
ARM® Compiler toolchain
Version 5.03

Assembler Reference
Copyright © 2010-2013 ARM. All rights reserved.
ARM DUI 0489I (ID012213)

ARM Compiler toolchain
Assembler Reference

Copyright © 2010-2013 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

May 2010 A Non-Confidential ARM Compiler toolchain v4.1 Release

30 September 2010 B Non-Confidential Update 1 for ARM Compiler toolchain v4.1

28 January 2011 C Non-Confidential Update 2 for ARM Compiler toolchain v4.1 Patch 3

30 April 2011 D Non-Confidential ARM Compiler toolchain v5.0 Release

29 July 2011 E Non-Confidential Update 1 for ARM Compiler toolchain v5.0

30 September 2011 F Non-Confidential ARM Compiler toolchain v5.01 Release

29 February 2012 G Non-Confidential Document update 1 for ARM Compiler toolchain v5.01 Release

27 July 2012 H Non-Confidential ARM Compiler toolchain v5.02 Release

31 January 2013 I Non-Confidential ARM Compiler toolchain v5.03 Release
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. ii
ID012213 Non-Confidential

Contents
ARM Compiler toolchain Assembler Reference

Chapter 1 Conventions and feedback

Chapter 2 Assembler command-line options
2.1 Assembler command-line syntax ... 2-2
2.2 Assembler command-line options .. 2-3
2.3 --16 .. 2-5
2.4 --32 .. 2-6
2.5 --apcs=qualifier…qualifier .. 2-7
2.6 --arm .. 2-9
2.7 --arm_only .. 2-10
2.8 --bi .. 2-11
2.9 --bigend .. 2-12
2.10 --brief_diagnostics ... 2-13
2.11 --checkreglist ... 2-14
2.12 --compatible=name .. 2-15
2.13 --cpreproc .. 2-16
2.14 --cpreproc_opts=options .. 2-17
2.15 --cpu=list .. 2-18
2.16 --cpu=name ... 2-19
2.17 --debug .. 2-20
2.18 --depend=dependfile .. 2-21
2.19 --depend_format=string ... 2-22
2.20 --device=list ... 2-23
2.21 --device=name ... 2-24
2.22 --diag_error=tag{, tag} ... 2-25
2.23 --diag_remark=tag{, tag} .. 2-26
2.24 --diag_style=style ... 2-27
2.25 --diag_suppress=tag{, tag} .. 2-28
2.26 --diag_warning=tag{, tag} .. 2-29
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. iii
ID012213 Non-Confidential

Contents
2.27 --dllexport_all ... 2-30
2.28 --dwarf2 .. 2-31
2.29 --dwarf3 .. 2-32
2.30 --errors=errorfile ... 2-33
2.31 --execstack .. 2-34
2.32 --exceptions ... 2-35
2.33 --exceptions_unwind .. 2-36
2.34 --fpmode=model .. 2-37
2.35 --fpu=list ... 2-38
2.36 --fpu=name .. 2-39
2.37 -g .. 2-41
2.38 --help .. 2-42
2.39 -idir{,dir, …} .. 2-43
2.40 --keep ... 2-44
2.41 --length=n .. 2-45
2.42 --li ... 2-46
2.43 --library_type=lib .. 2-47
2.44 --licretry .. 2-48
2.45 --list=file ... 2-49
2.46 --list= .. 2-50
2.47 --littleend .. 2-51
2.48 -m ... 2-52
2.49 --maxcache=n .. 2-53
2.50 --md ... 2-54
2.51 --no_code_gen ... 2-55
2.52 --no_esc ... 2-56
2.53 --no_execstack .. 2-57
2.54 --no_exceptions ... 2-58
2.55 --no_exceptions_unwind .. 2-59
2.56 --no_hide_all .. 2-60
2.57 --no_project .. 2-61
2.58 --no_reduce_paths ... 2-62
2.59 --no_regs ... 2-63
2.60 --no_terse .. 2-64
2.61 --no_unaligned_access .. 2-65
2.62 --no_warn ... 2-66
2.63 -o filename ... 2-67
2.64 --pd .. 2-68
2.65 --predefine "directive" .. 2-69
2.66 --project=filename .. 2-70
2.67 --reduce_paths ... 2-71
2.68 --regnames=none .. 2-72
2.69 --regnames=callstd .. 2-73
2.70 --regnames=all ... 2-74
2.71 --reinitialize_workdir ... 2-75
2.72 --report-if-not-wysiwyg ... 2-76
2.73 --show_cmdline .. 2-77
2.74 --split_ldm .. 2-78
2.75 --thumb .. 2-79
2.76 --thumbx ... 2-80
2.77 --unaligned_access .. 2-81
2.78 --unsafe .. 2-82
2.79 --untyped_local_labels ... 2-83
2.80 --version_number ... 2-84
2.81 --via=file ... 2-85
2.82 --vsn ... 2-86
2.83 --width=n .. 2-87
2.84 --workdir=directory ... 2-88
2.85 --xref .. 2-89
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. iv
ID012213 Non-Confidential

Contents
Chapter 3 ARM and Thumb Instructions
3.1 ARM and Thumb instruction summary .. 3-2
3.2 Instruction width specifiers ... 3-9
3.3 Memory access instructions .. 3-10
3.4 General data processing instructions .. 3-12
3.5 Flexible second operand (Operand2) .. 3-14
3.6 Operand2 as a constant .. 3-15
3.7 Operand2 as a register with optional shift ... 3-16
3.8 Shift operations .. 3-17
3.9 Multiply instructions ... 3-20
3.10 Saturating instructions ... 3-22
3.11 Parallel instructions .. 3-23
3.12 Parallel add and subtract ... 3-24
3.13 Packing and unpacking instructions .. 3-26
3.14 Branch and control instructions ... 3-27
3.15 Coprocessor instructions ... 3-28
3.16 Miscellaneous instructions ... 3-29
3.17 Pseudo-instructions ... 3-31
3.18 Condition codes ... 3-32
3.19 ADC ... 3-33
3.20 ADD ... 3-35
3.21 ADR (PC-relative) .. 3-38
3.22 ADR (register-relative) ... 3-40
3.23 ADRL pseudo-instruction ... 3-42
3.24 AND ... 3-44
3.25 ASR ... 3-46
3.26 B .. 3-48
3.27 BFC ... 3-50
3.28 BFI ... 3-51
3.29 BIC ... 3-52
3.30 BKPT ... 3-54
3.31 BL .. 3-55
3.32 BLX .. 3-57
3.33 BX .. 3-59
3.34 BXJ .. 3-61
3.35 CBZ and CBNZ .. 3-63
3.36 CDP and CDP2 .. 3-64
3.37 CLREX ... 3-65
3.38 CLZ .. 3-66
3.39 CMP and CMN ... 3-67
3.40 CPS ... 3-69
3.41 CPY pseudo-instruction ... 3-70
3.42 DBG ... 3-71
3.43 DMB ... 3-72
3.44 DSB ... 3-74
3.45 EOR ... 3-76
3.46 ERET ... 3-78
3.47 ISB ... 3-79
3.48 IT .. 3-80
3.49 LDC and LDC2 .. 3-83
3.50 LDM ... 3-85
3.51 LDR (immediate offset) .. 3-88
3.52 LDR (PC-relative) .. 3-91
3.53 LDR (register offset) .. 3-94
3.54 LDR (register-relative) ... 3-97
3.55 LDR pseudo-instruction ... 3-100
3.56 LDR, unprivileged .. 3-103
3.57 LDREX ... 3-105
3.58 LSL .. 3-107
3.59 LSR .. 3-109
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. v
ID012213 Non-Confidential

Contents
3.60 MAR ... 3-111
3.61 MCR and MCR2 .. 3-112
3.62 MCRR and MCRR2 ... 3-113
3.63 MIA, MIAPH, and MIAxy .. 3-114
3.64 MLA ... 3-116
3.65 MLS ... 3-117
3.66 MOV ... 3-118
3.67 MOV32 pseudo-instruction .. 3-121
3.68 MOVT .. 3-122
3.69 MRA ... 3-123
3.70 MRC and MRC2 .. 3-124
3.71 MRRC and MRRC2 ... 3-125
3.72 MRS (PSR to general-purpose register) .. 3-126
3.73 MRS (system coprocessor register to ARM register) .. 3-128
3.74 MSR (ARM register to system coprocessor register) .. 3-129
3.75 MSR (general-purpose register to PSR) .. 3-130
3.76 MUL ... 3-132
3.77 MVN ... 3-134
3.78 NEG pseudo-instruction ... 3-136
3.79 NOP ... 3-137
3.80 ORN (Thumb only) ... 3-138
3.81 ORR ... 3-140
3.82 PKHBT and PKHTB ... 3-142
3.83 PLD, PLDW, and PLI ... 3-144
3.84 POP ... 3-146
3.85 PUSH ... 3-148
3.86 QADD .. 3-149
3.87 QDADD .. 3-150
3.88 QDSUB .. 3-151
3.89 QSUB ... 3-152
3.90 RBIT ... 3-153
3.91 REV ... 3-154
3.92 REV16 ... 3-155
3.93 REVSH .. 3-156
3.94 RFE .. 3-157
3.95 ROR ... 3-159
3.96 RRX ... 3-161
3.97 RSB ... 3-163
3.98 RSC ... 3-165
3.99 SBC ... 3-167
3.100 SBFX ... 3-169
3.101 SDIV .. 3-170
3.102 SEL .. 3-171
3.103 SETEND .. 3-173
3.104 SEV .. 3-174
3.105 SMC ... 3-175
3.106 SMLAxy ... 3-176
3.107 SMLAD ... 3-178
3.108 SMLAL ... 3-179
3.109 SMLALD .. 3-180
3.110 SMLALxy ... 3-181
3.111 SMLAWy .. 3-183
3.112 SMLSD .. 3-184
3.113 SMLSLD .. 3-185
3.114 SMMLA .. 3-186
3.115 SMMLS .. 3-187
3.116 SMMUL .. 3-188
3.117 SMUAD .. 3-189
3.118 SMULxy ... 3-190
3.119 SMULL ... 3-192
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. vi
ID012213 Non-Confidential

Contents
3.120 SMULWy .. 3-193
3.121 SMUSD .. 3-194
3.122 SRS ... 3-195
3.123 SSAT ... 3-197
3.124 SSAT16 ... 3-199
3.125 STC and STC2 .. 3-200
3.126 STM ... 3-202
3.127 STR (immediate offset) .. 3-204
3.128 STR (register offset) .. 3-207
3.129 STR, unprivileged .. 3-210
3.130 STREX ... 3-212
3.131 SUB ... 3-214
3.132 SUBS pc, lr .. 3-217
3.133 SVC ... 3-219
3.134 SWP and SWPB .. 3-220
3.135 SXTAB ... 3-221
3.136 SXTAB16 ... 3-223
3.137 SXTAH ... 3-225
3.138 SXTB ... 3-227
3.139 SXTB16 ... 3-229
3.140 SXTH ... 3-230
3.141 SYS .. 3-232
3.142 TBB and TBH ... 3-233
3.143 TEQ ... 3-234
3.144 TST .. 3-236
3.145 UBFX ... 3-238
3.146 UDIV .. 3-239
3.147 UMAAL .. 3-240
3.148 UMLAL ... 3-241
3.149 UMULL ... 3-242
3.150 UND pseudo-instruction ... 3-243
3.151 USAD8 ... 3-244
3.152 USADA8 .. 3-245
3.153 USAT ... 3-246
3.154 USAT16 ... 3-248
3.155 UXTAB ... 3-249
3.156 UXTAB16 ... 3-251
3.157 UXTAH ... 3-253
3.158 UXTB ... 3-255
3.159 UXTB16 ... 3-257
3.160 UXTH ... 3-258
3.161 WFE ... 3-260
3.162 WFI .. 3-261
3.163 YIELD .. 3-262

Chapter 4 ThumbEE Instructions
4.1 Instruction summary .. 4-2
4.2 ThumbEE instruction differences ... 4-3
4.3 CHKA ... 4-5
4.4 ENTERX and LEAVEX .. 4-6
4.5 HB, HBL, HBLP, and HBP ... 4-7

Chapter 5 NEON and VFP Programming
5.1 NEON and VFP instruction summary .. 5-2
5.2 Instructions shared by NEON and VFP ... 5-7
5.3 NEON logical and compare operations ... 5-8
5.4 NEON general data processing instructions .. 5-9
5.5 NEON shift instructions .. 5-10
5.6 NEON general arithmetic instructions .. 5-11
5.7 NEON multiply instructions .. 5-13
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. vii
ID012213 Non-Confidential

Contents
5.8 NEON load and store element and structure instructions 5-14
5.9 Interleaving provided by load and store, element and structure instructions 5-15
5.10 Alignment restrictions in load and store, element and structure instructions 5-16
5.11 NEON and VFP pseudo-instructions ... 5-17
5.12 VFP instructions ... 5-18
5.13 VABA and VABAL .. 5-20
5.14 VABD and VABDL ... 5-21
5.15 VABS ... 5-22
5.16 VABS (floating-point) ... 5-23
5.17 VACLE, VACLT, VACGE and VACGT .. 5-24
5.18 VADD (floating-point) ... 5-25
5.19 VADD (integer) .. 5-26
5.20 VADDHN .. 5-27
5.21 VADDL and VADDW ... 5-28
5.22 VAND (immediate) ... 5-29
5.23 VAND (register) ... 5-30
5.24 VBIC (immediate) .. 5-31
5.25 VBIC (register) ... 5-32
5.26 VBIF ... 5-33
5.27 VBIT ... 5-34
5.28 VBSL .. 5-35
5.29 VCEQ (immediate #0) .. 5-36
5.30 VCEQ (register) ... 5-37
5.31 VCGE (immediate #0) .. 5-38
5.32 VCGE (register) ... 5-39
5.33 VCGT (immediate #0) .. 5-40
5.34 VCGT (register) ... 5-41
5.35 VCLE (immediate #0) .. 5-42
5.36 VCLE (register) .. 5-43
5.37 VCLS ... 5-44
5.38 VCLT (immediate #0) ... 5-45
5.39 VCLT (register) .. 5-46
5.40 VCLZ .. 5-47
5.41 VCMP, VCMPE .. 5-48
5.42 VCNT ... 5-49
5.43 VCVT (between fixed-point or integer, and floating-point) 5-50
5.44 VCVT (between half-precision and single-precision floating-point) 5-51
5.45 VCVT (between single-precision and double-precision) .. 5-52
5.46 VCVT (between floating-point and integer) .. 5-53
5.47 VCVT (between floating-point and fixed-point) .. 5-54
5.48 VCVTB, VCVTT (half-precision extension) .. 5-55
5.49 VDIV .. 5-56
5.50 VDUP ... 5-57
5.51 VEOR ... 5-58
5.52 VEXT ... 5-59
5.53 VFMA, VFMS ... 5-60
5.54 VFMA, VFMS, VFNMA, VFNMS .. 5-61
5.55 VHADD ... 5-62
5.56 VHSUB .. 5-63
5.57 VLDn (single n-element structure to one lane) .. 5-64
5.58 VLDn (single n-element structure to all lanes) ... 5-66
5.59 VLDn (multiple n-element structures) .. 5-68
5.60 VLDM ... 5-70
5.61 VLDR .. 5-71
5.62 VLDR (post-increment and pre-decrement) ... 5-72
5.63 VLDR pseudo-instruction ... 5-73
5.64 VMAX and VMIN .. 5-74
5.65 VMLA ... 5-75
5.66 VMLA (by scalar) ... 5-76
5.67 VMLA (floating-point) ... 5-77
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. viii
ID012213 Non-Confidential

Contents
5.68 VMLAL (by scalar) ... 5-78
5.69 VMLAL ... 5-79
5.70 VMLS (by scalar) ... 5-80
5.71 VMLS ... 5-81
5.72 VMLS (floating-point) ... 5-82
5.73 VMLSL ... 5-83
5.74 VMLSL (by scalar) ... 5-84
5.75 VMOV .. 5-85
5.76 VMOV (immediate) .. 5-86
5.77 VMOV (register) ... 5-87
5.78 VMOV (between one ARM register and single precision VFP) 5-88
5.79 VMOV (between two ARM registers and an extension register) 5-89
5.80 VMOV (between an ARM register and a NEON scalar) .. 5-90
5.81 VMOVL .. 5-91
5.82 VMOVN .. 5-92
5.83 VMOV2 .. 5-93
5.84 VMRS ... 5-94
5.85 VMSR .. 5-95
5.86 VMUL ... 5-96
5.87 VMUL (floating-point) ... 5-97
5.88 VMUL (by scalar) ... 5-98
5.89 VMULL ... 5-99
5.90 VMULL (by scalar) ... 5-100
5.91 VMVN (register) ... 5-101
5.92 VMVN (immediate) .. 5-102
5.93 VNEG (floating-point) ... 5-103
5.94 VNEG ... 5-104
5.95 VNMLA (floating-point) .. 5-105
5.96 VNMLS (floating-point) .. 5-106
5.97 VNMUL (floating-point) .. 5-107
5.98 VORN (register) ... 5-108
5.99 VORN (immediate) .. 5-109
5.100 VORR (register) ... 5-110
5.101 VORR (immediate) .. 5-111
5.102 VPADAL ... 5-112
5.103 VPADD .. 5-113
5.104 VPADDL .. 5-114
5.105 VPMAX and VPMIN ... 5-115
5.106 VPOP ... 5-116
5.107 VPUSH .. 5-117
5.108 VQABS .. 5-118
5.109 VQADD .. 5-119
5.110 VQDMLAL and VQDMLSL (by vector or by scalar) ... 5-120
5.111 VQDMULH (by vector or by scalar) ... 5-121
5.112 VQDMULL (by vector or by scalar) .. 5-122
5.113 VQMOVN and VQMOVUN .. 5-123
5.114 VQNEG .. 5-124
5.115 VQRDMULH (by vector or by scalar) ... 5-125
5.116 VQRSHL (by signed variable) .. 5-126
5.117 VQRSHRN and VQRSHRUN (by immediate) ... 5-127
5.118 VQSHL (by signed variable) .. 5-128
5.119 VQSHL and VQSHLU (by immediate) ... 5-129
5.120 VQSHRN and VQSHRUN (by immediate) ... 5-130
5.121 VQSUB .. 5-131
5.122 VRADDHN ... 5-132
5.123 VRECPE .. 5-133
5.124 VRECPS ... 5-134
5.125 VREV16, VREV32, and VREV64 .. 5-135
5.126 VRHADD .. 5-136
5.127 VRSHL (by signed variable) .. 5-137
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. ix
ID012213 Non-Confidential

Contents
5.128 VRSHR (by immediate) ... 5-138
5.129 VRSHRN (by immediate) ... 5-139
5.130 VRSQRTE ... 5-140
5.131 VRSQRTS ... 5-141
5.132 VRSRA (by immediate) .. 5-142
5.133 VRSUBHN ... 5-143
5.134 VSHL (by immediate) ... 5-144
5.135 VSHL (by signed variable) ... 5-146
5.136 VSHLL (by immediate) ... 5-147
5.137 VSHR (by immediate) .. 5-148
5.138 VSHRN (by immediate) ... 5-149
5.139 VSLI .. 5-150
5.140 VSQRT .. 5-151
5.141 VSRA (by immediate) .. 5-152
5.142 VSRI .. 5-153
5.143 VSTM ... 5-154
5.144 VSTn (multiple n-element structures) .. 5-155
5.145 VSTn (single n-element structure to one lane) .. 5-157
5.146 VSTR ... 5-159
5.147 VSTR (post-increment and pre-decrement) ... 5-160
5.148 VSUB (floating-point) ... 5-161
5.149 VSUB (integer) ... 5-162
5.150 VSUBHN .. 5-163
5.151 VSUBL and VSUBW .. 5-164
5.152 VSWP .. 5-165
5.153 VTBL and VTBX .. 5-166
5.154 VTRN ... 5-167
5.155 VTST .. 5-168
5.156 VUZP ... 5-169
5.157 VZIP ... 5-170

Chapter 6 Wireless MMX Technology Instructions
6.1 About Wireless MMX Technology instructions .. 6-2
6.2 ARM support for Wireless MMX Technology ... 6-3
6.3 Directives, WRN and WCN, to support Wireless MMX Technology 6-4
6.4 Frame directives and Wireless MMX Technology ... 6-5
6.5 Wireless MMX load and store instructions ... 6-6
6.6 Wireless MMX Technology and XScale instructions ... 6-8
6.7 Wireless MMX instructions .. 6-9
6.8 Wireless MMX pseudo-instructions ... 6-11

Chapter 7 Directives Reference
7.1 Alphabetical list of directives .. 7-2
7.2 Symbol definition directives ... 7-3
7.3 Data definition directives .. 7-4
7.4 About assembly control directives ... 7-5
7.5 About frame directives ... 7-6
7.6 Reporting directives ... 7-7
7.7 Instruction set and syntax selection directives ... 7-8
7.8 Miscellaneous directives .. 7-9
7.9 ALIAS ... 7-10
7.10 ALIGN .. 7-11
7.11 AREA ... 7-13
7.12 ARM, THUMB, THUMBX, CODE16 and CODE32 .. 7-16
7.13 ASSERT .. 7-17
7.14 ATTR ... 7-18
7.15 CN .. 7-19
7.16 COMMON .. 7-20
7.17 CP .. 7-21
7.18 DATA ... 7-22
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. x
ID012213 Non-Confidential

Contents
7.19 DCB ... 7-23
7.20 DCD and DCDU ... 7-24
7.21 DCDO .. 7-25
7.22 DCFD and DCFDU .. 7-26
7.23 DCFS and DCFSU ... 7-27
7.24 DCI ... 7-28
7.25 DCQ and DCQU .. 7-29
7.26 DCW and DCWU ... 7-30
7.27 END ... 7-31
7.28 ENTRY ... 7-32
7.29 EQU ... 7-33
7.30 EXPORT or GLOBAL .. 7-34
7.31 EXPORTAS ... 7-36
7.32 FRAME ADDRESS .. 7-37
7.33 FRAME POP .. 7-38
7.34 FRAME PUSH ... 7-39
7.35 FRAME REGISTER ... 7-40
7.36 FRAME RESTORE .. 7-41
7.37 FRAME RETURN ADDRESS .. 7-42
7.38 FRAME SAVE .. 7-43
7.39 FRAME STATE REMEMBER .. 7-44
7.40 FRAME STATE RESTORE ... 7-45
7.41 FRAME UNWIND ON .. 7-46
7.42 FRAME UNWIND OFF .. 7-47
7.43 FUNCTION or PROC ... 7-48
7.44 ENDFUNC or ENDP .. 7-50
7.45 FIELD ... 7-51
7.46 GBLA, GBLL, and GBLS ... 7-52
7.47 GET or INCLUDE .. 7-54
7.48 IF, ELSE, ENDIF, and ELIF ... 7-55
7.49 IMPORT and EXTERN .. 7-57
7.50 INCBIN ... 7-59
7.51 INFO .. 7-60
7.52 KEEP ... 7-61
7.53 LCLA, LCLL, and LCLS ... 7-62
7.54 LTORG .. 7-63
7.55 MACRO and MEND ... 7-64
7.56 MAP ... 7-67
7.57 MEXIT .. 7-68
7.58 NOFP ... 7-69
7.59 OPT ... 7-70
7.60 QN, DN, and SN .. 7-72
7.61 RELOC .. 7-74
7.62 REQUIRE .. 7-75
7.63 REQUIRE8 and PRESERVE8 ... 7-76
7.64 RLIST ... 7-78
7.65 RN .. 7-79
7.66 ROUT ... 7-80
7.67 SETA, SETL, and SETS .. 7-81
7.68 SPACE or FILL .. 7-82
7.69 TTL and SUBT ... 7-83
7.70 WHILE and WEND .. 7-84

Appendix A Revisions for Assembler Reference
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. xi
ID012213 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 1-1
ID012213 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0489I
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 1-2
ID012213 Non-Confidential

Chapter 2
Assembler command-line options

The following topics describe the ARM® Compiler toolchain assembler command-line syntax
and the command-line options accepted by the assembler, armasm:
• Assembler command-line syntax on page 2-2
• Assembler command-line options on page 2-3.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-1
ID012213 Non-Confidential

Assembler command-line options
2.1 Assembler command-line syntax
The command for invoking the ARM assembler is:

armasm {options} {inputfile}

where:

options are commands to the assembler. You can invoke the assembler with any
combination of options separated by spaces. You can specify values for some
options. To specify a value for an option, use either ‘=’ (option=value) or a space
character (option value).

inputfile can be one or more assembly source files separated by spaces. Input files must be
UAL, or pre-UAL ARM or Thumb® assembly language source files.

2.1.1 See also

Using the Compiler:
• Order of compiler command-line options on page 3-11.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-2
ID012213 Non-Confidential

Assembler command-line options
2.2 Assembler command-line options
The following command-line options are supported by the assembler:
• --16 on page 2-5
• --32 on page 2-6
• --apcs=qualifier…qualifier on page 2-7
• --arm on page 2-9
• --arm_only on page 2-10
• --bi on page 2-11
• --bigend on page 2-12
• --brief_diagnostics on page 2-13
• --checkreglist on page 2-14
• --compatible=name on page 2-15
• --cpreproc on page 2-16
• --cpreproc_opts=options on page 2-17
• --cpu=list on page 2-18
• --cpu=name on page 2-19
• --debug on page 2-20
• --depend=dependfile on page 2-21
• --depend_format=string on page 2-22
• --device=list on page 2-23
• --device=name on page 2-24
• --diag_error=tag{, tag} on page 2-25
• --diag_remark=tag{, tag} on page 2-26
• --diag_style=style on page 2-27
• --diag_suppress=tag{, tag} on page 2-28
• --diag_warning=tag{, tag} on page 2-29
• --dllexport_all on page 2-30
• --dwarf2 on page 2-31
• --dwarf3 on page 2-32
• --errors=errorfile on page 2-33
• --execstack on page 2-34
• --exceptions on page 2-35
• --exceptions_unwind on page 2-36
• --fpmode=model on page 2-37
• --fpu=list on page 2-38
• --fpu=name on page 2-39
• -g on page 2-41
• --help on page 2-42
• -idir{,dir, …} on page 2-43
• --keep on page 2-44
• --length=n on page 2-45
• --li on page 2-46
• --library_type=lib on page 2-47
• --licretry on page 2-48
• --list=file on page 2-49
• --list= on page 2-50
• --littleend on page 2-51
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-3
ID012213 Non-Confidential

Assembler command-line options
• -m on page 2-52
• --maxcache=n on page 2-53
• --md on page 2-54
• --no_code_gen on page 2-55
• --no_esc on page 2-56
• --no_execstack on page 2-57
• --no_exceptions on page 2-58
• --no_exceptions_unwind on page 2-59
• --no_hide_all on page 2-60
• --no_project on page 2-61
• --no_reduce_paths on page 2-62
• --no_regs on page 2-63
• --no_terse on page 2-64
• --no_unaligned_access on page 2-65
• --no_warn on page 2-66
• -o filename on page 2-67
• --pd on page 2-68
• --predefine "directive" on page 2-69
• --project=filename on page 2-70
• --reduce_paths on page 2-71
• --regnames=none on page 2-72
• --regnames=callstd on page 2-73
• --regnames=all on page 2-74
• --reinitialize_workdir on page 2-75
• --report-if-not-wysiwyg on page 2-76
• --show_cmdline on page 2-77
• --split_ldm on page 2-78
• --thumb on page 2-79
• --thumbx on page 2-80
• --unaligned_access on page 2-81
• --unsafe on page 2-82
• --untyped_local_labels on page 2-83
• --version_number on page 2-84
• --via=file on page 2-85
• --vsn on page 2-86
• --width=n on page 2-87
• --workdir=directory on page 2-88
• --xref on page 2-89.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-4
ID012213 Non-Confidential

Assembler command-line options
2.3 --16
This option instructs the assembler to interpret instructions as Thumb instructions using the
pre-UAL Thumb syntax. This is equivalent to a CODE16 directive at the head of the source file.
Use the --thumb option to specify Thumb instructions using the UAL syntax.

2.3.1 See also
• --thumb on page 2-79
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 7-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-5
ID012213 Non-Confidential

Assembler command-line options
2.4 --32
This option is a synonym for --arm.

2.4.1 See also
• --arm on page 2-9.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-6
ID012213 Non-Confidential

Assembler command-line options
2.5 --apcs=qualifier…qualifier
This option specifies whether you are using the Procedure Call Standard for the ARM
Architecture (AAPCS). It can also specify some attributes of code sections.

The AAPCS forms part of the Base Standard Application Binary Interface for the ARM
Architecture (BSABI) specification. By writing code that adheres to the AAPCS, you can ensure
that separately compiled and assembled modules can work together.

Note
 AAPCS qualifiers do not affect the code produced by the assembler. They are an assertion by
the programmer that the code in inputfile complies with a particular variant of AAPCS. They
cause attributes to be set in the object file produced by the assembler. The linker uses these
attributes to check compatibility of files, and to select appropriate library variants.

Values for qualifier are:

none Specifies that inputfile does not use AAPCS. AAPCS registers are not set
up. Other qualifiers are not permitted if you use none.

/interwork, /nointerwork

/interwork specifies that the code in the inputfile can interwork between
ARM and Thumb safely. The default is /nointerwork.

/inter, /nointer

Are synonyms for /interwork and /nointerwork.

/ropi, /noropi /ropi specifies that the code in inputfile is Read-Only
Position-Independent (ROPI). The default is /noropi.

/pic, /nopic Are synonyms for /ropi and /noropi.

/rwpi, /norwpi /rwpi specifies that the code in inputfile is Read-Write
Position-Independent (RWPI). The default is /norwpi.

/pid, /nopid Are synonyms for /rwpi and /norwpi.

/fpic, /nofpic /fpic specifies that the code in inputfile is read-only independent and
references to addresses are suitable for use in a Linux shared object. The
default is /nofpic.

/hardfp, /softfp Requests hardware or software floating-point linkage. This enables the
procedure call standard to be specified separately from the version of the
floating-point hardware available through the --fpu option. It is still
possible to specify the procedure call standard by using the --fpu option,
but ARM recommends you use --apcs. If floating-point support is not
permitted (for example, because --fpu=none is specified, or because of
other means), then /hardfp and /softfp are ignored. If floating-point
support is permitted and the softfp calling convention is used
(--fpu=softvfp or --fpu=softvfp+vfp...), then /hardfp gives an error.

Note
 You must specify at least one qualifier. If you specify more than one qualifier, ensure that there
are no spaces or commas between the individual qualifiers in the list.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-7
ID012213 Non-Confidential

Assembler command-line options
2.5.1 Example

armasm --apcs=/inter/ropi inputfile.s

2.5.2 See also

Procedure Call Standard for the ARM Architecture,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.

Compiler Reference:
• --apcs=qualifier...qualifier on page 3-11.

Developing Software for ARM Processors:
• Chapter 5 Interworking ARM and Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-8
ID012213 Non-Confidential

Assembler command-line options
2.6 --arm
This option instructs the assembler to interpret instructions as ARM instructions. It does not,
however, guarantee ARM-only code in the object file. This is the default. Using this option is
equivalent to specifying the ARM or CODE32 directive at the start of the source file.

2.6.1 See also
• --32 on page 2-6
• --arm_only on page 2-10
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 7-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-9
ID012213 Non-Confidential

Assembler command-line options
2.7 --arm_only
This option instructs the assembler to only generate ARM code. This is similar to --arm but also
has the property that the assembler does not permit the generation of any Thumb code.

2.7.1 See also
• --arm on page 2-9.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-10
ID012213 Non-Confidential

Assembler command-line options
2.8 --bi
This option is a synonym for --bigend.

2.8.1 See also
• --bigend on page 2-12
• --littleend on page 2-51
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-11
ID012213 Non-Confidential

Assembler command-line options
2.9 --bigend
This option instructs the assembler to assemble code suitable for a big-endian ARM processor.
The default is --littleend.

2.9.1 See also
• --littleend on page 2-51.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-12
ID012213 Non-Confidential

Assembler command-line options
2.10 --brief_diagnostics
This option instructs the assembler to use a shorter form of the diagnostic output. In this form,
the original source line is not displayed and the error message text is not wrapped when it is too
long to fit on a single line. The default is --no_brief_diagnostics.

2.10.1 See also
• --diag_error=tag{, tag} on page 2-25
• --diag_warning=tag{, tag} on page 2-29.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-13
ID012213 Non-Confidential

Assembler command-line options
2.11 --checkreglist
This option instructs the assembler to check RLIST, LDM, and STM register lists to ensure that all
registers are provided in increasing register number order. A warning is given if registers are not
listed in order.

This option is deprecated. Use --diag_warning 1206 instead.

2.11.1 See also
• --diag_warning=tag{, tag} on page 2-29.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-14
ID012213 Non-Confidential

Assembler command-line options
2.12 --compatible=name
This option specifies a second processor or architecture, name, for which the assembler generates
compatible code.

When you specify a processor or architecture name using --compatible, valid values of name for
both the --cpu and --compatible options are restricted to those shown in Table 2-1 and must not
be from the same group.

Specify --compatible=NONE to turn off all previous instances of the option on the command line.

2.12.1 Example

armasm --cpu=arm7tdmi --compatible=cortex-m3 inputfile.s

2.12.2 See also
• --cpu=name on page 2-19.

Table 2-1 Compatible processor or architecture combinations

Group 1 ARM7TDMI, 4T

Group 2 Cortex™-M0, Cortex-M1, Cortex-M3,
Cortex-M4, 7-M, 6-M, 6S-M, SC300,
SC000
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-15
ID012213 Non-Confidential

Assembler command-line options
2.13 --cpreproc
This option instructs the assembler to call armcc to preprocess the input file before assembling it.

2.13.1 See also
• --cpreproc_opts=options on page 2-17.

Using the Assembler:
• Using the C preprocessor on page 7-24.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-16
ID012213 Non-Confidential

Assembler command-line options
2.14 --cpreproc_opts=options
This option enables the assembler to pass compiler options to armcc when using the C
preprocessor.

options is a comma-separated list of options and their values.

2.14.1 Example

armasm --cpreproc --cpreproc_opts=’-DDEBUG=1’ inputfile.s

2.14.2 See also
• --cpreproc on page 2-16.

Using the Assembler:
• Using the C preprocessor on page 7-24.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-17
ID012213 Non-Confidential

Assembler command-line options
2.15 --cpu=list
This option lists the supported CPU and architecture names that can be used with the --cpu name
option.

2.15.1 Example

armasm --cpu=list

2.15.2 See also
• --cpu=name on page 2-19.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-18
ID012213 Non-Confidential

Assembler command-line options
2.16 --cpu=name
This option sets the target CPU. Some instructions produce either errors or warnings if
assembled for the wrong target CPU.

Valid values for name are architecture names such as 4T, 5TE, or 6T2, or part numbers such as
ARM7TDMI®. The default is ARM7TDMI.

Note
 ARMv7 is not a recognized ARM architecture. Using --cpu=7 generates only
Thumb instructions that are common in the ARMv7-A, ARMv7-R, and ARMv7-M
architectures.

2.16.1 Example

armasm --cpu=Cortex-M3 inputfile.s

2.16.2 See also

Reference
• --cpu=list on page 2-18
• --unsafe on page 2-82
• --compatible=name on page 2-15.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-19
ID012213 Non-Confidential

Assembler command-line options
2.17 --debug
This option instructs the assembler to generate DWARF debug tables. --debug is a synonym for
-g. The default is DWARF 3.

Note
 Local symbols are not preserved with --debug. You must specify --keep if you want to preserve
the local symbols to aid debugging.

2.17.1 See also
• --dwarf2 on page 2-31
• --dwarf3 on page 2-32
• --keep on page 2-44.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-20
ID012213 Non-Confidential

Assembler command-line options
2.18 --depend=dependfile
This option instructs the assembler to save source file dependency lists to dependfile. These are
suitable for use with make utilities.

2.18.1 See also
• --md on page 2-54
• --depend_format=string on page 2-22.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-21
ID012213 Non-Confidential

Assembler command-line options
2.19 --depend_format=string
This option changes the format of output dependency files to UNIX-style format, for
compatibility with some UNIX make programs.

The value of string can be one of:

unix Generates dependency files with UNIX-style path separators.

unix_escaped
Is the same as unix, but escapes spaces with backslash.

unix_quoted
Is the same as unix, but surrounds path names with double quotes.

2.19.1 See also
• --depend=dependfile on page 2-21.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-22
ID012213 Non-Confidential

Assembler command-line options
2.20 --device=list
This option lists the supported device names that can be used with the --device=name option.

Note
 This option is deprecated.

2.20.1 See also
• --device=name on page 2-24.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-23
ID012213 Non-Confidential

Assembler command-line options
2.21 --device=name
This option selects a specified device as the target and sets the associated processor settings.

Note
 This option is deprecated.

2.21.1 See also
• --device=list on page 2-23
• --cpu=name on page 2-19
• --device=name on page 3-69 in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-24
ID012213 Non-Confidential

Assembler command-line options
2.22 --diag_error=tag{, tag}
Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_error option sets the diagnostic messages
that have the specified tags to the error severity.

You can specify more than one tag with these options by separating each tag using a comma.
You can specify the optional assembler prefix A before the tag number. If any prefix other than
A is included, the message number is ignored.

Table 2-2 shows the meaning of the term severity used in the option descriptions.

You can set the tag to warning to treat all warnings as errors.

2.22.1 See also
• --brief_diagnostics on page 2-13
• --diag_warning=tag{, tag} on page 2-29
• --diag_suppress=tag{, tag} on page 2-28.

Table 2-2 Severity of diagnostic messages

Severity Description

Error Errors indicate violations in the syntactic or semantic rules of assembly
language. Assembly continues, but object code is not generated.

Warning Warnings indicate unusual conditions in your code that might indicate a
problem. Assembly continues, and object code is generated unless any
problems with an Error severity are detected.

Remark Remarks indicate common, but not recommended, use of assembly
language. These diagnostics are not issued by default. Assembly
continues, and object code is generated unless any problems with an
Error severity are detected.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-25
ID012213 Non-Confidential

Assembler command-line options
2.23 --diag_remark=tag{, tag}
Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_remark option sets the diagnostic messages
that have the specified tags to the remark severity.

You can specify more than one tag with these options by separating each tag using a comma.You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

2.23.1 See also
• --brief_diagnostics on page 2-13
• --diag_error=tag{, tag} on page 2-25.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-26
ID012213 Non-Confidential

Assembler command-line options
2.24 --diag_style=style
This option instructs the assembler to display diagnostic messages using the specified style,
where style is one of:

arm Display messages using the ARM assembler style. This is the default if
--diag_style is not specified.

ide Include the line number and character count for the line that is in error. These
values are displayed in parentheses.

gnu Display messages using the GNU style.

Choosing the option --diag_style=ide implicitly selects the option --brief_diagnostics.
Explicitly selecting --no_brief_diagnostics on the command line overrides the selection of
--brief_diagnostics implied by --diag_style=ide.

Selecting either the option --diag_style=arm or the option --diag_style=gnu does not imply any
selection of --brief_diagnostics.

2.24.1 See also
• --brief_diagnostics on page 2-13
• --diag_style=style.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-27
ID012213 Non-Confidential

Assembler command-line options
2.25 --diag_suppress=tag{, tag}
Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_suppress option disables the diagnostic
messages that have the specified tags.

You can specify more than one tag with these options by separating each tag using a comma.

For example, to suppress the warning messages that have numbers 1293 and 187, use the
following command:

armasm --diag_suppress=1293,187

You can specify the optional assembler prefix A before the tag number. For example:

armasm --diag_suppress=A1293,A187

If any prefix other than A is included, the message number is ignored. Diagnostic message tags
can be cut and pasted directly into a command line.

You can also set the tag to:
• warning, to suppress all warnings
• error, to suppress all downgradeable errors.

2.25.1 See also
• --diag_error=tag{, tag} on page 2-25.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-28
ID012213 Non-Confidential

Assembler command-line options
2.26 --diag_warning=tag{, tag}
Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_warning option sets the diagnostic messages
that have the specified tags to the warning severity.

You can specify more than one tag with these options by separating each tag using a comma.You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

You can set the tag to error to downgrade the severity of all downgradeable errors to warnings.

2.26.1 See also
• --diag_error=tag{, tag} on page 2-25.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-29
ID012213 Non-Confidential

Assembler command-line options
2.27 --dllexport_all
This option gives all exported global symbols STV_PROTECTED visibility in ELF rather than
STV_HIDDEN, unless overridden by source directives.

2.27.1 See also
• EXPORT or GLOBAL on page 7-34.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-30
ID012213 Non-Confidential

Assembler command-line options
2.28 --dwarf2
This option can be used with --debug, to instruct the assembler to generate DWARF 2 debug
tables.

2.28.1 See also
• --debug on page 2-20
• --dwarf3 on page 2-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-31
ID012213 Non-Confidential

Assembler command-line options
2.29 --dwarf3
This option can be used with --debug, to instruct the assembler to generate DWARF 3 debug
tables. This is the default if --debug is specified.

2.29.1 See also
• --debug on page 2-20
• --dwarf2 on page 2-31.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-32
ID012213 Non-Confidential

Assembler command-line options
2.30 --errors=errorfile
This option instructs the assembler to output error messages to errorfile.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-33
ID012213 Non-Confidential

Assembler command-line options
2.31 --execstack
This option generates a .note.GNU-stack section marking the stack as executable.

You can also use the AREA directive to generate an executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC,CODE

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

2.31.1 See also
• --no_execstack on page 2-57
• AREA on page 7-13.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-34
ID012213 Non-Confidential

Assembler command-line options
2.32 --exceptions
This option instructs the assembler to switch on exception table generation for all functions
defined by FUNCTION (or PROC) and ENDFUNC (or ENDP).

2.32.1 See also
• --no_exceptions on page 2-58
• --exceptions_unwind on page 2-36
• --no_exceptions_unwind on page 2-59
• FRAME UNWIND ON on page 7-46
• FUNCTION or PROC on page 7-48
• ENDFUNC or ENDP on page 7-50
• FRAME UNWIND OFF on page 7-47.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-35
ID012213 Non-Confidential

Assembler command-line options
2.33 --exceptions_unwind
This option instructs the assembler to produce unwind tables for functions where possible. This
is the default.

For finer control, use FRAME UNWIND ON and FRAME UNWIND OFF directives.

2.33.1 See also
• --no_exceptions_unwind on page 2-59
• --exceptions on page 2-35
• --no_exceptions on page 2-58
• FRAME UNWIND ON on page 7-46
• FRAME UNWIND OFF on page 7-47
• FUNCTION or PROC on page 7-48
• ENDFUNC or ENDP on page 7-50.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-36
ID012213 Non-Confidential

Assembler command-line options
2.34 --fpmode=model
This option specifies the floating-point model, and sets library attributes and floating-point
optimizations to select the most suitable library when linking.

Note
 This does not cause any changes to the code that you write.

model can be one of:

none Source code is not permitted to use any floating-point type or floating point
instruction. This option overrides any explicit --fpu=name option.

ieee_full All facilities, operations, and representations guaranteed by the IEEE standard are
available in single and double-precision. Modes of operation can be selected
dynamically at runtime.

ieee_fixed IEEE standard with round-to-nearest and no inexact exception.

ieee_no_fenv IEEE standard with round-to-nearest and no exceptions. This mode is compatible
with the Java floating-point arithmetic model.

std IEEE finite values with denormals flushed to zero, round-to-nearest and no
exceptions. It is C and C++ compatible. This is the default option.
Finite values are as predicted by the IEEE standard. It is not guaranteed that NaNs
and infinities are produced in all circumstances defined by the IEEE model, or
that when they are produced, they have the same sign. Also, it is not guaranteed
that the sign of zero is that predicted by the IEEE model.

fast Some value altering optimizations, where accuracy is sacrificed to fast execution.
This is not IEEE compatible, and is not standard C.

2.34.1 Example

armasm --fpmode ieee_full inputfile.s

2.34.2 See also

Reference
• --fpu=name on page 2-39.

Other information
• IEEE Standards Association, http://standards.ieee.org/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-37
ID012213 Non-Confidential

Assembler command-line options
2.35 --fpu=list
This option lists the supported FPU names that can be used with the --fpu=name option.

2.35.1 Example

armasm --fpu=list

2.35.2 See also
• --fpu=name on page 2-39
• --fpmode=model on page 2-37.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-38
ID012213 Non-Confidential

Assembler command-line options
2.36 --fpu=name
This option selects the target floating-point unit (FPU) architecture. If you specify this option it
overrides any implicit FPU set by the --cpu option. The assembler produces an error if the FPU
you specify explicitly is incompatible with the CPU. Floating-point instructions also produce
either errors or warnings if assembled for the wrong target FPU.

The assembler sets a build attribute corresponding to name in the object file. The linker
determines compatibility between object files, and selection of libraries, accordingly.

Valid values for name are:

none Selects no floating-point architecture. This makes your assembled object
file compatible with object files built with any FPU.

vfpv3 Selects hardware floating-point unit conforming to architecture VFPv3.

vfpv3_fp16 Selects hardware floating-point unit conforming to architecture VFPv3
with half-precision floating-point extension.

vfpv3_d16 Selects hardware floating-point unit conforming to architecture
VFPv3-D16.

vfpv3_d16_fp16 Selects hardware floating-point unit conforming to architecture
VFPv3-D16 with half-precision floating-point extension.

vfpv4 Selects hardware floating-point unit conforming to architecture VFPv4.

vfpv4_d16 Selects hardware floating-point unit conforming to architecture
VFPv4-D16.

fpv4-sp Selects hardware floating-point unit conforming to the single precision
variant of architecture FPv4.

vfpv2 Selects hardware floating-point unit conforming to architecture VFPv2.

softvfp Selects software floating-point linkage. This is the default if you do not
specify a --fpu option and the --cpu option selected does not imply a
particular FPU.

softvfp+vfpv2 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv2.

softvfp+vfpv3 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3.

softvfp+vfpv3_fp16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3_fp16.

softvfp+vfpv3_d16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3_d16.

softvfp+vfpv3_d16_fp16
Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-39
ID012213 Non-Confidential

Assembler command-line options
This is otherwise equivalent to using --fpu vfpv3_d16_fp16.

softvfp+vfpv4 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv4.

softvfp+vfpv4_d16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv4_d16.

softvfp+fpv4-sp Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu fpv4-sp.

2.36.1 See also
• --fpmode=model on page 2-37.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-40
ID012213 Non-Confidential

Assembler command-line options
2.37 -g
This option is a synonym for --debug.

2.37.1 See also
• --debug on page 2-20.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-41
ID012213 Non-Confidential

Assembler command-line options
2.38 --help
This option instructs the assembler to show a summary of the available command-line options.

2.38.1 See also
• --version_number on page 2-84
• --vsn on page 2-86.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-42
ID012213 Non-Confidential

Assembler command-line options
2.39 -idir{,dir, …}
This option adds directories to the source file include path. Any directories added using this
option have to be fully qualified.

2.39.1 See also
• GET or INCLUDE on page 7-54.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-43
ID012213 Non-Confidential

Assembler command-line options
2.40 --keep
This option instructs the assembler to keep named local labels in the symbol table of the object
file, for use by the debugger.

2.40.1 See also
• KEEP on page 7-61.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-44
ID012213 Non-Confidential

Assembler command-line options
2.41 --length=n
This option sets the listing page length to n. Length zero means an unpaged listing. The default
is 66 lines.

2.41.1 See also
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-45
ID012213 Non-Confidential

Assembler command-line options
2.42 --li
This option is a synonym for --littleend.

2.42.1 See also
• --littleend on page 2-51
• --bigend on page 2-12.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-46
ID012213 Non-Confidential

Assembler command-line options
2.43 --library_type=lib
This option enables the relevant library selection to be used at link time.

Where lib can be one of:

standardlib Specifies that the full ARM runtime libraries are selected at link time. This
is the default.

microlib Specifies that the C micro-library (microlib) is selected at link time.

Note
 This option can be used with the compiler, assembler or linker when use of the libraries require
more specialized optimizations.

Use this option with the linker to override all other --library_type options.

2.43.1 See also

• Building an application with microlib on page 3-7 in the Using ARM C and C++
Libraries and Floating Point Support

• --library_type=lib on page 3-130 in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-47
ID012213 Non-Confidential

Assembler command-line options
2.44 --licretry
If you are using floating licenses, this option makes up to 10 attempts to obtain a license when
you invoke armasm.

Use this option if your builds are failing to obtain a license from your license server, and only
after you have ruled out any other problems with the network or the license server setup.

ARM recommends that you place this option in the ARMCCn_ASMOPT environment variable. In this
way, you do not have to modify your build files.

2.44.1 See also

• Toolchain environment variables on page 2-15 in the Introducing the ARM Compiler
toolchain

• --licretry on page 3-131 in the Compiler Reference

• --licretry on page 2-99 in the Linker Reference

• --licretry on page 4-51 in Using the fromelf Image Converter

• Flexnet for ARM® Tools License Management Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0209i/index.html.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-48
ID012213 Non-Confidential

Assembler command-line options
2.45 --list=file
This option instructs the assembler to output a detailed listing of the assembly language
produced by the assembler to file.

If - is given as file, listing is sent to stdout.

Use the following command-line options to control the behavior of --list:
• --no_terse

• --width

• --length

• --xref.

2.45.1 See also
• --no_terse on page 2-64
• --width=n on page 2-87
• --length=n on page 2-45
• --xref on page 2-89.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-49
ID012213 Non-Confidential

Assembler command-line options
2.46 --list=
This option instructs the assembler to send the detailed assembly language listing to
inputfile.lst.

Note
 You can use --list without a filename to send the output to inputfile.lst. However, this syntax
is deprecated and the assembler issues a warning. This syntax is to be removed in a later release.
Use --list= instead.

2.46.1 See also
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-50
ID012213 Non-Confidential

Assembler command-line options
2.47 --littleend
This option instructs the assembler to assemble code suitable for a little-endian ARM processor.

2.47.1 See also
• --bigend on page 2-12.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-51
ID012213 Non-Confidential

Assembler command-line options
2.48 -m
This option instructs the assembler to write source file dependency lists to stdout.

2.48.1 See also
• --md on page 2-54.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-52
ID012213 Non-Confidential

Assembler command-line options
2.49 --maxcache=n
This option sets the maximum source cache size to n bytes. The default is 8MB. armasm gives a
warning if size is less than 8MB.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-53
ID012213 Non-Confidential

Assembler command-line options
2.50 --md
This option instructs the assembler to write source file dependency lists to inputfile.d.

2.50.1 See also
• -m on page 2-52.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-54
ID012213 Non-Confidential

Assembler command-line options
2.51 --no_code_gen
This option instructs the assembler to exit after pass 1. No object file is generated. This option
is useful if you only want to check the syntax of the source code or directives.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-55
ID012213 Non-Confidential

Assembler command-line options
2.52 --no_esc
This option instructs the assembler to ignore C-style escaped special characters, such as \n and
\t.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-56
ID012213 Non-Confidential

Assembler command-line options
2.53 --no_execstack
This option generates a .note.GNU-stack section marking the stack as non-executable.

You can also use the AREA directive to generate a non executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

If both the command-line option and source directive are used and are different, then the stack
is marked as executable.

2.53.1 See also
• --execstack on page 2-34
• AREA on page 7-13.

Table 2-3 Specifying a command-line option and an AREA directive for GNU-stack sections

--execstack
command-line
option

--no_execstack
command-line
option

execstack AREA directive execstack execstack

no_execstack AREA directive execstack no_execstack
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-57
ID012213 Non-Confidential

Assembler command-line options
2.54 --no_exceptions
This option instructs the assembler to switch off exception table generation. No tables are
generated. This is the default.

2.54.1 See also
• --exceptions on page 2-35
• --exceptions_unwind on page 2-36
• --no_exceptions_unwind on page 2-59
• FRAME UNWIND ON on page 7-46
• FRAME UNWIND OFF on page 7-47.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-58
ID012213 Non-Confidential

Assembler command-line options
2.55 --no_exceptions_unwind
This option instructs the assembler to produce nounwind tables for every function.

2.55.1 See also
• --exceptions on page 2-35
• --no_exceptions on page 2-58
• --exceptions_unwind on page 2-36.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-59
ID012213 Non-Confidential

Assembler command-line options
2.56 --no_hide_all
This option gives all exported and imported global symbols STV_DEFAULT visibility in ELF rather
than STV_HIDDEN, unless overridden by source directives.

2.56.1 See also
• EXPORT or GLOBAL on page 7-34
• IMPORT and EXTERN on page 7-57.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-60
ID012213 Non-Confidential

Assembler command-line options
2.57 --no_project
This option disables the use of a project template file.

Note
 This option is deprecated.

2.57.1 See also
• --project=filename, --no_project on page 3-175 in the Compiler Reference
• --project=filename on page 2-70
• --reinitialize_workdir on page 2-75
• --workdir=directory on page 2-88.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-61
ID012213 Non-Confidential

Assembler command-line options
2.58 --no_reduce_paths
This option disables the elimination of redundant pathname information in file paths. This is the
default setting.

Note
 This option is valid for Windows systems only.

2.58.1 See also
• --reduce_paths on page 2-71
• --reduce_paths, --no_reduce_paths on page 3-178 in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-62
ID012213 Non-Confidential

Assembler command-line options
2.59 --no_regs
This option instructs the assembler not to predefine register names.

This option is deprecated. Use --regnames=none instead.

2.59.1 See also
• --regnames=none on page 2-72
• Predeclared core register names on page 3-13 in Using the Assembler
• Predeclared extension register names on page 3-14 in Using the Assembler
• Predeclared XScale register names on page 3-15 in Using the Assembler
• Predeclared coprocessor names on page 3-16 in Using the Assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-63
ID012213 Non-Confidential

Assembler command-line options
2.60 --no_terse
This option instructs the assembler to show the lines of assembly code that have been skipped
because of conditional assembly in the list file. When this option is not specified on the
command-line, the assembler does not output the skipped assembly code to the list file.

This option turns off the terse flag. By default the terse flag is on.

2.60.1 See also
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-64
ID012213 Non-Confidential

Assembler command-line options
2.61 --no_unaligned_access
This option instructs the assembler to set an attribute in the object file to disable the use of
unaligned accesses.

2.61.1 See also
• --unaligned_access on page 2-81.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-65
ID012213 Non-Confidential

Assembler command-line options
2.62 --no_warn
This option turns off warning messages.

2.62.1 See also
• --diag_warning=tag{, tag} on page 2-29.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-66
ID012213 Non-Confidential

Assembler command-line options
2.63 -o filename
This option names the output object file. If this option is not specified, the assembler creates an
object filename of the form inputfilename.o. This option is case-sensitive.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-67
ID012213 Non-Confidential

Assembler command-line options
2.64 --pd
This option is a synonym for --predefine.

2.64.1 See also
• --predefine "directive" on page 2-69.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-68
ID012213 Non-Confidential

Assembler command-line options
2.65 --predefine "directive"
This option instructs the assembler to pre-execute one of the SET directives.

The directive is one of the SETA, SETL, or SETS directives. You must enclose directive in quotes,
for example:

armasm --predefine "VariableName SETA 20" inputfile.s

The assembler also executes a corresponding GBLL, GBLS, or GBLA directive to define the variable
before setting its value.

The variable name is case-sensitive. The variables defined using the command line are global
to the assembler source files specified on the command line.

Note
 The command-line interface of your system might require you to enter special character
combinations, such as \”, to include strings in directive. Alternatively, you can use --via file
to include a --predefine argument. The command-line interface does not alter arguments from
--via files.

Note
 --predefine is not equivalent to the compiler option -Dname. --predefine defines a global
variable whereas -Dname defines a macro that the C preprocessor expands.

Although you can use predefined global variables in combination with assembly control
directives, for example IF and ELSE to control conditional assembly, they are not intended to
provide the same functionality as the C preprocessor in the assembler. If you require this
functionality, ARM recommends you use the compiler to pre-process your assembly code.

2.65.1 See also
• --pd on page 2-68
• GBLA, GBLL, and GBLS on page 7-52
• SETA, SETL, and SETS on page 7-81
• IF, ELSE, ENDIF, and ELIF on page 7-55
• Conditional assembly on page 7-22 in Using the Assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-69
ID012213 Non-Confidential

Assembler command-line options
2.66 --project=filename
This option enables the use of a project template file.

Project templates are files containing project information such as command-line options for a
particular configuration. These files are stored in the project template working directory.

Note
 This option is deprecated.

2.66.1 See also
• --project=filename, --no_project on page 3-175 in the Compiler Reference
• --no_project on page 2-61
• --reinitialize_workdir on page 2-75
• --workdir=directory on page 2-88.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-70
ID012213 Non-Confidential

Assembler command-line options
2.67 --reduce_paths
This option enables the elimination of redundant pathname information in file paths.

Windows systems impose a 260 character limit on file paths. Where relative pathnames exist
whose absolute names expand to longer than 260 characters, you can use the --reduce_paths
option to reduce absolute pathname length by matching up directories with corresponding
instances of .. and eliminating the directory/.. sequences in pairs.

Note
 ARM recommends that you avoid using long and deeply nested file paths, in preference to
minimizing path lengths using the --reduce_paths option.

Note
 This option is valid for Windows systems only.

2.67.1 See also
• --no_reduce_paths on page 2-62
• --reduce_paths, --no_reduce_paths on page 3-178 in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-71
ID012213 Non-Confidential

Assembler command-line options
2.68 --regnames=none
This option instructs the assembler not to predefine register names.

2.68.1 See also
• --regnames=callstd on page 2-73
• --regnames=all on page 2-74
• --no_regs on page 2-63
• Predeclared core register names on page 3-13 in Using the Assembler
• Predeclared extension register names on page 3-14 in Using the Assembler
• Predeclared XScale register names on page 3-15 in Using the Assembler
• Predeclared coprocessor names on page 3-16 in Using the Assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-72
ID012213 Non-Confidential

Assembler command-line options
2.69 --regnames=callstd
This option defines additional register names based on the AAPCS variant that you are using as
specified by the --apcs option.

2.69.1 See also
• --apcs=qualifier…qualifier on page 2-7
• --regnames=none on page 2-72
• --regnames=all on page 2-74.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-73
ID012213 Non-Confidential

Assembler command-line options
2.70 --regnames=all
This option defines all AAPCS registers regardless of the value of --apcs.
• --apcs=qualifier…qualifier on page 2-7
• --regnames=none on page 2-72
• --regnames=callstd on page 2-73.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-74
ID012213 Non-Confidential

Assembler command-line options
2.71 --reinitialize_workdir
This option enables you to re-initialize the project template working directory.

Note
 This option is deprecated.

2.71.1 See also
• --reinitialize_workdir on page 3-179 in the Compiler Reference.
• --project=filename on page 2-70
• --no_project on page 2-61
• --workdir=directory on page 2-88
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-75
ID012213 Non-Confidential

Assembler command-line options
2.72 --report-if-not-wysiwyg
This option instructs the assembler to report when the assembler outputs an encoding that was
not directly requested in the source code. This can happen when the assembler:

• uses a pseudo-instruction that is not available in other assemblers, for example MOV32

• outputs an encoding that does not directly match the instruction mnemonic, for example
if the assembler outputs the MVN encoding when assembling the MOV instruction

• inserts additional instructions where necessary for instruction syntax semantics, for
example the assembler can insert a missing IT instruction before a conditional Thumb
instruction.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-76
ID012213 Non-Confidential

Assembler command-line options
2.73 --show_cmdline
This option outputs the command line used by the assembler. It shows the command line after
processing by the assembler, and can be useful to check:

• the command line a build system is using

• how the assembler is interpreting the supplied command line, for example, the ordering
of command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard output stream (stdout).

2.73.1 See also
• --via=file on page 2-85.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-77
ID012213 Non-Confidential

Assembler command-line options
2.74 --split_ldm
This option instructs the assembler to fault LDM and STM instructions with a large number of
registers. Use of this option is deprecated.

This option faults LDM instructions if the maximum number of registers transferred exceeds:
• 5, for LDMs that do not load the PC
• 4, for LDMs that load the PC.

This option faults STM instructions if the maximum number of registers transferred exceeds 5.

Avoiding large multiple register transfers can reduce interrupt latency on ARM systems that:
• do not have a cache or a write buffer (for example, a cacheless ARM7TDMI)
• use zero wait-state, 32-bit memory.

Also, avoiding large multiple register transfers:

• always increases code size.

• has no significant benefit for cached systems or processors with a write buffer.

• has no benefit for systems without zero wait-state memory, or for systems with slow
peripheral devices. Interrupt latency in such systems is determined by the number of
cycles required for the slowest memory or peripheral access. This is typically much
greater than the latency introduced by multiple register transfers.

2.74.1 See also
• LDM on page 3-85.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-78
ID012213 Non-Confidential

Assembler command-line options
2.75 --thumb
This option instructs the assembler to interpret instructions as Thumb instructions, using the
UAL syntax. This is equivalent to a THUMB directive at the start of the source file.

2.75.1 See also
• --arm on page 2-9
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 7-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-79
ID012213 Non-Confidential

Assembler command-line options
2.76 --thumbx
This option instructs the assembler to interpret instructions as ThumbEE instructions, using the
UAL syntax. This is equivalent to a THUMBX directive at the start of the source file.

2.76.1 See also
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 7-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-80
ID012213 Non-Confidential

Assembler command-line options
2.77 --unaligned_access
This option instructs the assembler to set an attribute in the object file to enable the use of
unaligned accesses.

2.77.1 See also
• --no_unaligned_access on page 2-65.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-81
ID012213 Non-Confidential

Assembler command-line options
2.78 --unsafe
This option enables instructions from differing architectures to be assembled without error. It
changes corresponding error messages to warning messages. It also suppresses warnings about
operator precedence.

2.78.1 See also
• --diag_error=tag{, tag} on page 2-25
• --diag_warning=tag{, tag} on page 2-29
• Binary operators on page 8-22 in Using the Assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-82
ID012213 Non-Confidential

Assembler command-line options
2.79 --untyped_local_labels
This option causes the assembler not to set the Thumb bit for the address of a numeric local label
referenced in an LDR pseudo instruction.

When this option is not used, if you reference a numeric local label in an LDR pseudo-instruction,
and the label is in Thumb code, then the assembler sets the Thumb bit (bit 0) of the address. You
can then use the address as the target for a BX or BLX instruction.

If you require the actual address of the numeric local label, without the Thumb bit set, then use
this option.

Note
 When using this option, if you use the address in a branch (register) instruction, the assembler
treats it as an ARM code address, causing the branch to arrive in ARM state, meaning it would
interpret this code as ARM instructions.

2.79.1 Example

THUMB
...

1
...
LDR r0,=%B1 ; r0 contains the address of numeric local label "1",

; Thumb bit is not set if --untyped_local_labels was used
...

2.79.2 See also
• LDR pseudo-instruction on page 3-100
• B on page 3-48
• Numeric local labels on page 8-12 in Using the Assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-83
ID012213 Non-Confidential

Assembler command-line options
2.80 --version_number
This option displays the version of armasm being used. The format is PVVbbbb, where:
P is the major version
VV is the minor version
bbbb is the build number.

For example, version 5.02 build 0019 is displayed as 5020019.

2.80.1 See also
• --vsn on page 2-86
• --help on page 2-42.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-84
ID012213 Non-Confidential

Assembler command-line options
2.81 --via=file
This option instructs the assembler to open file and read in command-line arguments to the
assembler.

2.81.1 See also
• Appendix B Via File Syntax in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-85
ID012213 Non-Confidential

Assembler command-line options
2.82 --vsn
This option displays the version information and license details. For example:

>armasm --vsn
ARM Assembler, N.nn [Build num]
license_type
Software supplied by: ARM Limited

2.82.1 See also
• --version_number on page 2-84
• --help on page 2-42.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-86
ID012213 Non-Confidential

Assembler command-line options
2.83 --width=n
This option sets the listing page width to n. The default is 79 characters.

2.83.1 See also
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-87
ID012213 Non-Confidential

Assembler command-line options
2.84 --workdir=directory
This option enables you to provide a working directory for a project template.

Note
 This option is deprecated.

2.84.1 See also
• --project=filename on page 2-70
• --no_project on page 2-61
• --reinitialize_workdir on page 2-75
• --workdir=directory on page 3-227 in the Compiler Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-88
ID012213 Non-Confidential

Assembler command-line options
2.85 --xref
This option instructs the assembler to list cross-referencing information on symbols, including
where they were defined and where they were used, both inside and outside macros. The default
is off.

2.85.1 See also
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 2-89
ID012213 Non-Confidential

Chapter 3
ARM and Thumb Instructions

The following topics describe the ARM and Thumb (all versions) instructions supported by the
ARM assembler:
• ARM and Thumb instruction summary on page 3-2
• Instruction width specifiers on page 3-9
• Memory access instructions on page 3-10
• General data processing instructions on page 3-12
• Multiply instructions on page 3-20
• Saturating instructions on page 3-22
• Parallel instructions on page 3-23
• Packing and unpacking instructions on page 3-26
• Branch and control instructions on page 3-27
• Coprocessor instructions on page 3-28
• Miscellaneous instructions on page 3-29
• Pseudo-instructions on page 3-31
• Condition codes on page 3-32.

Some instruction sections have an Architectures subsection. Instructions that do not have an
Architecture subsection are available in all versions of the ARM instruction set, and all versions
of the Thumb instruction set.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-1
ID012213 Non-Confidential

ARM and Thumb Instructions
3.1 ARM and Thumb instruction summary
Table 3-1 gives an overview of the instructions available in the ARM and Thumb instruction
sets. Use it to locate individual instructions and pseudo-instructions.

Table 3-1 Location of instructions

Mnemonic Brief description See Arch. a

ADC Add with Carry page 3-33 All

ADD Add page 3-35 All

ADR Load program or register-relative address (short range) page 3-38 All

ADRL pseudo-instruction Load program or register-relative address (medium range) page 3-42 x6M

AND Logical AND page 3-44 All

ASR Arithmetic Shift Right page 3-46 All

B Branch page 3-48 All

BFC Bit Field Clear page 3-50 T2

BFI Bit Field Insert page 3-51 T2

BIC Bit Clear page 3-52 All

BKPT Breakpoint page 3-54 5

BL Branch with Link page 3-55 All

BLX Branch with Link, change instruction set page 3-57 T

BX Branch, change instruction set page 3-59 T

BXJ Branch, change to Jazelle® page 3-61 J, x7M

CBZ, CBNZ Compare and Branch if {Non}Zero page 3-63 T2

CDP Coprocessor Data Processing operation page 3-64 x6M

CDP2 Coprocessor Data Processing operation page 3-64 5, x6M

CLREX Clear Exclusive page 3-65 K, x6M

CLZ Count leading zeros page 3-66 5, x6M

CMN, CMP Compare Negative, Compare page 3-67 All

CPS Change Processor State page 3-69 6

CPY pseudo-instruction Copy page 3-70 6

DBG Debug page 3-71 7

DMB Data Memory Barrier page 3-72 7, 6M

DSB Data Synchronization Barrier page 3-74 7, 6M

EOR Exclusive OR page 3-76 All

ERET Exception Return page 3-78 7VE

ISB Instruction Synchronization Barrier page 3-79 7, 6M

IT If-Then page 3-80 T2
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-2
ID012213 Non-Confidential

ARM and Thumb Instructions
LDC Load Coprocessor page 3-83 x6M

LDC2 Load Coprocessor page 3-83 5, x6M

LDM Load Multiple registers page 3-85 All

LDR Load Register with word page 3-10 All

LDR pseudo-instruction Load Register pseudo-instruction page 3-100 All

LDRB Load Register with byte page 3-10 All

LDRBT Load Register with byte, user mode page 3-10 x6M

LDRD Load Registers with two words page 3-10 5E, x6M

LDREX Load Register Exclusive page 3-105 6, x6M

LDREXB, LDREXH Load Register Exclusive Byte, Halfword page 3-105 K, x6M

LDREXD Load Register Exclusive Doubleword page 3-105 K, x7M

LDRH Load Register with halfword page 3-10 All

LDRHT Load Register with halfword, user mode page 3-10 T2

LDRSB Load Register with signed byte page 3-10 All

LDRSBT Load Register with signed byte, user mode page 3-10 T2

LDRSH Load Register with signed halfword page 3-10 All

LDRSHT Load Register with signed halfword, user mode page 3-10 T2

LDRT Load Register with word, user mode page 3-10 x6M

LSL Logical Shift Left page 3-107 All

LSR Logical Shift Right page 3-109 All

MAR Move from Registers to 40-bit Accumulator page 3-111 XScale

MCR Move from Register to Coprocessor page 3-112 x6M

MCR2 Move from Register to Coprocessor page 3-112 5, x6M

MCRR Move from Registers to Coprocessor page 3-113 5E, x6M

MCRR2 Move from Registers to Coprocessor page 3-113 6, x6M

MIA, MIAPH, MIAxy Multiply with Internal 40-bit Accumulate page 3-114 XScale

MLA Multiply Accumulate page 3-116 x6M

MLS Multiply and Subtract page 3-117 T2

MOV Move page 3-118 All

MOVT Move Top page 3-122 T2

MOV32 pseudo-instruction Move 32-bit immediate to register page 3-121 T2

MRA Move from 40-bit Accumulator to Registers page 3-123 XScale

MRC Move from Coprocessor to Register page 3-124 x6M

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-3
ID012213 Non-Confidential

ARM and Thumb Instructions
MRC2 Move from Coprocessor to Register page 3-124 5, x6M

MRRC Move from Coprocessor to Registers page 3-125 5E, x6M

MRRC2 Move from Coprocessor to Registers page 3-125 6, x6M

MRS Move from PSR to register page 3-126 All

MRS Move from system Coprocessor to Register page 3-128 7A, 7R

MSR Move from register to PSR page 3-130 All

MSR Move from Register to system Coprocessor page 3-129 7A, 7R

MUL Multiply page 3-132 All

MVN Move Not page 3-134 All

NEG pseudo-instruction Negate page 3-136 All

NOP No Operation page 3-137 All

ORN Logical OR NOT page 3-138 T2

ORR Logical OR page 3-140 All

PKHBT, PKHTB Pack Halfwords page 3-142 6, 7EM

PLD Preload Data page 3-144 5E, x6M

PLDW Preload Data with intent to Write page 3-144 7MP

PLI Preload Instruction page 3-144 7

POP POP registers from stack page 3-146 All

PUSH PUSH registers to stack page 3-148 All

QADD Signed saturating Add page 3-149 5E, 7EM

QDADD Signed saturating Double and Add page 3-150 5E, 7EM

QDSUB Signed saturating Double and Subtract page 3-151 5E, 7EM

QSUB Signed saturating Subtract page 3-152 5E, 7EM

QADD8, QADD16, QASX, QSUB8,
QSUB16, QSAX

Parallel signed Saturating Arithmetic page 3-24 6, 7EM

RBIT Reverse Bits page 3-153 T2

REV Reverse byte order in a word page 3-154 6

REV16 Reverse byte order in two halfwords page 3-154 6

REVSH Reverse byte order in a halfword and sign extend page 3-154 6

RFE Return From Exception page 3-157 T2, x7M

ROR Rotate Right Register page 3-159 All

RRX Rotate Right with Extend page 3-161 x6M

RSB Reverse Subtract page 3-163 All

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-4
ID012213 Non-Confidential

ARM and Thumb Instructions
RSC Reverse Subtract with Carry page 3-165 x7M

SADD8, SADD16, SASX Parallel signed arithmetic page 3-24 6, 7EM

SBC Subtract with Carry page 3-167 All

SBFX Signed Bit Field eXtract page 3-169 T2

SDIV Signed divide page 3-170 7M, 7R

SEL Select bytes according to APSR GE flags page 3-171 6, 7EM

SETEND Set Endianness for memory accesses page 3-173 6, x7M

SEV Set Event page 3-174 K, 6M

SHADD8, SHADD16, SHASX, SHSUB8,
SHSUB16, SHSAX

Parallel signed Halving arithmetic page 3-24 6, 7EM

SMC Secure Monitor Call page 3-175 Z

SMLAxy Signed Multiply with Accumulate (32 <= 16 x 16 + 32) page 3-176 5E, 7EM

SMLAD Dual Signed Multiply Accumulate page 3-178 6, 7EM

(32 <= 32 + 16 x 16 + 16 x 16)

SMLAL Signed Multiply Accumulate (64 <= 64 + 32 x 32) page 3-179 x6M

SMLALxy Signed Multiply Accumulate (64 <= 64 + 16 x 16) page 3-181 5E, 7EM

SMLALD Dual Signed Multiply Accumulate Long page 3-180 6, 7EM

(64 <= 64 + 16 x 16 + 16 x 16)

SMLAWy Signed Multiply with Accumulate (32 <= 32 x 16 + 32) page 3-183 5E, 7EM

SMLSD Dual Signed Multiply Subtract Accumulate page 3-184 6, 7EM

(32 <= 32 + 16 x 16 – 16 x 16)

SMLSLD Dual Signed Multiply Subtract Accumulate Long page 3-185 6, 7EM

(64 <= 64 + 16 x 16 – 16 x 16)

SMMLA Signed top word Multiply with Accumulate (32 <=
TopWord(32 x 32 + 32))

page 3-186 6, 7EM

SMMLS Signed top word Multiply with Subtract (32 <=
TopWord(32 - 32 x 32))

page 3-187 6, 7EM

SMMUL Signed top word Multiply (32 <= TopWord(32 x 32)) page 3-188 6, 7EM

SMUAD, SMUSD Dual Signed Multiply, and Add or Subtract products page 3-189 6, 7EM

SMULxy Signed Multiply (32 <= 16 x 16) page 3-190 5E, 7EM

SMULL Signed Multiply (64 <= 32 x 32) page 3-192 x6M

SMULWy Signed Multiply (32 <= 32 x 16) page 3-193 5E, 7EM

SRS Store Return State page 3-195 T2, x7M

SSAT Signed Saturate page 3-197 6, x6M

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-5
ID012213 Non-Confidential

ARM and Thumb Instructions
SSAT16 Signed Saturate, parallel halfwords page 3-199 6, 7EM

SSUB8, SSUB16, SSAX Parallel signed arithmetic page 3-24 6, 7EM

STC Store Coprocessor page 3-200 x6M

STC2 Store Coprocessor page 3-200 5, x6M

STM Store Multiple registers page 3-202 All

STR Store Register with word page 3-10 All

STRB Store Register with byte page 3-10 All

STRBT Store Register with byte, user mode page 3-10 x6M

STRD Store Registers with two words page 3-10 5E, x6M

STREX Store Register Exclusive page 3-212 6, x6M

STREXB, STREXH Store Register Exclusive Byte, Halfword page 3-212 K, x6M

STREXD Store Register Exclusive Doubleword page 3-212 K, x7M

STRH Store Register with halfword page 3-10 All

STRHT Store Register with halfword, user mode page 3-10 T2

STRT Store Register with word, user mode page 3-10 x6M

SUB Subtract page 3-214 All

SUBS pc, lr Exception return, no stack page 3-217 T2, x7M

SVC (formerly SWI) SuperVisor Call page 3-219 All

SWP, SWPB Swap registers and memory (ARM only) page 3-220 All, x7M

SXTAB Sign extend Byte, with Addition page 3-221 6, 7EM

SXTAB16 Sign extend two Bytes, with Addition page 3-223 6, 7EM

SXTAH Sign extend Halfword, with Addition page 3-225 6, 7EM

SXTB Sign extend Byte page 3-227 6

SXTH Sign extend Halfword page 3-230 6

SXTB16 Sign extend two Bytes page 3-229 6, 7EM

SYS Execute system coprocessor instruction page 3-232 7A, 7R

TBB, TBH Table Branch Byte, Halfword page 3-233 T2

TEQ Test Equivalence page 3-234 x6M

TST Test page 3-236 All

UADD8, UADD16, UASX Parallel Unsigned Arithmetic page 3-24 6, 7EM

UBFX Unsigned Bit Field eXtract page 3-238 T2

UDIV Unsigned divide page 3-239 7M, 7R

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-6
ID012213 Non-Confidential

ARM and Thumb Instructions
UHADD8, UHADD16, UHASX, UHSUB8,
UHSUB16, UHSAX

Parallel Unsigned Halving Arithmetic page 3-24 6, 7EM

UMAAL Unsigned Multiply Accumulate Accumulate Long page 3-240 6, 7EM

(64 <= 32 + 32 + 32 x 32)

UMLAL Unsigned Multiply Accumulate page 3-241 x6M

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UMULL Unsigned Multiply page 3-242 x6M

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UQADD8, UQADD16, UQASX, UQSUB8,
UQSUB16, UQSAX

Parallel Unsigned Saturating Arithmetic page 3-24 6, 7EM

USAD8 Unsigned Sum of Absolute Differences page 3-244 6, 7EM

USADA8 Accumulate Unsigned Sum of Absolute Differences page 3-245 6, 7EM

USAT Unsigned Saturate page 3-246 6, x6M

USAT16 Unsigned Saturate, parallel halfwords page 3-248 6, 7EM

USUB8, USUB16, USAX Parallel unsigned arithmetic page 3-24 6, 7EM

UXTAB Zero extend Byte with Addition page 3-249 6, 7EM

UXTAB16 Zero extend two bytes with Addition page 3-251 6, 7EM

UXTAH Zero extend Halfword with Addition page 3-253 6, 7EM

UXTB Zero extend Byte page 3-255 6

UXTH Zero extend Halfword page 3-258 6

UXTB16 Zero extend two bytes page 3-257 6, 7EM

V* See Chapter 5 NEON and VFP Programming

WFE Wait For Event page 3-260 T2, 6M

WFI Wait For Interrupt page 3-261 T2, 6M

YIELD Yield page 3-262 T2, 6M

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-7
ID012213 Non-Confidential

ARM and Thumb Instructions
a. Entries in the Architecture column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
5 The ARMv5T*, ARMv6*, and ARMv7 architectures.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
6 The ARMv6* and ARMv7 architectures.
6M The ARMv6-M and ARMv7 architectures.
x6M Not available in the ARMv6-M architecture.
7 The ARMv7 architectures.
7M The ARMv7-M architecture, including ARMv7E-M implementations.
x7M Not available in the ARMv6-M or ARMv7-M architecture, or any ARMv7E-M implementation.
7EM ARMv7E-M implementations but not in the ARMv7-M or ARMv6-M architecture.
7R The ARMv7-R architecture.
7MP The ARMv7 architectures that implement the Multiprocessing Extensions.
7VE The ARMv7 architectures that implement the Virtualization Extensions.
J The ARMv5TEJ, ARMv6*, and ARMv7 architectures.
K The ARMv6K, and ARMv7 architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
XScale XScale versions of the ARM architecture.
Z If Security Extensions are implemented.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-8
ID012213 Non-Confidential

ARM and Thumb Instructions
3.2 Instruction width specifiers
The instruction width specifiers .W and .N control the size of Thumb instruction encodings for
ARMv6T2 or later.

In Thumb code (ARMv6T2 or later) the .W width specifier forces the assembler to generate a
32-bit encoding, even if a 16-bit encoding is available. The .W specifier has no effect when
assembling to ARM code.

In Thumb code the .N width specifier forces the assembler to generate a 16-bit encoding. In this
case, if the instruction cannot be encoded in 16 bits or if .N is used in ARM code, the assembler
generates an error.

If you use an instruction width specifier, you must place it immediately after the instruction
mnemonic and any condition code, for example:

 BCS.W label ; forces 32-bit instruction even for a short branch
B.N label ; faults if label out of range for 16-bit instruction
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-9
ID012213 Non-Confidential

ARM and Thumb Instructions
3.3 Memory access instructions
The following topics describe the memory access instructions:

• LDR (immediate offset) on page 3-88
Load with immediate offset, pre-indexed immediate offset, or post-indexed immediate
offset.

• STR (immediate offset) on page 3-204
Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate
offset.

• LDR (register offset) on page 3-94
Load with register offset, pre-indexed register offset, or post-indexed register offset.

• STR (register offset) on page 3-207
Store with register offset, pre-indexed register offset, or post-indexed register offset.

• LDR, unprivileged on page 3-103
Load, with User mode privilege.

• STR, unprivileged on page 3-210
Store, with User mode privilege.

• LDR (PC-relative) on page 3-91
Load register. The address is an offset from the PC.

• LDR (register-relative) on page 3-97
Load register. The address is an offset from a base register.

• ADR (PC-relative) on page 3-38
Load a PC-relative address.

• ADR (register-relative) on page 3-40
Load a register-relative address.

• PLD, PLDW, and PLI on page 3-144
Preload an address for the future.

• LDM on page 3-85
Load and Store Multiple Registers.

• POP on page 3-146
Pop low registers, and optionally the PC, off the stack.

• PUSH on page 3-148
Push low registers, and optionally the LR, onto the stack.

• RFE on page 3-157
Return From Exception.

• ERET on page 3-78
Exception Return.

• SRS on page 3-195
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-10
ID012213 Non-Confidential

ARM and Thumb Instructions
Store Return State.

• LDREX on page 3-105
Load Register Exclusive.

• STREX on page 3-212
Store Register Exclusive.

• CLREX on page 3-65
Clear Exclusive.

• SWP and SWPB on page 3-220
Swap data between registers and memory.

Note
 There is also an LDR pseudo-instruction. This pseudo-instruction either assembles to an LDR
instruction, or to a MOV or MVN instruction.

3.3.1 See also

Concepts
Using the Assembler:
• Memory accesses on page 5-27.

Reference
• LDR pseudo-instruction on page 3-100.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-11
ID012213 Non-Confidential

ARM and Thumb Instructions
3.4 General data processing instructions
The following topics describe the general data processing instructions:

• Flexible second operand (Operand2) on page 3-14

• Operand2 as a constant on page 3-15

• Operand2 as a register with optional shift on page 3-16

• Shift operations on page 3-17

• ADC on page 3-33
Add with Carry.

• ADD on page 3-35
Add without Carry.

• SBC on page 3-167
Subtract with Carry.

• SUB on page 3-214
Subtract without Carry.

• RSC on page 3-165
Reverse Subtract with Carry.

• RSB on page 3-163
Reverse Subtract without Carry.

• SUBS pc, lr on page 3-217
Return from exception without popping anything from the stack.

• AND on page 3-44
Logical AND.

• ORR on page 3-140
Logical OR.

• EOR on page 3-76
Exclusive OR.

• ORN (Thumb only) on page 3-138
Logical OR NOT.

• BIC on page 3-52
Bit Clear.

• CLZ on page 3-66
Count Leading Zeros.

• CMP and CMN on page 3-67
Compare and Compare Negative.

• MOV on page 3-118
Move.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-12
ID012213 Non-Confidential

ARM and Thumb Instructions
• MVN on page 3-134
Move Not.

• MOVT on page 3-122
Move Top, Wide.

• TST on page 3-236
Test.

• TEQ on page 3-234
Test Equivalence.

• SEL on page 3-171
Select bytes from each operand according to the state of the APSR GE flags.

• REV on page 3-154
Reverse bytes or bits.

• REV16 on page 3-155
Reverse bytes or bits.

• REVSH on page 3-156
Reverse bytes or bits.

• ASR on page 3-46
Arithmetic Shift Right.

• SDIV on page 3-170
Signed Divide.

• UDIV on page 3-239
Unsigned Divide.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-13
ID012213 Non-Confidential

ARM and Thumb Instructions
3.5 Flexible second operand (Operand2)
Many ARM and Thumb general data processing instructions have a flexible second operand.
This is shown as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:
• constant
• register with optional shift.

3.5.1 See also

Reference
• Operand2 as a constant on page 3-15
• Operand2 as a register with optional shift on page 3-16
• Shift operations on page 3-17.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-14
ID012213 Non-Confidential

ARM and Thumb Instructions
3.6 Operand2 as a constant
You specify an Operand2 constant in the form:

#constant

where constant is an expression evaluating to a numeric value.

In ARM instructions, constant can have any value that can be produced by rotating an 8-bit
value right by any even number of bits within a 32-bit word.

In Thumb instructions, constant can be:

• any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

Note
 In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These
are listed in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255
and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag if
Operand2 is any other constant.

3.6.1 Instruction substitution

If a value of constant is not available, but its logical inverse or negation is available, then the
assembler produces an equivalent instruction and inverts or negates constant.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Be aware of this when comparing disassembly listings with source code.

You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.

3.6.2 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• Operand2 as a register with optional shift on page 3-16
• Shift operations on page 3-17.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-15
ID012213 Non-Confidential

ARM and Thumb Instructions
3.7 Operand2 as a register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional constant or register-controlled shift to be applied to Rm. It can be one
of:
ASR #n arithmetic shift right n bits, 1 ≤ n ≤ 32.
LSL #n logical shift left n bits, 1 ≤ n ≤ 31.
LSR #n logical shift right n bits, 1 ≤ n ≤ 32.
ROR #n rotate right n bits, 1 ≤ n ≤ 31.
RRX rotate right one bit, with extend.
type Rs register-controlled shift is available in ARM code only, where:

type is one of ASR, LSL, LSR, ROR.
Rs is a register supplying the shift amount, and only the least

significant byte is used.
- if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions.

3.7.1 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• Operand2 as a constant on page 3-15
• Shift operations on page 3-17.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-16
ID012213 Non-Confidential

ARM and Thumb Instructions
3.8 Shift operations
Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

• directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

• during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or the flexible second operand description. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is
0. The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift
length.

3.8.1 ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 3-1.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

Note
 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 3-1 ASR #3

3.8.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to
0. See Figure 3-2 on page 3-18.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

31 1 0

Carry
Flag

...
2345
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-17
ID012213 Non-Confidential

ARM and Thumb Instructions
Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-2 LSR #3

3.8.3 LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places,
into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0. See
Figure 3-3.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the
last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag
when used with LSL #0.

Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-3 LSL #3

3.8.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into the
left-hand n bits of the result. See Figure 3-4 on page 3-19.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1],
of the register Rm.

31 1 0

Carry
Flag

...

000

2345

31 1 0
Carry
Flag ...

000

2345
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-18
ID012213 Non-Confidential

ARM and Thumb Instructions
Note
 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is

updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 3-4 ROR #3

3.8.5 RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 3-5.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 3-5 RRX

3.8.6 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• Operand2 as a constant on page 3-15
• Operand2 as a register with optional shift on page 3-16.

31 1 0

Carry
Flag

...
2345

31 1 0

Carry
Flag

... ...
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-19
ID012213 Non-Confidential

ARM and Thumb Instructions
3.9 Multiply instructions
The following topics describe the multiply instructions:

• MUL on page 3-132
Multiply (32-bit by 32-bit, bottom 32-bit result).

• MLA on page 3-116
Multiply Accumulate (32-bit by 32-bit, bottom 32-bit result).

• MLS on page 3-117
Multiply Subtract (32-bit by 32-bit, bottom 32-bit result).

• UMULL on page 3-242
Unsigned Long Multiply (32-bit by 32-bit, 64-bit result or 64-bit accumulator).

• UMLAL on page 3-241
Unsigned Long Multiply and Accumulate (32-bit by 32-bit, 64-bit result or 64-bit
accumulator).

• SMULL on page 3-192
Signed Long Multiply (32-bit by 32-bit, 64-bit result or 64-bit accumulator).

• SMLAL on page 3-179
Signed Long Multiply and Accumulate (32-bit by 32-bit, 64-bit result or 64-bit
accumulator).

• SMULxy on page 3-190
Signed Multiply and Signed Multiply Accumulate (16-bit by 16-bit, 32-bit result).

• SMULWy on page 3-193
Signed Multiply and Signed Multiply Accumulate(32-bit by 16-bit, top 32-bit result).

• SMLALxy on page 3-181
Signed Multiply Accumulate (16-bit by 16-bit, 64-bit accumulate).

• SMUAD on page 3-189
Dual 16-bit Signed Multiply with Addition of products.

• SMUSD on page 3-194
Dual 16-bit Signed Multiply with Subtraction of products.

• SMMUL on page 3-188
Multiply (32-bit by 32-bit, top 32-bit result).

• SMMLA on page 3-186
Multiply Accumulate (32-bit by 32-bit, top 32-bit result).

• SMMLS on page 3-187
Multiply Subtract (32-bit by 32-bit, top 32-bit result).

• SMLAD on page 3-178
Dual 16-bit Signed Multiply, 32-bit Accumulation of sum of 32-bit products.

• SMLSD on page 3-184
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-20
ID012213 Non-Confidential

ARM and Thumb Instructions
Dual 16-bit Signed Multiply, 32-bit Accumulation of Difference of 32-bit products.

• SMLALD on page 3-180
Dual 16-bit Signed Multiply, 64-bit Accumulation of sum of 32-bit products.

• SMLSLD on page 3-185
Dual 16-bit Signed Multiply, 64-bit Accumulation of Difference of 32-bit products.

• UMAAL on page 3-240
Unsigned Multiply Accumulate Accumulate Long.

• MIA, MIAPH, and MIAxy on page 3-114
Multiplies with Internal Accumulate (XScale coprocessor 0 instructions).
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-21
ID012213 Non-Confidential

ARM and Thumb Instructions
3.10 Saturating instructions
The saturating instructions are:
• QADD

• QDADD

• QDSUB

• QSUB

• SSAT

• USAT.

Some of the parallel instructions are also saturating.

3.10.1 Saturating arithmetic

These operations are saturating (SAT). This means that, for some value of 2n that depends on the
instruction:

• for a signed saturating operation, if the full result would be less than –2n, the result
returned is –2n

• for an unsigned saturating operation, if the full result would be negative, the result
returned is zero

• if the full result would be greater than 2n – 1, the result returned is 2n – 1.

When any of these things occurs, it is called saturation. Some instructions set the Q flag when
saturation occurs.

Note
 Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q
flag, use an MSR instruction.

The Q flag can also be set by two other instructions, but these instructions do not saturate.

3.10.2 See also

Reference
• MSR (general-purpose register to PSR) on page 3-130
• QADD on page 3-149
• QSUB on page 3-152
• QDADD on page 3-150
• QDSUB on page 3-151
• SMULxy on page 3-190
• SMLAxy on page 3-176
• SMULWy on page 3-193
• SMLAWy on page 3-183
• SSAT on page 3-197
• USAT on page 3-246
• Parallel instructions on page 3-23.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-22
ID012213 Non-Confidential

ARM and Thumb Instructions
3.11 Parallel instructions
The following topics describe the parallel instructions:

• Parallel add and subtract on page 3-24
Various byte-wise and halfword-wise additions and subtractions.

• USAD8 on page 3-244
Unsigned sum of absolute differences, and accumulate unsigned sum of absolute
differences.

• SSAT16 on page 3-199
Parallel halfword saturating instructions.

There are also parallel unpacking instructions such as SXT, SXTA, UXT, and UXTA.

3.11.1 See also

Reference
• SXTB on page 3-227
• Packing and unpacking instructions on page 3-26.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-23
ID012213 Non-Confidential

ARM and Thumb Instructions
3.12 Parallel add and subtract
Various byte-wise and halfword-wise additions and subtractions.

3.12.1 Syntax

<prefix>op{cond} {Rd}, Rn, Rm

where:

<prefix> is one of:
S Signed arithmetic modulo 28 or 216. Sets APSR GE flags.
Q Signed saturating arithmetic.
SH Signed arithmetic, halving the results.
U Unsigned arithmetic modulo 28 or 216. Sets APSR GE flags.
UQ Unsigned saturating arithmetic.
UH Unsigned arithmetic, halving the results.

op is one of:
ADD8 Byte-wise Addition
ADD16 Halfword-wise Addition.
SUB8 Byte-wise Subtraction.
SUB16 Halfword-wise Subtraction.
ASX Exchange halfwords of Rm, then Add top halfwords and Subtract

bottom halfwords.
SAX Exchange halfwords of Rm, then Subtract top halfwords and Add

bottom halfwords.

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the ARM registers holding the operands.

3.12.2 Operation

These instructions perform arithmetic operations separately on the bytes or halfwords of the
operands. They perform two or four additions or subtractions, or one addition and one
subtraction.

You can choose various kinds of arithmetic:

• Signed or unsigned arithmetic modulo 28 or 216. This sets the APSR GE flags.

• Signed saturating arithmetic to one of the signed ranges –215 ≤ x ≤ 215 –1 or –27 ≤ x ≤ 27
–1. The Q flag is not affected even if these operations saturate.

• Unsigned saturating arithmetic to one of the unsigned ranges 0 ≤ x ≤ 216 –1 or 0 ≤ x ≤ 28
–1. The Q flag is not affected even if these operations saturate.

• Signed or unsigned arithmetic, halving the results. This cannot cause overflow.

3.12.3 Register restrictions

You cannot use PC for any register.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-24
ID012213 Non-Confidential

ARM and Thumb Instructions
You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.12.4 Condition flags

These instructions do not affect the N, Z, C, V, or Q flags.

The Q, SH, UQ and UH prefix variants of these instructions do not change the flags.

The S and U prefix variants of these instructions set the GE flags in the APSR as follows:

• For byte-wise operations, the GE flags are used in the same way as the C (Carry) flag for
32-bit SUB and ADD instructions:
GE[0] for bits[7:0] of the result
GE[1] for bits[15:8] of the result
GE[2] for bits[23:16] of the result
GE[3] for bits[31:24] of the result.

• For halfword-wise operations, the GE flags are used in the same way as the C (Carry) flag
for normal word-wise SUB and ADD instructions:
GE[1:0] for bits[15:0] of the result
GE[3:2] for bits[31:16] of the result.

You can use these flags to control a following SEL instruction.

Note
 For halfword-wise operations, GE[1:0] are set or cleared together, and GE[3:2] are set or cleared
together.

3.12.5 Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit versions of these instructions in Thumb.

3.12.6 Examples

 SHADD8 r4, r3, r9
 USAXNE r0, r0, r2

3.12.7 Incorrect examples

 QHADD8 r2, r9, r3 ; No such instruction
 SAX r10, r8, r5 ; Must have a prefix.

3.12.8 See also

Reference
• SEL on page 3-171
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-25
ID012213 Non-Confidential

ARM and Thumb Instructions
3.13 Packing and unpacking instructions
The following topics describe the packing and unpacking instructions:

• BFC on page 3-50
Bit Field Clear.

• BFI on page 3-51
Bit Field Insert.

• SBFX on page 3-169
Signed Bit Field extract.

• UBFX on page 3-238
Unsigned Bit Field extract.

• SXTB on page 3-227
Sign Extend Byte.

• SXTB16 on page 3-229
Sign Extend two Bytes.

• SXTH on page 3-230
Sign Extend Halfword.

• SXTAB on page 3-221
Sign Extend Byte with Add.

• SXTAB16 on page 3-223
Sign Extend two Bytes with Add.

• SXTAH on page 3-225
Sign Extend Halfword with Add.

• UXTB on page 3-255
Zero Extend Byte.

• UXTB16 on page 3-257
Zero Extend two Bytes.

• UXTH on page 3-258
Zero Extend Halfword.

• UXTAB on page 3-249
Zero Extend Byte with Add.

• UXTAB16 on page 3-251
Zero Extend two Bytes with Add.

• UXTAH on page 3-253
Zero Extend Halfword with Add.

• PKHBT and PKHTB on page 3-142
Halfword Packing instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-26
ID012213 Non-Confidential

ARM and Thumb Instructions
3.14 Branch and control instructions
The following topics describe the branch and control instructions:

• B on page 3-48
Branch.

• BL on page 3-55
Branch with Link.

• BX on page 3-59
Branch and exchange instruction set.

• BLX on page 3-57
Branch with Link and exchange instruction set.

• BXJ on page 3-61
Branch and change instruction set to Jazelle.

• IT on page 3-80
If-Then. IT makes up to four following instructions conditional, with either the same
condition, or some with one condition and others with the inverse condition.

• CBZ and CBNZ on page 3-63
Compare against zero and branch.

• TBB and TBH on page 3-233
Table Branch Byte or Halfword.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-27
ID012213 Non-Confidential

ARM and Thumb Instructions
3.15 Coprocessor instructions
The following topics describe the coprocessor instructions:

• CDP and CDP2 on page 3-64
Coprocessor Data oPerations.

• MCR and MCR2 on page 3-112
Move to Coprocessor from ARM Register or Registers, possibly with coprocessor
operations.

• MRC and MRC2 on page 3-124
Move to ARM Register or Registers from Coprocessor, possibly with coprocessor
operations.

• MRS (system coprocessor register to ARM register) on page 3-128
Move to ARM register from system coprocessor.

• MSR (ARM register to system coprocessor register) on page 3-129
Move to system coprocessor from ARM register.

• SYS on page 3-232
Execute system coprocessor instruction.

• LDC and LDC2 on page 3-83
Transfer data between memory and Coprocessor.

Note
 A coprocessor instruction causes an Undefined Instruction exception if the specified
coprocessor is not present, or if it is not enabled.

This section does not describe VFP or Wireless MMX Technology instructions. XScale-specific
instructions are described later in this document.

3.15.1 See also

Reference
• Chapter 5 NEON and VFP Programming
• Chapter 6 Wireless MMX Technology Instructions
• Miscellaneous instructions on page 3-29.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-28
ID012213 Non-Confidential

ARM and Thumb Instructions
3.16 Miscellaneous instructions
The following topics describe the miscellaneous instructions:

• BKPT on page 3-54
Breakpoint.

• SVC on page 3-219
Supervisor Call (formerly SWI).

• MRS (PSR to general-purpose register) on page 3-126
Move the contents of the CPSR or SPSR to a general-purpose register.

• MSR (general-purpose register to PSR) on page 3-130
Load specified fields of the CPSR or SPSR with an immediate value, or from the contents
of a general-purpose register.

• CPS on page 3-69
Change Processor State.

• SMC on page 3-175
Secure Monitor Call (formerly SMI).

• SETEND on page 3-173
Set the Endianness bit in the CPSR.

• NOP on page 3-137
No Operation.

• SEV on page 3-174
Set Event hint instruction.

• WFE on page 3-260
Wait For Event hint instruction.

• WFI on page 3-261
Wait for Interrupt hint instruction.

• YIELD on page 3-262
Yield hint instruction.

• DBG on page 3-71
Debug.

• DMB on page 3-72
Data Memory Barrier hint instruction.

• DSB on page 3-74
Data Synchronization Barrier hint instruction.

• ISB on page 3-79
Instruction Synchronization Barrier hint instruction.

• MAR on page 3-111
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-29
ID012213 Non-Confidential

ARM and Thumb Instructions
Transfer between two general-purpose registers and a 40-bit internal accumulator (XScale
coprocessor 0 instructions).
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-30
ID012213 Non-Confidential

ARM and Thumb Instructions
3.17 Pseudo-instructions
The ARM assembler supports a number of pseudo-instructions that are translated into the
appropriate combination of ARM, or Thumb instructions at assembly time.

The following topics describe pseudo-instructions:

• ADRL pseudo-instruction on page 3-42
Load a PC-relative or register-relative address into a register (medium range, position
independent).

• CPY pseudo-instruction on page 3-70
Copy a value from one register to another.

• LDR pseudo-instruction on page 3-100
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent).

• MOV32 pseudo-instruction on page 3-121
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent).

• NEG pseudo-instruction on page 3-136
Negate a value in a register.

• UND pseudo-instruction on page 3-243
Generate an architecturally undefined instruction.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-31
ID012213 Non-Confidential

ARM and Thumb Instructions
3.18 Condition codes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Table 3-2 shows the condition codes that you can use.

Note
 The precise meanings of the condition codes depend on whether the condition code flags were
set by a VFP instruction or by an ARM data processing instruction.

3.18.1 See also

Concepts
Using the Assembler:
• Condition code meanings on page 6-8
• Conditional execution of NEON and VFP instructions on page 9-11.

Reference
• IT on page 3-80
• VMRS on page 5-94.

Table 3-2 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-32
ID012213 Non-Confidential

ARM and Thumb Instructions
3.19 ADC
Add with Carry.

3.19.1 Syntax

ADC{S}{cond} {Rd}, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.19.2 Usage

The ADC (Add with Carry) instruction adds the values in Rn and Operand2, together with the carry
flag.

You can use ADC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.19.3 Use of PC and SP in Thumb instructions

You cannot use PC (R15) for Rd, or any operand with the ADC command.

You cannot use SP (R13) for Rd, or any operand with the ADC command.

3.19.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Operand2, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP with the ADC ARM instruction is deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.19.5 Condition flags

If S is specified, the ADC instruction updates the N, Z, C and V flags according to the result.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-33
ID012213 Non-Confidential

ARM and Thumb Instructions
3.19.6 16-bit instructions

The following forms of this instruction isare available in Thumb code, and isare a 16-bit
instructions:

ADCS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ADC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

3.19.7 Multiword arithmetic examples

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

3.19.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-34
ID012213 Non-Confidential

ARM and Thumb Instructions
3.20 ADD
Add without Carry.

3.20.1 Syntax

ADD{S}{cond} {Rd}, Rn, Operand2

ADD{cond} {Rd}, Rn, #imm12 ; Thumb, 32-bit encoding only

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

imm12 is any value in the range 0-4095.

3.20.2 Usage

The ADD instruction adds the values in Rn and Operand2 or imm12.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.20.3 Use of PC and SP in Thumb instructions

Generally, you cannot use PC (R15) for Rd, or any operand.

The exceptions are:

• you can use PC for Rn in 32-bit encodings of Thumb ADD instructions, with a constant
Operand2 value in the range 0-4095, and no S suffix. These instructions are useful for
generating PC-relative addresses. Bit[1] of the PC value reads as 0 in this case, so that the
base address for the calculation is always word-aligned.

• you can use PC in 16-bit encodings of Thumb ADD{cond} Rd, Rd, Rm instructions, where
both registers cannot be PC. However, the following 16-bit Thumb instructions are
deprecated in ARMv6T2 and above:
— ADD{cond} PC, SP, PC

— ADD{cond} SP, SP, PC.

Generally, you cannot use SP (R13) for Rd, or any operand. Except that:

• You can use SP for Rn in ADD instructions

• ADD{cond} SP, SP, SP is permitted but is deprecated in ARMv6T2 and above

• ADD{S}{cond} SP, SP, Rm{,shift} and SUB{S}{cond} SP, SP, Rm{,shift} are permitted if
shift is omitted or LSL #1, LSL #2, or LSL #3.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-35
ID012213 Non-Confidential

ARM and Thumb Instructions
3.20.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

In ADD instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd in instructions that do not add SP to a register
• Use of PC for Rn and use of PC for Rm in instructions that add two registers other than SP
• Use of PC for Rn in the instruction ADD{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in ADD instructions, however, ADDS PC, SP, #Constant is deprecated.

You can use SP in ADD (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.

Other uses of SP in these ARM instructions are deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.20.5 Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

3.20.6 16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

ADDS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

ADD{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

ADDS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

ADD{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

ADD Rd, Rd, Rm
ARMv6 and earlier: either Rd or Rm, or both, must be a Hi register. ARMv6T2 and above: this
restriction does not apply.

ADDS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-36
ID012213 Non-Confidential

ARM and Thumb Instructions
ADD{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

ADD SP, SP, #imm
imm range 0-508, word aligned.

ADD Rd, SP, #imm
imm range 0-1020, word aligned. Rd must be a Lo register.

ADD Rd, pc, #imm
imm range 0-1020, word aligned. Rd must be a Lo register. Bits[1:0] of the PC are read as 0 in this
instruction.

3.20.7 Example

 ADD r2, r1, r3

3.20.8 Multiword arithmetic example

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

3.20.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-37
ID012213 Non-Confidential

ARM and Thumb Instructions
3.21 ADR (PC-relative)
ADR generates a PC-relative address in the destination register, for a label in the current area.

3.21.1 Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

3.21.2 Usage

ADR produces position-independent code, because the assembler generates an instruction that
adds or subtracts a value to the PC.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

label must evaluate to an address in the same assembler area as the ADR instruction.

If you use ADR to generate a target for a BX or BLX instruction, it is your responsibility to set the
Thumb bit (bit 0) of the address if the target contains Thumb instructions.

3.21.3 Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-3 shows the possible offsets between the label and the current instruction.

Table 3-3 PC-relative offsets

Instruction Offset range Architecturesa

a. Entries in the Architectures column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.

ARM ADR See Operand2 as a constant on page 3-15 All

Thumb ADR, 32-bit
encoding

+/– 4095 T2

Thumb ADR, 16-bit
encodingb

b. Rd must be in the range R0-R7.

0-1020 c

c. Must be a multiple of 4.

T

ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-38
ID012213 Non-Confidential

ARM and Thumb Instructions
3.21.4 ADR in Thumb

You can use the .W width specifier to force ADR to generate a 32-bit instruction in Thumb code.
ADR with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

For forward references, ADR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for an address that could be generated in a 32-bit Thumb ADD
instruction.

3.21.5 Restrictions

In Thumb code, Rd cannot be PC or SP.

In ARM code, Rd can be PC or SP but use of SP is deprecated in ARMv6T2 and above.

3.21.6 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Memory access instructions on page 3-10
• ADRL pseudo-instruction on page 3-42
• AREA on page 7-13
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-39
ID012213 Non-Confidential

ARM and Thumb Instructions
3.22 ADR (register-relative)
ADR generates a register-relative address in the destination register, for a label defined in a
storage map.

3.22.1 Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a symbol defined by the FIELD directive. label specifies an offset from the base
register which is defined using the MAP directive.
label must be within a limited distance from the base register.

3.22.2 Usage

ADR generates code to easily access named fields inside a storage map.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

3.22.3 Restrictions

In Thumb code:
• Rd cannot be PC
• Rd can be SP only if the base register is SP.

3.22.4 Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-4 shows the possible offsets between the label and the current instruction.

Table 3-4 register-relative offsets

Instruction Offset range Architecturesa

a. Entries in the Architectures column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.

ARM ADR See Operand2 as a constant on page 3-15 All

Thumb ADR, 32-bit
encoding

+/– 4095 T2

Thumb ADR, 16-bit
encoding, base
register is SP b

b. Rd must be in the range R0-R7 or SP. If Rd is SP, the offset range is –508 to 508 and must be
a multiple of 4

0-1020 c T
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-40
ID012213 Non-Confidential

ARM and Thumb Instructions
3.22.5 ADR in Thumb

You can use the .W width specifier to force ADR to generate a 32-bit instruction in Thumb code.
ADR with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

For forward references, ADR without .W, with base register SP, always generates a 16-bit
instruction in Thumb code, even if that results in failure for an address that could be generated
in a 32-bit Thumb ADD instruction.

3.22.6 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Memory access instructions on page 3-10
• MAP on page 7-67
• FIELD on page 7-51
• ADRL pseudo-instruction on page 3-42
• Condition codes on page 3-32.

c. Must be a multiple of 4.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-41
ID012213 Non-Confidential

ARM and Thumb Instructions
3.23 ADRL pseudo-instruction
Load a PC-relative or register-relative address into a register. It is similar to the ADR instruction.
ADRL can load a wider range of addresses than ADR because it generates two data processing
instructions.

Note
 When assembling Thumb instructions, ADRL is only available in ARMv6T2 and later.

3.23.1 Syntax

ADRL{cond} Rd,label

where:

cond is an optional condition code.

Rd is the register to load.

label is a PC-relative or register-relative expression.

3.23.2 Usage

ADRL always assembles to two 32-bit instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error message
and the assembly fails. You can use the LDR pseudo-instruction for loading a wider range of
addresses.

ADRL produces position-independent code, because the address is PC-relative or register-relative.

If label is PC-relative, it must evaluate to an address in the same assembler area as the ADRL
pseudo-instruction.

If you use ADRL to generate a target for a BX or BLX instruction, it is your responsibility to set the
Thumb bit (bit 0) of the address if the target contains Thumb instructions.

3.23.3 Architectures and range

The available range depends on the instruction set in use:

ARM The range of the instruction is any value that can be generated by two ADD
or two SUB instructions. That is, any value that can be produced by the
addition of two values, each of which is 8 bits rotated right by any even
number of bits within a 32-bit word. See Operand2 as a constant on
page 3-15 for more information.

Thumb, 32-bit encoding
±1MB bytes to a byte, halfword, or word-aligned address.

Thumb, 16-bit encoding
ADRL is not available.

The given range is relative to a point four bytes (in Thumb code) or two words (in ARM code)
after the address of the current instruction.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-42
ID012213 Non-Confidential

ARM and Thumb Instructions
3.23.4 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7
• Load immediates into registers on page 5-5.

Reference
• LDR pseudo-instruction on page 3-100
• AREA on page 7-13
• ADD on page 3-35
• Condition codes on page 3-32.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-43
ID012213 Non-Confidential

ARM and Thumb Instructions
3.24 AND
Logical AND.

3.24.1 Syntax

AND{S}{cond} Rd, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.24.2 Usage

The AND instruction performs bitwise AND operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of
this when reading disassembly listings.

3.24.3 Use of PC in Thumb instructions

You cannot use PC (R15) for Rd or any operand with the AND instruction.

3.24.4 Use of PC and SP in ARM instructions

You can use PC and SP with the AND ARM instruction but this is deprecated in ARMv6T2 and
above.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.24.5 Condition flags

If S is specified, the AND instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-44
ID012213 Non-Confidential

ARM and Thumb Instructions
3.24.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

ANDS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

AND{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify AND{S} Rd, Rm, Rd. The instruction is the same.

3.24.7 Examples

 AND r9,r2,#0xFF00
 ANDS r9, r8, #0x19

3.24.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-45
ID012213 Non-Confidential

ARM and Thumb Instructions
3.25 ASR
Arithmetic Shift Right.

This instruction is a preferred synonym for MOV instructions with shifted register operands.

3.25.1 Syntax

ASR{S}{cond} Rd, Rm, Rs

ASR{S}{cond} Rd, Rm, #sh

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values permitted is 1-32.

3.25.2 Usage

ASR provides the signed value of the contents of a register divided by a power of two. It copies
the sign bit into vacated bit positions on the left.

3.25.3 Restrictions in Thumb code

Thumb instructions must not use PC or SP.

3.25.4 Use of SP and PC in ARM instructions

You can use SP in the ASR ARM instruction but this is deprecated in ARMv6T2 and above.

You cannot use PC in instructions with the ASR{S}{cond} Rd, Rm, Rs syntax. You can use PC for
Rd and Rm in the other syntax, but this is deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instruction ASRS{cond} pc,Rm,#sh always disassembles to the preferred form

MOVS{cond} pc,Rm{,shift}.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-46
ID012213 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in the ASR instruction if it has a register-controlled shift.

3.25.5 Condition flags

If S is specified, the ASR instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

3.25.6 16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

ASRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ASRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

3.25.7 Architectures

The ASR ARM instruction is available in all architectures.

The ASR 32-bit Thumb instruction is available in ARMv6T2 and above.

The ASR 16-bit Thumb instruction is available in ARMv4T and above.

3.25.8 Example

 ASR r7, r8, r9

3.25.9 See also

Reference
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-47
ID012213 Non-Confidential

ARM and Thumb Instructions
3.26 B
Branch.

3.26.1 Syntax

B{cond}{.W} label

where:

cond is an optional condition code.

.W is an optional instruction width specifier to force the use of a 32-bit B instruction
in Thumb.

label is a PC-relative expression.

3.26.2 Operation

The B instruction causes a branch to label.

3.26.3 Instruction availability and branch ranges

Table 3-5 shows the B instructions that are available in ARM and Thumb state. Instructions that
are not shown in this table are not available. Notes in brackets show the first architecture version
where the instruction is available.

3.26.4 Extending branch ranges

Machine-level B instructions have restricted ranges from the address of the current instruction.
However, you can use these instructions even if label is out of range. Often you do not know
where the linker places label. When necessary, the linker adds code to enable longer branches.
The added code is called a veneer.

3.26.5 B in Thumb

You can use the .W width specifier to force B to generate a 32-bit instruction in Thumb code.

B.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
instruction.

For forward references, B without .W always generates a 16-bit instruction in Thumb code, even
if that results in failure for a target that could be reached using a 32-bit Thumb instruction.

3.26.6 Condition flags

The B instruction does not change the flags.

Table 3-5 Branch instruction availability and range

Instruction ARM Thumb, 16-bit encoding Thumb, 32-bit encoding

B label ±32MB (All) ±2KB (All T) ±16MBa (All T2)

B{cond} label ±32MB (All) –252 to +258 (All T) ±1MBa (All T2)

a. Use .W to instruct the assembler to use this 32-bit instruction.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-48
ID012213 Non-Confidential

ARM and Thumb Instructions
3.26.7 Architectures

See Table 3-5 on page 3-48 for details of availability of the B instruction in each architecture.

3.26.8 Example

 B loopA

3.26.9 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-49
ID012213 Non-Confidential

ARM and Thumb Instructions
3.27 BFC
Bit Field Clear. Clear adjacent bits in a register.

3.27.1 Syntax

BFC{cond} Rd, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

lsb is the least significant bit that is to be cleared.

width is the number of bits to be cleared. width must not be 0, and (width+lsb) must be
less than 32.

3.27.2 Operation

width bits in Rd are cleared, starting at lsb. Other bits in Rd are unchanged.

3.27.3 Register restrictions

You cannot use PC for any register.

You can use SP in the BFC ARM instruction but this is deprecated in ARMv6T2 and above. You
cannot use SP in the BFC Thumb instruction.

3.27.4 Condition flags

The BFC instruction does not change the flags.

3.27.5 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.27.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-50
ID012213 Non-Confidential

ARM and Thumb Instructions
3.28 BFI
Bit Field Insert. Insert adjacent bits from one register into another.

3.28.1 Syntax

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the least significant bit that is to be copied.

width is the number of bits to be copied. width must not be 0, and (width+lsb) must be
less than 32.

3.28.2 Operation

width bits in Rd, starting at lsb, are replaced by width bits from Rn, starting at bit[0]. Other bits
in Rd are unchanged.

3.28.3 Register restrictions

You cannot use PC for any register.

You can use SP in the BFI ARM instruction but this is deprecated in ARMv6T2 and above. You
cannot use SP in the BFI Thumb instruction.

3.28.4 Condition flags

The BFI instruction does not change the flags.

3.28.5 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.28.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-51
ID012213 Non-Confidential

ARM and Thumb Instructions
3.29 BIC
Bit Clear.

3.29.1 Syntax

BIC{S}{cond} Rd, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.29.2 Usage

The BIC (Bit Clear) instruction performs an AND operation on the bits in Rn with the
complements of the corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of
this when reading disassembly listings.

3.29.3 Use of PC in Thumb instructions

You cannot use PC (R15) for Rd or any operand in a BIC instruction.

3.29.4 Use of PC and SP in ARM instructions

You can use PC and SP with the BIC instruction but they are deprecated in ARMv6T2 and above.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.29.5 Condition flags

If S is specified, the BIC instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-52
ID012213 Non-Confidential

ARM and Thumb Instructions
3.29.6 16-bit instructions

The following forms of the BIC instruction are available in Thumb code, and are 16-bit
instructions:

BICS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

BIC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

3.29.7 Example

 BIC r0, r1, #0xab

3.29.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-53
ID012213 Non-Confidential

ARM and Thumb Instructions
3.30 BKPT
Breakpoint.

3.30.1 Syntax

BKPT #imm

where:

imm is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an ARM instruction
• 0-255 (an 8-bit value) in a 16-bit Thumb instruction.

3.30.2 Usage

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

In both ARM state and Thumb state, imm is ignored by the ARM hardware. However, a debugger
can use it to store additional information about the breakpoint.

BKPT is an unconditional instruction. It must not have a condition code in ARM code. In Thumb
code, the BKPT instruction does not require a condition code suffix because BKPT always executes
irrespective of its condition code suffix.

3.30.3 Architectures

This ARM instruction is available in ARMv5T and above.

This 16-bit Thumb instruction is available in ARMv5T and above.

There is no 32-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-54
ID012213 Non-Confidential

ARM and Thumb Instructions
3.31 BL
Branch with Link.

3.31.1 Syntax

BL{cond}{.W} label

where:

cond is an optional condition code. cond is not available on all forms of this instruction.

.W is an optional instruction width specifier to force the use of a 32-bit BL instruction
in Thumb.

label is a PC-relative expression.

3.31.2 Operation

The BL instruction causes a branch to label, and copies the address of the next instruction into
LR (R14, the link register).

3.31.3 Instruction availability and branch ranges

Table 3-6 shows the BL instructions that are available in ARM and Thumb state. Instructions that
are not shown in this table are not available. Notes in brackets show the first architecture version
where the instruction is available.

3.31.4 Extending branch ranges

Machine-level BL instructions have restricted ranges from the address of the current instruction.
However, you can use these instructions even if label is out of range. Often you do not know
where the linker places label. When necessary, the linker adds code to enable longer branches.
The added code is called a veneer.

3.31.5 Condition flags

The BL instruction does not change the flags.

3.31.6 Architectures

See Table 3-6 for details of availability of the BL instruction in each architecture.

3.31.7 Examples

 BLE ng+8
 BL subC
 BLLT rtX

Table 3-6 Branch instruction availability and range

Instruction ARM Thumb, 16-bit encoding Thumb, 32-bit encoding

BL label ±32MB (All) ±4MB a (All T) ±16MB (All T2)

BL{cond} label ±32MB (All) - - -

a. BL label and BLX label are an instruction pair.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-55
ID012213 Non-Confidential

ARM and Thumb Instructions
3.31.8 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-56
ID012213 Non-Confidential

ARM and Thumb Instructions
3.32 BLX
Branch with Link and exchange instruction set.

3.32.1 Syntax

BLX{cond}{.W} label

BLX{cond} Rm

where:

cond is an optional condition code. cond is not available on all forms of this instruction.

.W is an optional instruction width specifier to force the use of a 32-bit BLX instruction
in Thumb.

label is a PC-relative expression.

Rm is a register containing an address to branch to.

3.32.2 Operation

The BLX instruction causes a branch to label, or to the address contained in Rm. In addition:

• The BLX instruction copies the address of the next instruction into LR (R14, the link
register).

• The BLX instruction can change the instruction set.
BLX label always changes the instruction set. It changes a processor in ARM state to
Thumb state, or a processor in Thumb state to ARM state.
BLX Rm derives the target instruction set from bit[0] of Rm:
— if bit[0] of Rm is 0, the processor changes to, or remains in, ARM state
— if bit[0] of Rm is 1, the processor changes to, or remains in, Thumb state.

3.32.3 Instruction availability and branch ranges

Table 3-7 shows the BLX instructions that are available in ARM and Thumb state. Instructions
that are not shown in this table are not available. Notes in brackets show the first architecture
version where the instruction is available.

3.32.4 BLX in ThumbEE

You can use the BLX instruction as a branch in ThumbEE code, but you cannot use it to change
state. You cannot use the BLX{cond} label form of this instruction in ThumbEE. In the register
form, bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE state.

Table 3-7 Branch instruction availability and range

Instruction ARM Thumb, 16-bit encoding Thumb, 32-bit encoding

BLX label ±32MB (5) ±4MB a (5T) ±16MB (All T2 except
ARMv7-M)

BLX Rm Available (5) Available (5T) Use 16-bit (All T2)

BLX{cond} Rm Available (5) - - -

a. BLX label and BL label are an instruction pair.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-57
ID012213 Non-Confidential

ARM and Thumb Instructions
3.32.5 Register restrictions

You can use PC for Rm in the ARM BLX instruction, but this is deprecated in ARMv6T2 and
above. You cannot use PC in other ARM instructions.

You can use PC for Rm in the Thumb BLX instruction. You cannot use PC in other Thumb
instructions.

You can use SP for Rm in this ARM instruction but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in the Thumb BLX instruction, but this is deprecated. You cannot use SP
in the other Thumb instructions.

3.32.6 Condition flags

This instruction does not change the flags.

3.32.7 Architectures

See Table 3-7 on page 3-57 for details of availability of the BLX instruction in each architecture.

3.32.8 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-58
ID012213 Non-Confidential

ARM and Thumb Instructions
3.33 BX
Branch and exchange instruction set.

3.33.1 Syntax

BX{cond} Rm

where:

cond is an optional condition code. cond is not available on all forms of this instruction.

Rm is a register containing an address to branch to.

3.33.2 Operation

The BX instruction causes a branch to the address contained in Rm. and exchanges the instruction
set, if required:

• BX Rm derives the target instruction set from bit[0] of Rm:
— if bit[0] of Rm is 0, the processor changes to, or remains in, ARM state
— if bit[0] of Rm is 1, the processor changes to, or remains in, Thumb state.

3.33.3 Instruction availability and branch ranges

Table 3-8 shows the instructions that are available in ARM and Thumb state. Instructions that
are not shown in this table are not available. Notes in brackets show the first architecture version
where the instruction is available.

3.33.4 BX in ThumbEE

You can use the BX instruction as a branch in ThumbEE code, but you cannot use it to change
state. Bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE state.

3.33.5 Register restrictions

You can use PC for Rm in the ARM BX instruction, but this is deprecated in ARMv6T2 and above.
You cannot use PC in other ARM instructions.

You can use PC for Rm in the Thumb BX instruction. You cannot use PC in other Thumb
instructions.

You can use SP for Rm in the ARM BX instruction but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in the Thumb BX instruction, but this is deprecated.

Table 3-8 Branch instruction availability and range

Instruction ARM Thumb, 16-bit encoding Thumb, 32-bit encoding

BX Rm a Available (4T, 5) Available (All T) Use 16-bit (All T2)

BX{cond} Rm a Available (4T, 5) - - -

a. The assembler accepts BX{cond} Rm for code assembled for ARMv4 and converts it to MOV{cond} PC, Rm at link time, unless
objects targeted for ARMv4T are present.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-59
ID012213 Non-Confidential

ARM and Thumb Instructions
3.33.6 Condition flags

The BX instruction does not change the flags.

3.33.7 Architectures

See Table 3-8 on page 3-59 for details of availability of the BX instruction in each architecture.

3.33.8 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-60
ID012213 Non-Confidential

ARM and Thumb Instructions
3.34 BXJ
Branch and change to Jazelle state.

3.34.1 Syntax

BXJ{cond} Rm

where:

cond is an optional condition code. cond is not available on all forms of this instruction.

Rm is a register containing an address to branch to.

3.34.2 Operation

The BXJ instruction causes a branch to the address contained in Rm and changes the instruction
set state to Jazelle.

3.34.3 Instruction availability and branch ranges

Table 3-9 shows the BXJ instructions that are available in ARM and Thumb state. Instructions
that are not shown in this table are not available. Notes in brackets show the first architecture
version where the instruction is available.

3.34.4 BXJ in ThumbEE

You can use this instruction as a branch in ThumbEE code, but you cannot use it to change state.
Bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE state.

Note
 BXJ behaves like BX in ThumbEE.

3.34.5 Register restrictions

You can use SP for Rm in the BXJ ARM instruction but this is deprecated in ARMv6T2 and above.

You cannot use SP in the BXJ Thumb instruction.

3.34.6 Condition flags

The BXJ instruction does not change the flags.

3.34.7 Architectures

See Table 3-9 for details of availability of the BXJ instruction in each architecture.

Table 3-9 Branch instruction availability and range

Instruction ARM Thumb, 16-bit encoding Thumb, 32-bit encoding

BXJ Rm Available (5J, 6) - Available (All T2 except
ARMv7-M)

BXJ{cond} Rm Available (5J, 6) - - -
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-61
ID012213 Non-Confidential

ARM and Thumb Instructions
3.34.8 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-62
ID012213 Non-Confidential

ARM and Thumb Instructions
3.35 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

3.35.1 Syntax

CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

3.35.2 Usage

You can use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce
the number of instructions.

Except that it does not change the condition code flags, CBZ Rn, label is equivalent to:

 CMP Rn, #0
 BEQ label

Except that it does not change the condition code flags, CBNZ Rn, label is equivalent to:

 CMP Rn, #0
 BNE label

3.35.3 Restrictions

The branch destination must be within 4 to 130 bytes after the instruction and in the same
execution state.

These instructions must not be used inside an IT block.

3.35.4 Condition flags

These instructions do not change the flags.

3.35.5 Architectures

These 16-bit Thumb instructions are available in ARMv6T2 and above.

There are no ARM or 32-bit Thumb encodings of these instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-63
ID012213 Non-Confidential

ARM and Thumb Instructions
3.36 CDP and CDP2
Coprocessor data operations.

3.36.1 Syntax

CDP{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

CDP2{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. In ARM code, cond is not permitted for CDP2.

coproc is the name of the coprocessor the instruction is for. The standard name is
pn, where n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

3.36.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.36.3 Architectures

The CDP ARM instruction is available in all versions of the ARM architecture.

The CDP2 ARM instruction is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.

3.36.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-64
ID012213 Non-Confidential

ARM and Thumb Instructions
3.37 CLREX
Clear Exclusive. Clears the local record of the executing processor that an address has had a
request for an exclusive access.

3.37.1 Syntax

CLREX{cond}

where:

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM.

3.37.2 Usage

Use the CLREX instruction to return a closely-coupled exclusive access monitor to its open-access
state. This removes the requirement for a dummy store to memory.

It is implementation defined whether CLREX also clears the global record of the executing
processor that an address has had a request for an exclusive access.

3.37.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv7 and above.

There is no 16-bit CLREX instruction in Thumb.

3.37.4 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-65
ID012213 Non-Confidential

ARM and Thumb Instructions
3.38 CLZ
Count Leading Zeros.

3.38.1 Syntax

CLZ{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the operand register.

3.38.2 Usage

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

3.38.3 Register restrictions

You cannot use PC for any operand.

You can use SP in these ARM instructions but this is deprecated in ARMv6T2 and above.

You cannot use SP in Thumb instructions.

3.38.4 Condition flags

This instruction does not change the flags.

3.38.5 Architectures

This ARM instruction is available in ARMv5T and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.38.6 Examples

 CLZ r4,r9
 CLZNE r2,r3

Use the CLZ Thumb instruction followed by a left shift of Rm by the resulting Rd value to
normalize the value of register Rm. Use MOVS, rather than MOV, to flag the case where Rm is zero:

CLZ r5, r9
MOVS r9, r9, LSL r5

3.38.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-66
ID012213 Non-Confidential

ARM and Thumb Instructions
3.39 CMP and CMN
Compare and Compare Negative.

3.39.1 Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

3.39.2 Usage

These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a
SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be aware of
this when reading disassembly listings.

3.39.3 Use of PC in ARM and Thumb instructions

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

You can use PC (R15) in these ARM instructions without register controlled shift but this is
deprecated in ARMv6T2 and above.

If you use PC as Rn in ARM instructions, the value used is the address of the instruction plus 8.

You cannot use PC for any operand in these Thumb instructions.

3.39.4 Use of SP in ARM and Thumb instructions

You can use SP for Rn in ARM and Thumb instructions.

You can use SP for Rm in ARM instructions but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in a 16-bit Thumb CMP Rn, Rm instruction but this is deprecated in
ARMv6T2 and above. Other uses of SP for Rm are not permitted in Thumb.

3.39.5 Condition flags

These instructions update the N, Z, C and V flags according to the result.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-67
ID012213 Non-Confidential

ARM and Thumb Instructions
3.39.6 16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

CMP Rn, Rm Lo register restriction does not apply.

CMN Rn, Rm Rn and Rm must both be Lo registers.

CMP Rn, #imm Rn must be a Lo register. imm range 0-255.

3.39.7 Examples

 CMP r2, r9
 CMN r0, #6400
 CMPGT sp, r7, LSL #2

3.39.8 Incorrect example

 CMP r2, pc, ASR r0 ; PC not permitted with register-controlled shift

3.39.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-68
ID012213 Non-Confidential

ARM and Thumb Instructions
3.40 CPS
CPS (Change Processor State) changes one or more of the mode, A, I, and F bits in the CPSR,
without changing the other CPSR bits.

CPS is only permitted in privileged software execution, and has no effect in User mode.

CPS cannot be conditional, and is not permitted in an IT block.

3.40.1 Syntax

CPSeffect iflags{, #mode}

CPS #mode

where:

effect is one of:
IE Interrupt or abort enable.
ID Interrupt or abort disable.

iflags is a sequence of one or more of:
a Enables or disables imprecise aborts.
i Enables or disables IRQ interrupts.
f Enables or disables FIQ interrupts.

mode specifies the number of the mode to change to.

3.40.2 Condition flags

This instruction does not change the condition flags.

3.40.3 16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:
• CPSIE iflags
• CPSID iflags

You cannot specify a mode change in a 16-bit Thumb instruction.

3.40.4 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction are available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in T variants of ARMv6 and above.

3.40.5 Examples

 CPSIE if ; enable interrupts and fast interrupts
 CPSID A ; disable imprecise aborts
 CPSID ai, #17 ; disable imprecise aborts and interrupts, and enter FIQ mode
 CPS #16 ; enter User mode
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-69
ID012213 Non-Confidential

ARM and Thumb Instructions
3.41 CPY pseudo-instruction
Copy a value from one register to another.

3.41.1 Syntax

CPY{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the register holding the value to be copied.

3.41.2 Usage

The CPY pseudo-instruction copies a value from one register to another, without changing the
condition code flags.

CPY Rd, Rm assembles to MOV Rd, Rm.

3.41.3 Architectures

This pseudo-instruction is available in ARMv6 and above in ARM code and in T variants of
ARMv6 and above in Thumb code.

3.41.4 Register restrictions

Using SP or PC for both Rd and Rm is deprecated.

3.41.5 Condition flags

This instruction does not change the condition flags.

3.41.6 See also

Reference
• MOV on page 3-118.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-70
ID012213 Non-Confidential

ARM and Thumb Instructions
3.42 DBG
Debug.

3.42.1 Syntax

DBG{cond} {option}

where:

cond is an optional condition code.

option is an optional limitation on the operation of the hint. The range is 0-15.

3.42.2 Usage

DBG is a hint instruction. It is optional whether it is implemented or not. If it is not implemented,
it behaves as a NOP. The assembler produces a diagnostic message if the instruction executes as
NOP on the target.

DBG executes as a NOP instruction in ARMv6K and ARMv6T2.

Debug hint provides a hint to a debugger and related tools. See your debugger and related tools
documentation to determine the use, if any, of this instruction.

3.42.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.42.4 See also

Reference
• NOP on page 3-137
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-71
ID012213 Non-Confidential

ARM and Thumb Instructions
3.43 DMB
Data Memory Barrier.

3.43.1 Syntax

DMB{cond} {option}

where:

cond is an optional condition code.

Note
 cond is permitted only in Thumb code. This is an unconditional instruction in

ARM.

option is an optional limitation on the operation of the hint. Permitted values are:
SY Full system DMB operation. This is the default and can be omitted.
ST DMB operation that waits only for stores to complete.
ISH DMB operation only to the inner shareable domain.
ISHST DMB operation that waits only for stores to complete, and only to the

inner shareable domain.
NSH DMB operation only out to the point of unification.
NSHST DMB operation that waits only for stores to complete and only out to the

point of unification.
OSH DMB operation only to the outer shareable domain.
OSHST DMB operation that waits only for stores to complete, and only to the

outer shareable domain.

3.43.2 Operation

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that
appear in program order before the DMB instruction are observed before any explicit memory
accesses that appear in program order after the DMB instruction. It does not affect the ordering of
any other instructions executing on the processor.

3.43.3 Alias

The following alternative values of option are supported, but ARM recommends that you do not
use them:
• SH is an alias for ISH
• SHST is an alias for ISHST
• UN is an alias for NSH
• UNST is an alias for NSHST

3.43.4 Architectures

This ARM and 32-bit Thumb instruction is available in ARMv7.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-72
ID012213 Non-Confidential

ARM and Thumb Instructions
3.43.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-73
ID012213 Non-Confidential

ARM and Thumb Instructions
3.44 DSB
Data Synchronization Barrier.

3.44.1 Syntax

DSB{cond} {option}

where:

cond is an optional condition code.

Note
 cond is permitted only in Thumb code. This is an unconditional instruction in

ARM.

option is an optional limitation on the operation of the hint. Permitted values are:
SY Full system DSB operation. This is the default and can be omitted.
ST DSB operation that waits only for stores to complete.
ISH DSB operation only to the inner shareable domain.
ISHST DSB operation that waits only for stores to complete, and only to the

inner shareable domain.
NSH DSB operation only out to the point of unification.
NSHST DSB operation that waits only for stores to complete and only out to the

point of unification.
OSH DSB operation only to the outer shareable domain.
OSHST DSB operation that waits only for stores to complete, and only to the

outer shareable domain.

3.44.2 Operation

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in
program order after this instruction executes until this instruction completes. This instruction
completes when:
• All explicit memory accesses before this instruction complete.
• All Cache, Branch predictor and TLB maintenance operations before this instruction

complete.

3.44.3 Alias

The following alternative values of option are supported for DSB, but ARM recommends that you
do not use them:
• SH is an alias for ISH
• SHST is an alias for ISHST
• UN is an alias for NSH
• UNST is an alias for NSHST

3.44.4 Architectures

This ARM and 32-bit Thumb instruction is available in ARMv7.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-74
ID012213 Non-Confidential

ARM and Thumb Instructions
3.44.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-75
ID012213 Non-Confidential

ARM and Thumb Instructions
3.45 EOR
Logical Exclusive OR.

3.45.1 Syntax

EOR{S}{cond} Rd, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.45.2 Usage

The EOR instruction performs bitwise Exclusive OR operations on the values in Rn and Operand2.

3.45.3 Use of PC in Thumb instructions

You cannot use PC (R15) for Rd or any operand in an EOR instruction.

3.45.4 Use of PC and SP in ARM instructions

You can use PC and SP with the EOR instruction but they are deprecated in ARMv6T2 and above.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.45.5 Condition flags

If S is specified, the EOR instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.45.6 16-bit instructions

The following forms of the EOR instruction are available in Thumb code, and are16-bit
instructions:

EORS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-76
ID012213 Non-Confidential

ARM and Thumb Instructions
EOR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify EOR{S} Rd, Rm, Rd. The instruction is the same.

3.45.7 Examples

 EORS r0,r0,r3,ROR r6
 EORS r7, r11, #0x18181818

3.45.8 Incorrect example

 EORS r0,pc,r3,ROR r6 ; PC not permitted with register
 ; controlled shift

3.45.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-77
ID012213 Non-Confidential

ARM and Thumb Instructions
3.46 ERET
Exception Return.

3.46.1 Syntax

ERET{cond}

where:

cond is an optional condition code.

3.46.2 Usage

In a processor that implements the Virtualization Extensions, you can use ERET to perform a
return from an exception taken to Hyp mode.

3.46.3 Operation

When executed in Hyp mode, ERET loads the PC from ELR_hyp and loads the CPSR from
SPSR_hyp. When executed in any other mode, apart from User or System, it behaves as:
• MOVS PC, LR in the ARM instruction set
• SUBS PC, LR, #0 in the Thumb instruction set.

3.46.4 Notes

You must not use ERET in ThumbEE state or in User or System mode. The assembler cannot
detect the use of ERET in User or System mode, but it can detect and diagnose it in ThumbEE
state.

ERET is the preferred synonym for SUBS PC, LR, #0 in the Thumb instruction set.

3.46.5 Architectures

This ARM instruction is available in ARMv7 architectures that include the Virtualization
Extensions.

This 32-bit Thumb instruction is available in ARMv7 architectures that include the
Virtualization Extensions.

There is no 16-bit version of this instruction in Thumb.

3.46.6 See also

Concepts
Using the Assembler:
• Processor modes, and privileged and unprivileged software execution on page 3-5.

Reference
• MOV on page 3-118
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-78
ID012213 Non-Confidential

ARM and Thumb Instructions
3.47 ISB
Instruction Synchronization Barrier.

3.47.1 Syntax

ISB{cond} {option}

where:

cond is an optional condition code.

Note
 cond is permitted only in Thumb code. This is an unconditional instruction in

ARM.

option is an optional limitation on the operation of the hint. The permitted value is:
SY Full system ISB operation. This is the default, and can be omitted.

3.47.2 Operation

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions
following the ISB are fetched from cache or memory, after the instruction has been completed.
It ensures that the effects of context altering operations, such as changing the ASID, or
completed TLB maintenance operations, or branch predictor maintenance operations, in
addition to all changes to the CP15 registers, executed before the ISB instruction are visible to
the instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it
are always written into the branch prediction logic with the context that is visible after the ISB
instruction. This is required to ensure correct execution of the instruction stream.

Note
 When the target architecture is ARMv7-M, you cannot use an ISB instruction in an IT block,
unless it is the last instruction in the block.

3.47.3 Architectures

This ARM and 32-bit Thumb instruction is available in ARMv7.

There is no 16-bit version of this instruction in Thumb.

3.47.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-79
ID012213 Non-Confidential

ARM and Thumb Instructions
3.48 IT
The IT (If-Then) instruction makes up to four following instructions (the IT block) conditional.
The conditions can be all the same, or some of them can be the logical inverse of the others.

3.48.1 Syntax

IT{x{y{z}}} {cond}

where:
x specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

3.48.2 Usage

The instructions (including branches) in the IT block, except the BKPT instruction, must specify
the condition in the {cond} part of their syntax.

You are not required to write IT instructions in your code, because the assembler generates them
for you automatically according to the conditions specified on the following instructions.
However, if you do write IT instructions, the assembler validates the conditions specified in the
IT instructions against the conditions specified in the following instructions.

Writing the IT instructions ensures that you consider the placing of conditional instructions, and
the choice of conditions, in the design of your code.

When assembling to ARM code, the assembler performs the same checks, but does not generate
any IT instructions.

With the exception of CMP, CMN, and TST, the 16-bit instructions that normally affect the condition
code flags, do not affect them when used inside an IT block.

A BKPT instruction in an IT block is always executed, so it does not require a condition in the
{cond} part of its syntax. The IT block continues from the next instruction.

Note
 You can use an IT block for unconditional instructions by using the AL condition.

Conditional branches inside an IT block have a longer branch range than those outside the IT
block.

3.48.3 Restrictions

The following instructions are not permitted in an IT block:
• IT

• CBZ and CBNZ
• TBB and TBH
• CPS, CPSID and CPSIE
• SETEND.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-80
ID012213 Non-Confidential

ARM and Thumb Instructions
Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC is only permitted in an IT block if it is
the last instruction in the block.

• You cannot branch to any instruction in an IT block, unless when returning from an
exception handler.

• You cannot use any assembler directives in an IT block.

Note
 The assembler shows a diagnostic message when any of these instructions are used in an IT
block.

3.48.4 Condition flags

This instruction does not change the flags.

3.48.5 Exceptions

Exceptions can occur between an IT instruction and the corresponding IT block, or within an IT
block. This exception results in entry to the appropriate exception handler, with suitable return
information in LR and SPSR.

Instructions designed for use as exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a
PC-modifying instruction can branch to an instruction in an IT block.

3.48.6 Architectures

This 16-bit Thumb instruction is available in ARMv6T2 and above.

In ARM code, IT is a pseudo-instruction that does not generate any code.

There is no 32-bit version of this instruction.

3.48.7 Examples

 ITTE NE ; IT can be omitted
 ANDNE r0,r0,r1 ; 16-bit AND, not ANDS
 ADDSNE r2,r2,#1 ; 32-bit ADDS (16-bit ADDS does not set flags in IT block)
 MOVEQ r2,r3 ; 16-bit MOV

 ITT AL ; emit 2 non-flag setting 16-bit instructions
 ADDAL r0,r0,r1 ; 16-bit ADD, not ADDS
 SUBAL r2,r2,#1 ; 16-bit SUB, not SUB
 ADD r0,r0,r1 ; expands into 32-bit ADD, and is not in IT block

ITT EQ
MOVEQ r0,r1
BEQ dloop ; branch at end of IT block is permitted

ITT EQ
MOVEQ r0,r1
BKPT #1 ; BKPT always executes
ADDEQ r0,r0,#1
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-81
ID012213 Non-Confidential

ARM and Thumb Instructions
3.48.8 Incorrect example

 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used in IT block
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-82
ID012213 Non-Confidential

ARM and Thumb Instructions
3.49 LDC and LDC2
Transfer Data from memory to Coprocessor.

3.49.1 Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

where:

op is LDC or LDC2.

cond is an optional condition code.
In ARM code, cond is not permitted for LDC2.

L is an optional suffix specifying a long transfer.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

CRd is the coprocessor register to load.

Rn is the register on which the memory address is based. If PC is specified, the value
used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0 to 1020.

! is an optional suffix. If ! is present, the address including the offset is written back
into Rn.

label is a word-aligned PC-relative expression.
label must be within 1020 bytes of the current instruction.

3.49.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

In ThumbEE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

3.49.3 Architectures

LDC is available in all versions of the ARM architecture.

LDC2 is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-83
ID012213 Non-Confidential

ARM and Thumb Instructions
3.49.4 Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that
write back to Rn.

3.49.5 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-84
ID012213 Non-Confidential

ARM and Thumb Instructions
3.50 LDM
Load Multiple registers. Any combination of registers R0 to R15 (PC) can be transferred in ARM
state, but there are some restrictions in Thumb state.

3.50.1 Syntax

LDM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode is any one of the following:
IA Increment address After each transfer. This is the default, and can be

omitted.
IB Increment address Before each transfer (ARM only).
DA Decrement address After each transfer (ARM only).
DB Decrement address Before each transfer.
You can also use the stack oriented addressing mode suffixes, for example, when
implementing stacks.

cond is an optional condition code.

Rn is the base register, the ARM register holding the initial address for the transfer.
Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

reglist is a list of one or more registers to be loaded, enclosed in braces. It can contain
register ranges. It must be comma separated if it contains more than one register
or register range.

^ is an optional suffix, available in ARM state only. You must not use it in User
mode or System mode. It has the following purposes:
• If reglist contains the PC (R15), in addition to the normal multiple register

transfer, the SPSR is copied into the CPSR. This is for returning from
exception handlers. Use this only from exception modes.

• Otherwise, data is transferred into or out of the User mode registers instead
of the current mode registers.

3.50.2 Restrictions on reglist in 32-bit Thumb instructions

In 32-bit Thumb instructions:
• the SP cannot be in the list
• the PC and LR cannot both be in the list
• there must be two or more registers in the list.

If you write an LDM instruction with only one register in reglist, the assembler automatically
substitutes the equivalent LDR instruction. Be aware of this when comparing disassembly listings
with source code.

You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-85
ID012213 Non-Confidential

ARM and Thumb Instructions
3.50.3 Restrictions on reglist in ARM instructions

ARM load instructions can have SP and PC in the reglist but these instructions that include SP
in the reglist or both PC and LR in the reglist are deprecated in ARMv6T2 and above.

3.50.4 16-bit instructions

16-bit versions of a subset of these instructions are available in Thumb code.

The following restrictions apply to the 16-bit instructions:
• all registers in reglist must be Lo registers
• Rn must be a Lo register
• addr_mode must be omitted (or IA), meaning increment address after each transfer
• writeback must be specified for LDM instructions where Rn is not in the reglist.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can
therefore be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also
16-bit instructions.

Note
 These 16-bit instructions are not available in ThumbEE.

3.50.5 Loading to the PC

A load to the PC causes a branch to the instruction at the address loaded.

In ARMv4, bits[1:0] of the address loaded must be 0b00.

In ARMv5T and above:
• bits[1:0] must not be 0b10
• if bit[0] is 1, execution continues in Thumb state
• if bit[0] is 0, execution continues in ARM state.

3.50.6 Loading or storing the base register, with writeback

In ARM or 16-bit Thumb instructions, if Rn is in reglist, and writeback is specified with the !
suffix:

• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in
reglist, the initial value of Rn is stored. These instructions are deprecated in ARMv6T2
and above.

• Otherwise, the loaded or stored value of Rn cannot be relied on, so these instructions are
not permitted.

32-bit Thumb instructions are not permitted if Rn is in reglist, and writeback is specified with
the ! suffix.

3.50.7 Example

 LDM r8,{r0,r2,r9} ; LDMIA is a synonym for LDM

3.50.8 Incorrect example

 LDMDA r2, {} ; must be at least one register in list
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-86
ID012213 Non-Confidential

ARM and Thumb Instructions
3.50.9 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Memory access instructions on page 3-10
• POP on page 3-146
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-87
ID012213 Non-Confidential

ARM and Thumb Instructions
3.51 LDR (immediate offset)
Load with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

3.51.1 Syntax

LDR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

LDR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

LDR{type}{cond} Rt, [Rn], #offset ; post-indexed

LDRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

LDRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

LDRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-88
ID012213 Non-Confidential

ARM and Thumb Instructions
3.51.2 Offset ranges and architectures

Table 3-10 shows the ranges of offsets and availability of these instructions.

3.51.3 Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

3.51.4 Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For Thumb instructions, you must not specify SP or PC for either Rt or Rt2.

Table 3-10 Offsets and architectures, LDR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed Arch.a

ARM, word or byte b –4095 to 4095 –4095 to 4095 –4095 to 4095 All

ARM, signed byte, halfword, or signed
halfword

–255 to 255 –255 to 255 –255 to 255 All

ARM, doubleword –255 to 255 –255 to 255 –255 to 255 5E

Thumb 32-bit encoding, word,
halfword, signed halfword, byte, or
signed byte b

–255 to 4095 –255 to 255 –255 to 255 T2

Thumb 32-bit encoding, doubleword –1020 to 1020 d –1020 to 1020 d –1020 to 1020 d T2

Thumb 16-bit encoding, word c 0 to 124 d Not available Not available T

Thumb 16-bit encoding, unsigned
halfword c

0 to 62 e Not available Not available T

Thumb 16-bit encoding, unsigned byte c 0 to 31 Not available Not available T

Thumb 16-bit encoding, word, Rn is SP f 0 to 1020 d Not available Not available T

ThumbEE 16-bit encoding, word c –28 to 124 d Not available Not available EE

ThumbEE 16-bit encoding, word, Rn is
R9 f

0 to 252 d Not available Not available EE

ThumbEE 16-bit encoding, word, Rn is
R10 f

0 to 124 d Not available Not available EE

a. Entries in the Architecture column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
EE ThumbEE variants of the ARM architecture.

b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In ARMv4, bits[1:0] of the address
loaded must be 0b00. In ARMv5T and above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in Thumb state,
otherwise execution continues in ARM state.

c. Rt and Rn must be in the range R0-R7.
d. Must be divisible by 4.
e. Must be divisible by 2.
f. Rt must be in the range R0-R7.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-89
ID012213 Non-Confidential

ARM and Thumb Instructions
For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1).

3.51.5 Use of PC

In ARM instructions you can use PC for Rt in LDR word instructions and PC for Rn in LDR
instructions.

Other uses of PC are not permitted in these ARM instructions.

In Thumb instructions you can use PC for Rt in LDR word instructions and PC for Rn in LDR
instructions. Other uses of PC in these Thumb instructions are not permitted.

3.51.6 Use of SP

You can use SP for Rn.

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word
instructions in ARM code but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

3.51.7 Examples

 LDR r8,[r10] ; loads R8 from the address in R10.
 LDRNE r2,[r5,#960]! ; (conditionally) loads R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.

3.51.8 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-90
ID012213 Non-Confidential

ARM and Thumb Instructions
3.52 LDR (PC-relative)
Load register. The address is an offset from the PC.

3.52.1 Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

Note
 Equivalent syntaxes are available for the STR instruction in ARM code but they are deprecated
in ARMv6T2 and above.

3.52.2 Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-11 shows the possible offsets between the label and the current instruction.

Table 3-11 PC-relative offsets

Instruction Offset range Architecturesa

ARM LDR, LDRB, LDRSB, LDRH, LDRSH b +/– 4095 All

ARM LDRD +/– 255 5E

32-bit Thumb LDR, LDRB, LDRSB, LDRH, LDRSH b +/– 4095 T2

32-bit Thumb LDRD +/– 1020 c T2

16-bit Thumb LDR d 0-1020 c T
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-91
ID012213 Non-Confidential

ARM and Thumb Instructions
Note
 In ARMv7-M, LDRD (PC-relative) instructions must be on a word-aligned address.

3.52.3 LDR (PC-relative) in Thumb

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb code.
LDR.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
LDR.

For forward references, LDR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for a target that could be reached using a 32-bit Thumb LDR
instruction.

3.52.4 Doubleword register restrictions

For 32-bit Thumb instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1).

3.52.5 Use of SP

In ARM, you can use SP for Rt in LDR word instructions. You can use SP for Rt in LDR non-word
ARM instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in LDR word instructions only. All other uses of SP in these
instructions are not permitted in Thumb code.

3.52.6 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Pseudo-instructions on page 3-31
• LDR (PC-relative) in Thumb
• Memory access instructions on page 3-10

a. Entries in the Architectures column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.

b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In
ARMv4, bits[1:0] of the address loaded must be 0b00. In ARMv5T and above, bits[1:0] must
not be 0b10, and if bit[0] is 1, execution continues in Thumb state, otherwise execution
continues in ARM state.

c. Must be a multiple of 4.
d. Rt must be in the range R0-R7. There are no byte, halfword, or doubleword 16-bit instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-92
ID012213 Non-Confidential

ARM and Thumb Instructions
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-93
ID012213 Non-Confidential

ARM and Thumb Instructions
3.53 LDR (register offset)
Load with register offset, pre-indexed register offset, or post-indexed register offset.

3.53.1 Syntax

LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}] ; register offset

LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! ; pre-indexed ; ARM only

LDR{type}{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed ; ARM only

LDRD{cond} Rt, Rt2, [Rn, +/-Rm] ; register offset, doubleword ; ARM only

LDRD{cond} Rt, Rt2, [Rn, +/-Rm]! ; pre-indexed, doubleword ; ARM only

LDRD{cond} Rt, Rt2, [Rn], +/-Rm ; post-indexed, doubleword ; ARM only

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset. –Rm is not permitted in
Thumb code.

shift is an optional shift.

Rt2 is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.

3.53.2 Offset register and shift options

Table 3-12 shows the ranges of offsets and availability of these instructions.

Table 3-12 Options and architectures, LDR (register offsets)

Instruction +/–Rm a shift Arch.b

ARM, word or byte c +/–Rm LSL #0-31 LSR #1-32 All

ASR #1-32 ROR #1-31 RRX

ARM, signed byte, halfword, or signed halfword +/–Rm Not available All

ARM, doubleword +/–Rm Not available 5E

Thumb 32-bit encoding, word, halfword, signed
halfword, byte, or signed byte c

+Rm LSL #0-3 T2

Thumb 16-bit encoding, all except doublewordd +Rm Not available T
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-94
ID012213 Non-Confidential

ARM and Thumb Instructions
3.53.3 Register restrictions

In the pre-index and post-index forms:
• Rn must be different from Rt
• Rn must be different from Rm in architectures before ARMv6.

3.53.4 Doubleword register restrictions

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1)
• Rm must be different from Rt and Rt2 in LDRD instructions
• Rn must be different from Rt2 in the pre-index and post-index forms.

3.53.5 Use of PC

In ARM instructions you can use PC for Rt in LDR word instructions, and you can use PC for Rn
in LDR instructions with register offset syntax (that is the forms that do not writeback to the Rn).:

Other uses of PC are not permitted in ARM instructions.

In Thumb instructions you can use PC for Rt in LDR word instructions. Other uses of PC in these
Thumb instructions are not permitted.

3.53.6 Use of SP

You can use SP for Rn.

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word ARM
instructions but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in ARM instructions but this is deprecated in ARMv6T2 and above.

ThumbEE 16-bit encoding, word c +Rm LSL #2 (required) EE

ThumbEE 16-bit encoding, halfword, signed
halfword c

+Rm LSL #1 (required) EE

ThumbEE 16-bit encoding, byte, signed byte c +Rm Not available EE

a. Where +/–Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
b. Entries in the Architecture column indicate that the instructions are available as follows:

All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
EE ThumbEE variants of the ARM architecture.

c. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In ARMv4, bits[1:0] of the address
loaded must be 0b00. In ARMv5T and above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in Thumb
state, otherwise execution continues in ARM state.

d. Rt, Rn, and Rm must all be in the range R0-R7.

Table 3-12 Options and architectures, LDR (register offsets) (continued)

Instruction +/–Rm a shift Arch.b
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-95
ID012213 Non-Confidential

ARM and Thumb Instructions
In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

Use of SP for Rm is not permitted in Thumb state.

3.53.7 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-96
ID012213 Non-Confidential

ARM and Thumb Instructions
3.54 LDR (register-relative)
Load register. The address is an offset from a base register.

3.54.1 Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a symbol defined by the FIELD directive. label specifies an offset from the base
register which is defined using the MAP directive.
label must be within a limited distance of the value in the base register.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-97
ID012213 Non-Confidential

ARM and Thumb Instructions
3.54.2 Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-13 shows the possible offsets between the label and the current instruction.

3.54.3 LDR (register-relative) in Thumb

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb code.
LDR.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
LDR.

For forward references, LDR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for a target that could be reached using a 32-bit Thumb LDR
instruction.

Table 3-13 Register-relative offsets

Instruction Offset range Architecturesa

a. Entries in the Architectures column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
EE ThumbEE variants of the ARM architecture.

ARM LDR, LDRBb

b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In
ARMv4, bits[1:0] of the address loaded must be 0b00. In ARMv5T and above, bits[1:0] must
not be 0b10, and if bit[0] is 1, execution continues in Thumb state, otherwise execution
continues in ARM state.

+/– 4095 All

ARM LDRSB, LDRH, LDRSH +/– 255 All

ARM LDRD +/– 255 5E

Thumb, 32-bit LDR, LDRB, LDRSB, LDRH, LDRSH b –255 to 4095 T2

Thumb, 32-bit LDRD +/– 1020 c

c. Must be a multiple of 4.

T2

Thumb, 16-bit LDR d

d. Rt and base register must be in the range R0-R7.

0 to 124 c T

Thumb, 16-bit LDRH d 0 to 62 e

e. Must be a multiple of 2.

T

Thumb, 16-bit LDRB d 0 to 31 T

Thumb, 16-bit LDR, base register is SPf

f. Rt must be in the range R0-R7.

0 to 1020 c T

ThumbEE, 16-bit LDR d –28 to 124 c EE

Thumb, 16-bit LDR, base register is R9 f 0 to 252 c EE

ThumbEE,16-bit LDR, base register is R10 f 0 to 124 c EE
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-98
ID012213 Non-Confidential

ARM and Thumb Instructions
3.54.4 Doubleword register restrictions

For 32-bit Thumb instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1).

3.54.5 Use of PC

You can use PC for Rt in word instructions. Other uses of PC are not permitted in these
instructions.

3.54.6 Use of SP

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word ARM
instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

3.54.7 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Memory access instructions on page 3-10
• Pseudo-instructions on page 3-31
• LDR (register-relative) in Thumb on page 3-98
• FIELD on page 7-51
• MAP on page 7-67
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-99
ID012213 Non-Confidential

ARM and Thumb Instructions
3.55 LDR pseudo-instruction
Load a register with either:
• a 32-bit immediate value
• an address.

Note
 This section describes the LDR pseudo-instruction only, and not the LDR instruction.

3.55.1 Syntax

LDR{cond}{.W} Rt, =expr

LDR{cond}{.W} Rt, =label_expr

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to be loaded.

expr evaluates to a numeric value.

label_expr is a PC-relative or external expression of an address in the form of a label plus or
minus a numeric value.

3.55.2 Usage

When using the LDR pseudo-instruction:

• If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses
that instruction.

• If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the
assembler places the constant in a literal pool and generates a PC-relative LDR instruction
that reads the constant from the literal pool.

Note
 — An address loaded in this way is fixed at link time, so the code is not

position-independent.
— The address holding the constant remains valid regardless of where the linker places

the ELF section containing the LDR instruction.

The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR
instruction that loads the value from the literal pool.

If label_expr is an external expression, or is not contained in the current section, the assembler
places a linker relocation directive in the object file. The linker generates the address at link
time.

If label_expr is either a named or numeric local label, the assembler places a linker relocation
directive in the object file and generates a symbol for that local label. The address is generated
at link time. If the local label references Thumb code, the Thumb bit (bit 0) of the address is set.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-100
ID012213 Non-Confidential

ARM and Thumb Instructions
The offset from the PC to the value in the literal pool must be less than ±4KB (in an ARM or
32-bit Thumb encoding) or in the range 0 to +1KB (16-bit Thumb encoding). You are
responsible for ensuring that there is a literal pool within range.

If the label referenced is in Thumb code, the LDR pseudo-instruction sets the Thumb bit (bit 0)
of label_expr.

Note
 In RealView® Compilation Tools (RVCT) v2.2, the Thumb bit of the address was not set. If you
have code that relies on this behavior, use the command line option --untyped_local_labels to
force the assembler not to set the Thumb bit when referencing labels in Thumb code.

3.55.3 LDR in Thumb code

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb code
on ARMv6T2 and above processors. LDR.W always generates a 32-bit instruction, even if the
immediate value could be loaded in a 16-bit MOV, or there is a literal pool within reach of a 16-bit
PC-relative load.

If the value to be loaded is not known in the first pass of the assembler, LDR without .W generates
a 16-bit instruction in Thumb code, even if that results in a 16-bit PC-relative load for a value
that could be generated in a 32-bit MOV or MVN instruction. However, if the value is known in the
first pass, and it can be generated using a 32-bit MOV or MVN instruction, the MOV or MVN instruction
is used.

The LDR pseudo-instruction never generates a 16-bit flag-setting MOV instruction. Use the
--diag_warning 1727 assembler command line option to check when a 16-bit instruction could
have been used.

You can use the MOV32 pseudo-instruction for generating immediate values or addresses without
loading from a literal pool.

3.55.4 Examples

 LDR r3,=0xff0 ; loads 0xff0 into R3
 ; => MOV.W r3,#0xff0
 LDR r1,=0xfff ; loads 0xfff into R1
 ; => LDR r1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 0xfff
 LDR r2,=place ; loads the address of
 ; place into R2
 ; => LDR r2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD place

3.55.5 See also

Concepts
Using the Assembler:
• Numeric constants on page 8-5
• Register-relative and PC-relative expressions on page 8-7
• Numeric local labels on page 8-12
• Load immediates into registers on page 5-5
• Load immediate 32-bit values to a register using LDR Rd, =const on page 5-10.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-101
ID012213 Non-Confidential

ARM and Thumb Instructions
Reference
• Memory access instructions on page 3-10
• LTORG on page 7-63
• MOV32 pseudo-instruction on page 3-121
• Condition codes on page 3-32
• --untyped_local_labels on page 2-83.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-102
ID012213 Non-Confidential

ARM and Thumb Instructions
3.56 LDR, unprivileged
Unprivileged load byte, halfword, or word.

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software these instructions behave in exactly the same way as
the corresponding load instruction, for example LDRSBT behaves in the same way as LDRSB.

3.56.1 Syntax

LDR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (32-bit Thumb encoding
only)

LDR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (ARM only)

LDR{type}T{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed (register) (ARM only)

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset. Rm must not be PC.

shift is an optional shift.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-103
ID012213 Non-Confidential

ARM and Thumb Instructions
3.56.2 Offset ranges and architectures

Table 3-14 shows the ranges of offsets and availability of these instructions.

3.56.3 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.

Table 3-14 Offsets and architectures, LDR (User mode)

Instruction Immediate offset Post-indexed +/–Rm a shift Arch.b

ARM, word or byte Not available –4095 to 4095 +/–Rm LSL #0-31 All

LSR #1-32

ASR #1-32

ROR #1-31

RRX

ARM, signed byte, halfword, or
signed halfword

Not available –255 to 255 +/–Rm Not
available

T2

Thumb, 32-bit encoding, word,
halfword, signed halfword, byte, or
signed byte

0 to 255 Not available Not available T2

a. You can use –Rm, +Rm, or Rm.
b. Entries in the Architecture column indicate that the instructions are available as follows:

All All versions of the ARM architecture.
T2 The ARMv6T2 and above architectures.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-104
ID012213 Non-Confidential

ARM and Thumb Instructions
3.57 LDREX
Load Register Exclusive.

3.57.1 Syntax

LDREX{cond} Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

LDREXH{cond} Rt, [Rn]

LDREXD{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code.

Rd is the destination register for the returned status.

Rt is the register to load.

Rt2 is the second register for doubleword loads.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. offset is permitted only in 32-bit
Thumb instructions. If offset is omitted, an offset of 0 is assumed.

3.57.2 Operation

LDREX loads data from memory.

• If the physical address has the Shared TLB attribute, LDREX tags the physical address as
exclusive access for the current processor, and clears any exclusive access tag for this
processor for any other physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical
address.

3.57.3 Restrictions

PC must not be used for any of Rd, Rt, Rt2, or Rn.

For ARM instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated in ARMv6T2 and above
• For LDREXD, Rt must be an even numbered register, and not LR
• Rt2 must be R(t+1)
• offset is not permitted.

For Thumb instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2
• for LDREXD, Rt and Rt2 must not be the same register
• the value of offset can be any multiple of four in the range 0-1020.

3.57.4 Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and
shared-memory systems.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-105
ID012213 Non-Confidential

ARM and Thumb Instructions
For reasons of performance, keep the number of instructions between corresponding LDREX and
STREX instructions to a minimum.

Note
 The address used in a STREX instruction must be the same as the address in the most recently
executed LDREX instruction.

3.57.5 Architectures

ARM LDREX and STREX are available in ARMv6 and above.

ARM LDREXB, LDREXH, LDREXD, STREXB, STREXD, and STREXH are available in ARMv6K and above.

All these 32-bit Thumb instructions are available in ARMv6T2 and above, except that LDREXD
and STREXD are not available in the ARMv7-M architecture.

There are no 16-bit versions of these instructions.

3.57.6 Examples

 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

3.57.7 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-106
ID012213 Non-Confidential

ARM and Thumb Instructions
3.58 LSL
Logical Shift Left.

This instruction is a preferred synonym for MOV instructions with shifted register operands.

3.58.1 Syntax

LSL{S}{cond} Rd, Rm, Rs

LSL{S}{cond} Rd, Rm, #sh

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values permitted is 0-31.

3.58.2 Usage

LSL provides the value of a register multiplied by a power of two, inserting zeros into the vacated
bit positions.

3.58.3 Restrictions in Thumb code

Thumb instructions must not use PC or SP.

You cannot specify zero for the sh value in an LSL instruction in an IT block.

3.58.4 Use of SP and PC in ARM instructions

You can use SP in these ARM instructions but this is deprecated in ARMv6T2 and above.

You cannot use PC in instructions with the LSL{S}{cond} Rd, Rm, Rs syntax. You can use PC for
Rd and Rm in the other syntax, but this is deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instruction LSLS{cond} pc,Rm,#sh always disassembles to the preferred form

MOVS{cond} pc,Rm{,shift}.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-107
ID012213 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in the LSL instruction if it has a register-controlled shift.

3.58.5 Condition flags

If S is specified, the LSL instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

3.58.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

LSLS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSLS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

3.58.7 Architectures

This ARM instruction is available in all architectures.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv4T and above.

3.58.8 Example

LSLS r1, r2, r3

3.58.9 See also

Reference
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-108
ID012213 Non-Confidential

ARM and Thumb Instructions
3.59 LSR
Logical Shift Right.

This instruction is a preferred synonym for MOV instructions with shifted register operands.

3.59.1 Syntax

LSR{S}{cond} Rd, Rm, Rs

LSR{S}{cond} Rd, Rm, #sh

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values permitted is 1-32.

3.59.2 Usage

LSR provides the unsigned value of a register divided by a variable power of two, inserting zeros
into the vacated bit positions.

3.59.3 Restrictions in Thumb code

Thumb instructions must not use PC or SP.

3.59.4 Use of SP and PC in ARM instructions

You can use SP in these ARM instructions but they are deprecated in ARMv6T2 and above.

You cannot use PC in instructions with the LSR{S}{cond} Rd, Rm, Rs syntax. You can use PC for
Rd and Rm in the other syntax, but this is deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instruction LSRS{cond} pc,Rm,#sh always disassembles to the preferred form

MOVS{cond} pc,Rm{,shift}.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-109
ID012213 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in the LSR instruction if it has a register-controlled shift.

3.59.5 Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

3.59.6 16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

LSRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

3.59.7 Architectures

This ARM instruction is available in all architectures.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv4T and above.

3.59.8 Example

 LSR r4, r5, r6

3.59.9 See also

Reference
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-110
ID012213 Non-Confidential

ARM and Thumb Instructions
3.60 MAR
Transfer between two general-purpose registers and a 40-bit internal accumulator.

3.60.1 Syntax

MAR{cond} Acc, RdLo, RdHi

where:

cond is an optional condition code.

Acc is the internal accumulator. The standard name is accx,where x is an integer in the
range 0 to n. The value of n depends on the processor. It is 0 for current processors.

RdLo, RdHi are general-purpose registers. RdLo and RdHi must not be the PC.

3.60.2 Usage

The MAR instruction copies the contents of RdLo to bits[31:0] of Acc, and the least significant byte
of RdHi to bits[39:32] of Acc.

3.60.3 Architectures

The MAR ARM coprocessor 0 instruction is only available in XScale processors.

There is no Thumb version of the MAR instruction.

3.60.4 Examples

 MAR acc0, r0, r1
MARNE acc0, r9, r2

3.60.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-111
ID012213 Non-Confidential

ARM and Thumb Instructions
3.61 MCR and MCR2
Move to Coprocessor from ARM Register. Depending on the coprocessor, you might be able to
specify various operations in addition.

3.61.1 Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MCR2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. In ARM code, cond is not permitted for MCR2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

Rt is an ARM source register. Rt must not be PC.

CRn, CRm are coprocessor registers.

3.61.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.61.3 Architectures

The MCR ARM instruction is available in all versions of the ARM architecture.

The MCR2 ARM instruction is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.

3.61.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-112
ID012213 Non-Confidential

ARM and Thumb Instructions
3.62 MCRR and MCRR2
Move to Coprocessor from ARM Registers. Depending on the coprocessor, you might be able
to specify various operations in addition.

3.62.1 Syntax

MCRR{cond} coproc, #opcode, Rt, Rt2, CRn

MCRR2{cond} coproc, #opcode, Rt, Rt2, CRn

where:

cond is an optional condition code. In ARM code, cond is not permitted for MCRR2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM source registers. Rt and Rt2 must not be PC.

CRn is a coprocessor register.

3.62.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.62.3 Architectures

The MCRR ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

The MCRR2 ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.

3.62.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-113
ID012213 Non-Confidential

ARM and Thumb Instructions
3.63 MIA, MIAPH, and MIAxy
Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).

Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice, 40-bit
accumulate).

Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).

3.63.1 Syntax

MIA{cond} Acc, Rn, Rm

MIAPH{cond} Acc, Rn, Rm

MIA<x><y>{cond} Acc, Rn, Rm

where:

cond is an optional condition code.

Acc is the internal accumulator. The standard name is accx, where x is an integer in the
range 0 to n. The value of n depends on the processor. It is 0 in current processors.

Rn, Rm are the ARM registers holding the values to be multiplied.
Rn and Rm must not be PC.

<x><y> is one of: BB, BT, TB, TT.

3.63.2 Usage

The MIA instruction multiplies the signed integers from Rn and Rm, and adds the result to the 40-bit
value in Acc.

The MIAPH instruction multiplies the signed integers from the bottom halves of Rn and Rm,
multiplies the signed integers from the upper halves of Rn and Rm, and adds the two 32-bit results
to the 40-bit value in Acc.

The MIAxy instruction multiplies the signed integer from the selected half of Rs by the signed
integer from the selected half of Rm, and adds the 32-bit result to the 40-bit value in Acc. <x> ==
B means use the bottom half (bits [15:0]) of Rn, <x> == T means use the top half (bits [31:16]) of
Rn. <y> == B means use the bottom half (bits [15:0]) of Rm, <y> == T means use the top half (bits
[31:16]) of Rm.

3.63.3 Condition flags

These instructions do not change the flags.

Note
 These instructions cannot raise an exception. If overflow occurs on these instructions, the result
wraps round without any warning.

3.63.4 Architectures

These ARM coprocessor 0 instructions are only available in XScale processors.

There are no Thumb versions of these instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-114
ID012213 Non-Confidential

ARM and Thumb Instructions
3.63.5 Examples

 MIA acc0,r5,r0
 MIALE acc0,r1,r9
 MIAPH acc0,r0,r7
 MIAPHNE acc0,r11,r10
 MIABB acc0,r8,r9
 MIABT acc0,r8,r8
 MIATB acc0,r5,r3
 MIATT acc0,r0,r6
 MIABTGT acc0,r2,r5

3.63.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-115
ID012213 Non-Confidential

ARM and Thumb Instructions
3.64 MLA
Multiply-Accumulate with signed or unsigned 32-bit operands, giving the least significant 32
bits of the result.

3.64.1 Syntax

MLA{S}{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added.

3.64.2 Usage

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

3.64.3 Register restrictions

Rn must be different from Rd in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.64.4 Condition flags

If S is specified, the MLA instruction:
• updates the N and Z flags according to the result
• corrupts the C and V flag in ARMv4
• does not affect the C or V flag in ARMv5T and above.

3.64.5 Architectures

The MLA ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

3.64.6 Example

 MLA r10, r2, r1, r5

3.64.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-116
ID012213 Non-Confidential

ARM and Thumb Instructions
3.65 MLS
Multiply-Subtract, with signed or unsigned 32-bit operands, giving the least significant 32 bits
of the result.

3.65.1 Syntax

MLS{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be subtracted from.

3.65.2 Usage

The MLS instruction multiplies the values in Rn and Rm, subtracts the result from the value in Ra,
and places the least significant 32 bits of the final result in Rd.

3.65.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.65.4 Architectures

The MLS ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

3.65.5 Example

 MLS r4, r5, r6, r7

3.65.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-117
ID012213 Non-Confidential

ARM and Thumb Instructions
3.66 MOV
Move.

3.66.1 Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Operand2 is a flexible second operand.

imm16 is any value in the range 0-65535.

3.66.2 Usage

The MOV instruction copies the value of Operand2 into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of
this when reading disassembly listings.

3.66.3 Use of PC and SP in 32-bit Thumb encodings

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit Thumb MOV instructions. With the
following exceptions, you cannot use SP (R13) for Rd, or in Operand2:
• MOV{cond}.W Rd, SP, where Rd is not SP
• MOV{cond}.W SP, Rm, where Rm is not SP.

3.66.4 Use of PC and SP in 16-bit Thumb encodings

You can use PC or SP in 16-bit Thumb MOV{cond} Rd, Rm instructions but these instructions in
which both Rd and Rm are SP or PC are deprecated in ARMv6T2 and above.

You cannot use PC or SP in any other MOV{S} 16-bit Thumb instructions.

3.66.5 Use of PC and SP in ARM MOV

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

In instructions without register-controlled shift, the use of PC is deprecated except for the
following cases:
• MOVS PC, LR

• MOV PC, Rm when Rm is not PC or SP
• MOV Rd, PC when Rd is not PC or SP.

You can use SP for Rd or Rm. But this is deprecated except for the following cases:
• MOV SP, Rm when Rm is not PC or SP
• MOV Rd, SP when Rd is not PC or SP.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-118
ID012213 Non-Confidential

ARM and Thumb Instructions
Note
 • You cannot use PC for Rd in MOV Rd, #imm16 if the #imm16 value is not a permitted Operand2

value. You can use PC in forms with Operand2 without register-controlled shift.

• The deprecation of PC and SP in ARM instructions only applies to ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, see the SUBS pc,lr instruction.

3.66.6 Condition flags

If S is specified, the instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.66.7 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

MOVS Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used outside an IT block.

MOV{cond} Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used inside an IT block.

MOVS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MOV{cond} Rd, Rm
In architectures before ARMv6, either Rd or Rm, or both, must be a Hi register. In ARMv6 and
above, this restriction does not apply.

3.66.8 Architectures

The #imm16 form of the ARM instruction is available in ARMv6T2 and above. The other forms
of the ARM instruction are available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in all T variants of the ARM architecture.

3.66.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-119
ID012213 Non-Confidential

ARM and Thumb Instructions
Reference
• Condition codes on page 3-32
• SUBS pc, lr on page 3-217.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-120
ID012213 Non-Confidential

ARM and Thumb Instructions
3.67 MOV32 pseudo-instruction
Load a register with either:
• a 32-bit immediate value
• any address.

MOV32 always generates two 32-bit instructions, a MOV, MOVT pair. This enables you to load any
32-bit immediate, or to access the whole 32-bit address space.

3.67.1 Syntax

MOV32{cond} Rd, expr

where:

cond is an optional condition code.

Rd is the register to be loaded. Rd must not be SP or PC.

expr can be any one of the following:
symbol A label in this or another program area.
#constant Any 32-bit immediate value.
symbol + constant A label plus a 32-bit immediate value.

3.67.2 Usage

The main purposes of the MOV32 pseudo-instruction are:

• To generate literal constants when an immediate value cannot be generated in a single
instruction.

• To load a PC-relative or external address into a register. The address remains valid
regardless of where the linker places the ELF section containing the MOV32.

Note
 An address loaded in this way is fixed at link time, so the code is not position-independent.

MOV32 sets the Thumb bit (bit 0) of the address if the label referenced is in Thumb code.

3.67.3 Architectures

This pseudo-instruction is available in ARMv6T2 and above in both ARM and Thumb.

3.67.4 Examples

 MOV32 r3, #0xABCDEF12 ; loads 0xABCDEF12 into R3
 MOV32 r1, Trigger+12 ; loads the address that is 12 bytes higher than

; the address Trigger into R1

3.67.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-121
ID012213 Non-Confidential

ARM and Thumb Instructions
3.68 MOVT
Move Top. Writes a 16-bit immediate value to the top halfword of a register, without affecting
the bottom halfword.

3.68.1 Syntax

MOVT{cond} Rd, #imm16

where:
cond is an optional condition code.
Rd is the destination register.
imm16 is a 16-bit immediate value.

3.68.2 Usage

MOVT writes imm16 to Rd[31:16]. The write does not affect Rd[15:0].

You can generate any 32-bit immediate with a MOV, MOVT instruction pair. The assembler
implements the MOV32 pseudo-instruction for convenient generation of this instruction pair.

3.68.3 Register restrictions

You cannot use PC in ARM or Thumb instructions.

You can use SP for Rd in ARM instructions but this is deprecated.

You cannot use SP in Thumb instructions.

3.68.4 Condition flags

This instruction does not change the flags.

3.68.5 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.68.6 See also

Reference
• MOV32 pseudo-instruction on page 3-121
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-122
ID012213 Non-Confidential

ARM and Thumb Instructions
3.69 MRA
Transfer between two general-purpose registers and a 40-bit internal accumulator.

3.69.1 Syntax

MRA{cond} RdLo, RdHi, Acc

where:

cond is an optional condition code.

Acc is the internal accumulator. The standard name is accx,where x is an integer in the
range 0 to n. The value of n depends on the processor. It is 0 for current processors.

RdLo, RdHi are general-purpose registers. RdLo and RdHi must not be the PC, and they must be
different registers.

3.69.2 Usage

The MRA instruction:
• copies bits[31:0] of Acc to RdLo
• copies bits[39:32] of Acc to RdHi bits[7:0]
• sign extends the value by copying bit[39] of Acc to bits[31:8] of RdHi.

3.69.3 Architectures

The MRA ARM coprocessor 0 instruction is only available in XScale processors.

There is no Thumb version of the MRA instruction.

3.69.4 Examples

 MRA r4, r5, acc0
 MRAGT r4, r8, acc0

3.69.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-123
ID012213 Non-Confidential

ARM and Thumb Instructions
3.70 MRC and MRC2
Move to ARM Register from Coprocessor.

Depending on the coprocessor, you might be able to specify various operations in addition.

3.70.1 Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MRC2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. In ARM code, cond is not permitted for MRC2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

Rt is the ARM destination register. Rt must not be PC.
Rt can be APSR_nzcv. This means that the coprocessor executes an instruction that
changes the value of the condition code flags in the APSR.

CRn, CRm are coprocessor registers.

3.70.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.70.3 Architectures

The MRC ARM instruction is available in all versions of the ARM architecture.

The MRC2 ARM instruction is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.

3.70.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-124
ID012213 Non-Confidential

ARM and Thumb Instructions
3.71 MRRC and MRRC2
Move to ARM Registers from Coprocessor.

Depending on the coprocessor, you might be able to specify various operations in addition.

3.71.1 Syntax

MRRC{cond} coproc, #opcode, Rt, Rt2, CRm

MRRC2{cond} coproc, #opcode, Rt, Rt2, CRm

where:

cond is an optional condition code. In ARM code, cond is not permitted for MRRC2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM destination registers. Rt and Rt2 must not be PC.

CRm is a coprocessor register.

3.71.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.71.3 Architectures

The MRRC ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

The MRRC2 ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.

3.71.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-125
ID012213 Non-Confidential

ARM and Thumb Instructions
3.72 MRS (PSR to general-purpose register)
Move the contents of a PSR to a general-purpose register.

3.72.1 Syntax

MRS{cond} Rd, psr

where:

cond is an optional condition code.

Rd is the destination register.

psr is one of:
APSR on any processor, in any mode.
CPSR deprecated synonym for APSR and for use in Debug state, on any

processor except ARMv7-M and ARMv6-M.
SPSR on any processor except ARMv7-M and ARMv6-M, in privileged

software execution only.
Mpsr on ARMv7-M and ARMv6-M processors only.

Mpsr can be any of: IPSR, EPSR, IEPSR, IAPSR, EAPSR, MSP, PSP, XPSR, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

3.72.2 Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to change processor mode, or to clear the Q flag.

In process swap code, the programmers’ model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations make use of MRS/store and load/MSR instruction
sequences.

3.72.3 SPSR

You must not attempt to access the SPSR when the processor is in User or System mode. This
is your responsibility. The assembler cannot warn you about this, because it has no information
about the processor mode at execution time.

3.72.4 CPSR

The CPSR endianness bit (E) can be read in any privileged software execution.

The CPSR execution state bits, other than the E bit, can only be read when the processor is in
Debug state, halting debug-mode. Otherwise, the execution state bits in the CPSR read as zero.

The condition flags can be read in any mode on any processor. Use APSR if you are only
interested in accessing the condition code flags in User mode.

3.72.5 Register restrictions

You cannot use PC for Rd in ARM instructions. You can use SP for Rd in ARM instructions but
this is deprecated in ARMv6T2 and above.

You cannot use PC or SP for Rd in Thumb instructions.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-126
ID012213 Non-Confidential

ARM and Thumb Instructions
3.72.6 Condition flags

This instruction does not change the flags.

3.72.7 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.72.8 See also

Concepts
Using the Assembler:
• Current Program Status Register on page 3-20.

Reference
• MSR (general-purpose register to PSR) on page 3-130
• MSR (ARM register to system coprocessor register) on page 3-129
• MRS (system coprocessor register to ARM register) on page 3-128
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-127
ID012213 Non-Confidential

ARM and Thumb Instructions
3.73 MRS (system coprocessor register to ARM register)
Move to ARM register from system coprocessor register.

3.73.1 Syntax

MRS{cond} Rn, coproc_register

MRS{cond} APSR_nzcv, special_register

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

special_register

is the name of the coprocessor register that can be written to APSR_nzcv. This is
only possible for the coprocessor register DBGDSCRint.

Rn is the ARM destination register. Rn must not be PC.

3.73.2 Usage

You can use this instruction to read CP14 or CP15 coprocessor registers, with the exception of
write-only registers. A complete list of the applicable coprocessor register names is in the
ARMv7-AR Architecture Reference Manual. For example:

MRS R1, SCTLR ; writes the contents of the CP15 coprocessor register SCTLR
; into R1

3.73.3 Architectures

This ARM instruction is available in ARMv7-A and ARMv7-R.

This 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There is no 16-bit version of this instruction in Thumb.

3.73.4 See also

Reference
• Condition codes on page 3-32
• MSR (ARM register to system coprocessor register) on page 3-129
• MSR (general-purpose register to PSR) on page 3-130
• MRS (PSR to general-purpose register) on page 3-126.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-128
ID012213 Non-Confidential

ARM and Thumb Instructions
3.74 MSR (ARM register to system coprocessor register)
Move to system coprocessor register from ARM register.

3.74.1 Syntax

MSR{cond} coproc_register, Rn

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

Rn is the ARM source register. Rn must not be PC.

3.74.2 Usage

You can use this instruction to write to any CP14 or CP15 coprocessor writable register. A
complete list of the applicable coprocessor register names is in the ARMv7-AR Architecture
Reference Manual. For example:

MSR SCTLR, R1 ; writes the contents of R1 into the CP15 coprocessor register
; SCTLR

3.74.3 Architectures

This ARM instruction is available in ARMv7-A and ARMv7-R.

This 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There is no 16-bit version of this instruction in Thumb.

3.74.4 See also

Reference
• SYS on page 3-232
• MRS (system coprocessor register to ARM register) on page 3-128
• MRS (PSR to general-purpose register) on page 3-126
• MSR (general-purpose register to PSR) on page 3-130
• Condition codes on page 3-32.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-129
ID012213 Non-Confidential

ARM and Thumb Instructions
3.75 MSR (general-purpose register to PSR)
Load an immediate value, or the contents of a general-purpose register, into specified fields of
a Program Status Register (PSR).

3.75.1 Syntax

MSR{cond} APSR_flags, Rm

where:

cond is an optional condition code.

flags specifies the APSR flags to be moved. flags can be one or more of:
nzcvq ALU flags field mask, PSR[31:27] (User mode)
g SIMD GE flags field mask, PSR[19:16] (User mode).

Rm is the source register. Rm must not be PC.

3.75.2 Syntax (except ARMv7-M and ARMv6-M)

You can also use the following syntax on architectures other than ARMv7-M and ARMv6-M.

MSR{cond} APSR_flags, #constant

MSR{cond} psr_fields, #constant

MSR{cond} psr_fields, Rm

where:

cond is an optional condition code.

flags specifies the APSR flags to be moved. flags can be one or more of:
nzcvq ALU flags field mask, PSR[31:27] (User mode)
g SIMD GE flags field mask, PSR[19:16] (User mode).

constant is an expression evaluating to a numeric value. The value must correspond to an
8-bit pattern rotated by an even number of bits within a 32-bit word. Not available
in Thumb.

Rm is the source register. Rm must not be PC.

psr is one of:
CPSR for use in Debug state, also deprecated synonym for APSR
SPSR on any processor, in privileged software execution only.

fields specifies the SPSR or CPSR fields to be moved. fields can be one or more of:
c control field mask byte, PSR[7:0] (privileged software execution)
x extension field mask byte, PSR[15:8] (privileged software execution)
s status field mask byte, PSR[23:16] (privileged software execution)
f flags field mask byte, PSR[31:24] (privileged software execution).

3.75.3 Syntax (ARMv7-M and ARMv6-M only)

You can also use the following syntax on ARMv7-M and ARMv6-M.

MSR{cond} psr, Rm
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-130
ID012213 Non-Confidential

ARM and Thumb Instructions
where:

cond is an optional condition code.

Rm is the source register. Rm must not be PC.

psr can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, XPSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

3.75.4 Usage

In User mode:

• Use APSR to access condition flags, Q, or GE bits.

• Writes to unallocated, privileged or execution state bits in the CPSR are ignored. This
ensures that User mode programs cannot change to privileged software execution.

You must not attempt to access the SPSR when the processor is in User or System mode.

3.75.5 Register restrictions

You cannot use PC in ARM instructions. You can use SP for Rm in ARM instructions but this is
deprecated in ARMv6T2 and above.

You cannot use PC or SP in Thumb instructions.

3.75.6 Condition flags

This instruction updates the flags explicitly if the APSR_nzcvq or CPSR_f field is specified.

3.75.7 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.75.8 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• MRS (system coprocessor register to ARM register) on page 3-128
• MSR (ARM register to system coprocessor register) on page 3-129
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-131
ID012213 Non-Confidential

ARM and Thumb Instructions
3.76 MUL
Multiply with signed or unsigned 32-bit operands, giving the least significant 32 bits of the
result.

3.76.1 Syntax

MUL{S}{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

3.76.2 Usage

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits
of the result in Rd.

3.76.3 Register restrictions

Rn must be different from Rd in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.76.4 Condition flags

If S is specified, the MUL instruction:
• updates the N and Z flags according to the result
• corrupts the C and V flag in ARMv4
• does not affect the C or V flag in ARMv5T and above.

3.76.5 16-bit instructions

The following forms of the MUL instruction are available in Thumb code, and are 16-bit
instructions:

MULS Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

MUL{cond} Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

3.76.6 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-132
ID012213 Non-Confidential

ARM and Thumb Instructions
This 16-bit Thumb instruction is available in all T variants of the ARM architecture.

3.76.7 Examples

 MUL r10, r2, r5
 MULS r0, r2, r2
 MULLT r2, r3, r2

3.76.8 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-133
ID012213 Non-Confidential

ARM and Thumb Instructions
3.77 MVN
Move Not.

3.77.1 Syntax

MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Operand2 is a flexible second operand.

3.77.2 Usage

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of
this when reading disassembly listings.

3.77.3 Use of PC and SP in 32-bit Thumb MVN

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit Thumb MVN instructions. You cannot use
SP (R13) for Rd, or in Operand2.

3.77.4 Use of PC and SP in 16-bit Thumb instructions

You cannot use PC or SP in any MVN{S} 16-bit Thumb instructions.

3.77.5 Use of PC and SP in ARM MVN

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

In instructions without register-controlled shift, use of PC is deprecated.

You can use SP for Rd or Rm, but this is deprecated.

Note
 • The deprecation of PC and SP in ARM instructions only applies to ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, see the SUBS pc,lr instruction.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-134
ID012213 Non-Confidential

ARM and Thumb Instructions
3.77.6 Condition flags

If S is specified, the instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.77.7 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

MVNS Rd, Rm Rd and Rm must both be Lo registers. This form can only be used outside an
IT block.

MVN{cond} Rd, Rm Rd and Rm must both be Lo registers. This form can only be used inside an
IT block.

3.77.8 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in all T variants of the ARM architecture.

3.77.9 Example

 MVNNE r11, #0xF000000B ; ARM only. This immediate value is not
; available in Thumb.

3.77.10 Incorrect example

 MVN pc,r3,ASR r0 ; PC not permitted with register-controlled shift

3.77.11 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Condition codes on page 3-32
• SUBS pc, lr on page 3-217.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-135
ID012213 Non-Confidential

ARM and Thumb Instructions
3.78 NEG pseudo-instruction
Negate the value in a register.

3.78.1 Syntax

NEG{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the register containing the value that is subtracted from zero.

3.78.2 Usage

The NEG pseudo-instruction negates the value in one register and stores the result in a second
register.

NEG{cond} Rd, Rm assembles to RSBS{cond} Rd, Rm, #0.

3.78.3 Architectures

The ARM encoding of this pseudo-instruction is available in all versions of the ARM
architecture.

The 32-bit Thumb encoding of this pseudo-instruction is available in ARMv6T2 and later.

3.78.4 Register restrictions

In ARM instructions, using SP or PC for Rd or Rm is deprecated. In Thumb instructions, you
cannot use SP or PC for Rd or Rm.

3.78.5 Condition flags

This pseudo-instruction updates the condition code flags, based on the result.

3.78.6 See also

Reference
• ADD on page 3-35.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-136
ID012213 Non-Confidential

ARM and Thumb Instructions
3.79 NOP
No Operation.

3.79.1 Syntax

NOP{cond}

where:

cond is an optional condition code.

3.79.2 Usage

NOP does nothing. If NOP is not implemented as a specific instruction on your target architecture,
the assembler treats it as a pseudo-instruction and generates an alternative instruction that does
nothing, such as MOV r0, r0 (ARM) or MOV r8, r8 (Thumb).

NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

You can use NOP for padding, for example to place the following instruction on a 64-bit boundary
in ARM, or a 32-bit boundary in Thumb.

3.79.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6T2 and above.

NOP is available on all other ARM and Thumb architectures as a pseudo-instruction.

3.79.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-137
ID012213 Non-Confidential

ARM and Thumb Instructions
3.80 ORN (Thumb only)
Logical OR NOT.

3.80.1 Syntax

ORN{S}{cond} Rd, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.80.2 Usage

The ORN Thumb instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of
this when reading disassembly listings.

3.80.3 Use of PC

You cannot use PC (R15) for Rd or any operand in the ORN instruction.

3.80.4 Condition flags

If S is specified, the ORN instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.80.5 Examples

 ORN r7, r11, lr, ROR #4
 ORNS r7, r11, lr, ASR #32

3.80.6 Architectures

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no ARM or 16-bit Thumb ORN instruction.

3.80.7 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-138
ID012213 Non-Confidential

ARM and Thumb Instructions
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-139
ID012213 Non-Confidential

ARM and Thumb Instructions
3.81 ORR
Logical OR.

3.81.1 Syntax

ORR{S}{cond} Rd, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.81.2 Usage

The ORR instruction performs bitwise OR operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of
this when reading disassembly listings.

3.81.3 Use of PC in 32-bit Thumb instructions

You cannot use PC (R15) for Rd or any operand with the ORR instruction.

3.81.4 Use of PC and SP in ARM instructions

You can use PC and SP with the ORR instruction but this is deprecated in ARMv6T2 and above.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.81.5 Condition flags

If S is specified, the ORR instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-140
ID012213 Non-Confidential

ARM and Thumb Instructions
3.81.6 16-bit instructions

The following forms of the ORR instruction are available in Thumb code, and are 16-bit
instructions:

ORRS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ORR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify ORR{S} Rd, Rm, Rd. The instruction is the same.

3.81.7 Example

 ORREQ r2,r0,r5

3.81.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-141
ID012213 Non-Confidential

ARM and Thumb Instructions
3.82 PKHBT and PKHTB
Halfword Packing instructions.

Combine a halfword from one register with a halfword from another register. One of the
operands can be shifted before extraction of the halfword.

3.82.1 Syntax

PKHBT{cond} {Rd}, Rn, Rm{, LSL #leftshift}

PKHTB{cond} {Rd}, Rn, Rm{, ASR #rightshift}

where:

PKHBT Combines bits[15:0] of Rn with bits[31:16] of the shifted value from Rm.

PKHTB Combines bits[31:16] of Rn with bits[15:0] of the shifted value from Rm.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the first operand.

leftshift is in the range 0 to 31.

rightshift is in the range 1 to 32.

3.82.2 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.82.3 Condition flags

These instructions do not change the flags.

3.82.4 Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit versions of these instructions in Thumb.

3.82.5 Examples

 PKHBT r0, r3, r5 ; combine the bottom halfword of R3 with
; the top halfword of R5

 PKHBT r0, r3, r5, LSL #16 ; combine the bottom halfword of R3 with
; the bottom halfword of R5

 PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of R3 with
; the top halfword of R5

You can also scale the second operand by using different values of shift.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-142
ID012213 Non-Confidential

ARM and Thumb Instructions
3.82.6 Incorrect examples

 PKHBTEQ r4, r5, r1, ASR #8 ; ASR not permitted with PKHBT

3.82.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-143
ID012213 Non-Confidential

ARM and Thumb Instructions
3.83 PLD, PLDW, and PLI
Preload Data and Preload Instruction. The processor can signal the memory system that a data
or instruction load from an address is likely in the near future.

3.83.1 Syntax

PLtype{cond} [Rn {, #offset}]

PLtype{cond} [Rn, +/-Rm {, shift}]

PLtype{cond} label

where:

type can be one of:
D Data address
DW Data address with intention to write
I Instruction address.
type cannot be DW if the syntax specifies label.

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM code and you must not use cond.

Rn is the register on which the memory address is based.

offset is an immediate offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset.

shift is an optional shift.

label is a PC-relative expression.

3.83.2 Range of offset

The offset is applied to the value in Rn before the preload takes place. The result is used as the
memory address for the preload. The range of offsets permitted is:
• –4095 to +4095 for ARM instructions
• –255 to +4095 for Thumb instructions, when Rn is not PC.
• –4095 to +4095 for Thumb instructions, when Rn is PC.

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

3.83.3 Register or shifted register offset

In ARM code, the value in Rm is added to or subtracted from the value in Rn. In Thumb code, the
value in Rm can only be added to the value in Rn. The result is used as the memory address for
the preload.

The range of shifts permitted is:

• LSL #0 to #3 for Thumb instructions
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-144
ID012213 Non-Confidential

ARM and Thumb Instructions
• Any one of the following for ARM instructions:
— LSL #0 to #31
— LSR #1 to #32
— ASR #1 to #32
— ROR #1 to #31
— RRX

3.83.4 Address alignment for preloads

No alignment checking is performed for preload instructions.

3.83.5 Register restrictions

Rm must not be PC. For Thumb instructions Rm must also not be SP.

Rn must not be PC for Thumb instructions of the syntax PLtype{cond} [Rn, +/-Rm{, #shift}].

3.83.6 Architectures

ARM PLD is available in ARMv5TE and above.

The 32-bit Thumb encoding of PLD is available in ARMv6T2 and above.

PLDW is available only in ARMv7 and above that implement the Multiprocessing Extensions.

PLI is available only in ARMv7 and above.

There are no 16-bit encodings of PLD, PLDW, or PLI in Thumb.

These are hint instructions, and their implementation is optional. If they are not implemented,
they execute as NOPs.

3.83.7 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-145
ID012213 Non-Confidential

ARM and Thumb Instructions
3.84 POP
Pop registers off a full descending stack.

3.84.1 Syntax

POP{cond} reglist

where:

cond is an optional condition code.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

3.84.2 Usage

POP is a synonym for LDMIA sp! reglist. POP is the preferred mnemonic.

Note
 LDM and LDMFD are synonyms of LDMIA.

Registers are stored on the stack in numerical order, with the lowest numbered register at the
lowest address.

3.84.3 POP, with reglist including the PC

This instruction causes a branch to the address popped off the stack into the PC. This is usually
a return from a subroutine, where the LR was pushed onto the stack at the start of the subroutine.

In ARMv5T and above:
• bits[1:0] must not be 0b10
• if bit[0] is 1, execution continues in Thumb state
• if bit[0] is 0, execution continues in ARM state.

In ARMv4, bits[1:0] of the address loaded must be 0b00.

3.84.4 Thumb instructions

A subset of these instructions are available in the Thumb instruction set.

The following restriction applies to the 16-bit POP instruction:
• reglist can only include the Lo registers and the PC.

The following restrictions apply to the 32-bit POP instruction:
• reglist must not include the SP
• reglist can include either the LR or the PC, but not both.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-146
ID012213 Non-Confidential

ARM and Thumb Instructions
3.84.5 Restrictions on reglist in ARM instructions

ARM POP instructions cannot have SP but can have PC in the reglist. These instructions that
include both PC and LR in the reglist are deprecated in ARMv6T2 and above.

3.84.6 Example

 POP {r0,r10,pc} ; no 16-bit version available

3.84.7 See also

Reference
• Memory access instructions on page 3-10
• LDM on page 3-85
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-147
ID012213 Non-Confidential

ARM and Thumb Instructions
3.85 PUSH
Push registers onto a full descending stack.

3.85.1 Syntax

PUSH{cond} reglist

where:

cond is an optional condition code.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

3.85.2 Usage

PUSH is a synonym for STMDB sp!, reglist. PUSH is the preferred mnemonic.

Note
 STMFD is a synonym of STMDB.

Registers are stored on the stack in numerical order, with the lowest numbered register at the
lowest address.

3.85.3 Thumb instructions

The following restriction applies to the 16-bit PUSH instruction:
• reglist can only include the Lo registers and the LR

The following restrictions apply to the 32-bit PUSH instruction:
• reglist must not include the SP
• reglist must not include the PC

3.85.4 Restrictions on reglist in ARM instructions

ARM PUSH instructions can have SP and PC in the reglist but these instructions that include SP
or PC in the reglist are deprecated in ARMv6T2 and above.

3.85.5 Examples

 PUSH {r0,r4-r7}
 PUSH {r2,lr}

3.85.6 See also

Reference
• Memory access instructions on page 3-10
• LDM on page 3-85
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-148
ID012213 Non-Confidential

ARM and Thumb Instructions
3.86 QADD

Signed Add, saturating the result to the signed range –231 ≤ x ≤ 231–1.

3.86.1 Syntax

QADD{cond} {Rd}, Rm, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.86.2 Usage

The QADD instruction adds the values in Rm and Rn.

Note
 All values are treated as two’s complement signed integers by this instruction.

3.86.3 Register restrictions

You cannot use PC for any operand.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.86.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.86.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.86.6 Example

 QADD r0, r1, r9

3.86.7 See also

Reference
• Parallel add and subtract on page 3-24
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-149
ID012213 Non-Confidential

ARM and Thumb Instructions
3.87 QDADD

Signed Double and Add, saturating the result to the signed range –231 ≤ x ≤ 231–1.

3.87.1 Syntax

QDADD{cond} {Rd}, Rm, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.87.2 Usage

The QDADD instruction calculates SAT(Rm + SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the addition, or on both. If saturation occurs on the doubling but not on the
addition, the Q flag is set but the final result is unsaturated.

Note
 All values are treated as two’s complement signed integers by this instruction.

3.87.3 Register restrictions

You cannot use PC for any operand.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.87.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.87.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.87.6 See also

Reference
• Parallel add and subtract on page 3-24
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-150
ID012213 Non-Confidential

ARM and Thumb Instructions
3.88 QDSUB

Signed Double and Subtract, saturating the result to the signed range –231 ≤ x ≤ 231–1.

3.88.1 Syntax

QDSUB{cond} {Rd}, Rm, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.88.2 Usage

The QDSUB instruction calculates SAT(Rm - SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the subtraction, or on both. If saturation occurs on the doubling but not on the
subtraction, the Q flag is set but the final result is unsaturated.

Note
 All values are treated as two’s complement signed integers by this instruction.

3.88.3 Register restrictions

You cannot use PC for any operand.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.88.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.88.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it are only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.88.6 Example

 QDSUBLT r9, r0, r1

3.88.7 See also

Reference
• Parallel add and subtract on page 3-24
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-151
ID012213 Non-Confidential

ARM and Thumb Instructions
3.89 QSUB

Signed Subtract saturating the result to the signed range –231 ≤ x ≤ 231–1.

3.89.1 Syntax

QSUB{cond} {Rd}, Rm, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.89.2 Usage

The QSUB instruction subtracts the value in Rn from the value in Rm.

Note
 All values are treated as two’s complement signed integers by this instruction.

3.89.3 Register restrictions

You cannot use PC for any operand.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.89.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.89.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.89.6 See also

Reference
• Parallel add and subtract on page 3-24
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-152
ID012213 Non-Confidential

ARM and Thumb Instructions
3.90 RBIT
Reverse the bit order in a 32-bit word.

3.90.1 Syntax

RBIT{cond} Rd, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

3.90.2 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.90.3 Condition flags

This instruction does not change the flags.

3.90.4 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6 and above.

3.90.5 Example

 RBIT r7, r8

3.90.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-153
ID012213 Non-Confidential

ARM and Thumb Instructions
3.91 REV
Reverse the byte order in a word.

3.91.1 Syntax

REV{cond} Rd, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

3.91.2 Usage

You can use this instruction to change endianness. REV converts 32-bit big-endian data into
little-endian data or 32-bit little-endian data into big-endian data.

3.91.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.91.4 Condition flags

This instruction does not change the flags.

3.91.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

REV Rd, Rm Rd and Rm must both be Lo registers.

3.91.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6 and above.

3.91.7 Example

 REV r3, r7

3.91.8 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-154
ID012213 Non-Confidential

ARM and Thumb Instructions
3.92 REV16
Reverse byte order in each halfword independently.

3.92.1 Syntax

REV16{cond} Rd, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

3.92.2 Usage

You can use this instruction to change endianness. REV16 converts 16-bit big-endian data into
little-endian data or 16-bit little-endian data into big-endian data.

3.92.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.92.4 Condition flags

This instruction does not change the flags.

3.92.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

REV16 Rd, Rm Rd and Rm must both be Lo registers.

3.92.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6 and above.

3.92.7 Example

 REV16 r0, r0

3.92.8 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-155
ID012213 Non-Confidential

ARM and Thumb Instructions
3.93 REVSH
Reverse byte order in the bottom halfword, and sign extend to 32 bits.

3.93.1 Syntax

REVSH{cond} Rd, Rn

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

3.93.2 Usage

You can use this instruction to change endianness. REVSH converts either:
• 16-bit signed big-endian data into 32-bit signed little-endian data
• 16-bit signed little-endian data into 32-bit signed big-endian data.

3.93.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.93.4 Condition flags

This instruction does not change the flags.

3.93.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

REVSH Rd, Rm Rd and Rm must both be Lo registers.

3.93.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6 and above.

3.93.7 Example

 REVSH r0, r5 ; Reverse Signed Halfword

3.93.8 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-156
ID012213 Non-Confidential

ARM and Thumb Instructions
3.94 RFE
Return From Exception.

3.94.1 Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode is any one of the following:
IA Increment address After each transfer (Full Descending stack)
IB Increment address Before each transfer (ARM only)
DA Decrement address After each transfer (ARM only)
DB Decrement address Before each transfer.
If addr_mode is omitted, it defaults to Increment After.

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM code.

Rn specifies the base register. Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

3.94.2 Usage

You can use RFE to return from an exception if you previously saved the return state using the
SRS instruction. Rn is usually the SP where the return state information was saved.

3.94.3 Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address.
Optionally updates Rn.

3.94.4 Notes

RFE writes an address to the PC. The alignment of this address must be correct for the instruction
set in use after the exception return:

• For a return to ARM, the address written to the PC must be word-aligned.

• For a return to Thumb, the address written to the PC must be halfword-aligned.

• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction
to return after a valid exception entry mechanism.

Where addresses are not word-aligned, RFE ignores the least significant two bits of Rn.

The time order of the accesses to individual words of memory generated by RFE is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-157
ID012213 Non-Confidential

ARM and Thumb Instructions
Do not use RFE in unprivileged software execution.

Do not use RFE in ThumbEE.

3.94.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit version of this instruction.

3.94.6 Example

 RFE sp!

3.94.7 See also

Concepts
Using the Assembler:
• Processor modes, and privileged and unprivileged software execution on page 3-5.

Reference
• SRS on page 3-195
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-158
ID012213 Non-Confidential

ARM and Thumb Instructions
3.95 ROR
Rotate Right.

This instruction is a preferred synonym for MOV instructions with shifted register operands.

3.95.1 Syntax

ROR{S}{cond} Rd, Rm, Rs

ROR{S}{cond} Rd, Rm, #sh

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values is 1-31.

3.95.2 Usage

ROR provides the value of the contents of a register rotated by a value. The bits that are rotated
off the right end are inserted into the vacated bit positions on the left.

3.95.3 Restrictions in Thumb code

Thumb instructions must not use PC or SP.

3.95.4 Use of SP and PC in ARM instructions

You can use SP in these ARM instructions but this is deprecated in ARMv6T2 and above.

You cannot use PC in instructions with the ROR{S}{cond} Rd, Rm, Rs syntax. You can use PC for
Rd and Rm in the other syntax, but this is deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instruction RORS{cond} pc,Rm,#sh always disassembles to the preferred form

MOVS{cond} pc,Rm{,shift}.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-159
ID012213 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

3.95.5 Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

3.95.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

RORS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ROR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

3.95.7 Architectures

This ARM instruction is available in all architectures.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv4T and above.

3.95.8 Example

 ROR r4, r5, r6

3.95.9 See also

Reference
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-160
ID012213 Non-Confidential

ARM and Thumb Instructions
3.96 RRX
Rotate Right with Extend.

This instruction is a preferred synonym for MOV instructions with shifted register operands.

3.96.1 Syntax

RRX{S}{cond} Rd, Rm

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

3.96.2 Usage

RRX provides the value of the contents of a register shifted right one bit. The old carry flag is
shifted into bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.

3.96.3 Restrictions in Thumb code

Thumb instructions must not use PC or SP.

3.96.4 Use of SP and PC in ARM instructions

You can use SP in this ARM instruction but this is deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instruction RRXS{cond} pc,Rm always disassembles to the preferred form

MOVS{cond} pc,Rm{,shift}.

Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

3.96.5 Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-161
ID012213 Non-Confidential

ARM and Thumb Instructions
3.96.6 Architectures

This ARM instruction is available in all architectures.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit RRX instruction in Thumb.

3.96.7 See also

Reference
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-162
ID012213 Non-Confidential

ARM and Thumb Instructions
3.97 RSB
Reverse Subtract without carry.

3.97.1 Syntax

RSB{S}{cond} {Rd}, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.97.2 Usage

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because
of the wide range of options for Operand2.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.97.3 Use of PC and SP in Thumb instructions

You cannot use PC (R15) for Rd or any operand.

You cannot use SP (R13) for Rd or any operand.

3.97.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in an RSB instruction that has a register-controlled shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP in RSB ARM instructions is deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.97.5 Condition flags

If S is specified, the RSB instruction updates the N, Z, C and V flags according to the result.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-163
ID012213 Non-Confidential

ARM and Thumb Instructions
3.97.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

RSBS Rd, Rn, #0
Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

RSB{cond} Rd, Rn, #0
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

3.97.7 Example

 RSB r4, r4, #1280 ; subtracts contents of R4 from 1280

3.97.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-164
ID012213 Non-Confidential

ARM and Thumb Instructions
3.98 RSC
Reverse Subtract with Carry.

3.98.1 Syntax

RSC{S}{cond} {Rd}, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.98.2 Usage

The RSC instruction subtracts the value in Rn from the value of Operand2. If the carry flag is clear,
the result is reduced by one.

You can use RSC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.98.3 Use of PC and SP in Thumb instructions

You cannot use PC (R15) for Rd, or any operand.

You cannot use SP (R13) for Rd, or any operand.:

3.98.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in an RSC instruction that has a register-controlled shift.

Use of PC for any operand in RSC instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP in RSC ARM instructions is deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.98.5 Condition flags

If S is specified, the RSC instruction updates the N, Z, C and V flags according to the result.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-165
ID012213 Non-Confidential

ARM and Thumb Instructions
3.98.6 Example

 RSCSLE r0,r5,r0,LSL r4 ; conditional, flags set

3.98.7 Incorrect example

 RSCSLE r0,pc,r0,LSL r4 ; PC not permitted with register controlled shift

3.98.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-166
ID012213 Non-Confidential

ARM and Thumb Instructions
3.99 SBC
Subtract with Carry.

3.99.1 Syntax

SBC{S}{cond} {Rd}, Rn, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.99.2 Usage

The SBC (Subtract with Carry) instruction subtracts the value of Operand2 from the value in Rn. If
the carry flag is clear, the result is reduced by one.

You can use SBC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.99.3 Use of PC and SP in Thumb instructions

You cannot use PC (R15) for Rd, or any operand.

You cannot use SP (R13) for Rd, or any operand.

3.99.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in an SBC instruction that has a register-controlled shift.

Use of PC for any operand in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP in SBC ARM instructions is deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.99.5 Condition flags

If S is specified, the SBC instruction updates the N, Z, C and V flags according to the result.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-167
ID012213 Non-Confidential

ARM and Thumb Instructions
3.99.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

SBCS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

SBC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

3.99.7 Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit
integer contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no
requirement to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

3.99.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-168
ID012213 Non-Confidential

ARM and Thumb Instructions
3.100 SBFX
Signed Bit Field Extract. Copies adjacent bits from one register into the least significant bits of
a second register, and sign extends to 32 bits.

3.100.1 Syntax

SBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width is the width of the bitfield, in the range 1 to (32–lsb).

3.100.2 Register restrictions

You cannot use PC for any register.

You can use SP in the ARM instruction but this is deprecated in ARMv6T2 and above. You
cannot use SP in the Thumb instruction.

3.100.3 Condition flags

This instruction does not alter any flags.

3.100.4 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.100.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-169
ID012213 Non-Confidential

ARM and Thumb Instructions
3.101 SDIV
Signed Divide.

3.101.1 Syntax

SDIV{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

3.101.2 Register restrictions

PC or SP cannot be used for Rd, Rn or Rm.

3.101.3 Architectures

This 32-bit Thumb instruction is available in ARMv7-R and ARMv7-M only.

There is no ARM or 16-bit Thumb SDIV instruction.

3.101.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-170
ID012213 Non-Confidential

ARM and Thumb Instructions
3.102 SEL
Select bytes from each operand according to the state of the APSR GE flags.

3.102.1 Syntax

SEL{cond} {Rd}, Rn, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.

3.102.2 Operation

The SEL instruction selects bytes from Rn or Rm according to the APSR GE flags:
• if GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0]
• if GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8]
• if GE[2] is set, Rd[23:16] come from Rn[23:16], otherwise from Rm[23:16]
• if GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24].

3.102.3 Usage

Use the SEL instruction after one of the signed parallel instructions. You can use this to select
maximum or minimum values in multiple byte or halfword data.

3.102.4 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.102.5 Condition flags

This instruction does not change the flags.

3.102.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.102.7 Examples

 SEL r0, r4, r5
 SELLT r4, r0, r4

The following instruction sequence sets each byte in R4 equal to the unsigned minimum of the
corresponding bytes of R1 and R2:

 USUB8 r4, r1, r2
 SEL r4, r2, r1
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-171
ID012213 Non-Confidential

ARM and Thumb Instructions
3.102.8 See also

Reference
• Parallel add and subtract on page 3-24
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-172
ID012213 Non-Confidential

ARM and Thumb Instructions
3.103 SETEND
Set the endianness bit in the CPSR, without affecting any other bits in the CPSR.

SETEND cannot be conditional, and is not permitted in an IT block.

3.103.1 Syntax

SETEND specifier

where:

specifier is one of:
BE Big-endian.
LE Little-endian.

3.103.2 Usage

Use SETEND to access data of different endianness, for example, to access several big-endian
DMA-formatted data fields from an otherwise little-endian application.

3.103.3 Architectures

This ARM instruction is available in ARMv6 and above.

This 16-bit Thumb instruction is available in T variants of ARMv6 and above, except the
ARMv6-M and ARMv7-M architectures.

There is no 32-bit version of this instruction in Thumb.

3.103.4 Example

 SETEND BE ; Set the CPSR E bit for big-endian accesses
 LDR r0, [r2, #header]
 LDR r1, [r2, #CRC32]
 SETEND le ; Set the CPSR E bit for little-endian accesses for the
 ; rest of the application
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-173
ID012213 Non-Confidential

ARM and Thumb Instructions
3.104 SEV
Set Event.

3.104.1 Syntax

SEV{cond}

where:

cond is an optional condition code.

3.104.2 Usage

This is a hint instruction. It is optional whether this instruction is implemented or not. If it is not
implemented, it executes as a NOP. The assembler produces a diagnostic message if the
instruction executes as a NOP on the target.

SEV executes as a NOP instruction in ARMv6T2.

SEV causes an event to be signaled to all cores within a multiprocessor system. If SEV is
implemented, WFE must also be implemented.

3.104.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6T2 and above.

3.104.4 See also

Reference
• NOP on page 3-137
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-174
ID012213 Non-Confidential

ARM and Thumb Instructions
3.105 SMC
Secure Monitor Call.

3.105.1 Syntax

SMC{cond} #imm4

where:

cond is an optional condition code.

imm4 is a 4-bit immediate value. This is ignored by the ARM processor, but can be used
by the SMC exception handler to determine what service is being requested.

3.105.2 Note

SMC was called SMI in earlier versions of the ARM assembly language. SMI instructions
disassemble to SMC, with a comment to say that this was formerly SMI.

3.105.3 Architectures

This ARM instruction is available in implementations of ARMv6 and above, if they have the
Security Extensions.

This 32-bit Thumb instruction is available in implementations of ARMv6T2 and above, if they
have the Security Extensions.

There is no 16-bit version of this instruction in Thumb.

3.105.4 See also

Reference
• Condition codes on page 3-32

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-175
ID012213 Non-Confidential

ARM and Thumb Instructions
3.106 SMLAxy
Signed Multiply Accumulate, with 16-bit operands and a 32-bit result and accumulator.

3.106.1 Syntax

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.106.2 Usage

SMLAxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, adds the 32-bit
result to the 32-bit value in Ra, and places the result in Rd.

3.106.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.106.4 Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag,
use an MRS instruction.

Note
 SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction.

3.106.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-176
ID012213 Non-Confidential

ARM and Thumb Instructions
3.106.6 Examples

 SMLABBNE r0, r2, r1, r10
 SMLABT r0, r0, r3, r5

3.106.7 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• MSR (general-purpose register to PSR) on page 3-130
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-177
ID012213 Non-Confidential

ARM and Thumb Instructions
3.107 SMLAD
Dual 16-bit Signed Multiply with Addition of products and 32-bit accumulation.

3.107.1 Syntax

SMLAD{X}{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is the register holding the accumulate operand.

3.107.2 Operation

SMLAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds both products to the value in Ra and stores the sum
to Rd.

3.107.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.107.4 Condition flags

This instruction does not change the flags.

3.107.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.107.6 Example

 SMLADLT r1, r2, r4, r1

3.107.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-178
ID012213 Non-Confidential

ARM and Thumb Instructions
3.108 SMLAL
Signed Long Multiply, with optional Accumulate, with 32-bit operands, and 64-bit result and
accumulator.

3.108.1 Syntax

SMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S is an optional suffix available in ARM state only. If S is specified, the condition
code flags are updated on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. They also hold the accumulating value. RdLo and RdHi
must be different registers

Rn, Rm are ARM registers holding the operands.

3.108.2 Usage

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo.

3.108.3 Register restrictions

Rn must be different from RdLo and RdHi in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.108.4 Condition flags

If S is specified, this instruction:
• updates the N and Z flags according to the result
• does not affect the C or V flags.

3.108.5 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.108.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-179
ID012213 Non-Confidential

ARM and Thumb Instructions
3.109 SMLALD
Dual 16-bit Signed Multiply with Addition of products and 64-bit Accumulation.

3.109.1 Syntax

SMLALD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the 64-bit
accumulate operand. RdHi and RdLo must be different registers.

Rn, Rm are the registers holding the operands.

3.109.2 Operation

SMLALD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then adds both products to the value in RdLo, RdHi
and stores the sum to RdLo, RdHi.

3.109.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.109.4 Condition flags

This instruction does not change the flags.

3.109.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.109.6 Example

 SMLALD r10, r11, r5, r1

3.109.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-180
ID012213 Non-Confidential

ARM and Thumb Instructions
3.110 SMLALxy
Signed Multiply-Accumulate with 16-bit operands and a 64-bit accumulator.

3.110.1 Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

RdLo, RdHi are the destination registers. They also hold the accumulate value. RdHi and RdLo
must be different registers.

Rn, Rm are the registers holding the values to be multiplied.

3.110.2 Usage

SMLALxy multiplies the signed integer from the selected half of Rm by the signed integer from the
selected half of Rn, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

3.110.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.110.4 Condition flags

This instruction does not change the flags.

Note
 SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round
without any warning.

3.110.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.110.6 Examples

 SMLALTB r2, r3, r7, r1
 SMLALBTVS r0, r1, r9, r2
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-181
ID012213 Non-Confidential

ARM and Thumb Instructions
3.110.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-182
ID012213 Non-Confidential

ARM and Thumb Instructions
3.111 SMLAWy
Signed Multiply-Accumulate Wide, with one 32-bit and one 16-bit operand, providing the top
32-bits of the result.

3.111.1 Syntax

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.111.2 Usage

SMLAWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
adds the 32-bit result to the 32-bit value in Ra, and places the result in Rd.

3.111.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.111.4 Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag.

3.111.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.111.6 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-183
ID012213 Non-Confidential

ARM and Thumb Instructions
3.112 SMLSD
Dual 16-bit Signed Multiply with Subtraction of products and 32-bit accumulation.

3.112.1 Syntax

SMLSD{X}{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is the register holding the accumulate operand.

3.112.2 Operation

SMLSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, adds the
difference to the value in Ra, and stores the result to Rd.

3.112.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.112.4 Condition flags

This instruction does not change the flags.

3.112.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, this instruction is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.112.6 Examples

 SMLSD r1, r2, r0, r7
 SMLSDX r11, r10, r2, r3

3.112.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-184
ID012213 Non-Confidential

ARM and Thumb Instructions
3.113 SMLSLD
Dual 16-bit Signed Multiply with Subtraction of products and 64-bit Accumulation.

3.113.1 Syntax

SMLSD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the 64-bit
accumulate operand. RdHi and RdLo must be different registers.

Rn, Rm are the registers holding the operands.

3.113.2 Operation

SMLSLD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then subtracts the second product from the first,
adds the difference to the value in RdLo, RdHi, and stores the result to RdLo, RdHi.

3.113.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.113.4 Condition flags

This instruction does not change the flags.

3.113.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.113.6 Example

 SMLSLD r3, r0, r5, r1

3.113.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-185
ID012213 Non-Confidential

ARM and Thumb Instructions
3.114 SMMLA
Signed Most significant word Multiply with Accumulation. This instruction has 32-bit operands
and produces only the most significant 32 bits of the result.

3.114.1 Syntax

SMMLA{R}{cond} Rd, Rn, Rm, Ra

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is
truncated.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is a register holding the value to be added or subtracted from.

3.114.2 Operation

SMMLA multiplies the values from Rn and Rm, adds the value in Ra to the most significant 32 bits of
the product, and stores the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most
significant 32 bits. This has the effect of rounding the result.

3.114.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.114.4 Condition flags

This instruction does not change the flags.

3.114.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.114.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-186
ID012213 Non-Confidential

ARM and Thumb Instructions
3.115 SMMLS
Signed Most significant word Multiply with Subtraction. This instruction has 32-bit operands
and produces only the most significant 32-bits of the result.

3.115.1 Syntax

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is
truncated.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is a register holding the value to be added or subtracted from.

3.115.2 Operation

SMMLS multiplies the values from Rn and Rm, subtracts the product from the value in Ra shifted left
by 32 bits, and stores the most significant 32 bits of the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most
significant 32 bits. This has the effect of rounding the result.

3.115.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.115.4 Condition flags

This instruction does not change the flags.

3.115.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.115.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-187
ID012213 Non-Confidential

ARM and Thumb Instructions
3.116 SMMUL
Signed Most significant word Multiply. This instruction has 32-bit operands and produces only
the most significant 32 bits of the result.

3.116.1 Syntax

SMMUL{R}{cond} {Rd}, Rn, Rm

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is
truncated.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is a register holding the value to be added or subtracted from.

3.116.2 Operation

SMMUL multiplies the values from Rn and Rm, and stores the most significant 32 bits of the 64-bit
result to Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most
significant 32 bits. This has the effect of rounding the result.

3.116.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.116.4 Condition flags

This instruction does not change the flags.

3.116.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.116.6 Examples

 SMMULGE r6, r4, r3
 SMMULR r2, r2, r2

3.116.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-188
ID012213 Non-Confidential

ARM and Thumb Instructions
3.117 SMUAD
Dual 16-bit Signed Multiply with Addition of products, and optional exchange of operand
halves.

3.117.1 Syntax

SMUAD{X}{cond} {Rd}, Rn, Rm

where:

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

3.117.2 Usage

SMUAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds the products and stores the sum to Rd.

3.117.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.117.4 Condition flags

The SMUAD instruction sets the Q flag if the addition overflows.

3.117.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.117.6 Examples

 SMUAD r2, r3, r2

3.117.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-189
ID012213 Non-Confidential

ARM and Thumb Instructions
3.118 SMULxy
Signed Multiply, with 16-bit operands and a 32-bit result and accumulator.

3.118.1 Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.118.2 Usage

SMULxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, and places the
32-bit result in Rd.

3.118.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.118.4 Condition flags

These instructions do not affect the N, Z, C, or V flags.

3.118.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.118.6 Examples

 SMULTBEQ r8, r7, r9

3.118.7 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-190
ID012213 Non-Confidential

ARM and Thumb Instructions
• MSR (general-purpose register to PSR) on page 3-130
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-191
ID012213 Non-Confidential

ARM and Thumb Instructions
3.119 SMULL
Signed Long Multiply, with 32-bit operands and 64-bit result.

3.119.1 Syntax

SMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S is an optional suffix available in ARM state only. If S is specified, the condition
code flags are updated on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. RdLo and RdHi must be different registers

Rn, Rm are ARM registers holding the operands.

3.119.2 Usage

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the
most significant 32 bits of the result in RdHi.

3.119.3 Register restrictions

Rn must be different from RdLo and RdHi in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.119.4 Condition flags

If S is specified, this instruction:
• updates the N and Z flags according to the result
• does not affect the C or V flags.

3.119.5 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.119.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-192
ID012213 Non-Confidential

ARM and Thumb Instructions
3.120 SMULWy
Signed Multiply Wide, with one 32-bit and one 16-bit operand, providing the top 32 bits of the
result.

3.120.1 Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.120.2 Usage

SMULWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
and places the upper 32-bits of the 48-bit result in Rd.

3.120.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.120.4 Condition flags

This instruction does not affect the N, Z, C, or V flags.

3.120.5 Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.120.6 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-193
ID012213 Non-Confidential

ARM and Thumb Instructions
3.121 SMUSD
Dual 16-bit Signed Multiply with Subtraction of products, and optional exchange of operand
halves.

3.121.1 Syntax

SMUSD{X}{cond} {Rd}, Rn, Rm

where:

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

3.121.2 Usage

SMUSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, and stores
the difference to Rd.

3.121.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.121.4 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.121.5 Example

 SMUSDXNE r0, r1, r2

3.121.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-194
ID012213 Non-Confidential

ARM and Thumb Instructions
3.122 SRS
Store Return State onto a stack.

3.122.1 Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

SRS{addr_mode}{cond} #modenum{!} ; This is pre-UAL syntax

where:

addr_mode is any one of the following:
IA Increment address After each transfer
IB Increment address Before each transfer (ARM only)
DA Decrement address After each transfer (ARM only)
DB Decrement address Before each transfer (Full Descending stack).
If addr_mode is omitted, it defaults to Increment After. You can also use stack
oriented addressing mode suffixes, for example, when implementing stacks.

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM.

! is an optional suffix. If ! is present, the final address is written back into the SP
of the mode specified by modenum.

modenum specifies the number of the mode whose banked SP is used as the base register.
You must use only the defined mode numbers.

3.122.2 Operation

SRS stores the LR and the SPSR of the current mode, at the address contained in SP of the mode
specified by modenum, and the following word respectively. Optionally updates SP of the mode
specified by modenum. This is compatible with the normal use of the STM instruction for stack
accesses.

Note
 For full descending stack, you must use SRSFD or SRSDB.

3.122.3 Usage

You can use SRS to store return state for an exception handler on a different stack from the one
automatically selected.

3.122.4 Notes

Where addresses are not word-aligned, SRS ignores the least significant two bits of the specified
address.

The time order of the accesses to individual words of memory generated by SRS is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-195
ID012213 Non-Confidential

ARM and Thumb Instructions
Do not use SRS in User and System modes because these modes do not have a SPSR.

Do not use SRS in ThumbEE.

SRS is not permitted in a non-secure state if modenum specifies monitor mode.

3.122.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit version of this instruction.

3.122.6 Example

R13_usr EQU 16
 SRSFD sp,#R13_usr

3.122.7 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22
• Processor modes, and privileged and unprivileged software execution on page 3-5.

Reference
• LDM on page 3-85
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-196
ID012213 Non-Confidential

ARM and Thumb Instructions
3.123 SSAT
Signed Saturate to any bit position, with optional shift before saturating.

SSAT saturates a signed value to a signed range.

3.123.1 Syntax

SSAT{cond} Rd, #sat, Rm{, shift}

where:

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32.

Rm is the register containing the operand.

shift is an optional shift. It must be one of the following:
ASR #n where n is in the range 1-32 (ARM) or 1-31 (Thumb)
LSL #n where n is in the range 0-31.

3.123.2 Operation

The SSAT instruction applies the specified shift, then saturates to the signed range –2sat–1 ≤ x ≤
2sat–1 –1.

3.123.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.123.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.123.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.123.6 Example

 SSAT r7, #16, r7, LSL #4

3.123.7 See also

Reference
• SSAT16 on page 3-199
• MRS (PSR to general-purpose register) on page 3-126
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-197
ID012213 Non-Confidential

ARM and Thumb Instructions
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-198
ID012213 Non-Confidential

ARM and Thumb Instructions
3.124 SSAT16
Parallel halfword Saturate. Saturates a signed value to a signed range.

3.124.1 Syntax

SSAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 16.

Rn is the register holding the operand.

3.124.2 Operation

Halfword-wise signed saturation to any bit position.

The SSAT16 instruction saturates each signed halfword to the signed range –2sat–1 ≤ x ≤ 2sat–1 –1.

3.124.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.124.4 Condition flags

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the
Q flag, use an MRS instruction.

3.124.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.124.6 Example

 SSAT16 r7, #12, r7

3.124.7 Incorrect example

 SSAT16 r1, #16, r2, LSL #4 ; shifts not permitted with halfword saturations

3.124.8 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-199
ID012213 Non-Confidential

ARM and Thumb Instructions
3.125 STC and STC2
Transfer Data between memory and Coprocessor.

3.125.1 Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

where:

op is one of STC or STC2.

cond is an optional condition code.
In ARM code, cond is not permitted for STC2.

L is an optional suffix specifying a long transfer.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

CRd is the coprocessor register to load or store.

Rn is the register on which the memory address is based. If PC is specified, the value
used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0 to 1020.

! is an optional suffix. If ! is present, the address including the offset is written back
into Rn.

label is a word-aligned PC-relative expression.
label must be within 1020 bytes of the current instruction.

3.125.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

In ThumbEE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

3.125.3 Architectures

STC is available in all versions of the ARM architecture.

STC2 is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit versions of these instructions in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-200
ID012213 Non-Confidential

ARM and Thumb Instructions
3.125.4 Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that
write back to Rn.

You cannot use PC for Rn in Thumb STC and STC2 instructions.

ARM STC and STC2 instructions that use the label syntax, or where Rn is PC, are deprecated in
ARMv6T2 and above.

3.125.5 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-201
ID012213 Non-Confidential

ARM and Thumb Instructions
3.126 STM
Store Multiple registers. Any combination of registers R0 to R15 (PC) can be transferred in ARM
state, but there are some restrictions in Thumb state.

3.126.1 Syntax

STM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode is any one of the following:
IA Increment address After each transfer. This is the default, and can be

omitted.
IB Increment address Before each transfer (ARM only).
DA Decrement address After each transfer (ARM only).
DB Decrement address Before each transfer.
You can also use the stack-oriented addressing mode suffixes, for example when
implementing stacks.

cond is an optional condition code.

Rn is the base register, the ARM register holding the initial address for the transfer.
Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

reglist is a list of one or more registers to be stored, enclosed in braces. It can contain
register ranges. It must be comma-separated if it contains more than one register
or register range.

^ is an optional suffix, available in ARM state only. You must not use it in User
mode or System mode. Data is transferred into or out of the User mode registers
instead of the current mode registers.

3.126.2 Restrictions on reglist in 32-bit Thumb instructions

In 32-bit Thumb instructions:
• the SP cannot be in the list
• the PC cannot be in the list
• there must be two or more registers in the list.

If you write an STM instruction with only one register in reglist, the assembler automatically
substitutes the equivalent STR instruction. Be aware of this when comparing disassembly listings
with source code.

You can use the --diag_warning 1645 assembler command-line option to check when an
instruction substitution occurs.

3.126.3 Restrictions on reglist in ARM instructions

ARM store instructions can have SP and PC in the reglist but these instructions that include SP
or PC in the reglist are deprecated in ARMv6T2 and above.

3.126.4 16-bit instruction

A 16-bit version of this instruction is available in Thumb code.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-202
ID012213 Non-Confidential

ARM and Thumb Instructions
The following restrictions apply to the 16-bit instruction:
• all registers in reglist must be Lo registers
• Rn must be a Lo register
• addr_mode must be omitted (or IA), meaning increment address after each transfer
• writeback must be specified for STM instructions

Note
 16-bit Thumb STM instructions with writeback that specify Rn as the lowest register in the reglist
are deprecated in ARMv6T2 and above.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can
therefore be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also
16-bit instructions.

Note
 This 16-bit instruction is not available in ThumbEE.

3.126.5 Storing the base register, with writeback

In ARM or 16-bit Thumb instructions, if Rn is in reglist, and writeback is specified with the !
suffix:

• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in
reglist, the initial value of Rn is stored. These instructions are deprecated in ARMv6T2
and above.

• Otherwise, the stored value of Rn cannot be relied on, so these instructions are not
permitted.

32-bit Thumb instructions are not permitted if Rn is in reglist, and writeback is specified with
the ! suffix.

3.126.6 Example

 STMDB r1!,{r3-r6,r11,r12}

3.126.7 Incorrect example

 STM r5!,{r5,r4,r9} ; value stored for R5 UNKNOWN

3.126.8 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Memory access instructions on page 3-10
• POP on page 3-146
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-203
ID012213 Non-Confidential

ARM and Thumb Instructions
3.127 STR (immediate offset)
Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

3.127.1 Syntax

STR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

STR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

STR{type}{cond} Rt, [Rn], #offset ; post-indexed

STRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

STRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

STRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-204
ID012213 Non-Confidential

ARM and Thumb Instructions
3.127.2 Offset ranges and architectures

Table 3-15 shows the ranges of offsets and availability of this instruction.

3.127.3 Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

3.127.4 Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For Thumb instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register

Table 3-15 Offsets and architectures, STR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed Arch.a

ARM, word or byte –4095 to 4095 –4095 to 4095 –4095 to 4095 All

ARM, signed byte, halfword, or signed
halfword

–255 to 255 –255 to 255 –255 to 255 All

ARM, doubleword –255 to 255 –255 to 255 –255 to 255 5E

Thumb 32-bit encoding, word,
halfword, signed halfword, byte, or
signed byte

–255 to 4095 –255 to 255 –255 to 255 T2

Thumb 32-bit encoding, doubleword –1020 to 1020 c –1020 to 1020 c –1020 to 1020 c T2

Thumb 16-bit encoding, word b 0 to 124 c Not available Not available T

Thumb 16-bit encoding, unsigned
halfword b

0 to 62 d Not available Not available T

Thumb 16-bit encoding, unsigned byte b 0 to 31 Not available Not available T

Thumb 16-bit encoding, word, Rn is SP e 0 to 1020 c Not available Not available T

ThumbEE 16-bit encoding, word b –28 to 124 c Not available Not available EE

ThumbEE 16-bit encoding, word, Rn is
R9 e

0 to 252 c Not available Not available EE

ThumbEE 16-bit encoding, word, Rn is
R10 e

0 to 124 c Not available Not available EE

a. Entries in the Architecture column indicate that the instructions are available as follows:
All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
EE ThumbEE variants of the ARM architecture.

b. Rt and Rn must be in the range R0-R7.
c. Must be divisible by 4.
d. Must be divisible by 2.
e. Rt must be in the range R0-R7.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-205
ID012213 Non-Confidential

ARM and Thumb Instructions
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1).

3.127.5 Use of PC

In ARM instructions you can use PC for Rt in STR word instructions and PC for Rn in STR
instructions with immediate offset syntax (that is the forms that do not writeback to the Rn).
However, this is deprecated in ARMv6T2 and above.

Other uses of PC are not permitted in these ARM instructions.

In Thumb code, using PC in STR instructions is not permitted.

3.127.6 Use of SP

You can use SP for Rn.

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word
instructions in ARM code but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in Thumb code.

3.127.7 Example

 STR r2,[r9,#consta-struc] ; consta-struc is an expression evaluating
 ; to a constant in the range 0-4095.

3.127.8 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-206
ID012213 Non-Confidential

ARM and Thumb Instructions
3.128 STR (register offset)
Store with register offset, pre-indexed register offset, or post-indexed register offset.

3.128.1 Syntax

STR{type}{cond} Rt, [Rn, +/-Rm {, shift}] ; register offset

STR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! ; pre-indexed ; ARM only

STR{type}{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed ; ARM only

STRD{cond} Rt, Rt2, [Rn, +/-Rm] ; register offset, doubleword ; ARM only

STRD{cond} Rt, Rt2, [Rn, +/-Rm]! ; pre-indexed, doubleword ; ARM only

STRD{cond} Rt, Rt2, [Rn], +/-Rm ; post-indexed, doubleword ; ARM only

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset. –Rm is not permitted in
Thumb code.

shift is an optional shift.

Rt2 is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.

3.128.2 Offset register and shift options

Table 3-16 shows the ranges of offsets and availability of this instruction.

Table 3-16 Options and architectures, STR (register offsets)

Instruction +/–Rm a shift Arch.b

ARM, word or byte +/–Rm LSL #0-31 LSR #1-32 All

ASR #1-32 ROR #1-31 RRX

ARM, signed byte, halfword, or signed halfword +/–Rm Not available All

ARM, doubleword +/–Rm Not available 5E

Thumb 32-bit encoding, word, halfword, signed
halfword, byte, or signed byte

+Rm LSL #0-3 T2

Thumb 16-bit encoding, all except doublewordc +Rm Not available T
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-207
ID012213 Non-Confidential

ARM and Thumb Instructions
3.128.3 Register restrictions

In the pre-index and post-index forms:
• Rn must be different from Rt
• Rn must be different from Rm in architectures before ARMv6.

3.128.4 Doubleword register restrictions

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• ARM strongly recommends that you do not use R12 for Rt
• Rt2 must be R(t + 1)
• Rn must be different from Rt2 in the pre-index and post-index forms.

3.128.5 Use of PC

In ARM instructions you can use PC for Rt in STR word instructions, and you can use PC for Rn
in STR instructions with register offset syntax (that is, the forms that do not writeback to the Rn).
However, this is deprecated in ARMv6T2 and above.

Other uses of PC are not permitted in ARM instructions.

Use of PC in STR Thumb instructions is not permitted.

3.128.6 Use of SP

You can use SP for Rn.

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word ARM
instructions but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in ARM instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in Thumb code.

Use of SP for Rm is not permitted in Thumb state.

ThumbEE 16-bit encoding, word +Rm LSL #2 (required) EE

ThumbEE 16-bit encoding, halfword, signed
halfword

+Rm LSL #1 (required) EE

ThumbEE 16-bit encoding, byte, signed byte +Rm Not available EE

a. Where +/–Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
b. Entries in the Architecture column indicate that the instructions are available as follows:

All All versions of the ARM architecture.
5E The ARMv5TE, ARMv6*, and ARMv7 architectures.
T2 The ARMv6T2 and above architectures.
T The ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
EE ThumbEE variants of the ARM architecture.

c. Rt, Rn, and Rm must all be in the range R0-R7.

Table 3-16 Options and architectures, STR (register offsets) (continued)

Instruction +/–Rm a shift Arch.b
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-208
ID012213 Non-Confidential

ARM and Thumb Instructions
3.128.7 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-209
ID012213 Non-Confidential

ARM and Thumb Instructions
3.129 STR, unprivileged
Unprivileged Store, byte, halfword, or word.

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software, these instructions behave in exactly the same way as
the corresponding store instruction, for example STRSBT behaves in the same way as STRSB.

3.129.1 Syntax

STR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (Thumb, 32-bit Thumb
encoding only)

STR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (ARM only)

STR{type}T{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed (register) (ARM only)

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset. Rm must not be PC.

shift is an optional shift.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-210
ID012213 Non-Confidential

ARM and Thumb Instructions
3.129.2 Offset ranges and architectures

Table 3-17 shows the ranges of offsets and availability of this instruction.

3.129.3 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.

Table 3-17 Offsets and architectures, STR (User mode)

Instruction Immediate offset Post-indexed +/–Rm a shift Arch.b

ARM, word or byte Not available –4095 to 4095 +/–Rm LSL #0-31 All

LSR #1-32

ASR #1-32

ROR #1-31

RRX

ARM, signed byte, halfword, or
signed halfword

Not available –255 to 255 +/–Rm Not
available

T2

Thumb 32-bit encoding, word,
halfword, signed halfword, byte, or
signed byte

0 to 255 Not available Not available T2

a. You can use –Rm, +Rm, or Rm.
b. Entries in the Architecture column indicate that the instructions are available as follows:

All All versions of the ARM architecture.
T2 The ARMv6T2 and above architectures.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-211
ID012213 Non-Confidential

ARM and Thumb Instructions
3.130 STREX
Store Register Exclusive.

3.130.1 Syntax

STREX{cond} Rd, Rt, [Rn {, #offset}]

STREXB{cond} Rd, Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code.

Rd is the destination register for the returned status.

Rt is the register to store.

Rt2 is the second register for doubleword stores.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. offset is permitted only in Thumb
instructions. If offset is omitted, an offset of 0 is assumed.

3.130.2 Operation

STREX performs a conditional store to memory. The conditions are as follows:

• If the physical address does not have the Shared TLB attribute, and the executing
processor has an outstanding tagged physical address, the store takes place, the tag is
cleared, and the value 0 is returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing
processor does not have an outstanding tagged physical address, the store does not take
place, and the value 1 is returned in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as
exclusive access for the executing processor, the store takes place, the tag is cleared, and
the value 0 is returned in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged
as exclusive access for the executing processor, the store does not take place, and the value
1 is returned in Rd.

3.130.3 Restrictions

PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STREX, Rd must not be the same register as Rt, Rt2, or Rn.

For ARM instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated in ARMv6T2 and above
• For STREXD, Rt must be an even numbered register, and not LR
• Rt2 must be R(t+1)
• offset is not permitted.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-212
ID012213 Non-Confidential

ARM and Thumb Instructions
For Thumb instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2
• the value of offset can be any multiple of four in the range 0-1020.

3.130.4 Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and
shared-memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and
STREX instructions to a minimum.

Note
 The address used in a STREX instruction must be the same as the address in the most recently
executed LDREX instruction.

3.130.5 Architectures

ARM STREX is available in ARMv6 and above.

ARM STREXB, STREXD, and STREXH are available in ARMv6K and above.

All these 32-bit Thumb instructions are available in ARMv6T2 and above, except that STREXD is
not available in the ARMv7-M architecture.

There are no 16-bit versions of these instructions.

3.130.6 Examples

 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

3.130.7 See also

Reference
• Memory access instructions on page 3-10
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-213
ID012213 Non-Confidential

ARM and Thumb Instructions
3.131 SUB
Subtract without carry.

3.131.1 Syntax

SUB{S}{cond} {Rd}, Rn, Operand2

SUB{cond} {Rd}, Rn, #imm12 ; Thumb, 32-bit encoding only

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

imm12 is any value in the range 0-4095.

3.131.2 Usage

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.131.3 Use of PC and SP in Thumb instructions

In general, you cannot use PC (R15) for Rd, or any operand. The exception is you can use PC for
Rn in 32-bit Thumb SUB instructions, with a constant Operand2 value in the range 0-4095, and no
S suffix. These instructions are useful for generating PC-relative addresses. Bit[1] of the PC
value reads as 0 in this case, so that the base address for the calculation is always word-aligned.

Generally, you cannot use SP (R13) for Rd, or any operand, except that you can use SP for Rn.

3.131.4 Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in a SUB instruction that has a register-controlled shift.

In SUB instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd
• Use of PC for Rn in the instruction SUB{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in SUB instructions, however, SUBS PC, SP, #Constant is deprecated.

You can use SP in SUB (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-214
ID012213 Non-Confidential

ARM and Thumb Instructions
Other uses of SP in ARM SUB instructions are deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.

3.131.5 Condition flags

If S is specified, the SUB instruction updates the N, Z, C and V flags according to the result.

3.131.6 16-bit instructions

The following forms of this instruction are available in Thumb code, and are 16-bit instructions:

SUBS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

SUB{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

SUBS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

SUB{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

SUBS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

SUB{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

SUB{cond} SP, SP, #imm
imm range 0-508, word aligned.

3.131.7 Example

 SUBS r8, r6, #240 ; sets the flags based on the result

3.131.8 Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit
integer contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no
requirement to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-215
ID012213 Non-Confidential

ARM and Thumb Instructions
3.131.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-14
• Instruction substitution on page 3-15.
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Parallel add and subtract on page 3-24
• SUBS pc, lr on page 3-217
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-216
ID012213 Non-Confidential

ARM and Thumb Instructions
3.132 SUBS pc, lr
Exception return, without popping anything from the stack.

3.132.1 Syntax

SUBS{cond} pc, lr, #imm ; ARM and Thumb code

MOVS{cond} pc, lr ; ARM and Thumb code

op1S{cond} pc, Rn, #imm ; ARM code only and is deprecated

op1S{cond} pc, Rn, Rm {, shift} ; ARM code only and is deprecated

op2S{cond} pc, #imm ; ARM code only and is deprecated

op2S{cond} pc, Rm {, shift} ; ARM code only and is deprecated

where:

op1 is one of ADC, ADD, AND, BIC, EOR, ORN, ORR, RSB, RSC, SBC, and SUB.

op2 is one of MOV and MVN.

cond is an optional condition code.

imm is an immediate value. In Thumb code, it is limited to the range 0-255. In ARM
code, it is a flexible second operand.

Rn is the first operand register. ARM deprecates the use of any register except LR.

Rm is the optionally shifted second or only operand register.

shift is an optional condition code.

3.132.2 Usage

SUBS pc, lr, #imm subtracts a value from the link register and loads the PC with the result, then
copies the SPSR to the CPSR.

You can use SUBS pc, lr, #imm to return from an exception if there is no return state on the stack.
The value of #imm depends on the exception to return from.

3.132.3 Notes

SUBS pc, lr, #imm writes an address to the PC. The alignment of this address must be correct
for the instruction set in use after the exception return:

• For a return to ARM, the address written to the PC must be word-aligned.

• For a return to Thumb, the address written to the PC must be halfword-aligned.

• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction
to return after a valid exception entry mechanism.

In Thumb, only SUBS{cond} pc, lr, #imm is a valid instruction. MOVS pc, lr is a synonym of SUBS
pc, lr, #0. Other instructions are undefined.

In ARM, only SUBS{cond} pc, lr, #imm and MOVS{cond} pc, lr are valid instructions. Other
instructions are deprecated in ARMv6T2 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-217
ID012213 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use these instructions in User mode or System mode. The assembler cannot warn you
about this.

3.132.4 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit version of this instruction in Thumb.

3.132.5 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• ADD on page 3-35
• AND on page 3-44
• MOV on page 3-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-218
ID012213 Non-Confidential

ARM and Thumb Instructions
3.133 SVC
SuperVisor Call.

3.133.1 Syntax

SVC{cond} #imm

where:

cond is an optional condition code.

imm is an expression evaluating to an integer in the range:

• 0 to 224–1 (a 24-bit value) in an ARM instruction
• 0-255 (an 8-bit value) in a Thumb instruction.

3.133.2 Usage

The SVC instruction causes an exception. This means that the processor mode changes to
Supervisor, the CPSR is saved to the Supervisor mode SPSR, and execution branches to the
SVC vector.

imm is ignored by the processor. However, it can be retrieved by the exception handler to
determine what service is being requested.

Note
 SVC was called SWI in earlier versions of the ARM assembly language. SWI instructions
disassemble to SVC, with a comment to say that this was formerly SWI.

3.133.3 Condition flags

This instruction does not change the flags.

3.133.4 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 16-bit Thumb instruction is available in all T variants of the ARM architecture.

There is no 32-bit version of this instruction in Thumb.

3.133.5 See also

Concepts
Developing Software for ARM Processors:
• Chapter 6 Handling Processor Exceptions.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-219
ID012213 Non-Confidential

ARM and Thumb Instructions
3.134 SWP and SWPB
Swap data between registers and memory.

3.134.1 Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code.

B is an optional suffix. If B is present, a byte is swapped. Otherwise, a 32-bit word
is swapped.

Rt is the destination register. Rt must not be PC.

Rt2 is the source register. Rt2 can be the same register as Rt. Rt2 must not be PC.

Rn contains the address in memory. Rn must be a different register from both Rt and
Rt2. Rn must not be PC.

3.134.2 Usage

You can use SWP and SWPB to implement semaphores:

• Data from memory is loaded into Rt.

• The contents of Rt2 are saved to memory.

• If Rt2 is the same register as Rt, the contents of the register are swapped with the contents
of the memory location.

3.134.3 Note

The use of SWP and SWPB is deprecated in ARMv6 and above. You can use LDREX and STREX
instructions to implement more sophisticated semaphores in ARMv6 and above.

3.134.4 Architectures

These ARM instructions are available in all versions of the ARM architecture.

There are no Thumb SWP or SWPB instructions.

3.134.5 See also

Reference
• Memory access instructions on page 3-10
• LDREX on page 3-105
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-220
ID012213 Non-Confidential

ARM and Thumb Instructions
3.135 SXTAB
Sign extend Byte with Add. Extends an 8-bit value to a 32-bit value.

3.135.1 Syntax

SXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.135.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[7:0] from the value obtained.

3. Sign extend to 32 bits.

4. Add the value from Rn.

3.135.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.135.4 Condition flags

This instruction does not change the flags.

3.135.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-221
ID012213 Non-Confidential

ARM and Thumb Instructions
3.135.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-222
ID012213 Non-Confidential

ARM and Thumb Instructions
3.136 SXTAB16
Sign extend two Bytes with Add. Extends two 8-bit values to two 16-bit values.

3.136.1 Syntax

SXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.136.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[23:16] and bits[7:0] from the value obtained.

3. Sign extend to 16 bits.

4. Add them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and
bits[15:0] of the result.

3.136.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.136.4 Condition flags

This instruction does not change the flags.

3.136.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-223
ID012213 Non-Confidential

ARM and Thumb Instructions
3.136.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-224
ID012213 Non-Confidential

ARM and Thumb Instructions
3.137 SXTAH
Sign extend Halfword with Add. Extends a 16-bit value to a 32-bit value.

3.137.1 Syntax

SXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.137.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[15:0] from the value obtained.

3. Sign extend to 32 bits.

4. Add the value from Rn.

3.137.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.137.4 Condition flags

This instruction does not change the flags.

3.137.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-225
ID012213 Non-Confidential

ARM and Thumb Instructions
3.137.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-226
ID012213 Non-Confidential

ARM and Thumb Instructions
3.138 SXTB
Sign extend byte. Extends an 8-bit value to a 32-bit value.

3.138.1 Syntax

SXTB{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.138.2 Operation

This instruction does the following:

1. Rotates the value from Rm right by 0, 8, 16 or 24 bits.

2. Extracts bits[7:0] from the value obtained.

3. Sign extends to 32 bits.

3.138.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.138.4 Condition flags

This instruction does not change the flags.

3.138.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

SXTB Rd, Rm Rd and Rm must both be Lo registers.

3.138.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

This 16-bit Thumb instruction is available in ARMv6 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-227
ID012213 Non-Confidential

ARM and Thumb Instructions
3.138.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-228
ID012213 Non-Confidential

ARM and Thumb Instructions
3.139 SXTB16
Sign extend two bytes. Extends two 8-bit values to two 16-bit values.

3.139.1 Syntax

SXTB16{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.139.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[23:16] and bits[7:0] from the value obtained.

3. Sign extend to 16 bits each.

3.139.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.139.4 Condition flags

This instruction does not change the flags.

3.139.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.139.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-229
ID012213 Non-Confidential

ARM and Thumb Instructions
3.140 SXTH
Sign extend Halfword. Extends a 16-bit value to a 32-bit value.

3.140.1 Syntax

SXTH{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.140.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[15:0] from the value obtained.

3. Sign extend to 32 bits.

3.140.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.140.4 Condition flags

This instruction does not change the flags.

3.140.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

SXTH Rd, Rm Rd and Rm must both be Lo registers.

3.140.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

This 16-bit Thumb instruction is available in ARMv6 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-230
ID012213 Non-Confidential

ARM and Thumb Instructions
3.140.7 Example

 SXTH r3, r9, r4

3.140.8 Incorrect example

 SXTH r9, r3, r2, ROR #12 ; rotation must be by 0, 8, 16, or 24.

3.140.9 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-231
ID012213 Non-Confidential

ARM and Thumb Instructions
3.141 SYS
Execute system coprocessor instruction.

3.141.1 Syntax

SYS{cond} instruction{, Rn}

where:

cond is an optional condition code.

instruction

is the coprocessor instruction to execute.

Rn is an operand to the instruction. For instructions that take an argument, Rn is
compulsory. For instructions that do not take an argument, Rn is optional and if it
is not specified, R0 is used. Rn must not be PC.

3.141.2 Usage

You can use this instruction to execute special coprocessor instructions such as cache, branch
predictor, and TLB operations. The instructions operate by writing to special write-only
coprocessor registers. The instruction names are the same as the write-only coprocessor register
names and are listed in the ARMv7-AR Architecture Reference Manual. For example:

SYS ICIALLUIS ; invalidates all instruction caches Inner Shareable to Point
; of Unification and also flushes branch target cache.

3.141.3 Architectures

The SYS ARM instruction is available in ARMv7-A and ARMv7-R.

The SYS 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There is no 16-bit version of this instruction in Thumb.

3.141.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-232
ID012213 Non-Confidential

ARM and Thumb Instructions
3.142 TBB and TBH
Table Branch Byte and Table Branch Halfword.

3.142.1 Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the base register. This contains the address of the table of branch lengths. Rn
must not be SP.
If PC is specified for Rn, the value used is the address of the instruction plus 4.

Rm is the index register. This contains an index into the table.
Rm must not be PC or SP.

3.142.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets (TBB)
or halfword offsets (TBH). Rn provides a pointer to the table, and Rm supplies an index into the
table. The branch length is twice the value of the byte (TBB) or the halfword (TBH) returned from
the table. The target of the branch table must be in the same execution state.

3.142.3 Notes

In ThumbEE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

3.142.4 Architectures

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no versions of these instructions in ARM or in 16-bit Thumb encodings.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-233
ID012213 Non-Confidential

ARM and Thumb Instructions
3.143 TEQ
Test Equivalence.

3.143.1 Syntax

TEQ{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

3.143.2 Usage

This instruction tests the value in a register against Operand2. It updates the condition flags on
the result, but does not place the result in any register.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as an EORS instruction, except that the result is discarded.

Use the TEQ instruction to test if two values are equal, without affecting the V or C flags (as CMP
does).

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

3.143.3 Register restrictions

In this Thumb instruction, you cannot use SP or PC for Rn or Operand2.

In this ARM instruction, use of SP or PC is deprecated in ARMv6T2 and above.

For ARM instructions:

• if you use PC (R15) as Rn, the value used is the address of the instruction plus 8

• you cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.143.4 Condition flags

This instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.143.5 Architectures

This ARM instruction is available in all architectures that support the ARM instruction set.

The TEQ Thumb instruction is available in ARMv6T2 and above.

3.143.6 Example

 TEQEQ r10, r9
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-234
ID012213 Non-Confidential

ARM and Thumb Instructions
3.143.7 Incorrect example

 TEQ pc, r1, ROR r0 ; PC not permitted with register
 ; controlled shift

3.143.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-235
ID012213 Non-Confidential

ARM and Thumb Instructions
3.144 TST
Test bits.

3.144.1 Syntax

TST{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

3.144.2 Usage

This instruction tests the value in a register against Operand2. It updates the condition flags on
the result, but does not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as an ANDS instruction, except that the result is discarded.

3.144.3 Register restrictions

In this Thumb instruction, you cannot use SP or PC for Rn or Operand2.

In this ARM instruction, use of SP or PC is deprecated in ARMv6T2 and above.

For ARM instructions:

• if you use PC (R15) as Rn, the value used is the address of the instruction plus 8

• you cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.144.4 Condition flags

This instruction:
• updates the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• does not affect the V flag.

3.144.5 16-bit instructions

The following form of the TST instruction is available in Thumb code, and is a 16-bit instruction:

TST Rn, Rm Rn and Rm must both be Lo registers.

3.144.6 Architectures

This ARM instruction is available in all architectures that support the ARM instruction set.

The TST Thumb instruction is available in all architectures that support the Thumb instruction
set.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-236
ID012213 Non-Confidential

ARM and Thumb Instructions
3.144.7 Examples

 TST r0, #0x3F8
 TSTNE r1, r5, ASR r1

3.144.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-14.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-237
ID012213 Non-Confidential

ARM and Thumb Instructions
3.145 UBFX
Unsigned Bit Field Extract. Copies adjacent bits from one register into the least significant bits
of a second register, and zero extends to 32 bits.

3.145.1 Syntax

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width is the width of the bitfield, in the range 1 to (32–lsb).

3.145.2 Register restrictions

You cannot use PC for any register.

You can use SP in the ARM instruction but this is deprecated in ARMv6T2 and above. You
cannot use SP in the Thumb instruction.

3.145.3 Condition flags

This instruction does not alter any flags.

3.145.4 Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.145.5 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-238
ID012213 Non-Confidential

ARM and Thumb Instructions
3.146 UDIV
Unsigned Divide.

3.146.1 Syntax

UDIV{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

3.146.2 Register restrictions

PC or SP cannot be used for Rd, Rn, or Rm.

3.146.3 Architectures

This 32-bit Thumb instruction is available in ARMv7-R and ARMv7-M only.

There are no ARM or 16-bit Thumb encodings of UDIV.

3.146.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-239
ID012213 Non-Confidential

ARM and Thumb Instructions
3.147 UMAAL
Unsigned Multiply Accumulate Accumulate Long.

3.147.1 Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the two 32-bit
accumulate operands. RdLo and RdHi must be different registers.

Rn, Rm are the registers holding the multiply operands.

3.147.2 Operation

The UMAAL instruction multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values in RdHi
and RdLo, and stores the 64-bit result to RdLo, RdHi.

3.147.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.147.4 Condition flags

This instruction does not change the flags.

3.147.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.147.6 Examples

 UMAAL r8, r9, r2, r3
 UMAALGE r2, r0, r5, r3

3.147.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-240
ID012213 Non-Confidential

ARM and Thumb Instructions
3.148 UMLAL
Unsigned Long Multiply, with optional Accumulate, with 32-bit operands and 64-bit result and
accumulator.

3.148.1 Syntax

UMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S is an optional suffix available in ARM state only. If S is specified, the condition
code flags are updated based on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. They also hold the accumulating value. RdLo and RdHi
must be different registers

Rn, Rm are ARM registers holding the operands.

3.148.2 Usage

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and
RdLo.

3.148.3 Register restrictions

Rn must be different from RdLo and RdHi in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.148.4 Condition flags

If S is specified, this instruction:
• updates the N and Z flags according to the result
• does not affect the C or V flags.

3.148.5 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.148.6 Example

 UMLALS r4, r5, r3, r8

3.148.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-241
ID012213 Non-Confidential

ARM and Thumb Instructions
3.149 UMULL
Unsigned Long Multiply, with 32-bit operands, and 64-bit result.

3.149.1 Syntax

UMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S is an optional suffix available in ARM state only. If S is specified, the condition
code flags are updated based on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. RdLo and RdHi must be different registers

Rn, Rm are ARM registers holding the operands.

3.149.2 Usage

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

3.149.3 Register restrictions

Rn must be different from RdLo and RdHi in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.149.4 Condition flags

If S is specified, this instruction:
• updates the N and Z flags according to the result
• does not affect the C or V flags.

3.149.5 Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.149.6 Example

 UMULL r0, r4, r5, r6

3.149.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-242
ID012213 Non-Confidential

ARM and Thumb Instructions
3.150 UND pseudo-instruction
Generate an architecturally undefined instruction. An attempt to execute an undefined
instruction causes the Undefined instruction exception. Architecturally undefined instructions
are expected to remain undefined.

3.150.1 Syntax

UND{cond}{.W} {#expr}

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

expr evaluates to a numeric value. Table 3-18 shows the range and encoding of expr in
the instruction, where Y shows the locations of the bits that encode for expr and
V is the 4 bits that encode for the condition code.
If expr is omitted, the value 0 is used.

3.150.2 UND in Thumb code

You can use the .W width specifier to force UND to generate a 32-bit instruction in Thumb code
on ARMv6T2 and above processors. UND.W always generates a 32-bit instruction, even if expr is
in the range 0-255.

3.150.3 Disassembly

The encodings that this pseudo-instruction produces disassemble to DCI.

3.150.4 See also

Reference
• Condition codes on page 3-32.

Table 3-18 Range and encoding of expr

Instruction Encoding Number of bits
for expr Range

ARM 0xV7FYYYFY 16 0-65535

Thumb 32-bit
encoding

0xF7FYAYFY 12 0-4095

Thumb
16-bit encoding

0xDEYY 8 0-255
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-243
ID012213 Non-Confidential

ARM and Thumb Instructions
3.151 USAD8
Unsigned Sum of Absolute Differences.

3.151.1 Syntax

USAD8{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

3.151.2 Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding
bytes of Rn and Rm. It adds the absolute values of the four differences, and saves the result to Rd.

3.151.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.151.4 Condition flags

This instruction does not alter any flags.

3.151.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.151.6 Example

 USAD8 r2, r4, r6

3.151.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-244
ID012213 Non-Confidential

ARM and Thumb Instructions
3.152 USADA8
Unsigned Sum of Absolute Differences and Accumulate.

3.152.1 Syntax

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Ra is the register holding the accumulate operand.

3.152.2 Operation

The USADA8 instruction adds the absolute values of the four differences to the value in Ra, and
saves the result to Rd.

3.152.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.152.4 Condition flags

This instruction does not alter any flags.

3.152.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.152.6 Examples

 USADA8 r0, r3, r5, r2
 USADA8VS r0, r4, r0, r1

3.152.7 Incorrect examples

 USADA8 r2, r4, r6 ; USADA8 requires four registers
 USADA16 r0, r4, r0, r1 ; no such instruction

3.152.8 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-245
ID012213 Non-Confidential

ARM and Thumb Instructions
3.153 USAT
Unsigned Saturate to any bit position, with optional shift before saturating.

USAT saturates a signed value to an unsigned range.

3.153.1 Syntax

USAT{cond} Rd, #sat, Rm{, shift}

where:

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 31.

Rm is the register containing the operand.

shift is an optional shift. It must be one of the following:
ASR #n where n is in the range 1-32 (ARM) or 1-31 (Thumb)
LSL #n where n is in the range 0-31.

3.153.2 Operation

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2sat
– 1.

3.153.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.153.4 Condition flags

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.153.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit version of this instruction in Thumb.

3.153.6 Example

 USATNE r0, #7, r5

3.153.7 See also

Reference
• SSAT16 on page 3-199
• MRS (PSR to general-purpose register) on page 3-126
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-246
ID012213 Non-Confidential

ARM and Thumb Instructions
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-247
ID012213 Non-Confidential

ARM and Thumb Instructions
3.154 USAT16
Parallel halfword Saturate. Saturates a signed value to an unsigned range.

3.154.1 Syntax

USAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 15.

Rn is the register holding the operand.

3.154.2 Operation

Halfword-wise unsigned saturation to any bit position.

The USAT16 instruction saturates each signed halfword to the unsigned range 0 ≤ x ≤ 2sat –1.

3.154.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.154.4 Condition flags

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the
Q flag, use an MRS instruction.

3.154.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.154.6 Example

 USAT16 r0, #7, r5

3.154.7 See also

Reference
• MRS (PSR to general-purpose register) on page 3-126
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-248
ID012213 Non-Confidential

ARM and Thumb Instructions
3.155 UXTAB
Zero extend Byte and Add. Extends an 8-bit value to a 32-bit value.

3.155.1 Syntax

UXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.155.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[7:0] from the value obtained.

3. Zero extend to 32 bits.

4. Add the value from Rn.

3.155.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.155.4 Condition flags

This instruction does not change the flags.

3.155.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it are only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-249
ID012213 Non-Confidential

ARM and Thumb Instructions
3.155.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-250
ID012213 Non-Confidential

ARM and Thumb Instructions
3.156 UXTAB16
Zero extend two Bytes and Add. Extends two 8-bit values to two 16-bit values.

3.156.1 Syntax

UXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.156.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[23:16] and bits[7:0] from the value obtained.

3. Zero extend to 16 bits.

4. Add them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and
bits[15:0] of the result.

3.156.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.156.4 Condition flags

This instruction does not change the flags.

3.156.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-251
ID012213 Non-Confidential

ARM and Thumb Instructions
3.156.6 Example

 UXTAB16EQ r0, r0, r4, ROR #16

3.156.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-252
ID012213 Non-Confidential

ARM and Thumb Instructions
3.157 UXTAH
Zero extend Halfword and Add. Extends a 16-bit value to a 32-bit value.

3.157.1 Syntax

UXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.157.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[15:0] from the value obtained.

3. Zero extend to 32 bits.

4. Add the value from Rn.

3.157.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.157.4 Condition flags

This instruction does not change the flags.

3.157.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-253
ID012213 Non-Confidential

ARM and Thumb Instructions
3.157.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-254
ID012213 Non-Confidential

ARM and Thumb Instructions
3.158 UXTB
Zero extend Byte. Extends an 8-bit value to a 32-bit value.

3.158.1 Syntax

UXTB{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.158.2 Operation

This instruction does the following:

1. Rotates the value from Rm right by 0, 8, 16, or 24 bits.

2. Extracts bits[7:0] from the value obtained.

3. Zero extends to 32 bits.

3.158.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.158.4 Condition flags

This instruction does not change the flags.

3.158.5 16-bit instruction

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

UXTB Rd, Rm Rd and Rm must both be Lo registers.

3.158.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

This 16-bit Thumb instruction is available in ARMv6 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-255
ID012213 Non-Confidential

ARM and Thumb Instructions
3.158.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-256
ID012213 Non-Confidential

ARM and Thumb Instructions
3.159 UXTB16
Zero extend two Bytes. Extends two 8-bit values to two 16-bit values.

3.159.1 Syntax

UXTB16{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.159.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[23:16] and bits[7:0] from the value obtained.

3. Zero extend each to 16 bits.

3.159.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.159.4 Condition flags

This instruction does not change the flags.

3.159.5 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

There is no 16-bit version of this instruction in Thumb.

3.159.6 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-257
ID012213 Non-Confidential

ARM and Thumb Instructions
3.160 UXTH
Zero extend Halfword. Extends a 16-bit value to a 32-bit value.

3.160.1 Syntax

UXTH{cond} {Rd}, Rm {,rotation}

where:

cond is an optional condition code.

Rd is the destination register.

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.160.2 Operation

This instruction does the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits[15:0] from the value obtained.

3. Zero extend to 32 bits.

3.160.3 Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but this is deprecated in ARMv6T2 and above. You cannot
use SP in Thumb instructions.

3.160.4 Condition flags

This instruction does not change the flags.

3.160.5 16-bit instructions

The following form of this instruction is available in Thumb code, and is a 16-bit instruction:

UXTH Rd, Rm Rd and Rm must both be Lo registers.

3.160.6 Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above. For the ARMv7-M
architecture, it is only available in an ARMv7E-M implementation.

This 16-bit Thumb instruction is available in ARMv6 and above.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-258
ID012213 Non-Confidential

ARM and Thumb Instructions
3.160.7 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-259
ID012213 Non-Confidential

ARM and Thumb Instructions
3.161 WFE
Wait For Event.

3.161.1 Syntax

WFE{cond}

where:

cond is an optional condition code.

3.161.2 Usage

This is a hint instruction. It is optional whether this instruction is implemented or not. If this
instruction is not implemented, it executes as a NOP. The assembler produces a diagnostic
message if the instruction executes as a NOP on the target.

WFE executes as a NOP instruction in ARMv6T2.

If the Event Register is not set, WFE suspends execution until one of the following events occurs:
• an IRQ interrupt, unless masked by the CPSR I-bit
• an FIQ interrupt, unless masked by the CPSR F-bit
• an Imprecise Data abort, unless masked by the CPSR A-bit
• a Debug Entry request, if Debug is enabled
• an Event signaled by another processor using the SEV instruction.

If the Event Register is set, WFE clears it and returns immediately.

If WFE is implemented, SEV must also be implemented.

3.161.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6T2 and above.

3.161.4 See also

Reference
• NOP on page 3-137
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-260
ID012213 Non-Confidential

ARM and Thumb Instructions
3.162 WFI
Wait for Interrupt.

3.162.1 Syntax

WFI{cond}

where:

cond is an optional condition code.

3.162.2 Usage

This is a hint instruction. It is optional whether this instruction is implemented or not. If this
instruction is not implemented, it executes as a NOP. The assembler produces a diagnostic
message if the instruction executes as a NOP on the target.

WFI executes as a NOP instruction in ARMv6T2.

WFI suspends execution until one of the following events occurs:
• an IRQ interrupt, regardless of the CPSR I-bit
• an FIQ interrupt, regardless of the CPSR F-bit
• an Imprecise Data abort, unless masked by the CPSR A-bit
• a Debug Entry request, regardless of whether Debug is enabled.

3.162.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6T2 and above.

3.162.4 See also

Reference
• NOP on page 3-137
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-261
ID012213 Non-Confidential

ARM and Thumb Instructions
3.163 YIELD
Yield.

3.163.1 Syntax

YIELD{cond}

where:

cond is an optional condition code.

3.163.2 Usage

This is a hint instruction. It is optional whether this instruction is implemented or not. If this
instruction is not implemented, it executes as a NOP. The assembler produces a diagnostic
message if the instruction executes as a NOP on the target.

YIELD executes as a NOP instruction in ARMv6T2.

YIELD indicates to the hardware that the current thread is performing a task, for example a
spinlock, that can be swapped out. Hardware can use this hint to suspend and resume threads in
a multithreading system.

3.163.3 Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in ARMv6T2 and above.

3.163.4 See also

Reference
• NOP on page 3-137
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 3-262
ID012213 Non-Confidential

Chapter 4
ThumbEE Instructions

The following topics describe the ThumbEE instructions supported by the ARM assembler:
• Instruction summary on page 4-2
• ThumbEE instruction differences on page 4-3
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-1
ID012213 Non-Confidential

ThumbEE Instructions
4.1 Instruction summary
The ThumbEE instruction set is based on the Thumb instruction set, with some changes and
additions to make it a better target for dynamically generated code.

For information about ThumbEE-specific changes to Thumb instructions, see ThumbEE
instruction differences on page 4-3.

Table 4-1 shows the additional ThumbEE instructions.

Apart from ENTERX and LEAVEX, these ThumbEE instructions are only accepted when the
assembler has been switched into the ThumbEE state using the --thumbx command-line option
or the THUMBX directive.

Note
 Unless stated otherwise, ThumbEE instructions are identical to Thumb instructions.

4.1.1 See also

Reference
• ARM and Thumb instruction summary on page 3-2.
• ThumbEE instruction differences on page 4-3.

Table 4-1 Location of additional ThumbEE instructions

Mnemonic Brief description See

CHKA Check array page 4-5

ENTERX, LEAVEX Change state to or from ThumbEE page 4-6

HB, HBL, HBLP, HBP Handler Branch, branches to a specified handler page 4-7
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-2
ID012213 Non-Confidential

ThumbEE Instructions
4.2 ThumbEE instruction differences
In general, ThumbEE instructions are identical to Thumb instructions.

However some ThumbEE instructions differ from their Thumb counterparts.

4.2.1 BLX

You can use the BLX instruction as a branch in ThumbEE code, but you cannot use it to change
state. You cannot use the BLX{cond} label form of this instruction in ThumbEE. In the register
form, bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE state.

4.2.2 BX, BXJ

You can use these instructions as branches in ThumbEE code, but you cannot use them to
change state. Bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE
state.

4.2.3 ERET

You cannot use ERET in ThumbEE state.

4.2.4 LDC, LDC2, STC, STC2, TBB, TBH

In ThumbEE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

4.2.5 LDM, STM

16-bit versions of a subset of the LDM and STM instructions are available in Thumb code. These
16-bit instructions are not available in ThumbEE.

4.2.6 LDR, STR (immediate offset)

Table 4-2 shows the ranges of offsets and availability of these instructions.

Table 4-2 ThumbEE LDR/STR (immediate offset) offsets and availability

Instruction Immediate offset Pre-indexed Post-indexed

16-bit ThumbEE, word a –28 to 124 b Not available Not available

16-bit ThumbEE, word, Rn is R9 c 0 to 252 b Not available Not available

16-bit ThumbEE, word, Rn is R10 c 0 to 124 b Not available Not available

a. Rt and Rn must be in the range R0-R7.
b. Must be divisible by 4.
c. Rt must be in the range R0-R7.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-3
ID012213 Non-Confidential

ThumbEE Instructions
4.2.7 LDR, STR (register offset)

Table 4-3 shows the ranges of offsets and availability of these instructions.

4.2.8 LDR (register-relative)

Table 4-4 shows the possible offsets between the label and the current instruction.

4.2.9 RFE, SRS

Do not use these instructions in ThumbEE.

Table 4-3 ThumbEE LDR/STR (register offset) offsets and availability

Instruction +/–Rm a

a. Where +/–Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.

shift

16-bit ThumbEE, word b

b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In ARMv4,
bits[1:0] of the address loaded must be 0b00. In ARMv5T and above, bits[1:0] must not be 0b10, and if
bit[0] is 1, execution continues in Thumb state, otherwise execution continues in ARM state.

+Rm LSL #2 (required)

16-bit ThumbEE, halfword, signed halfword b +Rm LSL #1 (required)

16-bit ThumbEE, byte, signed byte b +Rm Not available

Table 4-4 ThumbEE LDR (register-relative) offsets

Instruction Offset range

16-bit ThumbEE LDR a

a. Rt and base register must be in the range R0-R7.

–28 to 124 b

b. Must be a multiple of 4.

16-bit ThumbEE LDR, base register is R9 c

c. Rt must be in the range R0-R7.

0 to 252 b

16-bit ThumbEE LDR, base register is R10 c 0 to 124 b
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-4
ID012213 Non-Confidential

ThumbEE Instructions
4.3 CHKA
CHKA (Check Array) compares the unsigned values in two registers.

If the value in the first register is lower than, or the same as, the second, it copies the PC to the
LR, and causes a branch to the IndexCheck handler.

4.3.1 Syntax

CHKA Rn, Rm

where:
Rn contains the array size. Rn must not be PC.
Rm contains the array index. Rn must not be PC or SP.

4.3.2 Architectures

This instruction is not available in ARM or Thumb state.

This 16-bit ThumbEE instruction is only available in ARMv7, with ThumbEE support.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-5
ID012213 Non-Confidential

ThumbEE Instructions
4.4 ENTERX and LEAVEX
Switch between Thumb state and ThumbEE state.

4.4.1 Syntax

ENTERX

LEAVEX

4.4.2 Usage

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state.

LEAVEX causes a change from ThumbEE state to Thumb state, or has no effect in Thumb state.

Do not use ENTERX or LEAVEX in an IT block.

4.4.3 Architectures

These instructions are not available in the ARM instruction set.

These 32-bit Thumb and ThumbEE instructions are available in ARMv7, with ThumbEE
support.

There are no 16-bit versions of these instructions.

4.4.4 See also

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-6
ID012213 Non-Confidential

ThumbEE Instructions
4.5 HB, HBL, HBLP, and HBP
Handler Branch, branches to a specified handler.

This instruction can optionally store a return address to the LR, pass a parameter to the handler,
or both.

4.5.1 Syntax

HB{L} #HandlerID

HB{L}P #imm, #HandlerID

where:

L is an optional suffix. If L is present, the instruction saves a return address in the
LR.

P is an optional suffix. If P is present, the instruction passes the value of imm to the
handler in R8.

imm is an immediate value. If L is present, imm must be in the range 0-31, otherwise imm
must be in the range 0-7.

HandlerID is the index number of the handler to be called. If P is present, HandlerID must be
in the range 0-31, otherwise HandlerID must be in the range 0-255.

4.5.2 Architectures

These instructions are not available in ARM or Thumb state.

These 16-bit ThumbEE instructions are only available in ThumbEE state, in ARMv7 with
ThumbEE support.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 4-7
ID012213 Non-Confidential

Chapter 5
NEON and VFP Programming

The following topics describe the assembly programming of NEON™ and the VFP coprocessor:
• NEON and VFP instruction summary on page 5-2
• Instructions shared by NEON and VFP on page 5-7
• NEON logical and compare operations on page 5-8
• NEON general data processing instructions on page 5-9
• NEON shift instructions on page 5-10
• NEON general arithmetic instructions on page 5-11
• NEON multiply instructions on page 5-13
• NEON load and store element and structure instructions on page 5-14
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• NEON and VFP pseudo-instructions on page 5-17
• VFP instructions on page 5-18.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-1
ID012213 Non-Confidential

NEON and VFP Programming
5.1 NEON and VFP instruction summary
This section provides a summary of the NEON and VFP instructions. Use it to locate individual
instructions and pseudo-instructions. It contains:
• NEON instructions
• Shared NEON and VFP instructions on page 5-5
• VFP instructions on page 5-5.

5.1.1 NEON instructions

Table 5-1 shows a summary of NEON instructions. These instructions are not available in VFP.

Table 5-1 Location of NEON instructions

Mnemonic Brief description See

VABA, VABL Absolute difference and Accumulate, Absolute difference and Accumulate Long page 5-20

VABD, VABDL Absolute difference, Absolute difference Long page 5-21

VABS Absolute value page 5-22

VACGE, VACGT Absolute Compare Greater than or Equal, Greater Than page 5-24

VACLE, VACLT Absolute Compare Less than or Equal, Less Than (pseudo-instructions) page 5-24

VADD Add page 5-26

VADDHN Add, select High half page 5-27

VAND Bitwise AND page 5-30

VAND Bitwise AND (pseudo-instruction) page 5-29

VBIC Bitwise Bit Clear (register) page 5-32

VBIC Bitwise Bit Clear (immediate) page 5-31

VBIF Bitwise Insert if False page 5-33

VBIT Bitwise Insert if True page 5-34

VBSL Bitwise Select page 5-35

VCEQ Compare Equal page 5-37

VCGE Compare Greater than or Equal page 5-39

VCGT Compare Greater Than page 5-41

VCLE Compare Less than or Equal page 5-43

VCLS Count Leading Sign bits page 5-44

VCNT Count set bits page 5-49

VCLT Compare Less Than page 5-46

VCLZ Count Leading Zeros page 5-47

VCVT Convert fixed-point or integer to floating point, floating-point to integer or fixed-point page 5-50

VCVT Convert between half-precision and single-precision floating-point numbers page 5-51

VDUP Duplicate scalar to all lanes of vector page 5-57
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-2
ID012213 Non-Confidential

NEON and VFP Programming
VEOR Bitwise Exclusive OR page 5-58

VEXT Extract page 5-59

VFMA, VFMS Fused Multiply Accumulate, Fused Multiply Subtract (vector) page 5-60

VHADD Halving Add page 5-62

VHSUB Halving Subtract page 5-62

VLD Vector Load page 5-14

VMAX, VMIN Maximum, Minimum page 5-74

VMLA Multiply Accumulate (vector) page 5-75

VMLA Multiply Accumulate (by scalar) page 5-76

VMLS Multiply Subtract (vector) page 5-81

VMLS Multiply Subtract (by scalar) page 5-80

VMOV Move (immediate) page 5-86

VMOV Move (register) page 5-87

VMOVL Move Long (register) page 5-91

VMOV{U}N Move Narrow (register) page 5-92

VMUL Multiply (vector) page 5-96

VMUL Multiply (by scalar) page 5-98

VMVN Move Negative (immediate) page 5-102

VNEG Negate page 5-103

VORN Bitwise OR NOT page 5-108

VORN Bitwise OR NOT (pseudo-instruction) page 5-109

VORR Bitwise OR (register) page 5-110

VORR Bitwise OR (immediate) page 5-111

VPADAL Pairwise Add and Accumulate Long page 5-112

VPADD Pairwise Add page 5-113

VPMAX, VPMIN Pairwise Maximum, Pairwise Minimum page 5-115

VQABS Absolute value, saturate page 5-118

VQADD Add, saturate page 5-119

VQDMLAL, VQDMLSL Saturating Doubling Multiply Accumulate, and Multiply Subtract page 5-120

VQDMULL Saturating Doubling Multiply page 5-122

VQDMULH Saturating Doubling Multiply returning High half page 5-121

VQMOV{U}N Saturating Move (register) page 5-92

VQNEG Negate, saturate page 5-124

Table 5-1 Location of NEON instructions (continued)

Mnemonic Brief description See
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-3
ID012213 Non-Confidential

NEON and VFP Programming
VQRDMULH Saturating Doubling Multiply returning High half page 5-125

VQRSHL Shift Left, Round, saturate (by signed variable) page 5-126

VQRSHR{U}N Shift Right, Round, saturate (by immediate) page 5-130

VQSHL Shift Left, saturate (by immediate) page 5-129

VQSHL Shift Left, saturate (by signed variable) page 5-129

VQSHR{U}N Shift Right, saturate (by immediate) page 5-130

VQSUB Subtract, saturate page 5-131

VRADDHN Add, select High half, Round page 5-132

VRECPE Reciprocal Estimate page 5-133

VRECPS Reciprocal Step page 5-134

VREV Reverse elements page 5-135

VRHADD Halving Add, Round page 5-62

VRSHR Shift Right and Round (by immediate) page 5-148

VRSHRN Shift Right, Round, Narrow (by immediate) page 5-149

VRSQRTE Reciprocal Square Root Estimate page 5-140

VRSQRTS Reciprocal Square Root Step page 5-141

VRSRA Shift Right, Round, and Accumulate (by immediate) page 5-142

VRSUBHN Subtract, select High half, Round page 5-143

VSHL Shift Left (by immediate) page 5-144

VSHR Shift Right (by immediate) page 5-148

VSHRN Shift Right, Narrow (by immediate) page 5-149

VSLI Shift Left and Insert page 5-150

VSRA Shift Right, Accumulate (by immediate) page 5-152

VSRI Shift Right and Insert page 5-153

VST Vector Store page 5-14

VSUB Subtract page 5-162

VSUBHN Subtract, select High half page 5-163

VSWP Swap vectors page 5-165

VTBL, VTBX Vector table look-up page 5-166

VTRN Vector transpose page 5-167

VTST Test bits page 5-168

VUZP Vector de-interleave page 5-169

VZIP Vector interleave page 5-169

Table 5-1 Location of NEON instructions (continued)

Mnemonic Brief description See
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-4
ID012213 Non-Confidential

NEON and VFP Programming
5.1.2 Shared NEON and VFP instructions

Table 5-2 shows a summary of instructions that are common to NEON and VFP.

5.1.3 VFP instructions

Table 5-3 shows a summary of VFP instructions that are not available in NEON.

Table 5-2 Location of shared NEON and VFP instructions

Mnemonic Brief description See Op. Arch.

VLDM Load multiple page 5-70 - All

VLDR Load (see also VLDR pseudo-instruction on page 5-73) page 5-71 Scalar All

Load (post-increment and pre-decrement) page 5-72 Scalar All

VMOV Transfer from one ARM register to half of a doubleword register page 5-90 Scalar All

Transfer from two ARM registers to a doubleword register page 5-89 Scalar VFPv2

Transfer from half of a doubleword register to ARM register page 5-90 Scalar All

Transfer from a doubleword register to two ARM registers page 5-89 Scalar VFPv2

Transfer from single-precision to ARM register page 5-88 Scalar All

Transfer from ARM register to single-precision page 5-88 Scalar All

VMRS Transfer from NEON and VFP system register to ARM register page 5-94 - All

VMSR Transfer from ARM register to NEON and VFP system register page 5-95 - All

VPOP Pop VFP or NEON registers from full-descending stack page 5-116 - All

VPUSH Push VFP or NEON registers to full-descending stack page 5-117 - All

VSTM Store multiple page 5-154 - All

VSTR Store page 5-159 Scalar All

Store (post-increment and pre-decrement) page 5-160 Scalar All

Table 5-3 Location of VFP instructions

Mnemonic Brief description See Op. Arch.

VABS Absolute value page 5-23 Vector All

VADD Add page 5-25 Vector All

VCMP, VCMPE Compare page 5-48 Scalar All

VCVT Convert between single-precision and double-precision page 5-52 Scalar All

Convert between floating-point and integer page 5-53 Scalar All

Convert between floating-point and fixed-point page 5-54 Scalar VFPv3

VCVTB, VCVTT Convert between half-precision and single-precision
floating-point

page 5-55 Scalar Half-
precision

VDIV Divide page 5-56 Vector All

VFMA, VFMS Fused multiply accumulate, Fused multiply subtract page 5-61 Scalar VFPv4
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-5
ID012213 Non-Confidential

NEON and VFP Programming
VFNMA, VFNMS Fused multiply accumulate with negation, Fused multiply
subtract with negation

page 5-61 Scalar VFPv4

VMLA Multiply accumulate page 5-77 Vector All

VMLS Multiply subtract page 5-82 Vector All

VMOV Insert floating-point immediate in single-precision or
double-precision register (see also Table 5-2 on page 5-5)

page 5-85 Scalar VFPv3

VMUL Multiply page 5-97 Vector All

VNEG Negate page 5-103 Vector All

VNMLA Negated multiply accumulate page 5-105 Vector All

VNMLS Negated multiply subtract page 5-106 Vector All

VNMUL Negated multiply page 5-107 Vector All

VSQRT Square Root page 5-151 Vector All

VSUB Subtract page 5-161 Vector All

Table 5-3 Location of VFP instructions (continued)

Mnemonic Brief description See Op. Arch.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-6
ID012213 Non-Confidential

NEON and VFP Programming
5.2 Instructions shared by NEON and VFP
The following topics describe the instructions shared by NEON and VFP:

• VLDR on page 5-71
Extension register load.

• VLDM on page 5-70
Extension register load multiple.

• VMOV (between two ARM registers and an extension register) on page 5-89
Transfer contents between two ARM registers and a 64-bit extension register.

• VMOV (between an ARM register and a NEON scalar) on page 5-90
Transfer contents between an ARM register and a half of a 64-bit extension register.

• VMOV (between one ARM register and single precision VFP) on page 5-88
Transfer contents between a 32-bit extension register and an ARM register.

• VMRS on page 5-94
Transfer contents between an ARM register and a NEON and VFP system register.

• VMSR on page 5-95
Transfer contents between an ARM register and a NEON and VFP system register.

• VSTM on page 5-154
Extension register store multiple.

• VSTR on page 5-159
Extension register store.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-7
ID012213 Non-Confidential

NEON and VFP Programming
5.3 NEON logical and compare operations
The following topics describe the NEON logical and compare instructions:

• VACLE, VACLT, VACGE and VACGT on page 5-24
Compare Absolute.

• VAND (register) on page 5-30
Bitwise AND (register).

• VBIC (immediate) on page 5-31
Bit Clear (immediate).

• VBIC (register) on page 5-32
Bit Clear (register).

• VBIF on page 5-33
Bitwise Insert if False.

• VBIT on page 5-34
Bitwise Insert if True.

• VBSL on page 5-35
Bitwise Select.

• VCEQ (register) on page 5-37
Compare.

• VEOR on page 5-58
Bitwise Exclusive OR (register).

• VMOV (register) on page 5-87
Move.

• VMOVN on page 5-92
Move NOT.

• VORN (register) on page 5-108
Bitwise OR Not (register).

• VORR (immediate) on page 5-111
Bitwise OR (immediate).

• VORR (register) on page 5-110
Bitwise OR (register).

• VTST on page 5-168
Test bits.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-8
ID012213 Non-Confidential

NEON and VFP Programming
5.4 NEON general data processing instructions
The following topics describe the NEON general data processing instructions:

• VCVT (between fixed-point or integer, and floating-point) on page 5-50
Vector convert between fixed-point or integer and floating-point.

• VCVT (between half-precision and single-precision floating-point) on page 5-51
Vector convert between half-precision and single-precision floating-point.

• VDUP on page 5-57
Duplicate scalar to all lanes of vector.

• VEXT on page 5-59
Extract.

• VMOV (immediate) on page 5-86
Move and Move Negative (immediate).

• VMOVL on page 5-91
Move (register).

• VREV16, VREV32, and VREV64 on page 5-135
Reverse elements within a vector.

• VSWP on page 5-165
Swap vectors.

• VTBL and VTBX on page 5-166
Vector table look-up.

• VTRN on page 5-167
Vector transpose.

• VUZP on page 5-169
Vector de-interleave.

• VZIP on page 5-170
Vector interleave.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-9
ID012213 Non-Confidential

NEON and VFP Programming
5.5 NEON shift instructions
The following topics describe the NEON shift instructions:

• VSHL (by immediate) on page 5-144
Shift Left by immediate value.

• VSHL (by signed variable) on page 5-146
Shift left by signed variable.

• VSHR (by immediate) on page 5-148
Shift Right by immediate value.

• VSHRN (by immediate) on page 5-149
Shift Right, Narrow, by immediate value.

• VSRA (by immediate) on page 5-152
Shift Right by immediate value and Accumulate.

• VQSHRN and VQSHRUN (by immediate) on page 5-130
Shift Right by immediate value, and saturate.

• VSLI on page 5-150
Shift Left and Insert.

• VSRI on page 5-153
Shift Right and Insert.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-10
ID012213 Non-Confidential

NEON and VFP Programming
5.6 NEON general arithmetic instructions
The following topics describe the NEON general arithmetic instructions:

• VABA and VABAL on page 5-20
Vector Absolute Difference and Accumulate.

• VABD and VABDL on page 5-21
Vector Absolute Difference.

• VABS on page 5-22
Vector Absolute value.

• VADD (integer) on page 5-26
Vector Add.

• VADDHN on page 5-27
Vector Add selecting High half.

• VCLS on page 5-44
Vector Count Leading Sign bits.

• VCLZ on page 5-47
Vector Count Leading Zeros.

• VCNT on page 5-49
Vector Count set bits.

• VHADD on page 5-62
Vector Halving Add.

• VHSUB on page 5-63
Vector Halving Subtract.

• VMAX and VMIN on page 5-74
Vector Maximum and Minimum.

• VNEG on page 5-104
Vector Negate.

• VPADAL on page 5-112
Vector Pairwise Add and Accumulate.

• VPADD on page 5-113
Vector Pairwise Add.

• VPMAX and VPMIN on page 5-115
Vector Pairwise Maximum and Minimum.

• VRECPE on page 5-133
Vector Reciprocal Estimate.

• VRECPS on page 5-134
Vector Reciprocal Step.

• VRSQRTE on page 5-140
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-11
ID012213 Non-Confidential

NEON and VFP Programming
Vector Reciprocal Square Root Estimate.

• VRSQRTS on page 5-141
Vector Reciprocal Square Root Step.

• VRSUBHN on page 5-143
Vector Subtract selecting High Half.

• VSUB (integer) on page 5-162
Vector Subtract.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-12
ID012213 Non-Confidential

NEON and VFP Programming
5.7 NEON multiply instructions
The following topics describe the NEON multiply instructions:

• VFMA, VFMS on page 5-60.
Vector Fused Multiply Accumulate and Vector Fused Multiply Subtract.

• VMLA on page 5-75.
Vector Multiply Accumulate.

• VMLA (by scalar) on page 5-76.
Vector Multiply Accumulate (by scalar).

• VMLS on page 5-81.
Vector Multiply Subtract.

• VMLS (by scalar) on page 5-80.
Vector Multiply Subtract (by scalar).

• VMUL on page 5-96.
Vector Multiply.

• VMUL (by scalar) on page 5-98.
Vector Multiply (by scalar).

• VQDMULL (by vector or by scalar) on page 5-122
Vector Saturating Doubling Multiply, Multiply Accumulate, and Multiply Subtract (by
vector or scalar).

• VQDMULH (by vector or by scalar) on page 5-121
Vector Saturating Doubling Multiply returning High half (by vector or scalar).
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-13
ID012213 Non-Confidential

NEON and VFP Programming
5.8 NEON load and store element and structure instructions
The following topics describe the NEON load and store element and structure instructions:

• Interleaving provided by load and store, element and structure instructions on page 5-15.

• Alignment restrictions in load and store, element and structure instructions on page 5-16.

• VLDn (single n-element structure to one lane) on page 5-64.
This is used for almost all data accesses. A normal vector can be loaded (n = 1).

• VLDn (single n-element structure to all lanes) on page 5-66.

• VLDn (multiple n-element structures) on page 5-68.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-14
ID012213 Non-Confidential

NEON and VFP Programming
5.9 Interleaving provided by load and store, element and structure instructions
Many instructions in this group provide interleaving when structures are stored to memory, and
de-interleaving when structures are loaded from memory. Figure 5-1 shows an example of
de-interleaving. Interleaving is the inverse process.

Figure 5-1 De-interleaving an array of 3-element structures

5.9.1 See also

Reference
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to one lane) on page 5-64
• VLDn (single n-element structure to all lanes) on page 5-66
• VLDn (multiple n-element structures) on page 5-68.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.

Z3 D2

A[3].x
A[3].y
A[3].z

Z2 Z1 Z0

A[2].x
A[2].y
A[2].z

A[1].x
A[1].y
A[1].z

A[0].x
A[0].y
A[0].z

Y3 D1Y2 Y1 Y0

X3 D0X2 X1 X0
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-15
ID012213 Non-Confidential

NEON and VFP Programming
5.10 Alignment restrictions in load and store, element and structure instructions
Many of these instructions permit memory alignment restrictions to be specified. When the
alignment is not specified in the instruction, the alignment restriction is controlled by the A bit
(SCTLR bit[1]):

• if the A bit is 0, there are no alignment restrictions (except for strongly-ordered or device
memory, where accesses must be element-aligned)

• if the A bit is 1, accesses must be element-aligned.

If an address is not correctly aligned, an alignment fault occurs.

5.10.1 See also

Reference
• Interleaving provided by load and store, element and structure instructions on page 5-15
• VLDn (single n-element structure to one lane) on page 5-64
• VLDn (single n-element structure to all lanes) on page 5-66
• VLDn (multiple n-element structures) on page 5-68.

Other information
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-16
ID012213 Non-Confidential

NEON and VFP Programming
5.11 NEON and VFP pseudo-instructions
The following topics describe the NEON and VFP pseudo-instructions:

• VLDR pseudo-instruction on page 5-73 (NEON and VFP)

• VLDR (post-increment and pre-decrement) on page 5-72 (NEON and VFP)

• VSTR (post-increment and pre-decrement) on page 5-160 (NEON and VFP)

• VMOV2 on page 5-93 (NEON only)

• VAND (immediate) on page 5-29 (NEON only)

• VACLE, VACLT, VACGE and VACGT on page 5-24 (NEON only. VACLE and VACLT are
pseudo-instructions.)

• VCLE (register) on page 5-43 (NEON only).
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-17
ID012213 Non-Confidential

NEON and VFP Programming
5.12 VFP instructions
The following topics describe the VFP instructions:

• VABS (floating-point) on page 5-23
Floating-point absolute value.

• VADD (floating-point) on page 5-25
Floating-point add.

• VCMP, VCMPE on page 5-48
Floating-point compare.

• VCVT (between single-precision and double-precision) on page 5-52
Convert between single-precision and double-precision.

• VCVT (between floating-point and integer) on page 5-53
Convert between floating-point and integer.

• VCVT (between floating-point and fixed-point) on page 5-54
Convert between floating-point and fixed-point.

• VCVTB, VCVTT (half-precision extension) on page 5-55
Convert between half-precision and single-precision floating-point.

• VDIV on page 5-56
Floating-point divide.

• VFMA, VFMS, VFNMA, VFNMS on page 5-61
Fused floating-point multiply accumulate and fused floating-point multiply subtract, with
optional negation.

• VMLA (floating-point) on page 5-77
Floating-point multiply accumulate.

• VMLS (floating-point) on page 5-82
Floating-point multiply subtract.

• VMOV on page 5-85
Insert a floating-point immediate value in a single-precision or double-precision register.

• VMUL (floating-point) on page 5-97
Floating-point multiply.

• VNEG on page 5-104
Floating-point negate.

• VNMLA (floating-point) on page 5-105
Floating-point multiply accumulate, with negation.

• VNMLS (floating-point) on page 5-106
Floating-point multiply subtract, with negation.

• VNMUL (floating-point) on page 5-107
Floating-point multiply with negation.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-18
ID012213 Non-Confidential

NEON and VFP Programming
• VSQRT on page 5-151
Floating-point square root.

• VSUB (floating-point) on page 5-161
Floating-point subtract.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-19
ID012213 Non-Confidential

NEON and VFP Programming
5.13 VABA and VABAL
VABA (Vector Absolute Difference and Accumulate) subtracts the elements of one vector from
the corresponding elements of another vector, and accumulates the absolute values of the results
into the elements of the destination vector.

VABAL is the long version of the VABA instruction.

5.13.1 Syntax

VABA{cond}.datatype {Qd}, Qn, Qm

VABA{cond}.datatype {Dd}, Dn, Dm

VABAL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

5.13.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-20
ID012213 Non-Confidential

NEON and VFP Programming
5.14 VABD and VABDL
VABD (Vector Absolute Difference) subtracts the elements of one vector from the corresponding
elements of another vector, and places the absolute values of the results into the elements of the
destination vector.

VABDL is the long version of the VABD instruction.

5.14.1 Syntax

VABD{cond}.datatype {Qd}, Qn, Qm

VABD{cond}.datatype {Dd}, Dn, Dm

VABDL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of:
• S8, S16, S32, U8, U16, or U32 for VABDL
• S8, S16, S32, U8, U16, U32 or F32 for VABD.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

5.14.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-21
ID012213 Non-Confidential

NEON and VFP Programming
5.15 VABS
VABS (Vector Absolute) takes the absolute value of each element in a vector, and places the
results in a second vector. (The floating-point version only clears the sign bit.)

5.15.1 Syntax

VABS{cond}.datatype Qd, Qm

VABS{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.15.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VQABS on page 5-118
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-22
ID012213 Non-Confidential

NEON and VFP Programming
5.16 VABS (floating-point)
Floating-point absolute value.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.16.1 Syntax

VABS{cond}.F32 Sd, Sm

VABS{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd, Sm are the single-precision registers for the result and operand.

Dd, Dm are the double-precision registers for the result and operand.

5.16.2 Usage

The VABS instruction takes the contents of Sm or Dm, clears the sign bit, and places the result in Sd
or Dd. This gives the absolute value.

If the operand is a NaN, the sign bit is determined as above, but no exception is produced.

5.16.3 Floating-point exceptions

VABS instructions do not produce any exceptions.

5.16.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-23
ID012213 Non-Confidential

NEON and VFP Programming
5.17 VACLE, VACLT, VACGE and VACGT
Vector Absolute Compare takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the condition is true,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

Note
 On disassembly, the VACLE and VACLT pseudo-instructions are disassembled to the corresponding
VACGE and VACGT instructions, with the operands reversed.

5.17.1 Syntax

VACop{cond}.F32 {Qd}, Qn, Qm

VACop{cond}.F32 {Dd}, Dn, Dm

where:

op must be one of:
GE Absolute Greater than or Equal
GT Absolute Greater Than.
LE Absolute Less than or Equal
LT Absolute Less Than.

cond is an optional condition code.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

The result datatype is I32.

5.17.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-24
ID012213 Non-Confidential

NEON and VFP Programming
5.18 VADD (floating-point)
Floating-point add.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.18.1 Syntax

VADD{cond}.F32 {Sd}, Sn, Sm

VADD{cond}.F64 {Dd}, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.18.2 Usage

The VADD instruction adds the values in the operand registers and places the result in the
destination register.

5.18.3 Floating-point exceptions

The VADD instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

5.18.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-25
ID012213 Non-Confidential

NEON and VFP Programming
5.19 VADD (integer)
VADD (Vector Add) adds corresponding elements in two vectors, and places the results in the
destination vector.

5.19.1 Syntax

VADD{cond}.datatype {Qd}, Qn, Qm

VADD{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or I64.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.19.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VADDL and VADDW on page 5-28
• VQADD on page 5-119
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-26
ID012213 Non-Confidential

NEON and VFP Programming
5.20 VADDHN
VADDHN (Vector Add and Narrow, selecting High half) adds corresponding elements in two
vectors, selects the most significant halves of the results, and places the final results in the
destination vector. Results are truncated.

5.20.1 Syntax

VADDHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector.

5.20.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VRADDHN on page 5-132
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-27
ID012213 Non-Confidential

NEON and VFP Programming
5.21 VADDL and VADDW
VADDL (Vector Add Long) adds corresponding elements in two doubleword vectors, and places
the results in the destination quadword vector.

VADDW (Vector Add Wide) adds corresponding elements in one quadword and one doubleword
vector, and places the results in the destination quadword vector.

5.21.1 Syntax

VADDL{cond}.datatype Qd, Dn, Dm ; Long instruction

VADDW{cond}.datatype {Qd,} Qn, Dm ; Wide instruction

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

Qd, Qn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a wide operation.

5.21.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VADD (integer) on page 5-26
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-28
ID012213 Non-Confidential

NEON and VFP Programming
5.22 VAND (immediate)
VAND (Bitwise AND immediate) takes each element of the destination vector, performs a bitwise
AND with an immediate value, and returns the result into the destination vector.

Note
 On disassembly, this pseudo-instruction is disassembled to a corresponding VBIC instruction,
with the complementary immediate value.

5.22.1 Syntax

VAND{cond}.datatype Qd, #imm

VAND{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the NEON register for the result.

imm is the immediate value.

5.22.2 Immediate values

If datatype is I16, the immediate value must have one of the following forms:
• 0xFFXY

• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY

• 0xFFFFXYFF

• 0xFFXYFFFF

• 0xXYFFFFFF.

5.22.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VBIC (immediate) on page 5-31
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-29
ID012213 Non-Confidential

NEON and VFP Programming
5.23 VAND (register)
VAND (Bitwise AND) performs a bitwise logical AND between two registers, and places the
result in the destination register.

5.23.1 Syntax

VAND{cond}{.datatype} {Qd}, Qn, Qm

VAND{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.23.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-30
ID012213 Non-Confidential

NEON and VFP Programming
5.24 VBIC (immediate)
VBIC (Bit Clear immediate) takes each element of the destination vector, performs a bitwise
AND Complement with an immediate value, and returns the result in the destination vector.

5.24.1 Syntax

VBIC{cond}.datatype Qd, #imm

VBIC{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the NEON register for the source and result.

imm is the immediate value.

5.24.2 Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination
register, or you can directly specify the immediate value (that conforms to the pattern) in full.
The pattern for imm depends on datatype as shown in Table 5-4:

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction
to match the pattern of imm. If the immediate value does not match any of the patterns in
Table 5-4, the assembler generates an error.

5.24.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VAND (immediate) on page 5-29
• Condition codes on page 3-32.

Table 5-4 Patterns for immediate value

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

0x00XY0000

0xXY000000
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-31
ID012213 Non-Confidential

NEON and VFP Programming
5.25 VBIC (register)
VBIC (Bit Clear) performs a bitwise logical AND complement between two registers, and places
the results in the destination register.

5.25.1 Syntax

VBIC{cond}{.datatype} {Qd}, Qn, Qm

VBIC{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.25.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-32
ID012213 Non-Confidential

NEON and VFP Programming
5.26 VBIF
VBIF (Bitwise Insert if False) inserts each bit from the first operand into the destination if the
corresponding bit of the second operand is 0, otherwise it leaves the destination bit unchanged.

5.26.1 Syntax

VBIF{cond}{.datatype} {Qd}, Qn, Qm

VBIF{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.26.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-33
ID012213 Non-Confidential

NEON and VFP Programming
5.27 VBIT
VBIT (Bitwise Insert if True) inserts each bit from the first operand into the destination if the
corresponding bit of the second operand is 1, otherwise it leaves the destination bit unchanged.

5.27.1 Syntax

VBIT{cond}{.datatype} {Qd}, Qn, Qm

VBIT{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.27.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-34
ID012213 Non-Confidential

NEON and VFP Programming
5.28 VBSL
VBSL (Bitwise Select) selects each bit for the destination from the first operand if the
corresponding bit of the destination is 1, or from the second operand if the corresponding bit of
the destination is 0.

5.28.1 Syntax

VBSL{cond}{.datatype} {Qd}, Qn, Qm

VBSL{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.28.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-35
ID012213 Non-Confidential

NEON and VFP Programming
5.29 VCEQ (immediate #0)
Vector Compare Equal takes the value of each element in a vector, and compares it with zero. If
the condition is true, the corresponding element in the destination vector is set to all ones.
Otherwise, it is set to all zeros.

5.29.1 Syntax

VCEQ{cond}.datatype {Qd}, Qn, #0

VCEQ{cond}.datatype {Dd}, Dn, #0

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or F32.
The result datatype is:
• I32 for operand datatypes I32 or F32.
• I16 for operand datatype I16.
• I8 for operand datatype I8.

Qd, Qn, Qm specifies the destination register and the operand register, for a quadword
operation.

Dd, Dn, Dm specifies the destination register and the operand register, for a doubleword
operation.

#0 specifies a comparison with zero.

5.29.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-36
ID012213 Non-Confidential

NEON and VFP Programming
5.30 VCEQ (register)
Vector Compare Equal takes the value of each element in a vector, and compares it with the
value of the corresponding element of a second vector. If the condition is true, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

5.30.1 Syntax

VCEQ{cond}.datatype {Qd}, Qn, Qm

VCEQ{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or F32.
The result datatype is:
• I32 for operand datatypes I32 or F32
• I16 for operand datatype I16
• I8 for operand datatype I8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.30.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-37
ID012213 Non-Confidential

NEON and VFP Programming
5.31 VCGE (immediate #0)
Vector Compare Greater than or Equal takes the value of each element in a vector, and compares
it with zero. If the condition is true, the corresponding element in the destination vector is set to
all ones. Otherwise, it is set to all zeros.

5.31.1 Syntax

VCGE{cond}.datatype {Qd}, Qn, #0

VCGE{cond}.datatype {Dd}, Dn, #0

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.
The result datatype is:
• I32 for operand datatypes S32 or F32
• I16 for operand datatype S16
• I8 for operand datatype S8.

Qd, Qn, Qm specifies the destination register and the operand register, for a quadword
operation.

Dd, Dn, Dm specifies the destination register and the operand register, for a doubleword
operation.

#0 specifies a comparison with zero.

5.31.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-38
ID012213 Non-Confidential

NEON and VFP Programming
5.32 VCGE (register)
Vector Compare Greater than or Equal takes the value of each element in a vector, and compares
it with the value of the corresponding element of a second vector. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

5.32.1 Syntax

VCGE{cond}.datatype {Qd}, Qn, Qm

VCGE{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.
The result datatype is:
• I32 for operand datatypes S32, U32, or F32
• I16 for operand datatypes S16 or U16
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.32.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-39
ID012213 Non-Confidential

NEON and VFP Programming
5.33 VCGT (immediate #0)
Vector Compare Greater Than takes the value of each element in a vector, and compares it with
zero. If the condition is true, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

5.33.1 Syntax

VCGT{cond}.datatype {Qd}, Qn, #0

VCGT{cond}.datatype {Dd}, Dn, #0

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.
The result datatype is:
• I32 for operand datatypes S32 or F32
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm specifies the destination register and the operand register, for a quadword
operation.

Dd, Dn, Dm specifies the destination register and the operand register, for a doubleword
operation.

5.33.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-40
ID012213 Non-Confidential

NEON and VFP Programming
5.34 VCGT (register)
Vector Compare Greater Than takes the value of each element in a vector, and compares it with
the value of the corresponding element of a second vector. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

5.34.1 Syntax

VCGT{cond}.datatype {Qd}, Qn, Qm

VCGT{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.
The result datatype is:
• I32 for operand datatypes S32, U32, or F32
• I16 for operand datatypes S16 or U16
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.34.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-41
ID012213 Non-Confidential

NEON and VFP Programming
5.35 VCLE (immediate #0)
Vector Compare Less than or Equal takes the value of each element in a vector, and compares
it with zero. If the condition is true, the corresponding element in the destination vector is set to
all ones. Otherwise, it is set to all zeros.

5.35.1 Syntax

VCLE{cond}.datatype {Qd}, Qn, #0

VCLE{cond}.datatype {Dd}, Dn, #0

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.
The result datatype is:
• I32 for operand datatypes S32 or F32
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm specifies the destination register and the operand register, for a quadword
operation.

Dd, Dn, Dm specifies the destination register and the operand register, for a doubleword
operation.

#0 specifies a comparison with zero.

5.35.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VCLE (register) on page 5-43
• VCLT (register) on page 5-46
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-42
ID012213 Non-Confidential

NEON and VFP Programming
5.36 VCLE (register)
Vector Compare Less than or Equal takes the value of each element in a vector, and compares
it with the value of the corresponding element of a second vector. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

On disassembly, this pseudo-instruction is disassembled to the corresponding VCGE instruction,
with the operands reversed.

5.36.1 Syntax

VCLE{cond}.datatype {Qd}, Qn, Qm

VCLE{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.
The result datatype is:
• I32 for operand datatypes S32, U32, or F32
• I16 for operand datatypes S16 or U16
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.36.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-43
ID012213 Non-Confidential

NEON and VFP Programming
5.37 VCLS
VCLS (Vector Count Leading Sign bits) counts the number of consecutive bits following the
topmost bit, that are the same as the topmost bit, in each element in a vector, and places the
results in a second vector.

5.37.1 Syntax

VCLS{cond}.datatype Qd, Qm

VCLS{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, or S32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.37.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-44
ID012213 Non-Confidential

NEON and VFP Programming
5.38 VCLT (immediate #0)
Vector Compare Less Than takes the value of each element in a vector, and compares it with
zero. If the condition is true, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

5.38.1 Syntax

VCLT{cond}.datatype {Qd}, Qn, #0

VCLT{cond}.datatype {Dd}, Dn, #0

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.
The result datatype is:
• I32 for operand datatypes S32 or F32
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm specifies the destination register and the operand register, for a quadword
operation.

Dd, Dn, Dm specifies the destination register and the operand register, for a doubleword
operation.

#0 specifies a comparison with zero.

5.38.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-45
ID012213 Non-Confidential

NEON and VFP Programming
5.39 VCLT (register)
Vector Compare Less Than takes the value of each element in a vector, and compares it with the
value of the corresponding element of a second vector. If the condition is true, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Note
 On disassembly, this pseudo-instruction is disassembled to the corresponding VCGT instruction,
with the operands reversed.

5.39.1 Syntax

VCLT{cond}.datatype {Qd}, Qn, Qm

VCLT{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.
The result datatype is:
• I32 for operand datatypes S32, U32, or F32
• I16 for operand datatypes S16 or U16
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.39.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-46
ID012213 Non-Confidential

NEON and VFP Programming
5.40 VCLZ
VCLZ (Vector Count Leading Zeros) counts the number of consecutive zeros, starting from the
top bit, in each element in a vector, and places the results in a second vector.

5.40.1 Syntax

VCLZ{cond}.datatype Qd, Qm

VCLZ{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, or I32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.40.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-47
ID012213 Non-Confidential

NEON and VFP Programming
5.41 VCMP, VCMPE
Floating-point compare.

VCMP and VCMPE are always scalar.

5.41.1 Syntax

VCMP{E}{cond}.F32 Sd, Sm

VCMP{E}{cond}.F32 Sd, #0

VCMP{E}{cond}.F64 Dd, Dm

VCMP{E}{cond}.F64 Dd, #0

where:

E if present, indicates that the instruction raises an Invalid Operation exception if
either operand is a quiet or signaling NaN. Otherwise, it raises the exception only
if either operand is a signaling NaN.

cond is an optional condition code.

Sd, Sm are the single-precision registers holding the operands.

Dd, Dm are the double-precision registers holding the operands.

5.41.2 Usage

The VCMP{E} instruction subtracts the value in the second operand register (or 0 if the second
operand is #0) from the value in the first operand register, and sets the VFP condition flags based
on the result.

5.41.3 Floating-point exceptions

VCMP{E} instructions can produce Invalid Operation exceptions.

5.41.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-48
ID012213 Non-Confidential

NEON and VFP Programming
5.42 VCNT
VCNT (Vector Count set bits) counts the number of bits that are one in each element in a vector,
and places the results in a second vector.

5.42.1 Syntax

VCNT{cond}.datatype Qd, Qm

VCNT{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be I8.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.42.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-49
ID012213 Non-Confidential

NEON and VFP Programming
5.43 VCVT (between fixed-point or integer, and floating-point)
VCVT (Vector Convert) converts each element in a vector in one of the following ways, and places
the results in the destination vector:
• from floating-point to integer
• from integer to floating-point
• from floating-point to fixed-point
• from fixed-point to floating-point.

5.43.1 Syntax

VCVT{cond}.type Qd, Qm {, #fbits}

VCVT{cond}.type Dd, Dm {, #fbits}

where:

cond is an optional condition code.

type specifies the data types for the elements of the vectors. It must be one of:
S32.F32 floating-point to signed integer or fixed-point
U32.F32 floating-point to unsigned integer or fixed-point
F32.S32 signed integer or fixed-point to floating-point
F32.U32 unsigned integer or fixed-point to floating-point

Qd, Qm specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm specifies the destination vector and the operand vector, for a doubleword
operation.

fbits if present, specifies the number of fraction bits in the fixed point number.
Otherwise, the conversion is between floating-point and integer. fbits must lie in
the range 0-32. If fbits is omitted, the number of fraction bits is 0.

5.43.2 Rounding

Integer or fixed-point to floating-point conversions use round to nearest.

Floating-point to integer or fixed-point conversions use round towards zero.

5.43.3 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-50
ID012213 Non-Confidential

NEON and VFP Programming
5.44 VCVT (between half-precision and single-precision floating-point)
VCVT (Vector Convert), with half-precision extension, converts each element in a vector in one
of the following ways, and places the results in the destination vector:
• from half-precision floating-point to single-precision floating-point (F32.F16)
• from single-precision floating-point to half-precision floating-point (F16.F32).

5.44.1 Syntax

VCVT{cond}.F32.F16 Qd, Dm

VCVT{cond}.F16.F32 Dd, Qm

where:

cond is an optional condition code.

Qd, Dm specifies the destination vector for the single-precision results and the
half-precision operand vector.

Dd, Qm specifies the destination vector for half-precision results and the single-precision
operand vector.

5.44.2 Architectures

This instruction is only available in NEON systems with the half-precision extension.

5.44.3 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-51
ID012213 Non-Confidential

NEON and VFP Programming
5.45 VCVT (between single-precision and double-precision)
Convert between single-precision and double-precision numbers.

VCVT is always scalar.

5.45.1 Syntax

VCVT{cond}.F64.F32 Dd, Sm

VCVT{cond}.F32.F64 Sd, Dm

where:

cond is an optional condition code.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Sd is a single-precision register for the result.

Dm is a double-precision register holding the operand.

5.45.2 Usage

These instructions convert the single-precision value in Sm to double-precision, placing the result
in Dd, or the double-precision value in Dm to single-precision, placing the result in Sd.

5.45.3 Floating-point exceptions

These instructions can produce Invalid Operation, Input Denormal, Overflow, Underflow, or
Inexact exceptions.

5.45.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-52
ID012213 Non-Confidential

NEON and VFP Programming
5.46 VCVT (between floating-point and integer)
Convert between floating-point numbers and integers.

VCVT is always scalar.

5.46.1 Syntax

VCVT{R}{cond}.type.F64 Sd, Dm

VCVT{R}{cond}.type.F32 Sd, Sm

VCVT{cond}.F64.type Dd, Sm

VCVT{cond}.F32.type Sd, Sm

where:

R makes the operation use the rounding mode specified by the FPSCR. Otherwise,
the operation rounds towards zero.

cond is an optional condition code.

type can be either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd is a single-precision register for the result.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Dm is a double-precision register holding the operand.

5.46.2 Usage

The first two forms of this instruction convert from floating-point to integer.

The third and fourth forms convert from integer to floating-point.

5.46.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

5.46.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-53
ID012213 Non-Confidential

NEON and VFP Programming
5.47 VCVT (between floating-point and fixed-point)
Convert between floating-point and fixed-point numbers.

VCVT is always scalar.

5.47.1 Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits

VCVT{cond}.type.F32 Sd, Sd, #fbits

VCVT{cond}.F64.type Dd, Dd, #fbits

VCVT{cond}.F32.type Sd, Sd, #fbits

where:

cond is an optional condition code.

type can be any one of:
S16 16-bit signed fixed-point number
U16 16-bit unsigned fixed-point number
S32 32-bit signed fixed-point number
U32 32-bit unsigned fixed-point number.

Sd is a single-precision register for the operand and result.

Dd is a double-precision register for the operand and result.

fbits is the number of fraction bits in the fixed-point number, in the range 0-16 if type
is S16 or U16, or in the range 1-32 if type is S32 or U32.

5.47.2 Usage

The first two forms of this instruction convert from floating-point to fixed-point.

The third and fourth forms convert from fixed-point to floating-point.

In all cases the fixed-point number is contained in the least significant 16 or 32 bits of the
register.

5.47.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

5.47.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-54
ID012213 Non-Confidential

NEON and VFP Programming
5.48 VCVTB, VCVTT (half-precision extension)
Converts between half-precision and single-precision floating-point numbers in the following
ways:

• VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the
half-precision value

• VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the
half-precision value.

VCVTB and VCVTT are always scalar.

5.48.1 Syntax

VCVTB{cond}.type Sd, Sm

VCVTT{cond}.type Sd, Sm

where:

cond is an optional condition code.

type can be any one of:
F32.F16 convert from half-precision to single-precision
F16.F32 convert from single-precision to half-precision.

Sd is a single word register for the result.

Sm is a single word register for the operand.

5.48.2 Architectures

The instructions are only available in VFPv3 systems with the half-precision extension, and
VFPv4.

5.48.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

5.48.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-55
ID012213 Non-Confidential

NEON and VFP Programming
5.49 VDIV
Floating-point divide.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.49.1 Syntax

VDIV{cond}.F32 {Sd}, Sn, Sm

VDIV{cond}.F64 {Dd}, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.49.2 Usage

The VDIV instruction divides the value in the first operand register by the value in the second
operand register, and places the result in the destination register.

5.49.3 Floating-point exceptions

VDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

5.49.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-56
ID012213 Non-Confidential

NEON and VFP Programming
5.50 VDUP
VDUP (Vector Duplicate) duplicates a scalar into every element of the destination vector. The
source can be a NEON scalar or an ARM register.

5.50.1 Syntax

VDUP{cond}.size Qd, Dm[x]

VDUP{cond}.size Dd, Dm[x]

VDUP{cond}.size Qd, Rm

VDUP{cond}.size Dd, Rm

where:

cond is an optional condition code.

size must be 8, 16, or 32.

Qd specifies the destination register for a quadword operation.

Dd specifies the destination register for a doubleword operation.

Dm[x] specifies the NEON scalar.

Rm specifies the ARM register. Rm must not be R15.

5.50.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-57
ID012213 Non-Confidential

NEON and VFP Programming
5.51 VEOR
VEOR (Bitwise Exclusive OR) performs a logical exclusive OR between two registers, and places
the result in the destination register.

5.51.1 Syntax

VEOR{cond}{.datatype} {Qd}, Qn, Qm

VEOR{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.51.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-58
ID012213 Non-Confidential

NEON and VFP Programming
5.52 VEXT
VEXT (Vector Extract) extracts 8-bit elements from the bottom end of the second operand vector
and the top end of the first, concatenates them, and places the result in the destination vector.
See Figure 5-2 for an example.

Figure 5-2 Operation of doubleword VEXT for imm = 3

5.52.1 Syntax

VEXT{cond}.8 {Qd}, Qn, Qm, #imm

VEXT{cond}.8 {Dd}, Dn, Dm, #imm

where:

cond is an optional condition code.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

imm is the number of 8-bit elements to extract from the bottom of the second operand
vector, in the range 0-7 for doubleword operations, or 0-15 for quadword
operations.

5.52.2 VEXT pseudo-instruction

You can specify a datatype of 16, 32, or 64 instead of 8. In this case, #imm refers to halfwords,
words, or doublewords instead of referring to bytes, and the permitted ranges are
correspondingly reduced.

5.52.3 See also

Reference
• Condition codes on page 3-32.

Vd

VnVm
0123456701234567
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-59
ID012213 Non-Confidential

NEON and VFP Programming
5.53 VFMA, VFMS
VFMA (Vector Fused Multiply Accumulate) multiplies corresponding elements in the two operand
vectors, and accumulates the results into the elements of the destination vector. The result of the
multiply is not rounded before the accumulation.

VFMS (Vector Fused Multiply Subtract) multiplies corresponding elements in the two operand
vectors, then subtracts the products from the corresponding elements of the destination vector,
and places the final results in the destination vector. The result of the multiply is not rounded
before the subtraction.

5.53.1 Syntax

Vop{cond}.F32 {Qd}, Qn, Qm

Vop{cond}.F32 {Dd}, Dn, Dm

where:

op is one of FMA or FMS.

cond is an optional condition code.

Dd, Dn, Dm are the destination and operand vectors for doubleword operation.

Qd, Qn, Qm are the destination and operand vectors for quadword operation.

5.53.2 See also

Reference
• Condition codes on page 3-32
• VMUL on page 5-96.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-60
ID012213 Non-Confidential

NEON and VFP Programming
5.54 VFMA, VFMS, VFNMA, VFNMS
Fused floating-point multiply accumulate and fused floating-point multiply subtract with
optional negation.

These instructions are always scalar.

5.54.1 Syntax

VF{N}op{cond}.F64 {Dd}, Dn, Dm

VF{N}op{cond}.F32 {Sd}, Sn, Sm

where:

op is one of MA or MS.

N negates the final result.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

Qd, Qn, Qm are the double-precision registers for the result and operands.

5.54.2 Usage

VFMA multiplies the values in the operand registers, adds the value in the destination register, and
places the final result in the destination register. The result of the multiply is not rounded before
the accumulation.

VFMS multiplies the values in the operand registers, subtracts the product from the value in the
destination register, and places the final result in the destination register. The result of the
multiply is not rounded before the subtraction.

In each case, the final result is negated if the N option is used.

5.54.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

5.54.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32
• VMUL (floating-point) on page 5-97.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-61
ID012213 Non-Confidential

NEON and VFP Programming
5.55 VHADD
VHADD (Vector Halving Add) adds corresponding elements in two vectors, shifts each result right
one bit, and places the results in the destination vector. Results are truncated.

5.55.1 Syntax

VHADD{cond}.datatype {Qd}, Qn, Qm

VHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.55.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-62
ID012213 Non-Confidential

NEON and VFP Programming
5.56 VHSUB
VHSUB (Vector Halving Subtract) subtracts the elements of one vector from the corresponding
elements of another vector, shifts each result right one bit, and places the results in the
destination vector. Results are always truncated.

5.56.1 Syntax

VHSUB{cond}.datatype {Qd}, Qn, Qm

VHSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.56.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-63
ID012213 Non-Confidential

NEON and VFP Programming
5.57 VLDn (single n-element structure to one lane)
Vector Load single n-element structure to one lane. It loads one n-element structure from
memory into one or more NEON registers. Elements of the register that are not loaded are
unaltered.

5.57.1 Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 5-5.

list specifies the NEON register list. See Table 5-5 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 5-5 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 5-5 Permitted combinations of parameters

n datatype list a align b alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

16 {Dd[x], D(d+1)[x]} @32 4-byte

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-64
ID012213 Non-Confidential

NEON and VFP Programming
5.57.2 See also

Reference
• Condition codes on page 3-32
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to all lanes) on page 5-66
• VLDn (multiple n-element structures) on page 5-68.

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 5-16.

Table 5-5 Permitted combinations of parameters (continued)

n datatype list a align b alignment
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-65
ID012213 Non-Confidential

NEON and VFP Programming
5.58 VLDn (single n-element structure to all lanes)
Vector Load single n-element structure to all lanes. It loads multiple copies of one n-element
structure from memory into one or more NEON registers.

5.58.1 Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 5-6.

list specifies the NEON register list. See Table 5-6 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 5-6 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 5-6 Permitted combinations of parameters

n datatype list a align b alignment

1 8 {Dd[]} - Standard only

{Dd[],D(d+1)[]} - Standard only

16 {Dd[]} @16 2-byte

{Dd[],D(d+1)[]} @16 2-byte

32 {Dd[]} @32 4-byte

{Dd[],D(d+1)[]} @32 4-byte

2 8 {Dd[], D(d+1)[]} @8 byte

{Dd[], D(d+2)[]} @8 byte

16 {Dd[], D(d+1)[]} @16 2-byte

{Dd[], D(d+2)[]} @16 2-byte

32 {Dd[], D(d+1)[]} @32 4-byte

{Dd[], D(d+2)[]} @32 4-byte

3 8, 16, or 32 {Dd[], D(d+1)[], D(d+2)[]} - Standard only

{Dd[], D(d+2)[], D(d+4)[]} - Standard only

4 8 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @32 4-byte
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-66
ID012213 Non-Confidential

NEON and VFP Programming
5.58.2 See also

Reference
• Condition codes on page 3-32
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to one lane) on page 5-64
• VLDn (multiple n-element structures) on page 5-68.

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @32 4-byte

16 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 8-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 8-byte

32 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 or @128 8-byte or 16-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 or @128 8-byte or 16-byte

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 5-16.

Table 5-6 Permitted combinations of parameters (continued)

n datatype list a align b alignment
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-67
ID012213 Non-Confidential

NEON and VFP Programming
5.59 VLDn (multiple n-element structures)
Vector Load multiple n-element structures. It loads multiple n-element structures from memory
into one or more NEON registers, with de-interleaving (unless n == 1). Every element of each
register is loaded.

5.59.1 Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 5-7 for options.

list specifies the NEON register list. See Table 5-7 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 5-7 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 5-7 Permitted combinations of parameters

n datatype list a

a. Every register in the list must be in the range D0-D31.

align b

b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and
store, element and structure instructions on page 5-16.

alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-68
ID012213 Non-Confidential

NEON and VFP Programming
5.59.2 See also

Reference
• Condition codes on page 3-32
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to one lane) on page 5-64
• VLDn (single n-element structure to all lanes) on page 5-66.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-69
ID012213 Non-Confidential

NEON and VFP Programming
5.60 VLDM
Extension register load multiple.

5.60.1 Syntax

VLDMmode{cond} Rn{!}, Registers

where:

mode must be one of:
IA meaning Increment address After each transfer. IA is the default, and

can be omitted.
DB meaning Decrement address Before each transfer.
EA meaning Empty Ascending stack operation. This is the same as DB for

loads.
FD meaning Full Descending stack operation. This is the same as IA for

loads.

cond is an optional condition code.

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be written back to Rn.
If ! is not specified, mode must be IA.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S, D, or Q registers, but they must not be mixed. The number of
registers must not exceed 16 D registers, or 8 Q registers. If Q registers are
specified, on disassembly they are shown as D registers.

Note
 VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

5.60.2 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-70
ID012213 Non-Confidential

NEON and VFP Programming
5.61 VLDR
Extension register load.

5.61.1 Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]

VLDR{cond}{.size} Fd, label

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd is the extension register to be loaded. For a NEON instruction, it must be a D
register. For a VFP instruction, it can be either a D or S register.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must evaluate to a numeric value at assembly
time. The value must be a multiple of 4, and lie in the range –1020 to +1020. The
value is added to the base address to form the address used for the transfer.

label is a PC-relative expression.
label must be aligned on a word boundary within ±1KB of the current instruction.

5.61.2 Usage

The VLDR instruction loads an extension register from memory.

One word is transferred if Fd is an S register (VFP only). Two words are transferred otherwise.

There is also a VLDR pseudo-instruction.

5.61.3 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32
• VLDR pseudo-instruction on page 5-73.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-71
ID012213 Non-Confidential

NEON and VFP Programming
5.62 VLDR (post-increment and pre-decrement)
Pseudo-instruction that loads extension registers with post-increment and pre-decrement.

Note
 There are also VLDR and VSTR instructions without post-increment and pre-decrement.

5.62.1 Syntax

VLDR{cond}{.size} Fd, [Rn], #offset ; post-increment

VLDR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a
D register.

Fd is the extension register to be loaded. For a NEON instruction, it must be a
doubleword (Dd) register. For a VFP instruction, it can be either a double precision
(Dd) or a single precision (Sd) register.

Rn is the ARM register holding the base address for the transfer.

offset is a numeric expression that must evaluate to a numeric value at assembly time.
The value must be 4 if Fd is an S register, or 8 if Fd is a D register.

5.62.2 Usage

The post-increment instruction increments the base address in the register by the offset value,
after the transfer. The pre-decrement instruction decrements the base address in the register by
the offset value, and then performs the transfer using the new address in the register. This
pseudo-instruction assembles to a VLDM instruction.

5.62.3 See also

Reference
• VLDR on page 5-71
• VLDM on page 5-70
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-72
ID012213 Non-Confidential

NEON and VFP Programming
5.63 VLDR pseudo-instruction
The VLDR pseudo-instruction loads a constant value into every element of a 64-bit NEON vector,
or into a VFP single-precision or double-precision register.

Note
 This section describes the VLDR pseudo-instruction only.

5.63.1 Syntax

VLDR{cond}.datatype Dd,=constant

VLDR{cond}.datatype Sd,=constant

where:

datatype must be one of:
In NEON only
Sn NEON only
Un NEON only
F32 NEON or VFP
F64 VFP only

n must be one of 8, 16, 32, or 64.

cond is an optional condition code.

Dd or Sd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

5.63.2 Usage

If an instruction (for example, VMOV) is available that can generate the constant directly into the
register, the assembler uses it. Otherwise, it generates a doubleword literal pool entry containing
the constant and loads the constant using a VLDR instruction.

5.63.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VLDR on page 5-71
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-73
ID012213 Non-Confidential

NEON and VFP Programming
5.64 VMAX and VMIN
VMAX (Vector Maximum) compares corresponding elements in two vectors, and copies the larger
of each pair into the corresponding element in the destination vector.

VMIN (Vector Minimum) compares corresponding elements in two vectors, and copies the
smaller of each pair into the corresponding element in the destination vector.

5.64.1 Syntax

Vop{cond}.datatype Qd, Qn, Qm

Vop{cond}.datatype Dd, Dn, Dm

where:

op must be either MAX or MIN.

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.64.2 Floating-point maximum and minimum

max(+0.0, –0.0) = +0.0.

min(+0.0, –0.0) = –0.0

If any input is a NaN, the corresponding result element is the default NaN.

5.64.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32
• VPADD on page 5-113.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-74
ID012213 Non-Confidential

NEON and VFP Programming
5.65 VMLA
VMLA (Vector Multiply Accumulate) multiplies corresponding elements in two vectors, and
accumulates the results into the elements of the destination vector.

5.65.1 Syntax

VMLA{cond}.datatype {Qd}, Qn, Qm

VMLA{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or F32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.65.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-75
ID012213 Non-Confidential

NEON and VFP Programming
5.66 VMLA (by scalar)
VMLA (Vector Multiply Accumulate) multiplies each element in a vector by a scalar, and
accumulates the results into the corresponding elements of the destination vector.

5.66.1 Syntax

VMLA{cond}.datatype {Qd}, Qn, Dm[x]

VMLA{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of I16, I32, or F32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Dm[x] is the scalar holding the second operand.

5.66.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-76
ID012213 Non-Confidential

NEON and VFP Programming
5.67 VMLA (floating-point)
Floating-point multiply accumulate.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.67.1 Syntax

VMLA{cond}.F32 Sd, Sn, Sm

VMLA{cond}.F64 Dd, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.67.2 Usage

The VMLA instruction multiplies the values in the operand registers, adds the value in the
destination register, and places the final result in the destination register.

5.67.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.67.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-77
ID012213 Non-Confidential

NEON and VFP Programming
5.68 VMLAL (by scalar)
VMLAL (Vector Multiply Accumulate Long) multiplies each element in a vector by a scalar, and
accumulates the results into the corresponding elements of the destination vector.

5.68.1 Syntax

VMLAL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of S16, S32, U16, or U32

Qd, Dn are the destination vector and the first operand vector, for a long operation.

Dm[x] is the scalar holding the second operand.

5.68.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-78
ID012213 Non-Confidential

NEON and VFP Programming
5.69 VMLAL
VMLAL (Vector Multiply Accumulate Long) multiplies corresponding elements in two vectors,
and accumulates the results into the elements of the destination vector.

5.69.1 Syntax

VMLAL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32,U8, U16, or U32.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

5.69.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-79
ID012213 Non-Confidential

NEON and VFP Programming
5.70 VMLS (by scalar)
VMLS (Vector Multiply Subtract) multiplies each element in a vector by a scalar, subtracts the
results from the corresponding elements of the destination vector, and places the final results in
the destination vector.

5.70.1 Syntax

VMLS{cond}.datatype {Qd}, Qn, Dm[x]

VMLS{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of I16, I32, or F32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Dm[x] is the scalar holding the second operand.

5.70.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-80
ID012213 Non-Confidential

NEON and VFP Programming
5.71 VMLS
VMLS (Vector Multiply Subtract) multiplies corresponding elements in two vectors, subtracts the
results from corresponding elements of the destination vector, and places the final results in the
destination vector.

5.71.1 Syntax

VMLS{cond}.datatype {Qd}, Qn, Qm

VMLS{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, F32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.71.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-81
ID012213 Non-Confidential

NEON and VFP Programming
5.72 VMLS (floating-point)
Floating-point multiply subtract.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.72.1 Syntax

VMLS{cond}.F32 Sd, Sn, Sm

VMLS{cond}.F64 Dd, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.72.2 Usage

The VMLS instruction multiplies the values in the operand registers, subtracts the result from the
value in the destination register, and places the final result in the destination register.

5.72.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.72.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-82
ID012213 Non-Confidential

NEON and VFP Programming
5.73 VMLSL
VMLSL (Vector Multiply Subtract Long) multiplies corresponding elements in two vectors,
subtracts the results from corresponding elements of the destination vector, and places the final
results in the destination vector.

5.73.1 Syntax

VMLSL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

5.73.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-83
ID012213 Non-Confidential

NEON and VFP Programming
5.74 VMLSL (by scalar)
VMLSL (Vector Multiply Subtract Long) multiplies each element in a vector by a scalar, subtracts
the results from the corresponding elements of the destination vector, and places the final results
in the destination vector.

5.74.1 Syntax

VMLSL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of S16, S32, U16, or U32.

Qd, Dn are the destination vector and the first operand vector, for a long operation.

Dm[x] is the scalar holding the second operand.

5.74.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-84
ID012213 Non-Confidential

NEON and VFP Programming
5.75 VMOV
Insert a floating-point immediate value in a single-precision or double-precision register, or
copy one register into another register.

This instruction is always scalar.

5.75.1 Syntax

VMOV{cond}.F32 Sd, #imm

VMOV{cond}.F64 Dd, #imm

VMOV{cond}.F32 Sd, Sm

VMOV{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd is the single-precision destination register.

Dd is the double-precision destination register.

imm is the floating-point immediate value.

Sm is the single-precision source register.

Dm is the double-precision source register.

5.75.2 Immediate values

Any number that can be expressed as +/–n * 2–r,where n and r are integers, 16 <= n <= 31, 0 <=
r <= 7.

5.75.3 Architectures

The instructions that copy immediate constants are available in VFPv3 and above.

The instructions that copy from registers are available on all VFP systems.

5.75.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-85
ID012213 Non-Confidential

NEON and VFP Programming
5.76 VMOV (immediate)
VMOV (Vector Move) generates an immediate value into the destination register.

5.76.1 Syntax

VMOV{cond}.datatype Qd, #imm

VMOV{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, I64, or F32.

Qd or Dd is the NEON register for the result.

imm is an immediate value of the type specified by datatype. This is replicated to fill
the destination register.

5.76.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-8 Available immediate values

datatype VMOV

I8 0xXY

I16 0x00XY, 0xXY00

I32 0x000000XY, 0x0000XY00, 0x00XY0000, 0xXY000000

0x0000XYFF, 0x00XYFFFF

I64 byte masks, 0xGGHHJJKKLLMMNNPP a

a. Each of 0xGG, 0xHH, 0xJJ, 0xKK, 0xLL, 0xMM, 0xNN, and 0xPP must be either 0x00 or 0xFF.

F32 floating-point numbers b

b. Any number that can be expressed as +/–n * 2–r, where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-86
ID012213 Non-Confidential

NEON and VFP Programming
5.77 VMOV (register)
Vector Move (register) copies a value from the source register into the destination register.

5.77.1 Syntax

VMOV{cond}{.datatype} Qd, Qm

VMOV{cond}{.datatype} Dd, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qm specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm specifies the destination vector and the source vector, for a doubleword operation.

5.77.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-87
ID012213 Non-Confidential

NEON and VFP Programming
5.78 VMOV (between one ARM register and single precision VFP)
Transfer contents between a single-precision floating-point register and an ARM register.

5.78.1 Syntax

VMOV{cond} Rd, Sn

VMOV{cond} Sn, Rd

where:

cond is an optional condition code.

Sn is the VFP single-precision register.

Rd is the ARM register. Rd must not be PC.

5.78.2 Usage

VMOV Rd, Sn transfers the contents of Sn into Rd.

VMOV Sn, Rd transfers the contents of Rd into Sn.

5.78.3 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-88
ID012213 Non-Confidential

NEON and VFP Programming
5.79 VMOV (between two ARM registers and an extension register)
Transfer contents between two ARM registers and a 64-bit extension register, or two
consecutive 32-bit VFP registers.

5.79.1 Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

VMOV{cond} Sm, Sm1, Rd, Rn

VMOV{cond} Rd, Rn, Sm, Sm1

where:

cond is an optional condition code.

Dm is a 64-bit extension register.

Sm is a VFP 32-bit register.

Sm1 is the next consecutive VFP 32-bit register after Sm.

Rd, Rn are the ARM registers. Rd and Rn must not be PC.

5.79.2 Usage

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into
the high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high
half of Dm into Rn.

VMOV Rd, Rn, Sm, Sm1 transfers the contents of Sm into Rd, and the contents of Sm1 into Rn.

VMOV Sm, Sm1, Rd, Rn transfers the contents of Rd into Sm, and the contents of Rn into Sm1.

5.79.3 Architectures

The 64-bit instructions are available in:
• NEON
• VFPv2 and above.

The 2 x 32-bit instructions are available in VFPv2 and above.

5.79.4 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-89
ID012213 Non-Confidential

NEON and VFP Programming
5.80 VMOV (between an ARM register and a NEON scalar)
Transfer contents between an ARM register and a NEON scalar.

5.80.1 Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.datatype} Rd, Dn[x]

where:

cond is an optional condition code.

size the data size. Can be 8, 16, or 32. If omitted, size is 32. For VFP instructions, size
must be 32 or omitted.

datatype the data type. Can be U8, S8, U16, S16, or 32. If omitted, datatype is 32. For VFP
instructions, datatype must be 32 or omitted.

Dn[x] is the NEON scalar.

Rd is the ARM register. Rd must not be PC.

5.80.2 Usage

VMOV Dn[x], Rd transfers the contents of the least significant byte, halfword, or word of Rd into
Dn[x].

VMOV Rd, Dn[x] transfers the contents of Dn[x] into the least significant byte, halfword, or word
of Rd. The remaining bits of Rd are either zero or sign extended.

5.80.3 See also

Concepts
Using the Assembler:
• NEON scalars on page 9-20
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-90
ID012213 Non-Confidential

NEON and VFP Programming
5.81 VMOVL
VMOVL (Vector Move Long) takes each element in a doubleword vector, sign or zero extends them
to twice their original length, and places the results in a quadword vector.

5.81.1 Syntax

VMOVL{cond}.datatype Qd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U62.

Qd, Dm specifies the destination vector and the operand vector.

5.81.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-91
ID012213 Non-Confidential

NEON and VFP Programming
5.82 VMOVN
VMOVN (Vector Move and Narrow) copies the least significant half of each element of a quadword
vector into the corresponding elements of a doubleword vector.

5.82.1 Syntax

VMOVN{cond}.datatype Dd, Qm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qm specifies the destination vector and the operand vector.

5.82.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-92
ID012213 Non-Confidential

NEON and VFP Programming
5.83 VMOV2
The VMOV2 pseudo-instruction generates an immediate value and places it in every element of a
NEON vector, without loading a value from a literal pool. It always assembles to exactly two
instructions.

VMOV2 can generate any 16-bit immediate value, and a restricted range of 32-bit and 64-bit
immediate values.

5.83.1 Syntax

VMOV2{cond}.datatype Qd, #constant

VMOV2{cond}.datatype Dd, #constant

where:

datatype must be one of:
• I8, I16, I32, or I64
• S8, S16, S32, or S64
• U8, U16, U32, or U64
• F32.

cond is an optional condition code.

Qd or Dd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

5.83.2 Usage

VMOV2 typically assembles to a VMOV or VMVN instruction, followed by a VBIC or VORR instruction.

5.83.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VMOV (immediate) on page 5-86
• VBIC (immediate) on page 5-31
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-93
ID012213 Non-Confidential

NEON and VFP Programming
5.84 VMRS
Transfer contents from a NEON and VFP system register to an ARM register.

5.84.1 Syntax

VMRS{cond} Rd, extsysreg

where:

cond is an optional condition code.

extsysreg is the NEON and VFP system register, usually FPSCR, FPSID, or FPEXC.

Rd is the ARM register. Rd must not be PC.
It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status
flags are transferred into the corresponding flags in the ARM APSR.

5.84.2 Usage

The VMRS instruction transfers the contents of extsysreg into Rd.

Note
 This instruction stalls the processor until all current NEON or VFP operations complete.

5.84.3 Examples

 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to ARM APSR

5.84.4 See also

Concepts
Using the Assembler:
• NEON and VFP system registers on page 9-23.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-94
ID012213 Non-Confidential

NEON and VFP Programming
5.85 VMSR
Transfer contents from an ARM register to a NEON and VFP system register.

5.85.1 Syntax

VMSR{cond} extsysreg, Rd

where:

cond is an optional condition code.

extsysreg is the NEON and VFP system register, usually FPSCR, FPSID, or FPEXC.

Rd is the ARM register. Rd must not be PC.

5.85.2 Usage

The VMSR instruction transfers the contents of Rd into extsysreg.

Note
 This instruction stalls the processor until all current NEON or VFP operations complete.

5.85.3 Examples

 VMSR FPSCR, r4

5.85.4 See also

Concepts
Using the Assembler:
• NEON and VFP system registers on page 9-23.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-95
ID012213 Non-Confidential

NEON and VFP Programming
5.86 VMUL
VMUL (Vector Multiply) multiplies corresponding elements in two vectors, and places the results
in the destination vector.

5.86.1 Syntax

VMUL{cond}.datatype {Qd}, Qn, Qm

VMUL{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, F32, or P8.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.86.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-96
ID012213 Non-Confidential

NEON and VFP Programming
5.87 VMUL (floating-point)
Floating-point multiply.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.87.1 Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm

VMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.87.2 Usage

The VMUL operation multiplies the values in the operand registers and places the result in the
destination register.

5.87.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.87.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-97
ID012213 Non-Confidential

NEON and VFP Programming
5.88 VMUL (by scalar)
VMUL (Vector Multiply by scalar) multiplies each element in a vector by a scalar, and places the
results in the destination vector.

5.88.1 Syntax

VMUL{cond}.datatype {Qd}, Qn, Dm[x]

VMUL{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of I16, I32, or F32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Dm[x] is the scalar holding the second operand.

5.88.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-98
ID012213 Non-Confidential

NEON and VFP Programming
5.89 VMULL
VMULL (Vector Multiply Long) multiplies corresponding elements in two vectors, and places the
results in the destination vector.

5.89.1 Syntax

VMULL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of U8, U16, U32, S8, S16, S32, or P8.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

5.89.2 See also

Concepts
Using the Assembler:
• Polynomial arithmetic over {0,1} on page 9-22
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-99
ID012213 Non-Confidential

NEON and VFP Programming
5.90 VMULL (by scalar)
VMULL (Vector Multiply Long by scalar) multiplies each element in a vector by a scalar, and
places the results in the destination vector.

5.90.1 Syntax

VMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be one of S16, S32, U16, or U32.

Qd, Dn are the destination vector and the first operand vector, for a long operation.

Dm[x] is the scalar holding the second operand.

5.90.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-100
ID012213 Non-Confidential

NEON and VFP Programming
5.91 VMVN (register)
Vector Move NOT (register) inverts the value of each bit from the source register and places the
results into the destination register.

5.91.1 Syntax

VMVN{cond}{.datatype} Qd, Qm

VMVN{cond}{.datatype} Dd, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qm specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm specifies the destination vector and the source vector, for a doubleword operation.

5.91.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-101
ID012213 Non-Confidential

NEON and VFP Programming
5.92 VMVN (immediate)
Vector Move NOT (immediate) inverts the value of each bit from an immediate value and places
the results into each element in the destination register.

5.92.1 Syntax

VMVN{cond}.datatype Qd, #imm

VMVN{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, I64, or F32.

Qd or Dd is the NEON register for the result.

imm is an immediate value of the type specified by datatype. This is replicated to fill
the destination register.

5.92.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-9 Available immediate values

datatype VMVN

I8 -

I16 0xFFXY, 0xXYFF

I32 0xFFFFFFXY, 0xFFFFXYFF, 0xFFXYFFFF, 0xXYFFFFFF

0xFFFFXY00, 0xFFXY0000

I64 -

F32 -
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-102
ID012213 Non-Confidential

NEON and VFP Programming
5.93 VNEG (floating-point)
Floating-point negate.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.93.1 Syntax

VNEG{cond}.F32 Sd, Sm

VNEG{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd, Sm are the single-precision registers for the result and operand.

Dd, Dm are the double-precision registers for the result and operand.

5.93.2 Usage

The VNEG instruction takes the contents of Sm or Dm, changes the sign bit, and places the result in
Sd or Dd. This gives the negation of the value.

If the operand is a NaN, the sign bit is determined as above, but no exception is produced.

5.93.3 Floating-point exceptions

VNEG instructions do not produce any exceptions.

5.93.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-103
ID012213 Non-Confidential

NEON and VFP Programming
5.94 VNEG
VNEG (Vector Negate) negates each element in a vector, and places the results in a second vector.
(The floating-point version only inverts the sign bit.)

5.94.1 Syntax

VNEG{cond}.datatype Qd, Qm

VNEG{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, or F32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.94.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VNEG (floating-point) on page 5-103
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-104
ID012213 Non-Confidential

NEON and VFP Programming
5.95 VNMLA (floating-point)
Floating-point multiply accumulate with negation.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.95.1 Syntax

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLA{cond}.F64 Dd, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.95.2 Usage

The VNMLA instruction multiplies the values in the operand registers, adds the value to the
destination register, and places the negated final result in the destination register.

5.95.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.95.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-105
ID012213 Non-Confidential

NEON and VFP Programming
5.96 VNMLS (floating-point)
Floating-point multiply subtract with negation.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.96.1 Syntax

VNMLS{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F64 Dd, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.96.2 Usage

The VNMLS instruction multiplies the values in the operand registers, subtracts the result from the
value in the destination register, and places the negated final result in the destination register.

5.96.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.96.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-106
ID012213 Non-Confidential

NEON and VFP Programming
5.97 VNMUL (floating-point)
Floating-point multiply with negation.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.97.1 Syntax

VNMUL{cond}.F32 {Sd,} Sn, Sm

VNMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.97.2 Usage

The VNMUL instruction multiplies the values in the operand registers and places the negated result
in the destination register.

5.97.3 Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

5.97.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-107
ID012213 Non-Confidential

NEON and VFP Programming
5.98 VORN (register)
VORN (Bitwise OR NOT) performs a bitwise logical OR complement between two registers, and
places the results in the destination register.

5.98.1 Syntax

VORN{cond}{.datatype} {Qd}, Qn, Qm

VORN{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.98.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-108
ID012213 Non-Confidential

NEON and VFP Programming
5.99 VORN (immediate)
VORN (Bitwise OR NOT immediate) takes each element of the destination vector, performs a
bitwise OR complement with an immediate value, and returns the result in the destination
vector.

Note
 On disassembly, this pseudo-instruction is disassembled to a corresponding VORR instruction,
with a complementary immediate value.

5.99.1 Syntax

VORN{cond}.datatype Qd, #imm

VORN{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the NEON register for the result.

imm is the immediate value.

5.99.2 Immediate values

If datatype is I16, the immediate value must have one of the following forms:
• 0xFFXY

• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY

• 0xFFFFXYFF

• 0xFFXYFFFF

• 0xXYFFFFFF.

5.99.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VBIC (immediate) on page 5-31
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-109
ID012213 Non-Confidential

NEON and VFP Programming
5.100 VORR (register)
VORR (Bitwise OR) performs a bitwise logical OR between two registers, and places the result in
the destination register.

5.100.1 Syntax

VORR{cond}{.datatype} {Qd}, Qn, Qm

VORR{cond}{.datatype} {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

Note
 VORR with the same register for both operands is a VMOV instruction. You can use VORR in this way,
but disassembly of the resulting code produces the VMOV syntax.

5.100.2 See also

Reference
• VMOV (register) on page 5-87
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-110
ID012213 Non-Confidential

NEON and VFP Programming
5.101 VORR (immediate)
VORR (Bitwise OR immediate) takes each element of the destination vector, performs a bitwise
logical OR with an immediate value, and returns the result into the destination vector.

5.101.1 Syntax

VORR{cond}.datatype Qd, #imm

VORR{cond}.datatype Dd, #imm

where:

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the NEON register for the source and result.

imm is the immediate value.

5.101.2 Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination
register, or you can directly specify the immediate value (that conforms to the pattern) in full.
The pattern for imm depends on the datatype, as shown in Table 5-10:

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction
to match the pattern of imm. If the immediate value does not match any of the patterns in
Table 5-10, the assembler generates an error.

5.101.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VAND (immediate) on page 5-29
• Condition codes on page 3-32.

Table 5-10 Patterns for immediate value

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

0x00XY0000

0xXY000000
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-111
ID012213 Non-Confidential

NEON and VFP Programming
5.102 VPADAL
VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector,
and accumulates the absolute values of the results into the elements of the destination vector.

Figure 5-3 Example of operation of VPADAL (in this case for data type S16)

5.102.1 Syntax

VPADAL{cond}.datatype Qd, Qm

VPADAL{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm are the destination vector and the operand vector, for a doubleword instruction.

5.102.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Dd

Dm

+ +
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-112
ID012213 Non-Confidential

NEON and VFP Programming
5.103 VPADD
VPADD (Vector Pairwise Add) adds adjacent pairs of elements of two vectors, and places the
results in the destination vector.

Figure 5-4 Example of operation of VPADD (in this case, for data type I16)

5.103.1 Syntax

VPADD{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or F32.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector.

5.103.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Dd

DnDm

+ + ++
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-113
ID012213 Non-Confidential

NEON and VFP Programming
5.104 VPADDL
VPADDL (Vector Pairwise Add Long) adds adjacent pairs of elements of a vector, sign or zero
extends the results to twice their original width, and places the final results in the destination
vector.

Figure 5-5 Example of operation of doubleword VPADDL (in this case, for data type S16)

5.104.1 Syntax

VPADDL{cond}.datatype Qd, Qm

VPADDL{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm are the destination vector and the operand vector, for a doubleword instruction.

5.104.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Dd

Dm

+ +
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-114
ID012213 Non-Confidential

NEON and VFP Programming
5.105 VPMAX and VPMIN
VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors, and
copies the larger of each pair into the corresponding element in the destination vector. Operands
and results must be doubleword vectors.

VPMIN (Vector Pairwise Minimum) compares adjacent pairs of elements in two vectors, and
copies the smaller of each pair into the corresponding element in the destination vector.
Operands and results must be doubleword vectors.

5.105.1 Syntax

VPop{cond}.datatype Dd, Dn, Dm

where:

op must be either MAX or MIN.

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.

Dd, Dn, Dm are the destination doubleword vector, the first operand doubleword vector, and
the second operand doubleword vector.

5.105.2 Floating-point maximum and minimum

max(+0.0, –0.0) = +0.0.

min(+0.0, –0.0) = –0.0

If any input is a NaN, the corresponding result element is the default NaN.

5.105.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32
• VPADD on page 5-113.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-115
ID012213 Non-Confidential

NEON and VFP Programming
5.106 VPOP
Pop extension registers from the stack.

5.106.1 Syntax

VPOP{cond} Registers

where:

cond is an optional condition code.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S, D, or Q registers, but they must not be mixed. The number of
registers must not exceed 16 D registers, or 8 Q registers. If Q registers are
specified, on disassembly they are shown as D registers.

Note
 VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

5.106.2 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-116
ID012213 Non-Confidential

NEON and VFP Programming
5.107 VPUSH
Push extension registers onto the stack.

5.107.1 Syntax

VPUSH{cond} Registers

where:

cond is an optional condition code.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S, D, or Q registers, but they must not be mixed. The number of
registers must not exceed 16 D registers, or 8 Q registers. If Q registers are
specified, on disassembly they are shown as D registers.

Note
 VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

5.107.2 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-117
ID012213 Non-Confidential

NEON and VFP Programming
5.108 VQABS
VQABS (Vector Saturating Absolute) takes the absolute value of each element in a vector, and
places the results in a second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.108.1 Syntax

VQABS{cond}.datatype Qd, Qm

VQABS{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, or S32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.108.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-118
ID012213 Non-Confidential

NEON and VFP Programming
5.109 VQADD
VQADD (Vector Saturating Add) adds corresponding elements in two vectors, and places the
results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.109.1 Syntax

VQADD{cond}.datatype {Qd}, Qn, Qm

VQADD{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.109.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-119
ID012213 Non-Confidential

NEON and VFP Programming
5.110 VQDMLAL and VQDMLSL (by vector or by scalar)
Vector Saturating Doubling Multiply instructions multiply their operands and double the results.
VQDMLAL adds the results to the values in the destination register. VQDMLSL subtracts the results
from the values in the destination register.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs.

5.110.1 Syntax

VQDopL{cond}.datatype Qd, Dn, Dm

VQDopL{cond}.datatype Qd, Dn, Dm[x]

where:

op must be one of:
MLA Multiply Accumulate
MLS Multiply Subtract.

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Dn are the destination vector and the first operand vector.

Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

5.110.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-120
ID012213 Non-Confidential

NEON and VFP Programming
5.111 VQDMULH (by vector or by scalar)
Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in
two vectors, doubles the results, and places the most significant half of the final results in the
destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs. Each result is truncated.

5.111.1 Syntax

VQDMULH{cond}.datatype {Qd}, Qn, Qm

VQDMULH{cond}.datatype {Dd}, Dn, Dm

VQDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Qm or Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

5.111.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-121
ID012213 Non-Confidential

NEON and VFP Programming
5.112 VQDMULL (by vector or by scalar)
Vector Saturating Doubling Multiply multiplies corresponding elements in two vectors, doubles
the results and places the results in the destination register.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs.

5.112.1 Syntax

VQDMULL{cond}.datatype Qd, Dn, Dm

VQDMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Dn are the destination vector and the first operand vector.

Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

5.112.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-122
ID012213 Non-Confidential

NEON and VFP Programming
5.113 VQMOVN and VQMOVUN
VQMOVN (Vector Saturating Move and Narrow) copies each element of the operand vector to the
corresponding element of the destination vector. The result element is half the width of the
operand element, and values are saturated to the result width. The results are the same type as
the operands.

VQMOVUN (Vector Saturating Move and Narrow, signed operand with Unsigned result) copies each
element of the operand vector to the corresponding element of the destination vector. The result
element is half the width of the operand element, and values are saturated to the result width.

5.113.1 Syntax

VQMOVN{cond}.datatype Dd, Qm

VQMOVUN{cond}.datatype Dd, Qm

where:

cond is an optional condition code.

datatype must be one of:
S16, S32, S64 for VQMOVN or VQMOVUN
U16, U32, U64 for VQMOVN.

Dd, Qm specifies the destination vector and the operand vector.

5.113.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-123
ID012213 Non-Confidential

NEON and VFP Programming
5.114 VQNEG
VQNEG (Vector Saturating Negate) negates each element in a vector, and places the results in a
second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.114.1 Syntax

VQNEG{cond}.datatype Qd, Qm

VQNEG{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, or S32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.114.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-124
ID012213 Non-Confidential

NEON and VFP Programming
5.115 VQRDMULH (by vector or by scalar)
Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding
elements in two vectors, doubles the results, and places the most significant half of the final
results in the destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs. Each result is rounded.

5.115.1 Syntax

VQRDMULH{cond}.datatype {Qd}, Qn, Qm

VQRDMULH{cond}.datatype {Dd}, Dn, Dm

VQRDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQRDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Qm or Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

5.115.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-125
ID012213 Non-Confidential

NEON and VFP Programming
5.116 VQRSHL (by signed variable)
VQRSHL (Vector Saturating Rounding Shift Left by signed variable) takes each element in a
vector, shifts them by a value from the least significant byte of the corresponding element of a
second vector, and places the results in the destination vector. If the shift value is positive, the
operation is a left shift. Otherwise, it is a rounding right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.116.1 Syntax

VQRSHL{cond}.datatype {Qd}, Qm, Qn

VQRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dm, Dn are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.116.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-126
ID012213 Non-Confidential

NEON and VFP Programming
5.117 VQRSHRN and VQRSHRUN (by immediate)
VQRSHR{U}N (Vector Saturating Shift Right, Narrow, by immediate value, with Rounding) takes
each element in a quadword vector of integers, right shifts them by an immediate value, and
places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are rounded.

5.117.1 Syntax

VQRSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U if present, indicates that the results are unsigned, although the operands are
signed. Otherwise, the results are the same type as the operands.

cond is an optional condition code.

datatype must be one of:
I16, I32, I64 for VQRSHRN or VQRSHRUN. Only a #0 immediate is permitted

with these datatypes.
S16, S32, S64 for VQRSHRN or VQRSHRUN.
U16, U32, U64 for VQRSHRN only.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift, in the range
0 to (size(datatype) – 1). The ranges are shown in Table 5-11.

5.117.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-11 Available immediate ranges

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-127
ID012213 Non-Confidential

NEON and VFP Programming
5.118 VQSHL (by signed variable)
VQSHL (Vector Saturating Shift Left by signed variable) takes each element in a vector, shifts
them by a value from the least significant byte of the corresponding element of a second vector,
and places the results in the destination vector. If the shift value is positive, the operation is a
left shift. Otherwise, it is a truncating right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.118.1 Syntax

VQSHL{cond}.datatype {Qd}, Qm, Qn

VQSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dm, Dn are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.118.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-128
ID012213 Non-Confidential

NEON and VFP Programming
5.119 VQSHL and VQSHLU (by immediate)
VQSHL (Vector Saturating Shift Left) and VQSHLU (Vector Saturating Shift Left Unsigned)
instructions take each element in a vector of integers, left shift them by an immediate value, and
place the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.119.1 Syntax

VQSHL{U}{cond}.datatype {Qd}, Qm, #imm

VQSHL{U}{cond}.datatype {Dd}, Dm, #imm

where:

U only permitted if Q is also present. Indicates that the results are unsigned even
though the operands are signed.

cond is an optional condition code.

datatype must be one of :
S8, S16, S32, S64 for VQSHL or VQSHLU
U8, U16, U32, U64 for VQSHL only.

Qd, Qm are the destination and operand vectors, for a quadword operation.

Dd, Dm are the destination and operand vectors, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range 0 to
(size(datatype) – 1). The ranges are shown in Table 5-12.

5.119.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-12 Available immediate ranges

datatype imm range

S8 or U8 0 to 7

S16 or U16 0 to 15

S32 or U32 0 to 31

S64 or U64 0 to 63
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-129
ID012213 Non-Confidential

NEON and VFP Programming
5.120 VQSHRN and VQSHRUN (by immediate)
VQSHR{U}N (Vector Saturating Shift Right, Narrow, by immediate value) takes each element in a
quadword vector of integers, right shifts them by an immediate value, and places the results in
a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are truncated.

5.120.1 Syntax

VQSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U if present, indicates that the results are unsigned, although the operands are
signed. Otherwise, the results are the same type as the operands.

cond is an optional condition code.

datatype must be one of:
I16, I32, I64 for VQSHRN or VQSHRUN. Only a #0 immediate is permitted with

these datatypes.
S16, S32, S64 for VQSHRN or VQSHRUN
U16, U32, U64 for VQSHRN only.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-13.

5.120.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-13 Available immediate ranges

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-130
ID012213 Non-Confidential

NEON and VFP Programming
5.121 VQSUB
VSUB (Vector Saturating Subtract) subtracts the elements of one vector from the corresponding
elements of another vector, and places the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

5.121.1 Syntax

VQSUB{cond}.datatype {Qd}, Qn, Qm

VQSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.121.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-131
ID012213 Non-Confidential

NEON and VFP Programming
5.122 VRADDHN
VRADDHN (Vector Rounding Add and Narrow, selecting High half) adds corresponding elements
in two quadword vectors, selects the most significant halves of the results, and places the final
results in the destination doubleword vector. Results are rounded.

5.122.1 Syntax

VRADDHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector.

5.122.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-132
ID012213 Non-Confidential

NEON and VFP Programming
5.123 VRECPE
VRECPE (Vector Reciprocal Estimate) finds an approximate reciprocal of each element in a vector,
and places the results in a second vector.

5.123.1 Syntax

VRECPE{cond}.datatype Qd, Qm

VRECPE{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be either U32 or F32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.123.2 Results for out-of-range inputs

Table 5-14 shows the results where input values are out of range.

5.123.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-14 Results for out-of-range inputs

Operand element Result element

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Negative 0, Negative Denormal Negative Infinity a

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

Positive 0, Positive Denormal Positive Infinity a

Positive infinity Positive 0

Negative infinity Negative 0
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-133
ID012213 Non-Confidential

NEON and VFP Programming
5.124 VRECPS
VRECPS (Vector Reciprocal Step) multiplies the elements of one vector by the corresponding
elements of another vector, subtracts each of the results from 2, and places the final results into
the elements of the destination vector.

5.124.1 Syntax

VRECPS{cond}.F32 {Qd}, Qn, Qm

VRECPS{cond}.F32 {Dd}, Dn, Dm

where:

cond is an optional condition code.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.124.2 Results for out-of-range inputs

Table 5-15 shows the results where input values are out of range.

5.124.3 Usage

The Newton-Raphson iteration:

xn+1 = xn(2-dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

5.124.4 See also

Reference
• Condition codes on page 3-32.

Table 5-15 Results for out-of-range inputs

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

+/– 0.0 or denormal +/– infinity 2.0

+/– infinity +/– 0.0 or denormal 2.0
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-134
ID012213 Non-Confidential

NEON and VFP Programming
5.125 VREV16, VREV32, and VREV64
VREV16 (Vector Reverse within halfwords) reverses the order of 8-bit elements within each
halfword of the vector, and places the result in the corresponding destination vector.

VREV32 (Vector Reverse within words) reverses the order of 8-bit or 16-bit elements within each
word of the vector, and places the result in the corresponding destination vector.

VREV64 (Vector Reverse within doublewords) reverses the order of 8-bit, 16-bit, or 32-bit
elements within each doubleword of the vector, and places the result in the corresponding
destination vector.

5.125.1 Syntax

VREVn{cond}.size Qd, Qm

VREVn{cond}.size Dd, Dm

where:

n must be one of 16, 32, or 64.

cond is an optional condition code.

size must be one of 8, 16, or 32, and must be less than n.

Qd, Qm specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm specifies the destination vector and the operand vector, for a doubleword
operation.

5.125.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-135
ID012213 Non-Confidential

NEON and VFP Programming
5.126 VRHADD
VRHADD (Vector Rounding Halving Add) adds corresponding elements in two vectors, shifts each
result right one bit, and places the results in the destination vector. Results are rounded.

5.126.1 Syntax

VRHADD{cond}.datatype {Qd}, Qn, Qm

VRHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.126.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-136
ID012213 Non-Confidential

NEON and VFP Programming
5.127 VRSHL (by signed variable)
VRSHL (Vector Rounding Shift Left by signed variable) takes each element in a vector, shifts them
by a value from the least significant byte of the corresponding element of a second vector, and
places the results in the destination vector. If the shift value is positive, the operation is a left
shift. Otherwise, it is a rounding right shift.

5.127.1 Syntax

VRSHL{cond}.datatype {Qd}, Qm, Qn

VRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dm, Dn are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.127.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-137
ID012213 Non-Confidential

NEON and VFP Programming
5.128 VRSHR (by immediate)
VRSHR (Vector Rounding Shift Right by immediate value) takes each element in a vector, right
shifts them by an immediate value, and places the results in the destination vector. The results
are rounded.

5.128.1 Syntax

VRSHR{cond}.datatype {Qd}, Qm, #imm

VRSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range
0 to (size(datatype)). The ranges are shown in Table 5-16.

VRSHR with an immediate value of zero is a pseudo-instruction for VMOV.

5.128.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VMOV (register) on page 5-87
• Condition codes on page 3-32.

Table 5-16 Available immediate ranges

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-138
ID012213 Non-Confidential

NEON and VFP Programming
5.129 VRSHRN (by immediate)
VRSHRN (Vector Rounding Shift Right, Narrow, by immediate value) takes each element in a
quadword vector, right shifts them by an immediate value, and places the results in a
doubleword vector. The results are rounded.

5.129.1 Syntax

VRSHRN{cond}.datatype Dd, Qm, #imm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift, in the range
0 to (size(datatype)/2). The ranges are shown in Table 5-17.

VRSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

5.129.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VMOVN on page 5-92
• Condition codes on page 3-32.

Table 5-17 Available immediate ranges

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-139
ID012213 Non-Confidential

NEON and VFP Programming
5.130 VRSQRTE
VRSQRTE (Vector Reciprocal Square Root Estimate) finds an approximate reciprocal square root
of each element in a vector, and places the results in a second vector.

5.130.1 Syntax

VRSQRTE{cond}.datatype Qd, Qm

VRSQRTE{cond}.datatype Dd, Dm

where:

cond is an optional condition code.

datatype must be either U32 or F32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

5.130.2 Results for out-of-range inputs

Table 5-18 shows the results where input values are out of range.

5.130.3 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-18 Results for out-of-range inputs

Operand element Result element

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, Negative Normal, Negative Infinity Default NaN

Negative 0, Negative Denormal Negative Infinity a

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

Positive 0, Positive Denormal Positive Infinity a

Positive infinity Positive 0

Negative 0
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-140
ID012213 Non-Confidential

NEON and VFP Programming
5.131 VRSQRTS
VRSQRTS (Vector Reciprocal Square Root Step) multiplies the elements of one vector by the
corresponding elements of another vector, subtracts each of the results from 3, divides these
results by two, and places the final results into the elements of the destination vector.

5.131.1 Syntax

VRSQRTS{cond}.F32 {Qd}, Qn, Qm

VRSQRTS{cond}.F32 {Dd}, Dn, Dm

where:

cond is an optional condition code.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.131.2 Results for out-of-range inputs

Table 5-19 shows the results where input values are out of range.

5.131.3 Usage

The Newton-Raphson iteration:

xn+1 = xn(3-dxn2)/2

converges to (1/√d)if x0 is the result of VRSQRTE applied to d.

5.131.4 See also

Reference
• Condition codes on page 3-32.

Table 5-19 Results for out-of-range inputs

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

+/– 0.0 or denormal +/– infinity 1.5

+/– infinity +/– 0.0 or denormal 1.5
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-141
ID012213 Non-Confidential

NEON and VFP Programming
5.132 VRSRA (by immediate)
VRSRA (Vector Rounding Shift Right by immediate value and Accumulate) takes each element in
a vector, right shifts them by an immediate value, and accumulates the results into the
destination vector. The results are rounded.

5.132.1 Syntax

VRSRA{cond}.datatype {Qd}, Qm, #imm

VRSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range
1 to (size(datatype)). The ranges are shown in Table 5-20.

5.132.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-20 Available immediate ranges

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-142
ID012213 Non-Confidential

NEON and VFP Programming
5.133 VRSUBHN
VRSUBHN (Vector Rounding Subtract and Narrow, selecting High half) subtracts the elements of
one quadword vector from the corresponding elements of another quadword vector, selects the
most significant halves of the results, and places the final results in the destination doubleword
vector. Results are rounded.

5.133.1 Syntax

VRSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector.

5.133.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-143
ID012213 Non-Confidential

NEON and VFP Programming
5.134 VSHL (by immediate)
VSHL (Vector Shift Left by immediate) takes each element in a vector of integers, left shifts them
by an immediate value, and places the results in the destination vector.

Bits shifted out of the left of each element are lost.

Figure 5-6 shows the operation of VSHL with two elements and a shift value of one. The least
significant bit in each element in the destination vector is set to zero.

Figure 5-6 Operation of quadword VSHL.64 Qd, Qm, #1

5.134.1 Syntax

VSHL{cond}.datatype {Qd}, Qm, #imm

VSHL{cond}.datatype {Dd}, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or I64.

Qd, Qm are the destination and operand vectors, for a quadword operation.

Dd, Dm are the destination and operand vectors, for a doubleword operation.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-21.

5.134.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Qd

Qm
Element 0

0

Element 1

0

... ...

Table 5-21 Available immediate ranges

datatype imm range

I8 0 to 7

I16 0 to 15

I32 0 to 31

I64 0 to 63
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-144
ID012213 Non-Confidential

NEON and VFP Programming
Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-145
ID012213 Non-Confidential

NEON and VFP Programming
5.135 VSHL (by signed variable)
VSHL (Vector Shift Left by signed variable) takes each element in a vector, shifts them by a value
from the least significant byte of the corresponding element of a second vector, and places the
results in the destination vector. If the shift value is positive, the operation is a left shift.
Otherwise, it is a truncating right shift.

5.135.1 Syntax

VSHL{cond}.datatype {Qd}, Qm, Qn

VSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dm, Dn are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

5.135.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-146
ID012213 Non-Confidential

NEON and VFP Programming
5.136 VSHLL (by immediate)
VSHLL (Vector Shift Left Long) takes each element in a vector of integers, left shifts them by an
immediate value, and places the results in the destination vector. Values are sign or zero
extended.

5.136.1 Syntax

VSHLL{cond}.datatype Qd, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dm are the destination and operand vectors, for a long operation.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-22.

0 is permitted, but the resulting code disassembles to VMOVL.

5.136.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-22 Available immediate ranges

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-147
ID012213 Non-Confidential

NEON and VFP Programming
5.137 VSHR (by immediate)
VSHR (Vector Shift Right by immediate value) takes each element in a vector, right shifts them
by an immediate value, and places the results in the destination vector. The results are truncated.

5.137.1 Syntax

VSHR{cond}.datatype {Qd}, Qm, #imm

VSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-23.

VSHR with an immediate value of zero is a pseudo-instruction for VMOV.

5.137.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VMOV (register) on page 5-87
• Condition codes on page 3-32.

Table 5-23 Available immediate ranges

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-148
ID012213 Non-Confidential

NEON and VFP Programming
5.138 VSHRN (by immediate)
VSHRN (Vector Shift Right, Narrow, by immediate value) takes each element in a quadword
vector, right shifts them by an immediate value, and places the results in a doubleword vector.
The results are truncated.

5.138.1 Syntax

VSHRN{cond}.datatype Dd, Qm, #imm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-24.

VSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

5.138.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• VMOVN on page 5-92
• Condition codes on page 3-32.

Table 5-24 Available immediate ranges

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-149
ID012213 Non-Confidential

NEON and VFP Programming
5.139 VSLI
VSLI (Vector Shift Left and Insert) takes each element in a vector, left shifts them by an
immediate value, and inserts the results in the destination vector. Bits shifted out of the left of
each element are lost. Figure 5-7 shows the operation of VSLI with two elements and a shift value
of one. The least significant bit in each element in the destination vector is unchanged.

Figure 5-7 Operation of quadword VSLI.64 Qd, Qm, #1

5.139.1 Syntax

VSLI{cond}.size {Qd}, Qm, #imm

VSLI{cond}.size {Dd}, Dm, #imm

where:

cond is an optional condition code.

size must be one of 8, 16, 32, or 64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range 0 to (size – 1).

5.139.2 See also

Reference
• Condition codes on page 3-32.

Qd

Qm
Element 0Element 1

... ...

Unchanged
bit

Unchanged
bit
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-150
ID012213 Non-Confidential

NEON and VFP Programming
5.140 VSQRT
Floating-point square root.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.140.1 Syntax

VSQRT{cond}.F32 Sd, Sm

VSQRT{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd, Sm are the single-precision registers for the result and operand.

Dd, Dm are the double-precision registers for the result and operand.

5.140.2 Usage

The VSQRT instruction takes the square root of the contents of Sm or Dm, and places the result in Sd
or Dd.

5.140.3 Floating-point exceptions

VSQRT instructions can produce Invalid Operation or Inexact exceptions.

5.140.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-151
ID012213 Non-Confidential

NEON and VFP Programming
5.141 VSRA (by immediate)
VSRA (Vector Shift Right by immediate value and Accumulate) takes each element in a vector,
right shifts them by an immediate value, and accumulates the results into the destination vector.
The results are truncated.

5.141.1 Syntax

VSRA{cond}.datatype {Qd}, Qm, #imm

VSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 5-25.

5.141.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.

Table 5-25 Available immediate ranges

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-152
ID012213 Non-Confidential

NEON and VFP Programming
5.142 VSRI
VSRI (Vector Shift Right and Insert) takes each element in a vector, right shifts them by an
immediate value, and inserts the results in the destination vector. Bits shifted out of the right of
each element are lost. Figure 5-8 shows the operation of VSRI with a single element and a shift
value of two. The two most significant bits in the destination vector are unchanged.

Figure 5-8 Operation of doubleword VSRI.64 Dd, Dm, #2

5.142.1 Syntax

VSRI{cond}.size {Qd}, Qm, #imm

VSRI{cond}.size {Dd}, Dm, #imm

where:

cond is an optional condition code.

size must be one of 8, 16, 32, or 64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range 1 to size.

5.142.2 See also

Reference
• Condition codes on page 3-32.

Dd

Dm
Element 0

... ...

Unchanged
bits
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-153
ID012213 Non-Confidential

NEON and VFP Programming
5.143 VSTM
Extension register store multiple.

5.143.1 Syntax

VSTMmode{cond} Rn{!}, Registers

where:

mode must be one of:
IA meaning Increment address After each transfer. IA is the default, and

can be omitted.
DB meaning Decrement address Before each transfer.
EA meaning Empty Ascending stack operation. This is the same as IA for

stores.
FD meaning Full Descending stack operation. This is the same as DB for

stores.

cond is an optional condition code.

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be written back to Rn.
If ! is not specified, mode must be IA.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S, D, or Q registers, but they must not be mixed. The number of
registers must not exceed 16 D registers, or 8 Q registers. If Q registers are
specified, on disassembly they are shown as D registers.

Note
 VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

5.143.2 See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-154
ID012213 Non-Confidential

NEON and VFP Programming
5.144 VSTn (multiple n-element structures)
Vector Store multiple n-element structures. It stores multiple n-element structures to memory
from one or more NEON registers, with interleaving (unless n == 1). Every element of each
register is stored.

5.144.1 Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 5-26 for options.

list specifies the NEON register list. See Table 5-26 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 5-26 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the stores have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 5-26 Permitted combinations of parameters

n datatype list a

a. Every register in the list must be in the range D0-D31.

align b

b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and
store, element and structure instructions on page 5-16.

alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-155
ID012213 Non-Confidential

NEON and VFP Programming
5.144.2 See also

Reference
• Condition codes on page 3-32
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to one lane) on page 5-64
• VLDn (single n-element structure to all lanes) on page 5-66.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-156
ID012213 Non-Confidential

NEON and VFP Programming
5.145 VSTn (single n-element structure to one lane)
Vector Store single n-element structure to one lane. It stores one n-element structure into
memory from one or more NEON registers.

5.145.1 Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 5-27.

list specifies the NEON register list. See Table 5-27 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 5-27 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the stores have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 5-27 Permitted combinations of parameters

n datatype list a align b alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

16 {Dd[x], D(d+1)[x]} @32 4-byte

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-157
ID012213 Non-Confidential

NEON and VFP Programming
5.145.2 See also

Reference
• Condition codes on page 3-32
• Interleaving provided by load and store, element and structure instructions on page 5-15
• Alignment restrictions in load and store, element and structure instructions on page 5-16
• VLDn (single n-element structure to all lanes) on page 5-66
• VLDn (multiple n-element structures) on page 5-68.

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 5-16.

Table 5-27 Permitted combinations of parameters (continued)

n datatype list a align b alignment
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-158
ID012213 Non-Confidential

NEON and VFP Programming
5.146 VSTR
Extension register store.

5.146.1 Syntax

VSTR{cond}{.size} Fd, [Rn{, #offset}]

VSTR{cond}{.size} Fd, label

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd is the extension register to be saved. For a NEON instruction, it must be a D
register. For a VFP instruction, it can be either a D or S register.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must evaluate to a numeric value at assembly
time. The value must be a multiple of 4, and lie in the range –1020 to +1020. The
value is added to the base address to form the address used for the transfer.

label is a PC-relative expression.
label must be aligned on a word boundary within ±1KB of the current instruction.

5.146.2 Usage

The VSTR instruction saves the contents of an extension register to memory.

One word is transferred if Fd is an S register (VFP only). Two words are transferred otherwise.

5.146.3 See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32
• VLDR pseudo-instruction on page 5-73.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-159
ID012213 Non-Confidential

NEON and VFP Programming
5.147 VSTR (post-increment and pre-decrement)
Pseudo-instruction that stores extension registers with post-increment and pre-decrement.

Note
 There are also VLDR and VSTR instructions without post-increment and pre-decrement.

5.147.1 Syntax

VSTR{cond}{.size} Fd, [Rn], #offset ; post-increment

VSTR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a
D register.

Fd is the extension register to be saved. For a NEON instruction, it must be a
doubleword (Dd) register. For a VFP instruction, it can be either a double precision
(Dd) or a single precision (Sd) register.

Rn is the ARM register holding the base address for the transfer.

offset is a numeric expression that must evaluate to a numeric value at assembly time.
The value must be 4 if Fd is an S register, or 8 if Fd is a D register.

5.147.2 Usage

The post-increment instruction increments the base address in the register by the offset value,
after the transfer. The pre-decrement instruction decrements the base address in the register by
the offset value, and then performs the transfer using the new address in the register. This
pseudo-instruction assembles to a VSTM instruction.

5.147.3 See also

Reference
• VSTR on page 5-159
• VSTM on page 5-154
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-160
ID012213 Non-Confidential

NEON and VFP Programming
5.148 VSUB (floating-point)
Floating-point subtract.

This instruction can be scalar, vector, or mixed, but VFP vector mode and mixed mode are
deprecated.

5.148.1 Syntax

VSUB{cond}.F32 {Sd}, Sn, Sm

VSUB{cond}.F64 {Dd}, Dn, Dm

where:

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

5.148.2 Usage

The VSUB instruction subtracts the value in the second operand register from the value in the first
operand register, and places the result in the destination register.

5.148.3 Floating-point exceptions

The VSUB instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

5.148.4 See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-34.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-161
ID012213 Non-Confidential

NEON and VFP Programming
5.149 VSUB (integer)
VSUB (Vector Subtract) subtracts the elements of one vector from the corresponding elements of
another vector, and places the results in the destination vector.

5.149.1 Syntax

VSUB{cond}.datatype {Qd}, Qn, Qm

VSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond is an optional condition code.

datatype must be one of I8, I16, I32, or I64.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

5.149.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-162
ID012213 Non-Confidential

NEON and VFP Programming
5.150 VSUBHN
VSUBHN (Vector Subtract and Narrow, selecting High half) subtracts the elements of one
quadword vector from the corresponding elements of another quadword vector, selects the most
significant halves of the results, and places the final results in the destination doubleword vector.
Results are truncated.

5.150.1 Syntax

VSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector.

5.150.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-163
ID012213 Non-Confidential

NEON and VFP Programming
5.151 VSUBL and VSUBW
VSUBL (Vector Subtract Long) subtracts the elements of one doubleword vector from the
corresponding elements of another doubleword vector, and places the results in the destination
quadword vector.

VSUBW (Vector Subtract Wide) subtracts the elements of a doubleword vector from the
corresponding elements of a quadword vector, and places the results in the destination quadword
vector.

5.151.1 Syntax

VSUBL{cond}.datatype Qd, Dn, Dm ; Long instruction

VSUBW{cond}.datatype {Qd}, Qn, Dm ; Wide instruction

where:

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

Qd, Qn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a wide operation.

5.151.2 See also

Concepts
Using the Assembler:
• NEON and VFP data types on page 9-13.

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-164
ID012213 Non-Confidential

NEON and VFP Programming
5.152 VSWP
VSWP (Vector Swap) exchanges the contents of two vectors. The vectors can be either
doubleword or quadword. There is no distinction between data types.

5.152.1 Syntax

VSWP{cond}{.datatype} Qd, Qm

VSWP{cond}{.datatype} Dd, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qm specifies the vectors for a quadword operation.

Dd, Dm specifies the vectors for a doubleword operation.

5.152.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-165
ID012213 Non-Confidential

NEON and VFP Programming
5.153 VTBL and VTBX
VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values in a table
and generate a new vector. Indexes out of range return 0.

VTBX (Vector Table Extension) works in the same way, except that indexes out of range leave the
destination element unchanged.

5.153.1 Syntax

Vop{cond}.8 Dd, list, Dm

where:

op must be either TBL or TBX.

cond is an optional condition code.

Dd specifies the destination vector.

list Specifies the vectors containing the table. It must be one of:
• {Dn}

• {Dn,D(n+1)}

• {Dn,D(n+1),D(n+2)}

• {Dn,D(n+1),D(n+2),D(n+3)}

• {Qn,Q(n+1)}.
All the registers in list must be in the range D0-D31 or Q0-Q15 and must not
wraparound the end of the register bank. For example {D31,D0,D1} is not
permitted. If list contains Q registers, they disassemble to the equivalent D
registers.

Dm specifies the index vector.

5.153.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-166
ID012213 Non-Confidential

NEON and VFP Programming
5.154 VTRN
VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices,
and transposes the matrices. Figure 5-9 and Figure 5-10 show examples of the operation of VTRN.

Figure 5-9 Operation of doubleword VTRN.8

Figure 5-10 Operation of doubleword VTRN.32

5.154.1 Syntax

VTRN{cond}.size Qd, Qm

VTRN{cond}.size Dd, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qm specifies the vectors, for a quadword operation.

Dd, Dm specifies the vectors, for a doubleword operation.

5.154.2 See also

Reference
• Condition codes on page 3-32.

Dd

Dm
017 6 5 4 3 2

Dd

Dm
01
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-167
ID012213 Non-Confidential

NEON and VFP Programming
5.155 VTST
VTST (Vector Test Bits) takes each element in a vector, and bitwise logical ANDs them with the
corresponding element of a second vector. If the result is not zero, the corresponding element in
the destination vector is set to all ones. Otherwise, it is set to all zeros.

5.155.1 Syntax

VTST{cond}.size {Qd}, Qn, Qm

VTST{cond}.size {Dd}, Dn, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

5.155.2 See also

Reference
• Condition codes on page 3-32.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-168
ID012213 Non-Confidential

NEON and VFP Programming
5.156 VUZP
VUZP (Vector Unzip) de-interleaves the elements of two vectors.

De-interleaving is the inverse process of interleaving.

5.156.1 Syntax

VUZP{cond}.size Qd, Qm

VUZP{cond}.size Dd, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qm specifies the vectors, for a quadword operation.

Dd, Dm specifies the vectors, for a doubleword operation.

Note
 The following are all the same instruction:
• VZIP.32 Dd, Dm

• VUZP.32 Dd, Dm
• VTRN.32 Dd, Dm

The instruction is disassembled as VTRN.32 Dd, Dm.

5.156.2 See also

Reference
• De-interleaving an array of 3-element structures on page 5-15
• VTRN on page 5-167
• Condition codes on page 3-32.

Table 5-28 Operation of doubleword VUZP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1

Table 5-29 Operation of quadword VUZP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B2 B0 A2 A0

Qm B3 B2 B1 B0 B3 B1 A3 A1
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-169
ID012213 Non-Confidential

NEON and VFP Programming
5.157 VZIP
VZIP (Vector Zip) interleaves the elements of two vectors.

5.157.1 Syntax

VZIP{cond}.size Qd, Qm

VZIP{cond}.size Dd, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qm specifies the vectors, for a quadword operation.

Dd, Dm specifies the vectors, for a doubleword operation.

Note
 The following are all the same instruction:
• VZIP.32 Dd, Dm

• VUZP.32 Dd, Dm
• VTRN.32 Dd, Dm

The instruction is disassembled as VTRN.32 Dd, Dm.

5.157.2 See also

Reference
• De-interleaving an array of 3-element structures on page 5-15
• VTRN on page 5-167
• Condition codes on page 3-32.

Table 5-30 Operation of doubleword VZIP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B3 A3 B2 A2 B1 A1 B0 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 A7 B6 A6 B5 A5 B4 A4

Table 5-31 Operation of quadword VZIP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B1 A1 B0 A0

Qm B3 B2 B1 B0 B3 A3 B2 A2
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 5-170
ID012213 Non-Confidential

Chapter 6
Wireless MMX Technology Instructions

The following topics describe support for Wireless MMX Technology instructions:
• About Wireless MMX Technology instructions on page 6-2
• ARM support for Wireless MMX Technology on page 6-3
• Directives, WRN and WCN, to support Wireless MMX Technology on page 6-4
• Frame directives and Wireless MMX Technology on page 6-5
• Wireless MMX load and store instructions on page 6-6
• Wireless MMX Technology and XScale instructions on page 6-8
• Wireless MMX instructions on page 6-9
• Wireless MMX pseudo-instructions on page 6-11.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-1
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.1 About Wireless MMX Technology instructions
Marvell Wireless MMX Technology is a set of Single Instruction Multiple Data (SIMD)
instructions available on selected XScale processors that improve the performance of some
multimedia applications. Wireless MMX Technology uses 64-bit registers to enable it to operate
on multiple data elements in a packed format.

The assembler supports Marvell Wireless MMX Technology instructions to assemble code to
run on the PXA270 processor. This processor implements ARMv5TE architecture, with MMX
extensions. Wireless MMX Technology uses ARM coprocessors 0 and 1 to support its
instruction set and data types. ARM Compiler toolchain supports Wireless MMX Technology
Control and Single Instruction Multiple Data (SIMD) Data registers, and include new directives
for Wireless MMX Technology development. There is also enhanced support for load and store
instructions.

When using the assembler, be aware that:

• Wireless MMX Technology instructions are only assembled if you specify the supported
processor (armasm --device PXA270).

• The PXA270 processor supports code written in ARM or Thumb only.

• Most Wireless MMX Technology instructions can be executed conditionally, depending
on the state of the ARM flags. The Wireless MMX Technology condition codes are
identical to the ARM condition codes.

Wireless MMX 2 Technology is an upgraded version of Wireless MMX Technology.

This contains information on the Wireless MMX Technology support provided by the assembler
in the ARM Compiler toolchain. It does not provide a detailed description of the Wireless MMX
Technology. Wireless MMX Technology Developer Guide contains information about the
programmers’ model and a full description of the Wireless MMX Technology instruction set.

6.1.1 See also

Reference
• Directives, WRN and WCN, to support Wireless MMX Technology on page 6-4
• Frame directives and Wireless MMX Technology on page 6-5
• Wireless MMX load and store instructions on page 6-6
• Wireless MMX Technology and XScale instructions on page 6-8.

Other information
• Wireless MMX Technology Developer Guide.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-2
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.2 ARM support for Wireless MMX Technology
The following topics give information on the assembler support for Wireless MMX and MMX 2
Technology:
• Directives, WRN and WCN, to support Wireless MMX Technology on page 6-4
• Frame directives and Wireless MMX Technology on page 6-5
• Wireless MMX load and store instructions on page 6-6
• Wireless MMX Technology and XScale instructions on page 6-8.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-3
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.3 Directives, WRN and WCN, to support Wireless MMX Technology
The following directives are available to support Wireless MMX Technology:

WCN Defines a name for a specified Control register, for example:
speed WCN wcgr0 ; defines speed as a symbol for control reg 0

WRN Defines a name for a specified SIMD Data register, for example:
rate WRN wr6 ; defines rate as a symbol for data reg 6

Avoid conflicting uses of the same register under different names. Do not use any of the
predefined register and coprocessor names.

6.3.1 See also

Concepts
• About Wireless MMX Technology instructions on page 6-2

Reference
• ARM support for Wireless MMX Technology on page 6-3
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-4
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.4 Frame directives and Wireless MMX Technology
Wireless MMX Technology registers can be used with FRAME directives in the same way as ARM
registers to add debug information into your object files. Be aware of the following restrictions:

• A warning is given if you try to push Wireless MMX Technology registers wR0 - wR9 or
wCGR0 - wCGR3 onto the stack.

• Wireless MMX Technology registers cannot be used as address offsets.

6.4.1 See also

Concepts
• About Wireless MMX Technology instructions on page 6-2

Reference
• ARM support for Wireless MMX Technology on page 6-3
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-5
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.5 Wireless MMX load and store instructions
Load and store byte, halfword, word or doublewords to and from Wireless MMX coprocessor
registers.

6.5.1 Syntax

op<type>{cond} wRd, [Rn, #{-}offset]{!}

op<type>{cond} wRd, [Rn] {, #{-}offset}

opW{cond} wRd, label

opW wCd, [Rn, #{-}offset]{!}

opW wCd, [Rn] {, #{-}offset}

opD{cond} wRd, label

opD wRd, [Rn, {-}Rm {, LSL #imm4}]{!} ; MMX2 only

opD wRd, [Rn], {-}Rm {, LSL #imm4} ; MMX2 only

where:

op can be either:
WLDR Load Wireless MMX Register
WSTR Store Wireless MMX Register.

<type> can be any one of:
B Byte
H Halfword
W Word
D Doubleword.

cond is an optional condition code.

wRd is the Wireless MMX SIMD data register to load or save.

wCd is the Wireless MMX Status and Control register to load or save.

Rn is the register on which the memory address is based.

offset is an immediate offset. If offset is omitted, the instruction is a zero offset
instruction.

! is an optional suffix. If ! is present, the instruction is a pre-indexed instruction.

label is a PC-relative expression.
label must be within +/- 1020 bytes of the current instruction.

Rm is a register containing a value to be used as the offset. Rm must not be PC.

imm4 contains the number of bits to shift Rm left, in the range 0-15.

6.5.2 Loading constants into SIMD registers

The assembler also supports the WLDRW and WLDRD literal load pseudo-instructions, for example:

WLDRW wr0, =0x114
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-6
ID012213 Non-Confidential

Wireless MMX Technology Instructions
Be aware that:

• The assembler cannot load byte and halfword literals. These produce a downgradable
error. If downgraded, the instruction is converted to a WLDRW and a 32-bit literal is
generated. This is the same as a byte literal load, but uses a 32-bit word instead.

• If the literal to be loaded is zero, and the destination is a SIMD Data register, the assembler
converts the instruction to a WZERO.

• Doubleword loads must be 8-byte aligned.

6.5.3 See also

Concepts
• About Wireless MMX Technology instructions on page 6-2

Reference
• ARM support for Wireless MMX Technology on page 6-3
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-7
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.6 Wireless MMX Technology and XScale instructions
Wireless MMX Technology instructions overlap with XScale instructions. To avoid conflicts,
the assembler has the following restrictions:

• You cannot mix the XScale instructions with Wireless MMX Technology instructions in
the same assembly.

• Wireless MMX Technology TMIA instructions have a MIA mnemonic that overlaps with the
XScale MIA instructions. Be aware that:
— MIA acc0, Rm, Rs is accepted in XScale, but faulted in Wireless MMX Technology.
— MIA wR0, Rm, Rs and TMIA wR0, Rm, Rs are accepted in Wireless MMX Technology.
— TMIA acc0, Rm, Rs is faulted in XScale (XScale has no TMIA instruction).

6.6.1 See also

Concepts
Using the Assembler:
• Predeclared XScale register names on page 3-15
• Register-relative and PC-relative expressions on page 8-7.

Reference
• Condition codes on page 3-32
• MIA, MIAPH, and MIAxy on page 3-114
• MAR on page 3-111
• ARM support for Wireless MMX Technology on page 6-3
• About frame directives on page 7-6
• FRAME PUSH on page 7-39
• FRAME ADDRESS on page 7-37
• FRAME RETURN ADDRESS on page 7-42.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-8
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.7 Wireless MMX instructions
Table 6-1 gives a list of the Wireless MMX Technology instruction set. The instructions are
described in Wireless MMX Technology Developer Guide. Wireless MMX Technology registers
are indicated by wRn, wRd, and ARM registers are shown as Rn, Rd.

Table 6-1 Wireless MMX Technology instructions

Mnemonic Example

TANDC TANDCB r15

TBCST TBCSTB wr15, r1

TEXTRC TEXTRCB r15, #0

TEXTRM TEXTRMUBCS r3, wr7, #7

TINSR TINSRB wr6, r11, #0

TMIA, TMIAPH,

TMIAxy

TMIANE wr1, r2, r3
TMIAPH wr4, r5, r6
TMIABB wr4, r5, r6
MIAPHNE wr4, r5, r6

TMOVMSK TMOVMSKBNE r14, wr15

TORC TORCB r15

WACC WACCBGE wr1, wr2

WADD WADDBGE wr1, wr2, wr13

WALIGNI, WALIGNR WALIGNI wr7, wr6, wr5,#3
WALIGNR0 wr4, wr8, wr12

WAND, WANDN WAND wr1, wr2, wr3
WANDN wr5, wr5, wr9

WAVG2 WAVG2B wr3, wr6, wr9
WAVG2BR wr4, wr7, wr10

WCMPEQ WCMPEQB wr0, wr4, wr2

WCMPGT WCMPGTUB wr0, wr4, wr2

WLDR WLDRB wr1, [r2, #0]

WMAC WMACU wr3, wr4, wr5

WMADD WMADDU wr3, wr4, wr5

WMAX, WMIN WMAXUB wr0, wr4, wr2
WMINSB wr0, wr4, wr2

WMUL WMULUL wr4, wr2, wr3

WOR WOR wr3, wr1, wr4

WPACK WPACKHUS wr2, wr7, wr1

WROR WRORH wr3, wr1, wr4

WSAD WSADB wr3, wr5, wr8

WSHUFH WSHUFH wr8, wr15, #17
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-9
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.7.1 See also

Concepts
• About Wireless MMX Technology instructions on page 6-2

Reference
• Wireless MMX pseudo-instructions on page 6-11.

Other information
• Wireless MMX Technology Developer Guide.

WSLL, WSRL WSLLH wr3, wr1, wr4
WSRLHG wr3, wr1, wcgr0

WSRA WSRAH wr3, wr1, wr4
WSRAHG wr3, wr1, wcgr0

WSTR WSTRB wr1, [r2, #0]
WSTRW wc1, [r2, #0]

WSUB WSUBBGE wr1, wr2, wr13

WUNPCKEH, WUNPCKEL WUNPCKEHUB wr0, wr4
WUNPCKELSB wr0, wr4

WUNPCKIH, WUNPCKIL WUNPCKIHB wr0, wr4, wr2
WUNPCKILH wr1, wr5, wr3

WXOR WXOR wr3, wr1, wr4

Table 6-1 Wireless MMX Technology instructions (continued)

Mnemonic Example
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-10
ID012213 Non-Confidential

Wireless MMX Technology Instructions
6.8 Wireless MMX pseudo-instructions
Table 6-2 gives an overview of the Wireless MMX Technology pseudo-instructions. These
instructions are described in the Wireless MMX Technology Developer Guide.

6.8.1 See also

Reference
• Chapter 3 ARM and Thumb Instructions.

Other information
• Wireless MMX Technology Developer Guide.

Table 6-2 Wireless MMX Technology pseudo-instructions

Mnemonic Brief description Example

TMCR Moves the contents of source register, Rn, to Control register, wCn. Maps onto
the ARM MCR coprocessor instruction (page 3-112).

TMCR wc1, r10

TMCRR Moves the contents of two source registers, RnLo and RnHi, to destination
register, wRd. Do not use R15 for either RnLo or RnHi. Maps onto the ARM MCRR
coprocessor instruction (page 3-112).

TMCRR wr4, r5, r6

TMRC Moves the contents of Control register, wCn, to destination register, Rd. Do not
use R15 for Rd. Maps onto the ARM MRC coprocessor instruction
(page 3-124).

TMRC r1, wc2

TMRRC Moves the contents of source register, wRn, to two destination registers, RdLo
and RdHi. Do not use R15 for either destination register. RdLo and RdHi must
be distinct registers. Maps onto the ARM MRRC coprocessor instruction
(page 3-124).

TMRRC r1, r0, wr2

WMOV Moves the contents of source register, wRn, to destination register, wRd. This
instruction is a form of WOR (see Table 6-1 on page 6-9).

WMOV wr1, wr8

WZERO Zeros destination register, wRd. This instruction is a form of WANDN (see
Table 6-1 on page 6-9).

WZERO wr1
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 6-11
ID012213 Non-Confidential

Chapter 7
Directives Reference

The following topics describe the directives that are provided by the ARM assembler, armasm:
• Alphabetical list of directives on page 7-2
• Symbol definition directives on page 7-3
• Data definition directives on page 7-4
• About assembly control directives on page 7-5
• About frame directives on page 7-6
• Reporting directives on page 7-7
• Instruction set and syntax selection directives on page 7-8
• Miscellaneous directives on page 7-9.

Note
 None of these directives are available in the inline assemblers in the ARM C and C++ compilers.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-1
ID012213 Non-Confidential

Directives Reference
7.1 Alphabetical list of directives
Table 7-1 shows a complete list of the directives. Use it to locate individual directives.

Table 7-1 Location of directives

Directive See Directive See Directive See

ALIAS page 7-10 EQU page 7-33 LTORG page 7-63

ALIGN page 7-11 EXPORT or GLOBAL page 7-34 MACRO and MEND page 7-64

ARM and CODE32 page 7-16 EXPORTAS page 7-36 MAP page 7-67

AREA page 7-13 EXTERN page 7-57 MEND see MACRO page 7-64

ASSERT page 7-17 FIELD page 7-51 MEXIT page 7-68

ATTR page 7-18 FRAME ADDRESS page 7-37 NOFP page 7-69

CN page 7-19 FRAME POP page 7-38 OPT page 7-70

CODE16 page 7-16 FRAME PUSH page 7-39 PRESERVE8 see REQUIRE8 page 7-76

COMMON page 7-20 FRAME REGISTER page 7-40 PROC see FUNCTION page 7-48

CP page 7-21 FRAME RESTORE page 7-41 QN page 7-72

DATA page 7-22 FRAME SAVE page 7-43 RELOC page 7-74

DCB page 7-23 FRAME STATE REMEMBER page 7-44 REQUIRE page 7-75

DCD and DCDU page 7-24 FRAME STATE RESTORE page 7-45 REQUIRE8 and PRESERVE8 page 7-76

DCDO page 7-25 FRAME UNWIND ON or OFF page 7-46 RLIST page 7-78

DCFD and DCFDU page 7-26 FUNCTION or PROC page 7-48 RN page 7-79

DCFS and DCFSU page 7-27 GBLA, GBLL, and GBLS page 7-52 ROUT page 7-80

DCI page 7-28 GET or INCLUDE page 7-54 SETA, SETL, and SETS page 7-81

DCQ and DCQU page 7-29 GLOBAL see EXPORT page 7-34 SN page 7-72

DCW and DCWU page 7-30 IF, ELSE, ENDIF, and ELIF page 7-55 SPACE or FILL page 7-82

DN page 7-72 IMPORT page 7-57 SUBT page 7-83

ELIF, ELSE see IF page 7-55 INCBIN page 7-59 THUMB page 7-16

END page 7-31 INCLUDE see GET page 7-54 THUMBX page 7-16

ENDFUNC or ENDP page 7-50 INFO page 7-60 TTL page 7-83

ENDIF see IF page 7-55 KEEP page 7-61 WHILE and WEND page 7-84

ENTRY page 7-32 LCLA, LCLL, and LCLS page 7-62
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-2
ID012213 Non-Confidential

Directives Reference
7.2 Symbol definition directives
The following are symbol definition directives:

• GBLA, GBLL, and GBLS on page 7-52
Declares a global arithmetic, logical, or string variable.

• LCLA, LCLL, and LCLS on page 7-62
Declares a local arithmetic, logical, or string variable.

• SETA, SETL, and SETS on page 7-81
Sets the value of an arithmetic, logical, or string variable.

• RELOC on page 7-74
Encodes an ELF relocation in an object file.

• RN on page 7-79
Defines a name for a specified register.

• RLIST on page 7-78
Defines a name for a set of general-purpose registers.

• CN on page 7-19
Defines a coprocessor register name.

• CP on page 7-21
Defines a coprocessor name.

• QN, DN, and SN on page 7-72
Defines a double-precision or single-precision VFP register name.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-3
ID012213 Non-Confidential

Directives Reference
7.3 Data definition directives
The following directives allocate memory, define data structures, and set initial contents of
memory:

• LTORG on page 7-63
Sets an origin for a literal pool.

• MAP on page 7-67
Sets the origin of a storage map.

• FIELD on page 7-51
Defines a field within a storage map.

• SPACE or FILL on page 7-82
Allocates a zeroed block of memory.

• DCB on page 7-23
Allocates bytes of memory, and specify the initial contents.

• DCD and DCDU on page 7-24
Allocates words of memory, and specify the initial contents.

• DCDO on page 7-25
Allocates words of memory, and specify the initial contents as offsets from the static base
register.

• DCFD and DCFDU on page 7-26
Allocates doublewords of memory, and specify the initial contents as double-precision
floating-point numbers.

• DCFS and DCFSU on page 7-27
Allocates words of memory, and specify the initial contents as single-precision
floating-point numbers.

• DCI on page 7-28
Allocates words of memory, and specify the initial contents. Mark the location as code not
data.

• DCQ and DCQU on page 7-29
Allocates doublewords of memory, and specify the initial contents as 64-bit integers.

• DCW and DCWU on page 7-30
Allocates halfwords of memory, and specify the initial contents.

• COMMON on page 7-20
Allocates a block of memory at a symbol, and specify the alignment.

• DATA on page 7-22
Marks data within a code section. Obsolete, for backwards compatibility only.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-4
ID012213 Non-Confidential

Directives Reference
7.4 About assembly control directives
The following directives control conditional assembly, looping, inclusions, and macros:
• MACRO and MEND
• MEXIT

• IF, ELSE, ENDIF, and ELIF
• WHILE and WEND.

7.4.1 Nesting directives

The following structures can be nested to a total depth of 256:
• MACRO definitions
• WHILE...WEND loops
• IF...ELSE...ENDIF conditional structures
• INCLUDE file inclusions.

The limit applies to all structures taken together, regardless of how they are nested. The limit is
not 256 of each type of structure.

7.4.2 See also

Reference
• MACRO and MEND on page 7-64
• MEXIT on page 7-68
• IF, ELSE, ENDIF, and ELIF on page 7-55
• WHILE and WEND on page 7-84.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-5
ID012213 Non-Confidential

Directives Reference
7.5 About frame directives
Correct use of these directives:

• enables the armlink --callgraph option to calculate stack usage of assembler functions.
The following are the rules that determine stack usage:
— If a function is not marked with PROC or ENDP, stack usage is unknown.
— If a function is marked with PROC or ENDP but with no FRAME PUSH or FRAME POP, stack

usage is assumed to be zero. This means that there is no requirement to manually
add FRAME PUSH 0 or FRAME POP 0.

— If a function is marked with PROC or ENDP and with FRAME PUSH n or FRAME POP n, stack
usage is assumed to be n bytes.

• helps you to avoid errors in function construction, particularly when you are modifying
existing code

• enables the assembler to alert you to errors in function construction

• enables backtracing of function calls during debugging

• enables the debugger to profile assembler functions.

If you require profiling of assembler functions, but do not want frame description directives for
other purposes:

• you must use the FUNCTION and ENDFUNC, or PROC and ENDP, directives

• you can omit the other FRAME directives

• you only have to use the FUNCTION and ENDFUNC directives for the functions you want to
profile.

In DWARF, the canonical frame address is an address on the stack specifying where the call
frame of an interrupted function is located.

7.5.1 See also

Reference
• FRAME ADDRESS on page 7-37
• FRAME POP on page 7-38
• FRAME PUSH on page 7-39
• FRAME REGISTER on page 7-40
• FRAME RESTORE on page 7-41
• FRAME RETURN ADDRESS on page 7-42
• FRAME SAVE on page 7-43
• FRAME STATE REMEMBER on page 7-44
• FRAME STATE RESTORE on page 7-45
• FRAME UNWIND ON on page 7-46
• FRAME UNWIND OFF on page 7-47
• FUNCTION or PROC on page 7-48
• ENDFUNC or ENDP on page 7-50.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-6
ID012213 Non-Confidential

Directives Reference
7.6 Reporting directives
The following are reporting directives:

• ASSERT on page 7-17
Generates an error message if an assertion is false during assembly.

• INFO on page 7-60
Generates diagnostic information during assembly.

• OPT on page 7-70
Sets listing options.

• TTL and SUBT on page 7-83
Inserts titles and subtitles in listings.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-7
ID012213 Non-Confidential

Directives Reference
7.7 Instruction set and syntax selection directives
The following are the instruction set and syntax selection directives:
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 7-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-8
ID012213 Non-Confidential

Directives Reference
7.8 Miscellaneous directives
The following topics describe miscellaneous directives:
• ALIAS on page 7-10
• ALIGN on page 7-11
• AREA on page 7-13
• ATTR on page 7-18
• END on page 7-31
• ENTRY on page 7-32
• EQU on page 7-33
• EXPORT or GLOBAL on page 7-34
• EXPORTAS on page 7-36
• GET or INCLUDE on page 7-54
• IMPORT and EXTERN on page 7-57
• INCBIN on page 7-59
• KEEP on page 7-61
• NOFP on page 7-69
• REQUIRE on page 7-75
• REQUIRE8 and PRESERVE8 on page 7-76
• ROUT on page 7-80.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-9
ID012213 Non-Confidential

Directives Reference
7.9 ALIAS
The ALIAS directive creates an alias for a symbol.

7.9.1 Syntax

ALIAS name, aliasname

where:
name is the name of the symbol to create an alias for
aliasname is the name of the alias to be created.

7.9.2 Usage

The symbol name must already be defined in the source file before creating an alias for it.
Properties of name set by the EXPORT directive are not inherited by aliasname, so you must use
EXPORT on aliasname if you want to make the alias available outside the current source file. Apart
from the properties set by the EXPORT directive, name and aliasname are identical.

7.9.3 Example

baz
bar PROC

BX lr
ENDP
ALIAS bar,foo ; foo is an alias for bar
EXPORT bar
EXPORT foo ; foo and bar have identical properties

; because foo was created using ALIAS
EXPORT baz ; baz and bar are not identical

; because the size field of baz is not set

7.9.4 Incorrect example

EXPORT bar
IMPORT car
ALIAS bar,foo ; ERROR - bar is not defined yet
ALIAS car,boo ; ERROR - car is external

bar PROC
BX lr
ENDP

7.9.5 See also

Reference
• Data definition directives on page 7-4
• EXPORT or GLOBAL on page 7-34.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-10
ID012213 Non-Confidential

Directives Reference
7.10 ALIGN
The ALIGN directive aligns the current location to a specified boundary by padding with zeros or
NOP instructions.

7.10.1 Syntax

ALIGN {expr{,offset{,pad{,padsize}}}}

where:
expr is a numeric expression evaluating to any power of 2 from 20 to 231

offset can be any numeric expression
pad can be any numeric expression
padsize can be 1, 2 or 4.

7.10.2 Operation

The current location is aligned to the next lowest address of the form:

offset + n * expr

n is any integer which the assembler selects to minimise padding.

If expr is not specified, ALIGN sets the current location to the next word (four byte) boundary. The
unused space between the previous and the new current location are filled with:

• copies of pad, if pad is specified

• NOP instructions, if all the following conditions are satisfied:
— pad is not specified
— the ALIGN directive follows ARM or Thumb instructions
— the current section has the CODEALIGN attribute set on the AREA directive

• zeros otherwise.

pad is treated as a byte, halfword, or word, according to the value of padsize. If padsize is not
specified, pad defaults to bytes in data sections, halfwords in Thumb code, or words in ARM
code.

7.10.3 Usage

Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This is
typically required in the following circumstances:

• The ADR Thumb pseudo-instruction can only load addresses that are word aligned, but a
label within Thumb code might not be word aligned. Use ALIGN 4 to ensure four-byte
alignment of an address within Thumb code.

• Use ALIGN to take advantage of caches on some ARM processors. For example, the
ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align function entries on
16-byte boundaries and maximize the efficiency of the cache.

• LDRD and STRD doubleword data transfers must be eight-byte aligned. Use ALIGN 8 before
memory allocation directives such as DCQ if the data is to be accessed using LDRD or STRD.

• A label on a line by itself can be arbitrarily aligned. Following ARM code is word-aligned
(Thumb code is halfword aligned). The label therefore does not address the code correctly.
Use ALIGN 4 (or ALIGN 2 for Thumb) before the label.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-11
ID012213 Non-Confidential

Directives Reference
Alignment is relative to the start of the ELF section where the routine is located. The section
must be aligned to the same, or coarser, boundaries. The ALIGN attribute on the AREA directive is
specified differently.

7.10.4 Examples

 AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
 ; code
 MOV pc,lr ; aligned only on 4-byte boundary
 ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 3 bytes. The 3 byte offset is counted from the previous word aligned
address, resulting in the second DCB placed in the last byte of the same word and 2 bytes of
padding are to be added.

AREA OffsetExample, CODE
 DCB 1 ; This example places the two bytes in the first
 ALIGN 4,3 ; and fourth bytes of the same word.
 DCB 1 ; The second DCB is offset by 3 bytes from the first DCB

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 2 bytes. Here, the 2 byte offset is counted from the next word aligned
address, so the value n is set to 1 (n=0 clashes with the third DCB). This time three bytes of
padding are to be added.

AREA OffsetExample1, CODE
DCB 1 ; In this example, n cannot be 0 because it clashes with
DCB 1 ; the 3rd DCB. The assembler sets n to 1.
DCB 1
ALIGN 4,2 ; The next instruction is word aligned and offset by 2.
DCB 2

In the following example, the DCB directive makes the PC misaligned. The ALIGN directive
ensures that the label subroutine1 and the following instruction are word aligned.

 AREA Example, CODE, READONLY
start LDR r6,=label1
 ; code
 MOV pc,lr
label1 DCB 1 ; PC now misaligned
 ALIGN ; ensures that subroutine1 addresses
subroutine1 ; the following instruction.
 MOV r5,#0x5

7.10.5 See also

Reference
• Data definition directives on page 7-4
• AREA on page 7-13.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-12
ID012213 Non-Confidential

Directives Reference
7.11 AREA
The AREA directive instructs the assembler to assemble a new code or data section. Sections are
independent, named, indivisible chunks of code or data that are manipulated by the linker.

7.11.1 Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname is the name to give to the section.
You can choose any name for your sections. However, names starting with
a non-alphabetic character must be enclosed in bars or a missing section
name error is generated. For example, |1_DataArea|.
Certain names are conventional. For example, |.text| is used for code
sections produced by the C compiler, or for code sections otherwise
associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are:
ALIGN=expression

By default, ELF sections are aligned on a four-byte boundary.
expression can have any integer value from 0 to 31. The section
is aligned on a 2expression-byte boundary. For example, if
expression is 10, the section is aligned on a 1KB boundary.
This is not the same as the way that the ALIGN directive is
specified.

Note
 Do not use ALIGN=0 or ALIGN=1 for ARM code sections.

Do not use ALIGN=0 for Thumb code sections.

ASSOC=section

section specifies an associated ELF section. sectionname must
be included in any link that includes section

CODE Contains machine instructions. READONLY is the default.
CODEALIGN

Causes the assembler to insert NOP instructions when the ALIGN
directive is used after ARM or Thumb instructions within the
section, unless the ALIGN directive specifies a different padding.

COMDEF Is a common section definition. This ELF section can contain
code or data. It must be identical to any other section of the
same name in other source files.
Identical ELF sections with the same name are overlaid in the
same section of memory by the linker. If any are different, the
linker generates a warning and does not overlay the sections.

COMGROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. See the GROUP=symbol_name for more information.
The COMGROUP attribute marks the ELF section group with the
GRP_COMDAT flag.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-13
ID012213 Non-Confidential

Directives Reference
COMMON Is a common data section. You must not define any code or data
in it. It is initialized to zeros by the linker. All common sections
with the same name are overlaid in the same section of memory
by the linker. They do not all have to be the same size. The
linker allocates as much space as is required by the largest
common section of each name.

DATA Contains data, not instructions. READWRITE is the default.
FINI_ARRAY

Sets the ELF type of the current area to SHT_FINI_ARRAY.
GROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. It must be defined by the source file, or a file
included by the source file. All AREAS with the same symbol_name
signature are part of the same group. Sections within a group
are kept or discarded together.

INIT_ARRAY

Sets the ELF type of the current area to SHT_INIT_ARRAY.
LINKORDER=section

Specifies a relative location for the current section in the image.
It ensures that the order of all the sections with the LINKORDER
attribute, with respect to each other, is the same as the order of
the corresponding named sections in the image.

MERGE=n Indicates that the linker can merge the current section with
other sections with the MERGE=n attribute. n is the size of the
elements in the section, for example n is 1 for characters. You
must not assume that the section is merged, because the
attribute does not force the linker to merge the sections.

NOALLOC Indicates that no memory on the target system is allocated to
this area.

NOINIT Indicates that the data section is uninitialized, or initialized to
zero. It contains only space reservation directives SPACE or DCB,
DCD, DCDU, DCQ, DCQU, DCW, or DCWU with initialized values of zero.
You can decide at link time whether an area is uninitialized or
zero initialized.

PREINIT_ARRAY

Sets the ELF type of the current area to SHT_PREINIT_ARRAY.
READONLY Indicates that this section must not be written to. This is the

default for Code areas.
READWRITE Indicates that this section can be read from and written to. This

is the default for Data areas.
SECFLAGS=n

Adds one or more ELF flags, denoted by n, to the current
section.

SECTYPE=n

Sets the ELF type of the current section to n.
STRINGS Adds the SHF_STRINGS flag to the current section. To use the

STRINGS attribute, you must also use the MERGE=1 attribute. The
contents of the section must be strings that are nul-terminated
using the DCB directive.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-14
ID012213 Non-Confidential

Directives Reference
7.11.2 Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the same
name in more than one AREA directive. All areas with the same name are placed in the same ELF
section. Only the attributes of the first AREA directive of a particular name are applied.

In general, ARM recommends that you use separate ELF sections for code and data. However,
you can put data in code sections. Large programs can usually be conveniently divided into
several code sections. Large independent data sets are also usually best placed in separate
sections.

The scope of numeric local labels is defined by AREA directives, optionally subdivided by ROUT
directives.

There must be at least one AREA directive for an assembly.

Note
 The assembler emits R_ARM_TARGET1 relocations for the DCD and DCDU directives if the directive
uses PC-relative expressions and is in any of the PREINIT_ARRAY, FINI_ARRAY, or INIT_ARRAY ELF
sections. You can override the relocation using the RELOC directive after each DCD or DCDU
directive. If this relocation is used, read-write sections might become read-only sections at link
time if the platform ABI permits this.

7.11.3 Example

The following example defines a read-only code section named Example.

 AREA Example,CODE,READONLY ; An example code section.
 ; code

7.11.4 See also

Concepts
Using the Assembler:
• ELF sections and the AREA directive on page 4-5.

Concepts
Using the Linker:
• Chapter 4 Image structure and generation.

Reference
• ALIGN on page 7-11
• RELOC on page 7-74
• DCD and DCDU on page 7-24.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-15
ID012213 Non-Confidential

Directives Reference
7.12 ARM, THUMB, THUMBX, CODE16 and CODE32
The ARM directive and the CODE32 directive are synonyms. They instruct the assembler to interpret
subsequent instructions as ARM instructions, using either the UAL or the pre-UAL ARM
assembler language syntax.

The THUMB directive instructs the assembler to interpret subsequent instructions as Thumb
instructions, using the UAL syntax.

The THUMBX directive instructs the assembler to interpret subsequent instructions as ThumbEE
instructions, using the UAL syntax.

The CODE16 directive instructs the assembler to interpret subsequent instructions as Thumb
instructions, using the pre-UAL assembly language syntax.

If necessary, these directives also insert up to three bytes of padding to align to the next word
boundary for ARM, or up to one byte of padding to align to the next halfword boundary for
Thumb or ThumbEE.

7.12.1 Syntax

ARM
THUMB
THUMBX
CODE16
CODE32

7.12.2 Usage

In files that contain code using different instruction sets:
• ARM must precede any ARM code. CODE32 is a synonym for ARM.
• THUMB must precede Thumb code written in UAL syntax.
• THUMBX must precede ThumbEE code written in UAL syntax.
• CODE16 must precede Thumb code written in pre-UAL syntax.

These directives do not assemble to any instructions. They also do not change the state. They
only instruct the assembler to assemble ARM, Thumb, or ThumbEE instructions as appropriate,
and insert padding if necessary.

7.12.3 Example

This example shows how you can use ARM and THUMB directives to switch state and assemble both
ARM and Thumb instructions in a single area.

 AREA ToThumb, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 ARM ; Subsequent instructions are ARM
start
 ADR r0, into_thumb + 1 ; Processor starts in ARM state
 BX r0 ; Inline switch to Thumb state
 THUMB ; Subsequent instructions are Thumb
into_thumb
 MOVS r0, #10 ; New-style Thumb instructions
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-16
ID012213 Non-Confidential

Directives Reference
7.13 ASSERT
The ASSERT directive generates an error message during assembly if a given assertion is false.

7.13.1 Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

7.13.2 Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

7.13.3 Example

 ASSERT label1 <= label2 ; Tests if the address
 ; represented by label1
 ; is <= the address
 ; represented by label2.

7.13.4 See also

Reference
• INFO on page 7-60.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-17
ID012213 Non-Confidential

Directives Reference
7.14 ATTR
The ATTR set directives set values for the ABI build attributes.

The ATTR scope directives specify the scope for which the set value applies to.

7.14.1 Syntax

ATTR FILESCOPE

ATTR SCOPE name

ATTR settype tagid, value

where:

name is a section name or symbol name.

settype can be any of:
• SETVALUE

• SETSTRING

• SETCOMPATIBLEWITHVALUE

• SETCOMPATIBLEWITHSTRING

tagid is an attribute tag name (or its numerical value) defined in the ABI for the ARM
Architecture.

value depends on settype:
• is a 32-bit integer value when settype is SETVALUE or

SETCOMPATIBLEWITHVALUE

• is a nul-terminated string when settype is SETSTRING or
SETCOMPATIBLEWITHSTRING

7.14.2 Usage

The ATTR set directives following the ATTR FILESCOPE directive apply to the entire object file. The
ATTR set directives following the ATTR SCOPE name directive apply only to the named section or
symbol.

For tags that expect an integer, you must use SETVALUE or SETCOMPATIBLEWITHVALUE. For tags that
expect a string, you must use SETSTRING or SETCOMPATIBLEWITHSTRING.

Use SETCOMPATIBLEWITHVALUE and SETCOMPATIBLEWITHSTRING to set tag values which the object file
is also compatible with.

7.14.3 Examples

ATTR SETSTRING Tag_CPU_raw_name, "Cortex-A8"
ATTR SETVALUE Tag_VFP_arch, 3 ; VFPv3 instructions were permitted.
ATTR SETVALUE 10, 3 ; 10 is the numerical value of

; Tag_VFP_arch.

7.14.4 See also

Reference
• Addenda to, and Errata in, the ABI for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-18
ID012213 Non-Confidential

Directives Reference
7.15 CN
The CN directive defines a name for a coprocessor register.

7.15.1 Syntax

name CN expr

where:

name is the name to be defined for the coprocessor register. name cannot be the same as
any of the predefined names.

expr evaluates to a coprocessor register number from 0 to 15.

7.15.2 Usage

Use CN to allocate convenient names to registers, to help you remember what you use each
register for.

Note
 Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

7.15.3 Example

power CN 6 ; defines power as a symbol for
 ; coprocessor register 6

7.15.4 See also

Reference
Using the Assembler:
• Predeclared core register names on page 3-13
• Predeclared extension register names on page 3-14
• Predeclared XScale register names on page 3-15
• Predeclared coprocessor names on page 3-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-19
ID012213 Non-Confidential

Directives Reference
7.16 COMMON
The COMMON directive allocates a block of memory, of the defined size, at the specified symbol.
You specify how the memory is aligned. If alignment is omitted, the default alignment is 4. If
size is omitted, the default size is 0.

You can access this memory as you would any other memory, but no space is allocated in object
files.

7.16.1 Syntax

COMMON symbol{,size{,alignment}} {[attr]}

where:

symbol is the symbol name. The symbol name is case-sensitive.

size is the number of bytes to reserve.

alignment is the alignment.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

7.16.2 Usage

The linker allocates the required space as zero initialized memory during the link stage. You
cannot define, IMPORT or EXTERN a symbol that has already been created by the COMMON directive.
In the same way, if a symbol has already been defined or used with the IMPORT or EXTERN
directive, you cannot use the same symbol for the COMMON directive.

7.16.3 Example

LDR r0, =xyz
COMMON xyz,255,4 ; defines 255 bytes of ZI store, word-aligned

7.16.4 Incorrect examples

COMMON foo,4,4
COMMON bar,4,4

foo DCD 0 ; cannot define label with same name as COMMON
IMPORT bar ; cannot import label with same name as COMMON
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-20
ID012213 Non-Confidential

Directives Reference
7.17 CP
The CP directive defines a name for a specified coprocessor. The coprocessor number must be
within the range 0 to 15.

7.17.1 Syntax

name CP expr

where:

name is the name to be assigned to the coprocessor. name cannot be the same as any of
the predefined names.

expr evaluates to a coprocessor number from 0 to 15.

7.17.2 Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you use
each one for.

Note
 Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

7.17.3 Example

dmu CP 6 ; defines dmu as a symbol for
 ; coprocessor 6

7.17.4 See also

Reference
Using the Assembler:
• Predeclared core register names on page 3-13
• Predeclared extension register names on page 3-14
• Predeclared XScale register names on page 3-15
• Predeclared coprocessor names on page 3-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-21
ID012213 Non-Confidential

Directives Reference
7.18 DATA
The DATA directive is no longer required. It is ignored by the assembler.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-22
ID012213 Non-Confidential

Directives Reference
7.19 DCB
The DCB directive allocates one or more bytes of memory, and defines the initial runtime contents
of the memory. = is a synonym for DCB.

7.19.1 Syntax

{label} DCB expr{,expr}...

where:

expr is either:
• a numeric expression that evaluates to an integer in the range –128 to 255.
• a quoted string. The characters of the string are loaded into consecutive

bytes of store.

7.19.2 Usage

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction is
aligned.

7.19.3 Example

Unlike C strings, ARM assembler strings are not nul-terminated. You can construct a
nul-terminated C string using DCB as follows:

C_string DCB "C_string",0

7.19.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16.

Reference
• DCD and DCDU on page 7-24
• DCQ and DCQU on page 7-29
• DCW and DCWU on page 7-30
• SPACE or FILL on page 7-82
• ALIGN on page 7-11.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-23
ID012213 Non-Confidential

Directives Reference
7.20 DCD and DCDU
The DCD directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory.

& is a synonym for DCD.

DCDU is the same, except that the memory alignment is arbitrary.

7.20.1 Syntax

{label} DCD{U} expr{,expr}

where:

expr is either:
• a numeric expression.
• a PC-relative expression.

7.20.2 Usage

DCD inserts up to three bytes of padding before the first defined word, if necessary, to achieve
four-byte alignment.

Use DCDU if you do not require alignment.

7.20.3 Examples

data1 DCD 1,5,20 ; Defines 3 words containing
 ; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; Defines 1 word containing 4 +
 ; the address of the label mem06
 AREA MyData, DATA, READWRITE
 DCB 255 ; Now misaligned ...
data3 DCDU 1,5,20 ; Defines 3 words containing
 ; 1, 5 and 20, not word aligned

7.20.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16.

Reference
• DCB on page 7-23
• DCI on page 7-28
• DCW and DCWU on page 7-30
• DCQ and DCQU on page 7-29
• SPACE or FILL on page 7-82.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-24
ID012213 Non-Confidential

Directives Reference
7.21 DCDO
The DCDO directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory as an offset from the static base register, sb
(R9).

7.21.1 Syntax

{label} DCDO expr{,expr}...

where:

expr is a register-relative expression or label. The base register must be sb.

7.21.2 Usage

Use DCDO to allocate space in memory for static base register relative relocatable addresses.

7.21.3 Example

 IMPORT externsym
 DCDO externsym ; 32-bit word relocated by offset of
 ; externsym from base of SB section.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-25
ID012213 Non-Confidential

Directives Reference
7.22 DCFD and DCFDU
The DCFD directive allocates memory for word-aligned double-precision floating-point numbers,
and defines the initial runtime contents of the memory. Double-precision numbers occupy two
words and must be word aligned to be used in arithmetic operations.

DCFDU is the same, except that the memory alignment is arbitrary.

7.22.1 Syntax

{label} DCFD{U} fpliteral{,fpliteral}...

where:

fpliteral is a double-precision floating-point literal.

7.22.2 Usage

The assembler inserts up to three bytes of padding before the first defined number, if necessary,
to achieve four-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting fpliteral to internal form is controlled by the
floating-point architecture selected. You cannot use DCFD or DCFDU if you select the --fpu none
option.

The range for double-precision numbers is:
• maximum 1.79769313486231571e+308
• minimum 2.22507385850720138e–308.

7.22.3 Examples

 DCFD 1E308,-4E-100
 DCFDU 10000,-.1,3.1E26

7.22.4 See also

Concepts
Using the Assembler:
• Floating-point literals on page 8-18.

Reference
• DCFS and DCFSU on page 7-27.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-26
ID012213 Non-Confidential

Directives Reference
7.23 DCFS and DCFSU
The DCFS directive allocates memory for word-aligned single-precision floating-point numbers,
and defines the initial runtime contents of the memory. Single-precision numbers occupy one
word and must be word aligned to be used in arithmetic operations.

DCFSU is the same, except that the memory alignment is arbitrary.

7.23.1 Syntax

{label} DCFS{U} fpliteral{,fpliteral}...

where:

fpliteral is a single-precision floating-point literal.

7.23.2 Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to achieve
four-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:
• maximum 3.40282347e+38
• minimum 1.17549435e–38.

7.23.3 Examples

 DCFS 1E3,-4E-9
 DCFSU 1.0,-.1,3.1E6

7.23.4 See also

Concepts
Using the Assembler:
• Floating-point literals on page 8-18.

Reference
• DCFD and DCFDU on page 7-26.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-27
ID012213 Non-Confidential

Directives Reference
7.24 DCI
In ARM code, the DCI directive allocates one or more words of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

In Thumb code, the DCI directive allocates one or more halfwords of memory, aligned on
two-byte boundaries, and defines the initial runtime contents of the memory.

7.24.1 Syntax

{label} DCI{.W} expr{,expr}

where:

expr is a numeric expression.

.W if present, indicates that four bytes must be inserted in Thumb code.

7.24.2 Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code instead
of data. Use DCI when writing macros for new instructions not supported by the version of the
assembler you are using.

In ARM code, DCI inserts up to three bytes of padding before the first defined word, if necessary,
to achieve four-byte alignment. In Thumb code, DCI inserts an initial byte of padding, if
necessary, to achieve two-byte alignment.

You can use DCI to insert a bit pattern into the instruction stream. For example, use:

DCI 0x46c0

to insert the Thumb operation MOV r8,r8.

7.24.3 Example macro

 MACRO ; this macro translates newinstr Rd,Rm
 ; to the appropriate machine code
 newinst $Rd,$Rm
 DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
 MEND

7.24.4 32-bit Thumb example

 DCI.W 0xf3af8000 ; inserts 32-bit NOP, 2-byte aligned.

7.24.5 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16.

Reference
• DCD and DCDU on page 7-24
• DCW and DCWU on page 7-30.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-28
ID012213 Non-Confidential

Directives Reference
7.25 DCQ and DCQU
The DCQ directive allocates one or more eight-byte blocks of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

DCQU is the same, except that the memory alignment is arbitrary.

7.25.1 Syntax

{label} DCQ{U} {-}literal{,{-}literal}...

where:

literal is a 64-bit numeric literal.

The range of numbers permitted is 0 to 264–1.
In addition to the characters normally permitted in a numeric literal, you can
prefix literal with a minus sign. In this case, the range of numbers permitted is
–263 to –1.

The result of specifying -n is the same as the result of specifying 264–n.

7.25.2 Usage

DCQ inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to
achieve four-byte alignment.

Use DCQU if you do not require alignment.

7.25.3 Example

 AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.

7.25.4 Incorrect example

number EQU 2
 DCQU number ; DCQ and DCQU only accept literals not expressions.

7.25.5 See also

Concepts
Using the Assembler:
• Numeric literals on page 8-17.

Reference
• DCB on page 7-23
• DCD and DCDU on page 7-24
• DCW and DCWU on page 7-30
• SPACE or FILL on page 7-82.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-29
ID012213 Non-Confidential

Directives Reference
7.26 DCW and DCWU
The DCW directive allocates one or more halfwords of memory, aligned on two-byte boundaries,
and defines the initial runtime contents of the memory.

DCWU is the same, except that the memory alignment is arbitrary.

7.26.1 Syntax

{label} DCW{U} expr{,expr}...

where:

expr is a numeric expression that evaluates to an integer in the range –32768 to 65535.

7.26.2 Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve two-byte
alignment.

Use DCWU if you do not require alignment.

7.26.3 Examples

data DCW -225,2*number ; number must already be defined
 DCWU number+4

7.26.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16.

Reference
• DCB on page 7-23
• DCD and DCDU on page 7-24
• DCQ and DCQU on page 7-29
• SPACE or FILL on page 7-82.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-30
ID012213 Non-Confidential

Directives Reference
7.27 END
The END directive informs the assembler that it has reached the end of a source file.

7.27.1 Syntax

END

7.27.2 Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler returns to
the parent file and continues assembly at the first line following the GET directive.

If END is reached in the top-level source file during the first pass without any errors, the second
pass begins.

If END is reached in the top-level source file during the second pass, the assembler finishes the
assembly and writes the appropriate output.

7.27.3 See also

Reference
• GET or INCLUDE on page 7-54.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-31
ID012213 Non-Confidential

Directives Reference
7.28 ENTRY
The ENTRY directive declares an entry point to a program.

7.28.1 Syntax

ENTRY

7.28.2 Usage

A program must have an entry point. You can specify an entry point in the following ways:
• Using the ENTRY directive in assembly language source code.
• Providing a main() function in C or C++ source code.
• Using the armlink --entry command line option.

You can declare more than one entry point in a program, although a source file cannot contain
more than one ENTRY directive. For example, a program could contain multiple assembly
language source files, each with an ENTRY directive. Or it could contain a C or C++ file with a
main() function and one or more assembly source files with an ENTRY directive.

If the program contains multiple entry points, then you must select one of them. You do this by
exporting the symbol for the ENTRY directive that you want to use as the entry point, then using
the armlink --entry option to select the exported symbol.

7.28.3 Example

 AREA ARMex, CODE, READONLY
 ENTRY ; Entry point for the application

EXPORT ep1 ; Export the symbol so the linker can find it in the object file
ep1

; code

END

When you invoke armlink, if other entry points are declared in the program, then you must
specify --entry=ep1, to select ep1.

7.28.4 See also

Concepts
• Image entry points on page 4-17 in Using the Linker.

Reference
• --entry=location on page 2-58 in Linker Reference.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-32
ID012213 Non-Confidential

Directives Reference
7.29 EQU
The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a
PC-relative value. * is a synonym for EQU.

7.29.1 Syntax

name EQU expr{, type}

where:

name is the symbolic name to assign to the value.

expr is a register-relative address, a PC-relative address, an absolute address, or a
32-bit integer constant.

type is optional. type can be any one of:
• ARM

• THUMB

• CODE32

• CODE16

• DATA

You can use type only if expr is an absolute address. If name is exported, the name
entry in the symbol table in the object file is marked as ARM, THUMB, CODE32, CODE16,
or DATA, according to type. This can be used by the linker.

7.29.2 Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

7.29.3 Examples

abc EQU 2 ; assigns the value 2 to the symbol abc.
xyz EQU label+8 ; assigns the address (label+8) to the
 ; symbol xyz.
fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as code

7.29.4 See also

Reference
• KEEP on page 7-61
• EXPORT or GLOBAL on page 7-34.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-33
ID012213 Non-Confidential

Directives Reference
7.30 EXPORT or GLOBAL
The EXPORT directive declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. GLOBAL is a synonym for EXPORT.

7.30.1 Syntax

EXPORT {[WEAK]}

EXPORT symbol {[SIZE=n]}

EXPORT symbol {[type{,set}]}

EXPORT symbol [attr{,type{,set}}{,SIZE=n}]

EXPORT symbol [WEAK{,attr}{,type{,set}}{,SIZE=n}]

where:

symbol is the symbol name to export. The symbol name is case-sensitive. If symbol is
omitted, all symbols are exported.

WEAK symbol is only imported into other sources if no other source exports an alternative
symbol. If [WEAK] is used without symbol, all exported symbols are weak.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the assembler determines the most appropriate type. Usually the
assembler determines the correct type so you are not required to specify the type.

set specifies the instruction set:
ARM symbol is treated as an ARM symbol.
THUMB symbol is treated as a Thumb symbol.
If unspecified, the assembler determines the most appropriate set.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

7.30.2 Usage

Use EXPORT to give code in other files access to symbols in the current file.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-34
ID012213 Non-Confidential

Directives Reference
Use the [WEAK] attribute to inform the linker that a different instance of symbol takes precedence
over this one, if a different one is available from another source. You can use the [WEAK] attribute
with any of the symbol visibility attributes.

7.30.3 Example

 AREA Example,CODE,READONLY
 EXPORT DoAdd ; Export the function name
 ; to be used by external
 ; modules.
DoAdd ADD r0,r0,r1

Symbol visibility can be overridden for duplicate exports. In the following example, the last
EXPORT takes precedence for both binding and visibility:

 EXPORT SymA[WEAK] ; Export as weak-hidden
 EXPORT SymA[DYNAMIC] ; SymA becomes non-weak dynamic.

The following examples show the use of the SIZE attribute:

EXPORT symA [SIZE=4]
EXPORT symA [DATA, SIZE=4]

7.30.4 See also

Reference
• IMPORT and EXTERN on page 7-57.
• ELF for the ARM Architecture ABI,

http://infocenter/help/topic/com.arm.doc.ihi0044-/index.html.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-35
ID012213 Non-Confidential

Directives Reference
7.31 EXPORTAS
The EXPORTAS directive enables you to export a symbol to the object file, corresponding to a
different symbol in the source file.

7.31.1 Syntax

EXPORTAS symbol1, symbol2

where:

symbol1 is the symbol name in the source file. symbol1 must have been defined already. It
can be any symbol, including an area name, a label, or a constant.

symbol2 is the symbol name you want to appear in the object file.

The symbol names are case-sensitive.

7.31.2 Usage

Use EXPORTAS to change a symbol in the object file without having to change every instance in
the source file.

7.31.3 Examples

 AREA data1, DATA ; starts a new area data1
 AREA data2, DATA ; starts a new area data2
 EXPORTAS data2, data1 ; the section symbol referred to as data2

 ; appears in the object file string table as data1.
one EQU 2
 EXPORTAS one, two
 EXPORT one ; the symbol 'two' appears in the object

; file's symbol table with the value 2.

7.31.4 See also

Reference
• EXPORT or GLOBAL on page 7-34.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-36
ID012213 Non-Confidential

Directives Reference
7.32 FRAME ADDRESS
The FRAME ADDRESS directive describes how to calculate the canonical frame address for
following instructions. You can only use it in functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

7.32.1 Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This is SP
unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, you can
omit it.

7.32.2 Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is based on, or
if it changes the offset of the canonical frame address from the register. You must use FRAME
ADDRESS immediately after the instruction that changes the calculation of the canonical frame
address.

Note
 If your code uses a single instruction to save registers and alter the stack pointer, you can use
FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE.

If your code uses a single instruction to load registers and alter the stack pointer, you can use
FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE.

7.32.3 Example

_fn FUNCTION ; CFA (Canonical Frame Address) is value
 ; of SP on entry to function
 PUSH {r4,fp,ip,lr,pc}
 FRAME PUSH {r4,fp,ip,lr,pc}
 SUB sp,sp,#4 ; CFA offset now changed
 FRAME ADDRESS sp,24 ; - so we correct it
 ADD fp,sp,#20
 FRAME ADDRESS fp,4 ; New base register
 ; code using fp to base call-frame on, instead of SP

7.32.4 See also

Reference
• FRAME POP on page 7-38
• FRAME PUSH on page 7-39.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-37
ID012213 Non-Confidential

Directives Reference
7.33 FRAME POP
Use the FRAME POP directive to inform the assembler when the callee reloads registers. You can
only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

You do not have to do this after the last instruction in a function.

7.33.1 Syntax

There are three alternative syntaxes for FRAME POP:

FRAME POP {reglist}

FRAME POP {reglist},n

FRAME POP n

where:

reglist is a list of registers restored to the values they had on entry to the function. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

7.33.2 Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it when a
single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• each ARM register popped occupies four bytes on the stack

• each VFP single-precision register popped occupies four bytes on the stack, plus an extra
four-byte word for each list

• each VFP double-precision register popped occupies eight bytes on the stack, plus an
extra four-byte word for each list.

7.33.3 See also

Reference
• FRAME ADDRESS on page 7-37
• FRAME RESTORE on page 7-41.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-38
ID012213 Non-Confidential

Directives Reference
7.34 FRAME PUSH
Use the FRAME PUSH directive to inform the assembler when the callee saves registers, normally
at function entry. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

7.34.1 Syntax

There are two alternative syntaxes for FRAME PUSH:

FRAME PUSH {reglist}

FRAME PUSH {reglist},n

FRAME PUSH n

where:

reglist is a list of registers stored consecutively below the canonical frame address. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

7.34.2 Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it when a
single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• each ARM register pushed occupies four bytes on the stack

• each VFP single-precision register pushed occupies four bytes on the stack, plus an extra
four-byte word for each list

• each VFP double-precision register popped occupies eight bytes on the stack, plus an
extra four-byte word for each list.

7.34.3 Example

p PROC ; Canonical frame address is SP + 0
 EXPORT p
 PUSH {r4-r6,lr}
 ; SP has moved relative to the canonical frame address,
 ; and registers R4, R5, R6 and LR are now on the stack
 FRAME PUSH {r4-r6,lr}
 ; Equivalent to:
 ; FRAME ADDRESS sp,16 ; 16 bytes in {R4-R6,LR}
 ; FRAME SAVE {r4-r6,lr},-16

7.34.4 See also

Reference
• FRAME ADDRESS on page 7-37
• FRAME SAVE on page 7-43.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-39
ID012213 Non-Confidential

Directives Reference
7.35 FRAME REGISTER
Use the FRAME REGISTER directive to maintain a record of the locations of function arguments held
in registers. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP
directives.

7.35.1 Syntax

FRAME REGISTER reg1,
 reg2

where:

reg1 is the register that held the argument on entry to the function.

reg2 is the register in which the value is preserved.

7.35.2 Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that was held
in a different register on entry to a function.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-40
ID012213 Non-Confidential

Directives Reference
7.36 FRAME RESTORE
Use the FRAME RESTORE directive to inform the assembler that the contents of specified registers
have been restored to the values they had on entry to the function. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

7.36.1 Syntax

FRAME RESTORE {reglist}

where:

reglist is a list of registers whose contents have been restored. There must be at least one
register in the list.

7.36.2 Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You do not have
to do this after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.

Note
 If your code uses a single instruction to load registers and alter the stack pointer, you can use
FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS.

7.36.3 See also

Reference
• FRAME POP on page 7-38.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-41
ID012213 Non-Confidential

Directives Reference
7.37 FRAME RETURN ADDRESS
The FRAME RETURN ADDRESS directive provides for functions that use a register other than LR for
their return address. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Note
 Any function that uses a register other than LR for its return address is not AAPCS compliant.
Such a function must not be exported.

7.37.1 Syntax

FRAME RETURN ADDRESS reg

where:

reg is the register used for the return address.

7.37.2 Usage

Use the FRAME RETURN ADDRESS directive in any function that does not use LR for its return
address. Otherwise, a debugger cannot backtrace through the function.

Use FRAME RETURN ADDRESS immediately after the FUNCTION or PROC directive that introduces the
function.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-42
ID012213 Non-Confidential

Directives Reference
7.38 FRAME SAVE
The FRAME SAVE directive describes the location of saved register contents relative to the
canonical frame address. You can only use it within functions with FUNCTION and ENDFUNC or PROC
and ENDP directives.

7.38.1 Syntax

FRAME SAVE {reglist}, offset

where:

reglist is a list of registers stored consecutively starting at offset from the canonical
frame address. There must be at least one register in the list.

7.38.2 Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler determines
which registers it requires to record in the DWARF call frame information.

Note
 If your code uses a single instruction to save registers and alter the stack pointer, you can use
FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS.

7.38.3 See also

Reference
• FRAME PUSH on page 7-39.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-43
ID012213 Non-Confidential

Directives Reference
7.39 FRAME STATE REMEMBER
The FRAME STATE REMEMBER directive saves the current information on how to calculate the
canonical frame address and locations of saved register values. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

7.39.1 Syntax

FRAME STATE REMEMBER

7.39.2 Usage

During an inline exit sequence the information about calculation of canonical frame address and
locations of saved register values can change. After the exit sequence another branch can
continue using the same information as before. Use FRAME STATE REMEMBER to preserve this
information, and FRAME STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a corresponding
FRAME STATE REMEMBER directive.

7.39.3 Example

 ; function code
 FRAME STATE REMEMBER
 ; save frame state before in-line exit sequence
 POP {r4-r6,pc}
 ; do not have to FRAME POP here, as control has
 ; transferred out of the function
 FRAME STATE RESTORE
 ; end of exit sequence, so restore state
exitB ; code for exitB
 POP {r4-r6,pc}
 ENDP

7.39.4 See also

Reference
• FRAME STATE RESTORE on page 7-45
• FUNCTION or PROC on page 7-48.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-44
ID012213 Non-Confidential

Directives Reference
7.40 FRAME STATE RESTORE
The FRAME STATE RESTORE directive restores information about how to calculate the canonical
frame address and locations of saved register values. You can only use it within functions with
FUNCTION and ENDFUNC or PROC and ENDP directives.

7.40.1 Syntax

FRAME STATE RESTORE

7.40.2 See also

Reference
• FRAME STATE REMEMBER on page 7-44
• FUNCTION or PROC on page 7-48.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-45
ID012213 Non-Confidential

Directives Reference
7.41 FRAME UNWIND ON
The FRAME UNWIND ON directive instructs the assembler to produce unwind tables for this and
subsequent functions.

7.41.1 Syntax

FRAME UNWIND ON

7.41.2 Usage

You can use this directive outside functions. In this case, the assembler produces unwind tables
for all following functions until it reaches a FRAME UNWIND OFF directive.

Note
 A FRAME UNWIND directive is not sufficient to turn on exception table generation. Furthermore a
FRAME UNWIND directive, without other FRAME directives, is not sufficient information for the
assembler to generate the unwind information.

7.41.3 See also

Reference
• --exceptions on page 2-35
• --exceptions_unwind on page 2-36.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-46
ID012213 Non-Confidential

Directives Reference
7.42 FRAME UNWIND OFF
The FRAME UNWIND OFF directive instructs the assembler to produce nounwind tables for this and
subsequent functions.

7.42.1 Syntax

FRAME UNWIND OFF

7.42.2 Usage

You can use this directive outside functions. In this case, the assembler produces nounwind
tables for all following functions until it reaches a FRAME UNWIND ON directive.

7.42.3 See also

Reference
• --exceptions on page 2-35
• --exceptions_unwind on page 2-36.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-47
ID012213 Non-Confidential

Directives Reference
7.43 FUNCTION or PROC
The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

7.43.1 Syntax

label FUNCTION [{reglist1} [, {reglist2}]]

where:

reglist1 is an optional list of callee-saved ARM registers. If reglist1 is not present, and
your debugger checks register usage, it assumes that the AAPCS is in use. If you
use empty brackets, this informs the debugger that all ARM registers are
caller-saved.

reglist2 is an optional list of callee-saved VFP registers. If you use empty brackets, this
informs the debugger that all VFP registers are caller-saved.

7.43.2 Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the start of
a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be R13 (SP), and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest FUNCTION and
ENDFUNC pairs, and they must not contain PROC or ENDP directives.

You can use the optional reglist parameters to inform the debugger about an alternative
procedure call standard, if you are using your own. Not all debuggers support this feature. See
your debugger documentation for details.

If you specify an empty reglist, using {}, this indicates that all registers for the function are
caller-saved. Typically you do this when writing a reset vector where the values in all registers
are unknown on execution. This avoids problems in a debugger if it tries to construct a backtrace
from the values in the registers.

Note
 FUNCTION does not automatically cause alignment to a word boundary (or halfword boundary for
Thumb). Use ALIGN if necessary to ensure alignment, otherwise the call frame might not point
to the start of the function.

7.43.3 Examples

 ALIGN ; ensures alignment
dadd FUNCTION ; without the ALIGN directive, this might not be word-aligned
 EXPORT dadd
 PUSH {r4-r6,lr} ; this line automatically word-aligned
 FRAME PUSH {r4-r6,lr}
 ; subroutine body
 POP {r4-r6,pc}
 ENDFUNC
func6 PROC {r4-r8,r12},{D1-D3} ; non-AAPCS-conforming function
 ...
 ENDP
func7 FUNCTION {} ; another non-AAPCS-conforming function

...
ENDFUNC
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-48
ID012213 Non-Confidential

Directives Reference
7.43.4 See also

Reference
• FRAME ADDRESS on page 7-37
• FRAME STATE RESTORE on page 7-45
• ALIGN on page 7-11.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-49
ID012213 Non-Confidential

Directives Reference
7.44 ENDFUNC or ENDP
The ENDFUNC directive marks the end of an AAPCS-conforming function. ENDP is a synonym for
ENDFUNC.

7.44.1 See also

Reference
• FUNCTION or PROC on page 7-48.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-50
ID012213 Non-Confidential

Directives Reference
7.45 FIELD
The FIELD directive describes space within a storage map that has been defined using the MAP
directive. # is a synonym for FIELD.

7.45.1 Syntax

{label} FIELD expr

where:

label is an optional label. If specified, label is assigned the value of the storage location
counter, {VAR}. The storage location counter is then incremented by the value of
expr.

expr is an expression that evaluates to the number of bytes to increment the storage
counter.

7.45.2 Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register is implicit
in all labels defined by following FIELD directives, until the next MAP directive. These
register-relative labels can be quoted in load and store instructions.

7.45.3 Examples

The following example shows how register-relative labels are defined using the MAP and FIELD
directives.

 MAP 0,r9 ; set {VAR} to the address stored in R9
 FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [R9 + 4]
 ; and then increment {VAR} by 4 bytes
 LDR r0,Lab ; equivalent to LDR r0,[r9,#4]

When using the MAP and FIELD directives, you must ensure that the values are consistent in both
passes. The following example shows a use of MAP and FIELD that cause inconsistent values for
the symbol x. In the first pass sym is not defined, so x is at 0x04+R9. In the second pass, sym is
defined, so x is at 0x00+R0. This example results in an assembly error.

MAP 0, r0
if :LNOT: :DEF: sym
MAP 0, r9
FIELD 4 ; x is at 0x04+R9 in first pass

ENDIF
x FIELD 4 ; x is at 0x00+R0 in second pass
sym LDR r0, x ; inconsistent values for x results in assembly error

7.45.4 See also

Concepts
• How the assembler works on page 2-4 in Using the Assembler
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in Using the

Assembler.

Reference
• MAP on page 7-67.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-51
ID012213 Non-Confidential

Directives Reference
7.46 GBLA, GBLL, and GBLS
The GBLA directive declares a global arithmetic variable, and initializes its value to 0.

The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.

The GBLS directive declares a global string variable and initializes its value to a null string, "".

7.46.1 Syntax

<gblx> variable

where:

<gblx> is one of GBLA, GBLL, or GBLS.

variable is the name of the variable. variable must be unique among symbols within a
source file.

7.46.2 Usage

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Global variables can also be set with the --predefine assembler command-line option.

7.46.3 Examples

Example 7-1 declares a variable objectsize, sets the value of objectsize to 0xFF, and then uses
it later in a SPACE directive.

Example 7-1

 GBLA objectsize ; declare the variable name
objectsize SETA 0xFF ; set its value
 .
 . ; other code
 .
 SPACE objectsize ; quote the variable

Example 7-2 shows how to declare and set a variable when you invoke armasm. Use this when
you want to set the value of a variable at assembly time. --pd is a synonym for --predefine.

Example 7-2

armasm --predefine "objectsize SETA 0xFF" sourcefile -o objectfile
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-52
ID012213 Non-Confidential

Directives Reference
7.46.4 See also

Reference
• SETA, SETL, and SETS on page 7-81
• LCLA, LCLL, and LCLS on page 7-62
• Assembler command-line options on page 2-3.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-53
ID012213 Non-Confidential

Directives Reference
7.47 GET or INCLUDE
The GET directive includes a file within the file being assembled. The included file is assembled
at the location of the GET directive. INCLUDE is a synonym for GET.

7.47.1 Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

7.47.2 Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. When
assembly of the included file is complete, assembly continues at the line following the GET
directive.

By default the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

The included file can contain additional GET directives to include other files.

If the included file is in a different directory from the current place, this becomes the current
place until the end of the included file. The previous current place is then restored.

You cannot use GET to include object files.

7.47.3 Examples

 AREA Example, CODE, READONLY
 GET file1.s ; includes file1 if it exists
 ; in the current place.
 GET c:\project\file2.s ; includes file2
 GET c:\Program files\file3.s ; space is permitted

7.47.4 See also

Reference
• INCBIN on page 7-59
• Nesting directives on page 7-5.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-54
ID012213 Non-Confidential

Directives Reference
7.48 IF, ELSE, ENDIF, and ELIF
The IF directive introduces a condition that controls whether to assemble a sequence of
instructions and directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions or directives that you want
to be assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDIF directive marks the end of a sequence of instructions or directives that you want to be
conditionally assembled.] is a synonym for ENDIF.

The ELIF directive creates a structure equivalent to ELSE IF, without the requirement for nesting
or repeating the condition.

7.48.1 Syntax

 IF logical-expression …;code
{ELSE …;code} ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

7.48.2 Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions or directives that are
only to be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested.

7.48.3 Using ELIF

Without using ELIF, you can construct a nested set of conditional instructions like this:

 IF logical-expression
 instructions
 ELSE
 IF logical-expression2
 instructions
 ELSE
 IF logical-expression3
 instructions
 ENDIF
 ENDIF
 ENDIF

A nested structure like this can be nested up to 256 levels deep.

You can write the same structure more simply using ELIF:

 IF logical-expression
 instructions
 ELIF logical-expression2
 instructions
 ELIF logical-expression3
 instructions
 ENDIF

This structure only adds one to the current nesting depth, for the IF...ENDIF pair.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-55
ID012213 Non-Confidential

Directives Reference
7.48.4 Examples

Example 7-3 assembles the first set of instructions if NEWVERSION is defined, or the alternative set
otherwise.

Example 7-3 Assembly conditional on a variable being defined

 IF :DEF:NEWVERSION
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows defines NEWVERSION, so the first set of instructions and directives are
assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows leaves NEWVERSION undefined, so the second set of instructions and
directives are assembled:

armasm test.s

Example 7-4 assembles the first set of instructions if NEWVERSION has the value {TRUE}, or the
alternative set otherwise.

Example 7-4 Assembly conditional on a variable value

 IF NEWVERSION = {TRUE}
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows causes the first set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows causes the second set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {FALSE}" test.s

7.48.5 See also

Concepts
Using the Assembler:
• Relational operators on page 8-27.

Reference
• Using ELIF on page 7-55
• Nesting directives on page 7-5.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-56
ID012213 Non-Confidential

Directives Reference
7.49 IMPORT and EXTERN
These directives provide the assembler with a name that is not defined in the current assembly.

7.49.1 Syntax

directive symbol {[SIZE=n]}

directive symbol {[type]}

directive symbol [attr{,type}{,SIZE=n}]

directive symbol [WEAK{,attr}{,type}{,SIZE=n}]

where:

directive can be either:
IMPORT imports the symbol unconditionally.
EXTERN imports the symbol only if it is referred to in the current assembly.

symbol is a symbol name defined in a separately assembled source file, object file, or
library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not defined
elsewhere. It also prevents the linker searching libraries that are not already
included.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the linker determines the most appropriate type.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

7.49.2 Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is
treated as a program address. If [WEAK] is not specified, the linker generates an error if no
corresponding symbol is found at link time.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-57
ID012213 Non-Confidential

Directives Reference
If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol is taken
as the address of the following instruction. This makes the B or BL instruction effectively
a NOP.

• Otherwise, the value of the symbol is taken as zero.

7.49.3 Example

The example tests to see if the C++ library has been linked, and branches conditionally on the
result.

 AREA Example, CODE, READONLY
 EXTERN __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the address of
 ; __CPP_INITIALIZE function.
 LDR r0,=__CPP_INITIALIZE ; If not linked, address is zeroed.
 CMP r0,#0 ; Test if zero.
 BEQ nocplusplus ; Branch on the result.

The following examples show the use of the SIZE attribute:

EXTERN symA [SIZE=4]
EXTERN symA [DATA, SIZE=4]

7.49.4 See also

Reference
• ELF for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
• EXPORT or GLOBAL on page 7-34.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-58
ID012213 Non-Confidential

Directives Reference
7.50 INCBIN
The INCBIN directive includes a file within the file being assembled. The file is included as it is,
without being assembled.

7.50.1 Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

7.50.2 Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The contents of the
file are added to the current ELF section, byte for byte, without being interpreted in any way.
Assembly continues at the line following the INCBIN directive.

By default, the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

7.50.3 Example

 AREA Example, CODE, READONLY
 INCBIN file1.dat ; includes file1 if it
 ; exists in the
 ; current place.
 INCBIN c:\project\file2.txt ; includes file2
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-59
ID012213 Non-Confidential

Directives Reference
7.51 INFO
The INFO directive supports diagnostic generation on either pass of the assembly.

! is very similar to INFO, but has less detailed reporting.

7.51.1 Syntax

INFO numeric-expression, string-expression{, severity}

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the expression
evaluates to zero:
• no action is taken during pass one
• string-expression is printed as a warning during pass two if severity is 1
• string-expression is printed as a message during pass two if severity is 0

or not specified.
If the expression does not evaluate to zero:
• string-expression is printed as an error message and the assembly fails

irrespective of whether severity is specified or not (non-zero values for
severity are reserved in this case).

string-expression

is an expression that evaluates to a string.

severity

is an optional number that controls the severity of the message. Its value can be
either 0 or 1. All other values are reserved.

7.51.2 Usage

INFO provides a flexible means of creating custom error messages.

7.51.3 Examples

 INFO 0, "Version 1.0"
 IF endofdata <= label1
 INFO 4, "Data overrun at label1"
 ENDIF

7.51.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16
• String expressions on page 8-14.

Reference
• ASSERT on page 7-17.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-60
ID012213 Non-Confidential

Directives Reference
7.52 KEEP
The KEEP directive instructs the assembler to retain named local labels in the symbol table in the
object file.

7.52.1 Syntax

KEEP {label}

where:

label is the name of the local label to keep. If label is not specified, all named local
labels are kept except register-relative labels.

7.52.2 Usage

By default, the only labels that the assembler describes in its output object file are:
• exported labels
• labels that are relocated against.

Use KEEP to preserve local labels. This can help when debugging. Kept labels appear in the ARM
debuggers and in linker map files.

KEEP cannot preserve register-relative labels or numeric local labels.

7.52.3 Example

label ADC r2,r3,r4
 KEEP label ; makes label available to debuggers
 ADD r2,r2,r5

7.52.4 See also

Reference
• MAP on page 7-67.

Concepts
• Numeric local labels on page 8-12.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-61
ID012213 Non-Confidential

Directives Reference
7.53 LCLA, LCLL, and LCLS
The LCLA directive declares a local arithmetic variable, and initializes its value to 0.

The LCLL directive declares a local logical variable, and initializes its value to {FALSE}.

The LCLS directive declares a local string variable, and initializes its value to a null string, "".

7.53.1 Syntax

<lclx> variable

where:

<lclx> is one of LCLA, LCLL, or LCLS.

variable is the name of the variable. variable must be unique within the macro that
contains it.

7.53.2 Usage

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to a particular instantiation of the macro that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

7.53.3 Example

 MACRO ; Declare a macro
$label message $a ; Macro prototype line
 LCLS err ; Declare local string
 ; variable err.
err SETS "error no: " ; Set value of err
$label ; code
 INFO 0, "err":CC::STR:$a ; Use string
 MEND

7.53.4 See also

Reference
• SETA, SETL, and SETS on page 7-81
• MACRO and MEND on page 7-64
• GBLA, GBLL, and GBLS on page 7-52.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-62
ID012213 Non-Confidential

Directives Reference
7.54 LTORG
The LTORG directive instructs the assembler to assemble the current literal pool immediately.

7.54.1 Syntax

LTORG

7.54.2 Usage

The assembler assembles the current literal pool at the end of every code section. The end of a
code section is determined by the AREA directive at the beginning of the following section, or the
end of the assembly.

These default literal pools can sometimes be out of range of some LDR, VLDR, and WLDR
pseudo-instructions. Use LTORG to ensure that a literal pool is assembled within range.

Large programs can require several literal pools. Place LTORG directives after unconditional
branches or subroutine return instructions so that the processor does not attempt to execute the
constants as instructions.

The assembler word-aligns data in literal pools.

7.54.3 Example

 AREA Example, CODE, READONLY
start BL func1
func1 ; function body
 ; code
 LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to Literal Pool 1]
 ; code
 MOV pc,lr ; end function
 LTORG ; Literal Pool 1 contains literal &55555555.
data SPACE 4200 ; Clears 4200 bytes of memory,
 ; starting at current location.
 END ; Default literal pool is empty.

7.54.4 See also

Reference
• LDR pseudo-instruction on page 3-100
• VLDR pseudo-instruction on page 5-73
• Wireless MMX load and store instructions on page 6-6.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-63
ID012213 Non-Confidential

Directives Reference
7.55 MACRO and MEND
The MACRO directive marks the start of the definition of a macro. Macro expansion terminates at
the MEND directive.

7.55.1 Syntax

These two directives define a macro. The syntax is:

 MACRO
{$label} macroname{$cond} {$parameter{,$parameter}...}
 ; code
 MEND

where:

$label is a parameter that is substituted with a symbol given when the macro is invoked.
The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or directive name.

$cond is a special parameter designed to contain a condition code. Values other than
valid condition codes are permitted.

$parameter is a parameter that is substituted when the macro is invoked. A default value for
a parameter can be set using this format:
$parameter="default value"

Double quotes must be used if there are any spaces within, or at either end of, the
default value.

7.55.2 Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must be closed
before the MEND directive is reached. You can use MEXIT to enable an early exit from a macro, for
example, from within a loop.

Within the macro body, parameters such as $label, $parameter or $cond can be used in the same
way as other variables. They are given new values each time the macro is invoked. Parameters
must begin with $ to distinguish them from ordinary symbols. Any number of parameters can
be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a parameter to
the macro. It does not necessarily represent the first instruction in the macro expansion. The
macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used if the
argument is omitted.

In a macro that uses several internal labels, it is useful to define each internal label as the base
label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space is not
required in the expansion. Do not use a dot between preceding text and a parameter.

You can use the $cond parameter for condition codes. Use the unary operator :REVERSE_CC: to
find the inverse condition code, and :CC_ENCODING: to find the 4-bit encoding of the condition
code.

Macros define the scope of local variables.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-64
ID012213 Non-Confidential

Directives Reference
Macros can be nested.

7.55.3 Examples

 ; macro definition
 MACRO ; start macro definition
$label xmac $p1,$p2
 ; code
$label.loop1 ; code
 ; code
 BGE $label.loop1
$label.loop2 ; code
 BL $p1
 BGT $label.loop2
 ; code
 ADR $p2
 ; code
 MEND ; end macro definition
 ; macro invocation
abc xmac subr1,de ; invoke macro
 ; code ; this is what is
abcloop1 ; code ; is produced when
 ; code ; the xmac macro is
 BGE abcloop1 ; expanded
abcloop2 ; code
 BL subr1
 BGT abcloop2
 ; code
 ADR de
 ; code

Using a macro to produce assembly-time diagnostics:

 MACRO ; Macro definition
 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)
 ; macro expansion
 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

Note
 When variables are also being passed in as arguments, use of | might leave some variables
unsubstituted. To workaround this, define the | in a LCLS or GBLS variable and pass this variable
as an argument instead of |. For example:

MACRO ; Macro definition
m2 $a,$b=r1,$c ; The default value for $b is r1
add $a,$b,$c ; The macro adds $b and $c and puts result in $a
MEND ; Macro end

MACRO ; Macro definition
m1 $a,$b ; This macro adds $b to r1 and puts result in $a
LCLS def ; Declare a local string variable for |

def SETS "|" ; Define |
m2 $a,$def,$b ; Invoke macro m2 with $def instead of |

; to use the default value for the second argument.
MEND ; Macro end
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-65
ID012213 Non-Confidential

Directives Reference
7.55.4 Conditional macro example

 AREA codx, CODE, READONLY

; macro definition

MACRO
Return$cond
[{ARCHITECTURE} <> "4"
BX$cond lr
|
MOV$cond pc,lr

]
MEND

; macro invocation

fun PROC
CMP r0,#0
MOVEQ r0,#1
ReturnEQ
 MOV r0,#0
Return
ENDP

END

7.55.5 See also

Concepts
Using the Assembler:
• Use of macros on page 5-30
• Assembly time substitution of variables on page 8-6.

Reference
• MEXIT on page 7-68
• Nesting directives on page 7-5
• GBLA, GBLL, and GBLS on page 7-52
• LCLA, LCLL, and LCLS on page 7-62.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-66
ID012213 Non-Confidential

Directives Reference
7.56 MAP
The MAP directive sets the origin of a storage map to a specified address. The storage-map
location counter, {VAR}, is set to the same address. ^ is a synonym for MAP.

7.56.1 Syntax

MAP expr{,base-register}

where:

expr is a numeric or PC-relative expression:
• If base-register is not specified, expr evaluates to the address where the

storage map starts. The storage map location counter is set to this address.
• If expr is PC-relative, you must have defined the label before you use it in

the map. The map requires the definition of the label during the first pass of
the assembler.

base-register

specifies a register. If base-register is specified, the address where the storage
map starts is the sum of expr, and the value in base-register at runtime.

7.56.2 Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes implicit in
all labels defined by following FIELD directives, until the next MAP directive. The register-relative
labels can be used in load and store instructions.

The MAP directive can be used any number of times to define multiple storage maps.

The {VAR} counter is set to zero before the first MAP directive is used.

7.56.3 Examples

 MAP 0,r9
 MAP 0xff,r9

7.56.4 See also

Concepts
• How the assembler works on page 2-4 in Using the Assembler
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in Using the

Assembler.

Reference
• FIELD on page 7-51.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-67
ID012213 Non-Confidential

Directives Reference
7.57 MEXIT
The MEXIT directive exits a macro definition before the end.

7.57.1 Usage

Use MEXIT when you require an exit from within the body of a macro. Any unclosed
WHILE...WEND loops or IF...ENDIF conditions within the body of the macro are closed by the
assembler before the macro is exited.

7.57.2 Example

 MACRO
$abc example abc $param1,$param2
 ; code
 WHILE condition1
 ; code
 IF condition2
 ; code
 MEXIT
 ELSE
 ; code
 ENDIF
 WEND
 ; code
 MEND

7.57.3 See also

Reference
• MACRO and MEND on page 7-64.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-68
ID012213 Non-Confidential

Directives Reference
7.58 NOFP
The NOFP directive ensures that there are no floating-point instructions in an assembly language
source file.

7.58.1 Syntax

NOFP

7.58.2 Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there is no
support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is generated
and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the error:

Too late to ban floating point instructions

and the assembly fails.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-69
ID012213 Non-Confidential

Directives Reference
7.59 OPT
The OPT directive sets listing options from within the source code.

7.59.1 Syntax

OPT n

where:

n is the OPT directive setting. Table 7-2 lists valid settings.

7.59.2 Usage

Specify the --list= assembler option to turn on listing.

By default the --list= option produces a normal listing that includes variable declarations,
macro expansions, call-conditioned directives, and MEND directives. The listing is produced on
the second pass only. Use the OPT directive to modify the default listing options from within your
code.

You can use OPT to format code listings. For example, you can specify a new page before
functions and sections.

Table 7-2 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-70
ID012213 Non-Confidential

Directives Reference
7.59.3 Example

 AREA Example, CODE, READONLY
start ; code
 ; code
 BL func1
 ; code
 OPT 4 ; places a page break before func1
func1 ; code

7.59.4 See also

Reference
• --list=file on page 2-49.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-71
ID012213 Non-Confidential

Directives Reference
7.60 QN, DN, and SN
The QN directive defines a name for a specified 128-bit extension register.

The DN directive defines a name for a specified 64-bit extension register.

The SN directive defines a name for a specified single-precision VFP register.

7.60.1 Syntax

name directive expr{.type}{[x]}

where:

directive is QN, DN, or SN.

name is the name to be assigned to the extension register. name cannot be the same as
any of the predefined names.

expr Can be:
• an expression that evaluates to a number in the range:

— 0-15 if you are using DN in VFPv2 or QN in NEON
— 0-31 otherwise.

• a predefined register name, or a register name that has already been defined
in a previous directive.

type is any NEON or VFP datatype.

[x] is only available for NEON code. [x] is a scalar index into a register.

type and [x] are Extended notation.

7.60.2 Usage

Use QN, DN, or SN to allocate convenient names to extension registers, to help you to remember
what you use each one for.

Note
 Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive.

7.60.3 Examples

energy DN 6 ; defines energy as a symbol for
 ; VFP double-precision register 6
mass SN 16 ; defines mass as a symbol for
 ; VFP single-precision register 16

7.60.4 Extended notation examples

varA DN d1.U16
varB DN d2.U16
varC DN d3.U16

VADD varA,varB,varC ; VADD.U16 d1,d2,d3
index DN d4.U16[0]
result QN q5.I32

VMULL result,varA,index ; VMULL.U16 q5,d1,d3[2]
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-72
ID012213 Non-Confidential

Directives Reference
7.60.5 See also

Reference
Using the Assembler:
• Predeclared core register names on page 3-13
• Predeclared extension register names on page 3-14
• Predeclared XScale register names on page 3-15
• Predeclared coprocessor names on page 3-16
• Extended notation on page 9-21
• Extended notation examples on page 7-72
• NEON and VFP data types on page 9-13
• VFP directives and vector notation on page 9-36.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-73
ID012213 Non-Confidential

Directives Reference
7.61 RELOC
The RELOC directive explicitly encodes an ELF relocation in an object file.

7.61.1 Syntax

RELOC n, symbol

RELOC n

where:

n must be an integer in the range 0 to 255 or one of the relocation names defined in
the Application Binary Interface for the ARM Architecture.

symbol can be any PC-relative label.

7.61.2 Usage

Use RELOC n, symbol to create a relocation with respect to the address labeled by symbol.

If used immediately after an ARM or Thumb instruction, RELOC results in a relocation at that
instruction. If used immediately after a DCB, DCW, or DCD, or any other data generating directive,
RELOC results in a relocation at the start of the data. Any addend to be applied must be encoded
in the instruction or in the data.

If the assembler has already emitted a relocation at that place, the relocation is updated with the
details in the RELOC directive, for example:

DCD sym2 ; R_ARM_ABS32 to sym32
RELOC 55 ; ... makes it R_ARM_ABS32_NOI

RELOC is faulted in all other cases, for example, after any non-data generating directive, LTORG,
ALIGN, or as the first thing in an AREA.

Use RELOC n to create a relocation with respect to the anonymous symbol, that is, symbol 0 of the
symbol table. If you use RELOC n without a preceding assembler generated relocation, the
relocation is with respect to the anonymous symbol.

7.61.3 Examples

IMPORT impsym
LDR r0,[pc,#-8]
RELOC 4, impsym
DCD 0
RELOC 2, sym
DCD 0,1,2,3,4 ; the final word is relocated
RELOC 38,sym2 ; R_ARM_TARGET1
DCD impsym
RELOC R_ARM_TARGET1 ; relocation code 38

7.61.4 See also

Reference
• Application Binary Interface for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-74
ID012213 Non-Confidential

Directives Reference
7.62 REQUIRE
The REQUIRE directive specifies a dependency between sections.

7.62.1 Syntax

REQUIRE label

where:

label is the name of the required label.

7.62.2 Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called. If the
section containing the REQUIRE directive is included in a link, the linker also includes the section
containing the definition of the specified label.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-75
ID012213 Non-Confidential

Directives Reference
7.63 REQUIRE8 and PRESERVE8
The REQUIRE8 directive specifies that the current file requires eight-byte alignment of the stack.
It sets the REQ8 build attribute to inform the linker.

The PRESERVE8 directive specifies that the current file preserves eight-byte alignment of the
stack. It sets the PRES8 build attribute to inform the linker.

The linker checks that any code that requires eight-byte alignment of the stack is only called,
directly or indirectly, by code that preserves eight-byte alignment of the stack.

7.63.1 Syntax

REQUIRE8 {bool}

PRESERVE8 {bool}

where:

bool is an optional Boolean constant, either {TRUE} or {FALSE}.

7.63.2 Usage

Where required, if your code preserves eight-byte alignment of the stack, use PRESERVE8 to set
the PRES8 build attribute on your file. If your code does not preserve eight-byte alignment of
the stack, use PRESERVE8 {FALSE} to ensure that the PRES8 build attribute is not set. If there are
multiple REQUIRE8 or PRESERVE8 directives in a file, the assembler uses the value of the last
directive.

Note
 If you omit both PRESERVE8 and PRESERVE8 {FALSE}, the assembler decides whether to set the
PRES8 build attribute or not, by examining instructions that modify the SP. ARM recommends
that you specify PRESERVE8 explicitly.

You can enable a warning with:

armasm --diag_warning 1546

This gives you warnings like:

"test.s", line 37: Warning: A1546W: Stack pointer update potentially
 breaks 8 byte stack alignment

 37 00000044 STMFD sp!,{r2,r3,lr}

7.63.3 Examples

REQUIRE8
REQUIRE8 {TRUE} ; equivalent to REQUIRE8
REQUIRE8 {FALSE} ; equivalent to absence of REQUIRE8
PRESERVE8 {TRUE} ; equivalent to PRESERVE8
PRESERVE8 {FALSE} ; NOT exactly equivalent to absence of PRESERVE8
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-76
ID012213 Non-Confidential

Directives Reference
7.63.4 See also

Concepts
• 8 Byte Stack Alignment,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4127.html.

Reference
• Assembler command-line options on page 2-3.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-77
ID012213 Non-Confidential

Directives Reference
7.64 RLIST
The RLIST (register list) directive gives a name to a set of general-purpose registers.

7.64.1 Syntax

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers. name cannot be the same as any of
the predefined names.

list-of-registers

is a comma-delimited list of register names and register ranges. The register list
must be enclosed in braces.

7.64.2 Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in memory,
regardless of the order they are supplied to the LDM or STM instruction. If you have defined your
own symbolic register names it can be less apparent that a register list is not in increasing
register order.

Use the --diag_warning 1206 assembler option to ensure that the registers in a register list are
supplied in increasing register order. If registers are not supplied in increasing register order, a
warning is issued.

7.64.3 Example

Context RLIST {r0-r6,r8,r10-r12,pc}

7.64.4 See also

Reference
Using the Assembler:
• Predeclared core register names on page 3-13
• Predeclared extension register names on page 3-14
• Predeclared XScale register names on page 3-15
• Predeclared coprocessor names on page 3-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-78
ID012213 Non-Confidential

Directives Reference
7.65 RN
The RN directive defines a register name for a specified register.

7.65.1 Syntax

name RN expr

where:

name is the name to be assigned to the register. name cannot be the same as any of the
predefined names.

expr evaluates to a register number from 0 to 15.

7.65.2 Usage

Use RN to allocate convenient names to registers, to help you to remember what you use each
register for. Be careful to avoid conflicting uses of the same register under different names.

7.65.3 Examples

regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6

7.65.4 See also

Reference
Using the Assembler:
• Predeclared core register names on page 3-13
• Predeclared extension register names on page 3-14
• Predeclared XScale register names on page 3-15
• Predeclared coprocessor names on page 3-16.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-79
ID012213 Non-Confidential

Directives Reference
7.66 ROUT
The ROUT directive marks the boundaries of the scope of numeric local labels.

7.66.1 Syntax

{name} ROUT

where:

name is the name to be assigned to the scope.

7.66.2 Usage

Use the ROUT directive to limit the scope of numeric local labels. This makes it easier for you to
avoid referring to a wrong label by accident. The scope of numeric local labels is the whole area
if there are no ROUT directives in it.

Use the name option to ensure that each reference is to the correct numeric local label. If the name
of a label or a reference to a label does not match the preceding ROUT directive, the assembler
generates an error message and the assembly fails.

7.66.3 Example

 ; code
routineA ROUT ; ROUT is not necessarily a routine
 ; code
3routineA ; code ; this label is checked
 ; code
 BEQ %4routineA ; this reference is checked
 ; code
 BGE %3 ; refers to 3 above, but not checked
 ; code
4routineA ; code ; this label is checked
 ; code
otherstuff ROUT ; start of next scope

7.66.4 See also

Concepts
Using the Assembler:
• Numeric local labels on page 8-12.

Reference
• AREA on page 7-13.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-80
ID012213 Non-Confidential

Directives Reference
7.67 SETA, SETL, and SETS
The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

7.67.1 Syntax

variable <setx> expr

where:

<setx> is one of SETA, SETL, or SETS.

variable is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS
directive.

expr is an expression that is:
• numeric, for SETA
• logical, for SETL
• string, for SETS.

7.67.2 Usage

You must declare variable using a global or local declaration directive before using one of these
directives.

You can also predefine variable names on the command line.

7.67.3 Examples

 GBLA VersionNumber
VersionNumber SETA 21
 GBLL Debug
Debug SETL {TRUE}
 GBLS VersionString
VersionString SETS "Version 1.0"

7.67.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16
• Logical expressions on page 8-19
• String expressions on page 8-14.

Reference
• Assembler command-line options on page 2-3
• LCLA, LCLL, and LCLS on page 7-62
• GBLA, GBLL, and GBLS on page 7-52.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-81
ID012213 Non-Confidential

Directives Reference
7.68 SPACE or FILL
The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

The FILL directive reserves a block of memory to fill with the given value.

7.68.1 Syntax

{label} SPACE expr

{label} FILL expr{,value{,valuesize}}

where:

label is an optional label.

expr evaluates to the number of bytes to fill or zero.

value evaluates to the value to fill the reserved bytes with. value is optional and if
omitted, it is 0. value must be 0 in a NOINIT area.

valuesize is the size, in bytes, of value. It can be any of 1, 2, or 4. valuesize is optional and
if omitted, it is 1.

7.68.2 Usage

Use the ALIGN directive to align any code following a SPACE or FILL directive.

7.68.3 Example

 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
data2 FILL 50,0xAB,1 ; defines 50 bytes containing 0xAB

7.68.4 See also

Concepts
Using the Assembler:
• Numeric expressions on page 8-16.

Reference
• DCB on page 7-23
• DCD and DCDU on page 7-24
• DCDO on page 7-25
• DCW and DCWU on page 7-30
• ALIGN on page 7-11.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-82
ID012213 Non-Confidential

Directives Reference
7.69 TTL and SUBT
The TTL directive inserts a title at the start of each page of a listing file. The title is printed on
each page until a new TTL directive is issued.

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed on each
page until a new SUBT directive is issued.

7.69.1 Syntax

TTL title

SUBT subtitle

where:

title is the title.

subtitle is the subtitle.

7.69.2 Usage

Use the TTL directive to place a title at the top of the pages of a listing file. If you want the title
to appear on the first page, the TTL directive must be on the first line of the source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect from the top
of the next page.

Use SUBT to place a subtitle at the top of the pages of a listing file. Subtitles appear in the line
below the titles. If you want the subtitle to appear on the first page, the SUBT directive must be
on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect from the
top of the next page.

7.69.3 Examples

 TTL First Title ; places a title on the first
 ; and subsequent pages of a
 ; listing file.
 SUBT First Subtitle ; places a subtitle on the
 ; second and subsequent pages
 ; of a listing file.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-83
ID012213 Non-Confidential

Directives Reference
7.70 WHILE and WEND
The WHILE directive starts a sequence of instructions or directives that are to be assembled
repeatedly. The sequence is terminated with a WEND directive.

7.70.1 Syntax

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE}.

7.70.2 Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of instructions
a number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested.

7.70.3 Example

GBLA count ; declare local variable
count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
count SETA count+1 ; In this case,
 ; code ; this code is
 ; code ; repeated four times
 WEND

7.70.4 See also

Concepts
Using the Assembler:
• Logical expressions on page 8-19.

Reference
• Nesting directives on page 7-5.
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. 7-84
ID012213 Non-Confidential

Appendix A
Revisions for Assembler Reference

The following technical changes have been made to Assembler Reference.

Table A-1 Differences between issue H and issue I

Change Topics affected

Replaced or removed the term UNPREDICTABLE. Various instructions

Where appropriate, changed the term local label to either
numeric local label or named local label.

• KEEP on page 7-61
• ROUT on page 7-80
• --keep on page 2-44
• --untyped_local_labels on page 2-83
• LDR pseudo-instruction on page 3-100

Mentioned that DMB, DSB and ISB cannot be conditional in
ARM code.

• DMB on page 3-72
• DSB on page 3-74
• ISB on page 3-79

Corrected the available immediate ranges for VQ{R}SHR{U}N
and mentioned the I16, I32, and I64 datatypes.

• VQRSHRN and VQRSHRUN (by immediate) on
page 5-127

• VQSHRN and VQSHRUN (by immediate) on
page 5-130

Where appropriate, changed the terminology that implied
that 16-bit Thumb and 32-bit Thumb are separate
instruction sets.

Various topics

Where appropriate, changed the term processor state to
instruction set state.

BXJ on page 3-61
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-1
ID012213 Non-Confidential

Revisions for Assembler Reference
Mentioned that VFP vector mode and mixed mode are
deprecated, for the following VFP instructions: VABS, VADD,
VDIV, VMLA, VMLS, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT, and
VSUB.

Chapter 5 NEON and VFP Programming

Described the E suffix for the VCMP instruction. VCMP, VCMPE on page 5-48

Added the non flag-setting forms to the lists of 16-bit
Thumb instructions, for the following instructions: ADC,
ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MUL, ORR, ROR, RSB, SBC,
and SUB. Also mentioned that the corresponding
flag-setting forms can only be used outside IT blocks.

Chapter 3 ARM and Thumb Instructions

Corrected the examples given for the DCQ and DCQU
directives.

DCQ and DCQU on page 7-29

Table A-2 Differences between issue G and issue H

Change Topics affected

Clarified the difference between the --predefine assembler
option and the -Dname compiler option.

--predefine "directive" on page 2-69

Mentioned UNPREDICTABLE behaviour when using PC or
SP with the MRS or MSR instructions.

• MRS (PSR to general-purpose register) on
page 3-126

• MSR (general-purpose register to PSR) on
page 3-130

Added a note about using the ISB instruction in an IT block
on ARMv7-M.

DMB on page 3-72

Separated the V{R}SHR, V{R}SHRN and V{R}SRA instruction
descriptions and changed the descriptions of the valid
immediate ranges.

• VSHR (by immediate) on page 5-148
• VSHRN (by immediate) on page 5-149
• VSRA (by immediate) on page 5-152

Changed the terminology used for ARM architecture
versions and added explanatory table footnotes.

• Table 3-3 on page 3-38
• Table 3-4 on page 3-40
• Table 3-10 on page 3-89
• Table 3-16 on page 3-207
• Table 3-14 on page 3-104
• Table 3-11 on page 3-91
• Table 3-13 on page 3-98

Added the CPY and NEG pseudo-instructions. • CPY pseudo-instruction on page 3-70
• NEG pseudo-instruction on page 3-136

Expanded the Usage and Example sections for the ENTRY
directive.

ENTRY on page 7-32

Table A-1 Differences between issue H and issue I (continued)

Change Topics affected
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-2
ID012213 Non-Confidential

Revisions for Assembler Reference
Table A-3 Differences between issue F and issue G

Change Topics affected

Updated the description of --untyped_local_labels. --untyped_local_labels on page 2-83

Added the ERET instruction. ERET on page 3-78

Mentioned that the MVN instruction exists in a 16-bit Thumb
encoding.

MOV on page 3-118

Added a figure showing the operation of VSHL and updated
the figures for VSLI and VSRI.

• VSHL (by immediate) on page 5-144
• VSLI on page 5-150

Added links to the NEON and VFP data types topic from
the associated NEON and VFP instructions.

Various NEON and VFP instructions

Mentioned that the FUNCTION directive can accept an empty
reglist.

FUNCTION or PROC on page 7-48

Table A-4 Differences between issue E and issue F

Change Topics affected

Added a note that the --device option is deprecated. • --device=list on page 2-23
• --device=name on page 2-24

Modified the description of --licretry. --licretry on page 2-48

Where appropriate:
• changed Thumb-2 to 32-bit Thumb
• changed Thumb-2EE to ThumbEE.

Various topics

Changed the minor version component of the integer
reported by the --version_number option from one to two
digits.

--version_number on page 2-84

Modified the description of --vsn. --vsn on page 2-86

Mentioned a restriction on using LSL in an IT block with a
zero value for sh.

ASR on page 3-46

Clarified the range of addresses accessible to the ADRL
pseudo-instruction in ARM state.

ADRL pseudo-instruction on page 3-42

Table A-5 Differences between issue D and issue E

Change Topics affected

Added SC300 and SC000 to table of --compatible options. --compatible=name on page 2-15
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-3
ID012213 Non-Confidential

Revisions for Assembler Reference
Table A-6 Differences between issue C and issue D

Change Topics affected

In the summary table, changed instruction mnemonics
from:
• VQRSHR to VQRSHR{U}N
• VQSHR to VQSHR{U}N
• VRSUBH to VRSUBHN
• VSUBH to VSUBHN.
• VRADDH to VRADDHN.

Table 5-1 on page 5-2

Added GBLA count to the example. WHILE and WEND on page 7-84

Changed FPv4_SP to FPv4-SP. --fpu=name on page 2-39

Added ARM Glossary to other information. Chapter 1 Conventions and feedback

Made changes to ALinknames for MRS, MSR, SEV, SYS, and
NOP instructions.

• MSR (ARM register to system coprocessor register)
on page 3-129

• MRS (system coprocessor register to ARM register)
on page 3-128

• SYS on page 3-232
• SEV on page 3-174
• NOP on page 3-137

Added links to Memory access instructions in the LDR
instruction pages.

Memory access instructions on page 3-10

Table A-7 Differences between issue B and issue C

Change Topics affected

Changed the restrictions to say that Rt must be
even-numbered only in LDREXD and STREXD instructions.

LDREX on page 3-105

Mentioned the additional cases where SP and PC are
deprecated.

• LDREX on page 3-105
• ADD on page 3-35
• MOV on page 3-118
• B on page 3-48
• LDC and LDC2 on page 3-83

Mentioned that deprecation of SP and PC is only in
ARMv6T2 and above.

Various instructions

Added example of inconsistent use of MAP and FIELD
directives.

FIELD on page 7-51

Added note that the option is not required if you are using
the ARM Compiler toolchain with DS-5.

• --workdir=directory on page 2-88
• --project=filename on page 2-70
• --no_project on page 2-61
• --reinitialize_workdir on page 2-75

Changed --cpu PXA270 to --device PXA270. About Wireless MMX Technology instructions on page 6-2
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-4
ID012213 Non-Confidential

Revisions for Assembler Reference
Table A-8 Differences between issue A and issue B

Change Topics affected

Updated the description of --cpu=name. --cpu=name on page 2-19

Added the option --execstack. --execstack on page 2-34

Added the option --no_execstack. --no_execstack on page 2-57

Added the option --fpmode=none. --fpmode=model on page 2-37

Updated the description of --show_cmdline. --show_cmdline on page 2-77

Updated the instruction summary table and footnotes with
ARMv7E-M.

ARM and Thumb instruction summary on page 3-2

Replaced “profile” with “architecture” when referring to
ARMv6-M, ARMv7-M, ARMv7-R, and ARMv7-A in the
instruction summary table and in the architecture sections
of the instruction descriptions.

ARM and Thumb instruction summary on page 3-2

Mentioned register-controlled shift in the description of
Operand2.

Operand2 as a register with optional shift on page 3-16

Added register restrictions to ADR (PC-relative). ADR (PC-relative) on page 3-38

Added register restrictions and deprecation information in
LDR and STR (immediate offset).

LDR (immediate offset) on page 3-88

Identified the ARM only instruction syntaxes in LDR and
STR (register offset).

STR (register offset) on page 3-207

Added register restrictions and deprecation information,
use of SP, and use of PC in LDR and STR (register offset).

STR (register offset) on page 3-207

Noted that PC-relative STR is available but deprecated. LDR (PC-relative) on page 3-91

Added information about deprecation and use of SP in LDR
(PC-relative).

LDR (PC-relative) on page 3-91

In Restrictions of reglist in ARM instructions, added that
reglist containing both PC and LR in ARM LDM is
deprecated.

LDM on page 3-85

Added Restrictions of reglist in ARM instructions. POP on page 3-146

Added register restriction for Rn and moved the statement
“Rm must not be PC” to this section.

PLD, PLDW, and PLI on page 3-144

Added restrictions on reglist in LDM and STM. LDM on page 3-85

Added the statement “must not be PC” for each of the
registers in the syntax.

SWP and SWPB on page 3-220

Linked to SUBS pc, lr from Use of PC in ARM
instructions.

ADD on page 3-35

Removed the caution against the use of the S suffix when
using PC as Rd in User or System mode.

ADD on page 3-35

Mentioned the deprecated instructions that use PC. ADD on page 3-35

Added more syntaxes that are only present in ARM code
and described the additional items in the syntax.

SUBS pc, lr on page 3-217
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-5
ID012213 Non-Confidential

Revisions for Assembler Reference
Documented the valid forms of the SUBS instruction in
ARM and Thumb, and added the caution to not use these
instructions in User or System mode.

SUBS pc, lr on page 3-217

Linked to SUBS pc, lr from Use of PC in ARM instructions
and from See also section.

AND on page 3-44

Removed the caution against the use of the S suffix when
using PC as Rd in User or System mode.

AND on page 3-44

Added Register restrictions section to say Rn cannot be PC
in instructions that write back to Rn.

LDC and LDC2 on page 3-83

Mentioned that Rt cannot be PC. MCR and MCR2 on page 3-112

Mentioned that Rm cannot be PC. MSR (general-purpose register to PSR) on page 3-130

Linked to SUBS pc, lr from Use of PC in ARM
instructions.

MOV on page 3-118

Removed the caution against the use of the S suffix when
using PC as Rd in User or System mode.

MOV on page 3-118

Mentioned the deprecated instructions that use PC. MOV on page 3-118

Mentioned that SP is not permitted in Thumb TST and TEQ
instructions, and is deprecated in ARM TST and TEQ
instructions.

TST on page 3-236

Added that SEL is available in ARMv7E-M. SEL on page 3-171

Added that Rn must be different from Rd in MUL and MLA
before ARMv6.

MUL on page 3-132

Added that Rn must be different from RdLo and RdHi before
ARMv6.

UMULL on page 3-242

Added that the Thumb instructions are available in
ARMv7E-M.

• SMULxy on page 3-190
• SMULWy on page 3-193
• SMLALxy on page 3-181
• SMUAD on page 3-189
• SMMUL on page 3-188
• SMLAD on page 3-178
• SMLALD on page 3-180
• UMAAL on page 3-240
• QADD on page 3-149
• Parallel add and subtract on page 3-24
• USAD8 on page 3-244
• SSAT16 on page 3-199
• SXTB on page 3-227
• PKHBT and PKHTB on page 3-142

DBG is available in ARMv6K and above in ARM, and in
ARMv6T2 and above in Thumb. Also mentioned that DBG
executes as NOP in ARMv6K and ARMv6T2.

DBG on page 3-71

Added figures 4-4 and 4-5 for the operation of VSLI and
VSRI.

VSLI on page 5-150

Table A-8 Differences between issue A and issue B (continued)

Change Topics affected
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-6
ID012213 Non-Confidential

Revisions for Assembler Reference
Added tables showing the register state before and after
operation of VUZP and VZIP.

VUZP on page 5-169

Added that n can be a defined relocation name and add a
related example in the examples section.

RELOC on page 7-74

Added note for macro workaround when using |. MACRO and MEND on page 7-64

Clarified the message to say that error generation is during
assembly rather than second pass of the assembly.

ASSERT on page 7-17

Added ALIAS directive, and included it in the summary
table.

ALIAS on page 7-10

Clarified that n is any integer, and described the examples
in the examples sections.

ALIGN on page 7-11

Clarified the description of COMGROUP and GROUP. AREA on page 7-13

Added note about R_ARM_TARGET1. AREA on page 7-13

Added link to 8 Byte Stack Alignment in See also section. REQUIRE8 and PRESERVE8 on page 7-76

Added /hardfp and /softfp values to the --apcs option and
added link to the --apcs option in the Compiler Reference.

--apcs=qualifier…qualifier on page 2-7

Changed Rn to Rm in “Rd, Rn, Rm and Ra must not be PC”. USAD8 on page 3-244

Table A-8 Differences between issue A and issue B (continued)

Change Topics affected
ARM DUI 0489I Copyright © 2010-2013 ARM. All rights reserved. A-7
ID012213 Non-Confidential

	ARM Compiler toolchain Assembler Reference
	Contents
	1: Conventions and feedback
	2: Assembler command-line options
	2.1 Assembler command-line syntax
	2.1.1 See also

	2.2 Assembler command-line options
	2.3 --16
	2.3.1 See also

	2.4 --32
	2.4.1 See also

	2.5 --apcs=qualifier…qualifier
	2.5.1 Example
	2.5.2 See also

	2.6 --arm
	2.6.1 See also

	2.7 --arm_only
	2.7.1 See also

	2.8 --bi
	2.8.1 See also

	2.9 --bigend
	2.9.1 See also

	2.10 --brief_diagnostics
	2.10.1 See also

	2.11 --checkreglist
	2.11.1 See also

	2.12 --compatible=name
	2.12.1 Example
	2.12.2 See also

	2.13 --cpreproc
	2.13.1 See also

	2.14 --cpreproc_opts=options
	2.14.1 Example
	2.14.2 See also

	2.15 --cpu=list
	2.15.1 Example
	2.15.2 See also

	2.16 --cpu=name
	2.16.1 Example
	2.16.2 See also

	2.17 --debug
	2.17.1 See also

	2.18 --depend=dependfile
	2.18.1 See also

	2.19 --depend_format=string
	2.19.1 See also

	2.20 --device=list
	2.20.1 See also

	2.21 --device=name
	2.21.1 See also

	2.22 --diag_error=tag{, tag}
	2.22.1 See also

	2.23 --diag_remark=tag{, tag}
	2.23.1 See also

	2.24 --diag_style=style
	2.24.1 See also

	2.25 --diag_suppress=tag{, tag}
	2.25.1 See also

	2.26 --diag_warning=tag{, tag}
	2.26.1 See also

	2.27 --dllexport_all
	2.27.1 See also

	2.28 --dwarf2
	2.28.1 See also

	2.29 --dwarf3
	2.29.1 See also

	2.30 --errors=errorfile
	2.31 --execstack
	2.31.1 See also

	2.32 --exceptions
	2.32.1 See also

	2.33 --exceptions_unwind
	2.33.1 See also

	2.34 --fpmode=model
	2.34.1 Example
	2.34.2 See also

	2.35 --fpu=list
	2.35.1 Example
	2.35.2 See also

	2.36 --fpu=name
	2.36.1 See also

	2.37 -g
	2.37.1 See also

	2.38 --help
	2.38.1 See also

	2.39 -idir{,dir, …}
	2.39.1 See also

	2.40 --keep
	2.40.1 See also

	2.41 --length=n
	2.41.1 See also

	2.42 --li
	2.42.1 See also

	2.43 --library_type=lib
	2.43.1 See also

	2.44 --licretry
	2.44.1 See also

	2.45 --list=file
	2.45.1 See also

	2.46 --list=
	2.46.1 See also

	2.47 --littleend
	2.47.1 See also

	2.48 -m
	2.48.1 See also

	2.49 --maxcache=n
	2.50 --md
	2.50.1 See also

	2.51 --no_code_gen
	2.52 --no_esc
	2.53 --no_execstack
	2.53.1 See also

	2.54 --no_exceptions
	2.54.1 See also

	2.55 --no_exceptions_unwind
	2.55.1 See also

	2.56 --no_hide_all
	2.56.1 See also

	2.57 --no_project
	2.57.1 See also

	2.58 --no_reduce_paths
	2.58.1 See also

	2.59 --no_regs
	2.59.1 See also

	2.60 --no_terse
	2.60.1 See also

	2.61 --no_unaligned_access
	2.61.1 See also

	2.62 --no_warn
	2.62.1 See also

	2.63 -o filename
	2.64 --pd
	2.64.1 See also

	2.65 --predefine "directive"
	2.65.1 See also

	2.66 --project=filename
	2.66.1 See also

	2.67 --reduce_paths
	2.67.1 See also

	2.68 --regnames=none
	2.68.1 See also

	2.69 --regnames=callstd
	2.69.1 See also

	2.70 --regnames=all
	2.71 --reinitialize_workdir
	2.71.1 See also

	2.72 --report-if-not-wysiwyg
	2.73 --show_cmdline
	2.73.1 See also

	2.74 --split_ldm
	2.74.1 See also

	2.75 --thumb
	2.75.1 See also

	2.76 --thumbx
	2.76.1 See also

	2.77 --unaligned_access
	2.77.1 See also

	2.78 --unsafe
	2.78.1 See also

	2.79 --untyped_local_labels
	2.79.1 Example
	2.79.2 See also

	2.80 --version_number
	2.80.1 See also

	2.81 --via=file
	2.81.1 See also

	2.82 --vsn
	2.82.1 See also

	2.83 --width=n
	2.83.1 See also

	2.84 --workdir=directory
	2.84.1 See also

	2.85 --xref
	2.85.1 See also

	3: ARM and Thumb Instructions
	3.1 ARM and Thumb instruction summary
	3.2 Instruction width specifiers
	3.3 Memory access instructions
	3.3.1 See also

	3.4 General data processing instructions
	3.5 Flexible second operand (Operand2)
	3.5.1 See also

	3.6 Operand2 as a constant
	3.6.1 Instruction substitution
	3.6.2 See also

	3.7 Operand2 as a register with optional shift
	3.7.1 See also

	3.8 Shift operations
	3.8.1 ASR
	3.8.2 LSR
	3.8.3 LSL
	3.8.4 ROR
	3.8.5 RRX
	3.8.6 See also

	3.9 Multiply instructions
	3.10 Saturating instructions
	3.10.1 Saturating arithmetic
	3.10.2 See also

	3.11 Parallel instructions
	3.11.1 See also

	3.12 Parallel add and subtract
	3.12.1 Syntax
	3.12.2 Operation
	3.12.3 Register restrictions
	3.12.4 Condition flags
	3.12.5 Architectures
	3.12.6 Examples
	3.12.7 Incorrect examples
	3.12.8 See also

	3.13 Packing and unpacking instructions
	3.14 Branch and control instructions
	3.15 Coprocessor instructions
	3.15.1 See also

	3.16 Miscellaneous instructions
	3.17 Pseudo-instructions
	3.18 Condition codes
	3.18.1 See also

	3.19 ADC
	3.19.1 Syntax
	3.19.2 Usage
	3.19.3 Use of PC and SP in Thumb instructions
	3.19.4 Use of PC and SP in ARM instructions
	3.19.5 Condition flags
	3.19.6 16-bit instructions
	3.19.7 Multiword arithmetic examples
	3.19.8 See also

	3.20 ADD
	3.20.1 Syntax
	3.20.2 Usage
	3.20.3 Use of PC and SP in Thumb instructions
	3.20.4 Use of PC and SP in ARM instructions
	3.20.5 Condition flags
	3.20.6 16-bit instructions
	3.20.7 Example
	3.20.8 Multiword arithmetic example
	3.20.9 See also

	3.21 ADR (PC-relative)
	3.21.1 Syntax
	3.21.2 Usage
	3.21.3 Offset range and architectures
	3.21.4 ADR in Thumb
	3.21.5 Restrictions
	3.21.6 See also

	3.22 ADR (register-relative)
	3.22.1 Syntax
	3.22.2 Usage
	3.22.3 Restrictions
	3.22.4 Offset range and architectures
	3.22.5 ADR in Thumb
	3.22.6 See also

	3.23 ADRL pseudo-instruction
	3.23.1 Syntax
	3.23.2 Usage
	3.23.3 Architectures and range
	3.23.4 See also

	3.24 AND
	3.24.1 Syntax
	3.24.2 Usage
	3.24.3 Use of PC in Thumb instructions
	3.24.4 Use of PC and SP in ARM instructions
	3.24.5 Condition flags
	3.24.6 16-bit instructions
	3.24.7 Examples
	3.24.8 See also

	3.25 ASR
	3.25.1 Syntax
	3.25.2 Usage
	3.25.3 Restrictions in Thumb code
	3.25.4 Use of SP and PC in ARM instructions
	3.25.5 Condition flags
	3.25.6 16-bit instructions
	3.25.7 Architectures
	3.25.8 Example
	3.25.9 See also

	3.26 B
	3.26.1 Syntax
	3.26.2 Operation
	3.26.3 Instruction availability and branch ranges
	3.26.4 Extending branch ranges
	3.26.5 B in Thumb
	3.26.6 Condition flags
	3.26.7 Architectures
	3.26.8 Example
	3.26.9 See also

	3.27 BFC
	3.27.1 Syntax
	3.27.2 Operation
	3.27.3 Register restrictions
	3.27.4 Condition flags
	3.27.5 Architectures
	3.27.6 See also

	3.28 BFI
	3.28.1 Syntax
	3.28.2 Operation
	3.28.3 Register restrictions
	3.28.4 Condition flags
	3.28.5 Architectures
	3.28.6 See also

	3.29 BIC
	3.29.1 Syntax
	3.29.2 Usage
	3.29.3 Use of PC in Thumb instructions
	3.29.4 Use of PC and SP in ARM instructions
	3.29.5 Condition flags
	3.29.6 16-bit instructions
	3.29.7 Example
	3.29.8 See also

	3.30 BKPT
	3.30.1 Syntax
	3.30.2 Usage
	3.30.3 Architectures

	3.31 BL
	3.31.1 Syntax
	3.31.2 Operation
	3.31.3 Instruction availability and branch ranges
	3.31.4 Extending branch ranges
	3.31.5 Condition flags
	3.31.6 Architectures
	3.31.7 Examples
	3.31.8 See also

	3.32 BLX
	3.32.1 Syntax
	3.32.2 Operation
	3.32.3 Instruction availability and branch ranges
	3.32.4 BLX in ThumbEE
	3.32.5 Register restrictions
	3.32.6 Condition flags
	3.32.7 Architectures
	3.32.8 See also

	3.33 BX
	3.33.1 Syntax
	3.33.2 Operation
	3.33.3 Instruction availability and branch ranges
	3.33.4 BX in ThumbEE
	3.33.5 Register restrictions
	3.33.6 Condition flags
	3.33.7 Architectures
	3.33.8 See also

	3.34 BXJ
	3.34.1 Syntax
	3.34.2 Operation
	3.34.3 Instruction availability and branch ranges
	3.34.4 BXJ in ThumbEE
	3.34.5 Register restrictions
	3.34.6 Condition flags
	3.34.7 Architectures
	3.34.8 See also

	3.35 CBZ and CBNZ
	3.35.1 Syntax
	3.35.2 Usage
	3.35.3 Restrictions
	3.35.4 Condition flags
	3.35.5 Architectures

	3.36 CDP and CDP2
	3.36.1 Syntax
	3.36.2 Usage
	3.36.3 Architectures
	3.36.4 See also

	3.37 CLREX
	3.37.1 Syntax
	3.37.2 Usage
	3.37.3 Architectures
	3.37.4 See also

	3.38 CLZ
	3.38.1 Syntax
	3.38.2 Usage
	3.38.3 Register restrictions
	3.38.4 Condition flags
	3.38.5 Architectures
	3.38.6 Examples
	3.38.7 See also

	3.39 CMP and CMN
	3.39.1 Syntax
	3.39.2 Usage
	3.39.3 Use of PC in ARM and Thumb instructions
	3.39.4 Use of SP in ARM and Thumb instructions
	3.39.5 Condition flags
	3.39.6 16-bit instructions
	3.39.7 Examples
	3.39.8 Incorrect example
	3.39.9 See also

	3.40 CPS
	3.40.1 Syntax
	3.40.2 Condition flags
	3.40.3 16-bit instructions
	3.40.4 Architectures
	3.40.5 Examples

	3.41 CPY pseudo-instruction
	3.41.1 Syntax
	3.41.2 Usage
	3.41.3 Architectures
	3.41.4 Register restrictions
	3.41.5 Condition flags
	3.41.6 See also

	3.42 DBG
	3.42.1 Syntax
	3.42.2 Usage
	3.42.3 Architectures
	3.42.4 See also

	3.43 DMB
	3.43.1 Syntax
	3.43.2 Operation
	3.43.3 Alias
	3.43.4 Architectures
	3.43.5 See also

	3.44 DSB
	3.44.1 Syntax
	3.44.2 Operation
	3.44.3 Alias
	3.44.4 Architectures
	3.44.5 See also

	3.45 EOR
	3.45.1 Syntax
	3.45.2 Usage
	3.45.3 Use of PC in Thumb instructions
	3.45.4 Use of PC and SP in ARM instructions
	3.45.5 Condition flags
	3.45.6 16-bit instructions
	3.45.7 Examples
	3.45.8 Incorrect example
	3.45.9 See also

	3.46 ERET
	3.46.1 Syntax
	3.46.2 Usage
	3.46.3 Operation
	3.46.4 Notes
	3.46.5 Architectures
	3.46.6 See also

	3.47 ISB
	3.47.1 Syntax
	3.47.2 Operation
	3.47.3 Architectures
	3.47.4 See also

	3.48 IT
	3.48.1 Syntax
	3.48.2 Usage
	3.48.3 Restrictions
	3.48.4 Condition flags
	3.48.5 Exceptions
	3.48.6 Architectures
	3.48.7 Examples
	3.48.8 Incorrect example

	3.49 LDC and LDC2
	3.49.1 Syntax
	3.49.2 Usage
	3.49.3 Architectures
	3.49.4 Register restrictions
	3.49.5 See also

	3.50 LDM
	3.50.1 Syntax
	3.50.2 Restrictions on reglist in 32-bit Thumb instructions
	3.50.3 Restrictions on reglist in ARM instructions
	3.50.4 16-bit instructions
	3.50.5 Loading to the PC
	3.50.6 Loading or storing the base register, with writeback
	3.50.7 Example
	3.50.8 Incorrect example
	3.50.9 See also

	3.51 LDR (immediate offset)
	3.51.1 Syntax
	3.51.2 Offset ranges and architectures
	3.51.3 Register restrictions
	3.51.4 Doubleword register restrictions
	3.51.5 Use of PC
	3.51.6 Use of SP
	3.51.7 Examples
	3.51.8 See also

	3.52 LDR (PC-relative)
	3.52.1 Syntax
	3.52.2 Offset range and architectures
	3.52.3 LDR (PC-relative) in Thumb
	3.52.4 Doubleword register restrictions
	3.52.5 Use of SP
	3.52.6 See also

	3.53 LDR (register offset)
	3.53.1 Syntax
	3.53.2 Offset register and shift options
	3.53.3 Register restrictions
	3.53.4 Doubleword register restrictions
	3.53.5 Use of PC
	3.53.6 Use of SP
	3.53.7 See also

	3.54 LDR (register-relative)
	3.54.1 Syntax
	3.54.2 Offset range and architectures
	3.54.3 LDR (register-relative) in Thumb
	3.54.4 Doubleword register restrictions
	3.54.5 Use of PC
	3.54.6 Use of SP
	3.54.7 See also

	3.55 LDR pseudo-instruction
	3.55.1 Syntax
	3.55.2 Usage
	3.55.3 LDR in Thumb code
	3.55.4 Examples
	3.55.5 See also

	3.56 LDR, unprivileged
	3.56.1 Syntax
	3.56.2 Offset ranges and architectures
	3.56.3 See also

	3.57 LDREX
	3.57.1 Syntax
	3.57.2 Operation
	3.57.3 Restrictions
	3.57.4 Usage
	3.57.5 Architectures
	3.57.6 Examples
	3.57.7 See also

	3.58 LSL
	3.58.1 Syntax
	3.58.2 Usage
	3.58.3 Restrictions in Thumb code
	3.58.4 Use of SP and PC in ARM instructions
	3.58.5 Condition flags
	3.58.6 16-bit instructions
	3.58.7 Architectures
	3.58.8 Example
	3.58.9 See also

	3.59 LSR
	3.59.1 Syntax
	3.59.2 Usage
	3.59.3 Restrictions in Thumb code
	3.59.4 Use of SP and PC in ARM instructions
	3.59.5 Condition flags
	3.59.6 16-bit instructions
	3.59.7 Architectures
	3.59.8 Example
	3.59.9 See also

	3.60 MAR
	3.60.1 Syntax
	3.60.2 Usage
	3.60.3 Architectures
	3.60.4 Examples
	3.60.5 See also

	3.61 MCR and MCR2
	3.61.1 Syntax
	3.61.2 Usage
	3.61.3 Architectures
	3.61.4 See also

	3.62 MCRR and MCRR2
	3.62.1 Syntax
	3.62.2 Usage
	3.62.3 Architectures
	3.62.4 See also

	3.63 MIA, MIAPH, and MIAxy
	3.63.1 Syntax
	3.63.2 Usage
	3.63.3 Condition flags
	3.63.4 Architectures
	3.63.5 Examples
	3.63.6 See also

	3.64 MLA
	3.64.1 Syntax
	3.64.2 Usage
	3.64.3 Register restrictions
	3.64.4 Condition flags
	3.64.5 Architectures
	3.64.6 Example
	3.64.7 See also

	3.65 MLS
	3.65.1 Syntax
	3.65.2 Usage
	3.65.3 Register restrictions
	3.65.4 Architectures
	3.65.5 Example
	3.65.6 See also

	3.66 MOV
	3.66.1 Syntax
	3.66.2 Usage
	3.66.3 Use of PC and SP in 32-bit Thumb encodings
	3.66.4 Use of PC and SP in 16-bit Thumb encodings
	3.66.5 Use of PC and SP in ARM MOV
	3.66.6 Condition flags
	3.66.7 16-bit instructions
	3.66.8 Architectures
	3.66.9 See also

	3.67 MOV32 pseudo-instruction
	3.67.1 Syntax
	3.67.2 Usage
	3.67.3 Architectures
	3.67.4 Examples
	3.67.5 See also

	3.68 MOVT
	3.68.1 Syntax
	3.68.2 Usage
	3.68.3 Register restrictions
	3.68.4 Condition flags
	3.68.5 Architectures
	3.68.6 See also

	3.69 MRA
	3.69.1 Syntax
	3.69.2 Usage
	3.69.3 Architectures
	3.69.4 Examples
	3.69.5 See also

	3.70 MRC and MRC2
	3.70.1 Syntax
	3.70.2 Usage
	3.70.3 Architectures
	3.70.4 See also

	3.71 MRRC and MRRC2
	3.71.1 Syntax
	3.71.2 Usage
	3.71.3 Architectures
	3.71.4 See also

	3.72 MRS (PSR to general-purpose register)
	3.72.1 Syntax
	3.72.2 Usage
	3.72.3 SPSR
	3.72.4 CPSR
	3.72.5 Register restrictions
	3.72.6 Condition flags
	3.72.7 Architectures
	3.72.8 See also

	3.73 MRS (system coprocessor register to ARM register)
	3.73.1 Syntax
	3.73.2 Usage
	3.73.3 Architectures
	3.73.4 See also

	3.74 MSR (ARM register to system coprocessor register)
	3.74.1 Syntax
	3.74.2 Usage
	3.74.3 Architectures
	3.74.4 See also

	3.75 MSR (general-purpose register to PSR)
	3.75.1 Syntax
	3.75.2 Syntax (except ARMv7-M and ARMv6-M)
	3.75.3 Syntax (ARMv7-M and ARMv6-M only)
	3.75.4 Usage
	3.75.5 Register restrictions
	3.75.6 Condition flags
	3.75.7 Architectures
	3.75.8 See also

	3.76 MUL
	3.76.1 Syntax
	3.76.2 Usage
	3.76.3 Register restrictions
	3.76.4 Condition flags
	3.76.5 16-bit instructions
	3.76.6 Architectures
	3.76.7 Examples
	3.76.8 See also

	3.77 MVN
	3.77.1 Syntax
	3.77.2 Usage
	3.77.3 Use of PC and SP in 32-bit Thumb MVN
	3.77.4 Use of PC and SP in 16-bit Thumb instructions
	3.77.5 Use of PC and SP in ARM MVN
	3.77.6 Condition flags
	3.77.7 16-bit instructions
	3.77.8 Architectures
	3.77.9 Example
	3.77.10 Incorrect example
	3.77.11 See also

	3.78 NEG pseudo-instruction
	3.78.1 Syntax
	3.78.2 Usage
	3.78.3 Architectures
	3.78.4 Register restrictions
	3.78.5 Condition flags
	3.78.6 See also

	3.79 NOP
	3.79.1 Syntax
	3.79.2 Usage
	3.79.3 Architectures
	3.79.4 See also

	3.80 ORN (Thumb only)
	3.80.1 Syntax
	3.80.2 Usage
	3.80.3 Use of PC
	3.80.4 Condition flags
	3.80.5 Examples
	3.80.6 Architectures
	3.80.7 See also

	3.81 ORR
	3.81.1 Syntax
	3.81.2 Usage
	3.81.3 Use of PC in 32-bit Thumb instructions
	3.81.4 Use of PC and SP in ARM instructions
	3.81.5 Condition flags
	3.81.6 16-bit instructions
	3.81.7 Example
	3.81.8 See also

	3.82 PKHBT and PKHTB
	3.82.1 Syntax
	3.82.2 Register restrictions
	3.82.3 Condition flags
	3.82.4 Architectures
	3.82.5 Examples
	3.82.6 Incorrect examples
	3.82.7 See also

	3.83 PLD, PLDW, and PLI
	3.83.1 Syntax
	3.83.2 Range of offset
	3.83.3 Register or shifted register offset
	3.83.4 Address alignment for preloads
	3.83.5 Register restrictions
	3.83.6 Architectures
	3.83.7 See also

	3.84 POP
	3.84.1 Syntax
	3.84.2 Usage
	3.84.3 POP, with reglist including the PC
	3.84.4 Thumb instructions
	3.84.5 Restrictions on reglist in ARM instructions
	3.84.6 Example
	3.84.7 See also

	3.85 PUSH
	3.85.1 Syntax
	3.85.2 Usage
	3.85.3 Thumb instructions
	3.85.4 Restrictions on reglist in ARM instructions
	3.85.5 Examples
	3.85.6 See also

	3.86 QADD
	3.86.1 Syntax
	3.86.2 Usage
	3.86.3 Register restrictions
	3.86.4 Condition flags
	3.86.5 Architectures
	3.86.6 Example
	3.86.7 See also

	3.87 QDADD
	3.87.1 Syntax
	3.87.2 Usage
	3.87.3 Register restrictions
	3.87.4 Condition flags
	3.87.5 Architectures
	3.87.6 See also

	3.88 QDSUB
	3.88.1 Syntax
	3.88.2 Usage
	3.88.3 Register restrictions
	3.88.4 Condition flags
	3.88.5 Architectures
	3.88.6 Example
	3.88.7 See also

	3.89 QSUB
	3.89.1 Syntax
	3.89.2 Usage
	3.89.3 Register restrictions
	3.89.4 Condition flags
	3.89.5 Architectures
	3.89.6 See also

	3.90 RBIT
	3.90.1 Syntax
	3.90.2 Register restrictions
	3.90.3 Condition flags
	3.90.4 Architectures
	3.90.5 Example
	3.90.6 See also

	3.91 REV
	3.91.1 Syntax
	3.91.2 Usage
	3.91.3 Register restrictions
	3.91.4 Condition flags
	3.91.5 16-bit instructions
	3.91.6 Architectures
	3.91.7 Example
	3.91.8 See also

	3.92 REV16
	3.92.1 Syntax
	3.92.2 Usage
	3.92.3 Register restrictions
	3.92.4 Condition flags
	3.92.5 16-bit instructions
	3.92.6 Architectures
	3.92.7 Example
	3.92.8 See also

	3.93 REVSH
	3.93.1 Syntax
	3.93.2 Usage
	3.93.3 Register restrictions
	3.93.4 Condition flags
	3.93.5 16-bit instructions
	3.93.6 Architectures
	3.93.7 Example
	3.93.8 See also

	3.94 RFE
	3.94.1 Syntax
	3.94.2 Usage
	3.94.3 Operation
	3.94.4 Notes
	3.94.5 Architectures
	3.94.6 Example
	3.94.7 See also

	3.95 ROR
	3.95.1 Syntax
	3.95.2 Usage
	3.95.3 Restrictions in Thumb code
	3.95.4 Use of SP and PC in ARM instructions
	3.95.5 Condition flags
	3.95.6 16-bit instructions
	3.95.7 Architectures
	3.95.8 Example
	3.95.9 See also

	3.96 RRX
	3.96.1 Syntax
	3.96.2 Usage
	3.96.3 Restrictions in Thumb code
	3.96.4 Use of SP and PC in ARM instructions
	3.96.5 Condition flags
	3.96.6 Architectures
	3.96.7 See also

	3.97 RSB
	3.97.1 Syntax
	3.97.2 Usage
	3.97.3 Use of PC and SP in Thumb instructions
	3.97.4 Use of PC and SP in ARM instructions
	3.97.5 Condition flags
	3.97.6 16-bit instructions
	3.97.7 Example
	3.97.8 See also

	3.98 RSC
	3.98.1 Syntax
	3.98.2 Usage
	3.98.3 Use of PC and SP in Thumb instructions
	3.98.4 Use of PC and SP in ARM instructions
	3.98.5 Condition flags
	3.98.6 Example
	3.98.7 Incorrect example
	3.98.8 See also

	3.99 SBC
	3.99.1 Syntax
	3.99.2 Usage
	3.99.3 Use of PC and SP in Thumb instructions
	3.99.4 Use of PC and SP in ARM instructions
	3.99.5 Condition flags
	3.99.6 16-bit instructions
	3.99.7 Multiword arithmetic examples
	3.99.8 See also

	3.100 SBFX
	3.100.1 Syntax
	3.100.2 Register restrictions
	3.100.3 Condition flags
	3.100.4 Architectures
	3.100.5 See also

	3.101 SDIV
	3.101.1 Syntax
	3.101.2 Register restrictions
	3.101.3 Architectures
	3.101.4 See also

	3.102 SEL
	3.102.1 Syntax
	3.102.2 Operation
	3.102.3 Usage
	3.102.4 Register restrictions
	3.102.5 Condition flags
	3.102.6 Architectures
	3.102.7 Examples
	3.102.8 See also

	3.103 SETEND
	3.103.1 Syntax
	3.103.2 Usage
	3.103.3 Architectures
	3.103.4 Example

	3.104 SEV
	3.104.1 Syntax
	3.104.2 Usage
	3.104.3 Architectures
	3.104.4 See also

	3.105 SMC
	3.105.1 Syntax
	3.105.2 Note
	3.105.3 Architectures
	3.105.4 See also

	3.106 SMLAxy
	3.106.1 Syntax
	3.106.2 Usage
	3.106.3 Register restrictions
	3.106.4 Condition flags
	3.106.5 Architectures
	3.106.6 Examples
	3.106.7 See also

	3.107 SMLAD
	3.107.1 Syntax
	3.107.2 Operation
	3.107.3 Register restrictions
	3.107.4 Condition flags
	3.107.5 Architectures
	3.107.6 Example
	3.107.7 See also

	3.108 SMLAL
	3.108.1 Syntax
	3.108.2 Usage
	3.108.3 Register restrictions
	3.108.4 Condition flags
	3.108.5 Architectures
	3.108.6 See also

	3.109 SMLALD
	3.109.1 Syntax
	3.109.2 Operation
	3.109.3 Register restrictions
	3.109.4 Condition flags
	3.109.5 Architectures
	3.109.6 Example
	3.109.7 See also

	3.110 SMLALxy
	3.110.1 Syntax
	3.110.2 Usage
	3.110.3 Register restrictions
	3.110.4 Condition flags
	3.110.5 Architectures
	3.110.6 Examples
	3.110.7 See also

	3.111 SMLAWy
	3.111.1 Syntax
	3.111.2 Usage
	3.111.3 Register restrictions
	3.111.4 Condition flags
	3.111.5 Architectures
	3.111.6 See also

	3.112 SMLSD
	3.112.1 Syntax
	3.112.2 Operation
	3.112.3 Register restrictions
	3.112.4 Condition flags
	3.112.5 Architectures
	3.112.6 Examples
	3.112.7 See also

	3.113 SMLSLD
	3.113.1 Syntax
	3.113.2 Operation
	3.113.3 Register restrictions
	3.113.4 Condition flags
	3.113.5 Architectures
	3.113.6 Example
	3.113.7 See also

	3.114 SMMLA
	3.114.1 Syntax
	3.114.2 Operation
	3.114.3 Register restrictions
	3.114.4 Condition flags
	3.114.5 Architectures
	3.114.6 See also

	3.115 SMMLS
	3.115.1 Syntax
	3.115.2 Operation
	3.115.3 Register restrictions
	3.115.4 Condition flags
	3.115.5 Architectures
	3.115.6 See also

	3.116 SMMUL
	3.116.1 Syntax
	3.116.2 Operation
	3.116.3 Register restrictions
	3.116.4 Condition flags
	3.116.5 Architectures
	3.116.6 Examples
	3.116.7 See also

	3.117 SMUAD
	3.117.1 Syntax
	3.117.2 Usage
	3.117.3 Register restrictions
	3.117.4 Condition flags
	3.117.5 Architectures
	3.117.6 Examples
	3.117.7 See also

	3.118 SMULxy
	3.118.1 Syntax
	3.118.2 Usage
	3.118.3 Register restrictions
	3.118.4 Condition flags
	3.118.5 Architectures
	3.118.6 Examples
	3.118.7 See also

	3.119 SMULL
	3.119.1 Syntax
	3.119.2 Usage
	3.119.3 Register restrictions
	3.119.4 Condition flags
	3.119.5 Architectures
	3.119.6 See also

	3.120 SMULWy
	3.120.1 Syntax
	3.120.2 Usage
	3.120.3 Register restrictions
	3.120.4 Condition flags
	3.120.5 Architectures
	3.120.6 See also

	3.121 SMUSD
	3.121.1 Syntax
	3.121.2 Usage
	3.121.3 Register restrictions
	3.121.4 Architectures
	3.121.5 Example
	3.121.6 See also

	3.122 SRS
	3.122.1 Syntax
	3.122.2 Operation
	3.122.3 Usage
	3.122.4 Notes
	3.122.5 Architectures
	3.122.6 Example
	3.122.7 See also

	3.123 SSAT
	3.123.1 Syntax
	3.123.2 Operation
	3.123.3 Register restrictions
	3.123.4 Condition flags
	3.123.5 Architectures
	3.123.6 Example
	3.123.7 See also

	3.124 SSAT16
	3.124.1 Syntax
	3.124.2 Operation
	3.124.3 Register restrictions
	3.124.4 Condition flags
	3.124.5 Architectures
	3.124.6 Example
	3.124.7 Incorrect example
	3.124.8 See also

	3.125 STC and STC2
	3.125.1 Syntax
	3.125.2 Usage
	3.125.3 Architectures
	3.125.4 Register restrictions
	3.125.5 See also

	3.126 STM
	3.126.1 Syntax
	3.126.2 Restrictions on reglist in 32-bit Thumb instructions
	3.126.3 Restrictions on reglist in ARM instructions
	3.126.4 16-bit instruction
	3.126.5 Storing the base register, with writeback
	3.126.6 Example
	3.126.7 Incorrect example
	3.126.8 See also

	3.127 STR (immediate offset)
	3.127.1 Syntax
	3.127.2 Offset ranges and architectures
	3.127.3 Register restrictions
	3.127.4 Doubleword register restrictions
	3.127.5 Use of PC
	3.127.6 Use of SP
	3.127.7 Example
	3.127.8 See also

	3.128 STR (register offset)
	3.128.1 Syntax
	3.128.2 Offset register and shift options
	3.128.3 Register restrictions
	3.128.4 Doubleword register restrictions
	3.128.5 Use of PC
	3.128.6 Use of SP
	3.128.7 See also

	3.129 STR, unprivileged
	3.129.1 Syntax
	3.129.2 Offset ranges and architectures
	3.129.3 See also

	3.130 STREX
	3.130.1 Syntax
	3.130.2 Operation
	3.130.3 Restrictions
	3.130.4 Usage
	3.130.5 Architectures
	3.130.6 Examples
	3.130.7 See also

	3.131 SUB
	3.131.1 Syntax
	3.131.2 Usage
	3.131.3 Use of PC and SP in Thumb instructions
	3.131.4 Use of PC and SP in ARM instructions
	3.131.5 Condition flags
	3.131.6 16-bit instructions
	3.131.7 Example
	3.131.8 Multiword arithmetic examples
	3.131.9 See also

	3.132 SUBS pc, lr
	3.132.1 Syntax
	3.132.2 Usage
	3.132.3 Notes
	3.132.4 Architectures
	3.132.5 See also

	3.133 SVC
	3.133.1 Syntax
	3.133.2 Usage
	3.133.3 Condition flags
	3.133.4 Architectures
	3.133.5 See also

	3.134 SWP and SWPB
	3.134.1 Syntax
	3.134.2 Usage
	3.134.3 Note
	3.134.4 Architectures
	3.134.5 See also

	3.135 SXTAB
	3.135.1 Syntax
	3.135.2 Operation
	3.135.3 Register restrictions
	3.135.4 Condition flags
	3.135.5 Architectures
	3.135.6 See also

	3.136 SXTAB16
	3.136.1 Syntax
	3.136.2 Operation
	3.136.3 Register restrictions
	3.136.4 Condition flags
	3.136.5 Architectures
	3.136.6 See also

	3.137 SXTAH
	3.137.1 Syntax
	3.137.2 Operation
	3.137.3 Register restrictions
	3.137.4 Condition flags
	3.137.5 Architectures
	3.137.6 See also

	3.138 SXTB
	3.138.1 Syntax
	3.138.2 Operation
	3.138.3 Register restrictions
	3.138.4 Condition flags
	3.138.5 16-bit instructions
	3.138.6 Architectures
	3.138.7 See also

	3.139 SXTB16
	3.139.1 Syntax
	3.139.2 Operation
	3.139.3 Register restrictions
	3.139.4 Condition flags
	3.139.5 Architectures
	3.139.6 See also

	3.140 SXTH
	3.140.1 Syntax
	3.140.2 Operation
	3.140.3 Register restrictions
	3.140.4 Condition flags
	3.140.5 16-bit instructions
	3.140.6 Architectures
	3.140.7 Example
	3.140.8 Incorrect example
	3.140.9 See also

	3.141 SYS
	3.141.1 Syntax
	3.141.2 Usage
	3.141.3 Architectures
	3.141.4 See also

	3.142 TBB and TBH
	3.142.1 Syntax
	3.142.2 Operation
	3.142.3 Notes
	3.142.4 Architectures

	3.143 TEQ
	3.143.1 Syntax
	3.143.2 Usage
	3.143.3 Register restrictions
	3.143.4 Condition flags
	3.143.5 Architectures
	3.143.6 Example
	3.143.7 Incorrect example
	3.143.8 See also

	3.144 TST
	3.144.1 Syntax
	3.144.2 Usage
	3.144.3 Register restrictions
	3.144.4 Condition flags
	3.144.5 16-bit instructions
	3.144.6 Architectures
	3.144.7 Examples
	3.144.8 See also

	3.145 UBFX
	3.145.1 Syntax
	3.145.2 Register restrictions
	3.145.3 Condition flags
	3.145.4 Architectures
	3.145.5 See also

	3.146 UDIV
	3.146.1 Syntax
	3.146.2 Register restrictions
	3.146.3 Architectures
	3.146.4 See also

	3.147 UMAAL
	3.147.1 Syntax
	3.147.2 Operation
	3.147.3 Register restrictions
	3.147.4 Condition flags
	3.147.5 Architectures
	3.147.6 Examples
	3.147.7 See also

	3.148 UMLAL
	3.148.1 Syntax
	3.148.2 Usage
	3.148.3 Register restrictions
	3.148.4 Condition flags
	3.148.5 Architectures
	3.148.6 Example
	3.148.7 See also

	3.149 UMULL
	3.149.1 Syntax
	3.149.2 Usage
	3.149.3 Register restrictions
	3.149.4 Condition flags
	3.149.5 Architectures
	3.149.6 Example
	3.149.7 See also

	3.150 UND pseudo-instruction
	3.150.1 Syntax
	3.150.2 UND in Thumb code
	3.150.3 Disassembly
	3.150.4 See also

	3.151 USAD8
	3.151.1 Syntax
	3.151.2 Operation
	3.151.3 Register restrictions
	3.151.4 Condition flags
	3.151.5 Architectures
	3.151.6 Example
	3.151.7 See also

	3.152 USADA8
	3.152.1 Syntax
	3.152.2 Operation
	3.152.3 Register restrictions
	3.152.4 Condition flags
	3.152.5 Architectures
	3.152.6 Examples
	3.152.7 Incorrect examples
	3.152.8 See also

	3.153 USAT
	3.153.1 Syntax
	3.153.2 Operation
	3.153.3 Register restrictions
	3.153.4 Condition flags
	3.153.5 Architectures
	3.153.6 Example
	3.153.7 See also

	3.154 USAT16
	3.154.1 Syntax
	3.154.2 Operation
	3.154.3 Register restrictions
	3.154.4 Condition flags
	3.154.5 Architectures
	3.154.6 Example
	3.154.7 See also

	3.155 UXTAB
	3.155.1 Syntax
	3.155.2 Operation
	3.155.3 Register restrictions
	3.155.4 Condition flags
	3.155.5 Architectures
	3.155.6 See also

	3.156 UXTAB16
	3.156.1 Syntax
	3.156.2 Operation
	3.156.3 Register restrictions
	3.156.4 Condition flags
	3.156.5 Architectures
	3.156.6 Example
	3.156.7 See also

	3.157 UXTAH
	3.157.1 Syntax
	3.157.2 Operation
	3.157.3 Register restrictions
	3.157.4 Condition flags
	3.157.5 Architectures
	3.157.6 See also

	3.158 UXTB
	3.158.1 Syntax
	3.158.2 Operation
	3.158.3 Register restrictions
	3.158.4 Condition flags
	3.158.5 16-bit instruction
	3.158.6 Architectures
	3.158.7 See also

	3.159 UXTB16
	3.159.1 Syntax
	3.159.2 Operation
	3.159.3 Register restrictions
	3.159.4 Condition flags
	3.159.5 Architectures
	3.159.6 See also

	3.160 UXTH
	3.160.1 Syntax
	3.160.2 Operation
	3.160.3 Register restrictions
	3.160.4 Condition flags
	3.160.5 16-bit instructions
	3.160.6 Architectures
	3.160.7 See also

	3.161 WFE
	3.161.1 Syntax
	3.161.2 Usage
	3.161.3 Architectures
	3.161.4 See also

	3.162 WFI
	3.162.1 Syntax
	3.162.2 Usage
	3.162.3 Architectures
	3.162.4 See also

	3.163 YIELD
	3.163.1 Syntax
	3.163.2 Usage
	3.163.3 Architectures
	3.163.4 See also

	4: ThumbEE Instructions
	4.1 Instruction summary
	4.1.1 See also

	4.2 ThumbEE instruction differences
	4.2.1 BLX
	4.2.2 BX, BXJ
	4.2.3 ERET
	4.2.4 LDC, LDC2, STC, STC2, TBB, TBH
	4.2.5 LDM, STM
	4.2.6 LDR, STR (immediate offset)
	4.2.7 LDR, STR (register offset)
	4.2.8 LDR (register-relative)
	4.2.9 RFE, SRS

	4.3 CHKA
	4.3.1 Syntax
	4.3.2 Architectures

	4.4 ENTERX and LEAVEX
	4.4.1 Syntax
	4.4.2 Usage
	4.4.3 Architectures
	4.4.4 See also

	4.5 HB, HBL, HBLP, and HBP
	4.5.1 Syntax
	4.5.2 Architectures

	5: NEON and VFP Programming
	5.1 NEON and VFP instruction summary
	5.1.1 NEON instructions
	5.1.2 Shared NEON and VFP instructions
	5.1.3 VFP instructions

	5.2 Instructions shared by NEON and VFP
	5.3 NEON logical and compare operations
	5.4 NEON general data processing instructions
	5.5 NEON shift instructions
	5.6 NEON general arithmetic instructions
	5.7 NEON multiply instructions
	5.8 NEON load and store element and structure instructions
	5.9 Interleaving provided by load and store, element and structure instructions
	5.9.1 See also

	5.10 Alignment restrictions in load and store, element and structure instructions
	5.10.1 See also

	5.11 NEON and VFP pseudo-instructions
	5.12 VFP instructions
	5.13 VABA and VABAL
	5.13.1 Syntax
	5.13.2 See also

	5.14 VABD and VABDL
	5.14.1 Syntax
	5.14.2 See also

	5.15 VABS
	5.15.1 Syntax
	5.15.2 See also

	5.16 VABS (floating-point)
	5.16.1 Syntax
	5.16.2 Usage
	5.16.3 Floating-point exceptions
	5.16.4 See also

	5.17 VACLE, VACLT, VACGE and VACGT
	5.17.1 Syntax
	5.17.2 See also

	5.18 VADD (floating-point)
	5.18.1 Syntax
	5.18.2 Usage
	5.18.3 Floating-point exceptions
	5.18.4 See also

	5.19 VADD (integer)
	5.19.1 Syntax
	5.19.2 See also

	5.20 VADDHN
	5.20.1 Syntax
	5.20.2 See also

	5.21 VADDL and VADDW
	5.21.1 Syntax
	5.21.2 See also

	5.22 VAND (immediate)
	5.22.1 Syntax
	5.22.2 Immediate values
	5.22.3 See also

	5.23 VAND (register)
	5.23.1 Syntax
	5.23.2 See also

	5.24 VBIC (immediate)
	5.24.1 Syntax
	5.24.2 Immediate values
	5.24.3 See also

	5.25 VBIC (register)
	5.25.1 Syntax
	5.25.2 See also

	5.26 VBIF
	5.26.1 Syntax
	5.26.2 See also

	5.27 VBIT
	5.27.1 Syntax
	5.27.2 See also

	5.28 VBSL
	5.28.1 Syntax
	5.28.2 See also

	5.29 VCEQ (immediate #0)
	5.29.1 Syntax
	5.29.2 See also

	5.30 VCEQ (register)
	5.30.1 Syntax
	5.30.2 See also

	5.31 VCGE (immediate #0)
	5.31.1 Syntax
	5.31.2 See also

	5.32 VCGE (register)
	5.32.1 Syntax
	5.32.2 See also

	5.33 VCGT (immediate #0)
	5.33.1 Syntax
	5.33.2 See also

	5.34 VCGT (register)
	5.34.1 Syntax
	5.34.2 See also

	5.35 VCLE (immediate #0)
	5.35.1 Syntax
	5.35.2 See also

	5.36 VCLE (register)
	5.36.1 Syntax
	5.36.2 See also

	5.37 VCLS
	5.37.1 Syntax
	5.37.2 See also

	5.38 VCLT (immediate #0)
	5.38.1 Syntax
	5.38.2 See also

	5.39 VCLT (register)
	5.39.1 Syntax
	5.39.2 See also

	5.40 VCLZ
	5.40.1 Syntax
	5.40.2 See also

	5.41 VCMP, VCMPE
	5.41.1 Syntax
	5.41.2 Usage
	5.41.3 Floating-point exceptions
	5.41.4 See also

	5.42 VCNT
	5.42.1 Syntax
	5.42.2 See also

	5.43 VCVT (between fixed-point or integer, and floating-point)
	5.43.1 Syntax
	5.43.2 Rounding
	5.43.3 See also

	5.44 VCVT (between half-precision and single-precision floating-point)
	5.44.1 Syntax
	5.44.2 Architectures
	5.44.3 See also

	5.45 VCVT (between single-precision and double-precision)
	5.45.1 Syntax
	5.45.2 Usage
	5.45.3 Floating-point exceptions
	5.45.4 See also

	5.46 VCVT (between floating-point and integer)
	5.46.1 Syntax
	5.46.2 Usage
	5.46.3 Floating-point exceptions
	5.46.4 See also

	5.47 VCVT (between floating-point and fixed-point)
	5.47.1 Syntax
	5.47.2 Usage
	5.47.3 Floating-point exceptions
	5.47.4 See also

	5.48 VCVTB, VCVTT (half-precision extension)
	5.48.1 Syntax
	5.48.2 Architectures
	5.48.3 Floating-point exceptions
	5.48.4 See also

	5.49 VDIV
	5.49.1 Syntax
	5.49.2 Usage
	5.49.3 Floating-point exceptions
	5.49.4 See also

	5.50 VDUP
	5.50.1 Syntax
	5.50.2 See also

	5.51 VEOR
	5.51.1 Syntax
	5.51.2 See also

	5.52 VEXT
	5.52.1 Syntax
	5.52.2 VEXT pseudo-instruction
	5.52.3 See also

	5.53 VFMA, VFMS
	5.53.1 Syntax
	5.53.2 See also

	5.54 VFMA, VFMS, VFNMA, VFNMS
	5.54.1 Syntax
	5.54.2 Usage
	5.54.3 Floating-point exceptions
	5.54.4 See also

	5.55 VHADD
	5.55.1 Syntax
	5.55.2 See also

	5.56 VHSUB
	5.56.1 Syntax
	5.56.2 See also

	5.57 VLDn (single n-element structure to one lane)
	5.57.1 Syntax
	5.57.2 See also

	5.58 VLDn (single n-element structure to all lanes)
	5.58.1 Syntax
	5.58.2 See also

	5.59 VLDn (multiple n-element structures)
	5.59.1 Syntax
	5.59.2 See also

	5.60 VLDM
	5.60.1 Syntax
	5.60.2 See also

	5.61 VLDR
	5.61.1 Syntax
	5.61.2 Usage
	5.61.3 See also

	5.62 VLDR (post-increment and pre-decrement)
	5.62.1 Syntax
	5.62.2 Usage
	5.62.3 See also

	5.63 VLDR pseudo-instruction
	5.63.1 Syntax
	5.63.2 Usage
	5.63.3 See also

	5.64 VMAX and VMIN
	5.64.1 Syntax
	5.64.2 Floating-point maximum and minimum
	5.64.3 See also

	5.65 VMLA
	5.65.1 Syntax
	5.65.2 See also

	5.66 VMLA (by scalar)
	5.66.1 Syntax
	5.66.2 See also

	5.67 VMLA (floating-point)
	5.67.1 Syntax
	5.67.2 Usage
	5.67.3 Floating-point exceptions
	5.67.4 See also

	5.68 VMLAL (by scalar)
	5.68.1 Syntax
	5.68.2 See also

	5.69 VMLAL
	5.69.1 Syntax
	5.69.2 See also

	5.70 VMLS (by scalar)
	5.70.1 Syntax
	5.70.2 See also

	5.71 VMLS
	5.71.1 Syntax
	5.71.2 See also

	5.72 VMLS (floating-point)
	5.72.1 Syntax
	5.72.2 Usage
	5.72.3 Floating-point exceptions
	5.72.4 See also

	5.73 VMLSL
	5.73.1 Syntax
	5.73.2 See also

	5.74 VMLSL (by scalar)
	5.74.1 Syntax
	5.74.2 See also

	5.75 VMOV
	5.75.1 Syntax
	5.75.2 Immediate values
	5.75.3 Architectures
	5.75.4 See also

	5.76 VMOV (immediate)
	5.76.1 Syntax
	5.76.2 See also

	5.77 VMOV (register)
	5.77.1 Syntax
	5.77.2 See also

	5.78 VMOV (between one ARM register and single precision VFP)
	5.78.1 Syntax
	5.78.2 Usage
	5.78.3 See also

	5.79 VMOV (between two ARM registers and an extension register)
	5.79.1 Syntax
	5.79.2 Usage
	5.79.3 Architectures
	5.79.4 See also

	5.80 VMOV (between an ARM register and a NEON scalar)
	5.80.1 Syntax
	5.80.2 Usage
	5.80.3 See also

	5.81 VMOVL
	5.81.1 Syntax
	5.81.2 See also

	5.82 VMOVN
	5.82.1 Syntax
	5.82.2 See also

	5.83 VMOV2
	5.83.1 Syntax
	5.83.2 Usage
	5.83.3 See also

	5.84 VMRS
	5.84.1 Syntax
	5.84.2 Usage
	5.84.3 Examples
	5.84.4 See also

	5.85 VMSR
	5.85.1 Syntax
	5.85.2 Usage
	5.85.3 Examples
	5.85.4 See also

	5.86 VMUL
	5.86.1 Syntax
	5.86.2 See also

	5.87 VMUL (floating-point)
	5.87.1 Syntax
	5.87.2 Usage
	5.87.3 Floating-point exceptions
	5.87.4 See also

	5.88 VMUL (by scalar)
	5.88.1 Syntax
	5.88.2 See also

	5.89 VMULL
	5.89.1 Syntax
	5.89.2 See also

	5.90 VMULL (by scalar)
	5.90.1 Syntax
	5.90.2 See also

	5.91 VMVN (register)
	5.91.1 Syntax
	5.91.2 See also

	5.92 VMVN (immediate)
	5.92.1 Syntax
	5.92.2 See also

	5.93 VNEG (floating-point)
	5.93.1 Syntax
	5.93.2 Usage
	5.93.3 Floating-point exceptions
	5.93.4 See also

	5.94 VNEG
	5.94.1 Syntax
	5.94.2 See also

	5.95 VNMLA (floating-point)
	5.95.1 Syntax
	5.95.2 Usage
	5.95.3 Floating-point exceptions
	5.95.4 See also

	5.96 VNMLS (floating-point)
	5.96.1 Syntax
	5.96.2 Usage
	5.96.3 Floating-point exceptions
	5.96.4 See also

	5.97 VNMUL (floating-point)
	5.97.1 Syntax
	5.97.2 Usage
	5.97.3 Floating-point exceptions
	5.97.4 See also

	5.98 VORN (register)
	5.98.1 Syntax
	5.98.2 See also

	5.99 VORN (immediate)
	5.99.1 Syntax
	5.99.2 Immediate values
	5.99.3 See also

	5.100 VORR (register)
	5.100.1 Syntax
	5.100.2 See also

	5.101 VORR (immediate)
	5.101.1 Syntax
	5.101.2 Immediate values
	5.101.3 See also

	5.102 VPADAL
	5.102.1 Syntax
	5.102.2 See also

	5.103 VPADD
	5.103.1 Syntax
	5.103.2 See also

	5.104 VPADDL
	5.104.1 Syntax
	5.104.2 See also

	5.105 VPMAX and VPMIN
	5.105.1 Syntax
	5.105.2 Floating-point maximum and minimum
	5.105.3 See also

	5.106 VPOP
	5.106.1 Syntax
	5.106.2 See also

	5.107 VPUSH
	5.107.1 Syntax
	5.107.2 See also

	5.108 VQABS
	5.108.1 Syntax
	5.108.2 See also

	5.109 VQADD
	5.109.1 Syntax
	5.109.2 See also

	5.110 VQDMLAL and VQDMLSL (by vector or by scalar)
	5.110.1 Syntax
	5.110.2 See also

	5.111 VQDMULH (by vector or by scalar)
	5.111.1 Syntax
	5.111.2 See also

	5.112 VQDMULL (by vector or by scalar)
	5.112.1 Syntax
	5.112.2 See also

	5.113 VQMOVN and VQMOVUN
	5.113.1 Syntax
	5.113.2 See also

	5.114 VQNEG
	5.114.1 Syntax
	5.114.2 See also

	5.115 VQRDMULH (by vector or by scalar)
	5.115.1 Syntax
	5.115.2 See also

	5.116 VQRSHL (by signed variable)
	5.116.1 Syntax
	5.116.2 See also

	5.117 VQRSHRN and VQRSHRUN (by immediate)
	5.117.1 Syntax
	5.117.2 See also

	5.118 VQSHL (by signed variable)
	5.118.1 Syntax
	5.118.2 See also

	5.119 VQSHL and VQSHLU (by immediate)
	5.119.1 Syntax
	5.119.2 See also

	5.120 VQSHRN and VQSHRUN (by immediate)
	5.120.1 Syntax
	5.120.2 See also

	5.121 VQSUB
	5.121.1 Syntax
	5.121.2 See also

	5.122 VRADDHN
	5.122.1 Syntax
	5.122.2 See also

	5.123 VRECPE
	5.123.1 Syntax
	5.123.2 Results for out-of-range inputs
	5.123.3 See also

	5.124 VRECPS
	5.124.1 Syntax
	5.124.2 Results for out-of-range inputs
	5.124.3 Usage
	5.124.4 See also

	5.125 VREV16, VREV32, and VREV64
	5.125.1 Syntax
	5.125.2 See also

	5.126 VRHADD
	5.126.1 Syntax
	5.126.2 See also

	5.127 VRSHL (by signed variable)
	5.127.1 Syntax
	5.127.2 See also

	5.128 VRSHR (by immediate)
	5.128.1 Syntax
	5.128.2 See also

	5.129 VRSHRN (by immediate)
	5.129.1 Syntax
	5.129.2 See also

	5.130 VRSQRTE
	5.130.1 Syntax
	5.130.2 Results for out-of-range inputs
	5.130.3 See also

	5.131 VRSQRTS
	5.131.1 Syntax
	5.131.2 Results for out-of-range inputs
	5.131.3 Usage
	5.131.4 See also

	5.132 VRSRA (by immediate)
	5.132.1 Syntax
	5.132.2 See also

	5.133 VRSUBHN
	5.133.1 Syntax
	5.133.2 See also

	5.134 VSHL (by immediate)
	5.134.1 Syntax
	5.134.2 See also

	5.135 VSHL (by signed variable)
	5.135.1 Syntax
	5.135.2 See also

	5.136 VSHLL (by immediate)
	5.136.1 Syntax
	5.136.2 See also

	5.137 VSHR (by immediate)
	5.137.1 Syntax
	5.137.2 See also

	5.138 VSHRN (by immediate)
	5.138.1 Syntax
	5.138.2 See also

	5.139 VSLI
	5.139.1 Syntax
	5.139.2 See also

	5.140 VSQRT
	5.140.1 Syntax
	5.140.2 Usage
	5.140.3 Floating-point exceptions
	5.140.4 See also

	5.141 VSRA (by immediate)
	5.141.1 Syntax
	5.141.2 See also

	5.142 VSRI
	5.142.1 Syntax
	5.142.2 See also

	5.143 VSTM
	5.143.1 Syntax
	5.143.2 See also

	5.144 VSTn (multiple n-element structures)
	5.144.1 Syntax
	5.144.2 See also

	5.145 VSTn (single n-element structure to one lane)
	5.145.1 Syntax
	5.145.2 See also

	5.146 VSTR
	5.146.1 Syntax
	5.146.2 Usage
	5.146.3 See also

	5.147 VSTR (post-increment and pre-decrement)
	5.147.1 Syntax
	5.147.2 Usage
	5.147.3 See also

	5.148 VSUB (floating-point)
	5.148.1 Syntax
	5.148.2 Usage
	5.148.3 Floating-point exceptions
	5.148.4 See also

	5.149 VSUB (integer)
	5.149.1 Syntax
	5.149.2 See also

	5.150 VSUBHN
	5.150.1 Syntax
	5.150.2 See also

	5.151 VSUBL and VSUBW
	5.151.1 Syntax
	5.151.2 See also

	5.152 VSWP
	5.152.1 Syntax
	5.152.2 See also

	5.153 VTBL and VTBX
	5.153.1 Syntax
	5.153.2 See also

	5.154 VTRN
	5.154.1 Syntax
	5.154.2 See also

	5.155 VTST
	5.155.1 Syntax
	5.155.2 See also

	5.156 VUZP
	5.156.1 Syntax
	5.156.2 See also

	5.157 VZIP
	5.157.1 Syntax
	5.157.2 See also

	6: Wireless MMX Technology Instructions
	6.1 About Wireless MMX Technology instructions
	6.1.1 See also

	6.2 ARM support for Wireless MMX Technology
	6.3 Directives, WRN and WCN, to support Wireless MMX Technology
	6.3.1 See also

	6.4 Frame directives and Wireless MMX Technology
	6.4.1 See also

	6.5 Wireless MMX load and store instructions
	6.5.1 Syntax
	6.5.2 Loading constants into SIMD registers
	6.5.3 See also

	6.6 Wireless MMX Technology and XScale instructions
	6.6.1 See also

	6.7 Wireless MMX instructions
	6.7.1 See also

	6.8 Wireless MMX pseudo-instructions
	6.8.1 See also

	7: Directives Reference
	7.1 Alphabetical list of directives
	7.2 Symbol definition directives
	7.3 Data definition directives
	7.4 About assembly control directives
	7.4.1 Nesting directives
	7.4.2 See also

	7.5 About frame directives
	7.5.1 See also

	7.6 Reporting directives
	7.7 Instruction set and syntax selection directives
	7.8 Miscellaneous directives
	7.9 ALIAS
	7.9.1 Syntax
	7.9.2 Usage
	7.9.3 Example
	7.9.4 Incorrect example
	7.9.5 See also

	7.10 ALIGN
	7.10.1 Syntax
	7.10.2 Operation
	7.10.3 Usage
	7.10.4 Examples
	7.10.5 See also

	7.11 AREA
	7.11.1 Syntax
	7.11.2 Usage
	7.11.3 Example
	7.11.4 See also

	7.12 ARM, THUMB, THUMBX, CODE16 and CODE32
	7.12.1 Syntax
	7.12.2 Usage
	7.12.3 Example

	7.13 ASSERT
	7.13.1 Syntax
	7.13.2 Usage
	7.13.3 Example
	7.13.4 See also

	7.14 ATTR
	7.14.1 Syntax
	7.14.2 Usage
	7.14.3 Examples
	7.14.4 See also

	7.15 CN
	7.15.1 Syntax
	7.15.2 Usage
	7.15.3 Example
	7.15.4 See also

	7.16 COMMON
	7.16.1 Syntax
	7.16.2 Usage
	7.16.3 Example
	7.16.4 Incorrect examples

	7.17 CP
	7.17.1 Syntax
	7.17.2 Usage
	7.17.3 Example
	7.17.4 See also

	7.18 DATA
	7.19 DCB
	7.19.1 Syntax
	7.19.2 Usage
	7.19.3 Example
	7.19.4 See also

	7.20 DCD and DCDU
	7.20.1 Syntax
	7.20.2 Usage
	7.20.3 Examples
	7.20.4 See also

	7.21 DCDO
	7.21.1 Syntax
	7.21.2 Usage
	7.21.3 Example

	7.22 DCFD and DCFDU
	7.22.1 Syntax
	7.22.2 Usage
	7.22.3 Examples
	7.22.4 See also

	7.23 DCFS and DCFSU
	7.23.1 Syntax
	7.23.2 Usage
	7.23.3 Examples
	7.23.4 See also

	7.24 DCI
	7.24.1 Syntax
	7.24.2 Usage
	7.24.3 Example macro
	7.24.4 32-bit Thumb example
	7.24.5 See also

	7.25 DCQ and DCQU
	7.25.1 Syntax
	7.25.2 Usage
	7.25.3 Example
	7.25.4 Incorrect example
	7.25.5 See also

	7.26 DCW and DCWU
	7.26.1 Syntax
	7.26.2 Usage
	7.26.3 Examples
	7.26.4 See also

	7.27 END
	7.27.1 Syntax
	7.27.2 Usage
	7.27.3 See also

	7.28 ENTRY
	7.28.1 Syntax
	7.28.2 Usage
	7.28.3 Example
	7.28.4 See also

	7.29 EQU
	7.29.1 Syntax
	7.29.2 Usage
	7.29.3 Examples
	7.29.4 See also

	7.30 EXPORT or GLOBAL
	7.30.1 Syntax
	7.30.2 Usage
	7.30.3 Example
	7.30.4 See also

	7.31 EXPORTAS
	7.31.1 Syntax
	7.31.2 Usage
	7.31.3 Examples
	7.31.4 See also

	7.32 FRAME ADDRESS
	7.32.1 Syntax
	7.32.2 Usage
	7.32.3 Example
	7.32.4 See also

	7.33 FRAME POP
	7.33.1 Syntax
	7.33.2 Usage
	7.33.3 See also

	7.34 FRAME PUSH
	7.34.1 Syntax
	7.34.2 Usage
	7.34.3 Example
	7.34.4 See also

	7.35 FRAME REGISTER
	7.35.1 Syntax
	7.35.2 Usage

	7.36 FRAME RESTORE
	7.36.1 Syntax
	7.36.2 Usage
	7.36.3 See also

	7.37 FRAME RETURN ADDRESS
	7.37.1 Syntax
	7.37.2 Usage

	7.38 FRAME SAVE
	7.38.1 Syntax
	7.38.2 Usage
	7.38.3 See also

	7.39 FRAME STATE REMEMBER
	7.39.1 Syntax
	7.39.2 Usage
	7.39.3 Example
	7.39.4 See also

	7.40 FRAME STATE RESTORE
	7.40.1 Syntax
	7.40.2 See also

	7.41 FRAME UNWIND ON
	7.41.1 Syntax
	7.41.2 Usage
	7.41.3 See also

	7.42 FRAME UNWIND OFF
	7.42.1 Syntax
	7.42.2 Usage
	7.42.3 See also

	7.43 FUNCTION or PROC
	7.43.1 Syntax
	7.43.2 Usage
	7.43.3 Examples
	7.43.4 See also

	7.44 ENDFUNC or ENDP
	7.44.1 See also

	7.45 FIELD
	7.45.1 Syntax
	7.45.2 Usage
	7.45.3 Examples
	7.45.4 See also

	7.46 GBLA, GBLL, and GBLS
	7.46.1 Syntax
	7.46.2 Usage
	7.46.3 Examples
	7.46.4 See also

	7.47 GET or INCLUDE
	7.47.1 Syntax
	7.47.2 Usage
	7.47.3 Examples
	7.47.4 See also

	7.48 IF, ELSE, ENDIF, and ELIF
	7.48.1 Syntax
	7.48.2 Usage
	7.48.3 Using ELIF
	7.48.4 Examples
	7.48.5 See also

	7.49 IMPORT and EXTERN
	7.49.1 Syntax
	7.49.2 Usage
	7.49.3 Example
	7.49.4 See also

	7.50 INCBIN
	7.50.1 Syntax
	7.50.2 Usage
	7.50.3 Example

	7.51 INFO
	7.51.1 Syntax
	7.51.2 Usage
	7.51.3 Examples
	7.51.4 See also

	7.52 KEEP
	7.52.1 Syntax
	7.52.2 Usage
	7.52.3 Example
	7.52.4 See also

	7.53 LCLA, LCLL, and LCLS
	7.53.1 Syntax
	7.53.2 Usage
	7.53.3 Example
	7.53.4 See also

	7.54 LTORG
	7.54.1 Syntax
	7.54.2 Usage
	7.54.3 Example
	7.54.4 See also

	7.55 MACRO and MEND
	7.55.1 Syntax
	7.55.2 Usage
	7.55.3 Examples
	7.55.4 Conditional macro example
	7.55.5 See also

	7.56 MAP
	7.56.1 Syntax
	7.56.2 Usage
	7.56.3 Examples
	7.56.4 See also

	7.57 MEXIT
	7.57.1 Usage
	7.57.2 Example
	7.57.3 See also

	7.58 NOFP
	7.58.1 Syntax
	7.58.2 Usage

	7.59 OPT
	7.59.1 Syntax
	7.59.2 Usage
	7.59.3 Example
	7.59.4 See also

	7.60 QN, DN, and SN
	7.60.1 Syntax
	7.60.2 Usage
	7.60.3 Examples
	7.60.4 Extended notation examples
	7.60.5 See also

	7.61 RELOC
	7.61.1 Syntax
	7.61.2 Usage
	7.61.3 Examples
	7.61.4 See also

	7.62 REQUIRE
	7.62.1 Syntax
	7.62.2 Usage

	7.63 REQUIRE8 and PRESERVE8
	7.63.1 Syntax
	7.63.2 Usage
	7.63.3 Examples
	7.63.4 See also

	7.64 RLIST
	7.64.1 Syntax
	7.64.2 Usage
	7.64.3 Example
	7.64.4 See also

	7.65 RN
	7.65.1 Syntax
	7.65.2 Usage
	7.65.3 Examples
	7.65.4 See also

	7.66 ROUT
	7.66.1 Syntax
	7.66.2 Usage
	7.66.3 Example
	7.66.4 See also

	7.67 SETA, SETL, and SETS
	7.67.1 Syntax
	7.67.2 Usage
	7.67.3 Examples
	7.67.4 See also

	7.68 SPACE or FILL
	7.68.1 Syntax
	7.68.2 Usage
	7.68.3 Example
	7.68.4 See also

	7.69 TTL and SUBT
	7.69.1 Syntax
	7.69.2 Usage
	7.69.3 Examples

	7.70 WHILE and WEND
	7.70.1 Syntax
	7.70.2 Usage
	7.70.3 Example
	7.70.4 See also

	A: Revisions for Assembler Reference

