
ARM® Compiler toolchain
Version 5.0

Building Linux Applications with the ARM® Compiler
toolchain and GNU Libraries
Copyright © 2010-2011 ARM. All rights reserved.
ARM DUI 0483E (ID071611)

ARM Compiler toolchain
Building Linux Applications with the ARM Compiler toolchain and GNU Libraries

Copyright © 2010-2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

28 May 2010 A Non-Confidential ARM Compiler toolchain v4.1 Release

30 September 2010 B Non-Confidential Update 1 for ARM Compiler toolchain v4.1

28 January 2011 C Non-Confidential Update 2 for ARM Compiler toolchain v4.1 Patch 3

30 April 2011 D Non-Confidential ARM Compiler toolchain v5.0 Release

29 July 2011 E Non-Confidential Update 1 for ARM Compiler toolchain v5.0
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. ii
ID071611 Non-Confidential

Contents
ARM Compiler toolchain Building Linux
Applications with the ARM Compiler toolchain and
GNU Libraries

Chapter 1 Conventions and feedback

Chapter 2 About building Linux applications with the ARM Compiler toolchain and
GNU libraries
2.1 About the ARM Compiler toolchain and GNU libraries ... 2-2
2.2 Expected use cases for developing Linux applications .. 2-3
2.3 Limitations when building Linux applications .. 2-4
2.4 Target processor requirements for building Linux applications 2-6
2.5 Build requirements for Linux applications ... 2-7
2.6 About the ARM Application Binary Interface ... 2-8
2.7 Interactions between mixed-ABI components .. 2-9

Chapter 3 Using the ARM Compiler toolchain to build a Linux application or library
3.1 About using the ARM Compiler toolchain to build a Linux application or library 3-2
3.2 Configuration of the ARM Compiler toolchain for Linux applications 3-3
3.3 Configuring the ARM Compiler toolchain automatically .. 3-5
3.4 Configuring the ARM Compiler toolchain manually .. 3-6
3.5 Building for ARM Linux using normal ARM Compiler toolchain options 3-7
3.6 Using the ARM Compiler toolchain as a drop-in replacement for GCC and GNU Id 3-8
3.7 GCC emulation mode in armcc ... 3-9
3.8 Passing normal armcc options in GNU emulation mode .. 3-10
3.9 Differences in behavior and limitations between GCC and armcc emulation mode ... 3-11
3.10 Migrating a build from an earlier version of the ARM tools ... 3-12
3.11 Minimal migration path without using a configuration file ... 3-13
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. iii
ID071611 Non-Confidential

Contents
3.12 Migration using a configuration ... 3-15
3.13 Typical assembler command-line options ... 3-16
3.14 Additional headers from the ARM Compiler toolchain .. 3-17
3.15 Building a shared library with the ARM Compiler toolchain .. 3-18
3.16 Using shared libraries in your application ... 3-19

Chapter 4 Frequently-asked questions and troubleshooting
4.1 Where can I find more information on building Linux applications? 4-2
4.2 How do I build an EABI-compliant Linux kernel? .. 4-3
4.3 Can I build the Linux kernel using the ARM Compiler toolchain? 4-4
4.4 Which kernel version must I use? ... 4-5
4.5 Can I use EABI-compliant and non EABI-compliant applications together? 4-6
4.6 GNU tools report EABI version differences between source object and target 4-7
4.7 GNU linker or armlink report conflicts between wchar_t types 4-8
4.8 Using hardware VFP instructions ... 4-9
4.9 Can I use the ARM libraries in a Linux application? ... 4-10
4.10 How can I see what libraries are being used? .. 4-11
4.11 How can I have greater control over which libraries are linked into my application? .. 4-12
4.12 Common problems with running an application .. 4-13
4.13 What to do about segmentation faults .. 4-14
4.14 Image sizes and stripping debug data .. 4-15
4.15 Undefined symbol errors for pthread symbols .. 4-16

Appendix A Revisions for Building Linux Applications with the ARM Compiler toolchain
and GNU Libraries
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. iv
ID071611 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands, file

and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM® processor
signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your supplier
and give:
• your name and company
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 1-1
ID071611 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0483E
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 1-2
ID071611 Non-Confidential

Chapter 2
About building Linux applications with the ARM
Compiler toolchain and GNU libraries

The following topics give an overview of building a Linux application or library with the ARM
Compiler toolchain, and describe limitations and requirements:

Concepts
• About the ARM Compiler toolchain and GNU libraries on page 2-2
• Expected use cases for developing Linux applications on page 2-3
• Limitations when building Linux applications on page 2-4
• Target processor requirements for building Linux applications on page 2-6
• Build requirements for Linux applications on page 2-7
• About the ARM Application Binary Interface on page 2-8
• Interactions between mixed-ABI components on page 2-9.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-1
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.1 About the ARM Compiler toolchain and GNU libraries
The ARM Compiler toolchain enables you to create dynamic images that can run under Linux
using the header files and libraries from the GNU C library (glibc).

The instructions assume that you are familiar with ARM Compiler toolchain, GNU toolchain,
and Linux.

2.1.1 See also

Tasks
• Chapter 3 Using the ARM Compiler toolchain to build a Linux application or library.

Concepts
• Expected use cases for developing Linux applications on page 2-3
• Limitations when building Linux applications on page 2-4
• Target processor requirements for building Linux applications on page 2-6
• Build requirements for Linux applications on page 2-7
• About the ARM Application Binary Interface on page 2-8
• Interactions between mixed-ABI components on page 2-9.

Other information
• GNU ARM toolchain, http://www.gnuarm.com
• GCC, the GNU Compiler Collection, http://gcc.gnu.org
• GNU Operating System, http://www.gnu.org.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-2
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.2 Expected use cases for developing Linux applications
The following are the expected use cases for developing Linux applications and libraries with
the ARM Compiler toolchain and GNU libraries:

• building a standalone Linux application with the ARM Compiler toolchain

• building static and shared libraries with the ARM Compiler toolchain, and linking these
to an application built with the ARM Compiler toolchain

• building a static or shared library with the ARM Compiler toolchain, and linking this to
an application built with the GNU toolchain

• migrating an existing Linux application build using the ARM Compiler toolchain,
retaining explicit search paths on the command line

• migrating an existing Linux application build using the ARM Compiler toolchain, using
a standard configuration of system search paths and libraries

• using armcc and armlink as drop-in replacements for GCC and GNU ld using
command-line translation.

2.2.1 See also

Reference
Compiler Reference:
• --arm_linux on page 3-16
• --arm_linux_paths on page 3-21
• Chapter 3 Compiler Command-line Options.
Linker Reference:
• --arm_linux on page 2-13
• Chapter 2 Linker command-line options.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-3
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.3 Limitations when building Linux applications
There are several limitations on interoperation between the GNU tools and libraries and the
ARM Compiler toolchain:

GNU tool and library compatibility with the ARM Compiler toolchain
Be aware of the following compatibility requirements:
• CodeSourcery 2008q1 is the earliest recommended release.
• CodeSourcery 2005q3 is the earliest release that provides basic

interoperation with the ARM Compiler toolchain, however, releases earlier
than 2008 have known interoperability issues and you might encounter
problems using them.

• If libraries from a distribution or mainline GNU toolchain build are used,
their sources tend to be behind CodeSourcery releases in terms of bug fixes,
so a more recent version might be required to avoid interoperation
problems.

• You must use the 2005-q3-2 release of the CodeSourcery tools (or a later
release). Because of updates in the ARM Application Binary Interface
(ABI) ELF specification, the binary utilities (binutils) from this
CodeSourcery release cannot consume object files built with the ARM
Compiler toolchain. Support for the new ELF ABI revision is in the
2006-q1 and later releases.

• There are slight implementation differences in the way C++ exceptions are
handled between the ARM Compiler toolchain and GCC. Because of these
differences, the GNU C/C++ library prior to the CodeSourcery 2007-q1-10
release did not support code generated by the ARM Compiler toolchain that
used C++ exceptions. Therefore, to use C++ exceptions you must use the
CodeSourcery 2007-q1-10 release or later. This includes using these
libraries on the filesystem of your target.

The ARM Compiler toolchain cannot be used for building the Linux kernel or
kernel-based code, such as device drivers or other kernel modules

This is because a significant portion of the kernel code is written in assembly
language using the GNU assembler (GAS) syntax. This is incompatible with
armasm, and there is no performance gain to be made from rebuilding such code
with a different assembler.
Also, the function interfaces for the kernel code prior to version 2.6.16 have not
been written to comply with the ABI. This means that drivers and other kernel
modules cannot be compiled using the ARM Compiler toolchain because there
are no guarantees that calls would be made correctly between the kernel and the
driver code. You must use the GNU toolchain when building the kernel and kernel
modules.

ARM architecture v4T is not fully supported
See Target processor requirements for building Linux applications on page 2-6.

2.3.1 Unsupported GCC features

The following GCC features are not supported:
• assembly source, both inline assembly and separate GNU assembler (GAS) source files
• nested functions
• frame pointers.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-4
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.3.2 See also

Other information
• GNU ARM toolchain, http://www.gnuarm.com
• GCC, the GNU Compiler Collection, http://gcc.gnu.org
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-5
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.4 Target processor requirements for building Linux applications

Building Linux applications is aimed at ARM architecture v5TE (ARMv5TE™) or later
processors, such as the ARM926EJ-S™ and ARM1176JZ-S™ processors. This is because the
ARM ABI uses ARMv5TE as its base architecture, and earlier architecture versions are not fully
covered by the ABI.

You might be able to use the ARM Compiler toolchain to build Linux applications for ARM
architecture v4T (ARMv4T™) processors, such as the ARM720T™ and ARM920T™ processors.
This is, however, entirely at your own risk and is not supported. In particular, you cannot use
Thumb code built for ARMv4T in shared libraries. ARM recommends that you only use the
GNU toolchain when building Linux applications for ARMv4T targets.

The filesystem on your target must contain the ABI-compliant library binaries that are included
in the CodeSourcery GNU toolchain releases.

Also, the target must be running a Linux kernel with:

• support for the Native POSIX Threading Library (NPTL), that is the more recent
mechanism for supporting multithreaded code under Linux with the GNU C library

• thread-local storage (TLS).

For the mainstream kernel source, this means that your target must be running version 2.6.12
(or later) of the Linux kernel. Your Linux distribution, however, might have applied the
appropriate patches to its release of an earlier kernel. For more details, contact your Linux
distributor.

Prebuilt binary images of the Linux kernel configured for the ARM development boards can be
found on the ARM website.

2.4.1 See also

Reference
• Build requirements for Linux applications on page 2-7
• About the ARM Application Binary Interface on page 2-8.

Other information
• Linux Support for the ARM Architecture,

http://www.arm.com/community/software-enablement/linux.php.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-6
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.5 Build requirements for Linux applications
All information in Building Linux Applications with the ARM Compiler toolchain and GNU
Libraries relates to the use of the ARM Compiler toolchain.

The CodeSourcery 2005-q1 release was the first to permit Embedded Application Binary
Interface (EABI) compliant interoperation between ARM Compiler toolchain and the GNU
toolchain. However, several enhancements and fixes have been made since the CodeSourcery
2005-q1 release. Therefore, ARM recommends that you only use the CodeSourcery 2008q1 or
later releases for interoperating with the ARM Compiler toolchain, and the instructions in this
document relate only to these releases.

Therefore, the instructions in this document relate only to the CodeSourcery 2006-q1-6 and later
releases, because it is now simpler and safer to link with a newer release.

Your ARM Linux distribution might already use the CodeSourcery toolchain or have the
appropriate patches applied. For more details, contact your ARM Linux distributor.

2.5.1 See also

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi

• CodeSourcery binary and source packages for the GNU toolchains,
http://www.codesourcery.com/gnu_toolchains/arm
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-7
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.6 About the ARM Application Binary Interface
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards,
some open and some specific to the ARM architecture. These standards regulate the
interoperation of binary code, development tools, and a spectrum of ARM processors-based
execution environments from bare metal to platform operating systems such as ARM Linux.

A third-party toolchain such as the GNU tools must comply with the standards given in the ABI
for its objects to link and interoperate correctly with those produced by the ARM Compiler
toolchain. The CodeSourcery release of the GNU tools is specifically tailored to fully support
the ARM ABI and permit objects produced using both the ARM Compiler toolchain and the
GNU toolchain to work together successfully.

2.6.1 See also

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi

• CodeSourcery binary and source packages for the GNU toolchains,
http://www.codesourcery.com/gnu_toolchains/arm
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-8
ID071611 Non-Confidential

About building Linux applications with the ARM Compiler toolchain and GNU libraries
2.7 Interactions between mixed-ABI components
If you are not using an Application Binary Interface (ABI) compliant kernel, you might need to
build a mixed ABI system. Kernels before version 2.6.16 can only be built using the legacy
GNU ABI (use GCC option -mabi=apcs-gnu when using the CodeSourcery toolchain). This
includes all kernel modules and device drivers.

This can cause problems when your applications or libraries must interface directly with kernel
structures or functions (system calls), including through the use of a shared header file
describing kernel structures. In this case, you must use assembly code or modified descriptions
of the structures to translate between the two ABIs when calling kernel functions or
manipulating kernel data structures in your applications or libraries.

From kernel 2.6.16 onwards, you can build the Linux kernel using the new ARM Embedded
Application Binary Interface (EABI). This enables easier integration of applications and
libraries to form a completely EABI-compliant system.

2.7.1 See also

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 2-9
ID071611 Non-Confidential

Chapter 3
Using the ARM Compiler toolchain to build a Linux
application or library

The following topics describe how to use the ARM Compiler toolchain to build a Linux application
or library:

Tasks
• Configuring the ARM Compiler toolchain automatically on page 3-5
• Configuring the ARM Compiler toolchain manually on page 3-6
• Building for ARM Linux using normal ARM Compiler toolchain options on page 3-7
• Using the ARM Compiler toolchain as a drop-in replacement for GCC and GNU Id on

page 3-8
• Migrating a build from an earlier version of the ARM tools on page 3-12
• Building a shared library with the ARM Compiler toolchain on page 3-18
• Using shared libraries in your application on page 3-19.

Concepts
• About using the ARM Compiler toolchain to build a Linux application or library on page 3-2
• Configuration of the ARM Compiler toolchain for Linux applications on page 3-3
• GCC emulation mode in armcc on page 3-9
• Differences in behavior and limitations between GCC and armcc emulation mode on

page 3-11
• Minimal migration path without using a configuration file on page 3-13
• Migration using a configuration on page 3-15
• Typical assembler command-line options on page 3-16
• Additional headers from the ARM Compiler toolchain on page 3-17.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-1
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.1 About using the ARM Compiler toolchain to build a Linux application or library
There are several possible routes to producing a Linux application or library with the ARM
Compiler toolchain, depending on the requirements of your build. In most cases, you must
configure the tools based on an existing GNU toolchain or by providing an alternate location for
system header files and libraries. When the tools are configured, you can use the ARM Compiler
toolchain in one of these ways:

• Use the tools directly to produce an application using the standard configuration, but with
normal ARM Compiler toolchain command-line options.

• Use ARM Compiler toolchain as a drop-in replacement for GCC and the GNU linker.

• Migrate a build from RVCT to use the new features in the ARM Compiler toolchain.

3.1.1 See also

Tasks
• Building for ARM Linux using normal ARM Compiler toolchain options on page 3-7
• Using the ARM Compiler toolchain as a drop-in replacement for GCC and GNU Id on

page 3-8
• Migrating a build from an earlier version of the ARM tools on page 3-12.

Concepts
• Configuration of the ARM Compiler toolchain for Linux applications on page 3-3.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-2
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.2 Configuration of the ARM Compiler toolchain for Linux applications
When building for ARM Linux, your library configuration determines:

• the paths you must use to the appropriate system header files and libraries (for example,
glibc and libstdc++)

• the appropriate standard options and object files (such as those containing the application
entry point function and C library initialization code).

Configuration of the ARM Compiler toolchain can be performed:
• automatically with armcc
• manually by specifying particular paths that are used for finding header files and libraries.

Automatic configuration
The ARM compiler, armcc, can obtain the configuration information
automatically from an existing GNU toolchain. The paths and options used
remain the same unless you modify your libraries. Consequently, this
configuration information is obtained once and stored in a configuration file that
you specify on the command-line. The information in this configuration file is
then re-used when compiling or linking for ARM Linux.

Manual configuration
You can configure the ARM Compiler toolchain manually by specifying
particular paths that are used for finding header files and libraries. To configure
ARM Compiler toolchain manually, you must specify:
• the sysroot path
• the path to the C++ header files.
The sysroot path is the root of the tree directory where header files and libraries
are normally installed. For a native Linux filesystem, this is the root of the
directory tree /. If you are configuring against a CodeSourcery distribution, or
another self-contained cross-compilation GNU toolchain, this is typically the root
of the directory tree where glibc was installed. For recent CodeSourcery releases,
this is the arm-none-linux-gnueabi/libc subdirectory. If you are configuring
against the filesystem of the target (for example, to pick up new libraries as they
are built and installed into the target filesystem tree) the sysroot is the root of this
-filesystem.
The C++ header file path is the path of the directory containing the header files
from libstdc++. These are usually installed in a separate subdirectory from those
normally searched relative to the sysroot, and must also be provided as part of the
library configuration. In a CodeSourcery distribution, this is typically the
arm-none-linux-gnueabi/include/c++/version subdirectory, where version is the
GCC version. In a typical Linux filesystem installation, these might be installed
in /usr/include/c++/version.
The configuration produced by this process is written to a configuration file that
is used later when building for ARM Linux.

To specify the location of the configuration file, use the --arm_linux_config_file=path compiler
option, where path is the filename of the configuration file. The path must include the full path
to the configuration file if the file is not located in the same directory as armcc. You must specify
this both when producing the configuration file and when using the configuration during
compilation or linking.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-3
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.2.1 See also

Tasks
• Configuring the ARM Compiler toolchain automatically on page 3-5
• Configuring the ARM Compiler toolchain manually on page 3-6.

Reference
Compiler Reference:
• --arm_linux_config_file=path on page 3-18.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com
• GNU ARM toolchain, http://www.gnuarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-4
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.3 Configuring the ARM Compiler toolchain automatically
If GCC is in a directory listed in the PATH environment variable, you can configure the tools
using the command:

armcc --arm_linux_configure --arm_linux_config_file=config_file_path

If GCC is not on your system path, you can specify this explicitly:

armcc --arm_linux_configure --arm_linux_config_file=config_file_path

--configure_gcc=path_to_gcc

where path_to_gcc is the path and filename of the GCC driver binary, that is, the actual gcc
executable (with .exe suffix on Windows). For a cross-compiler the filename is, for example,
arm-none-linux-gnueabi-gcc (with .exe suffix on Windows).

During configuration, the compiler also determines the location of the GNU linker used by GCC
and queries the linker for additional information. If this cannot be determined, or you want to
override the normal path to the GNU linker, you can specify this using the
--configure_gld=path_to_gld option, where path_to_gld is the complete path and filename of
the GNU ld binary.

You can also manually:
• override the sysroot path
• override the location of the C++ header files
• specify additional search paths for header files and libraries.

3.3.1 See also

Tasks
• Configuring the ARM Compiler toolchain manually on page 3-6.

Concepts
• Configuration of the ARM Compiler toolchain for Linux applications on page 3-3.

Reference
Compiler Reference:
• --arm_linux_config_file=path on page 3-18
• --arm_linux_configure on page 3-19
• --configure_gld=path on page 3-45.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-5
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.4 Configuring the ARM Compiler toolchain manually
To configure the tools manually, use:

armcc --arm_linux_configure --configure_sysroot=sysroot_path

--configure_cpp_headers=headers_path --arm_linux_config_file=filename

You can also specify additional header search paths and library search paths as a
comma-separated list using the --configure_extra_includes=list and
--configure_extra_libraries=list options.

To manually configure against a CodeSourcery distribution, you must provide extra library
paths for the GCC support libraries, because these are not packaged in the glibc sysroot. For
example, you can use a command similar to the following:

armcc --arm_linux_configure --arm_linux_config_file=filename
--configure_sysroot=codesourcery_root/arm-none-linux-gnueabi/libc
--configure_cpp_headers=codesourcery_root/arm-none-linux-gnueabi/include/c++/gcc_versio
n
--configure_extra_libraries=codesourcery_root/lib/gcc/arm-none-linux-gnueabi/gcc_versio
n,codesourcery_root/arm-none-linux-gnueabi/lib

3.4.1 See also

Tasks
• Configuring the ARM Compiler toolchain automatically on page 3-5.

Concepts
• Configuration of the ARM Compiler toolchain for Linux applications on page 3-3.

Reference
Compiler Reference:
• --arm_linux_config_file=path on page 3-18
• --arm_linux_configure on page 3-19
• --configure_cpp_headers=path on page 3-39
• --configure_extra_includes=paths on page 3-40
• --configure_extra_libraries=paths on page 3-41
• --configure_sysroot=path on page 3-46.

Other information
• CodeSourcery, http://www.codesourcery.com
• GNU ARM toolchain, http://www.gnuarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-6
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.5 Building for ARM Linux using normal ARM Compiler toolchain options
After you have configured ARM tools, you can use the configuration to build code for ARM
Linux using the --arm_linux_paths compiler option. This follows the typical GCC usage model
where the compiler driver is used to control linking and selection of standard system object files
and libraries. You must also specify the location of the configuration file with
--arm_linux_config_file=filename. Using these options, you can build application code
directly. For example, to build the Hello World example:

armcc --arm_linux_paths --arm_linux_config_file=filename -o hello hello.c

To create a shared library, compile and link your code using --apcs=/fpic --shared. The
compiler provides the --shared option to select variants of the system object files and libraries
from the configuration that are suitable for linking into a shared library.

For example, to compile a source file source.c suitable for use in a shared library:

armcc --arm_linux_paths --arm_linux_config_file=filename --apcs=/fpic -c source.c

To link two object files obj1.o and obj2.o into a shared library libexample.so:

armcc --arm_linux_paths --arm_linux_config_file=filename --shared -o libexample.so obj1.o

obj2.o source.o

Note
 When linking a C++ application with --arm_linux_paths, you must specify the --cpp option to
the compiler driver so that it passes the appropriate C++ libraries to the linker.

3.5.1 See also

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11
• --arm_linux_config_file=path on page 3-18
• --arm_linux_paths on page 3-21
• -o filename on page 3-153
• --shared on page 3-186.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com
• GNU ARM toolchain, http://www.gnuarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-7
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.6 Using the ARM Compiler toolchain as a drop-in replacement for GCC and GNU Id
You can use the ARM Compiler toolchain as a replacement for GCC and GNU ld. In GCC
emulation mode, armcc accepts command lines intended for GCC and GNU ld and translates
these internally into standard armcc and armlink command lines.

3.6.1 See also

Concepts
• GCC emulation mode in armcc on page 3-9
• Passing normal armcc options in GNU emulation mode on page 3-10
• Differences in behavior and limitations between GCC and armcc emulation mode on

page 3-11
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-8
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.7 GCC emulation mode in armcc
The ARM compiler, armcc, supports a GCC emulation mode. In this mode, armcc accepts
command lines intended for GCC and GNU ld and translates these internally into standard armcc
and armlink command lines. This follows the typical GCC usage model of using the compiler
driver to direct linking, rather than invoking the linker directly. However, armcc does provide
support for being invoked as if emulating GNU ld directly, and reports itself as the linker if
invoked in GCC emulation mode with --print-prog-name=ld. This is primarily intended to
support a limited number of cases where the linker is invoked directly by existing build scripts
targeting the GNU tools, for example in a partial link step.

To enable emulation of GCC, invoke armcc with one of the following options:
• --translate_gcc to emulate gcc
• --translate_g++ to emulate g++
• --translate_gld to emulate GNU ld.

You must also provide --arm_linux_config_file=filename to give a location for the
configuration file.

Note
 If you do not provide a configuration file with the --arm_linux_config_file option when in
translation mode, the compiler performs translation of options but does not set any defaults for
ARM Linux, including ABI defaults such as enum size. This mode of operation is provided for
convenience and is not intended for building Linux applications.

3.7.1 See also

Reference
Compiler Reference:
• --arm_linux_config_file=path on page 3-18
• --translate_g++ on page 3-196
• --translate_gcc on page 3-198
• --translate_gld on page 3-200.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-9
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.8 Passing normal armcc options in GNU emulation mode
To take advantage of features specific to armcc, you can pass normal compilation tools options
to the compiler when in GCC emulation mode. To do this, use -Warmcc,option,... This is a fake
GCC-like option that accepts a comma-separated list of armcc options. These options are passed
verbatim to the compiler, and are appended to the translated command line so that they can
override any translation options.

If you want to pass options to armlink from armcc, use the -L option:

armcc -Warmcc -Loption1 -Loption2

3.8.1 See also

Reference
Compiler Reference:
• -Lopt on page 3-126
• -Warmcc,option[,option,...] on page 3-219.
Linker Reference:
• Chapter 2 Linker command-line options.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-10
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.9 Differences in behavior and limitations between GCC and armcc emulation mode
There are some differences in behavior between GCC and the emulation mode supported by
armcc:

• If no optimization level is specified, the GCC default (-O0) is used.

• If a GCC numeric optimization level (-O0 through -O3) is used, this is translated into -On
-Otime for armcc. The GCC -Os option translates as -O3 -Ospace.
To force the use of a specific armcc optimization level, include the -Warmcc option. For
example:
-Warmcc,-O1,-Ospace

• Support for diagnostic control is limited. In particular, warnings are suppressed by default
(similar to GCC) and are re-enabled with -W or -Wall. The -w option (lower case -w) is
supported to suppress warnings, for example to override a -Wall earlier on the command
line. Other GCC -W… options are ignored. If you require control of individual messages
then you can use the normal compilation tools options, such as -Warmcc,--diag_suppress
and -Warmcc,--diag_error.

• Many GCC options do not have an equivalent in armcc. These include, for example, many
of the -f... GCC options that control optimization phases that are specific to the GCC
code generator, and are not applicable to armcc. Any GCC options that do not have an
equivalent in armcc are silently ignored. To see the GCC options that are ignored, specify
the options -Warmcc --remarks.

3.9.1 See also

Reference
Compiler Reference:
• --diag_error=tag[,tag,...] on page 3-69
• --diag_suppress=optimizations on page 3-73
• -Onum on page 3-155
• -Ospace on page 3-159
• -Otime on page 3-160
• --remarks on page 3-179
• -W on page 3-218
• -Warmcc,option[,option,...] on page 3-219.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-11
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.10 Migrating a build from an earlier version of the ARM tools
Existing code for ARM Linux that builds successfully using RVCT v3.0 or RVCT v3.1 can work
without changes. However, you can take advantage of the new features in ARM Compiler v4.1,
and later, to simplify your makefiles or other build scripts. For example, use:

• --arm_linux to configure a set of options with defaults that are suitable for ARM Linux
compilation

• --arm_linux_paths to take advantage of the configuration capabilities in the ARM
Compiler toolchain.

In ARM Compiler v4.1, and later, you do not have to link with the helper libraries, such as h_5.l.
If you are recompiling an entire project from source, the required functions are generated in the
object files by the compiler. If you are linking with legacy object files compiled using a previous
version of the ARM Compiler toolchain, you must still link with an appropriate helper library.

3.10.1 See also

Concepts
• Minimal migration path without using a configuration file on page 3-13
• Migration using a configuration on page 3-15.

Reference
Compiler Reference:
• --arm_linux on page 3-16
• --arm_linux_paths on page 3-21.
Linker Reference:
• --arm_linux on page 2-13.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-12
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.11 Minimal migration path without using a configuration file
The compiler and linker both provide the --arm_linux command-line option for building ARM
Linux applications. This does not require a configuration file, and enables a set of default
configuration options, for example Application Binary Interface (ABI) variant options such as
--enum_is_int. This permits you to simplify the compiler options used in existing makefiles
while retaining full and explicit control over the header and library search paths used. When
migrating a build from an earlier version of the ARM compilation tools, you can remove these
standard switches from the list of those supplied to the compiler and linker with the single
--arm_linux option.

The --arm_linux option in the compiler enables the following command-line options:

--gnu_defaults --enum_is_int --library_interface=aeabi_glibc --apcs=/interwork
--preinclude=linux_armcc.h

Note
 Be aware that if you specify --preinclude manually, the compiler does not search the
subdirectories of the default include path, or the path specified in ARMCCnnINC. Therefore, to
enable the compiler to locate the header file in the arm_linux subdirectory, you must also include
the --arm_linux command-line option.

The --gnu_defaults option (implied by --arm_linux) in the compiler enables the following
command-line options:

--gnu --wchar32 --no_hide_all --signed_bitfields --no_debug_macros --allow_null_this

--no_implicit_include

The --arm_linux option in the linker enables the following command-line options:

--sysv --no_startup --no_ref_cpp_init --no_scanlib --keep=*(.init) --keep=*(.fini)
--keep=*(.init_array) --keep=*(.fini_array)
--linux_abitag=2.6.12--diag_suppress=6332,6318,6319,6765,6747,6420

3.11.1 See also

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11
• --arm_linux on page 3-16
• --enum_is_int on page 3-84
• --gnu_defaults on page 3-107
• --hide_all, --no_hide_all on page 3-112
• --library_interface=lib on page 3-127
• --preinclude=filename on page 3-171.
Linker Reference:
• --arm_linux on page 2-13
• --diag_suppress=tag[,tag,...] on page 2-47
• --keep=section_id on page 2-89
• --linux_abitag=version_id on page 2-101
• --ref_cpp_init, --no_ref_cpp_init on page 2-130
• --scanlib, --no_scanlib on page 2-141
• --startup=symbol, --no_startup on page 2-155.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-13
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-14.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-14
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.12 Migration using a configuration
If you want to take advantage of the configuration capabilities in the ARM Compiler toolchain,
you can create a configuration file.When this configuration file is created, you can modify an
existing build by replacing the list of standard options and search paths with the
--arm_linux_paths compiler option.

3.12.1 See also

Tasks
• Building for ARM Linux using normal ARM Compiler toolchain options on page 3-7.

Concepts
• Configuration of the ARM Compiler toolchain for Linux applications on page 3-3.

Reference
Compiler Reference:
• --arm_linux_paths on page 3-21.

Other information
• ARM Linux Internet Platform, http://linux.onarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-15
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.13 Typical assembler command-line options
When using assembly code in your application or library, you usually have to specify the
following armasm command-line options:

--apcs=/interwork
This instructs the assembler to set the build attributes in the object file to indicate
that the code is ARM and Thumb interworking-safe.

--no_hide_all
This indicates that the assembler must use dynamic import and export for all
global symbols.

ARM also recommended that you specify a CPU or architecture with the --cpu option that at
least conforms to ARM Architecture v5TE (ARMv5TE), for ease of interoperation with the GNU
tools.

3.13.1 See also

Reference
Assembler Reference:
• --apcs=qualifier…qualifier on page 2-5
• --cpu=name on page 2-8
• --no_hide_all on page 2-19.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-16
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.14 Additional headers from the ARM Compiler toolchain
Some of the standard ARM Compiler toolchain headers must be used when building for ARM
Linux. These headers define some implementation-specific macros that are dependent on the
compiler rather than the C library used. The files are provided in the arm_linux and
arm_linux_compat subdirectories of the ARM Compiler toolchain header files. The
arm_linux_compat directory must be given before other system include directories in the include
path list, and the arm_linux directory must appear at the end of the include path list. If the
ARMCCnnINC environment variable is set, then these paths are automatically used by the
--arm_linux and --arm_linux_paths options and by GCC emulation mode.

An additional header file, linux_armcc.h, is also provided. This defines a number of macros for
compatibility with GCC and the Linux environment. This is automatically included (equivalent
to using --preinclude=linux_armcc.h) when using --arm_linux or --arm_linux_paths. When
using the ARM Compiler toolchain to emulate GCC, these macros are defined internally in the
compiler to permit preprocessing of files other than C or C++ source without automatically
including the file.

If you want to use the DSP or NEON® intrinsics available in the ARM Compiler toolchain, these
are also provided in the arm_linux subdirectory for convenience, for example #include
<arm_neon.h>. However, both dspfns.h and math.h include a definition round().You must
rename one definition if you want to use both versions of these functions. For example:

#define round dsp_round#include <dspfns.h>#undef round

3.14.1 See also

Reference
Introducing ARM® Compiler toolchain:
• Toolchain environment variables on page 2-14
Compiler Reference:
• --arm_linux on page 3-16
• --arm_linux_paths on page 3-21
• --preinclude=filename on page 3-171.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-17
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.15 Building a shared library with the ARM Compiler toolchain
When building dynamic shared libraries, all of the library code must be compiled and linked to
be position-independent. To do this when using armcc options, use the --apcs=/fpic
command-line option. In GCC emulation mode, use -shared -fPIC.

armlink supports the creation of dynamic shared libraries. This requires some additional options.

--shared Instructs the linker to create a dynamic shared library and not a static library.

--soname <name>
Specifies the shared object name (SONAME) for the library.

--fpic Enables you to link position-independent code that is compiled with --apcs/fpic.

For example, to link libfunc.o and asmfunc.o into a dynamic shared library libdynamic.so, you
can use the following linker command line:

armlink --arm_linux --fpic --shared --soname libdynamic.so -o libdynamic.so libfunc.o

asmfunc.o libc.so.6

When using GCC emulation mode, if -shared is passed to the compiler driver this automatically
passes --shared --fpic to armlink. You can still specify the shared object name or other options,
for example using -Wl, -soname, libexample.so.

3.15.1 See also

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11.
Linker Reference:
• --arm_linux on page 2-13
• --fpic on page 2-74
• --shared on page 2-146
• --soname=name on page 2-151.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-18
ID071611 Non-Confidential

Using the ARM Compiler toolchain to build a Linux application or library
3.16 Using shared libraries in your application
You use shared libraries with armlink in the same way as normal libraries by specifying them on
the linker command line. References to the shared library are added to the image and resolved
to the library by the dynamic loader at runtime.

References to libraries are resolved in the order they are specified on the command line. This is
also the order that the dependencies are resolved by the dynamic linker. You can specify the
runtime location of libraries using the --rpath GNU ld option, that is an accepted alias of the
--runpath linker option.

Unlike GNU ld, armlink repeatedly searches libraries in command-line order until either all
references are resolved or no further references can be resolved by the given libraries. That is,
armlink behaves similarly to:

ld --start-group lib1.a lib2.a lib3.a … --end-group

armlink supports a --library=name option similar to the -l option in GNU ld. This can search
for libraries named as libname.so or libname.a depending on whether dynamic library searching
is enabled at that point on the command line. The searching of dynamic libraries is controlled
by the --[no_]search_dynamic_libraries option, as shown in the last two lines of the following
example:

gcc -shared -fPIC -Wl,-Bdynamic -lfoo -Wl,-Bstatic -lbar

armcc --arm_linux -L--shared -L--fpic \-L--search_dynamic_libraries -L--library=foo
\-L--no_search_dynamic_libraries -L--library=bar

These two command lines perform a link searching for libfoo.so before libfoo.a, but only
searching for libbar.a.

3.16.1 See also

Reference
Linker Reference:
• --fpic on page 2-74
• --library=name on page 2-97
• --search_dynamic_libraries, --no_search_dynamic_libraries on page 2-144
• --runpath=pathlist on page 2-138
• --shared on page 2-146.
Compiler Reference:
• --arm_linux on page 3-16
• -Lopt on page 3-126.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 3-19
ID071611 Non-Confidential

Chapter 4
Frequently-asked questions and troubleshooting

The following topics provide answers to common questions and additional information on building
Linux applications with the ARM Compiler toolchain and GNU libraries:

General information
• Where can I find more information on building Linux applications? on page 4-2
• How do I build an EABI-compliant Linux kernel? on page 4-3
• Can I build the Linux kernel using the ARM Compiler toolchain? on page 4-4
• Which kernel version must I use? on page 4-5
• Can I use EABI-compliant and non EABI-compliant applications together? on page 4-6
• How can I have greater control over which libraries are linked into my application? on

page 4-12
• Common problems with running an application on page 4-13
• What to do about segmentation faults on page 4-14
• Image sizes and stripping debug data on page 4-15
• Undefined symbol errors for pthread symbols on page 4-16.

Interoperation errors
• GNU tools report EABI version differences between source object and target on page 4-7
• GNU linker or armlink report conflicts between wchar_t types on page 4-8.

Diagnosing common problems
• Using hardware VFP instructions on page 4-9
• Can I use the ARM libraries in a Linux application? on page 4-10
• How can I see what libraries are being used? on page 4-11.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-1
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.1 Where can I find more information on building Linux applications?
The recommended starting point for getting more information is the CodeSourcery toolchain
FAQ.

You can also look at ARM and Linux forums and newsgroups, or at mailing list archives. The
ARM Linux Project and the ARM Linux Wiki provide resources relating specifically to ARM
Embedded Linux.

Note
 ARM does not provide support on the use of the GNU tools. For more information, see the GNU
Compiler Collection.

4.1.1 See also

Other information
• GNU ARM toolchain, http://www.gnuarm.com
• ARM Linux Internet Platform, http://linux.onarm.com
• Linux on ARM Wiki, http://www.linux-arm.org
• GNU Compiler Collection, http://gcc.gnu.org.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-2
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.2 How do I build an EABI-compliant Linux kernel?
Prior to kernel version 2.6.16 an Embedded Application Binary Interface (EABI) compliant
kernel could not be built. However, this is only an issue for applications and libraries that
directly access kernel structures or functions. This is because the EABI-compliant GNU C
library translates calls appropriately from EABI-compliant applications to the non
EABI-compliant kernel system calls.

From kernel version 2.6.16, you can build an EABI kernel. However, you must still use the
GNU toolchain.

4.2.1 See also

Other information
• GNU ARM toolchain, http://www.gnuarm.com
• ARM Linux Internet Platform, http://linux.onarm.com
• Linux on ARM Wiki, http://www.linux-arm.org
• GNU Compiler Collection, http://gcc.gnu.org.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-3
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.3 Can I build the Linux kernel using the ARM Compiler toolchain?
The Linux kernel has a large amount of assembly code that is written in GNU assembler (GAS)
syntax. The ARM assembler does not support the GAS syntax and therefore cannot be used to
build the Linux kernel.

Because the most critical parts of the kernel are written in assembly and not C, you are unlikely
to see a significant improvement if you use ARM Compiler toolchain to build the kernel.

4.3.1 See also

Other information
• GNU ARM toolchain, http://www.gnuarm.com
• ARM Linux Internet Platform, http://linux.onarm.com
• Linux on ARM Wiki, http://www.linux-arm.org
• GNU Compiler Collection, http://gcc.gnu.org.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-4
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.4 Which kernel version must I use?
The binary form of the CodeSourcery toolchain is built to use Native POSIX Thread Library
(NPTL) and it expects to have thread-local storage (TLS) support in the kernel. Recent
CodeSourcery binary releases have a dependency on kernel version 2.6.16 or later because of
the requirement for EABI support in the kernel.

Note
 Your Linux distributor might have already applied the appropriate patches to their kernel build.
Contact your Linux distributor for more information.

4.4.1 See also

Other information
• GNU ARM toolchain, http://www.gnuarm.com.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-5
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.5 Can I use EABI-compliant and non EABI-compliant applications together?
To use EABI-compliant and non EABI-compliant applications together, you must:

1. Place the libraries and the dynamic linker in a different directory to the normal libraries.

2. Use /libeabi for the Embedded Application Binary Interface (EABI) compliant libraries,
and leave the original, non EABI-compliant libraries in /lib.

3. Set the library search path for EABI applications using the environment variable
LD_LIBRARY_PATH=/libeabi or by using the --rpath linker option.

4. Rebuild all applications to use the EABI in your final system because the extra libraries
take up a significant amount of space in the filesystem.

4.5.1 See also

Other information
• ARM GNU/Linux ABI Supplement,

http://www.codesourcery.com/gnu_toolchains/arm/arm_gnu_linux_abi.pdf
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-6
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.6 GNU tools report EABI version differences between source object and target
The GNU tools report the following error when used on objects generated by the ARM
Compiler toolchain:

ERROR: Source object … has EABI version 5, but target … has EABI version 4

The ARM Compiler toolchain generates ELF files conforming to revision 5 of the ARM ABI
ELF (AAELF) specification. However, the CodeSourcery 2005-q3-2 release only supports
revision 4 of the AAELF specification, and does not consume objects produced by the ARM
Compiler toolchain. Support for the new ABI revision is included in the 2006-q1-3 and later
releases of the CodeSourcery toolchain.

4.6.1 See also

Other information
• ARM GNU/Linux ABI Supplement,

http://www.codesourcery.com/gnu_toolchains/arm/arm_gnu_linux_abi.pdf
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-7
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.7 GNU linker or armlink report conflicts between wchar_t types
You see the following errors:

• GNU linker error:
ld: ERROR: … : Conflicting definitions of wchar_t

• armlink error:
Error: L6242E: Cannot link object dummy.o as its attributes are incompatible with

the image attributes ... wchart-16 clashes with wchart-32.

This is because the linker has detected a mismatch between the wchar_t types used. The
CodeSourcery document for building Linux applications specifies that wchar_t must be 32 bits.

A similar error exists for incompatible sizes of enumeration types. For ARM Linux, an enum
must be 32 bits wide.

To resolve these errors, ensure that all of your code is compiled for 32-bit wchar_t and 32-bit
enums, for example using the --wchar32 and --enum_is_int armcc options. This is done
automatically if --arm_linux is used.

Alternatively, armlink supports the options --no_strict_wchar_size and --no_strict_enum_size
that avoid these errors. Be aware, however, that binary compatibility might be broken between
the objects with differing attributes if they pass data of enum or wchar_t types between each
other and this might lead to runtime failures.

4.7.1 See also

Reference
Linker Reference:
• --arm_linux on page 2-13
• --strict_enum_size, --no_strict_enum_size on page 2-157
• --strict_wchar_size, --no_strict_wchar_size on page 2-163.
Compiler Reference:
• --enum_is_int on page 3-84
• --wchar32 on page 3-223.

Other information
• ARM GNU/Linux ABI Supplement,

http://www.codesourcery.com/gnu_toolchains/arm/arm_gnu_linux_abi.pdf
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-8
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.8 Using hardware VFP instructions
ARM Linux uses software floating-point linkage, where floating-point arguments are passed in
integer registers even if functions themselves perform operations in hardware VFP registers.

When building ARM Linux applications with the --arm_linux or --arm_linux_paths compiler
command-line options, the default is always software floating-point linkage even if you specify
a CPU that implies an FPU.

For example, if you specify a --cpu that implies an FPU, such as ARM1136JF-S or Cortex-A9,
the compiler defaults to --fpu=softvfp+vfp rather than --fpu=vfp. --fpu=softvfp+vfp is
equivalent to the GCC -mfloat-abi=softfp command-line option.

If you specify a --cpu that does not imply an FPU, you must explicitly specify
--fpu=softvfp+vfp to use VFP.

You can override these explicitly to use hardware or software floating point variants of the
Procedure Call Standard by specifying --apcs=/hardfp or --apcs=/softfp respectively. If using
GCC emulation, the corresponding options are:
• -mfloat-abi=hard, to compile for hardware FPU with hardware linkage
• -mfloat-abi=softfp, to compile for hardware FPU but with software linkage
• -mfloat-abi=soft, to compile without hardware FPU instructions being used.

4.8.1 See also

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11
• --arm_linux on page 3-16
• --arm_linux_paths on page 3-21
• --fpu=name on page 3-99.
Assembler Reference:
• --apcs=qualifier…qualifier on page 2-5

--fpu=name on page 2-14.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-9
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.9 Can I use the ARM libraries in a Linux application?
In general, you must not use the ARM libraries when building a Linux application. The libraries
provided with the ARM Compiler toolchain are targeted at standalone applications running
directly on the target hardware, that is, without an OS. They contain semihosting calls and
memory handling that is not suitable for use under an operating system like Linux. It is
sometimes possible to use small, self-contained portions of the ARM library code, however you
must take care to retarget any semihosted I/O functions and signal handling. Also, the ARM
libraries can only be statically linked into an application or shared library.

4.9.1 See also

Tasks
Using ARM® C and C++ Libraries and Floating-Point Support:
• Using the libraries in a nonsemihosting environment on page 2-36.

Concepts
• How can I see what libraries are being used? on page 4-11
• What to do about segmentation faults on page 4-14.
Developing Software for ARM® Processors:
• Chapter 3 Embedded Software Development.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-10
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.10 How can I see what libraries are being used?
The linker provides an option --info=libraries that lists the libraries it uses. For information
on which library functions are being used, you can request verbose output from the linker with
--verbose and redirect this to a file with --list=filename.txt.

When using --arm_linux_paths or the GCC emulation mode, the configuration file provides the
list of system paths and standard libraries to link to. This file is in XML format, and you can
examine this file in a text editor to check the libraries that are used by the tools.

4.10.1 See also

Reference
Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --list=file on page 2-102
• --verbose on page 2-184.
Compiler Reference:
• --arm_linux_paths on page 3-21.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-11
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.11 How can I have greater control over which libraries are linked into my
application?

If you require explicit control over the libraries that are linked with your application, this can be
done with a manual link step by passing the --arm_linux linker option. The --arm_linux option
sets the --no_scanlib option to disable searching of system library paths. You can then provide
your own list of search paths with --userlibpath, and a list of libraries to use.

4.11.1 See also

Reference
Linker Reference:
• --arm_linux on page 2-13
• --scanlib, --no_scanlib on page 2-141
• --userlibpath=pathlist on page 2-179.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-12
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.12 Common problems with running an application
The following table lists some common problems with running an application.

4.12.1 See also

Reference
Linker Reference:
• --dynamic_linker=name on page 2-51
• --runpath=pathlist on page 2-138.

Other information
• GNU ARM toolchain, http://www.gnuarm.com.
.

Table 4-1 Common problems with running applications

Problem Solution

Cannot find the application • Check that the application is on the path, or you are running it with ./program
in the current directory.

• The dynamic loader may not be the same as specified at link time. In this case,
use /path-to-linker/dynamic-loader program-path/program. For example:
/libeabi/ld-linux.so.3 /opt/bin/eabi/hello

Note
 You can specify an alternative dynamic loader for an application by passing,

for example, --dynamiclinker=/libeabi/ld-linux.so.3

Permission denied Check that you have set the executable flag for the program (use chmod +x program).

“GLIBC_2.4 not found” error
“unable to find library XXX.so.X”

This is the dynamic linker reporting that it cannot use the libraries found on its
default path. You can use the LD_LIBRARY_PATH environment variable to access the
correct libraries. For example:
LD_LIBRARY_PATH=/libeabi ./helloworld

Alternatively, you can use the --rpath linker option.

“Illegal instruction” error before
main()

This indicates that the image has been built for the incorrect architecture (for
example, ARMv6 code running on an ARMv5TE core), or that the kernel has been
built without NPTL support.
Check that you have built the image for the correct ARM architecture and check that
you are using either a 2.6.12 (or later) Linux kernel or one with the appropriate
patches applied as part of your distribution.
Also ensure that the system call interface matches between the Linux kernel and the
GNU C library you are using.

Note
 The binary libraries from recent CodeSourcery releases are built for the new system
call interface introduced with EABI support in kernel version 2.6.16.

When at main() this is likely to be an actual undefined instruction in the application.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-13
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.13 What to do about segmentation faults
There are many possible causes of segmentation faults. They might be caused by problems with
your application. You must also ensure that:

• When you use a manual link step, pass the --no_scanlib or --arm_linux switches to the
linker. This ensures that the linker does not search the ARM libraries and accidentally link
in semihosted I/O functions. If you are explicitly linking with any portions of the ARM
libraries, ensure that any semihosted I/O and signal handling functions are retargeted
appropriately.

• When you create a dynamic library, compile and link as position-independent code (use
--apcs/fpic for the compiler and --fpic for the linker).

• When you create an application using a manual link, use either the two linker switches
--no_startup and --entry _start, or the linker switch --arm_linux.

• When you use C++ exceptions, link with libraries from an appropriate CodeSourcery
release (2007-q1-10 or later) and use these libraries on your target filesystem.

4.13.1 See also

Concepts
• Can I use the ARM libraries in a Linux application? on page 4-10.

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11.
Linker Reference:
• --arm_linux on page 2-13
• --entry=location on page 2-58
• --fpic on page 2-74
• --scanlib, --no_scanlib on page 2-141
• --startup=symbol, --no_startup on page 2-155.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-14
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.14 Image sizes and stripping debug data
Both the GNU and ARM toolchains add a significant amount of information to an image that is
generally only of use for debugging.

For production systems, you can strip the debugging data from your applications and shared
libraries. With the ARM Compiler toolchain, use the --no_debug switch at the link stage or run
fromelf on the linked image. In addition, you can use fromelf to remove the .comment sections
and symbols from the file. For example:

fromelf --strip debug,comment,symbols --elf -output stripped.axf image.axf

In addition, the data sizes in images built with the ARM Compiler toolchain can be slightly
larger than those in GNU images. This is typically because some ZI data (BSS) is moved into
the RW data area for performance reasons on bare-metal systems. You can move this data to ZI
sections using the compiler switch --bss_threshold=0. This is enabled by default when using
GCC emulation.

4.14.1 See also

Reference
Using the fromelf Image Converter:
• --elf on page 4-29
• --output=destination on page 4-57
• --strip=option[,option,...] on page 4-70.
Linker Reference:
• --debug, --no_debug on page 2-41.
Compiler Reference:
• --bss_threshold=num on page 3-30.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-15
ID071611 Non-Confidential

Frequently-asked questions and troubleshooting
4.15 Undefined symbol errors for pthread symbols
You get undefined symbol errors for pthread symbols despite using --arm_linux_paths and
--arm_linux_config_file when building ARM Linux applications using normal compiler
options:

• If you use GCC translation, the compiler supports the -pthread and -lpthread options. The
compiler adds the correct combination of libraries to the linker command line. For
example:
armcc --translate_gcc --arm_linux_config_file=myconfigfile -o test test.c -pthread

This does a compile and link of test.c, linking with the pthread library.

• If you use --arm_linux_paths rather than GCC command-line translation, you must
manually add the pthread libraries to your command-line as appropriate. The pthread
libraries are intended to appear first on the command-line before any other libraries, so
that they can override other C library symbols. In particular, if you have a legacy build
that specifies the libc libraries explicitly, the pthread variants of those functions are not
found first by the linker. To link with the pthread libraries when using --arm_linux_paths,
specify the libraries explicitly on the linker command line. For example:
armcc --arm_linux -o test test.c -Llibpthread.so.0 -Llibpthread_nonshared.a.

4.15.1 See also

Reference
Compiler Reference:
• --arm_linux on page 3-16
• --arm_linux_config_file=path on page 3-18
• --arm_linux_paths on page 3-21
• -Lopt on page 3-126
• -o filename on page 3-153
• --translate_gcc on page 3-198.
ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. 4-16
ID071611 Non-Confidential

ARM DUI 0483E Copyright © 2010-2011 ARM. All rights reserved. A-1
ID071611 Non-Confidential

Appendix A
Revisions for Building Linux Applications with the
ARM Compiler toolchain and GNU Libraries

The following technical changes have been made to Building Linux Applications with the ARM
Compiler toolchain and GNU Libraries:

Table A-1 Differences between Issue B and Issue C

Change Topics affected

Removed the limitation You must take care when
using alloca().

Limitations when building Linux applications on
page 2-4

	ARM Compiler toolchain Building Linux Applications with the ARM Compiler toolchain and GNU Libraries
	Contents
	Conventions and feedback
	About building Linux applications with the ARM Compiler toolchain and GNU libraries
	2.1 About the ARM Compiler toolchain and GNU libraries
	2.1.1 See also

	2.2 Expected use cases for developing Linux applications
	2.2.1 See also

	2.3 Limitations when building Linux applications
	2.3.1 Unsupported GCC features
	2.3.2 See also

	2.4 Target processor requirements for building Linux applications
	2.4.1 See also

	2.5 Build requirements for Linux applications
	2.5.1 See also

	2.6 About the ARM Application Binary Interface
	2.6.1 See also

	2.7 Interactions between mixed-ABI components
	2.7.1 See also

	Using the ARM Compiler toolchain to build a Linux application or library
	3.1 About using the ARM Compiler toolchain to build a Linux application or library
	3.1.1 See also

	3.2 Configuration of the ARM Compiler toolchain for Linux applications
	3.2.1 See also

	3.3 Configuring the ARM Compiler toolchain automatically
	3.3.1 See also

	3.4 Configuring the ARM Compiler toolchain manually
	3.4.1 See also

	3.5 Building for ARM Linux using normal ARM Compiler toolchain options
	3.5.1 See also

	3.6 Using the ARM Compiler toolchain as a drop-in replacement for GCC and GNU Id
	3.6.1 See also

	3.7 GCC emulation mode in armcc
	3.7.1 See also

	3.8 Passing normal armcc options in GNU emulation mode
	3.8.1 See also

	3.9 Differences in behavior and limitations between GCC and armcc emulation mode
	3.9.1 See also

	3.10 Migrating a build from an earlier version of the ARM tools
	3.10.1 See also

	3.11 Minimal migration path without using a configuration file
	3.11.1 See also

	3.12 Migration using a configuration
	3.12.1 See also

	3.13 Typical assembler command-line options
	3.13.1 See also

	3.14 Additional headers from the ARM Compiler toolchain
	3.14.1 See also

	3.15 Building a shared library with the ARM Compiler toolchain
	3.15.1 See also

	3.16 Using shared libraries in your application
	3.16.1 See also

	Frequently-asked questions and troubleshooting
	4.1 Where can I find more information on building Linux applications?
	4.1.1 See also

	4.2 How do I build an EABI-compliant Linux kernel?
	4.2.1 See also

	4.3 Can I build the Linux kernel using the ARM Compiler toolchain?
	4.3.1 See also

	4.4 Which kernel version must I use?
	4.4.1 See also

	4.5 Can I use EABI-compliant and non EABI-compliant applications together?
	4.5.1 See also

	4.6 GNU tools report EABI version differences between source object and target
	4.6.1 See also

	4.7 GNU linker or armlink report conflicts between wchar_t types
	4.7.1 See also

	4.8 Using hardware VFP instructions
	4.8.1 See also

	4.9 Can I use the ARM libraries in a Linux application?
	4.9.1 See also

	4.10 How can I see what libraries are being used?
	4.10.1 See also

	4.11 How can I have greater control over which libraries are linked into my application?
	4.11.1 See also

	4.12 Common problems with running an application
	4.12.1 See also

	4.13 What to do about segmentation faults
	4.13.1 See also

	4.14 Image sizes and stripping debug data
	4.14.1 See also

	4.15 Undefined symbol errors for pthread symbols
	4.15.1 See also

	Revisions for Building Linux Applications with the ARM Compiler toolchain and GNU Libraries

