
ARM® Compiler toolchain
 Version 4.1

Errors and Warnings Reference

Printed on: August 4, 2011
Copyright © 2010-2011 ARM. All rights reserved.
ARM DUI 0496C (ID080411)

ARM Compiler toolchain
Errors and Warnings Reference

Copyright © 2010-2011 ARM. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Description Issue Confidentiality Change

28 May 2010 A Non-Confidential ARM Compiler toolchain v4.1 Release

30 September 2010 B Non-Confidential Update 1 for ARM Compiler toolchain v4.1

28 January 2011 C Non-Confidential Update 2 for ARM Compiler toolchain v4.1 Patch 3

30 April 2011 C Non-Confidential Update 3 for ARM Compiler toolchain v4.1

29 July 2011 C Non-Confidential Update 4 for ARM Compiler toolchain v4.1 Patch 5
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. ii
ID080411 Non-Confidential

ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. iii
ID080411 Non-Confidential

Contents
ARM Compiler toolchain Errors and Warnings
Reference

Chapter 1 Conventions and feedback

Chapter 2 C and C++ Compiler Errors and Warnings
2.1 Internal errors and other unexpected failures ... 2-2
2.2 Suppressing armcc error and warning messages .. 2-3
2.3 List of the armcc error and warning messages ... 2-4
2.4 List of the old-style armcc error and warning messages .. 2-64

Chapter 3 Assembler Errors and Warnings
3.1 List of the armasm error and warning messages .. 3-2

Chapter 4 Linker Errors and Warnings
4.1 Suppressing armlink error and warning messages ... 4-2
4.2 List of the armlink error and warning messages ... 4-3

Chapter 5 ELF Image Converter Errors and Warnings
5.1 List of the fromelf error and warning messages .. 5-2

Chapter 6 Librarian Errors and Warnings
6.1 List of the armar error and warning messages ... 6-2

Chapter 7 Other Errors and Warnings
7.1 List of other error and warning messages .. 7-2

Appendix A Revisions for the Errors and Warnings Reference

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands, file

and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM® processor
signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your supplier
and give:
• your name and company
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 1-1
ID080411 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0496C
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 1-2
ID080411 Non-Confidential

Chapter 2
C and C++ Compiler Errors and Warnings

The following topics describe the error and warning messages for the C and C++ compiler, armcc:
• Internal errors and other unexpected failures on page 2-2
• Suppressing armcc error and warning messages on page 2-3
• List of the armcc error and warning messages on page 2-4
• List of the old-style armcc error and warning messages on page 2-64.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-1
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2.1 Internal errors and other unexpected failures
Internal errors in the compiler are typically errors that have occurred but have not yet been
documented, or they might point to a potential issue in the compiler itself.

For example:

Internal fault: [0x87ecef:410591]

contains:

• the message description (Internal Fault)

• a six hex digit fault code for the error that occurred (0x87ecef).
In previous versions this was a 4 digit code.

• the version number (41 is ARM Compiler v4.1)

• the build number (0591 in this example).

If you see an internal fault, contact your supplier.

To facilitate the investigation, try to send only the single source file or function that is causing
the error, plus the compiler options used when compiling the code.

It might be necessary to preprocess the file (that is, to take account of files added with #include).
To do this, pass the file through the preprocessor as follows:

armcc <options> –E sourcefile.c > PPsourcefile.c

where <options> are your normal compile switches, such as -O2, -g, -I, -D, but without -c.

Check that the error is still reproducible with the preprocessed file by compiling it with:

armcc <options> -c PPsourcefile.c

and then provide the PPsourcefile.c file and your compile <options> to your supplier.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-2
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2.2 Suppressing armcc error and warning messages
The compiler normally warns of potential portability problems and other hazards.

When porting legacy code (for example, in old-style C) to the ARM, many warnings might be
reported. It might be tempting to disable all such warnings with –W. ARM recommends however
that for portability reasons, you change the code to make it ANSI compatible rather than
suppressing the warnings.

Some warnings are suppressed by default. To override this, use the --strict_warnings switch to
enable all suppressed warnings.

By default optimization messages, that is most of the messages between 1593 and 2159, are not
warnings. To treat optimization messages as warnings, use the --diag_warning=optimizations
option.

2.2.1 See also

Reference
Compiler Reference:
• --diag_warning=tag[,tag,...] on page 3-74
• --strict_warnings on page 3-192
• -W on page 3-216.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-3
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2.3 List of the armcc error and warning messages
The error and warning messages for armcc are.

0 unknown error

1 last line of file ends without a new line

2 last line of file ends with a backslash

3 #include file <entity> includes itself

4 out of memory

5 cannot open <entity> input file <filename>: <reason>

For example:
#include <file.h>

results in the message:
Error: #5: cannot open source input file "file.h": No such file or
directory

because file.h does not exist in the system include directory.

6 comment unclosed at end of file

Comment started with /* but no matching */ to close the comment.

7 unrecognized token

8 missing closing quote

For example:
char foo[] = {"\"};

In this example, the backslash causes the following quote " to be treated as a
literal character rather than closing the string. To fix this, use:
char foo[] = {"\\"};

9 nested comment is not allowed

For example:
/*nested
/*comment*/

10 "#" not expected here

11 unrecognized preprocessing directive

For example:
#foo

12 parsing restarts here after previous syntax error

13 expected a file name

For example:
#include <stdio.h>

14 extra text after expected end of preprocessing directive

For example:
#if EMBEDDED foo

or:
#include <stdio.h> foo
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-4
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
or:
#ifdef SOMETHING
:
#endif SOMETHING

The #endif does not expect or require any argument. Enclosing the trailing part
of the line in a comment fixes the problem:
#endif /* SOMETHING */

16 <entity> is not a valid source file name

17 expected a "]"

18 expected a ")"

For example:
int main(void
{

where there is a missing).

19 extra text after expected end of number

For example:
int a = 37r;

20 identifier <entity> is undefined

For example, when compiled for C++, the code:
void foo(arg) { }

results in the message:
Error: #20: identifier <arg> is undefined

Another example of code that can cause this error is:
int foo(void)
{
 int a = 4;
 a = i;
}

which results in the message:
Error: #20: identifier "i" is undefined

because i has not been declared.

21 type qualifiers are meaningless in this declaration

22 invalid hexadecimal number

23 integer constant is too large

24 invalid octal digit

For example:
int a = 0378;

25 quoted string should contain at least one character

For example:
char a ='';

26 too many characters in character constant

For example:
char a =’abcd’;
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-5
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
results in an error.

Note
 Only one character is permitted in a single-quoted string. For more than one

character, double quotes must be used. Strings must be assigned to an appropriate
variable such as a[].

27 character value is out of range

For example:
char foo[] = {"\xBBBB" };

results in the message:
Warning: #27-D: character value is out of range

28 expression must have a constant value

29 expected an expression

30 floating constant is out of range

31 expression must have integral type

32 expression must have arithmetic type

33 expected a line number

34 invalid line number

35 #error directive: <entity>

36 the #if for this directive is missing

37 the #endif for this directive is missing

An open #if was still active, but was not closed with #endif before the End Of
File.

38 directive is not allowed -- an #else has already appeared

39 division by zero

40 expected an identifier

This error is raised if preprocessor statements are incorrectly formatted such as
for example, if the identifier which must immediately follow a preprocessor
command is missing. For example, a missing identifier after #define results in:
Error: #40: expected an identifier

This error can also occur when C code containing C++ keywords is compiled with
the C++ compiler, for example:
int *new(void *p) { return p; }

causes an error because new is a keyword in C++.

41 expression must have arithmetic or pointer type

42 operand types are incompatible (<type> and <type>)

44 expression must have pointer type

45 #undef may not be used on this predefined name

46 <entity> is predefined; attempted redefinition ignored
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-6
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
47 incompatible redefinition of macro <entity>

Macro has been defined twice (with different replacement strings).
If it is necessary to do this, undefine the macro (#undef) before the second
definition.
For example:
#define TEST 0
#define TEST 1

causes the compiler to produce:
Warning: #47-D: incompatible redefinition of macro "TEST" (declared at
line 1)

There is no way to control this error directly by a compiler option, but you can
use conditional preprocessing. For example:
#ifdef TEST_EQUALS_ZERO
#define TEST 0
#else
#define TEST 1
#endif

Compiling with armcc -c foo.c defines TEST to be 1 (the default).
Compiling with armcc -c -DTEST_EQUALS_ZERO foo.c defines TEST to be 0.

49 duplicate macro parameter name

50 "##" may not be first in a macro definition

51 "##" may not be last in a macro definition

52 expected a macro parameter name

53 expected a ":"

54 too few arguments in macro invocation

55 too many arguments in macro invocation

56 operand of sizeof may not be a function

57 this operator is not allowed in a constant expression

58 this operator is not allowed in a preprocessing expression

59 function call is not allowed in a constant expression

60 this operator is not allowed in an integral constant expression

61 integer operation result is out of range

62 shift count is negative

63 shift count is too large

64 declaration does not declare anything

For example:
int;

65 expected a ";"

66 enumeration value is out of "int" range

This diagnostic message is generated by the compiler when an enum constant is
outside the range of a signed int.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-7
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
For example:
typedef enum
{
 Bit31 = 0x80000000
} Bits;

when compiled in C mode generates the this message as a warning.

Note
 The behavior of the compiler has changed between past versions and also when

using --enum_is_int and --strict switches.

C Mode:
• the warning is produced but the compiler promotes the constants to

unsigned
• the switch --strict always produces this message as an error.
C++ Mode:
• by default the out-of-range constants are promoted to unsigned without a

warning and also when --strict is used
As a work around for cases where the message is an error use the following code
example:
typedef enum
{
 Bit31 = (int)0x80000000
} Bits;

An overflow no longer occurs, and so no error is reported.

Note
 The value of Bit31 is now negative because it is a signed int.

See the following in in the Compiler Reference:
• Structures, unions, enumerations, and bitfields on page 6-9.

67 expected a "}"

68 integer conversion resulted in a change of sign

The constant is too large to be represented in a signed long, and therefore has been
given unsigned type.
Example:
long l = 2147483648;

69 integer conversion resulted in truncation

70 incomplete type is not allowed

Example:
typedef struct {
 unsigned char size;
 char string[];
} FOO;

By not declaring a size for the array in the structure, the compiler is not able to
allocate a size of the structure. Incomplete types are allowed in --gnu and --c99
modes.

71 operand of sizeof may not be a bit field
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-8
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
76 argument to macro is empty

77 this declaration has no storage class or type specifier

78 a parameter declaration may not have an initializer

79 expected a type specifier

The ellipses to denote variadic functions, such as, for example, printf(), must
follow at least one parameter. Change:
int foo(...);

to:
int foo(int bar, ...);

80 a storage class may not be specified here

81 more than one storage class may not be specified

82 storage class is not first

83 type qualifier specified more than once

84 invalid combination of type specifiers

The type name or type qualifier cannot be used in the same declaration as the
second type name or type qualifier. For example:
typedef int int;

85 invalid storage class for a parameter

86 invalid storage class for a function

87 a type specifier may not be used here

88 array of functions is not allowed

89 array of void is not allowed

90 function returning function is not allowed

91 function returning array is not allowed

92 identifier-list parameters may only be used in a function definition

93 function type may not come from a typedef

94 the size of an array must be greater than zero

Zero-sized arrays are allowed only when in GNU mode, --gnu. For example:
char name[0];

See the following in the Compiler Reference:
• --gnu on page 3-105
• GNU extensions to the C and C++ languages on page 4-47.

95 array is too large

There is a limit of 4GB on the maximum size of arrays or structures.

96 a translation unit must contain at least one declaration

97 a function may not return a value of this type

98 an array may not have elements of this type
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-9
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
99 a declaration here must declare a parameter

100 duplicate parameter name

101 <entity> has already been declared in the current scope

102 forward declaration of enum type is nonstandard

103 class is too large

104 struct or union is too large

105 invalid size for bit field

Bit fields must not be larger than the size of the type.
For example, with --strict:
struct X{
 int y:5000;
};

106 invalid type for a bit field

Bit fields must have integral type.
Example:
struct X{
 float x:5;
 float y:2;
};

107 zero-length bit field must be unnamed

108 signed bit field of length 1

109 expression must have (pointer-to-) function type

110 expected either a definition or a tag name

111 statement is unreachable

112 expected "while"

114 <entity> was referenced but not defined

115 a continue statement may only be used within a loop

116 a break statement may only be used within a loop or switch

Example:
void foo(void){
 int a=0;
 continue;
}

or:
void bar(void){
 int a=0;
 break;
}

117 non-void <entity> should return a value

118 a void function may not return a value

119 cast to type <type> is not allowed
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-10
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
120 return value type does not match the function type

121 a case label may only be used within a switch

122 a default label may only be used within a switch

123 case label value has already appeared in this switch

124 default label has already appeared in this switch

125 expected a "("

126 expression must be an lvalue

127 expected a statement

128 loop is not reachable from preceding code

129 a block-scope function may only have extern storage class

130 expected a "{"

131 expression must have pointer-to-class type

132 expression must have pointer-to-struct-or-union type

133 expected a member name

134 expected a field name

135 <entity> has no member <entity>

136 <entity> has no field <entity>

137 expression must be a modifiable lvalue

138 taking the address of a register variable is not allowed

139 taking the address of a bit field is not allowed

140 too many arguments in function call

Function declaration does not match the number of parameters in an earlier
function prototype.
Example:
extern void foo(int x);
void bar(void)
{
 foo(1,2);
}

141 unnamed prototyped parameters not allowed when body is present

142 expression must have pointer-to-object type

143 program too large or complicated to compile

144 a value of type <type> cannot be used to initialize an entity of type
<type>

The initializing string for a fixed size character array is exactly as long as the
array size, leaving no room for a terminating \0, for example:
char name[5] = "Hello";

The name array can hold up to 5 characters. "Hello" does not fit because C strings
are always null-terminated (for example, "Hello\0"). The compiler reports:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-11
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
Error: #144: a value of type "const char [6]" cannot be used to initialize
an entity of type "char [5]"

A similar error is also raised if there is an implicit cast of non-zero int to pointer.
For example:
void foo_func(void)
{
 char *foo=1;
}

results in the message:
#144: a value of type "int" cannot be used to initialize an entity of type
"char *"

For the cast, this error can be suppressed with the use of the
--loose_implicit_cast switch.

145 <entity> may not be initialized

146 too many initializer values

147 declaration is incompatible with <entity>

This incorrect C code:
typedef enum { e } E;
typedef enum { f } F;
E g(void);
F g(void);

is a discretionary error in all modes, and can be downgraded from an Error to a
Warning with --diag_warning 147, or suppressed completely with
--diag_suppress 147.

148 <entity> has already been initialized

149 a global-scope declaration may not have this storage class

150 a type name may not be redeclared as a parameter

151 a typedef name may not be redeclared as a parameter

152 conversion of nonzero integer to pointer

153 expression must have class type

154 expression must have struct or union type

155 old-fashioned assignment operator

156 old-fashioned initializer

157 expression must be an integral constant expression

158 expression must be an lvalue or a function designator

159 declaration is incompatible with previous <entity>

160 external name conflicts with external name of <entity>

161 unrecognized #pragma

163 could not open temporary file <entity>

164 name of directory for temporary files is too long (<entity>)

165 too few arguments in function call
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-12
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
Function prototype is defined with a number of parameters that does not match
the number of parameters passed in the function call.
For example:
extern void foo(int x);
void bar(void)
{
 foo();
}

166 invalid floating constant

167 argument of type <type> is incompatible with parameter of type <type>

168 a function type is not allowed here

169 expected a declaration

This can occur when attempting to compile some C++ header files with the C
compiler instead of the C++ compiler. The following message is reported:
Error: #169: expected a declaration

170 pointer points outside of underlying object

171 invalid type conversion

172 external/internal linkage conflict with previous declaration

Errors about linkage disagreements where functions are implicitly declared as
extern and then later re-declared as static are suppressed unless compiled with
--strict.
Example:
extern void foo(void);
static void foo(void){}

173 floating-point value does not fit in required integral type

174 expression has no effect

175 subscript out of range

177 <entity> was declared but never referenced

By default, unused declaration warnings are given for:
• local (within a function) declarations of variables, typedefs, and functions
• labels (always within a function)
• top-level static functions and static variables.
The --diag_suppress 177 option suppresses these warnings.

178 "&" applied to an array has no effect

179 right operand of "%" is zero

180 argument is incompatible with formal parameter

181 argument is incompatible with corresponding format string conversion

For example when compiling with --strict, the code:
unsigned long foo = 0x1234;
printf("%08X", foo);

results in the warning:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-13
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
Warning: #181-D: argument is incompatible with corresponding format string
conversion

To avoid the warning, the code could be rewritten as:
unsigned long foo = 0x1234;
printf("%0lX", foo);

or perhaps:
unsigned int foo = 0x1234;
printf("%0X", foo);

%0X can be used for char, short or int. Use lX for a long integer, even though both
ints and longs are 32-bits wide on an ARM.

182 could not open source file <entity> (no directories in search list)

183 type of cast must be integral

184 type of cast must be arithmetic or pointer

185 dynamic initialization in unreachable code

186 pointless comparison of unsigned integer with zero

For example:
unsigned short foo;
if (foo<0) printf("This never happens");

gives a warning that the comparison between an unsigned (for example, char or
int) value and zero always evaluates to false.

187 use of "=" where "==" may have been intended

Example:
int main(void)
{
 int a;
 const int b =1;
 if (a=b)
}

188 enumerated type mixed with another type

189 error while writing <entity> file

190 invalid intermediate language file

191 type qualifier is meaningless on cast type

The C specification states that a cast does not yield an lvalue, so a cast to a
qualified type has the same effect as a cast to the unqualified version of the type.
This warning is just to inform the user that the type qualifier has no effect,
although the code is still legal. The warning is suppressible with --diag_suppress
191.
Example:
"val2 = (const float)val1;" is equivalent to "val2 = (float)val1;"

192 unrecognized character escape sequence

This error is commonly associated with the attempted use of non-ASCII character
sets, such as 16-bit Unicode characters. The compiler supports multibyte
character sets, such as Unicode. Source files are compiled according to the
selected locale of that machine. It is possible to use Escape processing (as
recommended by Kernighan and Ritchie, section A2.5.2) to encode specific
values instead.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-14
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
For example:
char *p = "\x12\x34\x56\x78"; // 12 34 56 78

In character and string escapes, if the character following the \ has no special
meaning, the value of the escape is the character itself, for example, \s is the same
as s and the warning is given.

193 zero used for undefined preprocessing identifier <entity>

194 expected an asm string

195 an asm function must be prototyped

196 an asm function may not have an ellipsis

219 error while deleting file <entity>

220 integral value does not fit in required floating-point type

221 floating-point value does not fit in required floating-point type

222 floating-point operation result is out of range

223 function <entity> declared implicitly

This is a common warning that occurs where there is no prototype for a function.
For example:
void foo(void)
{
 printf("foo");
}

To fix this, add #include <stdio.h> that includes the prototype for printf.
For ANSI C, you can suppress this warning with --diag_suppress 223. This is
useful when compiling old-style C in ANSI C mode.

224 the format string requires additional arguments

225 the format string ends before this argument

226 invalid format string conversion

227 macro recursion

228 trailing comma is nonstandard

229 bit field cannot contain all values of the enumerated type

230 nonstandard type for a bit field

In strict ANSI C, the only types permitted for a bit field are int, signed int, and
unsigned int.
Example:
struct X {
char y:2;
};

231 declaration is not visible outside of function

232 old-fashioned typedef of "void" ignored

233 left operand is not a struct or union containing this field

234 pointer does not point to struct or union containing this field
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-15
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
235 variable <entity> was declared with a never-completed type

236 controlling expression is constant

237 selector expression is constant

238 invalid specifier on a parameter

239 invalid specifier outside a class declaration

240 duplicate specifier in declaration

241 a union is not allowed to have a base class

242 multiple access control specifiers are not allowed

243 class or struct definition is missing

244 qualified name is not a member of class <type> or its base classes

245 a nonstatic member reference must be relative to a specific object

246 a nonstatic data member may not be defined outside its class

247 <entity> has already been defined

A typical example of this is where a variable name has been used more than once.
This can sometimes occur when compiling legacy code that relies on tentative
declarations. Tentative declarations permit a variable to be declared and
initialized as separate statements such as:
int a;
int a = 1;

Tentative declarations are permitted by default for C code, but produce an error
with C++ code.

248 pointer to reference is not allowed

249 reference to reference is not allowed

250 reference to void is not allowed

251 array of reference is not allowed

252 reference <entity> requires an initializer

253 expected a ","

254 type name is not allowed

This occurs when a typedef name is being used directly in an expression:
typedef int footype;
int x = footype; // reports Error: #254: type name is not allowed

To fix this, first create an instance of that type (for example, a variable of the new
type):
typedef int footype;
footype bar = 1;
int x = bar;

255 type definition is not allowed

256 invalid redeclaration of type name <entity>

257 const <entity> requires an initializer
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-16
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
258 "this" may only be used inside a nonstatic member function

259 constant value is not known

260 explicit type is missing ("int" assumed)

261 access control not specified (<entity> by default)

262 not a class or struct name

263 duplicate base class name

264 invalid base class

265 <entity> is inaccessible

For C++ only, the --diag_warning 265 option downgrades access control errors to
warnings.
For example:
class A { void f() {}; }; // private member
A a;
void g() { a.f(); } // erroneous access

results in the message:
Error: #265-D: function "A::f" is inaccessible

266 <entity> is ambiguous

267 old-style parameter list (anachronism)

268 declaration may not appear after executable statement in block

269 conversion to inaccessible base class <type> is not allowed

274 improperly terminated macro invocation

276 name followed by "::" must be a class or namespace name

277 invalid friend declaration

278 a constructor or destructor may not return a value

279 invalid destructor declaration

280 declaration of a member with the same name as its class

281 global-scope qualifier (leading "::") is not allowed

282 the global scope has no <entity>

283 qualified name is not allowed

284 NULL reference is not allowed

285 initialization with "<...>" is not allowed for object of type <type>

286 base class <type> is ambiguous

287 derived class <type> contains more than one instance of class <type>

288 cannot convert pointer to base class <type> to pointer to derived class
<type> -- base class is virtual

289 no instance of constructor <entity> matches the argument list

290 copy constructor for class <type> is ambiguous
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-17
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
291 no default constructor exists for class <type>

292 <entity> is not a nonstatic data member or base class of class <type>

293 indirect nonvirtual base class is not allowed

294 invalid union member -- class <type> has a disallowed member function

296 invalid use of non-lvalue array

297 expected an operator

298 inherited member is not allowed

299 cannot determine which instance of <entity> is intended

300 a pointer to a bound function may only be used to call the function

301 typedef name has already been declared (with same type)

302 <entity> has already been defined

304 no instance of <entity> matches the argument list

305 type definition is not allowed in function return type declaration

306 default argument not at end of parameter list

307 redefinition of default argument

308 more than one instance of <entity> matches the argument list:

309 more than one instance of constructor <entity> matches the argument list:

310 default argument of type <type> is incompatible with parameter of type
<type>

311 cannot overload functions distinguished by return type alone

312 no suitable user-defined conversion from <type> to <type> exists

313 type qualifier is not allowed on this function

314 only nonstatic member functions may be virtual

315 the object has cv-qualifiers that are not compatible with the member
function

316 program too large to compile (too many virtual functions)

317 return type is not identical to nor covariant with return type <type> of
overridden virtual function <entity>

318 override of virtual <entity> is ambiguous

319 pure specifier ("= 0") allowed only on virtual functions

320 badly-formed pure specifier (only "= 0" is allowed)

321 data member initializer is not allowed

322 object of abstract class type <type> is not allowed:

323 function returning abstract class <type> is not allowed:

324 duplicate friend declaration

325 inline specifier allowed on function declarations only
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-18
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
326 "inline" is not allowed

327 invalid storage class for an inline function

328 invalid storage class for a class member

329 local class member <entity> requires a definition

330 <entity> is inaccessible

332 class <type> has no copy constructor to copy a const object

333 defining an implicitly declared member function is not allowed

334 class <type> has no suitable copy constructor

335 linkage specification is not allowed

336 unknown external linkage specification

337 linkage specification is incompatible with previous <entity>

If the linkage for a function is redeclared with an incompatible specification to a
previous declaration this error is produced.
For example:
int foo(void);
int bar(void)
{
 int x;
 x = foo();
 return x;
}
extern "C" int foo(void)
{
 return 0;
}

results in the message:
Error: #337: linkage specification is incompatible with previous "foo"
(declared at line 1)

338 more than one instance of overloaded function <entity> has "C" linkage

339 class <type> has more than one default constructor

340 value copied to temporary, reference to temporary used

341 "operator<entity>" must be a member function

342 operator may not be a static member function

343 no arguments allowed on user-defined conversion

344 too many parameters for this operator function

345 too few parameters for this operator function

346 nonmember operator requires a parameter with class type

347 default argument is not allowed

348 more than one user-defined conversion from <type> to <type> applies:

349 no operator <entity> matches these operands

350 more than one operator <entity> matches these operands:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-19
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
351 first parameter of allocation function must be of type "size_t"

352 allocation function requires "void *" return type

353 deallocation function requires "void" return type

354 first parameter of deallocation function must be of type "void *"

356 type must be an object type

357 base class <type> has already been initialized

358 base class name required -- <type> assumed (anachronism)

359 <entity> has already been initialized

360 name of member or base class is missing

361 assignment to "this" (anachronism)

362 "overload" keyword used (anachronism)

363 invalid anonymous union -- nonpublic member is not allowed

364 invalid anonymous union -- member function is not allowed

365 anonymous union at global or namespace scope must be declared static

366 <entity> provides no initializer for:

367 implicitly generated constructor for class <type> cannot initialize:

368 <entity> defines no constructor to initialize the following:

This indicates that you have a const structure or structure containing a const. It is
issued as a friendly warning to assist with error 369. This can safely be ignored
providing that the const members of structures are appropriately initialized.

369 <entity> has an uninitialized const or reference member

This indicates that you have a instance of a const structure or structure containing
a const that has not been correctly initialized. You must either initialise it
correctly for every instance or provide a constructor to initialise it.

370 <entity> has an uninitialized const field

371 class <type> has no assignment operator to copy a const object

372 class <type> has no suitable assignment operator

373 ambiguous assignment operator for class <type>

375 declaration requires a typedef name

377 "virtual" is not allowed

378 "static" is not allowed

379 cast of bound function to normal function pointer (anachronism)

380 expression must have pointer-to-member type

381 extra ";" ignored

In C, this can be caused by an unexpected semicolon at the end of a declaration
line, for example:
int x;;
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-20
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
This might occur inadvertently when using macros.
Similarly, in C++, this might be caused by constructions like:
class X { ... } ; ;

which probably resulted from some macro usage:
#define M(c) class c { ... } ;
M(X);

The extra semicolon is illegal because empty declarations are illegal.

382 nonstandard member constant declaration (standard form is a static const
integral member)

384 no instance of overloaded <entity> matches the argument list

386 no instance of <entity> matches the required type

387 delete array size expression used (anachronism)

389 a cast to abstract class <type> is not allowed:

390 function "main" may not be called or have its address taken

391 a new-initializer may not be specified for an array

392 member function <entity> may not be redeclared outside its class

393 pointer to incomplete class type is not allowed

394 reference to local variable of enclosing function is not allowed

395 single-argument function used for postfix <entity> (anachronism)

398 cast to array type is nonstandard (treated as cast to <type>)

399 <entity> has an operator new<entity>() but no default operator
delete<entity>()

400 <entity> has a default operator delete<entity>() but no operator
new<entity>()

401 destructor for base class <entity> is not virtual

403 invalid redeclaration of member <entity>

404 function "main" may not be declared inline

405 member function with the same name as its class must be a constructor

406 using nested <entity> (anachronism)

407 a destructor may not have parameters

408 copy constructor for class <type> may not have a parameter of type <type>

409 <entity> returns incomplete type <type>

410 protected <entity> is not accessible through a <type> pointer or object

411 a parameter is not allowed

412 an "asm" declaration is not allowed here

413 no suitable conversion function from <type> to <type> exists

414 delete of pointer to incomplete class
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-21
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
415 no suitable constructor exists to convert from <type> to <type>

416 more than one constructor applies to convert from <type> to <type>:

417 more than one conversion function from <type> to <type> applies:

418 more than one conversion function from <type> to a built-in type applies:

424 a constructor or destructor may not have its address taken

427 qualified name is not allowed in member declaration

428 enumerated type mixed with another type (anachronism)

429 the size of an array in "new" must be non-negative

430 returning reference to local temporary

433 qualifiers dropped in binding reference of type <type> to initializer of
type <type>

434 a reference of type <type> (not const-qualified) cannot be initialized
with a value of type <type>

435 a pointer to function may not be deleted

436 conversion function must be a nonstatic member function

437 template declaration is not allowed here

438 expected a "<"

439 expected a ">"

440 template parameter declaration is missing

441 argument list for <entity> is missing

442 too few arguments for <entity>

443 too many arguments for <entity>

450 the type "long long" is nonstandard

451 omission of <entity> is nonstandard

452 return type may not be specified on a conversion function

456 excessive recursion at instantiation of <entity>

457 <entity> is not a function or static data member

458 argument of type <type> is incompatible with template parameter of type
<type>

459 initialization requiring a temporary or conversion is not allowed

460 declaration of <entity> hides function parameter

461 initial value of reference to non-const must be an lvalue

463 "template" is not allowed

464 <type> is not a class template

467 invalid reference to <entity> (union/nonunion mismatch)

468 a template argument may not reference a local type
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-22
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
469 tag kind of <entity> is incompatible with declaration of <entity>

470 the global scope has no tag named <entity>

471 <entity> has no tag member named <entity>

473 <entity> may be used only in pointer-to-member declaration

476 name followed by "::~" must be a class name or a type name

477 destructor name does not match name of class <type>

478 type used as destructor name does not match type <type>

479 <entity> redeclared "inline" after being called

485 <entity> is not an entity that can be instantiated

486 compiler generated <entity> cannot be explicitly instantiated

487 inline <entity> cannot be explicitly instantiated

490 <entity> cannot be instantiated -- it has been explicitly specialized

494 declaring a void parameter list with a typedef is nonstandard

When the compiler is in ANSI C mode, this error might be produced by a function
declaration f(V) where V is a void type.
In the special syntax f(<void>) that indicates that f is a function taking no
arguments, the keyword <void> is required. The name of a void type cannot be
used instead.

496 template parameter <entity> may not be redeclared in this scope

497 declaration of <entity> hides template parameter

498 template argument list must match the parameter list

501 an operator name must be declared as a function

502 operator name is not allowed

503 <entity> cannot be specialized in the current scope

504 nonstandard form for taking the address of a member function

The C++ standard requires that a pointer to member be named using a qualified
name and a & character such as for &A::f.
The front end previously accepted nonstandard forms like &f, or even simply f, as
a concession to existing practice. This usage now produces a discretionary error.

505 too few template parameters -- does not match previous declaration

506 too many template parameters -- does not match previous declaration

507 function template for operator delete(void *) is not allowed

508 class template and template parameter may not have the same name

511 enumerated type is not allowed

512 type qualifier on a reference type is not allowed

513 a value of type <type> cannot be assigned to an entity of type <type>

514 pointless comparison of unsigned integer with a negative constant
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-23
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
515 cannot convert to incomplete class <type>

516 const object requires an initializer

517 object has an uninitialized const or reference member

518 nonstandard preprocessing directive

519 <entity> may not have a template argument list

520 initialization with "<...>" expected for aggregate object

521 pointer-to-member selection class types are incompatible (<type> and
<type>)

522 pointless friend declaration

524 non-const function called for const object (anachronism)

525 a dependent statement may not be a declaration

526 a parameter may not have void type

For example:
void foo(void a) { }

529 this operator is not allowed in a template argument expression

530 try block requires at least one handler

531 handler requires an exception declaration

532 handler is masked by default handler

533 handler is potentially masked by previous handler for type <type>

534 use of a local type to specify an exception

535 redundant type in exception specification

536 exception specification is incompatible with that of previous <entity>

540 support for exception handling is disabled

541 omission of exception specification is incompatible with previous <entity>

542 could not create instantiation request file <entity>

543 non-arithmetic operation not allowed in nontype template argument

544 use of a local type to declare a nonlocal variable

545 use of a local type to declare a function

546 transfer of control bypasses initialization of:

Example:
int main(void){
 int choice = 1;
 int z =1;
 switch(choice)
 {
 case 1:
 int y = 1;
 z = y + z;
 break;
 case 2:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-24
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
 break;
 }
 return 0;

In the example, y is an initialized variable that is in scope (but unused) in the other
cases.
The C++ Standard says in section 6.7:
"It is possible to transfer into a block, but not in a way that bypasses declarations
with initialization. A program that jumps from a point where a local variable with
automatic storage duration is not in scope to a point where it is in scope is
ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5)."

Note
 The transfer from the condition of a switch statement to a case label is considered

a jump in this respect.

The usual way to fix this is to enclose the case that declares y in braces:
case 1: {
 int y = 1;
 z = y + z;
}
break;

Because y is a POD (Plain Old Data) type, so an alternative is to not use
initialization:
case 1:
 int y;
 y = 1;
 z = y + z;
 break;

548 transfer of control into an exception handler

549 <entity> is used before its value is set

550 <entity> was set but never used

551 <entity> cannot be defined in the current scope

552 exception specification is not allowed

553 external/internal linkage conflict for <entity>

554 <entity> will not be called for implicit or explicit conversions

555 tag kind of <entity> is incompatible with template parameter of type
<type>

556 function template for operator new(size_t) is not allowed

558 pointer to member of type <type> is not allowed

559 ellipsis is not allowed in operator function parameter list

560 <entity> is reserved for future use as a keyword

561 invalid macro definition:

562 invalid macro undefinition:

563 invalid <entity> output file <filename>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-25
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
564 cannot open <entity> output file <filename>: <reason>

570 error in debug option argument

571 invalid option:

574 invalid number:

576 invalid instantiation mode:

578 invalid error limit:

585 virtual function tables can only be suppressed when compiling C++

586 anachronism option can be used only when compiling C++

587 instantiation mode option can be used only when compiling C++

588 automatic instantiation mode can be used only when compiling C++

589 implicit template inclusion mode can be used only when compiling C++

590 exception handling option can be used only when compiling C++

593 missing source file name

594 output files may not be specified when compiling several input files

595 too many arguments on command line

596 an output file was specified, but none is needed

598 a template parameter may not have void type

600 strict mode is incompatible with allowing anachronisms

601 a throw expression may not have void type

602 local instantiation mode is incompatible with automatic instantiation

603 parameter of abstract class type <type> is not allowed:

604 array of abstract class <type> is not allowed:

605 floating-point template parameter is nonstandard

606 this pragma must immediately precede a declaration

607 this pragma must immediately precede a statement

608 this pragma must immediately precede a declaration or statement

609 this kind of pragma may not be used here

611 overloaded virtual function <entity> is only partially overridden in
<entity>

612 specific definition of inline template function must precede its first use

613 invalid error tag in diagnostic control option:

614 invalid error number in diagnostic control option:

615 parameter type involves pointer to array of unknown bound

616 parameter type involves reference to array of unknown bound

617 pointer-to-member-function cast to pointer to function
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-26
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
618 struct or union declares no named members

619 nonstandard unnamed field

620 nonstandard unnamed member

624 <entity> is not a type name

625 cannot open precompiled header input file <entity>: <reason>

626 precompiled header file <entity> is either invalid or not generated by
this version of the compiler

627 precompiled header file <entity> was not generated in this directory

628 header files used to generate precompiled header file <entity> have
changed

629 the command line options do not match those used when precompiled header
file <entity> was created

630 the initial sequence of preprocessing directives is not compatible with
those of precompiled header file <entity>

631 unable to obtain mapped memory for <entity>: <reason>

This can occur if you are trying to use a large PreCompiled Header (PCH), and
you have a size limitation on the TMP directory that the ARM Compiler toolchain
uses. A possible workaround is to remove the TMP environment variable. This
forces the tools to create temporary files in the current working directory.
See the following in Introducing the ARM Compiler toolchain:
• TMP and TMPDIR environment variables for temporary file directories on

page 2-27

632 "<entity>": using precompiled header file "<entity>"

633 "<entity>": creating precompiled header file "<entity>"

634 memory usage conflict with precompiled header file <entity>

This can occur if a PCH file cannot be mapped back into the build because the
required parts of the address space of the compiler are not available.
See also error 631.

635 invalid PCH memory size

636 PCH options must appear first in the command line

637 insufficient memory for PCH memory allocation

638 precompiled header files may not be used when compiling several input
files

639 insufficient preallocated memory for generation of precompiled header file
(<entity> bytes required)

640 very large entity in program prevents generation of precompiled header
file

641 <entity> is not a valid directory

642 cannot build temporary file name

643 "restrict" is not allowed
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-27
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
644 a pointer or reference to function type may not be qualified by "restrict"

645 <entity> is an unrecognized __declspec attribute

646 a calling convention modifier may not be specified here

647 conflicting calling convention modifiers

650 calling convention specified here is ignored

651 a calling convention may not be followed by a nested declarator

652 calling convention is ignored for this type

654 declaration modifiers are incompatible with previous declaration

655 the modifier <entity> is not allowed on this declaration

656 transfer of control into a try block

657 inline specification is incompatible with previous <entity>

658 closing brace of template definition not found

659 wchar_t keyword option can be used only when compiling C++

660 invalid packing alignment value

661 expected an integer constant

662 call of pure virtual function

A pure virtual function pvfn is being called, for example:
struct T { T(); virtual void pvfn() = 0; };
 // a pure virtual function
T::T() { pvfn(); } // warning given here

By default, calling a pure virtual function results in:
1. a call to the library function __cxa_pure_virtual()
2. the __cxa_pure_virtual() function raising the signal SIGPVFN
3. the signal being trapped by the default_signal_handler
4. the handler displaying Pure virtual fn called on the console using

semihosting.
See the following in the Compiler Reference:
• Calling a pure virtual function on page E-3.

663 invalid source file identifier string

664 a class template cannot be defined in a friend declaration

665 "asm" is not allowed

666 "asm" must be used with a function definition

667 "asm" function is nonstandard

668 ellipsis with no explicit parameters is nonstandard

669 "&..." is nonstandard

670 invalid use of "&..."

672 temporary used for initial value of reference to const volatile
(anachronism)
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-28
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
673 a reference of type <type> cannot be initialized with a value of type
<type>

674 initial value of reference to const volatile must be an lvalue

676 using out-of-scope declaration of <entity>

678 call of <entity> cannot be inlined

679 <entity> cannot be inlined

680 invalid PCH directory:

688 <entity> not found on pack alignment stack

689 empty pack alignment stack

690 RTTI option can be used only when compiling C++

691 <entity>, required for copy that was eliminated, is inaccessible

692 <entity>, required for copy that was eliminated, is not callable because
reference parameter cannot be bound to rvalue

693 <typeinfo> must be included before typeid is used

694 <entity> cannot cast away const or other type qualifiers

695 the type in a dynamic_cast must be a pointer or reference to a complete
class type, or void *

696 the operand of a pointer dynamic_cast must be a pointer to a complete
class type

697 the operand of a reference dynamic_cast must be an lvalue of a complete
class type

698 the operand of a runtime dynamic_cast must have a polymorphic class type

699 bool option can be used only when compiling C++

702 expected an "="

703 expected a declarator in condition declaration

704 <entity>, declared in condition, may not be redeclared in this scope

705 default template arguments are not allowed for function templates

706 expected a "," or ">"

707 expected a template parameter list

708 incrementing a bool value is deprecated

709 bool type is not allowed

710 offset of base class <entity> within class <entity> is too large

711 expression must have bool type (or be convertible to bool)

712 array new and delete option can be used only when compiling C++

713 <entity> is not a variable name

717 the type in a const_cast must be a pointer, reference, or pointer to
member to an object type
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-29
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
718 a const_cast can only adjust type qualifiers; it cannot change the
underlying type

719 mutable is not allowed

720 redeclaration of <entity> is not allowed to alter its access

722 use of alternative token "<:" appears to be unintended

723 use of alternative token "%:" appears to be unintended

724 namespace definition is not allowed

725 name must be a namespace name

726 namespace alias definition is not allowed

727 namespace-qualified name is required

728 a namespace name is not allowed

730 <entity> is not a class template

731 array with incomplete element type is nonstandard

732 allocation operator may not be declared in a namespace

733 deallocation operator may not be declared in a namespace

734 <entity> conflicts with using-declaration of <entity>

735 using-declaration of <entity> conflicts with <entity>

736 namespaces option can be used only when compiling C++

737 using-declaration ignored -- it refers to the current namespace

738 a class-qualified name is required

744 incompatible memory attributes specified

745 memory attribute ignored

746 memory attribute may not be followed by a nested declarator

747 memory attribute specified more than once

748 calling convention specified more than once

749 a type qualifier is not allowed

750 <entity> was used before its template was declared

751 static and nonstatic member functions with same parameter types cannot be
overloaded

752 no prior declaration of <entity>

753 a template-id is not allowed

754 a class-qualified name is not allowed

755 <entity> may not be redeclared in the current scope

756 qualified name is not allowed in namespace member declaration

757 <entity> is not a type name
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-30
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
758 explicit instantiation is not allowed in the current scope

759 <entity> cannot be explicitly instantiated in the current scope

760 <entity> explicitly instantiated more than once

761 typename may only be used within a template

763 typename option can be used only when compiling C++

764 implicit typename option can be used only when compiling C++

765 nonstandard character at start of object-like macro definition

766 exception specification for virtual <entity> is incompatible with that of
overridden <entity>

767 conversion from pointer to smaller integer

768 exception specification for implicitly declared virtual <entity> is
incompatible with that of overridden <entity>

769 <entity>, implicitly called from <entity>, is ambiguous

770 option "explicit" can be used only when compiling C++

771 "explicit" is not allowed

772 declaration conflicts with <entity> (reserved class name)

773 only "()" is allowed as initializer for array <entity>

774 "virtual" is not allowed in a function template declaration

775 invalid anonymous union -- class member template is not allowed

776 template nesting depth does not match the previous declaration of <entity>

777 this declaration cannot have multiple "template <...>" clauses

778 option to control the for-init scope can be used only when compiling C++

779 <entity>, declared in for-loop initialization, may not be redeclared in
this scope

780 reference is to <entity> -- under old for-init scoping rules it would have
been <entity>

781 option to control warnings on for-init differences can be used only when
compiling C++

782 definition of virtual <entity> is required here

783 empty comment interpreted as token-pasting operator "##"

784 a storage class is not allowed in a friend declaration

785 template parameter list for <entity> is not allowed in this declaration

786 <entity> is not a valid member class or function template

787 not a valid member class or function template declaration

788 a template declaration containing a template parameter list may not be
followed by an explicit specialization declaration

789 explicit specialization of <entity> must precede the first use of <entity>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-31
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
790 explicit specialization is not allowed in the current scope

791 partial specialization of <entity> is not allowed

792 <entity> is not an entity that can be explicitly specialized

793 explicit specialization of <entity> must precede its first use

794 template parameter <entity> may not be used in an elaborated type
specifier

795 specializing <entity> requires "template<>" syntax

798 option old_specializations can be used only when compiling C++

799 specializing <entity> without "template<>" syntax is nonstandard

800 this declaration may not have extern "C" linkage

801 <entity> is not a class or function template name in the current scope

802 specifying a default argument when redeclaring an unreferenced function
template is nonstandard

803 specifying a default argument when redeclaring an already referenced
function template is not allowed

804 cannot convert pointer to member of base class <type> to pointer to member
of derived class <type> -- base class is virtual

805 exception specification is incompatible with that of <entity><entity>

806 omission of exception specification is incompatible with <entity>

807 unexpected end of default argument expression

808 default-initialization of reference is not allowed

809 uninitialized <entity> has a const member

810 uninitialized base class <type> has a const member

811 const <entity> requires an initializer -- class <type> has no explicitly
declared default constructor

812 const object requires an initializer -- class <type> has no explicitly
declared default constructor

814 strict mode is incompatible with long preserving rules

815 type qualifier on return type is meaningless

For example:
__packed void foo(void) { }

The __packed qualifier is ignored because the return type cannot be __packed.

816 in a function definition a type qualifier on a "void" return type is not
allowed

817 static data member declaration is not allowed in this class

818 template instantiation resulted in an invalid function declaration

819 "..." is not allowed

821 extern inline <entity> was referenced but not defined
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-32
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
822 invalid destructor name for type <type>

824 destructor reference is ambiguous -- both <entity> and <entity> could be
used

825 <entity> could be used

826 <entity> was never referenced

827 only one member of a union may be specified in a constructor initializer
list

828 support for "new[]" and "delete[]" is disabled

829 "double" used for "long double" in generated C code

830 <entity> has no corresponding operator delete<entity> (to be called if an
exception is thrown during initialization of an allocated object)

831 support for placement delete is disabled

832 no appropriate operator delete is visible

833 pointer or reference to incomplete type is not allowed

834 invalid partial specialization -- <entity> is already fully specialized

835 incompatible exception specifications

836 returning reference to local variable

837 omission of explicit type is nonstandard ("int" assumed)

A function has been declared or defined with no return type.
Example, with the code:
foo(void){
 int a;
}

an int result is assumed.
If you want it to return no result, use void as the return type. This is widespread
in old-style C.
The --diag_suppress 837 option suppresses this warning.
See also message number 938, that is a special case of this message for main().

838 more than one partial specialization matches the template argument list of
<entity>

840 a template argument list is not allowed in a declaration of a primary
template

841 partial specializations may not have default template arguments

842 <entity> is not used in template argument list of <entity>

844 the template argument list of the partial specialization includes a
nontype argument whose type depends on a template parameter

845 this partial specialization would have been used to instantiate <entity>

846 this partial specialization would have been made the instantiation of
<entity> ambiguous

847 expression must have integral or enum type
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-33
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
848 expression must have arithmetic or enum type

849 expression must have arithmetic, enum, or pointer type

850 type of cast must be integral or enum

851 type of cast must be arithmetic, enum, or pointer

852 expression must be a pointer to a complete object type

854 a partial specialization nontype argument must be the name of a nontype
parameter or a constant

855 return type is not identical to return type <type> of overridden virtual
function <entity>

856 option "guiding_decls" can be used only when compiling C++

857 a partial specialization of a class template must be declared in the
namespace of which it is a member

858 <entity> is a pure virtual function

859 pure virtual <entity> has no overrider

860 __declspec attributes ignored

861 invalid character in input line

862 function returns incomplete type <type>

863 effect of this "#pragma pack" directive is local to <entity>

864 <entity> is not a template

865 a friend declaration may not declare a partial specialization

866 exception specification ignored

867 declaration of "size_t" does not match the expected type <type>

868 space required between adjacent ">" delimiters of nested template argument
lists (">>" is the right shift operator)

869 could not set locale <entity> to allow processing of multibyte characters

870 invalid multibyte character sequence

871 template instantiation resulted in unexpected function type of <type> (the
meaning of a name may have changed since the template declaration -- the
type of the template is <type>)

872 ambiguous guiding declaration -- more than one function template <entity>
matches type <type>

873 non-integral operation not allowed in nontype template argument

884 pointer-to-member representation <entity> has already been set for
<entity>

885 <type> cannot be used to designate constructor for <type>

886 invalid suffix on integral constant

890 variable length array with unspecified bound is not allowed

891 an explicit template argument list is not allowed on this declaration
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-34
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
892 an entity with linkage cannot have a type involving a variable length
array

893 a variable length array cannot have static storage duration

894 <entity> is not a template

895 variable length array dimension (declared <entity>)

896 expected a template argument

902 type qualifier ignored

912 ambiguous class member reference -- <entity> used in preference to
<entity>

915 a segment name has already been specified

916 cannot convert pointer to member of derived class <type> to pointer to
member of base class <type> -- base class is virtual

917 invalid directory for instantiation files:

921 an instantiation information file name may not be specified when compiling
several input files

923 more than one command line option matches the abbreviation "--<entity>":

925 type qualifiers on function types are ignored

926 cannot open definition list file: <entity>

928 incorrect use of va_start

929 incorrect use of va_arg

930 incorrect use of va_end

931 pending instantiations option can be used only when compiling C++

932 invalid directory for #import files:

934 a member with reference type is not allowed in a union

935 "typedef" may not be specified here

936 redeclaration of <entity> alters its access

937 a class or namespace qualified name is required

938 return type "int" omitted in declaration of function "main"

main() has been declared or defined with no return type.
For example:
main(void){
 int a;
}

is reported as an error by the compiler if compiled with --strict.
If you want it to return no result, use void as the return type. This is widespread
in old-style C.
For ANSI C, the --diag_suppress 938 option suppresses this warning.
For C++, this always results in an error.
See also message number 837 for more general cases.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-35
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
939 pointer-to-member representation <entity> is too restrictive for <entity>

940 missing return statement at end of non-void <entity>

A return type has been defined for a function, but no value is returned.
Example:
int foo(int a)
{
 printf("Hello %d", a);
}

941 duplicate using-declaration of <entity> ignored

942 enum bit-fields are always unsigned, but enum <type> includes negative
enumerator

943 option "class_name_injection" can be used only when compiling C++

944 option "arg_dep_lookup" can be used only when compiling C++

945 option "friend_injection" can be used only when compiling C++

946 name following "template" must be a template

949 specifying a default argument on this declaration is nonstandard

951 return type of function "main" must be "int"

952 a nontype template parameter may not have class type

953 a default template argument cannot be specified on the declaration of a
member of a class template outside of its class

954 a return statement is not allowed in a handler of a function try block of
a constructor

955 ordinary and extended designators cannot be combined in an initializer
designation

956 the second subscript must not be smaller than the first

959 declared size for bit field is larger than the size of the bit field type;
truncated to <entity> bits

960 type used as constructor name does not match type <type>

961 use of a type with no linkage to declare a variable with linkage

962 use of a type with no linkage to declare a function

963 return type may not be specified on a constructor

964 return type may not be specified on a destructor

965 incorrectly formed universal character name

966 universal character name specifies an invalid character

967 a universal character name cannot designate a character in the basic
character set

968 this universal character is not allowed in an identifier

969 the identifier __VA_ARGS__ can only appear in the replacement lists of
variadic macros
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-36
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
970 the qualifier on this friend declaration is ignored

971 array range designators cannot be applied to dynamic initializers

972 property name cannot appear here

975 a variable-length array type is not allowed

976 a compound literal is not allowed in an integral constant expression

977 a compound literal of type <type> is not allowed

978 a template friend declaration cannot be declared in a local class

979 ambiguous "?" operation: second operand of type <type> can be converted to
third operand type <type>, and vice versa

980 call of an object of a class type without appropriate operator() or
conversion functions to pointer-to-function type

982 there is more than one way an object of type <type> can be called for the
argument list:

983 typedef name has already been declared (with similar type)

984 operator new and operator delete cannot be given internal linkage

985 storage class "mutable" is not allowed for anonymous unions

986 invalid precompiled header file

987 abstract class type <type> is not allowed as catch type:

988 a qualified function type cannot be used to declare a nonmember function
or a static member function

989 a qualified function type cannot be used to declare a parameter

990 cannot create a pointer or reference to qualified function type

991 extra braces are nonstandard

992 invalid macro definition:

Incorrect use of -D on the compile line, for example, "-D##"

993 subtraction of pointer types <type> and <type> is nonstandard

994 an empty template parameter list is not allowed in a template template
parameter declaration

995 expected "class"

996 the "class" keyword must be used when declaring a template template
parameter

997 <entity> is hidden by <entity> -- virtual function override intended?

998 a qualified name is not allowed for a friend declaration that is a
function definition

999 <entity> is not compatible with <entity>

1000 a storage class may not be specified here

1001 class member designated by a using-declaration must be visible in a direct
base class
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-37
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1006 a template template parameter cannot have the same name as one of its
template parameters

1007 recursive instantiation of default argument

1009 <entity> is not an entity that can be defined

1010 destructor name must be qualified

1011 friend class name may not be introduced with "typename"

1012 a using-declaration may not name a constructor or destructor

1013 a qualified friend template declaration must refer to a specific
previously declared template

1014 invalid specifier in class template declaration

1015 argument is incompatible with formal parameter

1016 prefix form of ARM function qualifier not permitted in this position

1017 Duplicate ARM function qualifiers not permitted

1018 ARM function qualifiers not permitted on this declaration/definition

ARM function qualifiers include qualifiers such as __svc, __pure and __irq
amongst others.
See the following in the Compiler Reference:
• Keywords and operators on page 5-2.

1019 function qualifier <entity> not permitted on a non-static member function

1020 __irq functions must take no arguments

1021 __irq functions must return no result

1022 cannot have pointer nor reference to <entity> function

1023 __global_reg not allowed on this declaration

1024 invalid global register number; 1 to 8 allowed

An invalid register is being used in __global_reg.
Example:
__global_reg(786) int x;

1025 __svc parameter <entity> is not within permitted range (0 to 0xffffff) for
ARM SVC instruction

SVC numbers are limited to the range 0 to 0xffffff for the ARM compilers, and
0 to 0xFF for the Thumb compilers.
For standard semihosting SVCs, 0x123456 is used for ARM, 0xAB is used for
Thumb.

1026 taking the address of a global register variable is not allowed

1027 __svc_indirect function must have arguments

1028 conflicting global register declaration with <entity>

1029 __packed ignored for non-pointer parameter

1030 <entity> <type> previously declared without __packed
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-38
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1031 Definition of <type> in packed <type> must be __packed

The Compiler Reference states:
"All substructures of a packed structure must be declared using __packed."
The compiler faults a non-packed child structure contained in a packed parent
structure. This includes the case where the substructure is an array.
For example:
typedef struct ChildStruct {
 int a;
 } ChildStruct;
typedef __packed struct ParentStruct {
 ChildStruct child[1];
 } ParentStruct;

correctly results in the message:
Error: #1031: Definition of "ChildStruct" in packed "ParentStruct" must be
__packed

See the following in the Compiler Reference:
• __packed on page 5-14.

1032 Definition of nested anonymous <entity> in packed <type> must be __packed

1033 <entity> incompatible with function definition

1034 __irq functions must not be the target of a function call

1038 invalid alignment specified; only integer powers of 2 allowed

1039 conflicting alignment declaration with <entity>

1040 under-alignment not allowed

1041 alignment for an auto object may not be larger than 8

For example:
int main(void){
 __align(16) int foo = 10;
}

__align is not permitted for a local variable foo, so the error is given.
See the following in the Compiler Reference:
• __align on page 5-3.

1042 <entity> cannot be dynamically initialized when compiled position
independent

1043 <entity> cannot be const because it contains a mutable member

1044 option "dep_name" can be used only when compiling C++

1045 loop in sequence of "operator->" functions starting at class <type>

1046 <entity> has no member class <entity>

1047 the global scope has no class named <entity>

1048 recursive instantiation of template default argument

1049 access declarations and using-declarations cannot appear in unions

1050 <entity> is not a class member
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-39
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1051 nonstandard member constant declaration is not allowed

1053 option "parse_templates" can be used only when compiling C++

1054 option "dep_name" cannot be used with "no_parse_templates"

1055 language modes specified are incompatible

1056 invalid redeclaration of nested class

1057 type containing an unknown-size array is not allowed

1058 a variable with static storage duration cannot be defined within an inline
function

1059 an entity with internal linkage cannot be referenced within an inline
function with external linkage

1060 argument type <type> does not match this type-generic function macro

1062 friend declaration cannot add default arguments to previous declaration

1063 <entity> cannot be declared in this scope

1064 the reserved identifier <entity> may only be used inside a function

1065 this universal character cannot begin an identifier

1066 expected a string literal

1070 incorrect use of va_copy

1071 <entity> can only be used with floating-point types

1072 complex type is not allowed

1073 invalid designator kind

1074 floating-point value cannot be represented exactly

1075 complex floating-point operation result is out of range

1077 an initializer cannot be specified for a flexible array member

1079 standard requires that <entity> be given a type by a subsequent
declaration ("int" assumed)

1080 a definition is required for inline <entity>

1081 conversion from integer to smaller pointer

1082 a floating-point type must be included in the type specifier for a
_Complex or _Imaginary type

1083 Inline assembler syntax error

1084 This instruction not permitted in inline assembler

1085 Missing operand

1086 Operand is wrong type

1087 Operand should be constant

1088 Wrong number of operands

1089 Invalid PSR operand
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-40
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1090 Expected PSR operand

1091 Invalid shift specified

1092 Should be acc0

1093 Must be a modifiable lvalue

1094 Expected a register expression

1095 Expected a label or function name

1096 Instruction cannot be conditional

1097 Expected a [or]

1098 Expected a shift operation

1099 Unexpected]

1100 Register specified shift not allowed

1101 Pre-Indexed addressing not allowed

1102 Post-Indexed addressing not allowed

1103 Writeback not allowed in the addressing mode

1104 Expected {

1105 Expected }

1106 Too many registers in register list

1107 Only ^ valid here

1108 Cannot mix virtual register and C/C++ expressions in register list

1109 Only virtual registers can be specified in a register range

1110 User mode register selection/CPSR update not supported in inline
assembler. Use embedded assembler or out-of-line assembler

1111 Expected a coprocessor name

1112 Expected a coprocessor register name

These errors are given by the inline assembler if either:
• the coprocessor number is accidentally omitted from an MCR or MRC

instruction
• an invalid coprocessor number/coprocessor register number has been

given.
An example of correct use is shown below:
void foo()
{
 int reg0;
 __asm
 {
 MRC p15, 0, reg0, c1, c0, 0
 }
}

1113 Inline assembler not permitted when generating Thumb code
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-41
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
The Thumb inline assembler is deprecated when compiling for ARM architecture
v7 (ARMv7) or later, that is, most processors in the Cortex™ series.
The inline assembler does not support Thumb(-1) or Thumb-2, or all the ARMv6
instructions. However, the inline assembler does still support the (ARM-only)
ARMv4T, ARMv5TE, and a subset of the new ARMv6 instructions (only the
ARMv6 media instructions), so legacy inline assembly code continues to build
correctly.
This warning is intended as a reminder to consider using the embedded assembler
or built-in intrinsics instead of inline assembler. If you cannot change your code
but require elimination of the warning, suppress the warning or compile the
module for an earlier cpu such as ARMv6.

1114 this feature not supported on target architecture/processor

Example when compiled with armcc --cpu 4T:
int main(void) {
 int a,b,c;
 __asm {
 QADD a,b,c
 }
 return(a);
}

results in an error message because the saturated add instruction is only supported
in ARMv5TE and later.

1115 Cannot assign to const operand

1116 Register list cannot be empty

1117 Unqualified virtual function not allowed

1118 Expected a newline

1119 Reference to static variable not allowed in __asm function

1120 Reference to static function not allowed in __asm function

1121 Pointer to data member not allowed in __asm function

1122 __asm function cannot have static qualifier

1123 base class <type> is a virtual base class of <type>

1124 base class <type> is not virtual base class of <type>

1125 <entity> has no member function <entity>

1126 "__asm" is not allowed in this declaration

1127 Member initializer list not permitted for __asm constructors

1128 try block not permitted for __asm constructors

1129 Order of operands not compatible with previous compiler versions

1130 __align not permitted in typedef

1131 Non portable instruction (LDM with writeback and base in reg. list, final
value of base unpredictable)

1132 Non portable instruction (STM with writeback and base not first in reg.
list, stored value of base unpredictable)
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-42
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1133 Expression operands not permitted with virtual base register

1134 literal treated as "long long"

The constant is too large to be represented in a signed long, and therefore has been
treated as a (signed) long long.
For example:
int foo(unsigned int bar)
{ return (bar == 2147483648);
}

gives a warning because 2147483648 is one greater than the maximum value
permitted for a signed long. The ll suffix means that the constant is treated as a
(64-bit) long long type rather than a signed long.
To eliminate the warning, explicitly add the ll or LL suffix to your constants. For
example:
int foo(unsigned int bar)
{
 return (bar == 2147483648LL);
}

See the following in the Compiler Reference:
• long long on page 4-13.

1135 literal treated as "unsigned long long"

The constant is too large to be represented in a signed long long, and therefore
has been given type unsigned long long. See error number 1134.

1137 Expected a comma

1138 Unexpected comma after this expression

1139 MRRC operation opcode must lie in range 0-15

1140 MCRR operation opcode must lie in range 0-15

1141 CDP operation opcode must lie in range 0-15

1142 MRC operation opcode must lie in range 0-7

1143 MCR operation opcode must lie in range 0-7

1144 opcode_2 must lie in range 0-7

1145 LDC/STC extra opcode must lie in range 0-255

1146 LDC/STC offset must lie in range -1020 to 1020 and be word aligned

1147 Constant operand out of range

1148 floating-point operator is not permitted with --fpu=none

1149 floating-point return type in function definition is not permitted with
-fpu=none

1150 floating-point parameter type in function definition is not permitted with
-fpu=none

1151 floating-point variable definition with initialiser is not permitted with
-fpu=none

1152 polymorphic base classes need to be exported as well

1153 Cannot assign physical registers in this register list
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-43
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1154 Can only specify an even-numbered physical register here

1155 Can only specify an assignment to a physical register here

1156 Can only specify an assignment from a physical register here

1157 Can only specify physical registers in a corrupted register list

1158 PSR operand not valid here

1159 Expected an unambiguous label or function name

1160 Calls to destructors for temporaries will overwrite the condition flags
updated by this instruction

1161 Cannot directly modify the stack pointer SP (r13)

1162 Cannot directly modify the link register LR (r14)

1163 Cannot directly modify the program counter PC (r15)

1164 Offset must be word-aligned

1165 types cannot be declared in anonymous unions

1166 returning pointer to local variable

1167 returning pointer to local temporary

1168 option "export" can be used only when compiling C++

1169 option "export" cannot be used with "no_dep_name"

1170 option "export" cannot be used with "implicit_include"

1171 declaration of <entity> is incompatible with a declaration in another
translation unit

1172 the other declaration is <entity>

1175 a field declaration cannot have a type involving a variable length array

1176 declaration of <entity> had a different meaning during compilation of
<entity>

1177 expected "template"

1178 "export" cannot be used on an explicit instantiation

1179 "export" cannot be used on this declaration

1180 a member of an unnamed namespace cannot be declared "export"

1181 a template cannot be declared "export" after it has been defined

1182 a declaration cannot have a label

1183 support for exported templates is disabled

1184 cannot open exported template file: <entity>

1185 <entity> already defined during compilation of <entity>

1186 <entity> already defined in another translation unit

1188 the option to list makefile dependencies may not be specified when
compiling more than one translation unit
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-44
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1190 the option to generate preprocessed output may not be specified when
compiling more than one translation unit

1191 a field with the same name as its class cannot be declared in a class with
a user-declared constructor

1192 "implicit_include" cannot be used when compiling more than one translation
unit

1193 exported template file <entity> is corrupted

1194 <entity> cannot be instantiated -- it has been explicitly specialized in
the translation unit containing the exported definition

1196 the object has cv-qualifiers that are not compatible with the member
<entity>

1197 no instance of <entity> matches the argument list and object (the object
has cv-qualifiers that prevent a match)

1198 an attribute specifies a mode incompatible with <type>

1199 there is no type with the width specified

1200 invalid alignment value specified by attribute

1201 invalid attribute for <type>

1202 invalid attribute for <entity>

1203 invalid attribute for parameter

1204 attribute <entity> does not take arguments

1207 attribute <entity> ignored

1208 attributes may not appear here

1209 invalid argument to attribute <entity>

1210 the "packed" attribute is ignored in a typedef

1211 in "goto *expr" expr must have type "void *"

1212 "goto *expr" is nonstandard

1213 taking the address of a label is nonstandard

1214 file name specified more than once:

1215 #warning directive: <entity>

1216 attribute <entity> is only allowed in a function definition

1217 the "transparent_union" attribute only applies to unions, and <type> is
not a union

1218 the "transparent_union" attribute is ignored on incomplete types

1219 <type> cannot be transparent because <entity> does not have the same size
as the union

1220 <type> cannot be transparent because it has a field of type <type> which
is not the same size as the union

1221 only parameters can be transparent
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-45
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1222 the <entity> attribute does not apply to local variables

1224 attributes are not permitted in a function definition

1225 declarations of local labels should only appear at the start of statement
expressions

1226 the second constant in a case range must be larger than the first

1227 an asm name is not permitted in a function definition

1228 an asm name is ignored in a typedef

1229 unknown register name "<entity>"

1230 modifier letter '<entity>' ignored in asm operand

1231 unknown asm constraint modifier '<entity>'

1232 unknown asm constraint letter '<entity>'

1233 asm operand has no constraint letter

1234 an asm output operand must have one of the '=' or '+' modifiers

1235 an asm input operand may not have the '=' or '+' modifiers

1236 too many operands to asm statement (maximum is 30; '+' modifier adds an
implicit operand)

1237 too many colons in asm statement

1238 register "<entity>" used more than once

1239 register "<entity>" is both used and clobbered

1240 register "<entity>" clobbered more than once

1241 register "<entity>" has a fixed purpose and may not be used in an asm
statement

1242 register "<entity>" has a fixed purpose and may not be clobbered in an asm
statement

1243 an empty clobbers list must be omitted entirely

1244 expected an asm operand

1245 expected a register to clobber

1246 "format" attribute applied to <entity> which does not have variable
arguments

1247 first substitution argument is not the first variable argument

1248 format argument index is greater than number of parameters

1249 format argument does not have string type

1250 the "template" keyword used for syntactic disambiguation may only be used
within a template

1253 attribute does not apply to non-function type <type>

1254 arithmetic on pointer to void or function type

1255 storage class must be auto or register
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-46
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1256 <type> would have been promoted to <type> when passed through the ellipsis
parameter; use the latter type instead

1257 <entity> is not a base class member

1262 mangled name is too long

1263 Offset must be half-word aligned

1264 Offset must be double-word aligned

1265 converting to and from floating-point type is not permitted with
--fpu=none

1266 Operand should be a constant expression

1267 Implicit physical register <entity> should be defined as a variable

1268 declaration aliased to unknown entity <entity>

1269 declaration does not match its alias <entity>

1270 entity declared as alias cannot have definition

1271 variable-length array field type will be treated as zero-length array
field type

1272 nonstandard cast on lvalue not supported

1273 unrecognized flag name

1274 void return type cannot be qualified

1275 the auto specifier is ignored here (invalid in standard C/C++)

1276 a reduction in alignment without the "packed" attribute is ignored

1277 a member template corresponding to <entity> is declared as a template of a
different kind in another translation unit

1278 excess initializers are ignored

1279 va_start should only appear in a function with an ellipsis parameter

1282 variable <entity> cannot be used in a register range

1283 A physical register name is required here

1284 A register range cannot be specified here

1285 Implicit physical register <entity> has not been defined

1286 LDRD/STRD instruction will be expanded

When LDRD and STRD instructions are used in inline assembler the compiler
expands these into two LDR or STR instructions before being passed through the
compiler optimization stage.
The optimization stage normally combines the two LDR or STR instruction back
into a single LDRD or STRD instruction, however it is possible in some cases that a
LDRD or STRD is not used.

1287 LDM/STM instruction may be expanded

When LDM and STM instructions are used in inline assembler the compiler expands
these into a number of LDR or STR instructions before being passed through the
compiler optimization stage.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-47
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
The optimization stage normally combines the two LDR or STR instruction back
into LDM or STM instructions, however it is possible that in some cases that a single
LDM or STM instruction is not used.

1288 Implicit ARM register <entity> was not defined due to name clash

1289 statement expressions are only allowed in block scope

1291 an asm name is ignored on a non-register automatic variable

1292 inline function also declared as an alias; definition ignored

1293 assignment in condition

In a context where a boolean value is required (the controlling expression for if,
while, for or the first operand of a conditional expression, an expression contains
one of:
• A bitwise not operator (~). It is likely that a logical not operator (!) was

intended.
• An assignment operator (=). This could be a mis-typed equality operator

(==).
In either case if the operator is intended adding an explicit comparison against 0
might suppress the warning.
This warning can be suppressed with the --diag_suppress 1293 option.
Example:
int main(void)
{
 int a,b;
 if (a=b)
}

1294 Old-style function <entity>

The compilers accept both old-style and new-style function declarations.
The difference between an old-style and a new-style function declaration is as
follows.
// new style
int add2(int a, int b)
{
 return a+b;
}
// old style
int oldadd2(a,b)
int a;
int b;
{
 return a+b;
}

When compiling old style functions in C mode the compiler reports:
Warning: #1294-D: Old-style function oldadd2

1295 Deprecated declaration <entity> - give arg types

This warning is normally given when a declaration without argument types is
encountered in ANSI C mode. In ANSI C, declarations like this are deprecated.
However, it is sometimes useful to suppress this warning with the
--diag_suppress 1295 option when porting old code.
In C++:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-48
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
void foo();

means:
void foo(void);

and no warning is generated.

1296 extended constant initialiser used

The expression used as a constant initialiser might not be portable.
This warns that there is a constant that does not follow the strict rules of ANSI C
even though there is a clause to permit it in the ANSI C specification.
Example compiled with --c90 switch:
const int foo_table[] = { (int)"foo", 0, 1, 2};

This is not ANSI C standard compliant. Compiling with --diag_suppress 1296
suppresses the warning.

1297 Header file not guarded against multiple inclusion

This warning is given when an unguarded header file is #included.
An unguarded header file is a header file not wrapped in a declaration such as:
#ifdef foo_h
#define foo_h
/* body of include file */
#endif

This warning is off by default. It can be enabled with:
--diag_warning 1297

1298 Header file is guarded by '<entity>', but does not #define it

Example:
#ifndef MYHEADER_H
//#define MYHEADER_H
#endif

To correct the code, remove the comment slashes (//). This warning is off by
default. It can be enabled with:
--diag_warning 1298

1299 members and base-classes will be initialized in declaration order, not in
member initialisation list order

1300 <entity> inherits implicit virtual

This warning is issued when a non-virtual member function of a derived class
hides a virtual member of a parent class. For example:
struct Base { virtual void f(); };
struct Derived : Base { void f(); };

results in the message:
Warning: #1300-D: f inherits implicit virtual
struct Derived : Base { void f(); };
 ^

Adding the virtual keyword in the derived class prevents the warning. For C++,
the --diag_suppress 1300 option suppresses the implicit virtual warning.

1301 padding inserted in struct <entity>

For the members of the structure to be correctly aligned, some padding has been
inserted between members. This warning is off by default and can be enabled with
--diag_warning 1301 or --remarks.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-49
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
For example:
struct X {
 char x;
 int y;
}

results in the message:
Warning: #1301-D: padding inserted in struct X

The compiler can also warn of padding added at the end of a struct or between
structs, see 2530.

1302 type too large to be returned in registers - __value_in_regs ignored

1303 using --force_new_nothrow: added "throw()"

1304 operator new missing exception specification

1305 using --force_new_nothrow: added "(::std::nothrow)"

1307 floating point argument not permitted with -fpu=none

1308 Base class <type> of __packed class <type> must be __packed

1310 shared block size does not match one previously specified

1311 bracketed expression is assumed to be a block size specification rather
than an array dimension

1312 the block size of a shared array must be greater than zero

1313 multiple block sizes not allowed

1314 strict or relaxed requires shared

1316 block size specified exceeds the maximum value of <entity>

1317 function returning shared is not allowed

1320 shared type inside a struct or union is not allowed

1321 parameters may not have shared types

1323 shared variables must be static or extern

1327 affinity expression must have a shared type or point to a shared type

1328 affinity has shared type (not pointer to shared)

1329 shared void* types can only be compared for equality

1331 null (zero) character in input line ignored

1332 null (zero) character in string or character constant

1333 null (zero) character in header name

1334 declaration in for-initializer hides a declaration in the surrounding
scope

1335 the hidden declaration is <entity>

1336 the prototype declaration of <entity> is ignored after this unprototyped
redeclaration

1338 <entity> must have external C linkage
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-50
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1339 variable declaration hides declaration in for-initializer

1340 typedef <entity> may not be used in an elaborated type specifier

1341 call of zero constant ignored

1342 parameter <entity> may not be redeclared in a catch clause of function try
block

1343 the initial explicit specialization of <entity> must be declared in the
namespace containing the template

1345 "template" must be followed by an identifier

1347 layout qualifier cannot qualify pointer to shared

1348 layout qualifier cannot qualify an incomplete array

1349 declaration of <entity> hides handler parameter

1350 nonstandard cast to array type ignored

1351 this pragma cannot be used in a _Pragma operator (a #pragma directive must
be used)

1352 field uses tail padding of a base class

1353 GNU C++ compilers may use bit field padding

1354 memory mapping conflict with precompiled header file <entity>

1355 abstract class <type> has a non-virtual destructor, calling delete on a
pointer to this class is undefined behaviour

1356 an asm name is not allowed on a nonstatic member declaration

1357 static initialisation of <entity> using address of <entity> may cause link
failure <option>

See error number 1359.

1358 static initialisation of extern const <entity> using address of <entity>
cannot be lowered for ROPI

1359 static initialisation of <entity> using address of <entity> may cause link
failure <option>

Warnings 1357 and 1359 warn against the use of non-PI code constructs and that
a subsequent link step might fail.
For example, when compiled with --apcs /ropi:
char *str = "test"; /* global pointer */

results in the message:
Warning: #1357-D: static initialisation of variable "str" using address of
string literal may cause link failure --ropi

because the global pointer str must be initialized to the address of the char string
test in the .constdata section, but absolute addresses cannot be used in a PI
system.
For example, when compiled with --apcs /rwpi:
int bar;
int *foo = &bar; /* global pointer */

results in the message:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-51
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
Warning: #1359-D: static initialisation of variable "foo" using address of
bar may cause link failure --rwpi

because the global pointer foo must be initialized to the address of bar in the .data
section, but absolute addresses cannot be used in a PI system.
The following workarounds are possible:
• Change your code to avoid use of a global pointer. You can, for example,

use a global array or local pointer instead.
• Do the initialization at run-time, for example:

int bar;
int *foo;

Then write code inside a function that sets foo = &bar;. This is because
when generating code as opposed to statically initializing data, the compiler
has scope to work around the ROPI/RWPI constraints.

See also the FAQ What does Error: L6248E: cannot have address type relocation
mean?, http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3554.html.

1360 static initialisation of extern const <entity> using address of <entity>
cannot be lowered for RWPI

For example, when compiled with --apcs /rwpi:
extern int y;
int* const x = &y;
int* foo()
{
 return(x);
}

produces a warning because prefixing y by extern prevents the compiler defining
a direct address offset between the variables x and y.

1361 <entity> was declared "deprecated"

1362 unrecognized format function type <entity> ignored

1363 base class <entity> uses tail padding of base class <entity>

1366 this anonymous union/struct field is hidden by <entity>

1367 invalid error number

1368 invalid error tag

1369 expected an error number or error tag

1370 size of class is affected by tail padding

1371 labels can be referenced only in function definitions

1372 transfer of control into a statement expression is not allowed

1374 transfer of control out of a statement expression is not allowed

1375 a non-POD class definition is not allowed inside of a statement expression

1376 destructible entities are not allowed inside of a statement expression

1377 a dynamically-initialized local static variable is not allowed inside of a
statement expression

1378 a variable-length array is not allowed inside of a statement expression

1379 a statement expression is not allowed inside of a default argument
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-52
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1382 nonstandard conversion between pointer to function and pointer to data

1383 interface types cannot have virtual base classes

1384 interface types cannot specify "private" or "protected"

1385 interface types can only derive from other interface types

1386 <type> is an interface type

1387 interface types cannot have typedef members

1388 interface types cannot have user-declared constructors or destructors

1389 interface types cannot have user-declared member operators

1390 interface types cannot be declared in functions

1391 cannot declare interface templates

1392 interface types cannot have data members

1393 interface types cannot contain friend declarations

1394 interface types cannot have nested classes

1395 interface types cannot be nested class types

1396 interface types cannot have member templates

1397 interface types cannot have static member functions

1398 this pragma cannot be used in a __pragma operator (a #pragma directive
must be used)

1399 qualifier must be base class of <type>

1400 declaration must correspond to a pure virtual member function in the
indicated base class

1401 integer overflow in internal computation due to size or complexity of
<type>

1402 integer overflow in internal computation

1404 potentially narrowing conversion when compiled in an environment where
int, long, or pointer types are 64 bits wide

1405 current value of pragma pack is <entity>

1406 arguments for pragma pack(show) are ignored

1407 invalid alignment specifier value

1408 expected an integer literal

1409 earlier __declspec(align(...)) ignored

1410 expected an argument value for the <entity> attribute parameter

1411 invalid argument value for the <entity> attribute parameter

1412 expected a boolean value for the <entity> attribute parameter

1413 a positional argument cannot follow a named argument in an attribute

1414 attribute <filename> has no parameter named <filename>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-53
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1415 expected an argument list for the <entity> attribute

1416 expected a "," or "]"

1417 attribute argument <entity> has already been given a value

1418 a value cannot be assigned to the <entity> attribute

1419 a throw expression may not have pointer-to-incomplete type

1420 alignment-of operator applied to incomplete type

1421 <entity> may only be used as a standalone attribute

1422 <entity> attribute cannot be used here

1423 unrecognized attribute <entity>

1424 attributes are not allowed here

1425 invalid argument value for the <entity> attribute parameter

1426 too many attribute arguments

1427 conversion from inaccessible base class <type> is not allowed

1428 option "export" requires distinct template signatures

1429 string literals with different character kinds cannot be concatenated

1430 GNU layout bug not emulated because it places virtual base <entity>
outside <entity> object boundaries

1431 virtual base <entity> placed outside <entity> object boundaries

1432 nonstandard qualified name in namespace member declaration

1433 reduction in alignment ignored

1434 const qualifier ignored

1436 __breakpoint argument must be an integral compile-time constant

1437 __breakpoint argument must be within 0-65535 when compiling for ARM

1438 __breakpoint argument must be within 0-255 when compiling for Thumb

1439 BKPT instruction is not supported on target architecture/processor

1440 oversize bitfield layout will change -- consider preceeding with
"<entity>:0;"

1441 nonstandard cast on lvalue

The C specification states "An assignment operator shall have a modifiable lvalue
as its left operand" and "a cast does not yield an lvalue".

1442 polymorphic base classes need to be exported if they are to be used for
exported derivation

1443 polymorphic base classes inherited via virtual derivation need to be
exported

1444 polymorphic base classes inherited via virtual derivation need all virtual
functions to be exported

1446 non-POD class type passed through ellipsis
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-54
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1447 a non-POD class type cannot be fetched by va_arg

The C++ ISO Specification defines that the non-required arguments of a variadic
function must be of type POD (plain-old-data), such as an int or a char, but not
structs or classes.
To avoid the error or warning the address of a class or struct could be given
instead.

1448 the 'u' or 'U' suffix must appear before the 'l' or 'L' suffix in a
fixed-point literal

1450 integer operand may cause fixed-point overflow

1451 fixed-point constant is out of range

1452 fixed-point value cannot be represented exactly

1453 constant is too large for long long; given unsigned long long type
(nonstandard)

1454 layout qualifier cannot qualify pointer to shared void

1456 a strong using-directive may only appear in a namespace scope

1457 <entity> declares a non-template function -- add <> to refer to a template
instance

1458 operation may cause fixed-point overflow

1459 expression must have integral, enum, or fixed-point type

1460 expression must have integral or fixed-point type

1461 function declared with "noreturn" does return

1462 asm name ignored because it conflicts with a previous declaration

1463 class member typedef may not be redeclared

1464 taking the address of a temporary

1465 attributes are ignored on a class declaration that is not also a
definition

1466 fixed-point value implicitly converted to floating-point type

1467 fixed-point types have no classification

1468 a template parameter may not have fixed-point type

1469 hexadecimal floating-point constants are not allowed

1471 floating-point value does not fit in required fixed-point type

1472 value cannot be converted to fixed-point value exactly

1473 fixed-point conversion resulted in a change of sign

1474 integer value does not fit in required fixed-point type

1475 fixed-point operation result is out of range

1481 fixed-point value does not fit in required floating-point type

1482 fixed-point value does not fit in required integer type
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-55
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1483 value does not fit in required fixed-point type

1485 a named-register storage class is not allowed here

1486 <entity> redeclared with incompatible named-register storage class

1487 named-register storage class cannot be specified for aliased variable

1488 named-register storage specifier is already in use

1492 invalid predefined macro entry at line <entity>: <reason>

1493 invalid macro mode name <entity>

1494 incompatible redefinition of predefined macro <entity>

1495 redeclaration of <entity> is missing a named-register storage class

1496 named register is too small for the type of the variable

1497 arrays cannot be declared with named-register storage class

1498 const_cast to enum type is nonstandard

1500 __svc parameter <entity> is not within permitted range (0 to 0xff) for
Thumb SVC instruction

1501 too many arguments for __svc or __svc_indirect function

1502 arguments for __svc or __svc_indirect function must have integral type

1503 __svc_indirect function must have arguments

1504 first argument for __svc_indirect function must have integral type

1505 result of __svc or __svc_indirect function must be returned in integer
registers

1506 source file <entity> has bad format

1507 error while writing <entity> file: <reason>

1508 cannot overload functions distinguished by function qualifier alone

1509 function qualifier <entity> not permitted on a virtual member function

1510 function "__attribute__((__<entity>__))" present on overridden virtual
function <entity> must be present on overridding function

1511 function qualifier <entity> is not identical on overridden virtual
function <entity>

1512 function qualifier <entity> present on overridden virtual function
<entity> must be present on overridding function

1514 an empty initializer is invalid for an array with unspecified bound

1515 function returns incomplete class type <type>

1516 <entity> has already been initialized; the out-of-class initializer will
be ignored

1517 declaration hides <entity>

1519 invalid suffix on fixed-point or floating-point constant
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-56
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1522 <entity> has no corresponding member operator delete<entity> (to be called
if an exception is thrown during initialization of an allocated object)

1523 a thread-local variable cannot be declared with "dllimport" or "dllexport"

1525 an initializer cannot be specified for a flexible array member whose
elements have a nontrivial destructor

1526 an initializer cannot be specified for an indirect flexible array member

1528 variable attributes appearing after a parenthesized initializer are
ignored

1529 the result of this cast cannot be used as an lvalue

1530 negation of an unsigned fixed-point value

1531 this operator is not allowed at this point; use parentheses

1532 flexible array member initializer must be constant

1533 register names can only be used for register variables

1534 named-register variables cannot have void type

1535 __declspec modifiers not valid for this declaration

1536 parameters cannot have link scope specifiers

1537 multiple link scope specifiers

1538 link scope specifiers can only appear on functions and variables with
external linkage

1539 a redeclaration cannot weaken a link scope

1540 link scope specifier not allowed on this declaration

1541 nonstandard qualified name in global scope declaration

1542 implicit conversion of a 64-bit integral type to a smaller integral type
(potential portability problem)

1543 explicit conversion of a 64-bit integral type to a smaller integral type
(potential portability problem)

1544 conversion from pointer to same-sized integral type (potential portability
problem)

1547 only static and extern variables can use thread-local storage

1548 multiple thread-local storage specifiers

1549 virtual <entity> was not defined (and cannot be defined elsewhere because
it is a member of an unnamed namespace)

1550 carriage return character in source line outside of comment or
character/string literal

1551 expression must have fixed-point type

1552 invalid use of access specifier is ignored

1553 pointer converted to bool

1554 pointer-to-member converted to bool
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-57
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1555 storage specifier ignored

1556 dllexport and dllimport are ignored on class templates

1557 base class dllexport/dllimport specification differs from that of the
derived class

1558 redeclaration cannot add dllexport/dllimport to <entity>

If this message is suppressed, the behavior is as though the dllexport or
dllimport had been omitted. For example:
void f(void);
__declspec(dllimport) void f(void) { } /* suppress treats as
 void f(void) { } */

1559 dllexport/dllimport conflict with <entity>; dllexport assumed

1560 cannot define dllimport entity

1561 dllexport/dllimport requires external linkage

1562 a member of a class declared with dllexport/dllimport cannot itself be
declared with such a specifier

1563 field of class type without a DLL interface used in a class with a DLL
interface

1564 parenthesized member declaration is nonstandard

1565 white space between backslash and newline in line splice ignored

1566 dllexport/dllimport conflict with <entity>; dllimport/dllexport dropped

1567 invalid member for anonymous member class -- class <type> has a disallowed
member function

1568 nonstandard reinterpret_cast

1569 positional format specifier cannot be zero

1570 a local class cannot reference a variable-length array type from an
enclosing function

1571 member <entity> already has an explicit dllexport/dllimport specifier

1572 a variable-length array is not allowed in a function return type

1573 variable-length array type is not allowed in pointer to member of type
<type>

1574 the result of a statement expression cannot have a type involving a
variable-length array

1575 Load/Store with translation not supported in inline assembler. Use
embedded assembler or out-of-line assembler

1576 Flag-setting multiply instructions not supported in inline assembler. Use
embedded assembler or out-of-line assembler

1577 Flag-setting MOV/MVN instructions with constant operand not supported in
inline assembler. Use embedded assembler or out-of-line assembler

1578 an asm name is ignored on an automatic variable

1593 Could not optimize: Use of unsigned index prevents optimization
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-58
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1594 Could not optimize: Loop parameters must be integer for full optimization

1604 Could not optimize: Reference to this function inhibits optimization

1613 Could not optimize: Multiple store conflict

1617 Could not optimize: Loop too complex

1621 Optimization: Dead code eliminated

1624 Could not optimize: Too many overlapping conditions for efficient
translation

1629 Could not optimize: Iteration count too short for array optimization

1636 Could not optimize: Complicated use of variable

1637 Unknown pragma - ignored

1638 Unable to determine last value of scalar temporary

1639 Use nolstval directive if possible

1641 Could not optimize: Too many data dependency problems

1656 Problem in pragma syntax

1661 Could not optimize: Backward transfers cannot be optimized

1662 Could not optimize: Last value of promoted scalar required

1663 Could not optimize: Branches out of the loop prevent translation

1670 Optimization: If loop converted to for loop

1676 Could not optimize: This statement prevents loop optimization

1679 Optimization: Loop vectorized

1687 Could not optimize: Reduction function suppressed - needs associative
transformation

1690 Could not optimize: Unsupported data type for explicit vector operations

1691 Optimization: Loop fused with previous loop

1714 Could not optimize: Outer loop conditionally executes inner loop

1730 No indexing done along this loop

1742 Could not optimize: Feedback of array elements (equivalenced arrays)

1750 Optimization: Loop re-rolled

1759 Could not optimize: Non-unit stride interferes with vector optimization

1771 Could not optimize: Volatile items prevent analysis

1801 Optimization: Function expanded

1824 Could not optimize: Not enough vector operations to justify translation

1885 Could not optimize: Loop bounds exceed array dimensions

1861 Could not optimize: This store into array prevents optimization of outer
loop

1866 Could not optimize: Non-integer subscript
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-59
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
1894 Optimization: Iterations peeled from loop in order to avoid dependence

1896 Optimization: Logical clause simplified

1947 Could not optimize: Cannot transform this combination of data types and
operations

1978 Could not optimize: Unable to optimize user-selected loop

1979 Could not optimize: This operation inhibits loop transformation

1987 Optimization: Loop switched

1988 Optimization: Alternate code generated

1997 Optimization: Constant-length loop unrolled

2091 Optimization: Loop unrolled

2168 Optimization: Outer loop moved inside inner loop(s)

2170 Optimization: Invariant expression moved outside of outer loop

2189 Optimization: Loop unrolled and rotated

2190 Optimization: Loop unrolled and optimized

2191 Optimization: Some loads lifted to top of loop

2218 Idiom detected and optimized

2300 Might not be able to optimize: Feedback of scalar value from one loop pass
to another. Conflict on line <entity>. Loop index is <entity>
(<filename>,<entity>)"

2301 Might not be able to optimize: Feedback of scalar value from one loop pass
to another. Conflict on line <entity>. Loop index is <entity> (<filename>)

2302 Might not be able to optimizee: Feedback of scalar value from one loop
pass to another. Conflict on line <entity>. (<entity>,<filename>)

2303 Might not be able to optimize: Feedback of scalar value from one loop pass
to another. Conflict on line <entity>. (<entity>)

2304 Might not be able to optimize: Potential multiple store conflict between
loop iterations. Conflict on line <entity>. Loop index is <entity>
(<filename>,<entity>)

2305 Might not be able to optimize: Potential multiple store conflict between
loop iterations. Conflict on line <entity>. Loop index is <entity>
(<filename>)

2306 Might not be able to optimize: Potential multiple store conflict between
loop iterations. Conflict on line <entity>. (<entity>,<filename>)

2307 Might not be able to optimize: Potential multiple store conflict between
loop iterations. Conflict on line <entity>. (<entity>)

2308 Might not be able to optimize: Potential feedback between loop iterations.
Conflict on line <entity>. Loop index is <entity> (<filename>,<entity>)

2309 Might not be able to optimize: Potential feedback between loop iterations.
Conflict on line <entity>. Loop index is <entity> (<filename>)

2310 Might not be able to optimize: Potential feedback between loop iterations.
Conflict on line <entity>. (<entity>,<filename>)
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-60
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2311 Might not be able to optimize: Potential feedback between loop iterations.
Conflict on line <entity>. (<entity>)

2312 Could not optimize: Potential pointer aliasing - use restrict qualifier if
ok. Conflict on line <entity>. Loop index is <entity>
(<filename>,<entity>)

2313 Could not optimize: Potential pointer aliasing - use restrict qualifier if
ok. Conflict on line <entity>. Loop index is <entity> (<filename>)

2314 Could not optimize: Potential pointer aliasing - use restrict qualifier if
ok. Conflict on line <entity>. (<entity>,<filename>)

2315 Could not optimize: Potential pointer aliasing - use restrict qualifier if
ok. Conflict on line <entity>. (<entity>)

2351 Loop nest fused with following nest(s)

2438 Could not inline: Void function used in expression

2439 Could not inline: Identifier declaration

2442 Could not inline: Cannot remove function from expression

2516 High Level Optimization halted: assembly code in routine

2519 Unable to determine constant iteration count for this loop

2523 use of inline assembler is deprecated

The inline assembler is deprecated when compiling for ARMv7 or later, that is,
most processors in the Cortex™ series.
The inline assembler does not support Thumb(-1) or Thumb-2, or all the ARMv6
instructions. However, the inline assembler does still support the (ARM-only)
ARMv4T, ARMv5TE, and a subset of the new ARMv6 instructions (only the
ARMv6 media instructions), so legacy inline assembly code continues to build
correctly.
This warning is intended as a reminder to consider using the embedded assembler
or built-in intrinsics instead of inline assembler. If you cannot change your code
but require elimination of the warning, suppress the warning or compile the
module for an earlier CPU such as ARMv6.

Caution
 Attempting to compile some inline assembler for Thumb (armcc --thumb) might

result in ARM instructions being generated in some cases.

2524 #pragma pop with no matching #pragma push

2525 #pragma push with no matching #pragma pop

2529 expression must be an integral constant in range <entity> to <entity>

2530 padding added to end of struct <entity>

The compiler can warn of padding added at the end of a struct or between structs.
This warning is off by default and can be enabled with --diag_warning 2530 or
--remarks.
For example:
typedef struct {
 int x;
 char y;
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-61
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
} A;
typedef struct {
 int p;
 int q;
} B;

results in the message:
Warning: #2530-D: padding added to end of struct 'anonymous'

The compiler can also warn of padding inserted within a structs, see 1301.

2531 dllimport/dllexport applied to a member of an unnamed namespace

2533 the <entity> attribute can only appear on functions and variables with
external linkage

2534 strict mode is incompatible with treating namespace std as an alias for
the global namespace

2535 in expansion of macro "<entity>" <entity>,

2537 in expansion of macro "<entity>" <entity><entity>

2540 invalid symbolic operand name <entity>

2541 a symbolic match constraint must refer to one of the first ten operands

2544 thread-local variable cannot be dynamically initialized

2546 some enumerator values cannot be represented by the integral type
underlying the enum type

2547 default argument is not allowed on a friend class template declaration

2548 multicharacter character literal (potential portability problem)

2549 expected a class, struct, or union type

2550 second operand of offsetof must be a field

2551 second operand of offsetof may not be a bit field

2552 cannot apply offsetof to a member of a virtual base

2553 offsetof applied to non-POD types is nonstandard

2554 default arguments are not allowed on a friend declaration of a member
function

2555 default arguments are not allowed on friend declarations that are not
definitions

2556 redeclaration of <entity> previously declared as a friend with default
arguments is not allowed

2557 invalid qualifier for <type> (a derived class is not allowed here)

2558 invalid qualifier for definition of class <type>

2560 wide string literal not allowed

2565 template argument list of <entity> must match the parameter list

2566 an incomplete class type is not allowed

2567 complex integral types are not supported
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-62
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2570 <entity> was declared "deprecated (<entity>)"

2571 invalid redefinition of <entity>

2574 explicit specialization of <entity> must precede its first use (<entity>)

2575 a sealed class type cannot be used as a base class

2576 duplicate class modifier

2577 a member function cannot have both the "abstract" and "sealed" modifiers

2578 a sealed member cannot be pure virtual

2579 nonvirtual function cannot be declared with "abstract" or "sealed"
modifier

2580 member function declared with "override" modifier does not override a base
class member

2581 cannot override sealed <entity>

2582 <entity> was declared with the class modifier "abstract"

2662 unrecognized calling convention <entity>, must be one of:

2665 attribute <entity> not allowed on parameter declarations

2666 underlying type of enum type must be an integral type other than bool

2667 some enumerator constants cannot be represented by <type>

2668 <entity> not allowed in current mode

2676 no #pragma start_map_region is currently active: pragma ignored

2677 <entity> cannot be used to name a destructor (a type name is required)

2678 nonstandard empty wide character literal treated as L'\\0'

2679 "typename" may not be specified here

2680 a non-placement operator delete must be visible in a class with a virtual
destructor

2681 name linkage conflicts with previous declaration of <entity>

2682 alias creates cycle of aliased entities

2683 subscript must be constant

2684 a variable with static storage duration allocated in a specific register
cannot be declared with an initializer

2685 a variable allocated in a specific register must have POD type

2686 predefined meaning of <entity> discarded

2687 declaration hides built-in <entity>

2688 declaration overloads built-in <entity>

2689 static member function not permitted here

2690 the <entity> attribute can only appear on functions and variables with
internal linkage
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-63
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
2.4 List of the old-style armcc error and warning messages
The following old-style error and warning messages might still be given:

C3000E SWI number 0x<num> too large

C3002W illegal unaligned load or store access - use __packed instead

C3008W splitting LDM/STM has no benefit

Inappropriate use of the switch "--split_ldm". This option has no significant
benefit for cached systems, or for processors with a write buffer.

C3009E unsupported CPU <entity>

C3015E Unbalanced pragma pop, ignored

#pragma push and #pragma pop save and restore the current pragma state.
A pop must be paired with a push. An error is given for:
#pragma push
:
#pragma pop
:
#pragma pop

C3016W unknown option '-<entity><entity>': ignored

C3017W <entity> may be used before being set

The data flow analysis feature in the compiler is on by default.

Note
 Be aware that data flow analysis is always disabled at -O0 .

The compiler performs data flow analysis as part of its optimization process, and
this information can be used to identify potential problems in the code such as
variables being used before being set. However, this is really a by-product of
optimization rather than a feature in its own right. The data flow analysis that
detects used before being set only analyses hardware register use, that is,
variables that are held in processor registers. It does not analyze variables or
structures that are allocated on the stack, that is, stored in memory rather than in
processor registers.
As code (and also register memory usage) generated by the compiler varies with
the level of optimization, the warning might appear for code compiled at one level
of optimization but not others. You might see it, for example, at -O2, but not -O1.

Note
 The data flow analysis is not intended to be a fully complete feature. You must

only treat the warnings of the form CnnnnW given by the compiler as a guide, and
not rely on these warnings to identify faulty code reliably. The compiler never
provides as much information as a special purpose tool such as Lint.

C3018W division by zero: <entity>

Constant propagation shows that a divide or remainder operator has a second
operand with value 0. It is an error if execution reaches this expression. The
compiler returns a result of 0 for a divide by constant 0.

C3038E Function too large or complicated to compile (0x<num>)

C3041U I/O error writing '<entity>': <entity>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-64
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
C3047U Too many errors

C3048U out of store while compiling with -g. Allocation size was <entity>, system
size is <entity>

C3049U out of store. Allocation size was <entity>, system size is <entity>

A storage allocation request by the compiler failed. Compilation of the debugging
tables requested with the -g option might require a large amount of memory.
Recompiling without -g, or with the program split into smaller pieces, might help.

C3050U Compilation aborted.

C3051E couldn't write file '<entity>': <entity>

C3052E couldn't read file '<entity>': <entity>

C3053W couldn't read profile '<file>': <reason>

The compiler cannot access the file you specified when performing
Profiler-guided optimizations. You might see this if you have specified the
profiler data directory instead of the data file. For example, you specified
image_001.apd instead of the data file image_001.apd\filename.apa.
See the following in Using the Compiler:
• About Profiler-guided optimization on page 5-3.

C3055U internal fault in inferFileName

C3056E bad option '<s>'

C3057E bad option '<s1> <s2>'

C3064E Overlong filename: <entity>

C3065E type of input file '<entity>' unknown

C3066E The code space needed for this object is too large for this version of the
compiler

Split the source file into smaller pieces.

C3075E Can't open <entity> for output

C3078E stdin ('-') combined with other files

C3079E <entity> command with no effect

C3301W configuration file appears to be from a newer version of the compiler

The configuration file is one of the XML files supplied to the compiler with the
--arm_linux_config_file switches when using --arm_linux_paths or GCC
command-line translation. For example:
armcc --arm_linux_paths --arm_linux_config_file=arm_linux_config.xml

This warning indicates the file is from a newer compiler so might contain
unsupported features. To avoid incompatibilites, either use the newer version of
the compiler that was used to generate the configuration file, or re-generate the
configuration file using your current compiler version.
See the following in the Compiler Reference:
• --arm_linux_config_file=path on page 3-18
• --arm_linux_paths on page 3-21.

C3302E configuration file has an invalid version string
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-65
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
This represents an error reading from or writing to an ARM Linux configuration
file.
Do the following:
1. Check that the file can be read from and written to and has valid

permissions.
2. Try re-generating the configuration file using --arm_linux_configure.
See the following in the Compiler Reference:
• --arm_linux_configure on page 3-19.

C3303E configuration file was not specified

See the description for error C3302E.

C3304E I/O error reading configuration file <file>

See the description for error C3302E.

C3305E I/O error writing configuration file <file>

See the description for error C3302E.

C3306E could not parse configuration file <file>

See the description for error C3302E.

C3307E unable to read configuration file

See the description for error C3302E.

C3308W cannot find system include directory

When using an ARM Linux mode, --arm_linux, --arm_linux_paths, or GCC
command-line translation, the ARMCC41INC environment variable must be set so the
compiler can find the arm_linux header subdirectory. Check that this environment
variable is set correctly.
See the following in the Compiler Reference:
• --arm_linux on page 3-16
• --arm_linux_paths on page 3-21.
See the following in Introducing the ARM® Compiler toolchain:
• Toolchain environment variables on page 2-14.

C3309E automatic configuration failed - cannot find GCC

This error is produced when you try to automatically configure the tools with
--arm_linux_configure, but GCC cannot be found. Use the
--configure_gcc=path_to_gcc command -line option to specify the path to the
GCC executable, such as arm-none-linux-gnueabi-gcc.
See the following in the Compiler Reference:
• --arm_linux_configure on page 3-19
• --configure_gcc=path on page 3-43.

C3310W automatic configuration is incomplete - cannot determine sysroot path from
GCC

The GCC that was used for the ARM Linux configuration process did not provide
a valid sysroot path. Use --configure_sysroot=sysroot_path to set the path.
See the following in the Compiler Reference:
• --configure_sysroot=path on page 3-46.

C3311E automatic configuration failed - cannot find GLD
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-66
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
This error is produced when you try to automatically configure the tools with
--arm_linux_configure, but the GNU linker (ld) could not be found. Use the
--configure_gkd=path_to_gcc command-line option to specify the path to the
GNU ld executable, such as arm-none-linux-gnueabi-ld.
See the following in the Compiler Reference:
• --arm_linux_configure on page 3-19
• --configure_gcc=path on page 3-43.

C3312E automatic configuration failed - could not execute GCC

This error indicates that, when using automatic configuration for ARM Linux
with --arm_linux_configure, the respective tools (GCC or GNU ld) could not be
executed or failed when invoked. Check that they have execute permissions, and
your GNU toolchain installation is working correctly.
See the following in the Compiler Reference:
• --arm_linux_configure on page 3-19.

C3313E automatic configuration failed - could not execute GLD

See the description of error C3312E.

C3314W gcc command line translation - ignoring option with no translation:
<option>

C3315W gcc command line translation - translation for this command is not fully
supported: <option>

C3316W option is not supported under arm linux: <option>

C3317W translated cpu or architecture option <option> is not valid

C3318W unable to read file <file>

C3319W cannot recognise type of file <file> - file will be ignored

C3320W cannot find file <file> - file will be ignored

C3321E automatic configuration failed - could not determine configuration from
GCC

When configuring automatically for ARM Linux with --arm_linux_configure, the
compiler could not determine sufficient information from GCC to produce the
configuration. Try a manual configuration by specifying a sysroot path with
--configure_sysroot and a path to the GNU C++ header files with
--configure_cpp_headers.
See the following in the Compiler Reference:
• --arm_linux_configure on page 3-19
• --configure_cpp_headers=path on page 3-39
• --configure_sysroot=path on page 3-46.

C3322W could not accurately determine library configuration from GCC -
configuration might be incomplete

C3323E automatic configuration failed - GCC internal specs configuration report
error: <text>

C3324W could not determine libstdc++ header file path - specify this manually to
ensure that C++ code will compile correctly

The path to the libstdc++ header files could not be determined from GCC. Specify
this path with --configure_cpp_headers=path
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-67
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
See the following in the Compiler Reference:
• --configure_cpp_headers=path on page 3-39.

C3327W cannot determine application entry point function - using <value> as
default

C3328W cannot determine library paths from GNU linker - trying to use defaults

C3329W option is missing an argument : <option>

C3330E GCC configuration is invalid

C3331W script file <file> will be treated as a scatter file

C3332E I/O error reading via file <file>

C3333E I/O error closing via file <file>

C3334W invalid GCC version in configuration file - using default

C3339W ambiguous translation mode options specified - using <option>

Multiple translation mode options --translate_gcc, --translate_g++, and
--translate_gld were specified. You must specify only one of these options to
select a particular translation mode.
See the following in the Compiler Reference:
• --translate_g++ on page 3-195
• --translate_gcc on page 3-197
• --translate_gld on page 3-199.

C3340W could not obtain license for vectorization (implied by -O3) - defaulting
to -fno-tree-vectorize

With GCC command-line translation, -O3 implies vectorization. However, this
requires a license to use the NEON vectorization feature of the compiler. Where
a NEON vectorization license is not available, the compiler emits warning C3340W
and disables vectorization.
See the following in Introducing the ARM Compiler toolchain:
• Licensed features of the toolchain on page 2-10.
See the following in the Compiler Reference:
• -Onum on page 3-154.

C3403E __alloca_state not defined

C3419W dynamic stack alignment veneer inserted in <entity>

This warning is given when compiling __irq functions for --cpu=Cortex-M3-rev0
to force the stack to be 8-byte aligned on entry into the interrupt.

C3421W write to string literal

There is a write through a pointer that has been assigned to point at a literal string.
The behavior is undefined by to the ANSI standard. A subsequent read from the
location written might not reflect the write.

C3435E reference to <entity> not allowed

C3447E option '-E' and input file '<filename>' type conflict

C3484E Minimum toplevel array alignment must be 1, 2, 4 or 8

C3486W option '-<optionchar>' causes input file '<filename>' to be ignored
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-68
ID080411 Non-Confidential

C and C++ Compiler Errors and Warnings
C3487E read from variable '<var>' with offset out of bounds

For example :
void foo(void) {
 unsigned int pntr;
 pntr = (unsigned int)&pntr;
 pntr -= 4;
 pntr = *(unsigned int*)pntr;
}

C3488E write to variable '<var>' with offset out of bounds

C3489E __vfp_status() intrinsic not supported for targets without VFP

C3490W instruction set switching using file extension is deprecated

C3493E Function alignment must be a power of 2 and greater than 1

C3494E invalid global register number <num>; 1 to <num> allowed

C3497E invalid syntax for retention constraint: <text>

C3498E option conflicts with an arm linux targeting option: <option>

Certain options are expected to be used when targeting ARM Linux, for example
to select the correct ABI variant options. This message is given to indicate when
an incompatible option is specified.
See the following in the Compiler Reference:
• --arm_linux on page 3-16.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 2-69
ID080411 Non-Confidential

Chapter 3
Assembler Errors and Warnings

The error and warning messages for the assembler, armasm, are listed in the following topic:

• List of the armasm error and warning messages on page 3-2.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-1
ID080411 Non-Confidential

Assembler Errors and Warnings
3.1 List of the armasm error and warning messages
The error and warning messages for armasm are:

A1017E :INDEX: cannot be used on a pc-relative expression

The :INDEX: expression operator has been applied to a PC-relative expression,
most likely a program label. :INDEX: returns the offset from the base register in a
register-relative expression.
If you require the offset of a label called <label> within an area called <areaname>,
use <label> - <areaname>.
See the following in Using the Assembler:
• Unary operators on page 8-21.

A1020E Bad predefine: <directive>

The operand to the --predefine (-pd) command line option was not recognized.
The directive must be enclosed in quotes if it contains spaces, for example on
Windows:
--predefine "versionnum SETA 5"

If the SETS directive is used, the argument to the directive must also be enclosed
in quotes, which might require escaping depending upon operating system and
shell. For example:
--predefine "versionstr SETS \"5A\""

A1021U No input file

No input file was specified on the command line. This might be because there was
no terminating quote on a quoted argument.

A1023E File "<filename>" could not be opened: <reason>

A1024E File "<filename>" could not all be loaded: <reason>

A1042E Unrecognized APCS qualifier '<qualifier>'

There is an error in the argument given to the --apcs command line option. Check
the spelling of <qualifier>.

A1051E Cannot open --depend file '<filename>': <reason>

A1055E Cannot open --errors file '<filename>': <reason>

A1056E Target cpu '<cpu>' not recognized

The name given in the --cpu command line option is not a recognized processor
name. Check the spelling of the argument.
Use --cpu=list to list the supported processors and architectures.

A1067E Output file specified as '<filename1>', but it has already been specified
as '<filename2>'

More than one output file, -o filename, has been specified on the command line.
Misspelling a command line option can cause this.

A1071E Cannot open listing file '<filename>': <reason>

The file given in the --list <filename> command line option could not be opened.
This could be because the given name is not valid, there is no space, a read-only
file with the same name already exists, or the file is in use by another process.
Check that the correct path for the file is specified.

A1072E The specified listing file '<filename>' must not be a .s or .o file
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-2
ID080411 Non-Confidential

Assembler Errors and Warnings
The filename argument to the --list command line option has an extension that
indicates it is a source or object file. This might be because the filename argument
was accidentally omitted from the command line. Check that the correct argument
is given to the --list command line option.

A1073E The specified output file '<filename>' must not be a source file

The object file specified on the command line has a filename extension that
indicates it is a source file. This might be because the object filename was
accidentally omitted from the command line.

A1074E The specified depend file '<filename>' must not be a source file

The filename argument to the --depend command line option has an extension that
indicates it is a source (.s) file. This might be because the filename argument was
accidentally omitted from the command line. Check that the correct arguments
are given.

A1075E The specified errors file '<filename>' must not be a source file

The filename argument to the --errors command line option has an extension that
indicates it is a source (.s) file. This might be because the filename argument was
accidentally omitted from the command line. Check that the correct arguments
are given.

A1085E Forced user-mode LDM/STM must not be followed by use of banked R8-R14

The ARM architecture does not permit you to access the banked registers on the
instruction following a USER registers LDM or STM. The ARM Architecture
Reference Manual says this form of LDM must not be followed by an instruction,
which accesses banked registers (a following NOP is a good way to ensure this).
Example:
stmib sp, {r0-r14}^ ; Return a pointer to the frame in a1.
mov r0, sp

change to:
stmib sp, {r0-r14}^ ; Return a pointer to the frame in a1.
nop
mov r0, sp

A1088W Faking declaration of area AREA |$$$$$$$|

This is given when no AREA is given (see A1105E).

A1099E Structure stack overflow max stack size <max>

A1100E Structure stack underflow

A1105E Area directive missing

This is given when no AREA is given (see also A1088W).

A1106E Missing comma

A1107E Bad symbol type, expect label

A1108E Multiply defined symbol '<name>'

A1109E Bad expression type

A1110E Expected constant expression

A constant expression was expected after, for example, SETA.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-3
ID080411 Non-Confidential

Assembler Errors and Warnings
See the following in Using the Assembler:
• Numeric expressions on page 8-16.

A1111E Expected constant or address expression

A1112E Expected address expression

A1113E Expected string expression

A string expression was expected after, for example, SETS.
See the following in Using the Assembler:
• String expressions on page 8-14.

A1114E Expected register relative expression

A1116E String operands can only be specified for DCB

A1117E Register symbol '<name>' already defined

A1118E No current macro expansion

A1119E MEND not allowed within conditionals

MEND means END of Macro (not the English word mend).
See the following in Using the Assembler:
• Use of macros on page 5-30.

A1120E Bad global name

A1121E Global name '<name>' already exists

A1122E Locals not allowed outside macros

A1123E Bad local name

A1125E Unknown or wrong type of global/local symbol '<name>'

A1126E Bad alignment boundary, must be a multiple of 2

A1127E Bad IMPORT/EXTERN name

A1128E Common name '<sym>' already exists

A1129E Imported name '<sym>' already exists

A1130E Bad exported name

A1131E Bad symbol type for exported symbol '<sym>'

A1132E REQUIRE directive not supported for <entity> format output

A1133E Bad required symbol name

A1134E Bad required symbol type, expect (symbol is either external or label) and
(symbol is relocatable and absolute)

A1135E Area name missing

AREA names starting with any non-alphabetic character must be enclosed in
bars, for example change:
AREA 1_DataArea, CODE, READONLY

to:
AREA |1_DataArea|, CODE, READONLY
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-4
ID080411 Non-Confidential

Assembler Errors and Warnings
A1136E Entry address already set

A1137E Unexpected characters at end of line

This is given when extra characters that are not part of an instruction are found on
an instruction line.
For example:
ADD r0, r0, r1 comment

Can be changed to:
ADD r0, r0, r1 ; comment

A1138E String "<string>" too short for operation, length must be > <oplength>

A1139E String overflow, string exceeds <max> characters

A1140E Bad operand type

A1141E Relocated expressions may only be added or subtracted

A1142E Subtractive relocations not supported for <entity> format output

This can occur when subtracting symbols that are in different areas, for example:
IMPORT sym1
IMPORT sym2
DCD (sym2 - sym1)

A1143E COMMON directive not supported for %s format output

A1144E DCDO directive not supported for %s format output

A1145E Undefined exported symbol '<sym>'

A1146E Unable to open output file <codeFileName>: <reason>

A1147E Bad shift name

A1148E Unknown shift name <name>, expected one of LSL, LSR, ASR, ROR, RRX

A1150E Bad symbol, not defined or external

This typically occurs in the following cases:
• when the current file requires an INCLUDE of another file to define some

symbols, for example:
"init.s", line 2: Error: A1150E: Bad symbol
2 00000000 DCD EBI_CSR_0

typically requires a definitions file to be included, for example:
INCLUDE targets/eb40.inc

• when the current file requires IMPORT for some symbols, for example:
"init.s", line 4: Error: A1150E: Bad symbol
4 00000000 LDR r0, =||Image$$RAM$$ZI$$Limit||

typically requires the symbol to be imported, for example:
IMPORT ||Image$$RAM$$ZI$$Limit||

A1151E Bad register name symbol

Example:
MCR p14, 3, R0, Cr1, Cr2

The coprocessor registers CR must be labelled as a lowercase c for the code to
build. The ARM register can be r or R:
MCR p14, 3, r0, c1, c2
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-5
ID080411 Non-Confidential

Assembler Errors and Warnings
or
MCR p14, 3, R0, c1, c2

A1152E Unexpected operator

A1153E Undefined symbol

A1154E Unexpected operand, operator expected

A1155E Unexpected unary operator equal to or equivalent to <operator>

A1156E Missing open bracket

A1157E Syntax error following directive

A1158E Illegal line start, should be blank

Some directives, for example, ENTRY, IMPORT, EXPORT, and GET must be on a line
without a label at the start of the line. This error is given if a label is present.

A1159E Label missing from line start

Some directives, for example, FUNCTION or SETS, require a label at the start of the
line, for example:
my_func FUNCTION

or
label SETS

This error is given if the label is missing.

A1160E Bad local label number

A local label is a number in the range 0-99, optionally followed by a name.
See the following in Using the Assembler:
• Local labels on page 8-12.

A1161E Syntax error following local label definition

A1162E Incorrect routine name '<name>'

A1163E Unknown opcode <name> , expecting opcode or Macro

The most common reasons for this are:
• Forgetting to put some white space on the left hand side margin, before the

instruction, for example change:
MOV PC,LR

to
 MOV PC,LR

• Use of a hardware floating point instruction without using the --fpu switch,
for example:
 FMXR FPEXC, r1 ;

must be assembled with armasm --fpu vfp
• Mis-typing the opcode:

 ADDD

instead of
 ADD

A1164E Opcode not supported on selected processor
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-6
ID080411 Non-Confidential

Assembler Errors and Warnings
The processor selected on the armasm command line does not support this
instruction. See the ARM Architecture Reference Manuals,
http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/ind
ex.html#reference.

A1165E Too many actual parameters, expecting <actual> parameters

A1166E Syntax error following label

A1167E Invalid line start

A1168E Translate not allowed in pre-indexed form

A1169E Missing close square bracket

A1170E Immediate 0x<adr> out of range for this operation, must be below (0x<adr>)

This error is given when DCB, DCW or DCWU directives are used with immediates that
are too large.
See the following in the Assembler Reference:
• DCB on page 6-20
• DCW and DCWU on page 6-27.

A1171E Missing close bracket

A1172E Bad rotator <rotator>, must be even and between 0 and 30

A1173E ADR/L cannot be used on external symbols

The ADR and ADRL pseudo-instructions can only be used with labels within the
same code area. To load an out-of-area address into a register, use LDR instead.

A1174E Data transfer offset 0x<val> out of range. Permitted values are 0x<mini>
to 0x<maxi>

A1175E Bad register range

A1176E Branch offset 0x<val> out of range. Permitted values are 0x<mini> to
0x<maxi>

Branches are PC relative, and have a limited range. If you are using "local labels",
you can use the ROUT directive to limit the scope of local labels, to help avoid
referring to a wrong label by accident.
See the following in Using the Assembler:
• Local labels on page 8-12.

A1179E Bad hexadecimal number

A1180E Missing close quote

A1181E Bad operator

A1182E Bad based <base> number

A1183E Numeric overflow

A1184E Externals not valid in expressions

A1185E Symbol missing

A1186E Code generated in data area

An instruction has been assembled into a data area. This can happen if you have
omitted the CODE attribute on the AREA directive.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-7
ID080411 Non-Confidential

Assembler Errors and Warnings
See the following in the Assembler Reference:
• AREA on page 6-61.

A1187E Error in macro parameters

A1188E Register value <val> out of range. Permitted values are <mini> to <maxi>

A1189E Missing '#'

A1190E Unexpected '<entity>'

A1191E Floating point register number out of range 0 to <maxi>

A1192E Coprocessor register number out of range 0 to 15

A1193E Coprocessor number out of range 0 to 15

A1194E Bad floating-point number

A1195W Small floating point value converted to 0.0

A1196E Too late to ban floating point

A1198E Unknown operand

This can occur when an operand is accidentally miss-typed.
For example:
armasm init.s -g -PD "ROM_RAM_REMAP SETL {FALS}"

must be:
armasm init.s -g -PD "ROM_RAM_REMAP SETL {FALSE}"

See the following in Using the Assembler:
• Assembly time substitution of variables on page 8-6.

A1199E Coprocessor operation out of range 0 to <maxi>

A1200E Structure mismatch expect While/Wend

A1201E Substituted line too long, maximum length <max>

A1202E No pre-declaration of substituted symbol '<name>'

See the following in Using the Assembler:
• Assembly time substitution of variables on page 8-6.

A1203E Illegal label parameter start in macro prototype

A1204E Bad macro parameter default value

A1205E Register <reg> occurs multiply in list

A1206E Registers should be listed in increasing register number order

This warning is given if registers in, for example, LDM or STM instructions are not
specified in increasing order and the --checkreglist option is used.

A1207E Bad or unknown attribute

This error is given when an invalid attribute is given in the AREA directive. For
example:
AREA test,CODE,READONLY,HALFWORD

HALFWORD is invalid, so remove it.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-8
ID080411 Non-Confidential

Assembler Errors and Warnings
See the following in the Assembler Reference:
• AREA on page 6-61.

A1209E ADRL cannot be used with PC as destination

A1210E Non-zero data within uninitialized area '<name>'

A1211E Missing open square bracket

A1212E Division by zero

A1213E Attribute <entity> cannot be used with attribute <entity>

A1214E Too late to define symbol '<sym>' as register list

A1215E Bad register list symbol

A1216E Bad string escape sequence

A1217E Error writing to code file <codeFileName>: <reason>

A1219E Bad APSR, CPSR or SPSR designator

For example:
 MRS r0, PSR

It is necessary to specify which status register to use (CPSR or SPSR), such as,
for example:
 MRS r0, CPSR

A1220E BLX <address> must be unconditional

A1221E Area attribute '<entity>' not supported for <entity> object file format

A1223E Comdat Symbol '<name>' is not defined

A1224E <entity> format does not allow PC-relative data transfers between areas

A1225E ASSOC attribute is not allowed in non-comdat areas

A1226E SELECTION attribute is not allowed in non-comdat areas

A1227E Comdat Associated area '<name>' undefined at this point in the file

A1228E Comdat Associated area '<name>' is not an area name

A1229E Missing COMDAT symbol

A1230E Missing '}' after COMDAT symbol

A1234E Undefined or Unexported Weak Alias for symbol '<sym>'

A1237E Invalid register or register combination for this operation

A1238E Immediate value must be word aligned when used in this operation

A1240E Immediate value cannot be used with this operation

A1241E Must have immediate value with this operation

A1242E Offset must be word aligned when used with this operation

A1243E Offset must be halfword aligned with this operation

A1244E Missing '!'

A1245E B or BL from Thumb code to ARM code
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-9
ID080411 Non-Confidential

Assembler Errors and Warnings
A1247E BLX from ARM code to ARM code, use BL

This occurs when there is a BLX <label> branch from ARM code to ARM code
within this assembler file. This is not permitted because BLX <label> always
results in a state change. The usual solution is to use BL instead.

A1248E BLX from Thumb code to Thumb code, use BL

This occurs when there is a BLX <label> branch from Thumb code to Thumb code
within this assembler file. This is not permitted because BLX <label> always
results in a state change. The usual solution is to use BL instead.

A1249E Post indexed addressing mode not available

A1250E Pre indexed addressing mode not available for this instruction, use [Rn,
Rm]

A1253E Thumb branch to external symbol cannot be relocated: not representable in
<fmt>

A1254E Halfword literal values not supported

Example:
 LDRH R3, =constant

Change the LDRH into LDR, which is the standard way of loading constants into
registers.

A1256E DATA directive can only be used in CODE areas

A1259E Invalid PSR field specifier, syntax is <PSR>_ where <PSR> is either CPSR
or SPSR

A1260E PSR field '<entity>' specified more than once

A1261E MRS cannot select fields, use APSR, CPSR or SPSR directly

This is caused by an attempt to use fields for CPSR or SPSR with an MRS
instruction, such as:
MRS r0, CPSR_c

A1262U Expression storage allocator failed

A1265U Structure mismatch: IF or WHILE unmatched at end of INCLUDE file

A1267E Bad GET or INCLUDE for file <filename>

A1268E Unmatched conditional or macro

A1269U unexpected GET on structure stack

A1270E File "<entity>" not found

A1271E Line too long, maximum line length is <MaxLineLength>

A1272E End of input file

A1273E '\\' should not be used to split strings

A1274W '\\' at end of comment

A1283E Literal pool too distant, use LTORG to assemble it within 1KB

For Thumb code, the literal pool must be within 1KB of the LDR instruction to
access it. See A1284E and A1471W.

A1284E Literal pool too distant, use LTORG to assemble it within 4KB
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-10
ID080411 Non-Confidential

Assembler Errors and Warnings
For ARM code, the literal pool must be within 4KB of the LDR instruction to
access it. To solve this, add an LTORG directive into your assembler source file at a
convenient place.
See the following in Using the Assembler:
• Load addresses to a register using LDR Rd, =label on page 5-17.
See the following in the Assembler Reference:
• LTORG on page 6-16.

A1285E Bad macro name

A1286E Macro already exists

A1287E Illegal parameter start in macro prototype

A1288E Illegal parameter in macro prototype

A1289E Invalid parameter separator in macro prototype

A1290E Macro definition too big, maximum length <max>

A1291E Macro definitions cannot be nested

A1310W Symbol attribute not recognized

A1311U macro definition attempted within expansion

A1312E Assertion failed

A1313W Missing END directive at end of file

The assembler requires an END directive to know when the code in the file
terminates. You can add comments or other such information in free format after
this directive.

A1314W Reserved instruction (using NV condition)

A1315E NV condition not supported on targeted CPU

A1316E Shifted register operand to MSR has undefined effect

A1319E Undefined effect (using PC as Rs)

A1320E Undefined effect (using PC as Rn or Rm in register specified shift)

A1321E Undefined effect (using PC as offset register)

A1322E Unaligned transfer of PC, destination address must be 4 byte aligned

A1323E Reserved instruction (Rm = Rn with post-indexing)

A1324E Undefined effect (PC + writeback)

A1327W Non portable instruction (LDM with writeback and base in register list,
final value of base unpredictable)

LDM Operand restriction:
• If the base register <Rn> is specified in <registers>, and base register

writeback is specified, the final value of <Rn> is UNPREDICTABLE.

A1328W Non portable instruction (STM with writeback and base not first in
register list, stored value of base unpredictable)
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-11
ID080411 Non-Confidential

Assembler Errors and Warnings
STM Operand restrictions if <Rn> is specified as <registers> and base register
writeback is specified:
• If <Rn> is the lowest-numbered register specified in <register_list>, the

original value of <Rn> is stored.
• Otherwise, the stored value of <Rn> is UNPREDICTABLE.

A1329W Unpredictable instruction (forced user mode transfer with write-back to
base)

This is caused by an instruction such as PUSH {r0}^ where the ^ indicates access
to user registers. The ARM Architectural Reference Manual specifies that
writeback to the base register is not available with this instruction.
Instead, the base register must be updated separately. For example:
 SUB sp, sp,#4
 STMID sp, {r0}^

Another example is replacing STMFD R0!, {r13, r14}^ with:
 SUB r0, r0,#8
 STM r0, {r13, r14}^

See also A1085W

A1331W Unpredictable instruction (PC as source or destination)

A1332W Unpredictable effect (PC-relative SWP)

A1334E Undefined effect (use of PC/PSR)

A1335W Useless instruction (PC cannot be written back)

A1337W Useless instruction (PC is destination)

A1338W Dubious instruction (PC used as an operand)

A1339W Unpredictable if RdLo and RdHi are the same register

A1341E Branch to unaligned destination, expect destination to be <max> byte
aligned

A1342W <name> of symbol in another AREA will cause link-time failure if symbol is
not close enough to this instruction

A1344I host error: out of memory

A1355U A Label was found which was in no AREA

Example:
This can occur where no white-space precedes an assembler directive.
Assembler directives must be indented with white-space, for example use:
 IF :DEF: FOO
 ; code
 ENDIF

instead of:
IF :DEF: FOO
 ; code
ENDIF

Symbols in the left-hand column are assumed to be labels.

A1356W Instruction not supported on targeted CPU
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-12
ID080411 Non-Confidential

Assembler Errors and Warnings
This occurs if you try to use an instruction that is not supported by the default
architecture or processor for armasm.
For example:
 SMULBB r0,r0,r1 ;

can be assembled with:
armasm --cpu 5TE

The processor selected on the armasm command line does not support this
instruction. See the ARM Architecture Reference Manuals,
http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/ind
ex.html#reference.

A1406E Bad decimal number

A1407E Overlarge floating point value

A1408E Overlarge (single precision) floating point value

A1409W Small (single precision) floating value converted to 0.0

A1411E Closing '>' missing from vector specifier

A1412E Bad vector length, should be between <min> and <max>

A1413E Bad vector stride, should be between <min> and <max>

A1414E Vector wraps round over itself, length * stride should not be greater than
<max>

A1415E VFPASSERT must be followed by 'VECTOR' or 'SCALAR'

A1416E Vector length does not match current vector length <len>

A1417E Vector stride does not match current vector stride

A1418E Register has incorrect type '<type>' for instruction, expect floating
point/double register type

A1419E Scalar operand not in a scalar bank

A1420E Lengths of vector operands are different

A1421E Strides of vector operands are different

A1422E This combination of vector and scalar operands is not allowed

A1423E This operation is not vectorizable

A1424E Vector specifiers not allowed in operands to this instruction

A1425E Destination vector must not be in a scalar bank

A1426E Source vector must not be in a scalar bank

A1427E Operands have a partial overlap

A1428E Register list contains registers of varying types

A1429E Expected register list

The assembler reports this when FRAME SAVE and FRAME RESTORE directives are not
given register lists.
See the following in the Assembler Reference:
• FRAME RESTORE on page 6-42
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-13
ID080411 Non-Confidential

Assembler Errors and Warnings
• FRAME SAVE on page 6-44.

A1430E Unknown frame directive

A1431E Frame directives are not accepted outside of PROCs/FUNCTIONs

See the following in Using the Assembler:
• Frame directives on page 5-37.

A1432E Floating-point register type not consistent with selected floating-point
architecture

A1433E Only the writeback form of this instruction exists

The addressing mode specified for the instruction did not include the writeback
specifier (that is, a '!' after the base register), but the instruction set only supports
the writeback form of the instruction. Either use the writeback form, or replace
with instructions that have the desired behavior.

A1435E {PCSTOREOFFSET} is not defined when assembling for an architecture

{PCSTOREOFFSET} is only defined when assembling for a processor, not for an
architecture.

A1437E {ARCHITECTURE} is undefined

{ARCHITECTURE} is only defined when assembling for an architecture, not for a
processor.

A1446E Bad or unknown attribute '<attr>'. Use --apcs /interwork instead

Example:
 AREA test1, CODE, READONLY
 AREA test, CODE, READONLY, INTERWORK

This code might have originally been intended to work with SDT. The INTERWORK
area attribute is now obsolete. To eliminate the warning:
• remove the ", INTERWORK" from the AREA line.
• assemble with 'armasm --apcs /interwork foo.s' instead

A1447W Missing END directive at end of file, but found a label named END

This is caused by the END directive not being indented.

A1448W Deprecated form of PSR field specifier used (use _f)

A1449W Deprecated form of PSR field specifier used (use _c)

A1450W Deprecated form of PSR field specifier used (use _cxsf for future
compatibility)

The assembler, armasm, supports the full range of MRS and MSR instructions, in
the form:
 MRS(cond) Rd, CPSR
 MRS(cond) Rd, SPSR
 MSR(cond) CPSR_fields, Rm
 MSR(cond) SPSR_fields, Rm
 MSR(cond) CPSR_fields, #immediate
 MSR(cond) SPSR_fields, #immediate

where fields can be any combination of cxsf.
Earlier releases of the assembler permitted other forms of the MSR instruction to
modify the control field and flags field:
• cpsr or cpsr_all, control and flags field
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-14
ID080411 Non-Confidential

Assembler Errors and Warnings
• cpsr_flg, flags field only
• cpsr_ctl, control field only.
Similar control and flag settings apply for SPSR.
These forms are now deprecated and must not be used. If your legacy code
contains them, the assembler reports:
Deprecated form of PSR field specifier used (use _cxsf)

To avoid the warning, in most cases you can simply modify your code to use _c,
_f, _cf or _cxsf instead.
See also:
• Using the Assembler:

— Conditional execution in ARM state on page 6-3
— Conditional execution in Thumb state on page 6-4
— General-purpose registers on page 3-11
— Access to the inline barrel shifter on page 3-25.

• the FAQ armasm: use of MRS and MSR instructions ('Deprecated form of
PSR field specifier'),
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3724.html.

A1454E FRAME STATE RESTORE directive without a corresponding FRAME STATE REMEMBER

See the following in Using the Assembler:
• Frame directives on page 5-37.
See the following in the Assembler Reference:
• FRAME STATE REMEMBER on page 6-45
• FRAME STATE RESTORE on page 6-46.

A1456W INTERWORK area directive is obsolete. Continuing as if --apcs /inter
selected

Example:
 AREA test, CODE, READONLY, INTERWORK

This code might have originally been intended to work with SDT. The INTERWORK
area attribute is now obsolete. To eliminate the warning:
1. Remove the ", INTERWORK" from the AREA line.
2. Assemble with armasm --apcs /interwork foo.s instead.

A1457E Cannot mix INTERWORK and NOINTERWORK code areas in same file

INTERWORK and (default) NOINTERWORK code areas cannot be mixed in the same file.
This code might have originally been intended to work with SDT. The INTERWORK
area attribute is obsolete in the ARM Compiler toolchain.
Example:
 AREA test1, CODE, READONLY
 …
 AREA test2, CODE, READONLY, INTERWORK

To eliminate the error:
1. move the two AREAs into separate assembler files such as, for example,

test1.s and test2.s
2. remove the ", INTERWORK" from the AREA line in test2.s
3. assemble test1.s with armasm --apcs /nointerwork
4. assemble test2.s with armasm --apcs /interwor
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-15
ID080411 Non-Confidential

Assembler Errors and Warnings
5. at link time, the linker adds any necessary interworking veneers.

A1458E DCFD or DCFDU not allowed when fpu is None

A1459E Cannot B or BL to a register

This form of the instruction is not permitted. See the ARM Architecture Reference
Manual for the permitted forms.

A1461E Specified processor or architecture does not support Thumb instructions

It is likely that you are specifying a specific architecture or cpu using the --cpu
option and then incorporating some Thumb code in the AREA that is generating
this error.
For example:
armasm --cpu 4 code.s

StrongARM is an architecture 4 (not 4T) processor and does not support Thumb
code.

A1462E Specified memory attributes do not support this instruction

A1463E SPACE directive too big to fit in area, area size limit 2^32

A1464W ENDP/ENDFUNC without corresponding PROC/FUNC

A1466W Operator precedence means that expression would evaluate differently in C

armasm has always evaluated certain expressions in a different order to C. This
warning might help C programmers from being caught out when writing in
assembler.
To avoid the warning, either:
• modify the code to make the evaluation order explicit (that is, add more

brackets)
• suppress the warning with --unsafe switch.
See the following in Using the Assembler:
• Operator precedence on page 8-29.

A1467W FRAME ADDRESS with negative offset <offset> is not recommended

A1468W FRAME SAVE saving registers above the canonical frame address is not
recommended

A1469E FRAME STATE REMEMBER directive without a corresponding FRAME STATE RESTORE

See the following in Using the Assembler:
• Frame directives on page 5-37.
See the following in the Assembler Reference:
• FRAME STATE REMEMBER on page 6-45
• FRAME STATE RESTORE on page 6-46.

A1471W Directive <directive> may be in an executable position

This can occur with, for example, the LTORG directive (see A1283E & A1284E).
LTORG instructs the assembler to dump literal pool DCD data at this position.
To prevent this warning from occurring, the data must be placed where the
processor cannot execute them as instructions. A good place for an LTORG is
immediately after an unconditional branch, or after the return instruction at the
end of a subroutine.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-16
ID080411 Non-Confidential

Assembler Errors and Warnings
As a last resort, you could add a branch over the LTORG, to avoid the data being
executed, for example:
 B unique_label
 LTORG
unique_label

A1475W At least one register must be transferred, otherwise result is
UNPREDICTABLE

A1476W BX r15 at non word-aligned address is UNPREDICTABLE

A1477W This register combination results in UNPREDICTABLE behavior

A1479W Requested alignment <alignreq> is greater than area alignment <align>,
which has been increased

This is warning about an ALIGN directive that has a coarser alignment boundary
than its containing AREA. This is not permitted. To compensate, the assembler
automatically increases the alignment of the containing AREA for you. A simple
test case that gives the warning is:
 AREA test, CODE, ALIGN=3
 ALIGN 16
 mov pc, lr
 END

In this example, the alignment of the AREA (ALIGN=3) is 2^3=8 byte boundary, but
the mov pc,lr instruction is on a 16-byte boundary, hence the error.

Note
 The two alignment types are specified in different ways.

This warning can also occur when using AREA ... ALIGN=0 to align a code section
on a byte boundary. This is not possible. Code sections can only be aligned on:
• a four-byte boundary for ARM code, so use "ALIGN=2"
• a two-byte boundary for Thumb code, so use "ALIGN=1".
See the following in the Assembler Reference:
• ALIGN on page 6-59
• AREA on page 6-61.

A1480W Macro cannot have same name as a directive or instruction

A1482E Shift option out of range, allowable values are from <min> to <max>

A1484E Obsolete shift name 'ASL', use LSL instead

The ARM architecture does not have an ASL shift operation. The ARM barrel
shifter only has the following shift types: ROR, ASR, LSR, and LSL.
An arithmetic (that is, signed) shift left is the same as a logical shift left, because
the sign bit always gets shifted out.
Earlier versions of the assembler silently converted ASL to LSL. Use the --unsafe
switch to downgrade this error to a warning.
See the following in the Assembler Reference:
• --unsafe on page 2-24
• ASR, LSL, LSR, ROR, and RRX on page 3-71.

A1485E LDM/STM instruction exceeds maximum register count <max> allowed with
--split_ldm
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-17
ID080411 Non-Confidential

Assembler Errors and Warnings
A1486E ADR/ADRL of a symbol in another AREA is not supported in ELF

The ADR and ADRL pseudo-instructions can only be used with labels within the
same code section. To load an out-of-area address into a register, use LDR
instead.

A1487E Obsolete instruction name 'ASL', use LSL instead

The Thumb instruction ASL is now faulted. See the corresponding ARM ASL
message A1484E.

A1488W PROC/FUNC at line <lineno> in '<filename>' without matching ENDP/ENDFUNC

A1489E <FPU> is undefined

A1490E <CPU> is undefined

{CPU} is only defined by assembling for a processor and not an architecture.

A1491W Internal error: Found relocation at offset <offset> with incorrect
alignment

This might indicate an assembler fault. Contact your supplier.

A1492E Immediate 0x<val> out of range for this operation. Permitted values are
0x<mini> to 0x<maxi>

A1493E REQUIRE must be in an AREA

A1495E Target of branch is a data address

armasm determines the type of a symbol and detects branches to data. Specify
--diag-suppress 1495 to suppress this warning.

A1496E Absolute relocation of ROPI address with respect to symbol '<symbol>' at
offset <offset> may cause link failure

For example, when assembling with --apcs /ropi:
 AREA code, CODE
 codeaddr DCD codeaddr
 END

because this generates an absolute relocation (R_ARM_ABS32) to a PI code symbol.

A1497E Absolute relocation of RWPI address with respect to symbol '<symbol>' at
offset <offset> may cause link failure

For example, when assembling with --apcs /rwpi:
 AREA data, DATA
 dataaddr DCD dataaddr
 END

because this generates an absolute relocation (R_ARM_ABS32) to a PI data symbol.

A1498E Unexpected characters following Thumb instruction

For example:
 ADD r0, r0, r1

is accepted as a valid instruction, for both ARM and Thumb, but:
 ADD r0, r0, r1, ASR #1

is a valid instruction for ARM, but not for Thumb, so the unexpected characters
are ", ASR #1".

A1499E Register pair is not a valid contiguous pair

A1500E Unexpected characters when expecting '<eword>'
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-18
ID080411 Non-Confidential

Assembler Errors and Warnings
A1501E Shift option out of range, allowable values are 0, 8, 16 or 24

A1502W Register <reg> is a caller-save register, not valid for this operation

A1505E Bad expression type, expect logical expression

A1506E Accumulator should be in form accx where x ranges from 0 to <max>

A1507E Second parameter of register list must be greater than or equal to the
first

A1508E Structure mismatch expect Conditional

A1509E Bad symbol type, expect label, or weak external symbol

A1510E Immediate 0x<imm> cannot be represented by 0-255 and a rotation

A1511E Immediate cannot be represented by combination of two data processing
instructions

A1512E Immediate 0x<val> out of range for this operation. Permitted values are
<mini> to <maxi>

A1513E Symbol not found or incompatible Symbol type for '<name>'

A1514E Bad global name '<name>'

A1515E Bad local name '<name>'

A1516E Bad symbol '<name>', not defined or external

A1517E Unexpected operator equal to or equivalent to <operator>

A1539E Link Order dependency '<name>' not an area

A1540E Cannot have a link order dependency on self

A1541E <code> is not a valid condition code

A1542E Macro names <name1> and <name2>[parameter] conflict

A1543W Empty macro parameter default value

A1544W Invalid empty PSR field specifier, field must contain at least one of
c,x,s,f

A1545E Too many sections for one <objfmt> file

A1546W Stack pointer update potentially breaks 8 byte stack alignment

Example:
PUSH {r0}

The stack must be eight-byte aligned on an external boundary so pushing an odd
number of registers causes this warning to be given. This warning is suppressed
by default. To enable this warning use --diag_warning 1546.
See the following in the Assembler Reference:
• --diag_warning=tag{, tag} on page 2-12.

A1547W PRESERVE8 directive has automatically been set

Example:
PUSH {r0,r1}
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-19
ID080411 Non-Confidential

Assembler Errors and Warnings
This warning has been given because the PRESERVE8 directive has not been
explicitly set by the user, but the assembler has set this itself automatically. This
warning is suppressed by default. To enable this warning use --diag_warning
1547.
See the following in the Assembler Reference:
• --diag_warning=tag{, tag} on page 2-12
• REQUIRE8 and PRESERVE8 on page 6-76.

A1548W Code contains LDRD/STRD indexed/offset from SP but REQUIRE8 is not set

Example:
PRESERVE8
STRD r0,[sp,#8]

This warning is given when the REQUIRE8 directive is not set when required.
See the following in the Assembler Reference:
• REQUIRE8 and PRESERVE8 on page 6-76.

A1549W Setting of REQUIRE8 but not PRESERVE8 is unusual

Example:
PRESERVE8 {FALSE}
REQUIRE8
STRD r0,[sp,#8]

A1550E Input and output filenames are the same

A1551E Cannot add Comdef area <name> to non-comdat group

A1560E Non-constant byte literal values not supported

A1561E MERGE and STRING sections must be data sections

A1562E Entry size for Merge section must be greater than 0

A1563W Instruction stalls CPU for <stalls> cycle(s)

The assembler can give information about possible interlocks in your code caused
by the pipeline of the processor chosen by the --cpu option. To do this assemble
with armasm --diag_warning 1563

Note
 If the --cpu option specifies a multi-issue processor such as Cortex-A8, the

interlock warnings are unreliable.

See also warning A1746W.

A1572E Operator SB_OFFSET_11_0 only allowed on LDR/STR instructions

A1573E Operator SB_OFFSET_19_12 only allowed on Data Processing instructions

A1574E Expected one or more flag characters from "<str>"

A1575E BLX with bit[0] equal to 1 is architecturally UNDEFINED

A1576E Bad coprocessor register name symbol

A1577E Bad coprocessor name symbol

A1578E Bad floating point register name symbol '<sym>'

A1581W Added <no_padbytes> bytes of padding at address <address>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-20
ID080411 Non-Confidential

Assembler Errors and Warnings
The assembler warns by default when padding bytes are added to the generated
code. This occurs whenever an instruction/directive is used at an address that
requires a higher alignment, for example, to ensure ARM instructions start on a
four-byte boundary after some Thumb instructions, or where there is a DCB
followed by DCD.
For example:
 AREA Test, CODE, READONLY
 THUMB
ThumbCode
 MOVS r0, #1
 ADR r1, ARMProg
 BX r1
; ALIGN ; <<< add to avoid the first warning
 ARM
ARMProg
 ADD r0,r0,#1
 BX LR
 DCB 0xFF
 DCD 0x1234
 END

Results in the warnings:
A1581W: Added 2 bytes of padding at address 0x6

8 00000008 ARM

A1581W: Added 3 bytes of padding at address 0x11

13 00000014 DCD 0x1234

The warning can also occur when using ADR in Thumb-only code. The ADR Thumb
pseudo-instruction can only load addresses that are word aligned, but a label
within Thumb code might not be word aligned. Use ALIGN to ensure four-byte
alignment of an address within Thumb code.
See the following in the Assembler Reference:
• ADR (PC-relative) on page 3-24
• ADR (register-relative) on page 3-26
• DCB on page 6-20
• DCD and DCDU on page 6-21
• ALIGN on page 6-59.

A1582E Link Order area '<name>' undefined

A1583E Group symbol '<name>' undefined

A1584W Mode <mode> not allowed for this instruction

A1585E Bad operand type (<typ1>) for operator <op>

A1586E Bad operand types (<typ1>, <typ2>) for operator <op>

A1587E Too many registers <count> in register list, maximum of <max>

A1593E Bad Alignment, must match transfer size UIMM * <dt>

A1595E Bad Alignment, must match <st> * <dt>, or 64 when <st> is 4

A1596E Invalid alignment <align> for dt st combination

A1598E Bad Register list length
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-21
ID080411 Non-Confidential

Assembler Errors and Warnings
A1599E Out of range subscript, must be between 0 and <max_index>

A1600E Section type must be within range SHT_LOOS and SHT_HIUSER

A1601E Immediate cannot be represented

A1603W This instruction inside IT block has UNPREDICTABLE results

A1604W Thumb Branch to destination without alignment to <max> bytes

A1606E Symbol attribute <attr1> cannot be used with attribute <attr2>

A1607E Thumb-2 wide branch instruction used, but offset could fit in Thumb-1
narrow branch instruction

A1608W MOV pc,<rn> instruction used, but BX <rn> is preferred

A1609W MOV <rd>,pc instruction does not set bit zero, so does not create a return
address

This warning is caused when the current value of the PC is copied into a register
while executing in Thumb state. An attempt to create a return address in this
fashion fails as bit0 is not set. Attempting to BX to this instruction causes a state
change (to ARM).
To create a return address, you can use:
 MOV r0, pc
 ADDS r0, #1

This warning can then be safely suppressed with:
--diag-suppress 1609

A1611E Register list increment of 2 not allowed for this instruction

A1612E <type> addressing not allowed for <instr>

A1615E Store of a single element or structure to all lanes is UNDEFINED

A1616E Instruction, offset, immediate or register combination is not supported by
the current instruction set

This can be caused by attempting to use an invalid combination of operands. For
example, in Thumb:
MOV r0, #1 ; /* Not permitted */
MOVS r0, #1 ; /* Ok */

See the following in the Assembler Reference:
• Chapter 3 ARM and Thumb Instructions.

A1617E Specified width is not supported by the current instruction set

A1618E Specified instruction is not supported by the current instruction set

A1619E Specified condition is not consistent with previous IT

A1620E Error writing to file '<filename>': <reason>

A1621E CBZ or CBNZ from Thumb code to ARM code

A1622E Negative register offsets are not supported by the current instruction set

A1623E Offset not supported by the current instruction set

A1624E Branch from Thumb code to ARM code

A1625E Branch from ARM code to Thumb code
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-22
ID080411 Non-Confidential

Assembler Errors and Warnings
A1626E BL from Thumb code to ARM code

A1627E BL from ARM code to Thumb code

This occurs when there is a branch from ARM code to Thumb code (or
vice-versa) within this file. The usual solution is to move the Thumb code into a
separate assembler file. Then, at link-time, the linker adds any necessary
interworking veneers.

A1630E Specified processor or architecture does not support ARM instructions

Certain processors such as Cortex-M3 or Cortex-M1 implement only the Thumb
instruction set, not the ARM instruction set. It is likely that the assembly file
contains some ARM-specific instructions and is being built for one of these
processors.

A1631E Only left shifts of 1, 2 and 3 are allowed on load/stores

A1632E Else forbidden in IT AL blocks

A1633E LDR rx,= pseudo instruction only allowed in load word form

A1634E LDRD/STRD has no register offset addressing mode in Thumb

A1635E CBZ/CBNZ can not be made conditional

A1636E Flag setting MLA is not supported in Thumb

A1637E Error reading line: <reason>

A1638E Writeback not allowed on register offset loads or stores in Thumb

A1639E Conditional DCI only allowed in Thumb mode

A1640E Offset must be a multiple of four

A1641E Forced user-mode LDM/STM not supported in Thumb

A1642W Relocated narrow branch is not recommended

A1643E Cannot determine whether instruction is working on single or double
precision values.

A1644E Cannot use single precision registers with FLDMX/LSTMX

A1645W Substituted <old> with <new>

armasm can warn when it substitutes an instruction when assembling.
For example:
• ADD negative_number is the same as SUB positive_number
• MOV negative_number is the same as MVN positive_number
• CMP negative_number is the same as CMN positive_number.
For Thumb-2, unpredictable single register LDMs are transformed into LDRs.
This warning is suppressed by default, but can be enabled with --diag_warning
1645

For example:
 AREA foo, CODE
 ADD r0, #-1
 MOV r0, #-1
 CMP r0, #-1

When assembled with:
armasm --diag_warning 1645
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-23
ID080411 Non-Confidential

Assembler Errors and Warnings
the assembler reports:
Warning: A1645W: Substituted ADD with SUB
3 00000000 ADD r0, #-1
Warning: A1645W: Substituted MOV with MVN
4 00000004 MOV r0, #-1
Warning: A1645W: Substituted CMP with CMN
5 00000008 CMP r0, #-1

and the resulting code generated is:
foo
0x00000000: e2400001 ..@. SUB r0,r0,#1
0x00000004: e3e00000 MVN r0,#0
0x00000008: e3700001 ..p. CMN r0,#1

A1647E Bad register name symbol, expected Integer register

An integer (core) register is expected at this point in the syntax.

A1648E Bad register name symbol, expected Wireless MMX SIMD register

This message relates to Wireless MMX.

A1649E Bad register name symbol, expected Wireless MMX Status/Control or General
Purpose register

This message relates to Wireless MMX.

A1650E Bad register name symbol, expected any Wireless MMX register

This message relates to Wireless MMX.

A1651E TANDC, TEXTRC and TORC instructions with destination register other than
R15 is undefined

This message relates to Wireless MMX.

A1652W FLDMX/FSTMX instructions are deprecated in ARMv6. Please use FLDMD/FSTMD
instructions to save and restore unknown precision values.

A1653E Shift instruction using a status or control register is undefined

A1654E Cannot access external symbols when loading/storing bytes or halfwords

A1655W Instruction is UNPREDICTABLE if halfword/word/doubleword is unaligned

A1656E Target must be at least word-aligned when used with this instruction

A1657E Cannot load a byte/halfword literal using WLDRB/WLDRH =constant

A1658W Support for <opt> is deprecated

The option passed to armasm is now deprecated. Use armasm --help to view the
currently available options.
See the following in the Assembler Reference:
• Chapter 3 ARM and Thumb Instructions.

A1659E Cannot B/BL/BLX between ARM/Thumb and Thumb-2EE

A1660E Cannot specify scalar index on this register type

A1661E Cannot specify alignment on this register

A1662E Cannot specify a data type on this register type

A1663E A data type has already been specified on this register

A1664E Data type specifier not recognized
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-24
ID080411 Non-Confidential

Assembler Errors and Warnings
A1665E Data type size must be one of 8, 16, 32 or 64

A1666E Data type size for floating-point must be 32 or 64

A1667E Data type size for polynomial must be 8 or 16

A1668E Too many data types specified on instruction

A1669E Data type specifier not allowed on this instruction

A1670E Expected 64-bit doubleword register expression

A1671E Expected 128-bit quadword register expression

A1672E Expected either 64-bit or 128-bit register expression

A1673E Both source data types must be same type and size

A1674E Source operand 1 should have integer type and be double the size of source
operand 2

A1675E Data types and sizes for destination must be same as source

A1676E Destination type must be integer and be double the size of source

A1677E Destination type must be same as source, but half the size

A1678E Destination must be untyped and same size as source

A1679E Destination type must be same as source, but double the size

A1680E Destination must be unsigned and half the size of signed source

A1681E Destination must be unsigned and have same size as signed source

A1682E Destination must be un/signed and source floating, or destination floating
and source un/signed, and size of both must be 32-bits

A1683E Data type specifiers do not match a valid encoding of this instruction

A1684E Source operand type should be signed or unsigned with size between <min>
and <max>

A1685E Source operand type should be signed, unsigned or floating point with size
between <min> and <max>

A1686E Source operand type should be signed or floating point with size between
<min> and <max>

A1687E Source operand type should be integer or floating point with size between
<min> and <max>

A1688E Source operand type should be untyped with size between <min> and <max>

A1689E Source operand type should be <n>-bit floating point

A1690E Source operand type should be signed with size between <min> and <max>

A1691E Source operand type should be integer, floating point or polynomial with
size between <min> and <max>

A1692E Source operand type should be signed, unsigned or polynomial with size
between <min> and <max>

A1693E Source operand type should be unsigned or floating point with size between
<min> and <max>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-25
ID080411 Non-Confidential

Assembler Errors and Warnings
A1694E Instruction cannot be conditional in the current instruction set

Conditional instructions are not permitted in the specified instruction set. The
instruction MOVEQ, for example, is only permitted in ARM and Thumb-2
assembler, but not Thumb-1.

A1695E Scalar index not allowed on this instruction

A1696E Expected either 32-bit, 64-bit or 128-bit register expression

A1697E Expected either 32-bit or 64-bit VFP register expression

A1698E Expected 32-bit VFP register expression

A1699E 64-bit data type cannot be used with these registers

A1700E Source operand type should be integer with size between <min> and <max>

A1701E 16-bit polynomial type cannot be used for source operand

A1702E Register Dm can not be scalar for this instruction

A1704E Register Dm must be in the range D0-D<upper> for this data type

A1705E Assembler converted Qm register to D<rnum>[<idx>]

A1706E Register Dm must be scalar

A1708E 3rd operand to this instruction must be a constant expression

A1709E Expected ARM or scalar register expression

A1710E Difference between current and previous register should be <diff>

A1711E Scalar registers cannot be used in register list for this instruction

A1712W This combination of LSB and WIDTH results in UNPREDICTABLE behavior

A1713E Invalid field specifiers for APSR: must be APSR_ followed by at least one
of n, z, c, v, q or g

A1714E Invalid combination of field specifiers for APSR

A1715E PSR not defined on target architecture

A1716E Destination for VMOV instruction must be ARM integer, 32-bit
single-precision, 64-bit doubleword register or 64-bit doubleword scalar
register

A1717E Source register must be an ARM integer, 32-bit single-precision or 64-bit
doubleword scalar register

A1718E Source register must be an ARM integer register or same as the destination
register

A1719W This PSR name is deprecated and may be removed in a future release

A1720E Source register must be a 64-bit doubleword scalar register

A1721E Destination register may not have all-lanes specifier

A1722E Labels not allowed inside IT blocks

A1723E __RELOC is deprecated, please use the new RELOC directive

A1724E RELOC may only be used immediately after an instruction or data generating
directive
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-26
ID080411 Non-Confidential

Assembler Errors and Warnings
A1725W 'armasm inputfile outputfile' form of command-line is deprecated

A1726E Decreasing --max_cache below 8MB is not recommended

A1727W Immediate could have been generated using the 16-bit Thumb MOVS
instruction

A1728E Source register must be same type as destination register

A1729E Register list may only contain 32-bit single-precision or 64-bit
doubleword registers

A1730E Only IA or DB addressing modes may be used with these instructions

A1731E Register list increment of 2 or more is not allowed for quadword registers

A1732E Register list must contain between 1 and 4 contiguous doubleword registers

A1733E Register list must contain 2 or 4 doubleword registers, and increment 2 is
only allowed for 2 registers

A1734E Register list must contain <n> doubleword registers with increment 1 or 2

A1735E Post-indexed offset must equal the number of bytes loaded/stored (<n>)

A1736E Number of registers in list must equal number of elements

A1737E PC or SP can not be used as the offset register

A1738E Immediate too large for this operation

A1739W Constant generated using single VMOV instruction; second instruction is a
NOP

A1740E Number of bytes in FRAME PUSH or FRAME POP directive must not be less than
zero

A1741E Instruction cannot be conditional

A1742E Expected LSL #Imm

A1744E Alignment on register must be a multiple of 2 in the range 16 to 256

A1745W This register combination is DEPRECATED

A1746W Instruction stall diagnostics may be unreliable for this CPU

The assembler generates messages to help you optimize the code when building
with, for example:
--diag_warning 1563 --cpu=Cortex-A8

However, these messages are not reliable because the assembler make
sugggestions for modern processors such as the Cortex-A8 and Cortex-A9.
See also warning A1563W.

A1753E Unrecognized memory barrier option

A1754E Cannot change the type of a scalar register

A1755E Scalar index has already been specified on this register

A1756E Data type must be specified on all registers

A1757W Symbol attributes must be within square brackets; Any other syntax is
deprecated
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-27
ID080411 Non-Confidential

Assembler Errors and Warnings
A1758W Exporting multiple symbols with this directive is deprecated

A1759E Specified processor or architecture does not support Thumb-2EE
instructions

A1760W Build Attribute <from> is '<attr>'

A1761W Difference in build attribute from '<diff>' in <from>

A1762E Branch offset 0x<val> out of range of 16-bit Thumb branch, but offset
encodable in 32-bit Thumb branch

This is caused when assembling for Thumb-2 if an offset to a branch instruction
is too large to fit in a 16-bit branch. The .W suffix can be added to the instruction
to instruct the assembler to generate a 32-bit branch.

A1763W Inserted an IT block for this instruction

This indicates that the assembler has inserted a IT block to permit a number of
conditional instructions in Thumb-2. For example:
 MOVEQ r0,r1

This warning is off by default. It can be enabled using --diag_warning A1763.

A1764W <name> instructions are deprecated in architecture <arch> and above

A1765E Size of padding value on ALIGN must be 1, 2 or 4 bytes

This is caused when the optional padsize attribute is used with an ALIGN directive,
but has an incorrect size. It does not refer to the parameter to align to. The
parameter can be any power of 2 from 2^0 to 2^31

A1766W Size of padding value for code must be a minimum of <size> bytes; treating
as data

A1767E Unexpected characters following attribute

A1768E Missing '='

A1769E Bad NEON or VFP system register name symbol

A1771E Bad floating-point bitpattern when expecting <exp>-bit bitpattern

A1772E Destination type must be signed or unsigned integer, and source type must
be 32-bit or 64-bit floating-point

A1773E Floating-point conversion only possible between 32-bit single-precision
and 64-bit double-precision types

A1774E Fixed-point conversion only possible for 16-bit or 32-bit signed or
unsigned types

A1775E Conversion between these types is not possible

A1776E This operation is not available for 32-bit single-precision floating point
types

A1777E <n> is out of range for symbol type; value must be between <min> and <max>

A1778E <n> is out of range for symbol binding; value must be between <min> and
<max>

A1779W DCDO cannot be used on READONLY symbol '<key>'

A1780E Unknown ATTR directive

A1781E Tag #<id> cannot be set by using ATTR
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-28
ID080411 Non-Confidential

Assembler Errors and Warnings
A1782E Tag #<id> should be set with ATTR <cmd>

A1783E Attribute scope must be a label or section name

A1784W Reference to weak definition '<sym>' not relocated

A1785E Macro '<macuse>' not found, but '<macdef>' exists

A1786W This instruction using SP is deprecated in ARMv7

This is caused by statements like:
 ADD sp, r0, #imm

This can be replaced with a sequence like:
 ADD r1,r0,#imm
 MOV sp, r1

For more information, see Diagnostic messages A1745W, A1477W and A1786W,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4235.html.

A1787W Use of VFP Vector Mode is deprecated in ARMv7

A1788W Explicit use of PC in this instruction is deprecated

A1789W Explicit use of PC in this instruction is deprecated, except as
destination register

A1790W Writeback ignored in Thumb LDM loading the base register

This is caused by incorrectly adding an exclamation mark to indicate base register
writeback.
For example:
LDM r0!, {r0-r4}

is not a legal instruction because r0 is the base register and is also in the
destination register list. In this case, the assembler ignores the writeback and
generates:
LDM r0, {r0-r4}

A1791W Previous value of tag #<id> will be overridden

A1792E Undefined build attributes tag

A1793E Conversion only possible between 16-bit and 32-bit floating point

A1794E Conversion operations require two data types

A1795E Source and destination vector must contain <n> elements

A1796E Register type not consistent with data type

A1797E Specified FPU is not compatible with CPU architecture

A1798W Output is not WYSIWYG (<output>)

A1799W Output has not been checked for WYSIWYG property

A1800W No output for line

A1801W Instruction is UNPREDICTABLE in current instruction set

A1803E Bad system instruction name

A1804E Bad CP14 or CP15 register name for instruction

A1805W Register is Read-Only
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-29
ID080411 Non-Confidential

Assembler Errors and Warnings
A1806W Register is Write-Only

A1807W Instruction executes as NOP on target CPU

A1808E Generated object file may be corrupt (<reason>)

A1809W Instruction aligns PC before using it; section ought to be at least 4 byte
aligned

A1810E Base register writeback value unclear; use '[rn,#n]!' or '[rn],#n' syntax

A1811E Size of fill value must be 1, 2 or 4 bytes and a factor of fill size

A1812W Instruction cannot be assembled in the opposite instruction set

A1813W 32-bit instruction used where 16-bit could have been used

A1814E No output file

A1815E SHT_ARM_EXIDX sections require a link order dependency to be set

A1816E Unknown opcode '<name>' in CODE16, but exists in THUMB

A1817W ATTR tag #<id> setting ignored in <scope>

A1818W ATTR COMPAT flag <flag> and vendor '<vendor>' setting ignored in <scope>

A1819W ATTR compatible with tag #<id> setting ignored in <scope>

A1820E Register and processor mode not valid for instruction

A1846E Invalid field specifiers for CPSR or SPSR: must be followed by at least
one of c, x, s or f

A1847E Expression requiring more than one relocation not allowed

This can occur during the assembly of ARM instructions when trying to access
data in another area. For example, using:
LDR r0, [pc, #label - . - 8]

or its equivalent:
LDR r0, [pc, #label-{PC}-8]

where label is defined in a different AREA.
Change your code to use the simpler, equivalent syntax:
LDR r0, label

This works if label is either in the same area or in a different area.

A1848W State change in IT block

A1875E Register Rn must be from R0 to R7 in this instruction

Change the specified register to be in the range R0 to R7.

A1903E Line not seen in first pass; cannot be assembled

This occurs if an instruction or directive does not appear in pass 1 but appears in
pass 2 of the assembler.
The following example shows when a line is not seen in pass 1:
 AREA x,CODE
 [:DEF: foo
num EQU 42 ; assembler does not see this line during pass 1 because
 ; foo is not defined at this point during pass 1
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-30
ID080411 Non-Confidential

Assembler Errors and Warnings
]
foo DCD num
 END

A1907W Test for this symbol has been seen and may cause failure in the second
pass.

This diagnostic is suppressed by default. Enable it to identify situations that might
result in errors A1903E, A1909E, or A1908E.

A1908E Label '<name>' value inconsistent: in pass 1 it was <val1>; in pass 2 it
was <val2>

The following example generates this error because in pass 1 the value of x is
0x0004+r9, and in pass 2 the value of x is 0x0000+r0:
 map 0, r0
 if :lnot: :def: sym
 map 0, r9
 field 4
 endif
x field 4
sym LDR r0, x

A1909E Line not seen in second pass; cannot be assembled

This occurs if an instruction or directive appears in pass 1 but does not appear in
pass 2 of the assembler.
The following example shows when a line is not seen in pass 2:
 AREA x,CODE
 [:LNOT: :DEF: foo
 MOV r1, r2 ; assembler does not see this line during pass 2 because
 ; foo is already defined
]
foo MOV r3, r4
 END

A1916E Unknown built-in variable '<name>'

A1993E This operator requires a relocation that is not supported in <objfmt>

A1994E This directive is not supported in <objfmt>

A1995E Weak definitions are not supported in <objfmt>

A1996E TYPE must only be used after WEAK on IMPORT

A1997E Expected alias for weak extern symbol

A1998E Comdat Associated area must have Comdat Associative selection type

A1999E Comdat Associated area cannot be another Comdat Associated area
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 3-31
ID080411 Non-Confidential

Chapter 4
Linker Errors and Warnings

The following topics describe the error and warning messages for the linker, armlink:
• Suppressing armlink error and warning messages on page 4-2
• List of the armlink error and warning messages on page 4-3.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-1
ID080411 Non-Confidential

Linker Errors and Warnings
4.1 Suppressing armlink error and warning messages
All linker warnings are suppressible with --diag_suppress in the same way as for compiler
warnings. For example:

--diag_suppress 6306

Some errors such as L6220E, L6238E and L6784E can be downgraded to a warning by using:

--diag_warning
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-2
ID080411 Non-Confidential

Linker Errors and Warnings
4.2 List of the armlink error and warning messages
The error and warning messages for armlink are:

L6000U Out of memory.

This error is reported by RVCT v4.0 and earlier. For more details on why you
might see this error and possible solutions, see the description for error L6815U.

L6001U Could not read from file <filename>.

L6002U Could not open file <filename>: <reason>

This indicates that the linker was unable to open a file specified on the linker
command line. This can indicate a problem accessing the file or a fault with the
command line specified. Some common occurrences of this message are:
• L6002U: Could not open file /armlib/{libname}: No such file or

directory

Either specify the library path with --libpath or set the ARMCC41LIB
environment variable to install_directory\RVCT\Data\...\lib.
See the following in the Linker Reference:
— --libpath=pathlist on page 2-96.
See the following in Introducing the ARM Compiler toolchain:
— Toolchain environment variables on page 2-14.

• Error : armlink : L6002: Could not open file errors=ver.txt

Caused by the double-dash (--) missing from in front of errors=ver.txt. If
you do not prefix options with -- or - the linker treats them as input files
and fails the link step as it is unable to load all the specified files. The
correct switch is --errors=ver.txt

L6003U Could not write to file <filename>.

An file I/O error occurred while reading, opening, or writing to the specified file.

L6004U Incomplete library member list <list> for <library>.

This can occur where there is whitespace in the list of library objects.
The example below fails:
armlink x.lib(foo.o, bar.o)
Fatal error: L6004U: Missing library member in member list for x.lib.

The example below succeeds:
armlink x.lib(foo.o,bar.o)

Another less common occurrence is caused by a corrupt library, or possibly a
library in an unsupported format.

L6005U Extra characters on end of member list for <library>.

L6006U Overalignment value not specified with OVERALIGN attribute for execution
region <regionname>.

See the following in the Linker Reference:
• Syntax of an input section description on page 4-22
See the following in Using the Linker:
• Overalignment of execution regions and input sections on page 8-56.

L6007U Could not recognize the format of file <filename>.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-3
ID080411 Non-Confidential

Linker Errors and Warnings
The linker can recognize object files in the ELF format, and library files in AR
formats. The specified file is either corrupt, or is in a file format that the linker
cannot recognize.

L6008U Could not recognize the format of member <mem> from <lib>.

The linker can recognize library member objects in the ELF file format. The
specified library member is either corrupt, or is in a file format that the linker
cannot recognize.

L6009U File <filename> : Endianness mismatch.

The endianness of the specified file or object did not match the endianness of the
other input files. The linker can handle input of either big endian or little endian
objects in a single link step, but not a mixed input of some big and some little
endian objects.

L6010U Could not reopen stderr to file <filename>: <reason>

An file I/O error occurred while reading, opening, or writing to the specified file.

L6011U Invalid integer constant : <number>.

Specifying an illegal integer constant causes this. An integer can be entered in
hexadecimal format by prefixing &, 0x, or 0X. A suffix of k or m can be used to
specify a multiple of 1024 or 1024*1024.

L6015U Could not find any input files to link.

The linker must be provided with at least one object file to link.
For example, If you try to link with:
armlink lib.a -o foo.axf

you get the above error.
You must instead use, for example:
armlink foo_1.o foo_2.o lib.a -o foo.axf

L6016U Symbol table missing/corrupt in object/library <object>.

This can occur when linking with libraries built with the GNU tools. This is
because GNU ar can generate incompatible information.
The workaround is to replace ar with armar and use the same command line
arguments. Alternatively, the error is recoverable by using armar -s to rebuild the
symbol table.

L6017U Library <library> symbol table contains an invalid entry, no member at
offset 0x<offset>.

The library might be corrupted. Try rebuilding it.

L6018U <filename> is not a valid ELF file.

L6019U <filename> is not a valid 64 bit ELF file.

L6020U <filename> is not a valid 32 bit ELF file.

L6022U Object <objname> has multiple <table>.

The object file is faulty or corrupted. This might indicate a compiler fault. Contact
your supplier.

L6024U Library <library> contains an invalid member name.

The file specified is not a valid library file, is faulty or corrupted. Try rebuilding it.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-4
ID080411 Non-Confidential

Linker Errors and Warnings
L6025U Cannot extract members from a non-library file <library>.

The file specified is not a valid library file, is faulty or corrupted. Try rebuilding it.

L6026U ELF file <filename> has neither little or big endian encoding

The ELF file is invalid. Try rebuilding it.

L6027U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) has
invalid/unknown type.

This might indicate a compiler fault. Contact your supplier.

L6028U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) has invalid
offset.

This might indicate a compiler fault. Contact your supplier.

L6029U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is wrt
invalid/missing symbol.

The relocation is with respect to a symbol that is either:
• invalid or missing from the object symbol table
• a symbol that is not suited to be used by a relocation.
This might indicate a compiler fault. Contact your supplier.

L6030U Overalignment <overalignment> for region <regname> must be at least 4 and
a power of 2

See the following in the Linker Reference:
• Execution region attributes on page 4-11
• Syntax of an input section description on page 4-22
See the following in Using the Linker:
• Overalignment of execution regions and input sections on page 8-56.

L6031U Could not open scatter description file <filename>: <reason>

An I/O error occurred while trying to open the specified file. This could be due to
an invalid filename.

L6032U Invalid <text> <value> (maximum <max_value>) found in <object>

L6033U Symbol <symbolname> in <objname> is defined relative to an invalid
section.

L6034U Symbol <symbolname> in <objname> has invalid value.

This is most often caused by a section-relative symbol having a value that exceeds
the section boundaries.

L6035U Relocation #<rel_class>:<rel_number> in ZI Section <objname>(<secname>)
has invalid type.

ZI Sections cannot have relocations other than of type R_ARM_NONE.

L6036U Could not close file <filename>: <reason>

An I/O error occurred while closing the specified file.

L6037U '<arg>' is not a valid argument for option '<option>'.

The argument is not valid for this option. This could be due to a spelling error, or
due to the use of an unsupported abbreviation of an argument.

L6038U Could not create a temporary file to write updated SYMDEFS.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-5
ID080411 Non-Confidential

Linker Errors and Warnings
An I/O error occurred while creating the temporary file required for storing the
SYMDEFS output.

L6039W Relocation from #<rel_class>:<rel_number> in <objname>(<secname>) with
respect to <symname>. Skipping creation of R-type relocation. No
corresponding R-type relocation exists for type <rel_type>.

--reloc is used with objects containing relocations that do not have a
corresponding R-type relocation.

L6041U An internal error has occurred (<clue>).

Contact your supplier.

L6042U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is wrt a
mapping symbol(#<idx>, Last Map Symbol = #<last>).

Relocations with respect to mapping symbols are not permitted. This might
indicate a compiler fault. Contact your supplier.

L6043U Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is with
respect to an out of range symbol(#<val>, Range = 1-<max>).

Relocations can only be made wrt symbols in the range (1-n), where n is the
number of symbols.

L6047U The size of this image (<actual_size> bytes) exceeds the maximum allowed
for this version of the linker

L6048U The linker is unable to continue the link step (<id>). This version of the
linker will not create this image.

L6049U The linker is unable to continue the link step (<id>). This version of the
linker will not link with one or more given libraries.

L6050U The code size of this image (<actual_size> bytes) exceeds the maximum
allowed for this version of the linker.

L6058E Syntax error parsing linker script <script> at line <lineno> : <token>

The link ld script has a syntax error at the line number.
See the following in Using the Linker:
• Chapter 9 GNU ld script support in armlink.

L6064E ELF Executable file <filename> given as input on command line

This might be because you specified an object file as output from from the
compiler without specifying the -c compiler option. For example:
armcc file.c -o file.o

armlink file.o -o file.axf

See the following in the Compiler Reference:
• -c on page 3-31.

L6065E Load region <name> (size <size>) is larger than maximum writable
contiguous block size of 0x80000000.

The linker attempted to write a segment larger than 2GB. The size of a segment
is limited to 2GB.

L6175E EMPTY region <regname> cannot have any section selectors.

L6176E A negative max_size cannot be used for region <regname> without the EMPTY
attribute.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-6
ID080411 Non-Confidential

Linker Errors and Warnings
Only regions with the EMPTY attribute are permitted to have a negative
max-size.

L6177E A negative max_size cannot be used for region <regname> which uses the
+offset form of base address.

Regions using the +offset form of base address are not permitted to have a
negative max-size.

L6188E Special section <sec1> multiply defined by <obj1> and <obj2>.

A special section is one that can only be used once, such as "Veneer$$Code".

L6195E Cannot specify both '<attr1>' and '<attr2>' for region <regname>

See the following in the Linker Reference:
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for execution region address attributes on page 4-19
• Inheritance rules for the RELOC address attribute on page 4-20.

L6200E Symbol <symbolname> multiply defined by <object1> and <object2>.

A common example where this occurs:
Symbol __stdout multiply defined (by retarget.o and stdio.o).

means that there are two conflicting definitions of __stdout present in retarget.o
and stdio.o. The one in retarget.o is your own definition. The one in stdio.o is
the default implementation, which was probably linked-in inadvertently.
stdio.o contains a number symbol definitions and implementations of file
functions like fopen, fclose, and fflush.
stdio.o is being linked-in because it satisfies some unresolved references.
To identify why stdio.o is being linked-in, you must use the verbose link option
switch. For example:
armlink [... your normal options...] --verbose --list err.txt

Then study err.txt to see exactly what the linker is linking in, from where, and
why.
You might have to either:
• eliminate the calls like fopen, fclose, and fflush
• re-implement the _sys_xxxx family of functions.
See the following in Using ARM® C and C++ Libraries and Floating-Point
Support:
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

L6201E Object <objname> contains multiple entry sections.

The input object specifies more than one entry point. Use the --entry
command-line option to select the entry point to use.
See the following in the Linker Reference:
• --entry=location on page 2-58.

L6202E <objname>(<secname>) cannot be assigned to non-root region '<regionname>'
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-7
ID080411 Non-Confidential

Linker Errors and Warnings
A root region is a region that has an execution address the same as its load
address. The region does not therefore require moving or copying by the
scatter-load initialization code.
Certain sections must be placed in root region in the image. __main.o and the
linker-generated table (Region$$Table) must be in a root region. If not, the linker
reports, for example:
Region$$Table cannot be assigned to a non-root region.

Scatter-loading (__scatter*.o) and decompressor (__dc*.o) objects from the
library must be placed in a root region. These can all be placed together using
InRoot$$Sections:
ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections
 ; that must be in a root region
 ; for example, __main.o, __scatter*.o,
 ; dc*.o and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

See also Placing root region library objects,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3946.html.

L6203E Entry point (<address>) lies within non-root region <regionname>.

The image entry point must correspond to a valid instruction in a root-region of
the image.

L6204E Entry point (<address>) does not point to an instruction.

The image entry point you specified with the --entry command-line option must
correspond to a valid instruction in the root-region of the image.
See the following in the Linker Reference:
• --entry=location on page 2-58.

L6205E Entry point (<address>) must be word aligned for ARM instructions.

This message is displayed because the image entry point you specified with the
--entry command-line option is not word aligned. For example, you specified
--entry=0x8001 instead of --entry=0x8000.
See the following in the Linker Reference:
• --entry=location on page 2-58.

L6206E Entry point (<address>) lies outside the image.

The image entry point you specified with the --entry command-line option is
outside the image. For example, you might have specified an entry address of
0x80000 instead of 0x8000, as follows:
armlink --entry=0x80000 test.o -o test.axf

See the following in the Linker Reference:
• --entry=location on page 2-58.

L6208E Invalid argument for --entry command: '<arg>'
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-8
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• --entry=location on page 2-58.

L6209E Invalid offset constant specified for --entry (<arg>)

See the following in the Linker Reference:
• --entry=location on page 2-58.

L6210E Image cannot have multiple entry points. (<address1>,<address2>)

One or more input objects specifies more than one entry point for the image. Use
the --entry command-line option to select the entry point to use.
See the following in the Linker Reference:
• --entry=location on page 2-58.

L6211E Ambiguous section selection. Object <objname> contains more than one
section.

This can occur when using the linker option --keep on an assembler object that
contains more than one AREA. The linker must know which AREA you want to keep.
To solve this, use more than one --keep option to specify the names of the AREAs
to keep, such as:
 --keep boot.o(vectors) --keep boot.o(resethandler) …

Note
 Using assembler files with more than one AREA might give other problems

elsewhere, so this is best avoided.

L6213E Multiple First section <object2>(<section2>) not allowed.
<object1>(<section1>) already exists.

Only one FIRST section is permitted.

L6214E Multiple Last section <object2>(<section2>) not allowed.
<object1>(<section1>) already exists.

Only one LAST section is permitted.

L6215E Ambiguous symbol selection for --First/--Last. Symbol <symbol> has more
than one definition.

See the following in the Linker Reference:
• --first=section_id on page 2-71
• --last=section_id on page 2-93.

L6216E Cannot use base/limit symbols for non-contiguous section <secname>

The exception-handling index tables generated by the compiler are given the
section name .ARM.exidx. For more information, see Exception Handling ABI for
the ARM Architecture,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html.
At link time these tables must be placed in the same execution region and be
contiguous. If you explicitly place these sections non-contiguously using specific
selector patterns in your scatter file, then this error message is likely to occur. For
example:
LOAD_ROM 0x00000000
{
 ER1 0x00000000
 {
 file1.o (+RO) ; from a C++ source
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-9
ID080411 Non-Confidential

Linker Errors and Warnings
 * (+RO)
 }
 ER2 0x01000000
 {
 file2.o (+RO) ; from a C++ source
 }
 ER3 +0
 {
 * (+RW, +ZI)
 }
}

This might produce the following error if exception-handling index tables are in
both file1.o and file2.o, because the linker cannot place them in separate
regions:
Error: L6216E: Cannot use base/limit symbols for non-contiguous section
.ARM.exidx

Also, the .init_array sections must be placed contiguously within the same
region for their base and limit symbols to be accessible.
The corrected example is:
LOAD_ROM 0x00000000
{
 ER1 0x00000000
 {
 file1.o (+RO) ; from a C++ source
 * (.ARM.exidx) ; Section .ARM.exidx must be placed explicitly,
 ; otherwise it is shared between two regions, and
 ; the linker is unable to decide where to place it.
 *(.init_array) ; Section .init_array must be placed explicitly,
 ; otherwise it is shared between two regions, and
 ; the linker is unable to decide where to place it.
 * (+RO)
 }
 ER2 0x01000000
 {
 file2.o (+RO) ; from a C++ source
 }
 ER3 +0
 {
 * (+RW, +ZI)
 }
}

In the corrected example, the base and limit symbols are contained in .init_array
in a single region.
For more information, see the following in Using ARM® C and C++ Libraries
and Floating-Point Support:
• How C and C++ programs use the library functions on page 2-54
• C++ initialization, construction and destruction on page 2-56.

L6217E Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to <symbol>. R_ARM_SBREL32 relocation to imported symbol

L6218E Undefined symbol <symbol> (referred from <objname>).

Some common examples where this can occur are:
• User Error. Somebody has referenced a symbol and has either forgotten to

define it or has incorrectly defined it.
• Undefined symbol __ARM_switch8 or __ARM_ll_<xxxx> functions
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-10
ID080411 Non-Confidential

Linker Errors and Warnings
The helper functions are automatically generated into the object file by the
compiler.

Note
 An undefined reference error can, however, still be generated if linking

objects from legacy projects where the helper functions are in the h_xxx
libraries (h indicates that these are compiler helper libraries, rather than
standard C library code).
Re-compile the object or ensure that these libraries can be found by the
linker.

• When attempting to refer to a function/entity in C from a function/entity in
C++. This is caused by C++ name mangling, and can be avoided by
marking C functions extern "C".

• Undefined symbol thunk{v:0,-44} to Foo_i::~Foo_i() (referred from
Bar_i.o)

The symbol thunk{v:0,-44} to Foo_i::~Foo_i() is a wrapper function
round the regular Foo_i::~Foo_i().
Foo_i is a derived class of some other base class, therefore:
— it has a base-class vtable for when it is referred to by a pointer to that

base class
— the base-class vtable has an entry for the thunk
— the destructor thunk is output when the actual (derived class)

destructor is output.
Therefore, to avoid the error, ensure this destructor is defined.

L6219E <type> section <object1>(<section1>) attributes {<attributes>}
incompatible with neighboring section <object2>(<section2>).

This error occurs when the default ordering rules used by the linker (RO followed
by RW followed by ZI) are violated. This typically happens when one uses +FIRST
or +LAST, for example in a scatter file, attempting to force RW before RO.

L6220E <type> region <regionname> size (<size> bytes) exceeds limit (<limit>
bytes).

Example:
Execution region ROM_EXEC size (4208184 bytes) exceeds limit (4194304
bytes).

This can occur where a region has been given an (optional) maximum length in
the scatter file, but this size of the code/data being placed in that region has
exceeded the given limit. This error is suppressible with --diag_suppress 6220.
For example, this might occur when using .ANYnum selectors with the ALIGN
directive in a scatter file to force the linker to insert padding. You might be able
to fix this using the --any_contingency option.
See the following in Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-25.
See the following in the Linker Reference:
• --any_contingency on page 2-8
• --diag_suppress=tag[,tag,...] on page 2-47.

L6221E <type1> region <regionname1> with <addrtype1> range [<base1>,<limit1>)
overlaps with <type2> region <regionname2> with <addrtype2> range
[<base2>,<limit2>).
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-11
ID080411 Non-Confidential

Linker Errors and Warnings
This represents an incorrect scatter file. A non-ZI section must have a unique load
address and in most cases must have a unique execution address. This error might
be because a load region LR2 with a relative base address immediately follows a
ZI execution region in a load region LR1. From RVCT v3.1 onwards, the linker
no longer assigns space to ZI execution regions.
See the following in the Linker Reference:
• Scatter files containing relative base address load regions and a ZI

execution region on page 4-36.

L6222E Partial object cannot have multiple ENTRY sections, <e_oname>(<e_sname>)
and <oname>(<sname>).

Where objects are being linked together into a partially-linked object, only one of
the sections in the objects can have an entry point.

Note
 It is not possible in this case to use the linker option --entry to select one of the

entry points.

L6223E Ambiguous selectors found for <objname>(<secname>) from Exec regions
<region1> and <region2>.

This occurs if the scatter file specifies <objname>(<secname>) to be placed in more
than one execution region. This can occur accidentally when using wildcards (*).
The solution is to make the selections more specific in the scatter file.

L6224E Could not place <objname>(<secname>) in any Execution region.

This occurs if the linker can not match an input section to any of the selectors in
your scatter file. You must correct your scatter file by adding an appropriate
selector.
See the following in Using the Linker:
• Section placement with the linker on page 4-19.

L6225E Number <str...> is too long.

L6226E Missing base address for region <regname>.

L6227E Using --reloc with --rw-base without --split is not allowed.

See the following in the Linker Reference:
• --reloc on page 2-132
• --rw_base=address on page 2-139
• --split on page 2-154.

L6228E Expected '<str1>', found '<str2>'.

L6229E Scatter description <file> is empty.

L6230E Multiple execution regions (<region1>,<region2>) cannot select <secname>.

L6231E Missing module selector.

L6232E Missing section selector.

L6233E Unknown section selector '+<selector>'.

L6234E <ss> must follow a single selector.

For example, in a scatter file:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-12
ID080411 Non-Confidential

Linker Errors and Warnings
:
* (+FIRST, +RO)
:

+FIRST means place this (single) section first. Selectors that can match multiple
sections (for example, +RO or +ENTRY) are not permitted to be used with +FIRST (or
+LAST). If used together, the error message is generated.

L6235E More than one section matches selector - cannot all be FIRST/LAST.

See the following in Using the Linker:
• Placing sections with FIRST and LAST attributes on page 4-21.
See the following in the Linker Reference:
• Syntax of an input section description on page 4-22.

L6236E No section matches selector - no section to be FIRST/LAST.

The scatter file specifies a section to be +FIRST or +LAST, but that section does not
exist, or has been removed by the linker because it believes it to be unused. Use
the linker option --info unused to reveal which objects are removed from your
project. Example:
ROM_LOAD 0x00000000 0x4000
{
 ROM_EXEC 0x00000000
 {
 vectors.o (Vect, +First) << error here
 * (+RO)
 }
 RAM_EXEC 0x40000000
 {
 * (+RW, +ZI)
 }
}

Some possible solutions are:
• ensure vectors.o is specified on the linker command-line
• link with --keep vectors.o to force the linker not to remove this, or switch

off this optimization entirely, with --noremove [not recommended]
• [Recommended] Add the ENTRY directive to vectors.s, to tell the linker

that it is a possible entry point of your application such as, for example:
AREA Vect, CODE
ENTRY ; define this as an entry point
Vector_table
...

Then link with --entry Vector_table to define the real start of your code.
See the following in Using the Linker:
• Placing sections with FIRST and LAST attributes on page 4-21.
See the following in the Linker Reference:
• --entry=location on page 2-58
• --info=topic[,topic,...] on page 2-80
• --keep=section_id on page 2-89
• --remove, --no_remove on page 2-134
• Syntax of an input section description on page 4-22.
See the following in the Assembler Reference:
• ENTRY on page 6-65.

L6237E <objname>(<secname>) contains relocation(s) to unaligned data.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-13
ID080411 Non-Confidential

Linker Errors and Warnings
L6238E <objname>(<secname>) contains invalid call from '<attr1>' function to
'<attr2>' function <sym>.

This linker error is given where a stack alignment conflict is detected in object
code. The ABI for the ARM Architecture suggests that code maintains eight-byte
stack alignment at its interfaces. This permits efficient use of LDRD and STRD
instructions (in ARM Architecture 5TE and later) to access eight-byte aligned
double and long long data types.
Symbols such as ~PRES8 and REQ8 are Build Attributes of the objects:
• PRES8 means the object PREServes eight-byte alignment of the stack
• ~PRES8 means the object does NOT preserve eight-byte alignment of the

stack (~ meaning NOT)
• REQ8 means the object REQuires eight-byte alignment of the stack.
This link error typically occurs in two cases:
• Where assembler code (that does not preserve eight-byte stack alignment)

calls compiled C/C++ code (that requires eight-byte stack alignment).
• Where attempting to link legacy objects that were compiled with older tools

with objects compiled with recent tools. Legacy objects that do not have
these attributes are treated as ~PRES8, even if they do actually happen to
preserve eight-byte alignment.

For example:
Error: L6238E: foo.o(.text) contains invalid call from '~PRES8' function
to 'REQ8' function foobar

This means that there is a function in the object foo.o (in the section named .text)
that does not preserve eight-byte stack alignment, but which is trying to call
function foobar that requires eight-byte stack alignment.
A similar warning that might be encountered is:
Warning: L6306W: '~PRES8' section foo.o(.text) should not use the address
of 'REQ8' function foobar

where the address of an external symbol is being referred to.
There are two possible solutions to work-around this issue:
• Rebuild all your objects/libraries.

If you have any assembler files, you must check that all instructions
preserve eight-byte stack alignment, and if necessary, correct them.
For example, change:
STMFD sp!, {r0-r3, lr} ; push an odd number of registers

to
STMFD sp!, {r0-r3, r12, lr} ; push even number of registers

The assembler automatically marks the object with the PRES8 attribute if all
instructions preserve eight-byte stack alignment, so it is no longer
necessary to add the PRESERVE8 directive to the top of each assembler file.

• If you have any legacy objects/libraries that cannot be rebuilt, either
because you do not have the source code, or because the old objects must
not be rebuilt (for example, for qualification/certification reasons), then
you must inspect the legacy objects to check whether they preserve
eight-byte alignment or not.
Use fromelf -c to disassemble the object code. C/C++ code compiled with
ADS 1.1 or later normally preserves eight-byte alignment, but assembled
code does not.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-14
ID080411 Non-Confidential

Linker Errors and Warnings
If your objects do indeed preserve eight-byte alignment, then the linker
error L6238E can be suppressed with the use of --diag_suppress 6238 on
the linker command line.
By using this, you are effectively guaranteeing that these objects are PRES8.
The linker warning L6306W is suppressible with --diag_suppress 6306.

See also Linker Error: L6238E: foo.o(.text) contains invalid call from '~PRES8'
function to 'REQ8' function foobar,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3556.html.

L6239E Cannot call non-interworking <t2> symbol '<sym>' in <obj2> from <t1> code
in <obj1>(<sec1>)

Example:
Cannot call non-interworking ARM symbol 'ArmFunc' in object foo.o from
THUMB code in bar.o(.text)

This problem can be caused by foo.c not being compiled with the option --apcs
/interwork, to enable ARM code to call Thumb code (and Thumb to ARM) by
linker-generated interworking veneers.

L6241E <objname>(<secname>) cannot use the address of '<attr1>' function <sym> as
the image contains '<attr2>' functions.

When linking with '--strict', the linker reports conditions that might fail as
errors, for example:
Error: L6241E: foo.o(.text) cannot use the address of '~IW' function main
as the image contains 'IW' functions.

IW means interworking, and ~IW means non-interworking.

L6242E Cannot link object <objname> as its attributes are incompatible with the
image attributes.

In most cases the error message you receive is similar to:
Error: L6242E: Cannot link object foo.o as its attributes are incompatible
with the image attributes.
require four-byte alignment of eight-byte datatypes clashes with require
eight-byte alignment of eight-byte data types.

This occurs when you try to link object files built for the ADS ABI (ADS objects
or compiled with --apcs=/adsabi).
To avoid this error message you must re-compile the offending object files that
use the ADS ABI.

L6243E Selector only matches removed unused sections - no section to be
FIRST/LAST.

All sections matching this selector have been removed from the image because
they were unused. For more information, use --info unused.

L6244E <type> region <regionname> address (<addr>) not aligned on a <align> byte
boundary.

L6245E Failed to create requested ZI section '<name>'.

L6248E <objname>(<secname>) in <attr1> region '<r1>' cannot have <rtype>
relocation to <symname> in <attr2> region '<r2>'.

Example: L6248E: foo.o(areaname) in ABSOLUTE region 'ER_RO' cannot have
address/offset type relocation to symbol in PI region 'ER_ZI'.

See compiler error number 1359.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-15
ID080411 Non-Confidential

Linker Errors and Warnings
See also What does "Error: L6248E: cannot have address type relocation"
mean?, http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3554.html.

L6249E Entry point (<address>) lies within multiple sections.

L6250E Object <objname> contains illegal definition of special symbol <symbol>.

L6251E Object <objname> contains illegal reference to special symbol <symbol>.

L6252E Invalid argument for --xreffrom/--xrefto command: '<arg>'

L6253E Invalid SYMDEF address: <number>.

L6254E Invalid SYMDEF type : <type>.

The content of the symdefs file is invalid.
See the following in Using the Linker:
• Symdefs file format on page 7-21.

L6255E Could not delete file <filename>: <reason>

An I/O error occurred while trying to delete the specified file. The file was either
read-only, or was not found.

L6257E <object>(<secname>) cannot be assigned to overlaid Execution region
'<ername>'.

This message indicates a problem with the scatter file.
See the following in the Linker Reference:
• Chapter 4 Formal syntax of the scatter file.

L6258E Entry point (<address>) lies in an overlaid Execution region.

This message indicates a problem with the scatter file.
See the following in the Linker Reference:
• Chapter 4 Formal syntax of the scatter file.

L6259E Reserved Word '<name>' cannot be used as a <type> region name.

<name> is a reserved word, so choose a different name for your region.

L6260E Multiple load regions with the same name (<regionname>) are not allowed.

This message indicates a problem with the scatter file.
See the following in the Linker Reference:
• Chapter 4 Formal syntax of the scatter file.

L6261E Multiple execution regions with the same name (<regionname>) are not
allowed.

This message indicates a problem with the scatter file.
See the following in the Linker Reference:
• Chapter 4 Formal syntax of the scatter file.

L6263E <addr> address of <regionname> cannot be addressed from <pi_or_abs> Region
Table in <regtabregionname>

The Region Table contains information used by the C-library initialization code
to copy, decompress, or create ZI. This error message is given when the scatter
file specifies an image structure that cannot be described by the Region Table.
The error message is most common when PI and non-PI Load Regions are mixed
in the same image.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-16
ID080411 Non-Confidential

Linker Errors and Warnings
L6265E Non-PI Section <obj>(<sec>) cannot be assigned to PI Exec region <er>.

This might be caused by explicitly specifying the (wrong) ARM-supplied library
on the linker command-line. Remove the explicit specification of the ARM
library or replace the library, for example, c_t.l, with the correct library.

L6266E RWPI Section <obj>(<sec>) cannot be assigned to non-PI Exec region <er>.

A file compiled with --apcs=/rwpi is placed in an Execution Region that does not
have the PI attribute.

L6271E Two or more mutually exclusive attributes specified for Load region
<regname>

This message indicates a problem with the scatter file.

L6272E Two or more mutually exclusive attributes specified for Execution region
<regname>

This message indicates a problem with the scatter file.

L6273E Section <objname>(<secname>) has mutually exclusive attributes (READONLY
and ZI)

This message indicates a problem with the object file.

L6275E COMMON section <obj1>(<sec1>) does not define <sym> (defined in
<obj2>(<sec2>))

Given a set of COMMON sections with the same name, the linker selects one of them
to be added to the image and discards all others. The selected COMMON section must
define all the symbols defined by any rejected COMMON section, otherwise, a symbol
which was defined by the rejected section now becomes undefined again. The
linker generates an error if the selected copy does not define a symbol that a
rejected copy does. This error is normally be caused by a compiler fault. Contact
your supplier.

L6276E Address <addr> marked both as <s1>(from <sp1>(<obj1>) via <src1>) and
<s2>(from <sp2>(<obj2>) via <src2>).

The image cannot contain contradictory mapping symbols for a given address,
because the contents of each word in the image are uniquely typed as ARM ($a)
or THUMB ($t) code, DATA ($d), or NUMBER. It is not possible for a word to
be both ARM code and DATA. This might indicate a compiler fault. Contact your
supplier.

L6277E Unknown command '<cmd>'.

L6278E Missing expected <str>.

L6279E Ambiguous selectors found for <sym> ('<sel1>' and '<sel2>').

L6280E Cannot rename <sym> using the given patterns.

See the following in the Linker Reference:
• RENAME on page 3-5.

L6281E Cannot rename both <sym1> and <sym2> to <newname>.

See the following in the Linker Reference:
• RENAME on page 3-5.

L6282E Cannot rename <sym> to <newname> as a global symbol of that name exists
(defined) in <obj>).
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-17
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• RENAME on page 3-5.

L6283E Object <objname> contains illegal local reference to symbol <symbolname>.

An object cannot contain a reference to a local symbol, since local symbols are
always defined within the object itself.

L6285E Non-relocatable Load region <lr_name> contains R-Type dynamic relocations.
First R-Type dynamic relocation found in <object>(<secname>) at offset
0x<offset>.

This error occurs where there is a PI reference between two separate segments, if
the two segments can be moved apart at runtime. When the linker sees that the
two sections can be moved apart at runtime it generates a relocation (an R-Type
relocation) that can be resolved if the sections are moved from their statically
linked address. However the linker faults this relocation (giving error L6285E)
because PI regions must not have relocations with respect to other sections as this
invalidates the criteria for being position independent.

L6286E Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to {symname|%s}. Value(<val>) out of range(<range>) for (<rtype>)

This can typically occur in handwritten assembler code, where the limited
number of bits for a field within the instruction opcode is too small to refer to a
symbol so far away. For example, for an LDR or STR where the offset is too large
for the instruction (+/-4095 for ARM state LDR/STR instruction). In other cases,
please make sure you have the latest patch installed from:
http://www.arm.com/support/downloads.
For more information see Value out of range for relocation,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka3553.html.

L6287E Illegal alignment constraint (<align>) specified for <objname>(<secname>).

An illegal alignment was specified for an ELF object.

L6291E Cannot assign Fixed Execution Region <ername> Load Address:<addr>. Load
Address must be greater than or equal to next available Load
Address:<load_addr>.

See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6292E Ignoring unknown attribute '<attr>' specified for region <regname>.

This error message is specific to execution regions with the FIXED attribute. FIXED
means make the load address the same as the execution address. The linker can
only do this if the execution address is greater than or equal to the next available
load address within the load region.
See the following in Using the Linker:
• Using the FIXED attribute to create root regions on page 8-17.
See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6294E <type> region <regionname> spans beyond 32 bit address space (base <base>,
size <size> bytes).

The above error message relates to a problem with the scatter file.

L6295E Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to <symname> SBREL relocation requires image to be RWPI
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-18
ID080411 Non-Confidential

Linker Errors and Warnings
L6296E Definition of special symbol <sym1> is illegal as symbol <sym2> is
absolute.

See L6188E.

L6300W Common section <object1>(<section1>) is larger than its definition
<object2>(<section2>).

This might indicate a compiler fault. Contact your supplier.

L6301W Could not find file <filename>: <reason>

The specified file was not found in the default directories.

L6302W Ignoring multiple SHLNAME entry.

There can be only one SHLNAME entry in an edit file. Only the first such entry is
accepted by the linker. All subsequent SHLNAME entries are ignored.

L6304W Duplicate input file <filename> ignored.

The specified filename occurred more than once in the list of input files.

L6305W Image does not have an entry point. (Not specified or not set due to
multiple choices.)

The entry point for the ELF image was either not specified, or was not set because
there was more than one section with an entry point linked-in. You must use linker
option --entry to specify the single, unique entry, for example:
--entry 0x0

or
--entry <label>

The label form is typical for an embedded system.

L6306W '<attr1>' section <objname>(<secname>) should not use the address of
'<attr2>' function <sym>.

See L6238E.

L6307W Relocation #<rel_class>:<rel_num> in <objname>(<secname>) with respect to
<sym>. Branch to unaligned destination.

L6308W Could not find any object matching <membername> in library <libraryname>.

The name of an object in a library is specified on the link-line, but the library does
not contain an object with that name.

L6309W Library <libraryname> does not contain any members.

A library is specified on the linker command-line, but the library does not contain
any members.

L6310W Unable to find ARM libraries.

This is most often caused by a missing or invalid value of the environment
variable ARMCC41LIB or by incorrect arguments to --libpath.
Set the the correct path with either the --libpath linker option or the ARMCCnnLIB
environment variable. The default path for a Windows installation is:
install_directory\RVCT\Data\...\lib

Ensure this path does not include:
• \armlib

• \cpplib
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-19
ID080411 Non-Confidential

Linker Errors and Warnings
• any trailing slashes (\) at the end. These are added by the linker
automatically.

Use --verbose or --info libraries to display where the linker is attempting to
locate the libraries.
See the following in the Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --libpath=pathlist on page 2-96
• --verbose on page 2-184.
See the following in Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-14.

L6311W Undefined symbol <symbol> (referred from <objname>).

See L6218E.

L6312W Empty <type> region description for region <region>

L6313W Using <oldname> as an section selector is obsolete. Please use <newname>
instead.

For example, use of IWV$$Code within the scatter file is now obsolete and can be
replaced with Veneer$$Code.

L6314W No section matches pattern <module>(<section>).

Example:
No section matches pattern foo.*o(ZI).

This can occur for two possible reasons:
• The file foo.o is mentioned in your scatter file, but it is not listed on the

linker command-line. To resolve this, add foo.o to the link-line.
• You are trying to place the ZI data of foo.o using a scatter file, but foo.o

does not contain any ZI data. To resolve this, remove the +ZI attribute from
the foo.o line in your scatter file.

L6315W Ignoring multiple Build Attribute symbols in Object <objname>.

An object can contain at most one absolute BuildAttribute$$... symbol. Only the
first such symbol from the object symbol table is accepted by the linker. All
subsequent ones are ignored.

L6316W Ignoring multiple Build Attribute symbols in Object <objname> for section
<sec_no>

An object can contain at most one BuildAttribute$$... symbol applicable to a
given section. Only the first such symbol from the object symbol table is accepted
by the linker. All subsequent ones are ignored.

L6317W <objname>(<secname>) should not use the address of '<attr1>' function
<sym> as the image contains '<attr2>' functions.

L6318W <objname>(<secname>) contains branch to a non-code symbol <sym>.

This warning means that in the (usually assembler) file, there is a branch to a
non-code symbol (in another AREA) in the same file. This is most likely a branch
to a label or address where there is data, not code.
For example:
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-20
ID080411 Non-Confidential

Linker Errors and Warnings
 AREA foo, CODE
 B bar
 AREA bar, DATA
 DCD 0
 END

results in the message:
init.o(foo) contains branch to a non-code symbol bar.

If the destination has no name:
BL 0x200 ; Branch with link to 0x200 bytes ahead of PC

the following message is displayed:
bootsys.o(BOOTSYS_IVT) contains branch to a non-code symbol <Anonymous
Symbol>.

This warning can also appear when linking objects generated by GCC. GCC uses
linker relocations for references internal to each object. The targets of these
relocations might not have appropriate mapping symbols that permit the linker to
determine whether the target is code or data, so a warning is generated. By
contrast, armcc resolves all such references at compile-time.

L6319W Ignoring <cmd> command. Cannot find section <objname>(<secname>).

For example, when building a Linux application, you might have:
--keep *(.init_array)

on the linker command-line in your makefile, but this section might not be present
when building with no C++, in which case this warning is reported:
Ignoring --keep command. Cannot find section *(.init_array)

You can often ignore this warning, or suppress it with --diag_suppress 6319

L6320W Ignoring <cmd> command. Cannot find argument '<argname>'.

L6323W Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to <sym>. Multiple variants exist. Using the <type> variant to resolve
ambiguity

L6324W Ignoring <attr> attribute specified for Load region <regname>.

This attribute is applicable to execution regions only. If specified for a Load
region, the linker ignores it.

L6325W Ignoring <attr> attribute for region <regname> which uses the +offset form
of base address.

This attribute is not applicable to regions using the +offset form of base address.
If specified for a region, which uses the +offset form, the linker ignores it.
A region that uses the +offset form of base address inherits the PI, RELOC, or
OVERLAY attributes from either:
• the previous region in the description
• the parent load region if it is the first execution region in the load region.
See the following in the Linker Reference:
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for execution region address attributes on page 4-19
• Inheritance rules for the RELOC address attribute on page 4-20.

L6326W Ignoring ZEROPAD attribute for non-root execution region <ername>.

ZEROPAD only applies to root execution regions. A root region is a region whose
execution address is the same as its load address, and so does not require moving
or copying at run-time.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-21
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6329W Pattern <module>(<section>) only matches removed unused sections.

All sections matching this pattern have been removed from the image because
they were unused. For more information, use --info unused.
See the following in Using the Linker:
• Elimination of unused sections on page 5-4.
See the following in the Linker Reference:
• --info=topic[,topic,...] on page 2-80.

L6330W Undefined symbol <symbol> (referred from <objname>). Unused section has
been removed.

This means that an unused section has had its base and limit symbols referenced.
For more information, use --info unused.
See the following in Using the Linker:
• Elimination of unused sections on page 5-4.
See the following in the Linker Reference:
• --info=topic[,topic,...] on page 2-80.

L6331W No eligible global symbol matches pattern <pat>.

L6332W Undefined symbol <sym1> (referred from <obj1>). Resolved to symbol <sym2>.

L6334W Overalignment <overalignment> for region <regname> cannot be negative.

See the following in Using the Linker:
• Overalignment of execution regions and input sections on page 8-56.

L6335W ARM interworking code in <objname>(<secname>) may contain invalid
tailcalls to ARM non-interworking code.

The compiler is able to perform tailcall optimization for improved code size and
performance. However, there is a problematic sequence for Architecture 4T code
where a Thumb IW function calls (by a veneer) an ARM IW function, which
tailcalls an ARM not-IW function. The return from the ARM not-IW function can
pop the return address off the stack into the PC instead of using the correct BX
instruction. The linker can warn of this situation and report the above warning.
Thumb IW tailcalls to Thumb not-IW do not occur because Thumb tailcalls with
B are so short ranged that they can only be generated to functions in the same ELF
section which must also be Thumb.
The warning is pessimistic in that an object might contain invalid tailcalls, but the
linker cannot be sure because it only looks at the attributes of the objects, not at
the contents of their sections.
To avoid the warning, either recompile your entire code base, including any user
libraries, with --apcs /interwork, or manually inspect the ARM IW function to
check for tailcalls (that is, where function calls are made using an ordinary branch
B instruction), to check whether this is a real problem. This warning can be
suppressed with --diag_suppress L6335W.

L6337W Common code sections <o1>(<s1>) and <o2>(<s2>) have incompatible
floating-point linkage

L6339W Ignoring RELOC attribute for execution region <er_name>.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-22
ID080411 Non-Confidential

Linker Errors and Warnings
Execution regions cannot explicitly be given RELOC attribute. They can only gain
this attribute by inheriting from the parent load region or the previous execution
region if using the +offset form of addressing.
See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6340W options first and last are ignored for link type of <linktype>

The --first and --last options are meaningless when creating a partially-linked
object.

L6366E <object> attributes<attr> are not compatible with the provided cpu and fpu
attributes<cli> <diff>.

L6367E <object>(<section>) attributes<attr> are not compatible with the provided
cpu and fpu attributes<cli> <diff>

L6368E <symbol> defined in <object>(<section>) attributes<attr> are not
compatible with the provided cpu and fpu attributes<cli> <diff>

L6369E <symbol> defined in <object>(ABSOLUTE) are not compatible with the
provided cpu and fpu Attributes<cli> <diff>

L6370E cpu <cpu> is not compatible with fpu <fpu>

See the following in the Linker Reference:
• --cpu=name on page 2-38
• --fpu=name on page 2-76.

L6371E Adding attributes from cpu and fpu: <attrs>

L6372E Image needs at least one load region.

L6373E libattrs.map file not found in System Library directory <dir>. Library
selection may be impaired.

L6384E No Load Execution Region of name <region> seen yet at line <line>.

This might be because you have used the current base address in a limit
calculation in a scatter file. For example:
ER_foo 0 ImageBase(ER_foo)

L6385W Addition overflow on line <line>

L6386E Exec Region Expressions can only be used in base address calculations on
line <line>

L6387E Load Region Expressions can only be used in ScatterAssert expressions on
line <line>

See the following in the Linker Reference:
• ScatterAssert function and load address related functions on page 4-38.

L6388E ScatterAssert expression <expr> failed on line <line>

See the following in the Linker Reference:
• ScatterAssert function and load address related functions on page 4-38.

L6389E Load Region <name> on line <line> not yet complete, cannot use operations
that depend on length of region

L6390E Conditional operator (expr) ? (expr) : (expr) on line <line> has no :
(expr).
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-23
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• About Expression evaluation in scatter files on page 4-30
• Expression rules in scatter files on page 4-32.

L6404W FILL value preferred to combination of EMPTY, ZEROPAD and PADVALUE for
Execution Region <name>.

See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6405W No .ANY selector matches Section <name>(<objname>).

L6406W No space in execution regions with .ANY selector matching Section
<name>(<objname>).

This occurs if there is not sufficient space in the scatter file regions containing
.ANY to place the section listed. You must modify your scatter file to ensure there
is sufficient space for the section.
See the following in Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-25.

L6407W Sections of aggregate size 0x<size> bytes could not fit into .ANY
selector(s).

This warning identifies the total amount of image data that cannot be placed in
any .ANY selectors.
For example, .ANY(+ZI) is placed in an execution region that is too small for the
amount of ZI data:
ROM_LOAD 0x8000
{
 ROM_EXEC 0x8000
 {
 .ANY(+RO,+RW)
 }
 RAM +0 0x{...} <<< region max length is too small
 {
 .ANY(+ZI)
 }
}

See the following in Using the Linker:
• Placing unassigned sections with the .ANY module selector on page 8-25.

L6408W Output is --fpic yet section <sec> from <obj> has no FPIC attribute.

L6409W Output is --fpic yet object <obj> has no FPIC attribute.

L6410W Symbol <sym> with non STV_DEFAULT visibility <vis> should be resolved
statically, cannot use definition in <lib>.

L6411W No compatible library exists with a definition of startup symbol <name>.

L6412W Disabling merging for section <sec> from object <obj>, non R_ARM_ABS32
relocation from section <srcsec> from object <srcobj>

L6413W Disabling merging for section <sec> from object <obj>, Section contains
misaligned string(s).

L6414E --ropi used without --rwpi or --rw-base.

See the following in the Linker Reference:
• --ropi on page 2-136
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-24
ID080411 Non-Confidential

Linker Errors and Warnings
• --rw_base=address on page 2-139
• --rwpi on page 2-140.

L6415E Could not find a unique set of libraries compatible with this image.
Suggest using the --cpu option to select a specific library.

See the following in the Linker Reference:
• --cpu=name on page 2-38.

L6416E Relocation <type> at <relclass>:<idx> <objname>(<secname>) cannot be
veneered as it has an offset <offset> from its target.

L6417W Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is with
respect to a reserved tagging symbol(#<idx>).

L6418W Tagging symbol <symname> defined in <objname>(<secname>) is not
recognized.

L6419W Undefined symbol <symbol> (referred from <objname>) imported.

L6420E Ignoring <oepname>(<secname>:<secnum>) as it is not of a recognized type.

L6422U PLT generation requires an architecture with ARM instruction support.

For the linker to generate PLT, you must be using a target that supports the ARM
instruction set. For example, the linker cannot generate PLT for a Cortex-M3
target.

L6423E Within the same collection, section <secname> cannot have different sort
attributes.

L6424E Within the same collection, section <secname1> and section <secname2>
cannot be separated into different execution regions.

L6425E Within the same collection, section <secname> cannot have their section
names with different length.

L6426E Within the same collection, section <secname> cannot have its name
duplicated.

L6427E Cannot rename <sym> to <newname> as it has already been renamed to
<name>).

L6429U Attempt to set maximum number of open files to <val> failed with error
code <error>.

An attempt to increase the number of file handles armlink can keep open at any
one time has failed.

L6431W Ignoring incompatible enum size attribute on Symbol <symbol> defined in
<object>(<section>).

L6432W Ignoring incompatible enum size attribute on Object <object>(<section>).

L6433W Ignoring incompatible enum size attribute on object <object>.

L6434W Ignoring incompatible wchar_t size attribute on Symbol <symbol> defined in
<object>(<section>).

L6435W Ignoring incompatible wchar_t size attribute on Section
<object>(<section>).

L6436W Ignoring incompatible wchar_t size attribute on object <object>.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-25
ID080411 Non-Confidential

Linker Errors and Warnings
L6437W Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Branch relocation to untyped symol in object <armobjname>,
target state unknown.

L6438E __AT section <objname>(<secname>) address <address> must be at least 4
byte aligned.

L6439W Multiply defined Global Symbol <sym> defined in <objname>(<secname>)
rejected in favour of Symbol defined in <selobj>(<selsec>).

L6440E Unexpected failure in link-time code generation

L6441U System call to get maximum number of open files failed <error>.

L6442U Linker requires a minimum of <min> open files, current system limit is
<max> files.

L6443W Data Compression for region <region> turned off. Region contains reference
to symbol <symname> which depends on a compressed address.

The linker requires the contents of a region to be fixed before it can be
compressed and cannot modify it after it has been compressed. Therefore a
compressible region cannot refer to a memory location that depends on the
compression process.

L6444I symbol visibility : <symname> set to <visibility>.

L6445I symbol visibility : <symname> merged to <set_vis> from existing <old_vis>
and new <new_vis>.

L6447E SHT_PREINIT_ARRAY sections are not permitted in shared objects.

L6448W While processing <filename>: <message>

L6449E While processing <filename>: <message>

L6450U Cannot find library <libname>.

L6451E <object> built permitting Thumb is forbidden in an ARM-only link.

L6452E <object>(<section>) built permitting Thumb is forbidden in an ARM-only
link.

L6453E <symbol> defined in <object>(<section>) built permitting Thumb is
forbidden in an ARM-only link.

L6454E <symbol> defined in <object>(ABSOLUTE) built permitting Thumb is forbidden
in an ARM-only link.

L6455E Symbol <symbolname> has deprecated ARM/Thumb Synonym definitions (by
<object1> and <object2>).

L6459U Could not create temporary file.

L6462E Reference to <sym> from a shared library only matches a definition with
Hidden or Protected Visibility in Object <obj>.

L6463U Input Objects contain <archtype> instructions but could not find valid
target for <archtype> architecture based on object attributes. Suggest
using --cpu option to select a specific cpu.

See the following in the Linker Reference:
• --cpu=name on page 2-38.

L6464E Only one of --dynamic_debug, --emit-relocs and --emit-debug-overlay-relocs
can be selected.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-26
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• --dynamic_debug on page 2-50
• --emit_debug_overlay_relocs on page 2-54
• --emit_relocs on page 2-57.

L6467W Library reports remark: <msg>

L6468U Only --pltgot=direct or --pltgot=none supported for --base_platform with
multiple Load Regions containing code.

See the following in the Linker Reference:
• --base_platform on page 2-18
• --pltgot=type on page 2-121.

L6469E --base_platform does not support RELOC Load Regions containing non RELOC
Execution Regions. Please use +0 for the Base Address of Execution Region
<ername> in Load Region <lrname>.

See the following in the Linker Reference:
• --base_platform on page 2-18
• Inheritance rules for the RELOC address attribute on page 4-20.

L6470E PLT section <secname> cannot be moved outside Load Region <lrname>.

L6471E Branch Relocation <rel_class>:<idx> in section <secname> from object
<objname> refers to ARM Absolute <armsym> symbol from object <armobjname>,
Suppress error to treat as a Thumb address.

Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Branch refers to ARM Absolute Symbol defined in <armobjname>,
Suppress error to treat as a Thumb address.

L6475W IMPORT/EXPORT commands ignored when --override_visibility is not specified

The symbol you are trying to export, either with an EXPORT command in a steering
file or with the --undefined_and_export command-line option, is not exported
becuase of low visibility.
See the following in the Linker Reference:
• --override_visibility on page 2-115
• --undefined_and_export=symbol on page 2-175
• EXPORT on page 3-2.

L6616E Cannot increase size of RegionTable <sec_name> from <obj_name>

L6617E Cannot increase size of ZISectionTable <sec_name> from <obj_name>

L6629E Unmatched parentheses expecting) but found <character> at position <col>
on line <line>

This message indicates a parsing error in the scatter file.

L6630E Invalid token start expected number or (but found <character> at position
<col> on line <line>

This message indicates a parsing error in the scatter file.

L6631E Division by zero on line <line>

This message indicates an expression evaluation error in the scatter file.

L6632W Subtraction underflow on line <line>

This message indicates an expression evaluation error in the scatter file.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-27
ID080411 Non-Confidential

Linker Errors and Warnings
L6634E Pre-processor command in '<filename>'too long, maximum length of
<max_size>

This message indicates a problem with pre-processing the scatter file.

L6635E Could not open intermediate file '<filename>' produced by pre-processor:
<reason>

This message indicates a problem with pre-processing the scatter file.

L6636E Pre-processor step failed for '<filename>'

This message indicates a problem with pre-processing the scatter file.

L6637W No input objects specified. At least one input object or library(object)
must be specified.

At least one input object or library(object) must be specified.

L6638U Object <objname> has a link order dependency cycle, check sections with
SHF_LINK_ORDER

L6640E PDTTable section not least static data address, least static data section
is <secname>

Systems that implement shared libraries with RWPI use a process data table
(PDT). It is created at static link time by the linker and must be placed first in the
data area of the image.
This message indicates that the scatter file does not permit placing the PDT Table
first in the data area of the image.
To avoid the message, adjust your scatter file so that the PDT Table is placed
correctly. This message can also be triggered if you accidentally build object files
with --apcs=/rwpi.

L6642W Unused virtual function elimination might not work correctly, because
<obj_name> has not been compiled with --vfe

L6643E The virtual function elimination information in section <sectionname>
refers to the wrong section.

This message might indicate a compiler fault. Contact your supplier.

L6644E Unexpectedly reached the end of the buffer when reading the virtual
function elimination information in section <oepname>(<sectionname>).

This message might indicate a compiler fault. Contact your supplier.

L6645E The virtual function elimination information in section
<oepname>(<sectionname>) is incorrect: there should be a relocation at
offset <offset>.

This message might indicate a compiler fault. Contact your supplier.

L6646W The virtual function elimination information in section
<oepname>(<sectionname>) contains garbage from offset <offset> onwards.

This message might indicate a compiler fault. Contact your supplier.

L6647E The virtual function elimination information for
<vcall_objectname>(<vcall_sectionname>) incorrectly indicates that section
<curr_sectionname>(object <curr_objectname>), offset <offset> is a
relocation (to a virtual function or RTTI), but there is no relocation at
that offset.

This message might indicate a compiler fault. Contact your supplier.

L6649E EMPTY region <regname> must have a maximum size.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-28
ID080411 Non-Confidential

Linker Errors and Warnings
See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6650E Object <objname> Group section <sectionidx> contains invalid symbol index
<symidx>.

L6651E Section <secname> from object <objname> has SHF_GROUP flag but is not
member of any group.

L6652E Cannot reverse Byte Order of Data Sections, input objects are
<inputendian> requested data byte order is <dataendian>.

L6654E Rejected Local symbol <symname> referred to from a non group member
<objname>(<nongrpname>)

This message might indicate a compiler fault. Contact your supplier.

L6656E Internal error: the vfe section list contains a non-vfe section called
<oepname>(<secname>).

This message might indicate a compiler fault. Contact your supplier.

L6664W Relocation #<rel_class>:<rel_number> in <objname>(<secname>) is with
respect to a symbol(#<idx> before last Map Symbol #<last>).

L6665W Neither Lib$$Request$$armlib Lib$$Request$$cpplib defined, not searching
ARM libraries.

This reproduces the warning:
 AREA Block, CODE, READONLY
 EXPORT func1
 ;IMPORT || Lib$$Request$$armlib||
 IMPORT printf
func1
 LDR r0,=string
 BL printf
 BX lr
 AREA BlockData, DATA
string DCB "mystring"
 END

The linker has not been told to look in the libraries and so cannot find the symbol
printf.
This also causes an error:
L6218E: Undefined symbol printf (referred from L6665W.o).

If you do not want the libraries, then ignore this message. Otherwise, to fix both
the error and the warning uncomment the line:
IMPORT || Lib$$Request$$armlib||

L6679W Data in output ELF section #<sec> '<secname>' was not suitable for
compression (<data_size> bytes to <compressed_size> bytes).

L6682E Merge Section <oepname>(<spname>) is a code section

L6683E Merge Section <oepname>(<spname>) has an element size of zero

L6684E Section <spname> from object <oepname> has SHF_STRINGS flag but not
SHF_MERGE flag

L6685E Section <spname> from object <oepname> has a branch reloc <rel_idx> to a
SHF_MERGE section

L6688U Relocation #<rel_class>:<rel_idx> in <oepname>(<spname>) references a
negative element
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-29
ID080411 Non-Confidential

Linker Errors and Warnings
L6689U Relocation #<rel_class>:<rel_idx> in <oepname>(<spname>). Destination is
in the middle of a multibyte character

L6690U Merge Section <spname> from object <oepname> has no symbols

L6703W Section <er> implicitly marked as non-compressible.

L6707E Padding value not specified with PADVALUE attribute for execution region
<regionname>.

See the following in the Linker Reference:
• Execution region attributes on page 4-11.

L6708E Could not process debug frame from <secname> from object <oepname>.

L6709E Could not associate fde from <secname> from object <oepname>.

L6713W Function at offset <offset> in <oepname>(<secname>) has no symbol.

L6714W Exception index table section .ARM.exidx from object <oepname> has no
data.

L6720U Exception table <spname> from object <oepname> present in image,
--noexceptions specified.

See the following in the Linker Reference:
• --exceptions, --no_exceptions on page 2-61.

L6721E Section #<secnum> '<secname>' in <oepname> is not recognized and cannot be
processed generically.

L6725W Unused virtual function elimination might not work correctly, because
there are dynamic relocations.

L6728U Link order dependency on invalid section number <to> from section number
<from>.

L6730W Relocation #<rel_class>:<index> in <objname>(<secname>) with respect to
<name>. Symbol has ABI type <type>, legacy type <legacy_type>.

A change in the linker behavior gives warnings about strict compliance with the
ABI.

Note
 The following example produces a warning only if linking with a toolchain that

is compliant with an earlier version of the Application Binary Interface (ABI).
The ARM Compiler v4.1 toolchain does not give this warning.

Example:
 AREA foo, CODE, READONLY
 CODE32
 ENTRY
 KEEP
func proc
 NOP
 ENDP
 DCD foo
 END

The warning is related to how the assembler marks sections for interworking.
Previously, the section symbol foo would be marked as ARM or Thumb code in
the ELF file. The DCD foo above would therefore also be marked as subject to
interworking.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-30
ID080411 Non-Confidential

Linker Errors and Warnings
However, the ABI specifies that only functions are be subject to interworking and
marked as ARM or Thumb. The linker therefore warns that it is expecting DCD
<number>, which does not match the symbol type (ARM, or Thumb if you use
CODE16) of the area section.
The simplest solution is to move the data into a separate data area in the assembly
source file.
Alternatively, you can use --diag_suppress 6730 to suppress this warning.

L6731W Unused virtual function elimination might not work correctly, because the
section referred to from <secname> does not exist.

L6733W <objname>(<secname>) contains offset relocation from <lr1name> to
<lr2name>, load regions must be rigidly relative.

L6738E Relocation #<rel_class>:<relocnum> in <oepname>(<secname>) with respect to
<wrtsym> is a GOT-relative relocation, but _GLOBAL_OFFSET_TABLE_ is
undefined.

Some GNU produced images can refer to the symbol named
_GLOBAL_OFFSET_TABLE_. If there are no GOT Slot generating relocations and the
linker is unable to pick a suitable address for the GOT base the linker issues this
error message.

L6739E Version '<vername>' has a dependency to undefined version '<depname>'.

L6740W Symbol '<symname>' versioned '<vername>' defined in '<symverscr>' but not
found in any input object.

L6741E Versioned symbol binding should be 'local:' or 'global:'.

L6742E Symbol '<symname>' defined by '<oepname>'. Cannot not match to default
version symbol '<defversym>'

L6743E Relocation #<rel_class>:<index> in <oepname>(<spname>) with respect to
<symname> that has an alternate def. Internal consistency check failed

L6744E Relocation #<rel_class>:<index> <oepname>(<spname>) with respect to
undefined symbol <symname>. Internal consistency check:

L6745E Target CPU <cpuname> does not Support ARM, <objname>(<secname>) contains
ARM code

L6747W Raising target architecture from <oldversion> to <newversion>.

If the linker detects objects that specify the obsolete ARMv3, it upgrades these to
ARMv4 to be usable with ARM libraries.

L6748U Missing dynamic array, symbol table or string table in file <oepname>.

L6751E No such sorting algorithm <str> available.

L6753E CallTree sorting needs Entry Point to lie within a CallTree Sort ER.

L6761E Removing symbol <symname>.

L6762E Cannot build '<type>' PLT entries when building a <imgtype>.

L6763W '<optname>' cannot be used when building a shared object or DLL.
Switching it off

L6764E Cannot create a PLT entry for target architecture 4T that calls Thumb
symbol <symname>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-31
ID080411 Non-Confidential

Linker Errors and Warnings
L6765W Shared object entry points must be ARM-state when linking architecture 4T
objects.

This can occur when linking with GNU C libraries. The GNU startup code crt1.o
does not have any build attributes for the entry point, so the linker cannot
determine which execution state (ARM or Thumb) the code runs in. Because the
GNU C library startup code is ARM code, you can safely ignore this warning, or
suppress it with --diag_suppress 6765.

L6766W PLT entries for architecture 4T do not support incremental linking.

L6769E Relocation #<rel_class>:<relocnum> in <oepname>(<secname>) with respect to
<wrtsym>. No GOTSLOTexists for symbol.

L6770E The size and content of the dynamic array changed too late to be fixed.

L6771W <oepname>(<secname>) contains one or more address-type relocations in RO
data. Making section RW to be dynamically relocated at run-time.

L6772W IMPORT <symname> command ignored when building --sysv.

See the following in the Linker Reference:
• --sysv on page 2-170
• IMPORT on page 3-4.

L6774W <objname>(<secname>) has debug frame entries of a bad length.

L6775W <objname>(<secname>) has FDEs which use CIEs which are not in this
section.

L6776W The debug frame in <objname>(<secname>) does not describe an executable
section.

L6777W The debug frame in <objname>(<secname>) has <actual> relocations (expected
<expected>)

L6778W The debug frame in <objname>(<secname>) uses 64-bit DWARF.

L6780W <origvis> visibility removed from symbol '<symname>' through <impexp>.

L6781E Value(<val>) Cannot be represented by partition number <part> for
relocation #<rel_class>:<rel_number> (<rtype>, wrt symbol <symname>) in
<objname>(<secname>)

Relocation #<rel_class>:<rel_number> in <objname>(<secname>) with respect
to <symname>. Value(<val>) Cannot be represented by partition number
<part> for relocation type >rtype>

L6782W Relocation #<rel_class>:<relnum> '<rtype>' in <oepname> may not access
data correctly alongside <pltgot_type> PLT entries

L6783E Mapping symbol #<symnum> '<msym>' in <oepname>(<secnum>:<secname>) defined
at the end of, or beyond, the section size (symbol offset=0x<moffset>,
section size=0x<secsize>)

This indicates that the address for a section points to a location at the end of or
outside of the ELF section. This can be caused by an empty inlined data section
and indicates there might be a problem with the object file. You can use
--diag_warning 6783 to suppress this error.

L6784E Symbol #<symnum> '<symname>' in <oepname>(<secnum>:<secname>) with value
<value> has size 0x<size> that extends to outside the section.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-32
ID080411 Non-Confidential

Linker Errors and Warnings
The linker encountered a symbol with a size that extends outside of its containing
section. This message is only a warning by default in the RVCT 2.2 SP1 and later
toolchains. Use --diag_warning 6784 to suppress this error.

L6785U Symbol '<symname>' marked for import from '<libname>' already defined by
'<oepname>'

L6786W Mapping symbol #<symnum> '<msym>' in <oepname>(<secnum>:<secname>) defined
at unaligned offset=0x<moffset>

L6787U Region table handler '<handlername>' needed by entry for <regionname> was
not found.

L6788E Scatter-loading of execution region <er1name> to [<base1>,<limit1>) will
cause the contents of execution region <er2name> at [<base2>,<limit2>) to
be corrupted at run-time.

This occurs when scatter-loading takes place and an execution region is put in a
position where is overwrites partially or wholly another execution region (which
can be itself or another region).
For example, this works:
LOAD_ROM 0x0000 0x4000
{
 EXEC1 0x0000 0x4000
 {
 * (+RO)
 }
 EXEC2 0x4000 0x4000
 {
 * (+RW,+ZI)
 }
}

This generates the error:
LOAD_ROM 0x0000 0x4000
{
 EXEC1 0x4000 0x4000
 {
 * (+RW,+ZI)
 }
 EXEC2 0x0000 0x4000
 {
 * (+RO)
 }

and reports:
Error: L6788E: Scatter-loading of execution region EXEC2 will cause the
contents of execution region EXEC2 to be corrupted at run-time.

See the following in Using the Linker:
• Chapter 8 Using scatter files.

L6789U Library <library> member <filename> : Endianness mismatch.

L6790E Relocation #<rel_class>:<relnum> in <objname>(<secname>) with respect to
<symname>. May not IMPORT weak reference through GOT-generating relocation

L6791E Unknown personality routine <pr> at 0x<offset> <oepname>(<secname>).

L6792E Descriptor at offset 0x<offset> <oepname>(<secname>).

L6793E Expecting Landing pad reference at offset 0x<offset> in cleanup descriptor
<oepname>(<secname>).
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-33
ID080411 Non-Confidential

Linker Errors and Warnings
L6794E Expecting Landing pad reference at offset 0x<offset> in catch descriptor
<oepname>(<secname>).

L6795E Expecting RTTI reference at offset 0x<offset> in catch descriptor
<oepname>(<secname>).

L6796E Descriptor at offset 0x<offset> <oepname>(<secname>) overruns end of
section.

L6797E Data at Offset 0x<offset> in exception table <oepname>(<secname>) overruns
end of section

L6798E Expecting RTTI reference at offset 0x<offset> in Function Specification
descriptor <oepname>(<secname>).

L6799E Expecting Landing Pad reference at offset 0x<offset> in Function
Specification descriptor <oepname>(<secname>).

A landing pad is code that cleans up after an exception has been raised. If the
linker detects old-format exception tables, it automatically converts them to the
new format.
This message does not appear unless you are using a later version of the linker
with an earlier version of the compiler.

L6800W Cannot convert generic model personality routine at 0x<offset>
<oepname>(<secname>).

A personality routine is used to unwind the exception handling stack. If the linker
detects old-format exception tables then it automatically converts them to the new
format. This message indicates a fault in the compiler. Contact your supplier.

L6801E <objname>(<secname>) containing <secarmthumb> code cannot use the address
of '~IW (The user intended not all code should interwork)' <funarmthumb>
function <sym>.

The linker can diagnose where a non-interworking (~IW) function has its address
taken by code in the other state. This error is disabled by default, but can be
enabled by linking with --strict. The error can be downgraded to just a warning
with --diag_warning 6801 and subsequently suppressed completely if required
with --diag_suppress 6801
Where code, for example, in a.c uses the address of a non-interworking function
in t.c:
armcc -c a.c
armcc --thumb -c t.c
armlink t.o a.o --strict

reports:
Error: L6801E: a.o(.text) containing ARM code cannot use the address of
'~IW' Thumb function foo.

L6802E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Thumb Branch to non-Thumb symbol in <armobjname>(<armsecname>).

L6803W Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Thumb Branch is unlikely to reach target
in<armobjname>(<armsym>).

L6804W Legacy use of symbol type STT_TFUNC detected

L6805E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. Branch to untyped Absolute symbol in <armobjname>, target state
unknown
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-34
ID080411 Non-Confidential

Linker Errors and Warnings
L6806W Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<othersym>. Branch to untyped symbol in <otherobjname>(<othersecname>),
ABI requires external code symbols to be of type STT_FUNC.

L6807E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<othersym>. Branch to untyped symbol in same section. State change is
required.

L6809W Relocation <rel_class>:<idx> in <objname>(<secname>) is of deprecated type
<rtype>, please see ARMELF for ABI compliant alternative

L6810E Relocation <rel_class>:<idx> in <objname>(<secname>) is of obsolete type
<rtype>

Relocation errors and warnings are most likely to occur if you are linking object
files built with previous versions of the ARM tools.
To show relocation errors and warnings use the --strict_relocations switch.
This option enables you to ensure ABI compliance of objects. It is off by default,
and deprecated and obsolete relocations are handled silently by the linker.
See the following in the Linker Reference:
• --strict_relocations, --no_strict_relocations on page 2-160.

L6812U Unknown symbol action type, please contact your supplier.

L6813U Could not find Symbol <symname> to rename to <newname>.

See the following in the Linker Reference:
• RENAME on page 3-5.

L6815U Out of memory. Allocation Size:<alloc_size> System Size:<system_size>.

This error is reported by ARM Compiler toolchain v4.1 and later. It provides
information about the amount of memory available and the amount of memory
required to perform the link step.
This error occurs because the linker does not have enough memory to link your
target object. This is not common, but might be triggered for a number of reasons,
such as:
• linking very large objects or libraries together
• generating a large amount of debug information
• having very large regions defined in your scatter file.
In these cases, your workstation might run out of virtual memory.
This issue might also occur if you use the FIXED scatter-loading attribute. The
FIXED attribute forces an execution region to become a root region in ROM at a
fixed address. The linker might have to add padding bytes between the end of the
previous execution region and the FIXED region, to generate the ROM image. The
linker might run out of memory if large amounts of padding are added when the
address of the FIXED region is far away from the end of the execution region. The
link step might succeed if the gap is reduced.
See the following in the Linker Reference:
• Execution region attributes on page 4-11.
See the following in the Using the Linker:
• Using the FIXED attribute to create root regions on page 8-17.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-35
ID080411 Non-Confidential

Linker Errors and Warnings
While the linker can generate images of almost any size, it requires a larger
amount of memory to run and finish the link. Try the following solutions to
improve link-time performance, to avoid the Out of memory error:
1. Shut down all non-essential applications and processes when you are

linking.
For example, if you are running under Eclipse, try running your linker from
the command-line, or exiting and restarting Eclipse between builds.

2. Use the 64-bit version of the linker.
If you are using a 64-bit operating system, it is possible to make use of a
64-bit version of armlink. See the following in the Introducing the ARM
Compiler toolchain:
• Changing to the 64-bit linker on page 2-7.

3. Use the --no_debug linker option.
This command tells the linker to create the object without including any
debug information. See the following in the Linker Reference:
• --debug, --no_debug on page 2-41.

Note
 It is not possible to perform source level debugging if you use this option.

4. Reduce debug information.
If you do not want to use the --no_debug option, there are other methods you
can use to try and reduce debug information. See the following in Using the
Compiler:
• Methods of reducing debug information in objects and libraries on

page 6-20.
You can also use the fromelf utility to strip debug information from objects
and libraries that you do not need to debug. See the following in Using the
fromelf Image Converter:
• --strip=option[,option,...] on page 4-70.

5. Use partial linking.
You can use partial linking to split the link stage over a few smaller
operations. Doing this also stops duplication of the object files in memory
in the final link.
See the following in the Linker Reference:
• --partial on page 2-119.

6. Increase memory support on Windows operating systems.
On some Windows operating systems it is possible to increase the virtual
address space from 2GB (the default) to 3GB. For more information, see
the following Microsoft article:
• Memory Support and Windows Operating Systems,

http://msdn.microsoft.com/en-us/windows/hardware/gg487508.aspx

7. Use the --no_eager_load_debug linker option.
This option is available in RVCT 4.0 build 697 and later. It causes the linker
to remove debug section data from memory after object loading. This
lowers the peak memory usage of the linker at the expense of some linker
performance, because much of the debug data has to be loaded again when
the final image is written.
See the following in the Linker Reference:
• --eager_load_debug, --no_eager_load_debug on page 2-52.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-36
ID080411 Non-Confidential

Linker Errors and Warnings
If you are still experiencing the same problem, raise a support case.

L6828E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<symname>, Branch source address <srcaddr> cannot reach next available
pool at [<pool_base>,<pool_limit>). Please use the --veneer_pool_size
option to increase the contingency.

The --veneer_inject_type=pool veneer generation model requires branches to
veneers in the pool to be able to reach the pool limit, which is the highest possible
address a veneer can use. If a branch is later found that cannot reach the pool limit,
and armlink is able to fit all the veneers in the pool into the lower pool limit, then
armlink reduces the pool limit to accomodate the branch. Error message L6828 is
issued only if armlink is unable to lower the pool limit.
See the following in the Linker Reference:
• --veneer_inject_type=type on page 2-181.

L6898E Relocation #<rel_class>:<idx> in <objname>(<secname>) with respect to
<armsym>. ARM branch to non-ARM/Thumb symbol in
<armobjname>(<armsecname>).

L6899E Existing SYMDEFS file '<filename> 'is read-only.

L6900E Expected parentheses to specify priority between AND and OR operators.

L6901E Expected symbol name.

L6902E Expected a string.

L6903E Cannot execute '<text>' in '<clause>' clause of script.

L6904E Destination symbol of rename operation clashes with another rename.

L6905E Source symbol of rename operation clashes with another rename.

L6906E (This is the rename operation which it clashes with.)

L6907E Expected an expression.

L6910E Expected a phase name.

L6912W Symbol <symname> defined at index <idx> in <oepname>(<secname>), has ABI
symbol type <symtype> which is inconsistent with mapping symbol type
<maptype>.

L6913E Expected execution region name.

L6914W option <spurious> ignored when using --<memoption>.

L6915E Library reports error: <msg>

The message is typically one of the following:
• Error: L6915E: Library reports error: scatter-load file declares no

heap or stack regions and __user_initial_stackheap is not defined.

or
Error: L6915E: Library reports error: The semihosting
__user_initial_stackheap cannot reliably set up a usable heap region
if scatter loading is in use

It is most likely that you have not re-implemented
__user_setup_stackheap() or you have not defined ARM_LIB_STACK or
ARM_LIB_HEAP regions in the respective scatter file.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-37
ID080411 Non-Confidential

Linker Errors and Warnings
Note
 __user_setup_stackheap() supersedes the deprecated function

__user_initial_stackheap().

See the following in Developing Software for ARM® Processors:
— Placing the stack and heap on page 3-13.
See the following in C and C++ Libraries and Floating-Point Support
Reference:
— __user_setup_stackheap() on page 2-60
— Legacy function __user_initial_stackheap() on page 2-70.
See the following in Using the Linker:
— Reserving an empty region on page 8-52.

• Error: L6915E: Library reports error: __use_no_semihosting was
requested but <function> was referenced.

Where <function> represents __user_initial_stackheap, _sys_exit,
_sys_open, _sys_tmpnam, _ttywrch, system, remove, rename,
_sys_command_string, time, or clock
This error can appear when retargeting semihosting-using functions, in
order to avoid any SVC/BKPT instructions being linked-in from the C libraries.
Ensure that no semihosting-using functions are linked in from the C library
by using:
#pragma import(__use_no_semihosting)

See the following in Using C and C++ Libraries and Floating-Point
Support:
— Using the libraries in a nonsemihosting environment on page 2-36.
If there are still semihosting-using functions being linked in, the linker
reports this error.
To resolve this, you must provide your own implementations of these C
library functions.
The emb_sw_dev directory contains examples of how to re-implement some
of the more common semihosting-using functions. See the file retarget.c.
See Using C and C++ Libraries and Floating-Point Support for more
information on using semihosting-using C library functions.

Note
 The linker does not report any semihosting-using functions such as, for

example, __semihost(), in your own application code.

To identify which semihosting-using functions are still being linked-in
from the C libraries:
— Link with armlink --verbose --list err.txt
— Search err.txt for occurrences of __I_use_semihosting

For example:
…
Loading member sys_exit.o from c_4.l.
reference : __I_use_semihosting
definition: _sys_exit
…

This shows that the semihosting-using function _sys_exit is linked-in
from the C library. To prevent this, you must provide your own
implementation of this function.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-38
ID080411 Non-Confidential

Linker Errors and Warnings
• Error: L6915E: Library reports error:__use_no_heap was requested,
but <reason> was referenced

If <reason> represents malloc, free, __heapstats, or __heapvalid, the use of
__use_no_heap conflicts with these functions.

• Error: L6915E: Library reports error:__use_no_heap_region was
requested, but <reason> was referenced

If <reason> represents malloc, free, __heapstats, __heapvalid, or
__argv_alloc, the use of __use_no_heap_region conflicts with these
functions.

L6916E Relocation #<rel_class>:<idx> in <oepname>(<spname>). R_ARM_CALL for
conditional BL instruction).

L6917E Relocation #<rel_class>:<idx> in <oepname>(<spname>). R_ARM_JUMP24 for BLX
instruction.

L6918W Execution region <ername> placed at 0x<eraddr> needs padding to ensure
alignment <spalign> of <oepname>(<spname>).

L6922E Section <objname>(<secname>) has mutually exclusive attributes (READONLY
and TLS)

L6923E Relocation #<rel_class>:<idx> in <oepname>(<spname>) with respect to
<symname>. TLS relocation <type> to non-TLS symbol in
<symobjname>(<symsecname>).

L6924E Relocation #<rel_class>:<idx> in <oepname>(<spname>) with respect to
<symname>. Non-TLS relocation <type> to STT_TLS symbol in
<symobjname>(<symsecname>).

L6925E Ignoring <token> attribute for region <region>. MemAccess support has been
removed.

L6926E Relocation #<rel_class>:<idx> in <oepname>(<spname>) has incorrect
relocation type <rtype> for instruction encoding 0x<bl>.

L6927E Relocation #<rel_class>:<idx> in <oepname>(<spname>) has incorrect
relocation type <rtype> for instruction encoding 0x<bl1><bl2>.

L6932W Library reports warning: <msg>

L6935E Debug Group contents are not identical, <name> with signature sym <sig>
from objects (<new>) and (<old>)

L6936E Multiple RESOLVE clauses in library script for symbol '<sym>'.

L6937E Multiple definitions of library script function '<func>'.

L6939E Missing alignment for region <regname>.

L6940E Alignment <alignment> for region <regname> must be at least 4 and a power
of 2 or MAX.

L6941W chmod system call failed for file <filename> error <perr>

L6942E Execution Region <ername> contains multiple <type>, sections:

L6966E Alignment <alignment> for region <regname> cannot be negative.

L6967E Entry point (<address>) points to a THUMB instruction but is not a valid
THUMB code pointer.

L6968E Could not parse Linux Kernel version \"<kernel>\".
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-39
ID080411 Non-Confidential

Linker Errors and Warnings
L6969W Changing AT Section <name> type from RW to RO in <ername>.

L6971E <objname>(<secname>) type <type> incompatible with <prevobj>(<prevname>)
type <prevtype> in er <ername>.

You might see this message when placing __at sections with a scatter file. For
example, the following code in main.c and the related scatter file gives this error:
int variable __attribute__((at(0x200000)));

LR1 0x0000 0x20000
{
 ER1 0x0 0x2000
 {
 *(+RO)
 }
 ER2 0x8000 0x2000
 {
 main.o
 }
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
}

The variable has the type ZI, and the linker attempts to place it at address
0x200000. However, this address is reserved for RW sections by the scatter file.
This produces the error:
Error: L6971E: stdio_streams.o(.data) type RW incompatible with

main.o(.ARM.__AT_0x00200000) type ZI in er RAM.

To fix this change the address in your source code, for example:
int variable __attribute__((at(0x210000)));

See the following in Using the Linker:
• Placing functions and data at specific addresses on page 8-18
• Using __at sections to place sections at a specific address on page 8-37.

L6972E <objname>(<secname>) with required base 0x<required> has been assigned
base address 0x<actual>.

L6973E Error placing AT section at address 0x<addr> in overlay ER <ername>.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.

L6974E AT section <name> does not have a base address.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.

L6975E <objname>(<secname>) cannot have a required base and SHF_MERGE.

L6976E <objname>(<secname>) cannot have a required base and SHF_LINK_ORDER.

L6977E <objname>(<secname>) cannot be part of a contiguous block of sections

L6978W <objname>(<secname>) has a user defined section type and a required base
address.

L6979E <objname>(<secname>) with required base address cannot be placed in
Position Independent ER <ername>.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-40
ID080411 Non-Confidential

Linker Errors and Warnings
L6980W FIRST and LAST ignored for <objname>(<secname>) with required base
address.

L6981E __AT incompatible with BPABI and SystemV Image types

See the following in Using the Linker:
• Restrictions on placing __at sections on page 8-38.

L6982E AT section <objname>(<spname>) with base <base> limit <limit> overlaps
address range with AT section <obj2name>(<sp2name>) with base <base2>
limit <limit2>.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.

L6983E AT section <objname>(<spname>) with required base address <base> out of
range for ER <ername> with base <erbase> and limit <erlimit>.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.

L6984E AT section <objname>(<spname>) has required base address <base> which is
not aligned to section alignment <alignment>.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.

L6985E Unable to automatically place AT section <objname>(<spname>) with required
base address <base>. Please manually place in the scatter file using the
--no_autoat option.

See the following in Using the Linker:
• Using __at sections to place sections at a specific address on page 8-37.
See the following in Linker Reference:
• --autoat, --no_autoat on page 2-17.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 4-41
ID080411 Non-Confidential

Chapter 5
ELF Image Converter Errors and Warnings

The following topic describes the error and warning messages for the ELF image converter,
fromelf:

• List of the fromelf error and warning messages on page 5-2.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 5-1
ID080411 Non-Confidential

ELF Image Converter Errors and Warnings
5.1 List of the fromelf error and warning messages
The error and warning messages for fromelf are:

Q0105E Base and/or size too big for this format, max = 0x<maxval>.

Q0106E Out of Memory.

Q0107E Failed writing output file.

Q0108E Could not create output file '<filename>': <reason>

Q0119E No output file specified.

Q0120E No input file specified.

Q0122E Could not open file '<filename>': <reason>

If <reason> is Invalid argument, this might be because you have invalid characters
on the command-line. For example, on Windows you might have used the escape
character \ when specifying a filter with an archive file:
fromelf --elf --strip=all t.a\(test*.o\) -o filtered/

On Windows, use:
fromelf --elf --strip=all t.a(test*.o) -o filtered/

See the following in Using the fromelf Image Converter:
• input_file on page 4-48.

Q0128E File i/o failure.

This error can occur if you specify a directory for the --output command-line
option, but you did not terminate the directory with a path separator. For example,
--output=my_elf_files/.
See the following in Using the fromelf Image Converter:
• --output=destination on page 4-57.

Q0129E Not a 32 bit ELF file.

Q0130E Not a 64 bit ELF file.

Q0131E Invalid ELF identification number found.

This error is given if you attempt to use fromelf on a file which is not in ELF
format, or which is corrupted. Object (.o) files and executable (.axf) files are in
ELF format.

Q0132E Invalid ELF section index found <idx>.

Q0133E Invalid ELF segment index found <idx>.

Q0134E Invalid ELF string table index found <idx>.

Q0135E Invalid ELF section entry size found.

Q0136E ELF Header contains invalid file type.

Q0137E ELF Header contains invalid machine name.

Q0138E ELF Header contains invalid version number.

See Q0131E.

Q0147E Failed to create Directory <dir>: <reason>
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 5-2
ID080411 Non-Confidential

ELF Image Converter Errors and Warnings
If <reason> is File exists, this might be because you have specified a directory that
has the same name as a file that already exists. For example, if a file called
filtered already exists, then the following command produces this error:
fromelf --elf --strip=all t.a(test*.o) -o filtered/

The path separator character / informs fromelf that filtered is a directory.
See the following in Using the fromelf Image Converter:
• --output=destination on page 4-57.

Q0171E Invalid st_name index into string table <idx>.

See Q0131E.

Q0172E Invalid index into symbol table <idx>.

See Q0131E.

Q0186E This option requires debugging information to be present

The --fieldoffsets option requires the image to be built with dwarf debug tables.

Q0425W Incorrectly formed virtual function elimination header in file

This might indicate a compiler fault, please contact your supplier.

Q0426E Error reading vtable information from file

This might indicate a compiler fault, please contact your supplier.

Q0427E Error getting string for symbol in a vtable

This might indicate a compiler fault, please contact your supplier.

Q0433E Diagnostic style <style> not recognised

Q0440E No relocation sections for <secname>

Q0447W Unknown Diagnostic number (<num>)

Q0448W Read past the end of the compressed data while decompressing section
'<secname>' #<secnum> in <file>

This might indicate an internal fault. Contact your supplier.

Q0449W Write past the end of the uncompressed data buffer of size <bufsize> while
decompressing section '<secname>' #<secnum> in <file>

This might indicate an internal fault. Contact your supplier.

Q0450W Section '<secname>' #<secnum> in file <file> uses a mixture of legacy and
current ABI relocation types.

Q0451W Option '--strip symbols' used without '--strip debug' on an ELF file that
has debug information.

Q0452W Option '--strip filesymbols' used without '--strip debug' on an ELF file
that has debug information.

Q0453W Stripping path names from '<path1>' and '<path2>' produces a duplicate
file name '<filename>'.

Q0454E The ELF file '<filename>' is corrupt
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 5-3
ID080411 Non-Confidential

Chapter 6
Librarian Errors and Warnings

The following topic describes the error and warning messages for the ARM Librarian, armar:

• List of the armar error and warning messages on page 6-2.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 6-1
ID080411 Non-Confidential

Librarian Errors and Warnings
6.1 List of the armar error and warning messages
The error and warning messages for armar are:

L6800U Out of memory

L6825E Reading archive '<archive>' : <reason>

L6826E '<archive>' not in archive format

L6827E '<archive>': malformed symbol table

L6828E '<archive>': malformed string table

L6829E '<archive>': malformed archive (at offset <offset>)

L6830E Writing archive '<archive>' : <reason>

L6831E '<member>' not present in archive '<archive>'

L6832E Archive '<archive>' not found : <reason>

L6833E File '<filename>' does not exist

L6835E Reading file '<filename>' : <reason>

L6836E '<filename>' already exists, so will not be extracted

L6838E No archive specified

L6839E One of the actions -[<actions>] must be specified

L6840E Only one action option may be specified

L6841E Position '<position>' not found

L6842E Filename '<filename>' too long for file system

L6843E Writing file '<filename>' : <reason>

L6874W Minor variants of archive member '<member>' include no base variant

Minor variants of the same function exist within a library. Find the two equivalent
objects and remove one of them.

L6875W Adding non-ELF object '<filename>' to archive '<name>'
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 6-2
ID080411 Non-Confidential

Chapter 7
Other Errors and Warnings

The following topic describes other error and warning messages that might be displayed by the
tools:

• List of other error and warning messages on page 7-2.

Note
 These error messages can be produced by any of the tools.

When the message is displayed, the X prefixing the message number is replaced by the appropriate
letter relating to the application. For example, the code X3900U, is displayed as L3900U by the linker
when you have specified an unrecognized option.
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 7-1
ID080411 Non-Confidential

Other Errors and Warnings
7.1 List of other error and warning messages
Other error and warning messages that might be displayed by the tools are:

X3900U Unrecognized option '<dashes><option>'.

<option> is not recognized by the tool. This could be because of a spelling error
or the use of an unsupported abbreviation of an option.

X3901U Missing argument for option '<option>'.

X3902U Recursive via file inclusion depth of <limit> reached in file '<file>'.

X3903U Argument '<argument>' not permitted for option '<option>'.

Possible reasons include malformed integers or unknown arguments.

X3904U Could not open via file '<file>'.

X3905U Error when reading from via file '<file>'.

X3906U Malformed via file '<file>'.

X3907U Via file '<file>' command too long for buffer.

X3908U Overflow: '<string>' will not fit in an integer.

X3910W Old syntax, please use '<hyphens><option><separator><parameter>'.

X3912W Option '<option>' is deprecated.

X3913W Could not close via file '<file>'.

X3915W Argument '<argument>' to option '<option>' is deprecated

X3916U Unexpected argument for option '<dashes><option>'

X3917U Concatenated options cannot have arguments: -<option> <arg>

X9905E cannot use --apcs=/hardfp without floating point hardware

X9906E cannot use --apcs=/hardfp with fpu <fpu_option>

X9907E unable to select no floating point support

X9908E --fpmode=none overrides --fpu choice
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. 7-2
ID080411 Non-Confidential

Appendix A
Revisions for the Errors and Warnings Reference

The following technical changes have been made to the Errors and Warnings Reference:

Table A-1 between Issue C Update 3 and Issue C Update 4

Change Topics affected

Changes to the compiler messages:
• added more detail for error 1558.

List of the armcc error and warning messages on
page 2-4

Changes to the assembler messages:
• removed messages A1588E, A1589E,

A1597E, A1613E, A1614E, and A1646W,
because they are not reachable.

List of the armasm error and warning messages on
page 3-2
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. A-1
ID080411 Non-Confidential

Revisions for the Errors and Warnings Reference
Table A-2 Differences between Issue C Update 2 and Issue C Update 3

Change Topics affected

Added cross references to various messages. List of the old-style armcc error and warning
messages on page 2-64

Changes to the assembler messages:
• added messages A1903E, A1907W, A1908E,

and A1909E
• added cross references to A1450W.

List of the armasm error and warning messages on
page 3-2

Changes to the linker messages:
• added L6064E
• corrected examples for L6216E
• added L6815U
• updated the description of L6002U
• updated the description of L6310W
• added cross references to various messages.

List of the armlink error and warning messages on
page 4-3

Changes to the fromelf messages:
• added cross references to various messages.

List of the fromelf error and warning messages on
page 5-2

Table A-3 Differences between Issue B and Issue C

Change Topics affected

Added the linker error L6058E. List of the armlink error and warning messages on
page 4-3

Added the linker error L6828E. List of the armlink error and warning messages on
page 4-3

Table A-4 Differences between Issue A and Issue B

Change Topics affected

Added more detail for compiler errors 631 and 634. List of the armcc error and warning messages on
page 2-4

Removed the assembler error A1590E. List of the armasm error and warning messages on
page 3-2

Added more detail for the assembler warning
A1746W.

List of the armasm error and warning messages on
page 3-2

Added the Linker error L6065E. List of the armlink error and warning messages on
page 4-3

Added more detail for linker errors L6220E,
L6221E, L6384E, L6915E, and L6971E.

List of the armlink error and warning messages on
page 4-3

Added cross-references for linker errors L6224E
and L6469E.

List of the armlink error and warning messages on
page 4-3

Added more detail for fromelf errors Q0122E,
Q0128E, and Q0147E.

List of the fromelf error and warning messages on
page 5-2
ARM DUI 0496C Copyright © 2010-2011 ARM. All rights reserved. A-2
ID080411 Non-Confidential

	ARM Compiler toolchain Errors and Warnings Reference
	Contents
	1: Conventions and feedback
	2: C and C++ Compiler Errors and Warnings
	2.1 Internal errors and other unexpected failures
	2.2 Suppressing armcc error and warning messages
	2.2.1 See also

	2.3 List of the armcc error and warning messages
	2.4 List of the old-style armcc error and warning messages

	3: Assembler Errors and Warnings
	3.1 List of the armasm error and warning messages

	4: Linker Errors and Warnings
	4.1 Suppressing armlink error and warning messages
	4.2 List of the armlink error and warning messages

	5: ELF Image Converter Errors and Warnings
	5.1 List of the fromelf error and warning messages

	6: Librarian Errors and Warnings
	6.1 List of the armar error and warning messages

	7: Other Errors and Warnings
	7.1 List of other error and warning messages

	A: Revisions for the Errors and Warnings Reference

