ARM Compiler

Version 5.04

fromelf User Guide

ARM

Copyright © 2010-2013 ARM. Al rights reserved.
ARM DUI0477J

ARM° Compiler

fromelf User Guide

Copyright © 2010-2013 ARM. All rights reserved.

Release Information

ARM" Compiler

Document History

Issue Date

Confidentiality

Change

28 May 2010

Non-Confidential

ARM Compiler v4.1 Release

30 September 2010

Non-Confidential

Update 1 for ARM Compiler v4.1

28 January 2011

Non-Confidential

Update 2 for ARM Compiler v4.1 Patch 3

30 April 2011

Non-Confidential

ARM Compiler v5.0 Release

29 July 2011

Non-Confidential

Update 1 for ARM Compiler v5.0

30 September 2011

Non-Confidential

ARM Compiler v5.01 Release

29 February 2012

Non-Confidential

Document update 1 for ARM Compiler v5.01 Release

T o™l o g Q|w| >

27 July 2012

Non-Confidential

ARM Compiler v5.02 Release

—

31 January 2013

Non-Confidential

ARM Compiler v5.03 Release

J 27 November 2013

Non-Confidential

ARM Compiler v5.04 Release

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM” in the EU and other countries,

except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the

trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted

or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the

product and its use contained in this document are given by ARM in good faith. However, all warranties implied or

expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or

damage arising from the use of any information in this document, or any error or omission in such information, or any

incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license

restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this

document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com

Contents

ARM" Compiler fromelf User Guide

Preface
ABOUL TNIS DOOK ..o ettt 8
Chapter 1 Overview of the fromelf Image Converter
1.1 About the fromelf image CONVEITErcceeeeiieieieee e 1-11
1.2 fromelf @XeCUtion MOAESeeiiieiee e e 1-12
1.3 Getting help on the fromelf COmMmMandccccooiiviviiiicr e 1-13
1.4 fromelf command-liNe SYNtAXccceeeeeueeieeeiieieiee e 1-14
Chapter 2 Using fromelf
2.1 General considerations when using fromelfcccooiioioiiiiiiieiiee e 2-16
2.2 Examples of processing ELF files in an archivecccccccces cvveeeiceieeeeen. 2-17
2.3 Options to protect code in image files with fromelfcccccccc. coevveeevciieeeeen, 2-18
2.4 Options to protect code in object files with fromelfccccvvvevveveeeveeririaananan.. 2-19
2.5 Option to print specific details Of ELF fileSuuuuueeereeeeeeeeeeeeeeeeeeeecsisareaes 2-21
2.6 Using fromelf to find where a symbol is placed in an executable ELF image 2-22
Chapter 3 fromelf Command-line Options
3.1 --base [[object_file::Jload_region ID=]NUMcc..ccccveeeeeeeicr s 3-26
3.2 SmDUI e et 3-27
3.3 ==DINCOMBINEQoooiiieeieeeeee et e 3-28
3.4 --bincombined_basSe=addresSscccuuuiiiiiieieieee e 3-29
3.5 --bincombined_padding=SiZE,MUIMuuuumuemeeereieseaeeesciiiieeeeeaeaeaaaaaaaaaaaeanans 3-30
3.6 o Lo R 3-31
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3

Non-Confidential

3.7 ==CAACOMDBINEQ ..o et 3-33
3.8 --COMPAare=0PtON[,OPLION, ...J ...ccoiriiiiieeee e e 3-34
3.9 ==CONTINMUE_ON_BITOL ...ttt et 3-35
3.10 SmCPUTNISE oot ettt et e e e e e e e e e e e e e 3-36
3.11 o oL 0 T 41 U S 3-37
312 —=dALASYMDOIS ... s 3-40
3183 w2 AEDBUGONIY ...t e 3-41
3.14 --decode_build_attribULEsSoeeeweieieieieiiieeeeeeeeeies ettt 3-42
3.15 2= QOVICETIIST ...t e 3-43
3.16 “=QOVICETIIAIME ...t et 3-44
3.17 —-diag_error=tag[tag, ...J ..o 3-45
3.18 -—diag_remark=tag,tag, ...]ooouoo oot 3-46
3.19 --diag_Style={armide|GNU}cccee oo e 3-47
3.20 --diag_SuppresS=taglitag, ...] ..cccco e e 3-48
3.21 -—diag_warning=tagl,tag, ...J . oo e 3-49
3.22 “=QISASSEIMIDIE ... 3-50
3.23 ==dUMP_BUIIA_GEIDULES ..ot ettt e e e e e nanenees 3-51
B.24 el e 3-52
3.25 —-emit=0PtON[,OPLION, ...] c.eeeeiiieee e 3-53
3.26 Y L= 1o L= T =) PR 3-55
3.27 -—extract_build_attribULESueeeeeeeeeiiieieiee e et 3-56
3.28 B[] o [0) 1 £S= 1 £ RSP 3-57
B.29 o fDUTHIST ..o s 3-59
3.30 “FPUZNIIME oot e e e e 3-60
3.31 --globalize=0ptioN[,0PtION, ...J «.cooeeeeeeeeeeeee e e 3-62
R A 1 1= o RS 3-63
3.33 —-hide=0ptioN[,0PtiON, ...] ..ccoeeeieeeee e 3-64
3.34 --hide_and_localize=0ption[,0PtioN, ...]coeeeeeeeeee e 3-65
B 1 T A S 3-66
3.36 ==i32COMBINEA ... e 3-67
3.37 --ignore_section=option[,0PtiON, ...Jcooueiiriieiiieeie et e 3-68
3.38 --ignore_symbol=0ptON[,0PON, ...] .cccccceeeeeeeee e e 3-69
3.39 I o) = o= X RPN 3-70
3.40 —-iNfOLOPIC[EOPIC, . ..] +eeeeeieeeeeeee et e 3-71
3.41 JAPULE Tl ..ottt 3-72
3.42 ==INEEIEAVEZOPLION ... et 3-74
3.43 SlICTIIY et et e e 3-75
3.44 ==lINKVIEW, =-N0_lINKVIEW ... e 3-76
3.45 --10calize=0ptioN[;0PLiON, ...] ...cccueeeieeeeee e e 3-77
Bi46 smMIB2 e ettt 3-78
3.47 “sM32COMDBINGA ... et 3-79
3.48 —-ONIY=SECHON_NAIME ...t e 3-80
3.49 —-OUIPUISAESTINALION ... e 3-81
3.50 17z Lo} VARSI 3-82
3.51 e LU 11 3-83
3.52 --relax_section=0ption[,0PtioN, ...]cccccuuiiiiiciiiiiiieeeiies e 3-84
3.53 --relax_symbol=0ption[,0ption, ...]cccccuuiiiiiie i e 3-85
3.54 -=reName=0PtiION[,0PLION, ...Joveereeeieeeeeeee et ettt 3-86
3.55 =) (=0 Y= (= Yo e) 011 0] ¢ 3-87
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 4

Non-Confidential

3.56 ==SNOW=0PION[,0PION, ...] ceeeeeeeeeeeeeeeeeeee ettt ettt et aaaaaaeaeaaaeaeas 3-88

3.57 --show_and_globalize=option[,0ption, ...Jccoceeucuiiriiiiiiiieeee e 3-89
3.58 w-SROW_CMAIING ...t e 3-90
3.59 ==SOUICE_AIrECIONY=PALR ..ottt ettt e e e e e e e e e e e e e e e 3-91
3.60 (] loT o) o) a] e o] 1 (o) s N N 3-92
3.61 --symbolversions, --N0_SYMMbOIVEISIONScccccuimvceieieiieiecii e 3-94
BiB2 XL ettt 3-95
3.63 ==VEISION_NUIMIDEN ...ttt ettt e e e aaaaaaaens 3-97
B Y) G 3-98
.65 tVIBTHIE ..o e 3-99
BiB6 S tVSIT e ettt ettt 3-100
BiB7 W e ettt 3-101
3.68 “WIAERXDANKS ... e 3-102
Chapter 4 Via File Syntax
4.1 OVEIVIEW OF Vi@ FIlES ...t e 4-105
4.2 Vi@ file SYNEAX FUIESooeeeeeeee et et 4-106
Appendix A fromelf Document Revisions
A1 Revisions for fromelf Image Converter User Guidec...ccceeeecveenne.. Appx-A-109
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 5

Non-Confidential

List of Tables
ARM’ Compiler fromelf User Guide

Table 2-1 Effect of fromelf --privacy and --strip options on images filesccccooovvoeiieiiiiieeee 2-18
Table 2-2 Effect of fromelf --privacy and --strip options on object filesccccoemiieiveiieiiiiiiieeee 2-19
Table 3-1 EXamPIes Of USING ~=DASEccueeeeiiieeeeee ettt 3-26
Table 3-2 Supported ARM QIrCRItECIUIESc..eveeeeeeeeeeeee ettt e e e e 3-37
Table A-1 Differences between issue H and iSSUE Jooeueeveiiiiiiiiieieieieeeeeeeeeeeeciaanaaan Appx-A-109
Table A-2 Differences between issue G and iSSUE Hooeeeeveieiiiiiiiiieiieieeeeeeeeeeaeae Appx-A-109
Table A-3 Differences between issue F and iSSUE Gcccccuiieceeeiiiiieiiieeee e Appx-A-109
Table A-4 Differences between issue D and iSSUE Fcccoveeeeeeeicieiieeieeiiiee e Appx-A-109
Table A-5 Differences between Issue C and ISSUE Dccc.eeeeeeeverereeiiiiiiiiiiaeaeeeeeee e Appx-A-110
Table A-6 Differences between Issue A and ISSUE Bc.c.c.ccueeeeeeveeeeeeeiiiiiiiieeeeeeeeeeeeeeee, Appx-A-110
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 6

Non-Confidential

Preface

This preface introduces the ARM® Compiler fromelf User Guide.

It contains the following:

* About this book on page 8.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

About this book

Using this book

Glossary

Preface
About this book

ARM Compiler fromelf User Guide. This manual provides information on how to use the fromelf
utility. Available as a PDF.

This book is organized into the following chapters:

Chapter 1 Overview of the fromelf Image Converter

Gives an overview of the fromelf image converter provided with ARM"® Compiler.
Chapter 2 Using fromelf

Describes how to use the fromelf image converter provided with ARM Compiler.
Chapter 3 fromelf Command-line Options

Describes the command-line options of the fromelf image converter provided with ARM
Compiler.

Chapter 4 Via File Syntax
Describes the syntax of via files accepted by the fromelf.
Appendix A fromelf Document Revisions

Describes the technical changes that have been made to the fromelf Image Converter User Guide.

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM
meaning differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific
value.

monospace bold
Denotes language keywords when used outside example code.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 8
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback

Other information

Preface
About this book

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code
fragments. For example:

MRC p15, @ <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, that are defined
in the ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.
* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

» The title.

* The number ARM DUI0477].

* The page number(s) to which your comments refer.
* A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

* ARM Information Center.

* ARM Technical Support Knowledge Articles.
o Support and Maintenance.

* ARM Glossary.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 9
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the fromelf Image Converter

Gives an overview of the fromelf image converter provided with ARM"® Compiler.

It contains the following:

o 1.1 About the fromelf image converter on page 1-11.

» 1.2 fromelf execution modes on page 1-12.

* 1.3 Getting help on the fromelf command on page 1-13.
* 1.4 fromelf command-line syntax on page 1-14.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

1 Overview of the fromelf Image Converter
1.1 About the fromelf image converter

1.1 About the fromelf image converter

The fromelf image conversion utility allows you to modify ELF image and object files, and to
display information on those files.

fromelf allows you to:

3

Process ARM ELF object and image files produced by the compiler, assembler, and linker.

Process all ELF files in an archive produced by armar, and output the processed files into
another archive if required.

Convert ELF images into other formats that can be used by ROM tools or directly loaded into
memory. The formats available are:

— Plain binary.

— Motorola 32-bit S-record.

— Intel Hex-32.

— Byte oriented (Verilog Memory Model) hexadecimal.

— ELF. You can resave as ELF, for example, to remove debug information from an ELF
image.

Protect Intellectual Property (IP) in images and objects that are delivered to third parties.

Display information about the input file, for example, disassembly output or symbol listings, to
either stdout or a text file.

Note ————

If your image is produced without debug information, fromelf cannot:

Translate the image into other file formats.
Produce a meaningful disassembly listing.

Related concepts
2.3 Options to protect code in image files with fromelf on page 2-18.

2.4 Options to protect code in object files with fromelf on page 2-19.

Related references
1.2 fromelf execution modes on page 1-12.

1.4 fromelf command-line syntax on page 1-14.

3 fromelf Command-line Options on page 3-24.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 1-11
Non-Confidential

1 Overview of the fromelf Image Converter
1.2 fromelf execution modes

1.2 fromelf execution modes
You can run fromelf in various execution modes.
The execution modes are:

* ELF mode (--elf), to resave a file as ELF.
» Text mode (--text, and others), to output information about an object or image file.
» Format conversion mode (--bin, --m32, --132, --vhx).

Related references
3.2 --bin on page 3-27.
3.24 --elf on page 3-52.
3.35 --i32 on page 3-66.
3.46 --m32 on page 3-78.
3.62 --text on page 3-95.
3.64 --vhx on page 3-98.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 1-12
Non-Confidential

1 Overview of the fromelf Image Converter
1.3 Getting help on the fromelf command

1.3 Getting help on the fromelf command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or files.

Examples

To display the help information, enter:

fromelf --help

Related references
1.4 fromelf command-line syntax on page 1-14.
3.32 --help on page 3-63.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 1-13
Non-Confidential

1 Overview of the fromelf Image Converter
1.4 fromelf command-line syntax

1.4 fromelf command-line syntax
You can specify an ELF file or library of ELF files on the fromelf command-line.

Syntax
fromelf options input_file

options
fromelf command-line options.

input_file
The ELF file or library file to be processed. When some options are used, multiple input
files can be specified.

Related references
3 fromelf Command-line Options on page 3-24.
3.41 input_file on page 3-72.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 1-14
Non-Confidential

Chapter 2

Using fromelf

Describes how to use the fromelf image converter provided with ARM Compiler.

It contains the following:

2.1 General considerations when using fromelf on page 2-16.

2.2 Examples of processing ELF files in an archive on page 2-17.

2.3 Options to protect code in image files with fromelf on page 2-18.

2.4 Options to protect code in object files with fromelf on page 2-19.

2.5 Option to print specific details of ELF files on page 2-21.

2.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-
22.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

2 Using fromelf
2.1 General considerations when using fromelf

21 General considerations when using fromelf
There are some changes that you cannot make to an image with fromelf.
When using fromelf you cannot:

» Change the image structure or addresses, other than altering the base address of Motorola S-
record or Intel Hex output with the - -base option.

* Change a scatter-loaded ELF image into a non scatter-loaded image in another format. Any
structural or addressing information must be provided to the linker at link time.

Related references
3.1 --base [[object file::]load region ID=]num on page 3-26.
3.41 input_file on page 3-72.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-16
Non-Confidential

2 Using fromelf
2.2 Examples of processing ELF files in an archive

2.2 Examples of processing ELF files in an archive

Examples of how you can process all ELF files in an archive, or a subset of those files. The
processed files together with any unprocessed files are output to another archive.

Examples

The following examples show how to process ELF files in an archive, test.a, that contains:

bmw. o

bmwl.o

call c_code.o
newtst.o
shapes.o
strmtst.o

Example of processing all files in the archive
This example removes all debug, comments, notes and symbols from all the files in the
archive:

fromelf --elf --strip=all test.a -o strip_all/

This creates an output archive with the name test. a in the subdirectory strip_all

Example of processing a subset of files in the archive
To remove all debug, comments, notes and symbols from only the shapes. o and the
strmtst.o files in the archive, enter:

fromelf --elf --strip=all test.a(s*.o) -o subset/

This creates an output archive with the name test. a in the subdirectory subset. The
archive contains the processed files together with the remaining files that are
unprocessed.

To process the bmw. o, bmwl. o, and hewtst. o files in the archive, enter:

fromelf --elf --strip=all test.a(??w*) -o subset/

Example of displaying a disassembled version of files in an archive
To display the disassembled version of call_c_code.o in the archive, enter:

fromelf --disassemble test.a(c*)

Related references
3.22 --disassemble on page 3-50.
3.24 --elf on page 3-52.
3.41 input_file on page 3-72.
3.49 --output=destination on page 3-81.
3.60 --strip=option[,option, ...] on page 3-92.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-17
Non-Confidential

2.3

2 Using fromelf
2.3 Options to protect code in image files with fromelf

Options to protect code in image files with fromelf
If you are delivering images to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the - -strip option and the --privacy
option. These options remove or obscure the symbol names in the image. The option you choose
depends on the how much information you want to remove. The effect of these options is different
for image files.

Restrictions

You must use - -elf with these options. Because you have to use - -elf, you must also use - -
output.

Effect of the options for protecting code in image files

For image files:

Table 2-1 Effect of fromelf --privacy and --strip options on images files

Option

Local symbols Section names Mapping symbols Build attributes

fromelf --elf Removes the whole symbol table.
--privacy

Removes the . comment section name. This is marked as [Anonymous Section] in
the fromelf --text output.

Gives section names a default value. For example, changes code section names to
".text'.

fromelf --elf Removes whole symbol table.
--strip=symbols

Section names remain the same.

fromelf --elf Removed Present Removed Present
--strip=1localsymbols

Examples

To produce a new ELF executable image with the complete symbol table removed and various
section names changed, enter:

fromelf --elf --privacy --output=outfile.axf infile.axf

Related concepts
2.4 Options to protect code in object files with fromelf on page 2-19.

Related references
1.4 fromelf command-line syntax on page 1-14.
3.24 --elf on page 3-52.
3.49 --output=destination on page 3-81.
3.50 --privacy on page 3-82.
3.60 --strip=option[,option, ...] on page 3-92.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-18

Non-Confidential

2 Using fromelf
2.4 Options to protect code in object files with fromelf

24 Options to protect code in object files with fromelf
If you are delivering objects to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the - -strip option and the --privacy
option. These options remove or obscure the symbol names in the object. The option you choose
depends on the how much information you want to remove. The effect of these options is different
for object files.

Restrictions

You must use --elf with these options. Because you have to use - -elf, you must also use --
output.

Effect of the options for protecting code in object files

For object files:

Table 2-2 Effect of fromelf --privacy and --strip options on object files

Option Local symbols Section names Mapping Build
symbols attributes
fromelf --elf Removes those local symbols that canbe ~ Gives section ~ Present Present
--privacy removed without loss of functionality. names a default
value. For

Symbols that cannot be removed, such as the
targets for relocations, are kept. For these
symbols, the names are removed. These are
marked as [Anonymous Symbol] in the

example,
changes code
section names

to '.text’
fromelf --text output. ©
fr‘omei!.-F --elf Removes those local symbols that can be Section names ~ Present Present
--strip=symbols removed without loss of functionality. remain the

same
Symbols that cannot be removed, such as the

targets for relocations, are kept. For these
symbols, the names are removed. These are
marked as [Anonymous Symbol] in the
fromelf --text output.

fromelf --elf

. Removes those local symbols that can be Section names ~ Present Present
--strip=1localsymbols

removed without loss of functionality. remain the

same
Symbols that cannot be removed, such as the

targets for relocations, are kept. For these
symbols, the names are removed. These are
marked as [Anonymous Symbol] in the
fromelf --text output.

Examples

To produce a new ELF object with the complete symbol table removed and various section names
changed, enter:

fromelf --elf --privacy --output=outfile.o infile.o

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-19
Non-Confidential

2 Using fromelf
2.4 Options to protect code in object files with fromelf

Related concepts
2.3 Options to protect code in image files with fromelf on page 2-18.

Related references
1.4 fromelf command-line syntax on page 1-14.
3.24 --elf on page 3-52.
3.49 --output=destination on page 3-81.
3.50 --privacy on page 3-82.
3.60 --strip=option[,option, ...] on page 3-92.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-20
Non-Confidential

2 Using fromelf
2.5 Option to print specific details of ELF files

25 Option to print specific details of ELF files

You can specify the elements of an ELF object that you want to appear in the textual output with
the - -emit option.

The output includes ELF header and section information. You can specify these elements as a
comma separated list.

Note

You can specify some of the --emit options using the - -text option.

Examples

To print the contents of the data sections of an ELF file, infile.axf, enter:

fromelf --emit=data infile.axf

To print relocation information and the dynamic section contents for the ELF file infile2.axf,
enter:

fromelf --emit=relocation_tables,dynamic_segment infile2.axf

Related references
1.4 fromelf command-line syntax on page 1-14.
3.25 --emit=option[,option,...] on page 3-53.
3.62 --text on page 3-935.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-21
Non-Confidential

2 Using fromelf
2.6 Using fromelf to find where a symbol is placed in an executable ELF image

2.6 Using fromelf to find where a symbol is placed in an executable ELF image
You can find where a symbol is placed in an executable ELF image.

To find where a symbol is placed in an ELF image file, use the --text -s -v options to view
the symbol table and detailed information on each segment and section header, for example:

The symbol table identifies the section where the symbol is placed.

Examples
Do the following:
1. Create the file s. c containing the following source code:
long long altstack[10] _ attribute__ ((section ("STACK"), zero_init));
int main()

return sizeof(altstack);

2. Compile the source:

-C s.Cc -0 s.0
3. Link the object s. 0 and keep the STACK symbol:

armlink --keep=s.0(STACK) s.o --output=s.axf

4. Run the fromelf command to display the symbol table and detailed information on each
segment and section header:

fromelf --text -s -v s.o
5. Locate the STACK and altstack symbols in the fromelf output, for example:

** Section #9

Name : .symtab

Type : SHT_SYMTAB (0x00000002)

Flags : None (©x00000000)

Addr : 0Xx00000000

File Offset : 2792 (Oxae8)

Size : 2896 bytes (0xb50)

Link : Section 10 (.strtab)

Info : Last local symbol no = 115

Alignment : 4

Entry Size : 16 Symbol table .symtab (180 symbols, 115 local)
Symbol Name Value Bind Sec Type Vis Size
16 STACK 0x00008228 Lc 2 Sect De 0x50

179 altstack 0x00008228 Gb 2 Data Hi ©x50

The Sec column shows the section where the stack is placed. In this example, section 2.
6. Locate the section identified for the symbol in the fromelf output, for example:

** Section #2

Name ¢ ER_ZI
Type : SHT_NOBITS (©x00000008)
Flags : SHF_ALLOC + SHF_WRITE (©x00000003)
Addr : 0x000081c8
File Offset : 508 (@x1fc)
Size : 176 bytes (0xbo)
Link : SHN_UNDEF
Info : 0
Alignment : 8
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-22

Non-Confidential

2 Using fromelf
2.6 Using fromelf to find where a symbol is placed in an executable ELF image

Entry Size : ©

This shows that the symbols are placed in a ZI execution region.

Related references
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 2-23
Non-Confidential

Chapter 3

fromelf Command-line Options

Describes the command-line options of the fromelf image converter provided with ARM

Compiler.

It contains the following:

3.1 --base [[object file::]load region ID=]num on page 3-26.

3.2 --bin on page 3-27.

3.3 --bincombined on page 3-28.

3.4 --bincombined base=address on page 3-29.
3.5 --bincombined_padding=size,num on page 3-30.
3.6 --cad on page 3-31.

3.7 --cadcombined on page 3-33.

3.8 --compare=option[,option,...] on page 3-34.
3.9 --continue_on_error on page 3-35.

3.10 --cpu=list on page 3-36.

3.11 --cpu=name on page 3-37.

3.12 --datasymbols on page 3-40.

3.13 --debugonly on page 3-41.

3.14 --decode_build_attributes on page 3-42.
3.15 --device=list on page 3-43.

3.16 --device=name on page 3-44.

3.17 --diag_error=tag/,tag, ...] on page 3-45.
3.18 --diag remark=tag/,tag,...] on page 3-46.
3.19 —-diag_style={arm|ide|gnu} on page 3-47.
3.20 --diag_suppress=tag/,tag, ...] on page 3-48.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

3-24

3 fromelf Command-line Options

3.21 --diag_warning=tag/,tag, ...] on page 3-49.

3.22 --disassemble on page 3-50.

3.23 --dump_build_attributes on page 3-51.

3.24 --elf on page 3-52.

3.25 --emit=option[,option, ...] on page 3-53.

3.26 --expandarrays on page 3-55.

3.27 --extract_build_attributes on page 3-56.

3.28 --fieldoffsets on page 3-57.

3.29 —fpu=list on page 3-59.

3.30 --fpu=name on page 3-60.

3.31 --globalize=option[,option, ...] on page 3-62.

3.32 --help on page 3-63.

3.33 --hide=option[,option, ...] on page 3-64.

3.34 --hide_and_localize=option[,option, ...] on page 3-65.
3.35 --i32 on page 3-66.

3.36 --i32combined on page 3-67.

3.37 --ignore_section=option[,option,...] on page 3-68.
3.38 --ignore_symbol=option[,option,...] on page 3-69.
3.39 --in_place on page 3-70.

3.40 --info=topic/,topic, ...] on page 3-71.

3.41 input _file on page 3-72.

3.42 —-interleave=option on page 3-74.

3.43 --licretry on page 3-75.

3.44 --linkview, --no_linkview on page 3-76.

3.45 --localize=option[,option, ...] on page 3-77.

3.46 --m32 on page 3-78.

3.47 --m32combined on page 3-79.

3.48 --only=section_name on page 3-80.

3.49 --output=destination on page 3-81.

3.50 --privacy on page 3-82.

3.51 --qualify on page 3-83.

3.52 --relax_section=option[,option,...] on page 3-84.
3.53 --relax_symbol=option[,option,...] on page 3-85.
3.54 --rename=option[,option,...] on page 3-86.

3.55 --select=select_options on page 3-87.

3.56 --show=option[,option,...] on page 3-88.

3.57 --show_and_globalize=option[,option,...] on page 3-89.
3.58 --show_cmdline on page 3-90.

3.59 --source_directory=path on page 3-91.

3.60 --strip=option/[,option, ...] on page 3-92.

3.61 --symbolversions, --no_symbolversions on page 3-94.
3.62 --text on page 3-95.

3.63 --version_number on page 3-97.

3.64 --vhx on page 3-98.

3.65 --via=file on page 3-99.

3.66 --vsn on page 3-100.

3.67 -w on page 3-101.

3.68 --widthxbanks on page 3-102.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-25
Non-Confidential

3 fromelf Command-line Options
3.1 --base [[object _file::Jload_region_ID=]num

3.1 --base [[object_file::]load_region_ID=]num
Enables you to alter the base address specified for one or more load regions in Motorola S-record
and Intel Hex file formats.
Syntax
--base [[object file::]load _region_ID=]num
Where:

object_file
An optional ELF input file.

Load_region_ID
An optional load region. This can either be a symbolic name of an execution region
belonging to a load region or a zero-based load region number, for example #0 if
referring to the first region.

num
Either a decimal or hexadecimal value.

You can:

* Use wildcard characters ? and * for symbolic names in object_file and Load region_ID
arguments.
» Specify multiple values in one option followed by a comma-separated list of arguments.

All addresses encoded in the output file start at the base address num. If you do not specify a - -
base option, the base address is taken from the load region address.

Restrictions

You must use one of the output formats --i32, --i32combined, --m32, or --m32combined
with this option. Therefore, you cannot use this option with object files.

Examples

The following table shows examples:

Table 3-1 Examples of using --base

--base @ decimal value

--base Ox8000 hexadecimal value

--base #0=0 base address for the first load region
--base f00.0::%*=0 base address for all load regions in f00.0

--base #0=0,#1=0x8000 basc address for the first and second load regions

Related concepts

2.1 General considerations when using fromelf on page 2-16.

Related references
3.35 --i32 on page 3-66.
3.36 —-i32combined on page 3-67.
3.46 --m32 on page 3-78.
3.47 --m32combined on page 3-79.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-26
Non-Confidential

3 fromelf Command-line Options
3.2 --bin

3.2 --bin

Produces plain binary output, one file for each load region. You can split the output from this
option into multiple files with the - -widthxbanks option.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use - -output with this option.
Considerations when using --bin

If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for each
load region in the input image. fromelf places the output files in the destination directory.

Note

For multiple load regions, the name of the first non-empty execution region in the corresponding
load region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file.
For example a load region containing only execution regions with ZI data in them does not result
in a output file.

Examples

To convert an ELF file to a plain binary file, for example outfile.bin, enter:

fromelf --bin --output=outfile.bin infile.axf

Related references
3.49 --output=destination on page 3-81.
3.68 --widthxbanks on page 3-102.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-27
Non-Confidential

3 fromelf Command-line Options
3.3 --bincombined

3.3 --bincombined

Produces plain binary output. It generates one output file for an image containing multiple load
regions.

Usage

By default, the start address of the first load region in memory is used as the base address.
fromelf inserts padding between load regions as required to ensure that they are at the correct
relative offset from each other. Separating the load regions in this way means that the output file
can be loaded into memory and correctly aligned starting at the base address.

Use this option with --bincombined_base and --bincombined_padding to change the
default values for the base address and padding.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use --output with this option.
Considerations when using --bincombined
Use this option with --bincombined_base to change the default value for the base address.

The default padding value is @xFF. Use this option with --bincombined_padding to change
the default padding value.

If you use a scatter file that defines two load regions with a large address space between them, the
resulting binary can be very large because it contains mostly padding. For example, if you have a
load region of size @x100 bytes at address @x00000000 and another load region at address
0x30000000, the amount of padding is @x2FFFFF0O0 bytes.

ARM recommends that you use a different method of placing widely spaced load regions, such as
--bin, and make your own arrangements to load the multiple output files at the correct addresses.

Examples

To produce a binary file that can be loaded at start address ©x1000, enter:

fromelf --bincombined --bincombined_base=0x1000 --output=out.bin in.axf

To produce plain binary output and fill the space between load regions with copies of the 32-bit
word 0x12345678, enter:

fromelf --bincombined --bincombined_padding=4,0x12345678 --output=out.bin in.axf

Related references
3.4 --bincombined base=address on page 3-29.
3.5 --bincombined_padding=size,num on page 3-30.
3.49 —-output=destination on page 3-81.
3.68 --widthxbanks on page 3-102.

Related information

Input sections, output sections, regions, and Program Segments.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-28
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065900278.html

3 fromelf Command-line Options
3.4 --bincombined_base=address

34 --bincombined_base=address

Enables you to lower the base address used by the --bincombined output mode. The output file
generated is suitable to be loaded into memory starting at the specified address.

Syntax
--bincombined_base=address
Where address is the start address where the image is to be loaded:

» If the specified address is lower than the start of the first load region, fromelf adds padding
at the start of the output file.
» If the specified address is higher than the start of the first load region, fromelf gives an error.
Default

By default the start address of the first load region in memory is used as the base address.

Restrictions
You must use --bincombined with this option. If you omit - -bincombined, a warning
message is displayed.

Examples
--bincombined --bincombined_base=0x1000

Related references

3.3 --bincombined on page 3-28.

3.5 --bincombined_padding=size,num on page 3-30.

Related information

Input sections, output sections, regions, and Program Segments.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-29
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065900278.html

3 fromelf Command-line Options
3.5 --bincombined_padding=size,num

3.5 --bincombined_padding=size,num
Enables you to specify a different padding value from the default used by the --bincombined
output mode.
Syntax
--bincombined_padding=size, num
Where:

size
Is 1, 2, or 4 bytes to define whether it is a byte, halfword, or word.

num
The value to be used for padding. If you specify a value that is too large to fit in the
specified size, a warning message is displayed.

Note —————

fromelf expects that 2-byte and 4-byte padding values are specified in the appropriate
endianness for the input file. For example, if you are translating a big endian ELF file into binary,
the specified padding value is treated as a big endian word or halfword.

Default
The default is --bincombined_padding=1, OxFF.

Restrictions

You must use --bincombined with this option. If you omit - -bincombined, a warning
message is displayed.

Examples
The following examples show how to use --bincombined_padding:

--bincombined --bincombined_padding=4,0x12345678
This example produces plain binary output and fills the space between load regions with
copies of the 32-bit word 0x12345678.

--bincombined --bincombined_padding=2,0x1234
This example produces plain binary output and fills the space between load regions with
copies of the 16-bit halfword 0x1234.

--bincombined --bincombined_padding=2,0x01

This example when specified for big endian memory, fills the space between load regions
with 0x0100.

Related references
3.3 --bincombined on page 3-28.
3.4 --bincombined_base=address on page 3-29.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-30
Non-Confidential

3.6 --cad

Usage

3 fromelf Command-line Options
3.6 --cad

Produces a C array definition or C++ array definition containing binary output.

You can use each array definition in the source code of another application. For example, you
might want to embed an image in the address space of another application, such as an embedded
operating system.

If your image has a single load region, the output is directed to stdout by default. To save the
output to a file, use the - -output option together with a filename.

If your image has multiple load regions, then you must also use the - -output option together
with a directory name. Unless you specify a full path name, the path is relative to the current
directory. A file is created for each load region in the specified directory. The name of each file is
the name of the corresponding execution region.

Use this option with - -output to generate one output file for each load region in the image.

Restrictions

You cannot use this option with object files.

Considerations when using --cad

A file is only created when the load region describes code or data that is present in the ELF file.
For example a load region containing only execution regions with ZI data in them does not result
in a output file.

Examples

The following examples show how to use --cad:

» To produce an array definition for an image that has a single load region, enter:

fromelf --cad myimage.axf
unsigned char LRO[] = {

0x00,0x00,0x00,0xEB,0x28,0x00,0x00,0XxEB,0x2C,0x00,0x8F ,0xE2,0x00,0x0C,
0x90,0xE8,

0x00,0xA0,0x8A,0xE0,0x00,0xB0O,0x8B,0xE0Q,0x01,0x70,0x4A,0XE2,0x0B,0x00,0X5A,
OxE1,

0x00,0x00,0x00,0x1A,0x20,0x00,0x00,0XEB,0x0F ,0x00,0xBA,0XE8,0x18,0xEQ, Ox4F,
OxE2,

0x01,0x00,0x13,0xE3,0x03,0xF0,0x47,0x10,0x03,0xF0,0xA0,0XE1,O0XAC,
0x18,0x00,0x00,

OxBC,
0x18,0x00,0x00,0x00,0x30,0xB0,0xE3,0x00,0x40,0xB0,0xE3,0x00,0x50,0xB0,0xE3,

0x00,0x60,0xB0,0xE3,0x10,0x20,0x52,0XxE2,0x78,0x00,0xA1,0x28,0xFC, OxFF,OxFF,
Ox8A,

0x82,0x2E,0xB0,0xE1,0x30,0x00,0xA1l,0x28,0x00,0x30,0x81,0x45,0x0E,
OxFo,0xA0,0xE1,

0x70,0x00,0x51,0xE3,0x66,0x00,0x00,0x0A,
0x64,0x00,0x51,0xE3,0x38,0x00,0x00,0x0A,

0x00,0x00,0xB0,0xE3,0x0E,0xF0,0xA0,0xE1,0x1F,0x40,0x2D,
OxE9,0x00,0x00,0xA0,0xE1,

Ox3A,0x74,0x74,0x00,0x43,0x6F ,0x6E,
0x73,0x74,0x72,0x75,0x63,0x74,0x65,0x64,0x20,

0x41,0x20,0x23,0x25,0x64,0x20,0x61,0x74,0x20,0x25,0Xx70,0x0A,
0x00,0x00,0x00,0x00,

ox44,0x65,0x73,0x74,0x72,0x6F,
0x79,0x65,0x64,0x20,0x41,0x20,0x23,0%x25,0x64,0x20,

0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x0C,0x99,0x00,0x00,0x0C,
0x99,0x00,0x00,

0x50,0x01,0x00,0x00,0x44,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-31
Non-Confidential

3 fromelf Command-line Options
3.6 --cad

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

* For an image that has multiple load regions, the following commands create a file for each
load region in the directory root\myprojects\multiload\load_regions:

cd root\myprojects\multiload
fromelf --cad image_multiload.axf --output load_regions

If image_multiload.axf contains the execution regions EXEC_ROM and RAM, then the files
EXEC_ROM and RAM are created in the 1oad_regions subdirectory.

Related references
3.7 --cadcombined on page 3-33.
3.49 —-output=destination on page 3-81.

Related information

Input sections, output sections, regions, and Program Segments.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-32
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065900278.html

3 fromelf Command-line Options
3.7 --cadcombined

3.7 --cadcombined

Produces a C array definition or C++ array definition containing binary output.

Usage

You can use each array definition in the source code of another application. For example, you
might want to embed an image in the address space of another application, such as an embedded
operating system.

The output is directed to stdout by default. To save the output to a file, use the - -output
option together with a filename.

Restrictions

You cannot use this option with object files.

Examples

The following commands create the file load_regions. c in the directory root\myprojects
\multiload:

cd root\myprojects\multiload
fromelf --cadcombined image_multiload.axf --output load_regions.c

Related references
3.6 --cad on page 3-31.
3.49 —-output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-33
Non-Confidential

3 fromelf Command-line Options
3.8 --compare=option[,option, ...]

3.8 --compare=option[,option,...]

Usage

Syntax

Compares two input files and prints a textual list of the differences.

The input files must be the same type, either two ELF files or two library files. Library files are
compared member by member and the differences are concatenated in the output.

All differences between the two input files are reported as errors unless specifically downgraded
to warnings by using the --relax_section option.

--compare=option[,option,..]
Where option is one of:

section_sizes
Compares the size of all sections for each ELF file or ELF member of a library file.
section_sizes::object_name
Compares the sizes of all sections in ELF objects with a name matching object_name.
section_sizes::section_name
Compares the sizes of all sections with a name matching section_name.
sections
Compares the size and contents of all sections for each ELF file or ELF member of a
library file.
sections::object_name
Compares the size and contents of all sections in ELF objects with a name matching
object_name.
sections::section_name
Compares the size and contents of all sections with a name matching section_name.
function_sizes
Compares the size of all functions for each ELF file or ELF member of a library file.
function_sizes::object_name
Compeares the size of all functions in ELF objects with a name matching object_name.
function_size::function_name
Compares the size of all functions with a name matching function_name.
global_function_sizes
Compares the size of all global functions for each ELF file or ELF member of a library
file.
global function_sizes::function_name
Compares the size of all global functions in ELF objects with a name matching
function_name.

You can:

» Use wildcard characters ? and * for symbolic names in section_name, function_name,
and object_name arguments.

* Specify multiple values in one option followed by a comma-separated list of arguments.

Related references

3.37 --ignore_section=option[,option,...] on page 3-68.
3.38 --ignore_symbol=option[,option,...] on page 3-69.
3.52 --relax_section=option[,option,...] on page 3-84.
3.53 --relax_symbol=option[,option, ...] on page 3-85.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-34
Non-Confidential

3 fromelf Command-line Options
3.9 --continue_on_error

3.9 --continue_on_error

Reports any errors and then continues.

Usage

Use --diag_warning=error instead of this option.

Related references
3.21 --diag_warning=tag/[,tag, ...] on page 3-49.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-35
Non-Confidential

3 fromelf Command-line Options
3.10 --cpu=list

3.10 --cpu=list

Lists the architecture and processor names that are supported by the - -cpu=name option.

Syntax

--cpu=list

Related references
3.11 --cpu=name on page 3-37.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-36
Non-Confidential

3 fromelf Command-line Options
3.11 --cpu=name

3.1 --cpu=name
Affects the way machine code is disassembled by options such as -c or --disassemble, so that
it is disassembled in the same way that the specified processor or architecture interprets it.
Syntax
--cpu=name
Where name is the name of a processor or architecture:
» If name is the name of a processor, enter it as shown on ARM data sheets, for example,
ARM7TDMI, ARM11763JZ-S, MPCore.
» If name is the name of an architecture, it must belong to the list of architectures shown in the
following table.
Processor and architecture names are not case-sensitive.
Wildcard characters are not accepted.
Table 3-2 Supported ARM architectures
Architecture Description Example processors
4 ARMv4 without Thumb SA-1100
a7 ARMv4 with Thumb ARM7TDMI, ARM9TDMI,
ARM720T, ARM740T,
ARM920T, ARM922T,
ARM940T, SC100
5T ARMYVS with Thumb and interworking -
5TE ARMYVS5 with Thumb, interworking, DSP multiply, and double- ARMOYE, ARM946E-S,
word instructions ARMY966E-S
5TEJ ARMYVS5 with Thumb, interworking, DSP multiply, double-word ARMO926EJ-S, ARMI1026EJ-S,
instructions, and Jazelle® extensions SC200
Note
fromelf cannot generate Java bytecodes.
6 ARMv6 with Thumb, interworking, DSP multiply, double-word ARM1136J-S, ARM1136JF-S
instructions, unaligned and mixed-endian support, Jazelle, and
media extensions
6-M ARMV6 micro-controller profile with Thumb only, plus processor Cortex-M1 without OS
state instructions extensions, Cortex-M0, SC000,
Cortex-MOplus
6S-M ARMv6 micro-controller profile with Thumb only, plus processor Cortex-M1 with OS extensions
state instructions and OS extensions
6K ARMVv6 with SMP extensions MPCore
6T2 ARMvV6 with Thumb (Thumb-2 technology) ARMI1156T2-S, ARM1156T2F-S
6Z ARMv6 with Security Extensions ARMI1176JZF-S, ARM1176JZ-S
7 ARMvV7 with Thumb (Thumb-2 technology) only, and without -

hardware divide

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

3-37

3 fromelf Command-line Options
3.11 --cpu=name

Table 3-2 Supported ARM architectures (continued)

Architecture Description

Example processors

7-A ARMVv7 application profile supporting virtual MMU-based Cortex-AS, Cortex-A7, Cortex-
memory systems, with ARM, Thumb (Thumb-2 technology) and A8, Cortex-A9, Cortex-A15
ThumbEE, DSP support, and 32-bit SIMD support

7-A.security Enables the use of the SMC instruction (formerly SMI) when Cortex-AS, Cortex-A7, Cortex-
assembling for the v7-A architecture A8, Cortex-A9, Cortex-Al5
7-R ARMV7 real-time profile with ARM, Thumb (Thumb-2 Cortex-R4, Cortex-R4F, Cortex-
technology), DSP support, and 32-bit SIMD support R7
7-M ARMv7 micro-controller profile with Thumb (Thumb-2 Cortex-M3, SC300
technology) only and hardware divide
7E-M ARMvV7-M enhanced with DSP (saturating and 32-bit SIMD) Cortex-M4
instructions
Note

Usage

* ARMV7 is not an actual ARM architecture. - -cpu=7 denotes the features that are common to
the ARMv7-A, ARMv7-R, and ARMv7-M architectures. By definition, any given feature used
with - -cpu=7 exists on the ARMv7-A, ARMv7-R, and ARMv7-M architectures.

* 7-A.security is not an actual ARM architecture, but rather, refers to 7-A plus Security
Extensions.

The following general points apply to processor and architecture options:

Processors

Selecting the processor selects the appropriate architecture, Floating-Point Unit
(FPU), and memory organization.

The supported - - cpu values include all current ARM product names or architecture
versions.

Other ARM architecture-based processors, such as the Marvell Feroceon and the
Marvell XScale, are also supported.

Architectures

FPU

If you specify an architecture name for the - - cpu option, machine code is
disassembled by options such as -c or --disassemble for that architecture. If you
specify --disassemble, then the disassembly can be assembled for any processor
supporting that architecture. For example, - -cpu=5TE --disassemble produces
disassembly that can be assembled for the ARM926EJ-S® processor.

Some specifications of --cpu imply an - -fpu selection.

Note
Any explicit FPU, set with - -fpu on the command line, overrides an implicit FPU.

If no - -fpu option is specified and no --cpu option is specified, - -fpu=softvfp is
used.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-38
Non-Confidential

3 fromelf Command-line Options
3.11 --cpu=name
Default

If you do not specify a - -cpu option, then fromelf disassembles machine instructions in an
architecture-independent way. This means that fromelf disassembles anything that it recognizes
as an instruction by some architecture.

To obtain a full list of architectures and processors, use the --cpu=1ist option.

Restrictions

You cannot specify both a processor and an architecture on the same command-line.

Examples
To select the disassembly for the Cortex” -A8 processor, use:

--cpu=Cortex-A8

Related references
3.10 --cpu=list on page 3-36.
3.15 --device=list on page 3-43.
3.16 --device=name on page 3-44.
3.22 --disassemble on page 3-50.
3.40 --info=topic/,topic, ...] on page 3-71.
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-39
Non-Confidential

3 fromelf Command-line Options
3.12 --datasymbols

3.12 --datasymbols

Modifies the output information of data sections so that symbol definitions are interleaved.

Usage

You can use this option only with --text -d.

Related references
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-40
Non-Confidential

3 fromelf Command-line Options
3.13 --debugonly

3.13 --debugonly
Removes the content of any code or data sections.
Usage
This option ensures that the output file contains only the information required for debugging, for
example, debug sections, symbol table, and string table. Section headers are retained because they
are required to act as targets for symbols.
Restrictions
You must use --elf with this option.
Examples
To create an ELF file, debugout. axf, from the ELF file infile.axf, containing only debug
information, enter:
fromelf --elf --debugonly --output=debugout.axf infile.axf
Related references
3.24 --elf on page 3-52.
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-41

Non-Confidential

3 fromelf Command-line Options
3.14 --decode_build_attributes

3.14 --decode_build_attributes

Prints the contents of the build attributes section in human-readable form for standard build
attributes or raw hexadecimal form for nonstandard build attributes.

Note

The standard build attributes are documented in the Application Binary Interface for the ARM
Architecture.

Restrictions

You can use this option only in text mode.

Examples

The following example shows the output for --decode_build_attributes:

** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)

Size : 69 bytes

'aeabi' file build attributes:

0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02 cevveeenn .
0x000020: 41 52 4d 00 ARM.

Tag_CPU_name "ARM7TDMI"

Tag_CPU_arch = ARM v4T (=2)

Tag_ARM_ISA use = ARM instructions were permitted to be used (=1)

Tag_ABI_PCS_GOT_use = Data are imported directly (=1)

Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)

Tag_ABI_FP_denormal = This code was permitted to require that the sign of a
flushed-to-zero number be preserved in the sign of @ (=2)

Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format
FP numbers (=1)

Tag_ABI_align8 needed = Code was permitted to depend on the 8-byte alignment
of 8-byte data items (=1)

Tag_ABI_align8 preserved = Code was required to preserve 8-byte alignment of 8-
byte data objects (=1)

Tag_ABI_enum_size = Enum values occupy the smallest container big enough to
hold all values (=1)

Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging
illusion preserved (=3)

Tag_compatibility = 2, "ARM"

'"ARM' file build attributes:
0x000000 : 04 01 12 o1

Related references
3.23 --dump_build_attributes on page 3-51.
3.25 --emit=option[,option, ...] on page 3-53.
3.27 —-extract_build_attributes on page 3-56.

Related information
Application Binary Interface for the ARM Architecture.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-42
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

3 fromelf Command-line Options
3.15 --device=list

3.15 --device=list

Lists the supported device names that can be used with the - -device=name option.

Note

This option is deprecated.

Related references

3.16 --device=name on page 3-44.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-43
Non-Confidential

3 fromelf Command-line Options
3.16 --device=name

3.16 --device=name

Selects a specific microcontroller or System-on-Chip (SoC) device.

Syntax
--device=name

Where name is a specific device name.

Usage

This option affects how fromelf interprets the instructions it finds in the input files.It has the
same format as that supported by the compiler.

Each device has default values for CPU and Floating-Point Unit (FPU). However, you can
override the FPU from the command line by specifying the - -fpu option after the --device
option.

See your device documentation for CPU and FPU implementation details.

To get a full list of the available devices, use the --device=1ist option.

Note
This option is deprecated.

Related references
3.10 --cpu=list on page 3-36.
3.11 --cpu=name on page 3-37.
3.15 --device=list on page 3-43.
3.29 —fpu=list on page 3-59.
3.30 --fpu=name on page 3-60.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-44
Non-Confidential

3 fromelf Command-line Options
3.17 --diag_error=tag[tag,...]

3.17 --diag_error=tag|,tag,...]

Sets diagnostic messages that have a specific tag to Error severity.

Syntax
--diag_error=tag[, tag,..]
Where tag can be:

* A diagnostic message number to set to error severity.
* warning, to treat all warnings as errors.

Related references
3.18 --diag_remark=tag/,tag,...] on page 3-46.
3.19 --diag_style={arm|ide|gnu} on page 3-47.
3.20 --diag_suppress=tag/,tag, ...] on page 3-48.
3.21 --diag_warning=tag]/,tag,...] on page 3-49.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-45
Non-Confidential

3 fromelf Command-line Options
3.18 --diag_remark=tag[,tag,...]

3.18 --diag_remark=tag|,tag,...]

Sets diagnostic messages that have a specific tag to Remark severity.

Syntax
--diag_remark=tag[, tag,..]
Where tag is a comma-separated list of diagnostic message numbers.

Related references

3.17 --diag_error=tag/,tag, ...] on page 3-45.
3.19 --diag_style={arm|ide|gnu} on page 3-47.
3.20 --diag_suppress=tag/,tag,...] on page 3-48.
3.21 --diag_warning=tag/[,tag, ...] on page 3-49.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved.

3-46
Non-Confidential

3 fromelf Command-line Options
3.19 --diag_style={arm|ide|gnu}

3.19 --diag_style={arm|ide|gnu}
Specifies the display style for diagnostic messages.
Syntax
--diag_style=string
Where string is one of:

arm
Display messages using the ARM compiler style.
ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.
gnu
Display messages in the format used by gcc.

Usage
--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Default
The default is --diag_style=arm.

Related references
3.17 --diag_error=tag/,tag, ...] on page 3-45.
3.18 --diag_remark=tag/[,tag,...] on page 3-46.
3.20 --diag_suppress=tag/,tag,...] on page 3-48.
3.21 --diag_warning=tag/,tag, ...] on page 3-49.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-47
Non-Confidential

3.20 --diag_suppress=tag|,tag,...]

Suppresses diagnostic messages that have a specific tag.

Syntax
--diag_suppress=tag[, tag,..]
Where tag can be:

* A diagnostic message number to be suppressed.

* error, to suppress all errors that can be downgraded.

* warning, to suppress all warnings.

Related references
3.17 --diag_error=tag/,tag, ...] on page 3-45.
3.18 --diag_remark=tag/,tag,...] on page 3-46.
3.19 --diag_style={arm|ide|gnu} on page 3-47.
3.21 --diag_warning=tag/,tag, ...] on page 3-49.

3 fromelf Command-line Options
3.20 --diag_suppress=tag([tag,...]

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved.

Non-Confidential

3-48

3.21 --diag_warning=tag|,tag,...]

Sets diagnostic messages that have a specific tag to Warning severity.

Syntax
--diag warning=tag/[, tag,..]
Where tag can be:

* A diagnostic message number to set to warning severity.
* error, to set all errors that can be downgraded to warnings.

Related references
3.17 --diag_error=tag/,tag,...] on page 3-45.
3.18 --diag_remark=tagf,tag,...] on page 3-46.
3.19 —-diag_style={arm|ide|gnu} on page 3-47.
3.21 --diag_warning=tag]/,tag,...] on page 3-49.

3 fromelf Command-line Options
3.21 --diag_warning=tagl[,tag,...]

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved.
Non-Confidential

3-49

3 fromelf Command-line Options
3.22 --disassemble

3.22 --disassemble

Displays a disassembled version of the image to stdout.

Usage
If you use this option with --output destination, you can reassemble the output file with
armasm.
You can use this option to disassemble either an ELF image or an ELF object file.
Note
The output is not the same as that from --emit=code and --text -c.
Examples

To disassemble the ELF file infile.axf for the ARMI1176JZF-S™ processor and create a source
file outfile.asm, enter:

fromelf --cpu=ARM11763ZF-S --disassemble --output=outfile.asm infile.axf

Related references

3.11 --cpu=name on page 3-37.

3.25 --emit=option[,option, ...] on page 3-53.
3.42 —-interleave=option on page 3-74.

3.49 --output=destination on page 3-81.
3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-50
Non-Confidential

3 fromelf Command-line Options
3.23 --dump_build_attributes

3.23 --dump_build_attributes

Prints the contents of the build attributes section in raw hexadecimal form.

Restrictions

You can use this option only in text mode.

Examples

The following example shows the output for --dump_build_attributes:

*% Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)

Size : 69 bytes

0x000000: 41 33 00 00 00 61 65 61 62 69 00 01 29 00 00 00 A3...aeabi..)...
0x000010: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
0x000020: 12 02 14 02 17 01 18 01 19 01 1a 01 1le 03 20 02 cvveeenn .
0x000030: 41 52 4d 00 11 00 00 00 41 52 4d 00 01 09 00 00 ARM..... ARM.....

0x000040: 00 04 01 1202 .

Related references
3.14 --decode_build_attributes on page 3-42.
3.25 --emit=option[,option, ...] on page 3-53.
3.27 —-extract_build_attributes on page 3-56.
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-51
Non-Confidential

3 fromelf Command-line Options

3.24 --elf
3.24 --elf
Selects ELF output mode.
Usage
Use with --strip=debug, symbols to remove debug information from an ELF image.
Restrictions
You must use - -output with this option.
Related references
3.39 —-in_place on page 3-70.
3.49 —-output=destination on page 3-81.
3.60 --strip=option[,option, ...] on page 3-92.
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-52

Non-Confidential

3 fromelf Command-line Options
3.25 --emit=optionf,option, ...]

3.25 --emit=option[,option,...]

Enables you to specify the elements of an ELF object that you want to appear in the textual output.
The output includes ELF header and section information.

Restrictions

Syntax

You can use this option only in text mode.

--emit=option[,option,..]
Where option is one of:
addresses

Prints global and static data addresses (including addresses for structure and union
contents). It has the same effect as --text -a.

This option can only be used on files containing debug information. If no debug
information is present, a warning message is generated.

Use the --select option to output a subset of the data addresses.

If you want to view the data addresses of arrays, expanded both inside and outside
structures, use the - -expandarrays option with this text category.

build_attributes
Prints the contents of the build attributes section in human-readable form for standard
build attributes or raw hexadecimal form for nonstandard build attributes. The produces
the same output as the --decode_build_attributes option.

code
Disassembles code, alongside a dump of the original binary data being disassembled and
the addresses of the instructions. It has the same effect as --text -c.
Note
Unlike - -disassemble, the disassembly cannot be input to the assembler.
data

Prints contents of the data sections. It has the same effect as --text -d.
data_symbols

Modifies the output information of data sections so that symbol definitions are

interleaved.
debug_info

Prints debug information. It has the same effect as - -text -g.
dynamic_segment

Prints dynamic segment contents. It has the same effect as --text -y.
exception_tables

Decodes exception table information for objects. It has the same effect as --text -e.
frame_directives

Prints the contents of FRAME directives in disassembled code as specified by the debug

information embedded in an object module.

Use this option with --disassemble.

got
Prints the contents of the Global Offset Table (GOT) objects.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-53
Non-Confidential

3 fromelf Command-line Options
3.25 --emit=optionf[,option, ...]

heading_comments
Prints heading comments at the beginning of the disassembly containing tool and
command-line information from . comment sections.

Use this option with --disassemble.

raw_build_attributes
Prints the contents of the build attributes section in raw hexadecimal form, that is, in the
same form as data.
relocation_tables
Prints relocation information. It has the same effect as --text -r.
string_tables
Prints the string tables. It has the same effect as --text -t.
summary
Prints a summary of the segments and sections in a file. It is the default output of
fromelf --text. However, the summary is suppressed by some - -info options. Use
--emit summary to explicitly re-enable the summary, if required.
symbol_annotations
Prints symbols in disassembled code and data annotated with comments containing the
respective property information.

Use this option with --disassemble.

symbol_tables
Prints the symbol and versioning tables. It has the same effect as --text -s.
vfe
Prints information about unused virtual functions.
whole_segments
Prints disassembled executables or shared libraries segment by segment even if it has a
link view.

Use this option with --disassemble.

You can specify multiple options in one option followed by a comma-separated list of
arguments.

Related references

3.22 —-disassemble on page 3-50.

3.14 --decode build_attributes on page 3-42.
3.26 --expandarrays on page 3-55.

3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-54
Non-Confidential

3 fromelf Command-line Options
3.26 --expandarrays

3.26 --expandarrays

Prints data addresses, including arrays that are expanded both inside and outside structures.

Restrictions

You can use this option only with --text -a.

Related references
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-55
Non-Confidential

3 fromelf Command-line Options
3.27 --extract_build_attributes

3.27 --extract_build_attributes
Prints only the build attributes in a form that depends on the type of attribute.
Usage
Prints the build attributes in:
* Human-readable form for standard build attributes.
* Raw hexadecimal form for nonstandard build attributes.
Restrictions
You can use this option only in text mode.
Examples
The following example shows the output for --extract_build_attributes:
** Object/Image Build Attributes
'aeabi' file build attributes:
0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......
0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02 civveeenn .
0x000020: 41 52 4d 00 ARM.
Tag_CPU_name = "ARM7TDMI"
Tag_CPU_arch = ARM v4T (=2)
Tag_ARM_ISA use = ARM instructions were permitted to be used (=1)
Tag _ABI_PCS_GOT_use = Data are imported directly (=1)
Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)
Tag_ABI_FP_denormal = This code was permitted to require that the sign of a
flushed-to-zero number be preserved in the sign of @ (=2)
Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format
FP numbers (=1)
Tag_ABI_align8 needed = Code was permitted to depend on the 8-byte alignment
of 8-byte data items (=1)
Tag_ABI_align8 preserved = Code was required to preserve 8-byte alignment of 8-
byte data objects (=1)
Tag_ABI_enum_size = Enum values occupy the smallest container big enough to
hold all values (=1)
Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging
illusion preserved (=3)
Tag_compatibility = 2, "ARM"
'"ARM' file build attributes:
0x000000: 04 01 12 o1
Related references
3.14 --decode_build_attributes on page 3-42.
3.23 --dump_build _attributes on page 3-51.
3.25 --emit=option[,option,...] on page 3-53.
3.62 --text on page 3-95.
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-56

Non-Confidential

3 fromelf Command-line Options
3.28 --fieldoffsets

3.28 --fieldoffsets

Prints a list of assembly language EQU directives that equate C++ class or C structure field names
to their offsets from the base of the class or structure.

Usage
The input ELF file can be a relocatable object or an image.

Use --output to redirect the output to a file. Use the INCLUDE command from armasm to load
the produced file and provide access to C++ classes and C structure members by name from
assembly language.

This option outputs all structure information. To output a subset of the structures, use --select
select_options.

If you do not require a file that can be input to armasm, use the --text -a options to format the
display addresses in a more readable form. The -a option only outputs address information for
structures and static data in images because the addresses are not known in a relocatable object.

Restrictions
This option:

» Isnot available if the source file does not have debug information.
* Can be used only in text mode.

Examples
The following examples show how to use --fieldoffsets:

* To produce an output listing to stdout that contains all the field offsets from all structures in
the file inputfile. o, enter:

fromelf --fieldoffsets inputfile.o

» To produce an output file listing to outputfile. s that contains all the field offsets from
structures in the file inputfile. o that have a name starting with p, enter:

fromelf --fieldoffsets --select=p* --output=outputfile.s inputfile.o

» To produce an output listing to outputfile. s that contains all the field offsets from
structures in the file inputfile.o with names of tools or moretools, enter:

fromelf --fieldoffsets --select=tools.*,moretools.* --output=outputfile.s
inputfile.o

» To produce an output file listing to outputfile. s that contains all the field offsets of
structure fields whose name starts with number and are within structure field top in structure
tools in the file inputfile.o, enter:

fromelf --fieldoffsets --select=tools.top.number* --output=outputfile.s
inputfile.o

The following is an example of the output:

; Structure, Table , Size 0x104 bytes, from inputfile.cpp

Table.TableSize| EQU 0 ; int
Table.Data| EQU ox4 ; array[64] of MyClassHandle
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-57

Non-Confidential

; End of Structure Table

Box2. | EQU

Box2. . EQU 0
Box2...Min| EQU 2}
Box2...Min.x EQU 0
Box2...Min.y EQU ox2
Box2...Max| EQU ox4
Box2...Max.x EQU x4
Box2...Max.y EQU ox6
; Warning: duplicate name (Box2..) present in (inputfile.
; please use the --qualify option

Box2. . EQU 0
Box2...Left]| EQU 2}
Box2...Top| EQU ox2
Box2...Right]| EQU ox4
Box2...Bottom| EQU ox6
; End of Structure Box2

; Structure, MyClassHandle , Size ©x4 bytes,
|MyClassHandle.Handle| EQU 0

; End of Structure MyClassHandle

; Structure, Point2 , Size 0x4 bytes, from defects.cpp
Point2.x EQU 0
Point2.y EQU ox2

; End of Structure Point2
; Structure, _ -
\include\stdio.h

__fpos_t_struct._ pos|

__fpos_t_struct. _mbstate]|
__fpos_t_struct.__mbstate.__ statel
__fpos_t_struct._ _mbstate._ state2

; End of Structure _ fpos_t_struct

END

Related references

3.51 --qualify on page 3-83.

3.55 --select=select_options on page 3-87.

3.62 --text on page 3-95.

Related information

EQU.

GET or INCLUDE.

EQU
EQU
EQU
EQU

; Structure, Box2 , Size 0x8 bytes, from inputfile.cpp
(2]

() ve e be e be oo bo be

L R

3 fromelf Command-line Options
3.28 --fieldoffsets

anonymous
anonymous
Point2
short
short
Point2
short
short
pp) and in (inputfile.cpp)

anonymous
unsigned short
unsigned short
unsigned short
unsigned short

from inputfile.cpp

0

ox8
ox8
oxc

Bl

Bl
3

5
5
5
5

pointer to MyClass

short
short

fpos_t_struct , Size 0x10 bytes, from C:\Program Files\DS-5\bin\..

unsigned long long
anonymous

unsigned int
unsigned int

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.

Non-Confidential

3-58

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008953.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290015482.html

3 fromelf Command-line Options
3.29 --fpu=list

3.29 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related references
3.30 --fpu=name on page 3-60.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-59
Non-Confidential

3 fromelf Command-line Options
3.30 --fpu=name

3.30 --fpu=name

Syntax

Specifies the target FPU architecture.
To obtain a full list of FPU architectures use the - -fpu=1ist option.

--fpu=name
Where name is one of:

none
Selects no floating-point option. No floating-point code is to be used.
vfpv2
Selects a hardware floating-point unit conforming to architecture VFPv2.
vfpv3
Selects a hardware vector floating-point unit conforming to architecture VFPv3. VFPv3
is backwards compatible with VFPv2 except that VFPv3 cannot trap floating-point
exceptions.
vfpv3_fpl6
Selects a hardware vector floating-point unit conforming to architecture VFPv3 that also
provides the half-precision extensions.
vfpv3_di6
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture.
vfpv3_di6_fplée
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture, that
also provides the half-precision extensions.
vfpva
Selects a hardware floating-point unit conforming to the VFPv4 architecture.
vfpv4_die
Selects a hardware floating-point unit conforming to the VFPv4-D16 architecture.
fpva4-sp
Selects a hardware floating-point unit conforming to the single precision variant of the
FPv4 architecture.
softvfp
Selects software floating-point support where floating-point operations are performed by
a floating-point library, fplib. This is the default if you do not specify a - -fpu option,
or if you select a CPU that does not have an FPU.
softvfp+vfpv2
Selects a hardware floating-point unit conforming to VFPv2, with software floating-point
linkage. Select this option if you are interworking Thumb code with ARM code on a
system that implements a VFP unit.
softvfp+vfpv3
Selects a hardware vector floating-point unit conforming to VFPv3, with software
floating-point linkage. Select this option if you are interworking Thumb code with ARM
code on a system that implements a VFPv3 unit.
softvfp+vfpv3_fplé6
Selects a hardware vector floating-point unit conforming to VFPv3-fp16, with software
floating-point linkage.
softvfp+vfpv3_di6
Selects a hardware vector floating-point unit conforming to VFPv3-D16, with software
floating-point linkage.
softvfp+vfpv3d_di6_fpl6
Selects a hardware vector floating-point unit conforming to VFPv3-D16-fp16, with
software floating-point linkage.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-60
Non-Confidential

Usage

3 fromelf Command-line Options
3.30 --fpu=name

softvfp+vfpva
Selects a hardware floating-point unit conforming to FPv4, with software floating-point
linkage.

softvfp+vfpv4_die6
Selects a hardware floating-point unit conforming to VFPv4-D16, with software floating-
point linkage.

softvfp+fpva-sp
Selects a hardware floating-point unit conforming to FPv4-SP, with software floating-
point linkage.

This option selects disassembly for a specific FPU architecture. It affects how fromelf interprets
the instructions it finds in the input files.

If you specify this option, it overrides any implicit FPU option that appears on the command line,
for example, where you use the - -cpu option.

Any FPU explicitly selected using the - -fpu option always overrides any FPU implicitly selected
using the - -cpu option. For example, the options --disassemble --cpu=ARM1136JF-S --
fpu=softvfp disassembles code that uses the software floating-point library fplib, even
though the choice of CPU implies the use of architecture VFPv2.

Restrictions

Default

NEON support is disabled for softvfp.

The default target FPU architecture is derived from use of the - -cpu option.

If the CPU you specify with - -cpu has a VFP coprocessor, the default target FPU architecture is
the VFP architecture for that CPU. For example, the option --cpu ARM11363JF-S implies the
option --fpu vfpv2. Ifa VFP coprocessor is present, VFP instructions are generated.

Related references

3.15 --device=list on page 3-43.

3.16 --device=name on page 3-44.

3.22 --disassemble on page 3-50.

3.29 —fpu=list on page 3-59.

3.40 --info=topic/,topic, ...] on page 3-71.
3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-61
Non-Confidential

3 fromelf Command-line Options
3.31 --globalize=option[,option, ...]

3.31 --globalize=option[,option,...]

Syntax

Converts the selected symbols to global symbols.

--globalize=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name are converted to global
symbols.

object_name: :symbol _name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name are converted to global symbols.

symbol_name
All symbols with a symbol name matching symbol_name are converted to global
symbols.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -elf with this option.

Related references

3.24 --elf on page 3-52.
3.33 —-hide=option[,option, ...] on page 3-64.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-62
Non-Confidential

3 fromelf Command-line Options

3.32 --help
3.32 --help
Displays a summary of the main command-line options.
Default
This is the default if you specify fromelf without any options or source files.
Related references
3.58 --show_cmdline on page 3-90.
3.63 --version_number on page 3-97.
3.66 --vsn on page 3-100.
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-63

Non-Confidential

3 fromelf Command-line Options
3.33 --hide=option{[,option, ...]

3.33 --hide=option[,option,...]
Changes the symbol visibility property to mark selected symbols as hidden.

Syntax
--hide=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name.
object_name: :symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name.
symbol_name
All symbols with a symbol name matching symbol_name.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions
You must use - -elf with this option.
Related references

3.24 --elf on page 3-52.
3.56 --show=option[,option, ...] on page 3-88.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-64
Non-Confidential

3 fromelf Command-line Options
3.34 --hide_and_localize=option[,option, ...]

3.34 --hide_and_localize=option[,option,...]

Syntax

Changes the symbol visibility property to mark selected symbols as hidden, and converts the
selected symbols to local symbols.

--hide_and_localize=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name are marked as hidden
and converted to local symbols.
object_name: :symbol _name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name are marked as hidden and converted to local symbols.
symbol_name
All symbols with a symbol name matching symbol_name are marked as hidden and
converted to local symbols.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -elf with this option.

Related references

3.24 --elf on page 3-52.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-65
Non-Confidential

3 fromelf Command-line Options
3.35--i32

3.35 --i32

Produces Intel Hex-32 format output. It generates one output file for each load region in the
image.

You can specify the base address of the output with the - -base option.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use - -output with this option.
Considerations when using --i32

If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for each
load region in the input image. fromelf places the output files in the destination directory.

Note

For multiple load regions, the name of the first non-empty execution region in the corresponding
load region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file.
For example a load region containing only execution regions with ZI data in them does not result
in a output file.

Examples

To convert the ELF file infile.axf to an Intel Hex-32 format file, for example outfile.bin,
enter:

fromelf --i32 --output=-outfile.bin infile.axf

Related references
3.1 --base [[object file::]load region ID=]num on page 3-26.
3.36 --i32combined on page 3-67.
3.49 —-output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-66
Non-Confidential

3 fromelf Command-line Options
3.36 --i32combined

3.36 --i32combined

Produces Intel Hex-32 format output. It generates one output file for an image containing multiple
load regions.
You can specify the base address of the output with the - -base option.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use - -output with this option.

Considerations when using --i32combined
If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for all load
regions in the input image. fromelf places the output file in the destination directory.
ELF images contain multiple load regions if, for example, they are built with a scatter file that
defines more than one load region.

Examples
To create a single output file,outfile2.bin, from an image file infile2.axf, with two load
regions, and with a start address of @x10080, enter:

fromelf --i32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related references
3.1 --base [[object file::]load region ID=]num on page 3-26.
3.35 --i32 on page 3-66.
3.49 --output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-67

Non-Confidential

3 fromelf Command-line Options
3.37 --ignore_section=option[,option, ...]

3.37 --ignore_section=option[,option,...]

Specifies the sections to be ignored during a compare. Differences between the input files being
compared are ignored if they are in these sections.

Syntax
--ignore_section=option[,option,..]
Where option is one of:

object_name: :
All sections in ELF objects with a name matching object_name.
object_name: :section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.
section_name
All sections with a name matching section_name.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -compare with this option.
Related references

3.8 --compare=option[,option,...] on page 3-34.

3.38 --ignore_symbol=option[,option,...] on page 3-69.
3.52 --relax_section=option[,option, ...] on page 3-84.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-68
Non-Confidential

3 fromelf Command-line Options
3.38 --ignore_symbol=option[,option, ...]

3.38 --ignore_symbol=option[,option,...]

Specifies the symbols to be ignored during a compare. Differences between the input files being
compared are ignored if they are related to these symbols.

Syntax
--ignore_symbol=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name.
object_name: :symbol _name
All symbols in ELF objects with a name matching object_name and also a symbols
name matching symbol_name.
symbol_name
All symbols with a name matching symbol_name.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -compare with this option.
Related references

3.8 --compare=option[,option,...] on page 3-34.

3.37 --ignore_section=option[,option,...] on page 3-68.
3.53 --relax_symbol=option[,option, ...] on page 3-85.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-69
Non-Confidential

3 fromelf Command-line Options
3.39 --in_place

3.39 --in_place

Enables the translation of ELF members in an input file to overwrite the previous content.

Restrictions

You must use - -elf with this option.

Examples

To remove debug information from members of the library file test. a, enter:

fromelf --elf --in_place --strip=debug test.a

Related references
3.24 --elf on page 3-52.
3.60 --strip=option[,option, ...] on page 3-92.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-70
Non-Confidential

3 fromelf Command-line Options
3.40 --info=topic/,topic,...]

3.40 --info=topic[,topic,...]

Syntax

Prints information about specific topics.

--info=topic[,topic,..]
Where top1ic is a comma-separated list from the following topic keywords:

instruction_usage
Categorizes and lists the ARM and Thumb instructions defined in the code sections of
each input file.
function_sizes
Lists the names of the global functions defined in one or more input files, together with
their sizes in bytes and whether they are ARM or Thumb functions.
function_sizes_all
Lists the names of the local and global functions defined in one or more input files,
together with their sizes in bytes and whether they are ARM or Thumb functions.
sizes
Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object
and library member in the image. Using this option implies --info=sizes,totals.
totals
Lists the totals of the Code, RO Data, RW Data, ZI Data, and Debug sizes for input
objects and libraries.

Note
Code related sizes also include the size of any execute-only code.

The output from --info=sizes,totals always includes the padding values in the totals for
input objects and libraries.

Note

Spaces are not permitted between topic keywords in the list. For example, you can enter - -
info=sizes,totals butnot --info=sizes, totals.

Restrictions

You can use this option only in text mode.

Related references

3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-71
Non-Confidential

3 fromelf Command-line Options
3.41 input_file

3.41 input_file

Specifies the ELF file or archive containing ELF files to be processed.

Usage
Multiple input files are supported if you:
* Output - -text format.
* Use the --compare option.
e Use --elf with --in_place.
» Specify an output directory using - -output.
If input_file is a scatter-loaded image that contains more than one load region and the output
format is one of --bin, --cad, --m32, --132, or - -vhx, then fromelf creates a separate file
for each load region.
If input_file is a scatter-loaded image that contains more than one load region and the output
format is one of - -cadcombined, --m32combined, or --i32combined, then fromelf creates
a single file containing all load regions.
If input_file is an archive, you can process all files, or a subset of files, in that archive. To
process a subset of files in the archive, specify a filter after the archive name as follows:
archive.a(filter_pattern)
where filter_pattern specifies a member file. To specify a subset of files use the following
wildcard characters:
*
Matches zero or more characters.
?
Matched any single character.
Note
On Unix systems your shell typically requires the parentheses and these characters to be escaped
with backslashes. Alternatively, enclose the archive name and filter in single quotes, for example:
‘archive.a(??str*)’
Any files in the archive that are not processed are included in the output archive together with the
processed files.
Examples

To strip debug information from all files in the archive beginning with s, and creates a new
archive, my_archive. a, containing the processed and unprocessed files, enter:

fromelf --elf --strip=debug archive.a(s*.o) --output=my_archive.a

Related concepts

2.2 Examples of processing ELF files in an archive on page 2-17.

Related references

3.2 --bin on page 3-27.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-72
Non-Confidential

3.6 --cad on page 3-31.
3.7 --cadcombined on page 3-33.

3.8 --compare=option/[,option, ...] on page 3-34.

3.24 --elf on page 3-52.

3.35 --i32 on page 3-66.

3.36 --i32combined on page 3-67.

3.39 —-in_place on page 3-70.

3.46 --m32 on page 3-78.

3.47 --m32combined on page 3-79.

3.49 --output=destination on page 3-81.
3.62 --text on page 3-95.

3.64 --vhx on page 3-98.

3 fromelf Command-line Options
3.41 input_file

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.

Non-Confidential

3-73

3 fromelf Command-line Options
3.42 --interleave=option

3.42 --interleave=option

Syntax

Usage

Default

Inserts the original source code as comments into the disassembly if debug information is present.

--interleave=option
Where option can be one of the following:

line_directives
Interleaves #1ine directives containing filenames and line numbers of the disassembled
instructions.

line_numbers
Interleaves comments containing filenames and line numbers of the disassembled
instructions.

none
Disables interleaving. This is useful if you have a generated makefile where the fromelf
command has multiple options in addition to --interleave. You can then specify - -
interleave=none as the last option to ensure that interleaving is disabled without
having to reproduce the complete fromelf command.

source
Interleaves comments containing source code. If the source code is no longer available
then fromelf interleaves in the same way as 1ine_numbers.

source_only
Interleaves comments containing source code. If the source code is no longer available
then fromelf does not interleave that code.

Use this option with --emit=code, --text -c, or --disassemble.

Use this option with --source_directory if you want to specify additional paths to search for
source code.

The default is --interleave=none.

Related references

3.22 --disassemble on page 3-50.

3.25 --emit=option[,option, ...] on page 3-53.
3.59 --source_directory=path on page 3-91.
3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-74
Non-Confidential

3 fromelf Command-line Options
3.43 --licretry

3.43 --licretry

If you are using floating licenses, this option makes up to 10 attempts to obtain a license when you
invoke fromelf.

Usage

Use this option if your builds are failing to obtain a license from your license server, and only
after you have ruled out any other problems with the network or the license server setup.

It is recommended that you place this option in the ARMCC5_FROMELFOPT environment variable.
In this way, you do not have to modify your build files.

Related information
Toolchain environment variables.
ARM DS-5 License Management Guide.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-75
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

3 fromelf Command-line Options
3.44 --linkview, --no_linkview

3.44 --linkview, --no_linkview

Controls the section-level view from the ELF image.

Usage

--no_linkview discards the section-level view and retains only the segment-level view (load
time view).

Discarding the section-level view eliminates:

The section header table.

The section header string table.
The string table.

The symbol table.

All debug sections.

All that is left in the output is the program header table and the program segments. According to
the System V Application Binary Interface specification, these are all that a program loader can
rely on being present in an ELF file.

Note

This option is deprecated.

Restrictions

The following restrictions apply:

Examples

You must use --elf with --1linkviewand --no_linkview.
Do not use the --no_linkview option with SysV images.

To get ELF format output for image . axf, enter:

fromelf --no_linkview --elf image.axf --output=image_nlk.axf

Related references
3.24 --elf on page 3-52.
3.50 --privacy on page 3-82.

3.60 --strip=option[,option, ...] on page 3-92.

Related information

--privacy linker option.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-76
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075550093.html

3 fromelf Command-line Options
3.45 --localize=option[,option, ...]

3.45 --localize=option[,option,...]

Syntax

Converts the selected symbols to local symbols.

--localize=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name are converted to local
symbols.

object_name: :symbol _name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name are converted to local symbols.

symbol_name
All symbols with a symbol name matching symbol_name are converted to local
symbols.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -elf with this option.

Related references

3.24 --elf on page 3-52.
3.33 —-hide=option[,option, ...] on page 3-64.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-77
Non-Confidential

3 fromelf Command-line Options
3.46 --m32

3.46 --m32

Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for each
load region in the image.

You can specify the base address of the output with the - -base option.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use - -output with this option.
Considerations when using --m32

If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for each
load region in the input image. fromelf places the output files in the destination directory.

Note

For multiple load regions, the name of the first non-empty execution region in the corresponding
load region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file.
For example a load region containing only execution regions with ZI data in them does not result
in a output file.

Examples

To convert the ELF file infile.axf to a Motorola 32-bit format file, for example
outfile.bin, enter:

fromelf --m32 --output=outfile.bin infile.axf

Related references
3.1 --base [[object file::]load region ID=]num on page 3-26.
3.47 --m32combined on page 3-79.
3.49 --output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-78
Non-Confidential

3 fromelf Command-line Options
3.47 --m32combined

3.47 --m32combined

Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for an
image containing multiple load regions.
You can specify the base address of the output with the - -base option.

Restrictions
The following restrictions apply:
* You cannot use this option with object files.
* You must use - -output with this option.

Considerations when using --m32combined
If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for all load
regions in the input image. fromelf places the output file in the destination directory.
ELF images contain multiple load regions if, for example, they are built with a scatter file that
defines more than one load region.

Examples
To create a single Motorola 32-bit format output file, outfile2.bin, from an image file
infile2.axf, with two load regions, and with a start address of ©x10080, enter:

fromelf --m32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related references
3.1 --base [[object file::]load region ID=]num on page 3-26.
3.46 --m32 on page 3-78.
3.49 --output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-79

Non-Confidential

3 fromelf Command-line Options
3.48 --only=section_name

3.48 --only=section_name

Forces the output to display only the named section.

Syntax

--only=section_name

Where section_name is the name of the section to be displayed.

You can:

» Use wildcard characters ? and * for a section name.

» Use multiple - -only options to specify additional sections to display.
Examples

The following examples show how to use --only:
* To display only the symbol table, . symtab, enter:

fromelf --only=.symtab --text -s test.axf
» To display all ERn sections, enter:

fromelf --only=ER? test.axf
* To display the HEAP section and all symbol and string table sections, enter:

fromelf --only=HEAP --only=.*tab --text -s -t test.axf

Related references
3.62 --text on page 3-935.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-80
Non-Confidential

3 fromelf Command-line Options
3.49 --output=destination

3.49 --output=destination

Syntax

Usage

Specifies the name of the output file, or the name of the output directory if multiple output files
are created.

--output=destination
--0 destination
Where destination can be cither a file or a directory. For example:

--output=foo

is the name of an output file
--output=foo/

is the name of an output directory.

Usage with --bin or --elf:

* You can specify a single input file and a single output filename.

* If you specify many input files and use --elf, you can use --in_place to write the output
of processing each file over the top of the input file.

» If you specify many input filenames and specify an output directory, then the output from
processing each file is written into the output directory. Each output filename is derived from
the corresponding input file. Therefore, specifying an output directory in this way is the only
method of converting many ELF files to a binary or hexadecimal format in a single run of
fromelf.

» Ifyou specify an archive file as the input, then the output file is also an archive. For example,
the following command creates an archive file called output.o:

fromelf --elf --strip=debug mylib.a --output=output.o

« Ifyou specify a pattern in parentheses to select a subset of objects from an archive, fromelf
only converts the subset. All the other objects are passed through to the output archive
unchanged.

Related references

3.2 --bin on page 3-27.
3.24 --elf on page 3-52.
3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-81
Non-Confidential

3 fromelf Command-line Options
3.50 --privacy

3.50 --privacy

Usage

Modifies the output file to protect your code in images and objects that are delivered to third
parties.

The effect of this option is different for images and object files.
For images, this option:

» Changes section names to a default value, for example, changes code section names to . text
* Removes the complete symbol table in the same way as --strip symbols

* Removes the . comment section name, and is marked as [Anonymous Section] in the
fromelf --text output.

For object files, this option:

» Changes section names to a default value, for example, changes code section names to . text.
» Keeps mapping symbols and build attributes in the symbol table.
* Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the
fromelf --text output.

Related references

3.60 --strip=option[,option, ...] on page 3-92.

Related information

--locals, --no_locals linker option.
--privacy linker option.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-82
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075514595.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075550093.html

3 fromelf Command-line Options
3.51 --qualify

3.51 --qualify

Modifies the effect of the - -fieldoffsets option so that the name of each output symbol
includes an indication of the source file containing the relevant structure.

Usage
This enables the --fieldoffsets option to produce functional output even if two source files
define different structures with the same name.
If the source file is in a different location from the current location, then the source file path is also
included.

Examples

A structure called foo is defined in two headers for example, one.h and two.h.
Using fromelf --fieldoffsets, the linker might define the following symbols:

e fo00.a, foo.b, and foo.c.
» foo.x, foo.y, and foo.z.

Using fromelf --qualify --fieldoffsets, the linker defines the following symbols:

* oneh_foo.a,oneh_foo.b and oneh_foo.c.
e twoh_foo.x, twoh_foo.y and twoh_foo0.z.

Related references

3.28 --fieldoffsets on page 3-57.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-83
Non-Confidential

3 fromelf Command-line Options
3.62 --relax_section=option[,option, ...]

3.52 --relax_section=option[,option,...]

Changes the severity of a compare report for the specified sections to warnings rather than errors.

Restrictions

You must use - -compare with this option.

Syntax
--relax_section=option[,option,..]
Where option is one of:

object_name::
All sections in ELF objects with a name matching object_name.
object_name: :section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.
section_name
All sections with a name matching section_name.

You can:
» Use wildcard characters ? and * for symbolic names in symbol_name and object_name

arguments
» Specify multiple values in one option followed by a comma-separated list of arguments.

Related references
3.8 --compare=option[,option,...] on page 3-34.
3.37 --ignore_section=option[,option, ...] on page 3-68.
3.53 --relax_symbol=option[,option, ...] on page 3-85.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-84
Non-Confidential

3 fromelf Command-line Options
3.63 --relax_symbol=option[,option, ...]

3.53 --relax_symbol=option[,option,...]

Changes the severity of a compare report for the specified symbols to warnings rather than errors.

Restrictions

You must use - -compare with this option.

Syntax
--relax_symbol=option[,option,..]
Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.
object_name: :section_name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name.
symbol_name
All symbols with a name matching symbol_name.

You can:
» Use wildcard characters ? and * for symbolic names in symbol_name and object_name

arguments
» Specify multiple values in one option followed by a comma-separated list of arguments.

Related references
3.8 --compare=option[,option,...] on page 3-34.
3.38 --ignore_symbol=option[,option,...] on page 3-69.
3.52 --relax_section=option[,option, ...] on page 3-84.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-85
Non-Confidential

3 fromelf Command-line Options
3.54 --rename=option[,option, ...]

3.54 --rename=option[,option,...]

Renames the specified symbol in an output ELF object.

Restrictions

You must use --elf and - -output with this option.

Syntax
--rename=option[,option,..]
Where option is one of:

object_name: :old_symbol_name=new_symbol_name
This replaces all symbols in the ELF object object_name that have a symbol name
matching old_symbol_name.

old_symbol_name=new_symbol_name
This replaces all symbols that have a symbol name matching old_symbol_name.

You can:

* Use wildcard characters ? and * for symbolic names in old_symbol_name,
new_symbol_name, and object_name arguments.
» Specify multiple values in one option followed by a comma-separated list of arguments.

Examples

This example renames the clock symbol in the timer.axf image to myclock, and creates a
new file called mytimer.axf:

fromelf --elf --rename=clock=myclock --output=mytimer.axf timer.axf

Related references
3.24 --elf on page 3-52.
3.49 --output=destination on page 3-81.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-86
Non-Confidential

3 fromelf Command-line Options
3.55 --select=select_options

3.55 --select=select_options

When used with --fieldoffsets or --text -a options, selects only those fields that match a
specified pattern list.

Syntax
--select=select_options
Where select_options is a list of patterns to match. Use special characters to select multiple
fields:
* Use a comma-separated list to specify multiple fields, for example:
a*,b*,c*
* Use the wildcard character * to match any name.
* Use the wildcard character ? to match any single letter.
» Prefix the select_options string with + to specify the fields to include. This is the default
behavior.
» Prefix the select_options string with ~ to specify the fields to exclude.
If you are using a special character on Unix platforms, you must enclose the options in quotes to
prevent the shell expanding the selection.
Usage

Use this option with either - -fieldoffsets or --text -a.

Related references
3.28 --fieldoffsets on page 3-57.
3.62 --text on page 3-95.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-87
Non-Confidential

3 fromelf Command-line Options
3.56 --show=option[,option,...]

3.56 --show=option[,option,...]

Syntax

Changes the symbol visibility property of the selected symbols, to mark them with default
visibility.

--show=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name are marked as having
default visibility.

object_name: :symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name are marked as having default visibility.

symbol_name
All symbols with a symbol name matching symbol_name are marked as having default
visibility.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -elf with this option.

Related references

3.24 --elf on page 3-52.
3.33 —-hide=option[,option, ...] on page 3-64.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-88
Non-Confidential

3 fromelf Command-line Options
3.57 --show_and_globalize=option[,option,...]

3.57 --show_and_globalize=option[,option,...]

Syntax

Changes the symbol visibility property of the selected symbols, to mark them with default
visibility, and converts the selected symbols to global symbols.

--show_and_globalize=option[,option,..]
Where option is one of:

object_name: :
All symbols in ELF objects with a name matching object_name.
object_name: :symbol _name
All symbols in ELF objects with a name matching object_name and also a symbol
name matching symbol_name.
symbol_name
All symbols with a symbol name matching symbol_name.

You can:

» Use wildcard characters ? and * for symbolic names in symbol_name and object_name
arguments
* Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use - -elf with this option.

Related references

3.24 --elf on page 3-52.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-89
Non-Confidential

3 fromelf Command-line Options
3.58 --show_cmdline

3.58 --show_cmdline
Outputs the command line used by the ELF file converter.

Usage
Shows the command line after processing by the ELF file converter, and can be useful to check:

* The command line a build system is using.
* How the ELF file converter is interpreting the supplied command line, for example, the
ordering of command-line options.

The commands are shown normalized, and the contents of any via files are expanded.
The output is sent to the standard error stream (stderr).

Related references
3.65 --via=file on page 3-99.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-90
Non-Confidential

3 fromelf Command-line Options
3.69 --source_directory=path

3.59 --source_directory=path

Explicitly specifies the directory of the source code.

Syntax

--source_directory=path

Usage

By default, the source code is assumed to be located in a directory relative to the ELF input file.
You can use this option multiple times to specify a search path involving multiple directories.

You can use this option with --interleave.

Related references
3.42 --interleave=option on page 3-74.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-91
Non-Confidential

3 fromelf Command-line Options
3.60 --strip=option[,option, ...]

3.60 --strip=option[,option,...]

Syntax

Helps to protect your code in images and objects that are delivered to third parties. You can also
use it to help reduce the size of the output image.

--strip=option[,option,..]
Where option is one of:

all
For object modules, this option removes all debug, comments, notes and symbols from
the ELF file. For executables, this option works the same as --no_linkview.

Note
Do not use the --strip=all option with SysV images.

debug

Removes all debug sections from the ELF file.
comment

Removes the . comment section from the ELF file.
filesymbols

The STT_FILE symbols are removed from the ELF file.
localsymbols

The effect of this option is different for images and object files.

For images, this option removes all local symbols, including mapping symbols, from the
output symbol table.

For object files, this option:

+ Keeps mapping symbols and build attributes in the symbol table.
* Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For
these symbols, the names are removed. These are marked as [Anonymous Symbol]
in the fromelf --text output.

notes
Removes the .notes section from the ELF file.

pathnames
Removes the path information from all symbols with type STT_FILE. For example, an
STT_FILE symbol with the name C:\work\myobject.o is renamed to myobject.o.

Note

This option does not strip path names that are in the debug information.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-92
Non-Confidential

3 fromelf Command-line Options
3.60 --strip=option[,option, ...]

symbols
The effect of this option is different for images and object files.

For images, this option removes the complete symbol table, and all static symbols. If any
of these static symbols are used as a static relocation target, then these relocations are also
removed. In all cases, STT_FILE symbols are removed.

For object files, this option:

» Keeps mapping symbols and build attributes in the symbol table.
* Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For
these symbols, the names are removed. These are marked as [Anonymous Symbol]
in the fromelf --text output.

Note ——————
Stripping the symbols, path names, or file symbols might make the file harder to debug.

Restrictions

You must use --elf and --output with this option.

Examples

To produce an output. axf file without debug from the ELF file infile.axf originally
produced with debug, enter:

fromelf --strip=debug,symbols --elf --output=outfile.axf infile.axf

Related references
3.24 --elf on page 3-52.
3.44 --linkview, --no_linkview on page 3-76.
3.50 --privacy on page 3-82.

Related information
About mapping symbols.
--locals, --no_locals linker option.

--privacy linker option.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-93
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065950979.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075514595.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075550093.html

3 fromelf Command-line Options
3.61 --symbolversions, --no_symbolversions

3.61 --symbolversions, --no_symbolversions

Turns off the decoding of symbol version tables.

Restrictions
If you use - -elf with this option, you must also use --output.

Related information

About symbol versioning.
Base Platform ABI for the ARM Architecture.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-94
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362066053648.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

3.62 --text

Syntax

Usage

3 fromelf Command-line Options
3.62 --text

Prints image information in text format. You can decode an ELF image or ELF object file using
this option.

--text [options]

Where options specifies what is displayed, and can be one or more of the following:

-a
Prints the global and static data addresses (including addresses for structure and union
contents).
This option can only be used on files containing debug information. If no debug
information is present, a warning is displayed.
Use the --select option to output a subset of the data addresses.
If you want to view the data addresses of arrays, expanded both inside and outside
structures, use the --expandarrays option with this text category.
-C
This option disassembles code, alongside a dump of the original binary data being
disassembled and the addresses of the instructions.
Note
Unlike - -disassemble, the disassembly cannot be input to the assembler.
-d
Prints contents of the data sections.
-e
Decodes exception table information for objects. Use with -c when disassembling
images.
-8
Prints debug information.
-r
Prints relocation information.
-s
Prints the symbol and versioning tables.
-t
Prints the string tables.
-v
Prints detailed information on each segment and section header of the image.
-w
Eliminates line wrapping.
-y
Prints dynamic segment contents.
-z

Prints the code and data sizes.

These options are only recognized in text mode.

If you do not specify a code output format, - -text is assumed. That is, you can specify one or
more options without having to specify - -text. For example, fromelf -a is the same as
fromelf --text -a.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-95
Non-Confidential

3 fromelf Command-line Options
3.62 --text
If you specify a code output format, such as --bin, then any - -text options are ignored.
If destination is not specified with the - -output option, or --output is not specified, the
information is displayed on stdout.
Examples
The following examples show how to use - -text:

* To produce a plain text output file that contains the disassembled version of an ELF image and
the symbol table, enter:

fromelf --text -c -s --output=outfile.lst infile.axf

» To list to stdout all the global and static data variables and all the structure field addresses,
enter:

fromelf -a --select=* infile.axf

* To produce a text file containing all of the structure addresses in inputfile.axf but none of
the global or static data variable information, enter:

fromelf --text -a --select=*.* --output=structaddress.txt infile.axf

* To produce a text file containing addresses of the nested structures only, enter:

fromelf --text -a --select=*.*.* --output=structaddress.txt infile.axf

* To produce a text file containing all of the global or static data variable information in
inputfile.axf but none of the structure addresses, enter:

fromelf --text -a --select=*,~*.* --output=structaddress.txt infile.axf

Related tasks
2.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-22.

Related references
3.11 --cpu=name on page 3-37.
3.22 --disassemble on page 3-50.
3.25 --emit=option[,option, ...] on page 3-53.
3.26 --expandarrays on page 3-55.
3.40 --info=topic/,topic, ...] on page 3-71.
3.42 --interleave=option on page 3-74.
3.48 --only=section_name on page 3-80.
3.49 —-output=destination on page 3-81.
3.55 --select=select options on page 3-87.
3.67 -w on page 3-101.

Related information
Linker options for getting information about images.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-96
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065940495.html

3 fromelf Command-line Options
3.63 --version_number

3.63 --version_number

Displays the version of fromelf you are using.

Usage
The ELF file converter displays the version number in the format nnnbbbb, where:
* nnn is the version number.
* bbbb is the build number.

Examples

Version 5.01 build 0019 is displayed as 5010019.

Related references
3.32 --help on page 3-63.
3.66 --vsn on page 3-100.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-97
Non-Confidential

3.64 --vhx

Usage

3 fromelf Command-line Options
3.64 --vhx

Produces Byte oriented (Verilog Memory Model) hexadecimal format output.

This format is suitable for loading into the memory models of Hardware Description Language
(HDL) simulators. You can split output from this option into multiple files with the - -
widthxbanks option.

Restrictions

The following restrictions apply:

* You cannot use this option with object files.
* You must use --output with this option.

Considerations when using --vhx

If you convert an ELF image containing multiple load regions to a binary format, fromelf
creates an output directory named destination and generates one binary output file for each
load region in the input image. fromelf places the output files in the destination directory.

Note —————

For multiple load regions, the name of the first non-empty execution region in the corresponding
load region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file.
For example a load region containing only execution regions with ZI data in them does not result
in a output file.

Examples

To convert the ELF file infile.axf to a byte oriented hexadecimal format file, for example
outfile.bin, enter:

fromelf --vhx --output=outfile.bin infile.axf

To create multiple output files, in the regions directory, from an image file multiload.axf, with
two 8-bit memory banks, enter:

fromelf --vhx --8x2 multiload.axf --output=regions

Related references

3.49 --output=destination on page 3-81.
3.68 --widthxbanks on page 3-102.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-98
Non-Confidential

3 fromelf Command-line Options
3.65 --via=file

3.65 --via=file

Reads an additional list of input filenames and ELF file converter options from filename.

Syntax
--via=filename
Where filename is the name of a via file containing options to be included on the command line.
Usage
You can enter multiple --via options on the ELF file converter command line. The --via
options can also be included within a via file.
ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-99

Non-Confidential

3 fromelf Command-line Options
3.66 --vsn

3.66 -=VSh

Displays the version information and the license details.

Examples

Example output:

> fromelf --vsn

Product: ARM Compiler N.nn
Component: ARM Compiler N.nn
Tool: fromelf [build number]
License_type

Software supplied by: ARM Limited

Related references
3.32 --help on page 3-63.
3.63 --version_number on page 3-97.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-100
Non-Confidential

3.67 -W

Usage

3 fromelf Command-line Options
3.67 -w

Causes some text output information that usually appears on multiple lines to be displayed on a
single line.

This makes the output easier to parse with text processing utilities such as Perl.

For example:

> fromelf --text -w -c test.axf

** ELF Header Information

** Section #1 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR] Size : 36 bytes
(alignment 4) Address: ©x00000000 $a

.text
** Section #7 '.rel.text' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table
#6 '.symtab' 1 relocations applied to section #1 '.text'
**% Section #2 '.ARM.exidx' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER] Size : 8

bytes (alignment 4) Address: ox
00000000 Link to section #1 '.text'

** Section #8 '.rel.ARM.exidx' (SHT_REL) Size : 8 bytes (alignment 4) Symbol
table #6 '.symtab' 1 relocations applied to section #2 '.ARM.exidx'

** Section #3 '.arm_vfe_header' (SHT_PROGBITS) Size : 4 bytes (alignment 4)
** Section #4 '.comment' (SHT_PROGBITS) Size : 74 bytes

** Section #5 '.debug_frame' (SHT_PROGBITS) Size : 140 bytes

** Section #9 '.rel.debug_frame' (SHT_REL) Size : 32 bytes (alignment 4)
Symbol table #6 '.symtab' 4 relocations applied to section #5 '.debug_frame'

** Section #6 '.symtab' (SHT_SYMTAB) Size : 176 bytes (alignment 4) String
table #11 '.strtab’' Last local symbol no. 5

** Section #10 '.shstrtab' (SHT_STRTAB) Size : 110 bytes

** Section #11 '.strtab' (SHT_STRTAB) Size : 223 bytes

** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES) Size : 69 bytes

Related references

3.62 --text on page 3-95.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-101
Non-Confidential

3 fromelf Command-line Options
3.68 --widthxbanks

3.68 --widthxbanks

Syntax

Usage

Outputs multiple files for multiple memory banks.

--widthxbanks
Where:

banks
specifies the number of memory banks in the target memory system. It determines the
number of output files that are generated for each load region.

width
is the width of memory in the target memory system (8-bit, 16-bit, 32-bit, or 64-bit).

Valid configurations are:

--8x1
--8x2
--8x4
--16x1
--16x2
--32x1
--32x2
--64x1

fromelf uses the last specified configuration if more than one configuration is specified.

If the image has one load region, fromelf generates the same number of files as the number of
banks specified. The filenames are derived from the - -output=destination argument, using
the following naming conventions:

+ If there is one memory bank (banks = 1) the output file is named destination.

o If there are multiple memory banks (banks > 1), fromelf generates banks number of files
named destinationN where N is in the range @ to banks - 1. If you specify a file extension
for the output filename, then the number N is placed before the file extension. For example:

fromelf --vhx --8x2 test.axf --output=test.txt

This generates two files named test@.txt and testl. txt.

If the image has multiple load regions, fromelf creates a directory named destination and
generates banks files for each load region in that directory. The files for each load region are
named Load_regionN where Load_region is the name of the load region, and N is in the range
0 to banks - 1. For example:

fromelf --vhx --8x2 multiload.axf --output=regions/

This might produce the following files in the regions directory:

EXEC_ROM®
EXEC_ROM1
RAMO
RAM1

The memory width specified by width controls the amount of memory that is stored in a single
line of each output file. The size of each output file is the size of memory to be read divided by the
number of files created. For example:

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 3-102
Non-Confidential

3 fromelf Command-line Options
3.68 --widthxbanks

* fromelf --vhx --8x4 test.axf --output=file produces four files (file®, filel,
file2, and file3). Each file contains lines of single bytes, for example:

00
00
2D
00
2C
8F
o fromelf --vhx --16x2 test.axf --output=file produces two files (file® and
filel). Each file contains lines of two bytes, for example:

0000
002D
002C

Restrictions

You must use --output with this option.

Related references
3.2 --bin on page 3-27.
3.49 --output=destination on page 3-81.
3.64 --vhx on page 3-98.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 3-103
Non-Confidential

Chapter 4
Via File Syntax

Describes the syntax of via files accepted by the fromelf.

It contains the following:

* 4.1 Overview of via files on page 4-105.
» 4.2 Via file syntax rules on page 4-106.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 4-104
Non-Confidential

4 Via File Syntax
4.1 Overview of via files

4.1 Overview of via files

Via files are plain text files that allow you to specify ELF file converter command-line arguments
and options.

Typically, you use a via file to overcome the command-line length limitations. However, you
might want to create multiple via files that:

* Group similar arguments and options together.
» Contain different sets of arguments and options to be used in different scenarios.

Note

In general, you can use a via file to specify any command-line option to a tool, including --via.
This means that you can call multiple nested via files from within a via file.

Via file evaluation

When the ELF file converter is invoked it:

1. Replaces the first specified --via via_f1ile argument with the sequence of argument words
extracted from the via file, including recursively processing any nested - -via commands in
the via file.

2. Processes any subsequent --via via_f1ile arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed
completely including processing nested via files before processing the next via file.

Related references

4.2 Via file syntax rules on page 4-106.
3.65 --via=file on page 3-99.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 4-105
Non-Confidential

4 Via File Syntax
4.2 Via file syntax rules

4.2 Via file syntax rules

Via files must conform to some syntax rules.

A via file is a text file containing a sequence of words. Each word in the text file is converted
into an argument string and passed to the tool.

Words are separated by whitespace, or the end of a line, except in delimited strings, for
example:

--debugonly --privacy (two words)
--debugonly--privacy (one word)

The end of a line is treated as whitespace, for example:

--debugonly
--privacy
This is equivalent to:

--debugonly --privacy

Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within
a quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe
delimited word, a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:
--output C:\My Project\output.txt (three words)

--output "C:\My Project\output.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME=""ARM Compiler"" (one word)
Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)

Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape
the quote, apostrophe, and backslash characters.

A word that occurs immediately next to a delimited word is treated as a single word, for
example:

--output"C:\Project\output.txt"
This is treated as the single word:

--outputC:\Project\output.txt

Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace
character are comment lines. A semicolon or hash character that appears anywhere else in a
line is not treated as the start of a comment, for example:

-0 objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line
comments, and there are no part-line comments.

Related concepts
4.1 Overview of via files on page 4-105.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved. 4-106
Non-Confidential

4 Via File Syntax
4.2 Via file syntax rules

Related references
3.65 --via=file on page 3-99.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. 4-107
Non-Confidential

Appendix A
fromelf Document Revisions

Describes the technical changes that have been made to the fromelf Image Converter User Guide.
It contains the following:

* A.1 Revisions for fromelf Image Converter User Guide on page Appx-A-109.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. Appx-A-108
Non-Confidential

A fromelf Document Revisions
A.1 Revisions for fromelf Image Converter User Guide

A1 Revisions for fromelf Image Converter User Guide

The following technical changes have been made to the fromelf Image Converter User Guide.

Table A-1 Differences between issue H and issue J

Change

Topics affected

Added a note to state that fromelf does not
generate a binary output file for an empty
load region.

3.2 --bin on page 3-27
3.6 --cad on page 3-31
3.35 --i32 on page 3-66
3.46 --m32 on page 3-78

Moved the examples to the corresponding
command-line options, and removed the
topics.

Converting an ELF image to Intel Hex-32 format.

Converting an ELF image to Motorola 32-bit format.

Converting an ELF image to plain binary format.

Converting an ELF image to Byte oriented (Verilog Memory Model)
hexadecimal format.

Controlling debug information in output files.

Disassembling an ELF-formatted file.

--cpu and - -fpu options are fully
documented

3.11 --cpu=name on page 3-37
3.30 --fpu=name on page 3-60

Added chapter on via file syntax.

4 Via File Syntax on page 4-104

Table A-2 Differences between issue G and issue H

Change

Topics affected

Enhanced the description of --base.

3.1 --base [[object _file::]load region ID=]num on page 3-26

Corrected the examples for --fieldoffsets, and 3.28 --fieldoffsets on page 3-57

added an example of the output.

Enhanced the description of --qualify.

3.51 --qualify on page 3-83

Table A-3 Differences between issue F and issue G

Change

Topics affected

Removed spurious underscore from topic title, and added alternative syntax. 3.49 --output=destination on page 3-81

Table A-4 Differences between issue D and issue F

Change

Topics affected

Added a note stating that --device option is deprecated. e 3.15 —-device=list on page 3-43

* 3.16 --device=name on page 3-44

Modified the version number reported by --version_number and --vsn. . 3 43 __yersion number on page 3-97

* 3.66 --vsn on page 3-100.

ARM DUI0477J Copyright © 2010-2013 ARM. All rights reserved. Appx-A-109

Non-Confidential

A fromelf Document Revisions
A.1 Revisions for fromelf Image Converter User Guide

Table A-5 Differences between Issue C and Issue D

Change

Topics affected

Corrected the topic title for --project=filename, --no_project.

Added notes to the descriptions of the --project, --
reinitialize_workdir, and --workdir options.

» --project=filename, --no_project
--reinitialize_workdir

--workdir=directory .

Table A-6 Differences between Issue A and Issue B

Change

Topics affected

Added list item stating that fromelf can now process all files in an
archive.

1.1 About the fromelf' image converter on page 1-11

Added new topic to describe how to process ELF files in an
archive

2.2 Examples of processing ELF files in an archive
on page 2-17

Clarified the description of protecting code in images and objects
with fromelf, and the use of - -privacy and --strip command-
line options

2.3 Options to protect code in image files with
fromelf on page 2-18

2.4 Options to protect code in object files with
fromelf on page 2-19

Added an example for --decode_build_attributes
command-line option

3.14 --decode_build _attributes on page 3-42

Added an example for - -dump_build_attributes command-
line option

3.23 --dump_build_attributes on page 3-51

Modified description of build_attributes option to the - -
emit command-line option

3.25 --emit=option[,option,...] on page 3-53

Added an example for --extract_build_attributes
command-line option

3.27 --extract_build_attributes on page 3-56

Modified the description of input_f1ile to describe the
processing of ELF files in an archive.

3.41 input_file on page 3-72

Noted that the - - [no_]1linkview command-line option is
deprecated

3.44 --linkview, --no_linkview on page 3-76

Added additional information about using input archive files with
the - -output command-line option

3.49 --output=destination on page 3-81

Clarified the description of the - -privacy command-line option

3.50 --privacy on page 3-82

Clarified the description of the localsymbols and symbols
options for the - -strip command-line option

3.60 --strip=option/[,option, ...] on page 3-92

Added the restriction that the following command-line options
cannot be used with object files: --bin, --bincombined, - -
cad, --cadcombined, --i32, --i32combined, --m32, - -
m32combined, and --vhx.

3.2 --bin on page 3-27

3.3 --bincombined on page 3-28
3.6 --cad on page 3-31

3.7 --cadcombined on page 3-33
3.35 --i32 on page 3-66

3.36 --i32combined on page 3-67
3.46 --m32 on page 3-78

3.47 --m32combined on page 3-79
3.64 --vhx on page 3-98.

ARM DUI0477J

Copyright © 2010-2013 ARM. All rights reserved.

Appx-A-110

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477d/BABECJHD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477d/BABEJIJE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477d/BABFEEFD.html

	ARM® Compiler fromelf User Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1: Overview of the fromelf Image Converter
	1.1: About the fromelf image converter
	1.2: fromelf execution modes
	1.3: Getting help on the fromelf command
	1.4: fromelf command-line syntax

	2: Using fromelf
	2.1: General considerations when using fromelf
	2.2: Examples of processing ELF files in an archive
	2.3: Options to protect code in image files with fromelf
	2.4: Options to protect code in object files with fromelf
	2.5: Option to print specific details of ELF files
	2.6: Using fromelf to find where a symbol is placed in an executable ELF image

	3: fromelf Command-line Options
	3.1: --base [[object_file::]load_region_ID=]num
	3.2: --bin
	3.3: --bincombined
	3.4: --bincombined_base=address
	3.5: --bincombined_padding=size,num
	3.6: --cad
	3.7: --cadcombined
	3.8: --compare=option[,option,…]
	3.9: --continue_on_error
	3.10: --cpu=list
	3.11: --cpu=name
	3.12: --datasymbols
	3.13: --debugonly
	3.14: --decode_build_attributes
	3.15: --device=list
	3.16: --device=name
	3.17: --diag_error=tag[,tag,…]
	3.18: --diag_remark=tag[,tag,…]
	3.19: --diag_style={arm|ide|gnu}
	3.20: --diag_suppress=tag[,tag,…]
	3.21: --diag_warning=tag[,tag,…]
	3.22: --disassemble
	3.23: --dump_build_attributes
	3.24: --elf
	3.25: --emit=option[,option,…]
	3.26: --expandarrays
	3.27: --extract_build_attributes
	3.28: --fieldoffsets
	3.29: --fpu=list
	3.30: --fpu=name
	3.31: --globalize=option[,option,…]
	3.32: --help
	3.33: --hide=option[,option,…]
	3.34: --hide_and_localize=option[,option,…]
	3.35: --i32
	3.36: --i32combined
	3.37: --ignore_section=option[,option,…]
	3.38: --ignore_symbol=option[,option,…]
	3.39: --in_place
	3.40: --info=topic[,topic,…]
	3.41: input_file
	3.42: --interleave=option
	3.43: --licretry
	3.44: --linkview, --no_linkview
	3.45: --localize=option[,option,…]
	3.46: --m32
	3.47: --m32combined
	3.48: --only=section_name
	3.49: --output=destination
	3.50: --privacy
	3.51: --qualify
	3.52: --relax_section=option[,option,…]
	3.53: --relax_symbol=option[,option,…]
	3.54: --rename=option[,option,…]
	3.55: --select=select_options
	3.56: --show=option[,option,…]
	3.57: --show_and_globalize=option[,option,…]
	3.58: --show_cmdline
	3.59: --source_directory=path
	3.60: --strip=option[,option,…]
	3.61: --symbolversions, --no_symbolversions
	3.62: --text
	3.63: --version_number
	3.64: --vhx
	3.65: --via=file
	3.66: --vsn
	3.67: -w
	3.68: --widthxbanks

	4: Via File Syntax
	4.1: Overview of via files
	4.2: Via file syntax rules

	A: fromelf Document Revisions
	A.1: Revisions for fromelf Image Converter User Guide

