Gives general information about ARM® Compiler.

It contains the following:

• 1.1 About ARM® Compiler on page 1-12.
• 1.2 Host platform support for ARM® Compiler on page 1-14.
• 1.3 Changing to the 64-bit linker on page 1-15.
• 1.4 About the toolchain documentation on page 1-16.
• 1.5 Licensed features of ARM® Compiler on page 1-17.
• 1.6 Standards compliance in ARM® Compiler on page 1-18.
• 1.7 Compliance with the ABI for the ARM Architecture (Base Standard) on page 1-19.
• 1.8 GCC compatibility provided by ARM® Compiler on page 1-20.
• 1.9 Toolchain environment variables on page 1-21.
• 1.10 ARM architectures supported by the toolchain on page 1-24.
• 1.11 ARM® Compiler support on 64-bit host platforms on page 1-25.
• 1.12 Considerations when using the 64-bit linker on page 1-26.
• 1.13 Special characters on the command line on page 1-27.
• 1.14 Rules for specifying command-line options on page 1-28.
• 1.15 Order of options on the command line on page 1-29.
• 1.16 Methods of specifying command-line options on page 1-30.
• 1.17 Precedence of command-line options when using them in a text file on page 1-31.
• 1.18 Portability of source files between hosts on page 1-32.
• 1.19 TMP and TMPDIR environment variables for temporary file directories on page 1-33.
• 1.20 Autocompletion of command-line options on page 1-34.

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-10
Non-Confidential

• 1.21 About specifying Cygwin paths in compilation tools on Windows on page 1-35.
• 1.22 Rogue Wave documentation on page 1-36.
• 1.23 Further reading on page 1-37.

1 Overview of ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-11
Non-Confidential

1.1 About ARM® Compiler
ARM Compiler enables you to build applications for the ARM family of processors from C, C++,
or ARM assembly language source.

The toolchain comprises:

armcc
The ARM and Thumb® compiler. This compiles your C and C++ code.

It supports inline and embedded assemblers, and also includes the NEON™ vectorizing
compiler, invoked using the command:

armcc --vectorize

armasm
The ARM and Thumb assembler. This assembles ARM and Thumb assembly language
sources.

armlink
The linker. This combines the contents of one or more object files with selected parts of
one or more object libraries to produce an executable program.

A 64-bit version of armlink is also provided that can access the greater amount of
memory available on 64-bit machines. It supports all the features that are supported by
the 32-bit version of armlink in this release.

If you are using ARM Compiler as a standalone product, then the 32-bit version is used
by default.

For ARM Compiler in DS-5, the linker version depends on the host platform. 32-bit tools
have the 32-bit linker and 64-bit tools have the 64-bit linker. You do not get both
versions.

For the Microprocessor Developer Kit (MDK), only the 32-bit linker is provided.

armar
The librarian. This enables sets of ELF object files to be collected together and
maintained in archives or libraries. You can pass such a library or archive to the linker in
place of several ELF files. You can also use the archive for distribution to a third party
for further application development.

fromelf
The image conversion utility. This can also generate textual information about the input
image, such as disassembly and its code and data size.

ARM C++ libraries
The ARM C++ libraries provide:

• Helper functions when compiling C++.
• Additional C++ functions not supported by the Rogue Wave library.

ARM C libraries
The ARM C libraries provide:

• An implementation of the library features as defined in the C and C++ standards.
• Extensions specific to the compiler, such as _fisatty(), __heapstats(), and

__heapvalid().
• GNU extensions.
• Common nonstandard extensions to many C libraries.
• POSIX extended functionality.
• Functions standardized by POSIX.

1 Overview of ARM® Compiler
1.1 About ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-12
Non-Confidential

ARM C microlib
The ARM C microlib provides a highly optimized set of functions. These functions are
for use with deeply embedded applications that have to fit into extremely small amounts
of memory.

Rogue Wave C++ library
The Rogue Wave C++ library provides an implementation of the standard C++ library.

C++ Standard Template Library (STL)
An ARM implementation of the C++ Standard Template Library.

Supporting software

You can debug the output from the toolchain with any debugger that is compatible with the ELF,
DWARF 2, and DWARF 3 specifications.

Updates and patches to the toolchain are available from the ARM web site as they become
available.

Related concepts
1.11 ARM® Compiler support on 64-bit host platforms on page 1-25.
1.5 Licensed features of ARM® Compiler on page 1-17.
1.7 Compliance with the ABI for the ARM Architecture (Base Standard) on page 1-19.
1.10 ARM architectures supported by the toolchain on page 1-24.
1.22 Rogue Wave documentation on page 1-36.

Related references
1.23 Further reading on page 1-37.

Related information
ARM website.
Overview of the Compiler.
Overview of the Assembler.
Overview of the Linker.
The ARM C and C++ Libraries.
The ARM C Micro-Library.
Overview of the ARM Librarian.
Overview of the fromelf Image Converter.

1 Overview of ARM® Compiler
1.1 About ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-13
Non-Confidential

http://www.arm.com
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124191020.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731119400.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065884575.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938908603.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938937854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133734773.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128870564.html

1.2 Host platform support for ARM® Compiler
ARM Compiler supports various Windows, Ubuntu, and Red Hat Enterprise Linux platforms.

Except where stated, the ARM Compiler supports both 32-bit and 64-bit versions of the following
OS platforms:

• Windows 8 (64-bit).
• Windows 7 Enterprise Edition SP1.
• Windows 7 Professional Edition SP1.
• Windows XP Professional SP3 (32-bit only).
• Windows Server 2003.
• Windows Server 2008 R2.
• Ubuntu Desktop Edition 10.04 LTS (32-bit only) (deprecated in this release).
• Ubuntu Desktop Edition 12.04 LTS.
• Red Hat Enterprise Linux 5 Desktop and Workstation option, Standard.
• Red Hat Enterprise Linux 6 Desktop and Workstation option, Standard.

 Note

You can also use ARM Compiler with Cygwin on the supported Windows platforms. However,
Cygwin path translation enabled by CYGPATH is only supported on 32-bit Windows platforms, and
is not supported on Windows 8.

About running 32-bit ARM Compiler binaries on Red Hat Enterprise Linux 6

Sometimes, Red Hat Enterprise Linux 6 might get installed by default without 32-bit compatibility
libraries. To use ARM Compiler on Red Hat Enterprise Linux 6, you must install the 32-bit
Compatibility Library support.

Specifically, ARM Compiler requires glibc and libm. To install them, make sure the yum
command is set up correctly, and enter:

yum groupinstall "Compatibility Libraries"

Related concepts
1.21 About specifying Cygwin paths in compilation tools on Windows on page 1-35.
1.1 About ARM® Compiler on page 1-12.

Related information
Cygwin versions supported.

1 Overview of ARM® Compiler
1.2 Host platform support for ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-14
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1365152022732.html

1.3 Changing to the 64-bit linker
You must add the path to the 64-bit version of the executables directory to your PATH
environment variable.

Procedure

To set up ARM Compiler to use the 64-bit version of armlink, on Windows for example,
enter:

SET PATH=install_directory\bin64;%PATH%

1 Overview of ARM® Compiler
1.3 Changing to the 64-bit linker

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-15
Non-Confidential

1.4 About the toolchain documentation
ARM Compiler contains a suite of documents that describe how to use the tools and provides
information on migration from, and compatibility with, earlier toolchian versions.

The toolchain documentation comprises:

Getting Started Guide (ARM DUI 0529) - this document
This document gives an overview of the toolchain and features.

Software Development Guide (ARM DUI 0471)
This document describes how to use the toolchain to develop software to run on ARM
architecture-based processors.

See Software Development Guide.

armcc User Guide (ARM DUI 0472)
This document describes how to use the various features of the compiler, armcc.

See armcc User Guide.

ARM C and C++ Libraries and Floating-Point Support User Guide (ARM DUI 0475)
This document describes the features of the ARM C and C++ libraries, and how to use
them. It also describes the floating-point support of the libraries.

See ARM® C and C++ Libraries and Floating-Point Support User Guide.

armasm User Guide (ARM DUI 0473)
This document describes how to use the various features of the assembler, armasm.

See armasm User Guide.

armlink User Guide (ARM DUI 0474)
This document describes how to use the various features of the linker, armlink.

See armlink User Guide.

armar User Guide (ARM DUI 0476)
This document describes how to use the various features of the librarian, armar. It also
provides a detailed description of each armar command-line option.

See armar User Guide.

fromelf User Guide (ARM DUI 0477)
This document describes how to use the various features of the ELF image converter,
fromelf. It also provides a detailed description of each fromelf command-line option.

See fromelf User Guide.

Errors and Warning Reference Guide (ARM DUI 0496)
This document describes the errors and warnings that might be generated by each of the
build tools in ARM Compiler.

See Errors and Warnings Reference Guide.

Migration and Compatibility Guide (ARM DUI 0530)
This document describes the differences you must be aware of in ARM Compiler, when
migrating your software from earlier toolchain versions, such as ARM RVCT v4.0.

See Migration and Compatibility Guide.

1 Overview of ARM® Compiler
1.4 About the toolchain documentation

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-16
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/index.html

1.5 Licensed features of ARM® Compiler
ARM Compiler requires a license.

If you purchased the toolchain with another ARM product, see the Getting Started document of
that product for details of the licenses that are included.

Licensing of the ARM development tools is controlled by the FlexNet license management
system.

To request a license, go to ARM Web Licensing and follow the online instructions.

Related information
ARM DS-5 License Management Guide.

1 Overview of ARM® Compiler
1.5 Licensed features of ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-17
Non-Confidential

http://license.arm.com
http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

1.6 Standards compliance in ARM® Compiler
ARM Compiler conforms to the ISO C, ISO C++, ELF, DWARF 2, and DWARF 3 standards.

The level of compliance for each standard is:

ar
armar produces, and armlink consumes, UNIX-style object code archives. armar can
list and extract most ar-format object code archives, and armlink can use an ar-format
archive created by another archive utility providing it contains a symbol table member.

DWARF 3
DWARF 3 debug tables (DWARF Debugging Standard Version 3) are supported by the
toolchain.

DWARF 2
DWARF 2 debug tables are supported by the toolchain, and by ELF DWARF 2
compatible debuggers from ARM.

ISO C
The compiler accepts ISO C 1990 and 1999 source as input.

ISO C++
The compiler accepts ISO C++ 2003 source as input.

ELF
The toolchain produces relocatable and executable files in ELF format. The fromelf
utility can translate ELF files into other formats.

 Note

The DWARF 2 and DWARF 3 standards are ambiguous in some areas such as debug frame data.
This means that there is no guarantee that third-party debuggers can consume the DWARF
produced by ARM code generation tools or that an ARM debugger can consume the DWARF
produced by third-party tools.

Related concepts
1.7 Compliance with the ABI for the ARM Architecture (Base Standard) on page 1-19.

Related information
Source language modes of the compiler.
The DWARF Debugging Standard.
International Organization for Standardization.

1 Overview of ARM® Compiler
1.6 Standards compliance in ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-18
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124192674.html
http://dwarfstd.org/
http://www.iso.org/iso/home.htm

1.7 Compliance with the ABI for the ARM Architecture (Base Standard)
The ABI for the ARM Architecture (Base Standard) is a collection of standards. Some of these
standards are open. Some are specific to the ARM architecture.

The Application Binary Interface (ABI) for the ARM Architecture (Base Standard) (BSABI)
regulates the inter-operation of binary code and development tools in ARM architecture-based
execution environments, ranging from bare metal to major operating systems such as ARM Linux.

By conforming to this standard, objects produced by the toolchain can work together with object
libraries from different producers.

The BSABI consists of a family of specifications including:

AADWARF
DWARF for the ARM Architecture. This ABI uses the DWARF 3 standard to govern the
exchange of debugging data between object producers and debuggers.

AAELF
ELF for the ARM Architecture. Builds on the generic ELF standard to govern the
exchange of linkable and executable files between producers and consumers.

AAPCS
Procedure Call Standard for the ARM Architecture. Governs the exchange of control and
data between functions at runtime. There is a variant of the AAPCS for each of the major
execution environment types supported by the toolchain.

BPABI
Base Platform ABI for the ARM Architecture. Governs the format and content of
executable and shared object files generated by static linkers. Supports platform-specific
executable files using post linking. Provides a base standard for deriving a platform ABI.

CLIBABI
C Library ABI for the ARM Architecture. Defines an ABI to the C library.

CPPABI
C++ ABI for the ARM Architecture. Builds on the generic C++ ABI (originally
developed for IA-64) to govern interworking between independent C++ compilers.

DBGOVL
Support for Debugging Overlaid Programs. Defines an extension to the ABI for the ARM
Architecture to support debugging overlaid programs.

EHABI
Exception Handling ABI for the ARM Architecture. Defines both the language-
independent and C++-specific aspects of how exceptions are thrown and handled.

RTABI
Run-time ABI for the ARM Architecture. Governs what independently produced objects
can assume of their execution environments by way of floating-point and compiler helper
function support.

If you are upgrading from a previous toolchain release, ensure that you are using the most recent
versions of the ARM specifications.

Related information
Application Binary Interface for the ARM Architecture Introduction and downloads.
Addenda to, and Errata in, the ABI for the ARM Architecture.
Differences between v1 and v2 of the ABI for the ARM Architecture.
ABI for the ARM Architecture Advisory Note: SP must be 8-byte aligned on entry to AAPCS-
conforming functions.

1 Overview of ARM® Compiler
1.7 Compliance with the ABI for the ARM Architecture (Base Standard)

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-19
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0039-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0047-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0046-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0046-/index.html

1.8 GCC compatibility provided by ARM® Compiler
ARM Compiler provides gcc compatibility to aid development using a range of source bases that
might have been originally developed to target specific toolchains.

ARM Compiler:

• Can build the vast majority of C and C++ code that is written to be built with gcc.
• Is not 100% source compatible in all cases.
• Does not aim to be bug-compatible.

ARM Compiler might emulate specific defects present in gcc where the defective behavior is
relied on in significant cases.

The level of gcc comparability, and gcc bug compatibility, might vary over time as updates from
EDG are incorporated.

1 Overview of ARM® Compiler
1.8 GCC compatibility provided by ARM® Compiler

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-20
Non-Confidential

1.9 Toolchain environment variables
Except for ARMLMD_LICENSE_FILE, ARM Compiler does not require any other environment
variables to be set. However, there are situations where you might want to set environment
variables.

For example, if you want to specify additional command-line options for armcc, but you do not
want to modify your build scripts, then you can specify the options using ARMCC5_CCOPT.

The environment variables used by the toolchain are:

Table 1-1 Environment variables used by the toolchain

Environment variable Setting

ARMLMD_LICENSE_FILE This environment variable must be set, and specifies the location of your ARM license file.
See the License Management Guide for information on this environment variable.

 Note

On Windows, the length of ARMLMD_LICENSE_FILE must not exceed 260 characters.

ARMROOT Your installation directory root, install_directory.

ARMCC5_ASMOPT An optional environment variable to define additional assembler options that are to be used
outside your regular makefile. For example:

--licretry

The options listed appear before any options specified for the armasm command in the
makefile. Therefore, any options specified in the makefile might override the options listed in
this environment variable.

ARMCC5_CCOPT An optional environment variable to define additional compiler options that are to be used
outside your regular makefile. For example:

--licretry

The options listed appear before any options specified for the armcc command in the
makefile. Therefore, any options specified in the makefile might override the options listed in
this environment variable.

ARMCC5_FROMELFOPT An optional environment variable to define additional fromelf image converter options that
are to be used outside your regular makefile. For example:

--licretry

The options listed appear before any options specified for the fromelf command in the
makefile. Therefore, any options specified in the makefile might override the options listed in
this environment variable.

ARMCC5_LINKOPT An optional environment variable to define additional linker options that are to be used
outside your regular makefile. For example:

--licretry

The options listed appear before any options specified for the armlink command in the
makefile. Therefore, any options specified in the makefile might override the options listed in
this environment variable.

1 Overview of ARM® Compiler
1.9 Toolchain environment variables

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-21
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

Table 1-1 Environment variables used by the toolchain (continued)

Environment variable Setting

ARMCC5INC The default system include path. That is, the path used by the compiler to search for header
filenames enclosed in angle-brackets. The compiler option -J overrides this environment
variable.

The default location of the compiler include files is:

install_directory\include

ARMCC5LIB The default location of the ARM standard C and C++ library files:

install_directory\lib

The compiler option --libpath overrides this environment variable.

 Note

If you include a path separator at the end of the path, the linker searches that directory and
the subdirectories. So for install_directory\lib the linker searches:

install_directory\lib

install_directory\lib\armlib

install_directory\lib\cpplib

ARMINC Used only if you do not specify the compiler option -J and ARMCC5INC is either not set or is
empty.

See the description of ARMCC5INC for more information.

ARMLIB Used only if you do not specify the compiler option --libpath and ARMCC5LIB is either
not set or is empty.

See the description of ARMCC5LIB for more information.

CPATH Defines additional paths that are used by armcc when the GCC emulation mode --
translate_gcc or --translate_g++ is specified.

CPLUS_INCLUDE_PATH Defines additional include paths that are used by armcc when the GCC emulation mode --
translate_gcc or --translate_g++ is specified.

C_INCLUDE_PATH Defines additional paths that are used by armcc when the GCC emulation mode --
translate_gcc or --translate_g++ is specified.

CYGPATH The location of the cygpath.exe file on your system in Cygwin path format. For example:

C:/cygwin/bin/cygpath.exe

You must set this if you want to specify paths in Cygwin format for the compilation tools.

 Note

Cygwin path translation enabled by CYGPATH is only supported on 32-bit Windows
platforms, and is not supported on Windows 8.

1 Overview of ARM® Compiler
1.9 Toolchain environment variables

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-22
Non-Confidential

Table 1-1 Environment variables used by the toolchain (continued)

Environment variable Setting

TMP Used on Windows platforms to specify the directory to be used for temporary files. If TMP is
not defined, or if it is set to the name of a directory that does not exist, temporary files are
created in the current working directory.

TMPDIR Used on Red Hat Linux platforms to specify the directory to be used for temporary files. If
TMPDIR is not set, a default temporary directory, usually /tmp or /var/tmp, is used.

Related concepts
1.19 TMP and TMPDIR environment variables for temporary file directories on page 1-33.
1.21 About specifying Cygwin paths in compilation tools on Windows on page 1-35.

Related references
1.16 Methods of specifying command-line options on page 1-30.

Related information
ARM DS-5 License Management Guide.

1 Overview of ARM® Compiler
1.9 Toolchain environment variables

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-23
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

1.10 ARM architectures supported by the toolchain
ARM Compiler includes support for all ARM architectures from ARMv4™ onwards that are
currently supported by ARM, including ARM NEON technology.

All architectures before ARMv4 are obsolete and are no longer supported.

You can specify a target processor or architecture to take advantage of extra features specific to
the selected processor or architecture. To do this, use the following command-line options:

• --cpu=name.
• --fpu=name.

You can specify the startup instruction set, ARM or Thumb, with the --arm or --thumb
command-line options.

You can force an ARM-only instruction set with the --arm_only option.

The compilation tools provide support for mixing ARM and Thumb code. This is known as
interworking and enables branching between ARM code and Thumb code.

Related information
Selecting the target CPU at compile time.
NEON technology.
--arm compiler option.
--arm_only compiler option.
--cpu=name compiler option.
--fpu=name compiler option.
--thumb compiler option.
--arm assembler option.
--arm_only assembler option.
--cpu=name assembler option.
--fpu=name assembler option.
--thumb assembler option.
--arm_only linker option.
--cpu=name linker option.
--fpu=name linker option.
Introducing NEON Development Article.
NEON Support in Compilation Tools Development Article.

1 Overview of ARM® Compiler
1.10 ARM architectures supported by the toolchain

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-24
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124221958.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124202861.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124901592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124908721.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818694.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819054.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289829592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289843800.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075408866.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dht0004-/index.html

1.11 ARM® Compiler support on 64-bit host platforms
ARM Compiler provides 32-bit and 64-bit versions of armlink.

Although ARM Compiler is supported on certain 64-bit platforms, the tools are 32-bit
applications. This limits the virtual address space and file size available to the tools. If these limits
are exceeded, armlink reports an error message to indicate that there is not enough memory. This
might cause confusion because sufficient physical memory is available but the application cannot
access it.

A 64-bit version of armlink is provided in a separate executables directory in this release.

The 64-bit version of armlink can:

• Access the greater amount of memory available to processes on 64-bit operating systems.
• Support all the features that are supported by the 32-bit version of armlink in this release.

If you have installed ARM Compiler on a 64-bit machine, then you can use the 64-bit version
instead.

 Note

By default, your installation is set up to use the standard 32-bit version of armlink, even if you
are using a 64-bit operating system.

Related references
1.9 Toolchain environment variables on page 1-21.

1 Overview of ARM® Compiler
1.11 ARM® Compiler support on 64-bit host platforms

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-25
Non-Confidential

1.12 Considerations when using the 64-bit linker
There are some considerations you must be aware of when you are using the 64-bit version of
armlink.

Be aware of the following:

• In the 64-bit version of the executables directory, armlink is the 64-bit executable and all
other tools are the 32-bit executables. It might seem redundant to have duplicated 32-bit
versions of the executables in the 64-bit executables directory, such as armcc.exe. However,
this is required by the method that different executables use to call each other. This method
dictates that all executables must be in the same directory. The tools call each other in certain
circumstances, for example armcc calls armlink to produce an executable when -c is not
specified in the command line.

• Cygwin path translation enabled by CYGPATH is only supported on 32-bit Windows platforms,
and is not supported on Windows 8.

1 Overview of ARM® Compiler
1.12 Considerations when using the 64-bit linker

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-26
Non-Confidential

1.13 Special characters on the command line
You can use special characters to select multiple symbolic names in some compilation tools
command arguments.

If you are using a special character on Unix platforms, you must enclose the options in quotes to
prevent the shell expanding the selection.

• The wildcard character * matches any name.
• The wildcard character ? matches any single character.

For example, enter '*,~*.*' instead of *,~*.*.

 Note

The armar command-line options must be preceded by a -. This is different from some earlier
versions of armar, and from some third-party archivers.

Examples

The following examples show the use of these characters:

• armar --create mylib.a *.o, creates the archive mylib.a containing all object files in
the current directory.

• armar -t mylib.a s*.o, lists all object files beginning with s in the mylib.a.
• armlink hello.o mylib.a(?.o) -o tst.axf, links hello.o with all object files in

mylib.a that have a single letter filename.
• fromelf --elf --strip=debug mylib.a(s*.o) --output=my_archive.a, strips

debug information from all object files beginning with s in mylib.a, and puts the modified
files in my_archive.a.

Related information
Assembler command-line syntax.
Compiler command-line syntax.
Compiler command-line options listed by group.
Linker command-line syntax.
armar command-line syntax.
fromelf command-line syntax.

1 Overview of ARM® Compiler
1.13 Special characters on the command line

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-27
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731164209.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124194452.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124194749.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065886997.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133737413.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128875392.html

1.14 Rules for specifying command-line options
There are certain rules you must follow when using command-line options. These rules depend on
the type of option.

The following rules apply:

Single-letter options
All single-letter options, including single-letter options with arguments, are preceded by a
single dash -. You can use a space between the option and the argument, or the argument
can immediately follow the option. For example:

-J directory

-Jdirectory

Keyword options
All keyword options, including keyword options with arguments, are preceded by a
double dash --. An = or space character is required between the option and the argument.
For example:

--depend=file.d

--depend file.d

Compilation tools options that contain non-leading - or _ can use either of these characters. For
example, --force_new_nothrow is the same as --force-new-nothrow.

To compile files with names starting with a dash, use the POSIX option -- to specify that all
subsequent arguments are treated as filenames, not as command switches. For example, to
compile a file named -ifile_1, use:

armcc -c -- -ifile_1

In some Unix shells, you might have to include quotes when using arguments to some command-
line options, for example:

--keep='s.o(vect)'

Related information
Assembler command-line syntax.
Compiler command-line syntax.
Compiler command-line options listed by group.
Linker command-line syntax.
armar command-line syntax.
fromelf command-line syntax.

1 Overview of ARM® Compiler
1.14 Rules for specifying command-line options

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-28
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731164209.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124194452.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124194749.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065886997.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133737413.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128875392.html

1.15 Order of options on the command line
In general, command-line options can appear in any order. However, the effects of some options
depend on how they are combined with other related options.

Where options override other options on the same command line, the options that appear closer to
the end of the command line take precedence. Where an option does not follow this rule, this is
noted in the description for that option.

Use the --show_cmdline option to see how the command line is processed. The commands are
shown normalized.

Related information
--show_cmdline compiler option.
--show_cmdline assembler option.
--show_cmdline linker option.
--show_cmdline fromelf option.
--show_cmdline armar option.

1 Overview of ARM® Compiler
1.15 Order of options on the command line

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-29
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124943916.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289843110.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075573529.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128922624.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133793111.html

1.16 Methods of specifying command-line options
You can specify command-line options directly. Some operating systems restrict the length of the
command line, so you can also specify command-line options in environment variables or in a text
file.

You can:

• Specify the commands directly on the command line. However, the number of options you can
specify is limited by the command length supported by your operating system.

• Specify the commands in a text file, called a via file. A separate via file is required for each
tool. You can use a via file to overcome the command length limitation of your operating
system.

• Use tool-specific environment variables. These are:

— ARMCC5_ASMOPT for the assembler.
— ARMCC5_CCOPT for the compiler.
— ARMCC5_FROMELFOPT for the fromelf image converter.
— ARMCC5_LINKOPT for the linker.

The syntax is identical to the command-line syntax. The compilation tool reads the value of the
environment variable and inserts it at the front of the command string. This means that you can
override options specified in the environment variable by arguments on the command line.

Related information
--via compiler option.
--via assembler option.
--via linker option.
--via fromelf option.
--via armar option.

1 Overview of ARM® Compiler
1.16 Methods of specifying command-line options

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-30
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124949735.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/pge1362075625323.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075625323.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128927155.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133799376.html

1.17 Precedence of command-line options when using them in a text file
The compilation tools read command-line options from a specified text file and combine them
with any additional options you have specified for the tool. Some options might take precedence
over other options.

The precedence given to a command-line option depends on:

• The command-line option.
• The position of the --via option on the command line.

To see a command line equivalent to the result of combining the options, specify the --
show_cmdline option. For example, if armcc.txt contains the options --debug --
cpu=ARM926EJ-S:

• armcc -c --show_cmdline --cpu=ARM7TDMI --via=armcc.txt hello.c [armcc
--show_cmdline --debug -c --cpu=ARM926EJ-S hello.c]

In this case, --cpu=ARM7TDMI is not used because --cpu=ARM926EJ-S is the last instance
of --cpu on the command-line.

• armcc --via=armcc.via -c --show_cmdline --cpu=ARM7TDMI hello.c [armcc
--show_cmdline --debug -c hello.c]

In this case, --cpu=ARM926EJ-S is not used because --cpu=ARM7TDMI is the last instance
of --cpu on the command line. In addition, --cpu=ARM7TDMI is not shown in the output,
because this is the default option for --cpu.

1 Overview of ARM® Compiler
1.17 Precedence of command-line options when using them in a text file

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-31
Non-Confidential

1.18 Portability of source files between hosts
There are guidelines you can follow to assist portability of source files between hosts.

The guidelines are:

• Ensure that filenames do not contain spaces. If you have to use path names or filenames
containing spaces, enclose the path and filename in double (") or single (') quotes.

• Make embedded path names relative rather than absolute.
• Use forward slashes (/) in embedded path names, not backslashes (\).

1 Overview of ARM® Compiler
1.18 Portability of source files between hosts

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-32
Non-Confidential

1.19 TMP and TMPDIR environment variables for temporary file directories
The compilation tools use a temporary directory when processing files.

The environment variable name used to refer to this directory depends on the platform:

• TMP on Windows platforms. If TMP is not defined, or if it is set to the name of a directory that
does not exist, temporary files are created in the current working directory.

• TMPDIR on Red Hat Linux platforms. If TMPDIR is not set, a default temporary directory,
usually /tmp or /var/tmp, is used.

TMP and TMPDIR are typically set up by a system administrator. However, it is permissible for you
to change them.

Related references
1.9 Toolchain environment variables on page 1-21.

1 Overview of ARM® Compiler
1.19 TMP and TMPDIR environment variables for temporary file directories

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-33
Non-Confidential

1.20 Autocompletion of command-line options
You can specify a shortened version of a command-line option with the autocompletion feature.

To use the autocompletion feature, insert a full stop (.) after the characters to be autocompleted.

The following rules apply to the autocompletion feature:

• You must separate arguments from the full stop by an equals (=) character or a space character.
• You cannot use autocompletion for the arguments to an option.
• You must include sufficient characters to make the autocompleted option unique.

For example, use --diag_su.=223 to specify --diag_suppress=223 on the command line.

Specifying --diag.=223 is not valid, because --diag. does not identify a single unique
command-line option.

Related information
Compiler command-line options listed by group.

1 Overview of ARM® Compiler
1.20 Autocompletion of command-line options

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-34
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124194749.html

1.21 About specifying Cygwin paths in compilation tools on Windows
You must use an environment variable to specify Cygwin paths for compilation tools on
Windows.

By default on Windows, the compilation tools require path names to be in the Windows DOS
format, for example, C:\myfiles. If you want to use Cygwin path names, then set the CYGPATH
environment variable to the location of the cygpath.exe file on your system. For example:

set CYGPATH=C:/cygwin/bin/cygpath.exe

You can now specify file locations in the compilation tools command-line options using the
Cygwin path format. The paths are translated by cygpath.exe. For example, to compile the
file /cygdrive/h/main.c, enter the command:

armcc -c --debug /cygdrive/h/main.c

You can still specify paths that start with:

• A drive letter, for example C:\ or C:/.
• UNC, for example, \\computer.

The compilation tools do not translate these paths because the paths are already in a form that
Windows understands.

Limitations of CYGPATH

Be aware of the following limitations with CYGPATH:

• Cygwin path translation enabled by CYGPATH is only supported on 32-bit Windows platforms,
and is not supported on Windows 8.

• When using a Cygwin style path with spaces or other special terminal characters, the path must
be double quoted:

— The use of single quotes or escaping characters is not supported.
— The use of literal doublequote characters in path names is not supported.

Related references
1.9 Toolchain environment variables on page 1-21.

Related information
Cygwin versions supported.
Cygwin home page.

1 Overview of ARM® Compiler
1.21 About specifying Cygwin paths in compilation tools on Windows

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-35
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1365152022732.html
http://www.cygwin.com/

1.22 Rogue Wave documentation
The documentation for the Rogue Wave Standard C++ Library used by ARM Compiler is
available from the ARM website. It is also installed with some ARM products.

The manuals for the Rogue Wave Standard C++ Library used by the compilation tools are:

• Standard C++ Library Class Reference.
• Standard C++ Library User’s Guide - OEM Edition.

These manuals might be installed with the documentation of your ARM product. If they are not
installed, you can view them at Rogue Wave Standard C++ Library Documentation

Figure 1-1 Rogue Wave HTML documentation

1 Overview of ARM® Compiler
1.22 Rogue Wave documentation

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-36
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0729a/index.html

1.23 Further reading
Additional information on developing code for the ARM family of processors is available from
both ARM and third parties.

ARM publications

ARM periodically provides updates and corrections to its documentation. See ARM Infocenter for
current errata sheets and addenda, and the ARM Frequently Asked Questions (FAQs).

For full information about the base standard, software interfaces, and standards supported by
ARM, see Application Binary Interface (ABI) for the ARM Architecture.

In addition, see the following documentation for specific information relating to ARM products:

• ARM Architecture Reference Manuals.
• Cortex-A series processors.
• Cortex-R series processors.
• Cortex-M series processors.
• ARM11 processors.
• ARM9 processors.
• ARM7 processors.

Other publications

This ARM Compiler tools documentation is not intended to be an introduction to the C or C++
programming languages. It does not try to teach programming in C or C++, and it is not a
reference manual for the C or C++ standards. Other publications provide general information
about programming.

The following publications describe the C++ language:

• ISO/IEC 14882:2003, C++ Standard.
• Stroustrup, B., The C++ Programming Language (3rd edition, 1997). Addison-Wesley

Publishing Company, Reading, Massachusetts. ISBN 0-201-88954-4.

The following publications provide general C++ programming information:

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley Publishing
Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use today.
• Vandevoorde, D and Josuttis, N.M. C++ Templates: The Complete Guide (2003). Addison-

Wesley Publishing Company, Reading, Massachusetts. ISBN 0-201-73484-2.
• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company, Reading,

Massachusetts. ISBN 0-201-56364-9.

This provides short, specific guidelines for effective C++ development.
• Meyers, S., More Effective C++ (2nd edition, 1997). Addison-Wesley Publishing Company,

Reading, Massachusetts. ISBN 0-201-92488-9.

The following publications provide general C programming information:

• ISO/IEC 9899:1999, C Standard.

The standard is available from national standards bodies (for example, AFNOR in France,
ANSI in the USA).

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

1 Overview of ARM® Compiler
1.23 Further reading

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-37
Non-Confidential

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexa/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexm/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.arm11/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.arm9/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.arm7/index.html

This book is co-authored by the original designer and implementer of the C language, and is
updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (5th edition, 2002). Prentice-Hall,
Englewood Cliffs, NJ, USA. ISBN 0-13-089592-X.

This is a very thorough reference guide to C, including useful information on ANSI C.
• Plauger, P., The Standard C Library (1991). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN

0-13-131509-9.

This is a comprehensive treatment of ANSI and ISO standards for the C Library.
• Koenig, A., C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN

0-201-17928-8.

This explains how to avoid the most common traps in C programming. It provides informative
reading at all levels of competence in C.

See The DWARF Debugging Standard web site for the latest information about the Debug With
Arbitrary Record Format (DWARF) debug table standards and ELF specifications.

The following publications provide information about the European Telecommunications
Standards Institute (ETSI) basic operations:

• ETSI Recommendation G.191: Software tools for speech and audio coding standardization.
• ITU-T Software Tool Library 2005 User's manual, included as part of ETSI Recommendation

G.191.
• ETSI Recommendation G723.1: Dual rate speech coder for multimedia communications

transmitting at 5.3 and 6.3 kbit/s.
• ETSI Recommendation G.729: Coding of speech at 8 kbit/s using conjugate-structure

algebraic-code-excited linear prediction (CS-ACELP).

These publications are all available from the telecommunications bureau of the International
Telecommunication Union (ITU) web site.

Publications providing information about Texas Instruments compiler intrinsics are available from
Texas Instruments web site.

The Wireless MMX Technology Developer Guide is available from Intel.

1 Overview of ARM® Compiler
1.23 Further reading

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 1-38
Non-Confidential

http://www.dwarfstd.org
http://www.itu.int
http://www.itu.int
http://www.ti.com

Chapter 2
Getting Started with the Compilation Tools

Describes how to create an application using the tools provided by ARM Compiler.

It contains the following:

• 2.1 About the ARM compilation tools on page 2-40.
• 2.2 The ARM compiler command on page 2-41.
• 2.3 The ARM linker command on page 2-43.
• 2.4 The ARM assembler command on page 2-44.
• 2.5 The fromelf image converter command on page 2-45.

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-39
Non-Confidential

2.1 About the ARM compilation tools
The compilation tools allow you to build executable images, partially linked object files, and
shared object files, and to convert images to different formats.

A typical application development might involve the following:

• Compiling C/C++ source code for the main application (armcc).
• Assembling ARM assembly source code for near-hardware components, such as interrupt

service routines (armasm).
• Linking all objects together to generate an image (armlink).
• Converting an image to flash format in plain binary, Intel Hex, and Motorola-S formats

(fromelf).

The following figure shows how the compilation tools are used for the development of a typical
application.

Flash format

.s

armcc

armasm

C/C++ ARM
and Thumb

Assembly
code

armlink fromelf

ImageObject codeSource code

code

data

debug

Plain binary
Intel Hex

Motorola-S

.o data

.o data

.c
code

debug

code

debug

Figure 2-1 A typical tool usage flow diagram

Related concepts
2.2 The ARM compiler command on page 2-41.
2.3 The ARM linker command on page 2-43.
2.4 The ARM assembler command on page 2-44.
2.5 The fromelf image converter command on page 2-45.

2 Getting Started with the Compilation Tools
2.1 About the ARM compilation tools

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-40
Non-Confidential

2.2 The ARM compiler command
The compiler, armcc, can compile C and C++ source code into ARM and Thumb code.

Typically, you invoke the compiler as follows:

armcc [options] file_1 … file_n

You can specify one or more input files. The compiler produces one object file for each source
input file.

Building an example image from C++ source

To compile a C++ file called shapes.cpp:

1. Compile the C++ file shapes.cpp with the following command:

armcc -c --cpp --debug -O1 shapes.cpp -o shapes.o

2. The following options are commonly used:

-c
Tells the compiler to compile only, and not link.

--cpp
Tells the compiler that the source is C++.

--debug
Tells the compiler to add debug tables for source-level debugging.

-O1
Tells the compiler to generate code with restricted optimizations applied to give a
satisfactory debug view with good code density and performance.

-o filename
Tells the compiler to create an object file with the specified filename.

 Note

Be aware that --arm is the default compiler option.

3. Link the file:

armlink shapes.o --info totals -o shapes.axf

4. Use an ELF, DWARF 2, and DWARF 3 compatible debugger to load and run the image.

Command-line options for compiling ARM code

The following compiler options generate ARM code:

--arm
Tells the compiler to generate ARM code in preference to Thumb code. However,
#pragma thumb overrides this option.

This is the default compiler option.

--arm_only
Forces the compiler to generate only ARM code. The compiler behaves as if Thumb is
absent from the target architecture. Any #pragma thumb declarations are ignored.

Command-line options for compiling Thumb code

The following compiler option generates Thumb code:

2 Getting Started with the Compilation Tools
2.2 The ARM compiler command

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-41
Non-Confidential

--thumb
Tells the compiler to generate Thumb code in preference to ARM code. However,
#pragma arm overrides this option.

Related concepts
2.3 The ARM linker command on page 2-43.

Related information
--arm compiler option.
--arm_only compiler option.
#pragma thumb compiler option.
--thumb compiler option.
#pragma arm compiler option.

2 Getting Started with the Compilation Tools
2.2 The ARM compiler command

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-42
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124901592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124991951.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124985040.html

2.3 The ARM linker command
The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce an image or object file.

Typically, you invoke the linker as follows:

armlink [options] file_1 … file_n

Linking an example object file
To link the object file shapes.o, enter:

armlink shapes.o --info totals -o shapes.axf

-o
Specifies the output file as shapes.axf.

--info totals
Tells the linker to display totals of the Code and Data sizes for input objects and libraries.

2 Getting Started with the Compilation Tools
2.3 The ARM linker command

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-43
Non-Confidential

2.4 The ARM assembler command
The assembler, armasm, can assemble ARM assembly code into ARM and Thumb code.

Typically, you invoke the assembler as follows:

armasm [options] inputfile

Building an example from assembly source

To build the assembler program word.s:

1. Assemble the source file:

armasm --debug word.s

2. Link the object file:

armlink word.o -o word.axf

3. Use an ELF, DWARF 2, and DWARF 3 compatible debugger to load and run the image. Step
through the program and examine the registers to see how they change.

Related information
Assembler command-line syntax.

2 Getting Started with the Compilation Tools
2.4 The ARM assembler command

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-44
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731164209.html

2.5 The fromelf image converter command
fromelf allows you to convert ELF files into different formats and display information about
them.

The features of the fromelf image converter include:

• Converting an executable image in ELF executable format to other file formats.
• Controlling debug information in output files.
• Disassembling either an ELF image or an ELF object file.
• Protecting intellectual property (IP) in images and objects that are delivered to third parties.
• Printing information about an ELF image or an ELF object file.

Examples

The following examples show how to use fromelf:

fromelf --text -c -s --output=outfile.lst infile.axf

Creates a plain text output file that contains the disassembled code and the symbol table of an elf
image.

fromelf --bin --16x2 --output=outfile.bin infile.axf

Creates two files in binary format (outfile0.bin and outfile1.bin) for a target system with
a memory configuration of a 16-bit memory width in two banks.

The output files in the last example are suitable for writing directly to a 16-bit Flash device.

Related information
fromelf command-line syntax.

2 Getting Started with the Compilation Tools
2.5 The fromelf image converter command

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. 2-45
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128875392.html

Appendix A
Getting Started Guide Document Revisions

Describes the technical changes that have been made to the Getting Started Guide.

It contains the following:

• A.1 Revisions for Getting Started Guide on page Appx-A-47.

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. Appx-A-46
Non-Confidential

A.1 Revisions for Getting Started Guide
The following technical changes have been made to the Getting Started Guide.

Table A-1 Differences between Issue I and Issue J

Change Topics affected

Updated the host platform support 1.2 Host platform support for ARM® Compiler on page 1-14

Moved the topic on avoiding the BLX (immediate)
instruction issue on ARM 1176 processors to the armlink
User Guide.

Avoiding the BLX (immediate) instruction issue on an
ARM1176JZ-S or ARM1176JZF-S processor

Table A-2 Differences between issue H and issue I

Change Topics affected

NEON vectorizing compiler no longer requries a
separate license, so removed the statement.

• 1.1 About ARM® Compiler on page 1-12
• 1.5 Licensed features of ARM® Compiler on page 1-17

Added note about CYGPATH not being supported
by the 64-bit linker.

• 1.12 Considerations when using the 64-bit linker on page 1-26
• 1.9 Toolchain environment variables on page 1-21
• 1.21 About specifying Cygwin paths in compilation tools on

Windows on page 1-35

Updated the host platforms supported, and added
information about 32-bit compatibility libraries on
Red Hat Enterprise Linux 6.

 1.2 Host platform support for ARM® Compiler on page 1-14

Removed the reference to --ltcg from the note,
and enhanced the description.

 1.3 Changing to the 64-bit linker on page 1-15

Removed the reference to Building Linux
Applications with ARM Compiler toolchain and
GNU Libraries.

 1.4 About the toolchain documentation on page 1-16

Added a topic for GCC compatibility provided by
ARM Compiler.

 1.8 GCC compatibility provided by ARM® Compiler on page 1-20

Table A-3 Differences between Issue F and Issue H

Change Topics affected

Updated the Windows 7 platform support. 1.2 Host platform support for ARM® Compiler on page 1-14

Table A-4 Differences between Issue E and Issue F

Change Topics affected

Updated the list of environment variables to the new
version numbering scheme, for example
ARMCC5INC.

• 1.9 Toolchain environment variables on page 1-21
• 1.16 Methods of specifying command-line options on page 1-

30.

A Getting Started Guide Document Revisions
A.1 Revisions for Getting Started Guide

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. Appx-A-47
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362395703214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362395703214.html

Table A-5 Differences between Issue D and Issue E

Change Topics affected

Added a section on avoiding the BLX (immediate) instruction issue
on ARM 1176 processors.

Topic moved to the armlink User Guide in revision
J.

Table A-6 Differences between Issue C and Issue D

Change Topics affected

Added Windows Server 2008 R2 and Ubuntu 10.04 LTS 32/64 to the list of
platforms supported, and included a note about Cygwin support.

Removed Windows Vista and Solaris from the list of platforms supported.

 1.2 Host platform support for ARM®

Compiler on page 1-14

Added a description of how to set up the DS-5 environment to use the 64-bit
linker.

 1.3 Changing to the 64-bit linker on
page 1-15

Updated the list of environment variables. Removed ARMCCnnBIN, because it
is not used by any of the tools.

 1.9 Toolchain environment variables on
page 1-21

Table A-7 Differences between Issue A and Issue B

Change Topics affected

Added details about the 64-bit version of armlink to list of
tools.

 1.1 About ARM® Compiler on page 1-12

Added a topic on how to change to using the 64-bit linker. 1.3 Changing to the 64-bit linker on page 1-15

Added the environment variables required for using the 64-bit
linker.

 1.9 Toolchain environment variables on page 1-21

Added a note about the 64-bit version of armlink. 1.11 ARM® Compiler support on 64-bit host platforms
on page 1-25

A Getting Started Guide Document Revisions
A.1 Revisions for Getting Started Guide

ARM DUI0529J Copyright © 2010-2013 ARM. All rights reserved. Appx-A-48
Non-Confidential

	ARM® Compiler Getting Started Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1: Overview of ARM® Compiler
	1.1: About ARM® Compiler
	1.2: Host platform support for ARM® Compiler
	1.3: Changing to the 64-bit linker
	1.4: About the toolchain documentation
	1.5: Licensed features of ARM® Compiler
	1.6: Standards compliance in ARM® Compiler
	1.7: Compliance with the ABI for the ARM Architecture (Base Standard)
	1.8: GCC compatibility provided by ARM® Compiler
	1.9: Toolchain environment variables
	1.10: ARM architectures supported by the toolchain
	1.11: ARM® Compiler support on 64-bit host platforms
	1.12: Considerations when using the 64-bit linker
	1.13: Special characters on the command line
	1.14: Rules for specifying command-line options
	1.15: Order of options on the command line
	1.16: Methods of specifying command-line options
	1.17: Precedence of command-line options when using them in a text file
	1.18: Portability of source files between hosts
	1.19: TMP and TMPDIR environment variables for temporary file directories
	1.20: Autocompletion of command-line options
	1.21: About specifying Cygwin paths in compilation tools on Windows
	1.22: Rogue Wave documentation
	1.23: Further reading

	2: Getting Started with the Compilation Tools
	2.1: About the ARM compilation tools
	2.2: The ARM compiler command
	2.3: The ARM linker command
	2.4: The ARM assembler command
	2.5: The fromelf image converter command

	A: Getting Started Guide Document Revisions
	A.1: Revisions for Getting Started Guide

