
ARM® Compiler
Version 5.06

armlink User Guide

Copyright © 2010-2016 ARM Limited or its affiliates. All rights reserved.
ARM DUI0474M

ARM® Compiler
armlink User Guide
Copyright © 2010-2016 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 28 May 2010 Non-Confidential ARM Compiler v4.1 Release

B 30 September 2010 Non-Confidential Update 1 for ARM Compiler v4.1

C 28 January 2011 Non-Confidential Update 2 for ARM Compiler v4.1 Patch 3

D 30 April 2011 Non-Confidential ARM Compiler v5.0 Release

E 29 July 2011 Non-Confidential Update 1 for ARM Compiler v5.0

F 30 September 2011 Non-Confidential ARM Compiler v5.01 Release

G 29 February 2012 Non-Confidential Document update 1 for ARM Compiler v5.01 Release

H 27 July 2012 Non-Confidential ARM Compiler v5.02 Release

I 31 January 2013 Non-Confidential ARM Compiler v5.03 Release

J 27 November 2013 Non-Confidential ARM Compiler v5.04 Release

K 10 September 2014 Non-Confidential ARM Compiler v5.05 Release

L 29 July 2015 Non-Confidential ARM Compiler v5.06 Release

M 11 November 2016 Non-Confidential Update 3 for ARM Compiler v5.06 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

 ARM® Compiler

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2

Non-Confidential

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2010-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com

Contents
ARM® Compiler armlink User Guide

Preface
About this book 15

Chapter 1 Overview of the Linker
1.1 About the linker .. 1-18
1.2 Linker command-line syntax .. 1-21
1.3 What the linker does when constructing an executable image 1-22

Chapter 2 Linking Models Supported by armlink
2.1 Overview of linking models .. 2-24
2.2 Bare-metal linking model 2-25
2.3 Partial linking model 2-27
2.4 Base Platform Application Binary Interface (BPABI) linking model 2-28
2.5 Base Platform linking model .. 2-29
2.6 SysV linking model 2-31
2.7 Concepts common to both BPABI and SysV linking models 2-32

Chapter 3 Image Structure and Generation
3.1 The structure of an ARM ELF image 3-34
3.2 Simple images 3-42
3.3 Section placement with the linker .. 3-49
3.4 Linker support for creating demand-paged files 3-52
3.5 Linker reordering of execution regions containing Thumb code 3-54
3.6 Linker-generated veneers .. 3-55

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.7 Command-line options used to control the generation of C++ exception tables 3-59
3.8 Weak references and definitions 3-60
3.9 How the linker performs library searching, selection, and scanning 3-63
3.10 How the linker searches for the ARM standard libraries 3-64
3.11 Specifying user libraries when linking .. 3-66
3.12 How the linker resolves references 3-67
3.13 The strict family of linker options 3-68
3.14 Avoiding the BLX (immediate) instruction issue on an ARM1176JZ-S or ARM1176JZF-

S processor 3-69

Chapter 4 Linker Optimization Features
4.1 Elimination of common debug sections 4-71
4.2 Elimination of common groups or sections .. 4-72
4.3 Elimination of unused sections .. 4-73
4.4 Elimination of unused virtual functions 4-75
4.5 About linker feedback .. 4-76
4.6 Example of using linker feedback .. 4-78
4.7 Optimization with RW data compression 4-80
4.8 Function inlining with the linker .. 4-83
4.9 Factors that influence function inlining 4-85
4.10 About branches that optimize to a NOP 4-87
4.11 Linker reordering of tail calling sections 4-88
4.12 Restrictions on reordering of tail calling sections 4-89
4.13 Linker merging of comment sections 4-90

Chapter 5 Getting Image Details
5.1 Options for getting information about linker-generated files 5-92
5.2 Identifying the source of some link errors .. 5-93
5.3 Example of using the --info linker option 5-94
5.4 How to find where a symbol is placed when linking 5-96
5.5 How to find the location of a symbol within the map file .. 5-97

Chapter 6 Accessing and Managing Symbols with armlink
6.1 About mapping symbols 6-99
6.2 Linker-defined symbols .. 6-100
6.3 Region-related symbols 6-101
6.4 Section-related symbols 6-106
6.5 Access symbols in another image 6-108
6.6 Edit the symbol tables with a steering file .. 6-112
6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions 6-115

Chapter 7 Scatter-loading Features
7.1 The scatter-loading mechanism 7-117
7.2 Root execution regions .. 7-124
7.3 Example of how to explicitly place a named section with scatter-loading 7-138
7.4 Placement of unassigned sections with the .ANY module selector 7-140
7.5 Placement of veneer input sections in a scatter file 7-151
7.6 Placement of sections with overlays .. 7-152
7.7 Reserving an empty region .. 7-154
7.8 Placement of ARM C and C++ library code 7-156
7.9 Creation of regions on page boundaries 7-159

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5

Non-Confidential

7.10 Overalignment of execution regions and input sections .. 7-160
7.11 Preprocessing of a scatter file 7-161
7.12 Example of using expression evaluation in a scatter file to avoid padding 7-163
7.13 Equivalent scatter-loading descriptions for simple images 7-164
7.14 How the linker resolves multiple matches when processing scatter files 7-170
7.15 How the linker resolves path names when processing scatter files 7-172
7.16 Scatter file to ELF mapping 7-173

Chapter 8 Scatter File Syntax
8.1 BNF notation used in scatter-loading description syntax 8-176
8.2 Syntax of a scatter file 8-177
8.3 Load region descriptions 8-178
8.4 Execution region descriptions .. 8-184
8.5 Input section descriptions .. 8-191
8.6 Expression evaluation in scatter files 8-195

Chapter 9 GNU ld Script Support in armlink
9.1 About GNU ld script support .. 9-204
9.2 Typical use cases for using ld scripts with armlink 9-206
9.3 Important ld script commands that are implemented in armlink 9-207
9.4 Specific restrictions for using ld scripts with armlink .. 9-209
9.5 Recommendations for using ld scripts with armlink 9-210
9.6 Default GNU ld scripts used by armlink 9-211
9.7 Example GNU ld script for linking an ARM Linux executable 9-215
9.8 Example GNU ld script for linking an ARM Linux shared object 9-217
9.9 Example GNU ld script for linking partial objects 9-218

Chapter 10 BPABI and SysV Shared Libraries and Executables
10.1 About the Base Platform Application Binary Interface (BPABI) 10-220
10.2 Platforms supported by the BPABI 10-221
10.3 Features common to all BPABI models 10-222
10.4 SysV memory model 10-226
10.5 Bare metal and DLL-like memory models 10-231
10.6 Symbol versioning 10-236

Chapter 11 Features of the Base Platform Linking Model
11.1 Restrictions on the use of scatter files with the Base Platform model 11-240
11.2 Scatter files for the Base Platform linking model 11-242
11.3 Placement of PLT sequences with the Base Platform model 11-244

Chapter 12 Linker Command-line Options
12.1 --add_needed, --no_add_needed .. 12-249
12.2 --add_shared_references, --no_add_shared_references 12-250
12.3 --any_contingency 12-251
12.4 --any_placement=algorithm 12-252
12.5 --any_sort_order=order 12-254
12.6 --api, --no_api 12-255
12.7 --arm_linux 12-256
12.8 --arm_only 12-258
12.9 --as_needed, --no_as_needed 12-259
12.10 --autoat, --no_autoat .. 12-260

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6

Non-Confidential

12.11 --base_platform 12-261
12.12 --be8 12-262
12.13 --be32 12-263
12.14 --bestdebug, --no_bestdebug 12-264
12.15 --blx_arm_thumb, --no_blx_arm_thumb 12-265
12.16 --blx_thumb_arm, --no_blx_thumb_arm 12-266
12.17 --bpabi 12-267
12.18 --branchnop, --no_branchnop .. 12-268
12.19 --callgraph, --no_callgraph 12-269
12.20 --callgraph_file=filename 12-271
12.21 --callgraph_output=fmt 12-272
12.22 --callgraph_subset=symbol[,symbol,...] 12-273
12.23 --cgfile=type 12-274
12.24 --cgsymbol=type .. 12-275
12.25 --cgundefined=type .. 12-276
12.26 --combreloc, --no_combreloc 12-277
12.27 --comment_section, --no_comment_section 12-278
12.28 --compress_debug, --no_compress_debug 12-279
12.29 --cpp_compat linker option 12-280
12.30 --cppinit, --no_cppinit 12-281
12.31 --cpu=list .. 12-282
12.32 --cpu=name 12-283
12.33 --crosser_veneershare, --no_crosser_veneershare 12-286
12.34 --datacompressor=opt 12-287
12.35 --debug, --no_debug .. 12-288
12.36 --diag_error=tag[,tag,…] .. 12-289
12.37 --diag_remark=tag[,tag,…] 12-290
12.38 --diag_style=arm|ide|gnu 12-291
12.39 --diag_suppress=tag[,tag,…] 12-292
12.40 --diag_warning=tag[,tag,…] 12-293
12.41 --dll 12-294
12.42 --dynamic_debug 12-295
12.43 --dynamic_linker=name 12-296
12.44 --eager_load_debug, --no_eager_load_debug .. 12-297
12.45 --edit=file_list 12-298
12.46 --emit_debug_overlay_relocs 12-299
12.47 --emit_debug_overlay_section 12-300
12.48 --emit_non_debug_relocs .. 12-301
12.49 --emit_relocs .. 12-302
12.50 --entry=location .. 12-303
12.51 --errors=filename 12-304
12.52 --exceptions, --no_exceptions 12-305
12.53 --exceptions_tables=action .. 12-306
12.54 --execstack, --no_execstack .. 12-307
12.55 --export_all, --no_export_all 12-308
12.56 --export_dynamic, --no_export_dynamic 12-309
12.57 --feedback=filename .. 12-310
12.58 --feedback_image=option .. 12-311
12.59 --feedback_type=type .. 12-312
12.60 --filtercomment, --no_filtercomment 12-313

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7

Non-Confidential

12.61 --fini=symbol .. 12-314
12.62 --first=section_id .. 12-315
12.63 --force_explicit_attr .. 12-316
12.64 --force_so_throw, --no_force_so_throw 12-317
12.65 --fpic 12-318
12.66 --fpu=list 12-319
12.67 --fpu=name .. 12-320
12.68 --gnu_linker_defined_syms 12-322
12.69 --help 12-323
12.70 --import_unresolved, --no_import_unresolved 12-324
12.71 --info=topic[,topic,…] 12-325
12.72 --info_lib_prefix=opt 12-328
12.73 --init=symbol .. 12-329
12.74 --inline, --no_inline 12-330
12.75 --inline_type=type .. 12-331
12.76 --inlineveneer, --no_inlineveneer 12-332
12.77 input-file-list 12-333
12.78 --keep=section_id .. 12-334
12.79 --largeregions, --no_largeregions 12-336
12.80 --last=section_id 12-337
12.81 --ldpartial .. 12-338
12.82 --legacyalign, --no_legacyalign .. 12-339
12.83 --libpath=pathlist .. 12-340
12.84 --library=name 12-341
12.85 --library_type=lib .. 12-342
12.86 --linker_script=ld_script 12-343
12.87 --linux_abitag=version_id 12-344
12.88 --list=filename .. 12-345
12.89 --list_mapping_symbols, --no_list_mapping_symbols 12-346
12.90 --load_addr_map_info, --no_load_addr_map_info 12-347
12.91 --locals, --no_locals 12-348
12.92 --mangled, --unmangled 12-349
12.93 --map, --no_map .. 12-350
12.94 --match=crossmangled .. 12-351
12.95 --max_er_extension=size 12-352
12.96 --max_veneer_passes=value 12-353
12.97 --max_visibility=type .. 12-354
12.98 --merge, --no_merge 12-355
12.99 --muldefweak, --no_muldefweak 12-356
12.100 -o filename, --output=filename 12-357
12.101 --output_float_abi=option 12-358
12.102 --override_visibility 12-359
12.103 --pad=num 12-360
12.104 --paged 12-361
12.105 --pagesize=pagesize 12-362
12.106 --partial 12-363
12.107 --piveneer, --no_piveneer 12-364
12.108 --pltgot=type 12-365
12.109 --pltgot_opts=mode 12-366
12.110 --predefine="string" .. 12-367

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8

Non-Confidential

12.111 --prelink_support, --no_prelink_support 12-368
12.112 --privacy 12-369
12.113 --reduce_paths, --no_reduce_paths 12-370
12.114 --ref_cpp_init, --no_ref_cpp_init 12-371
12.115 --reloc 12-372
12.116 --remarks 12-373
12.117 --remove, --no_remove .. 12-374
12.118 --ro_base=address 12-375
12.119 --ropi 12-376
12.120 --rosplit 12-377
12.121 --runpath=pathlist 12-378
12.122 --rw_base=address .. 12-379
12.123 --rwpi 12-380
12.124 --scanlib, --no_scanlib 12-381
12.125 --scatter=filename .. 12-382
12.126 --search_dynamic_libraries, --no_search_dynamic_libraries 12-384
12.127 --section_index_display=type .. 12-385
12.128 --shared 12-386
12.129 --show_cmdline 12-387
12.130 --show_full_path 12-388
12.131 --show_parent_lib .. 12-389
12.132 --show_sec_idx .. 12-390
12.133 --soname=name 12-391
12.134 --sort=algorithm 12-392
12.135 --split .. 12-394
12.136 --startup=symbol, --no_startup 12-395
12.137 --strict 12-396
12.138 --strict_enum_size, --no_strict_enum_size .. 12-397
12.139 --strict_flags, --no_strict_flags 12-398
12.140 --strict_ph, --no_strict_ph 12-399
12.141 --strict_relocations, --no_strict_relocations .. 12-400
12.142 --strict_symbols, --no_strict_symbols 12-401
12.143 --strict_visibility, --no_strict_visibility .. 12-402
12.144 --strict_wchar_size, --no_strict_wchar_size 12-403
12.145 --symbolic 12-404
12.146 --symbols, --no_symbols 12-405
12.147 --symdefs=filename 12-406
12.148 --symver_script=filename 12-407
12.149 --symver_soname .. 12-408
12.150 --sysroot=path 12-409
12.151 --sysv 12-410
12.152 --tailreorder, --no_tailreorder .. 12-411
12.153 --thumb2_library, --no_thumb2_library 12-412
12.154 --tiebreaker=option 12-413
12.155 --unaligned_access, --no_unaligned_access 12-414
12.156 --undefined=symbol 12-415
12.157 --undefined_and_export=symbol 12-416
12.158 --unresolved=symbol 12-417
12.159 --use_definition_visibility .. 12-418
12.160 --use_sysv_default_script, --no_use_sysv_default_script 12-419

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9

Non-Confidential

12.161 --userlibpath=pathlist 12-420
12.162 --veneerinject, --no_veneerinject 12-421
12.163 --veneer_inject_type=type 12-422
12.164 --veneer_pool_size=size 12-423
12.165 --veneershare, --no_veneershare .. 12-424
12.166 --verbose 12-425
12.167 --version_number 12-426
12.168 --vfemode=mode 12-427
12.169 --via=filename .. 12-428
12.170 --vsn 12-429
12.171 --xo_base=address .. 12-430
12.172 --xref, --no_xref .. 12-431
12.173 --xrefdbg, --no_xrefdbg .. 12-432
12.174 --xref{from|to}=object(section) 12-433
12.175 --zi_base=address 12-434

Chapter 13 Linker Steering File Command Reference
13.1 EXPORT steering file command .. 13-436
13.2 HIDE steering file command .. 13-437
13.3 IMPORT steering file command 13-438
13.4 RENAME steering file command 13-439
13.5 REQUIRE steering file command .. 13-440
13.6 RESOLVE steering file command .. 13-441
13.7 SHOW steering file command 13-443

Chapter 14 Via File Syntax
14.1 Overview of via files 14-445
14.2 Via file syntax rules .. 14-446

Appendix A armlink Document Revisions
A.1 Revisions for armlink User Guide Appx-A-448

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10

Non-Confidential

List of Figures
ARM® Compiler armlink User Guide

Figure 3-1 Relationship between sections, regions, and segments .. 3-35
Figure 3-2 Load and execution memory maps for an image without an XO section 3-37
Figure 3-3 Load and execution memory maps for an image with an XO section 3-37
Figure 3-4 Simple Type 1 image ... 3-43
Figure 3-5 Simple Type 2 image ... 3-45
Figure 3-6 Simple Type 3 image ... 3-47
Figure 7-1 Simple scatter-loaded memory map .. 7-121
Figure 7-2 Complex memory map .. 7-122
Figure 7-3 Memory map for fixed execution regions ... 7-125
Figure 7-4 .ANY contingency .. 7-148
Figure 7-5 Reserving a region for the stack .. 7-154
Figure 8-1 Components of a scatter file .. 8-177
Figure 8-2 Components of a load region description .. 8-178
Figure 8-3 Components of an execution region description ... 8-184
Figure 8-4 Components of an input section description .. 8-191
Figure 10-1 BPABI tool flow .. 10-220

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11

Non-Confidential

List of Tables
ARM® Compiler armlink User Guide

Table 3-1 Comparing load and execution views .. 3-37
Table 3-2 Comparison of scatter file and equivalent command-line options ... 3-38
Table 4-1 Inlining small functions ... 4-85
Table 6-1 Image$$ execution region symbols .. 6-101
Table 6-2 Load$$ execution region symbols .. 6-102
Table 6-3 Load$$LR$$ load region symbols .. 6-104
Table 6-4 Image symbols ... 6-106
Table 6-5 Section-related symbols ... 6-107
Table 6-6 Steering file command summary ... 6-112
Table 7-1 Input section properties for placement of .ANY sections ... 7-143
Table 7-2 Input section properties for placement of sections with next_fit .. 7-145
Table 7-3 Input section properties for sections_a.o ... 7-146
Table 7-4 Input section properties for sections_b.o ... 7-146
Table 7-5 Sort order for descending_size algorithm .. 7-147
Table 7-6 Sort order for cmdline algorithm .. 7-147
Table 7-7 Using relative offset in overlays ... 7-152
Table 8-1 BNF notation ... 8-176
Table 8-2 Execution address related functions ... 8-197
Table 8-3 Load address related functions .. 8-198
Table 10-1 Symbol visibility ... 10-223
Table 10-2 Turning on SysV support ... 10-229
Table 10-3 Turning on BPABI support ... 10-232
Table 12-1 Supported ARM architectures ... 12-283

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12

Non-Confidential

Table 12-2 Data compressor algorithms .. 12-287
Table 12-3 GNU equivalent of input sections .. 12-322
Table A-1 Differences between issue L and issue M ... Appx-A-448
Table A-2 Differences between issue K and issue L .. Appx-A-449
Table A-3 Differences between issue J and issue K .. Appx-A-449
Table A-4 Differences between issue I and issue J ... Appx-A-450
Table A-5 Differences between issue H and issue I ... Appx-A-451
Table A-6 Differences between Issue G and Issue H .. Appx-A-452
Table A-7 Differences between Issue F and Issue G ... Appx-A-452
Table A-8 Differences between Issue E and Issue F ... Appx-A-453
Table A-9 Differences between Issue D and Issue E ... Appx-A-453
Table A-10 Differences between Issue C and Issue D ... Appx-A-454
Table A-11 Differences between Issue B and Issue C ... Appx-A-454
Table A-12 Differences between Issue A and Issue B ... Appx-A-454

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13

Non-Confidential

Preface

This preface introduces the ARM® Compiler armlink User Guide .

It contains the following:
• About this book on page 15.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14

Non-Confidential

 About this book
ARM® Compiler armlink User Guide provides user information for the ARM linker, armlink. It
describes the basic linker functionality, image structure, BPABI and SysV support, GNU ld script
support, how to access image symbols, and how to use scatter files.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of the Linker
Gives an overview of the ARM linker, armlink.

Chapter 2 Linking Models Supported by armlink
Describes the linking models supported by the ARM linker, armlink.

Chapter 3 Image Structure and Generation
Describes the image structure and the functionality available in the ARM linker, armlink, to
generate images.

Chapter 4 Linker Optimization Features
Describes the optimization features available in the ARM linker, armlink.

Chapter 5 Getting Image Details
Describes how to get image details from the ARM linker, armlink.

Chapter 6 Accessing and Managing Symbols with armlink
Describes how to access and manage symbols with the ARM linker, armlink.

Chapter 7 Scatter-loading Features
Describes the scatter-loading features and how you use scatter files with the ARM linker,
armlink, to create complex images.

Chapter 8 Scatter File Syntax
Describes the format of scatter files.

Chapter 9 GNU ld Script Support in armlink
Describes the GNU ld script support in the ARM linker, armlink.

Chapter 10 BPABI and SysV Shared Libraries and Executables
Describes how the ARM linker, armlink, supports the Base Platform Application Binary
Interface (BPABI) and System V (SysV) shared libraries and executables.

Chapter 11 Features of the Base Platform Linking Model
Describes features of the Base Platform linking model supported by the ARM linker, armlink.

Chapter 12 Linker Command-line Options
Describes the command-line options supported by the ARM linker, armlink.

Chapter 13 Linker Steering File Command Reference
Describes the steering file commands supported by the ARM linker, armlink.

Chapter 14 Via File Syntax
Describes the syntax of via files accepted by armlink.

Appendix A armlink Document Revisions
Describes the technical changes that have been made to the armlink User Guide.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Preface
 About this book

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

15

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler armlink User Guide .
• The number ARM DUI0474M.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

16

Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the Linker

Gives an overview of the ARM linker, armlink.

It contains the following sections:
• 1.1 About the linker on page 1-18.
• 1.2 Linker command-line syntax on page 1-21.
• 1.3 What the linker does when constructing an executable image on page 1-22.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.1 About the linker
The linker combines the contents of one or more object files with selected parts of one or more object
libraries to produce executable images, partially linked object files, or shared object files.

This section contains the following subsections:
• 1.1.1 Summary of the linker features on page 1-18.
• 1.1.2 What the linker can accept as input on page 1-19.
• 1.1.3 What the linker outputs on page 1-19.
• 1.1.4 Linker support for 64-bit host platforms on page 1-20.

1.1.1 Summary of the linker features

The linker has many features for linking input files to generate various types of output files.

The linker can:
• Link ARM® code and Thumb® code.
• Generate interworking veneers to switch between ARM and Thumb states when required.
• Generate range extension veneers, where required, to extend the range of branch instructions.
• Automatically select the appropriate standard C or C++ library variants to link with, based on the

build attributes of the objects it is linking.
• Enable you to specify the locations of code and data within the system memory map, using either a

command-line option or a scatter file.
• Perform RW data compression to minimize ROM size.
• Eliminate unused sections to reduce the size of your output image.
• Control the generation of debug information in the output file.
• Generate a static callgraph and list the stack usage.
• Control the contents of the symbol table in output images.
• Show the sizes of code and data in the output.
• Use linker feedback to remove individual unused functions.
• Accept GNU ld scripts, with restrictions.

 Note

Be aware of the following:
• Generated code might be different between two ARM Compiler releases.
• For a feature release, there might be significant code generation differences.

 Note

The command-line option descriptions and related information in the individual ARM Compiler tools
documents describe all the features that ARM Compiler supports. Any features not documented are not
supported and are used at your own risk. You are responsible for making sure that any generated code
using unsupported features is operating correctly.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-52.
4.5 About linker feedback on page 4-76.

Related references
Chapter 2 Linking Models Supported by armlink on page 2-23.
Chapter 3 Image Structure and Generation on page 3-33.
Chapter 4 Linker Optimization Features on page 4-70.
Chapter 5 Getting Image Details on page 5-91.
Chapter 6 Accessing and Managing Symbols with armlink on page 6-98.

1 Overview of the Linker
1.1 About the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

Chapter 7 Scatter-loading Features on page 7-116.
Chapter 9 GNU ld Script Support in armlink on page 9-203.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.
Chapter 11 Features of the Base Platform Linking Model on page 11-239.

Related information
Base Platform ABI for the ARM Architecture.

1.1.2 What the linker can accept as input

armlink can accept one or more object files from toolchains that support ARM ELF.

Object files must be formatted as ARM ELF. This format is described in ELF for the ARM Architecture
(ARM IHI 0044).

Optionally, the following files can be used as input to armlink:
• One or more libraries created by the librarian, armar.
• A symbol definitions file.
• A scatter file.
• A steering file.
• A GNU ld script.

Related concepts
6.5 Access symbols in another image on page 6-108.

Related references
Chapter 7 Scatter-loading Features on page 7-116.
Chapter 13 Linker Steering File Command Reference on page 13-435.
Chapter 8 Scatter File Syntax on page 8-175.

Related information
About the ARM librarian.
ELF for the ARM Architecture (ARM IHI 0044).

1.1.3 What the linker outputs

armlink can create executable images and object files.

Output from armlink can be:
• An ELF executable image.
• A partially linked ELF object that can be used as input in a subsequent link step.
• A shared object, compatible with the Base Platform Application Binary Interface (BPABI) or System

V (SysV) specification, or a BPABI or SysV executable file.

 Note

You can also use fromelf to convert an ELF executable image to other file formats, or to display,
process, and protect the content of an ELF executable image.

Related concepts
2.3 Partial linking model on page 2-27.
3.3 Section placement with the linker on page 3-49.
3.1 The structure of an ARM ELF image on page 3-34.

Related information
Overview of the fromelf image converter.

1 Overview of the Linker
1.1 About the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362133736382.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128870564.html

1.1.4 Linker support for 64-bit host platforms

A 64-bit version of armlink is provided that can utilize the greater amount of memory available to
processes on 64-bit operating systems.

With the exception of the --reduce_paths option and the CYGPATH environment variable, the 64-bit
version of armlink supports all the features that are supported by the 32-bit version in this release.

Related information
ARM Compiler support on 64-bit host platforms.

1 Overview of the Linker
1.1 About the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395710042.html

1.2 Linker command-line syntax
The armlink command can accept many input files together with options that determine how to process
the files.

The command for invoking the linker is:

armlink options input-file-list

where:

options
Linker command-line options.

input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Related references
12.77 input-file-list on page 12-333.
Chapter 12 Linker Command-line Options on page 12-245.

1 Overview of the Linker
1.2 Linker command-line syntax

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

1.3 What the linker does when constructing an executable image
armlink performs many operations, depending on the content of the input files and the command-line
options you specify.

When you use the linker to construct an executable image, it:
• Resolves symbolic references between the input object files.
• Extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references.
• Removes unused sections.
• Eliminates duplicate common groups and common code, data, and debug sections.
• Sorts input sections according to their attributes and names, and merges sections with similar

attributes and names into contiguous chunks.
• Organizes object fragments into memory regions according to the grouping and placement

information provided.
• Assigns addresses to relocatable values.
• Generates an executable image.

Related concepts
4.1 Elimination of common debug sections on page 4-71.
4.3 Elimination of unused sections on page 4-73.
3.1 The structure of an ARM ELF image on page 3-34.

1 Overview of the Linker
1.3 What the linker does when constructing an executable image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

Chapter 2
Linking Models Supported by armlink

Describes the linking models supported by the ARM linker, armlink.

It contains the following sections:
• 2.1 Overview of linking models on page 2-24.
• 2.2 Bare-metal linking model on page 2-25.
• 2.3 Partial linking model on page 2-27.
• 2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
• 2.5 Base Platform linking model on page 2-29.
• 2.6 SysV linking model on page 2-31.
• 2.7 Concepts common to both BPABI and SysV linking models on page 2-32.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.1 Overview of linking models
A linking model is a group of command-line options and memory maps that control the behavior of the
linker.

The linking models supported by armlink are:

Bare-metal
This model does not target any specific platform. It enables you to create an image with your
own custom operating system, memory map, and, application code if required. Some limited
dynamic linking support is available. You can specify additional options depending on whether
or not a scatter file is in use.

Partial linking
This model produces a relocatable ELF object suitable for input to the linker in a subsequent
link step. The partial object can be used as input to another link step. The linker performs
limited processing of input objects to produce a single output object.

BPABI
This model supports the DLL-like Base Platform Application Binary Interface (BPABI). It is
intended to produce applications and DLLs that can run on a platform OS that varies in
complexity. The memory model is restricted according to the Base Platform ABI for the ARM
Architecture (IHI 0037 C).

Base Platform
This is an extension to the BPABI model to support scatter-loading.

SysV
This model supports applications and shared objects as used by System Vr4 (SysV) and ARM
Linux. The memory model can be controlled with a GNU compatible ldscript. The memory
model is restricted according to the ELF specification.

You can combine related options in each model to tighten control over the output.

Related concepts
2.2 Bare-metal linking model on page 2-25.
2.3 Partial linking model on page 2-27.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
2.5 Base Platform linking model on page 2-29.
2.6 SysV linking model on page 2-31.
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.

Related references
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

Related information
Base Platform ABI for the ARM Architecture.

2 Linking Models Supported by armlink
2.1 Overview of linking models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

2.2 Bare-metal linking model
Focuses on the conventional embedded market where the whole program, possibly including a Real-Time
Operating System (RTOS), is linked in one pass.

The linker can make very few assumptions about the memory map of a bare-metal system. Therefore,
you must use the scatter-loading mechanism if you want more precise control. Scatter-loading allows
different regions in an image memory map to be placed at addresses other than at their natural address.
Such an image is a relocatable image, and the linker must adjust program addresses and resolve
references to external symbols.

By default, the linker attempts to resolve all the relocations statically. However, it is also possible to
create a position-independent or relocatable image. Such an image can be executed from different
addresses and have its relocations resolved at load or run-time. You can use a dynamic model to create
relocatable images. A position-independent image does not require a dynamic model.

With the bare-metal model, you can:

• Identify the regions that can be relocated or are position-independent using a scatter file or command-
line options.

• Identify the symbols that can be imported and exported using a steering file.

You can use --scatter=file with this model.

You can use the following options when scatter-loading is not used:
• --reloc.
• --ro_base=address.
• --ropi.
• --rosplit.
• --rw_base=address.
• --rwpi.
• --split.
• --xo_base=address.
• --zi_base.

 Note

--xo_base cannot be used with --ropi or --rwpi.

Related concepts
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
11.2 Scatter files for the Base Platform linking model on page 11-242.

Related references
12.171 --xo_base=address on page 12-430.
12.45 --edit=file_list on page 12-298.
12.115 --reloc on page 12-372.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.125 --scatter=filename on page 12-382.
12.135 --split on page 12-394.

2 Linking Models Supported by armlink
2.2 Bare-metal linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

12.175 --zi_base=address on page 12-434.
Chapter 13 Linker Steering File Command Reference on page 13-435.

2 Linking Models Supported by armlink
2.2 Bare-metal linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

2.3 Partial linking model
Produces a single output file that can be used as input to a subsequent link step.

Partial linking:

• Eliminates duplicate copies of debug sections.
• Merges the symbol tables into one.
• Leaves unresolved references unresolved.
• Merges common data (COMDAT) groups.
• Generates a single object file that can be used as input to a subsequent link step.

If the linker finds multiple entry points in the input files it generates an error because the single output
file can have only one entry point.

To link with this model, use the --partial command-line option.
 Note

If you use partial linking, you cannot refer to the original objects by name in a scatter file. Therefore, you
might have to update your scatter file.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
6.6.3 Steering file format on page 6-113.
Chapter 13 Linker Steering File Command Reference on page 13-435.
12.45 --edit=file_list on page 12-298.
12.53 --exceptions_tables=action on page 12-306.
12.106 --partial on page 12-363.

2 Linking Models Supported by armlink
2.3 Partial linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.4 Base Platform Application Binary Interface (BPABI) linking model
The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to generate
their own platform-specific image formats.

The BPABI model produces as much dynamic information as possible without focusing on any specific
platform.

To link with this model, use the --bpabi command-line option. Other linker command-line options
supported by this model are:

• --dll.
• --force_so_throw, --no_force_so_throw.
• --pltgot=type.
• --ro_base=address.
• --rosplit.
• --rw_base=address.
• --rwpi.

Be aware of the following:
• You cannot use scatter-loading. However, the Base Platform linking model supports scatter-loading.
• The model by default assumes that shared objects cannot throw a C++ exception

(--no_force_so_throw).
• The default value of the --pltgot option is direct.
• You must use symbol versioning to ensure that all the required symbols are available at load time.

Related concepts
2.2 Bare-metal linking model on page 2-25.
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.
10.6 Symbol versioning on page 10-236.

Related references
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.108 --pltgot=type on page 12-365.
12.118 --ro_base=address on page 12-375.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.

Related information
Base Platform ABI for the ARM Architecture.

2 Linking Models Supported by armlink
2.4 Base Platform Application Binary Interface (BPABI) linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

2.5 Base Platform linking model
Enables you to create dynamically linkable images that do not have the memory map enforced by the
Base Platform Application Binary Interface (BPABI) or System V (SysV) linking models.

The Base Platform linking model enables you to:

• Create images with a memory map described in a scatter file.
• Have dynamic relocations so the images can be dynamically linked. The dynamic relocations can also

target within the same image.

 Note

The BPABI specification places constraints on the memory model that can be violated using scatter-
loading. However, because Base Platform is a superset of BPABI, it is possible to create a BPABI
conformant image with Base Platform.

To link with the Base Platform model, use the --base_platform command-line option.

If you specify this option, the linker acts as if you specified --bpabi, with the following exceptions:

• Scatter-loading is available with --scatter. If you do not specify --scatter, then the standard
BPABI memory model scatter file is used.

• The following options are available:
— --dll.
— --force_so_throw, --no_force_so_throw.
— --pltgot=type.
— --rosplit.

• The default value of the --pltgot option is different to that for --bpabi:
— For --base_platform, the default is --pltgot=none.
— For --bpabi the default is --pltgot=direct.

• Each load region containing code might require a Procedure Linkage Table (PLT) section to indirect
calls from the load region to functions where the address is not known at static link time. The PLT
section for a load region LR must be placed in LR and be accessible at all times to code within LR.

If you do not use a scatter file, the linker can ensure that the PLT section is placed correctly, and
contains entries for calls only to imported symbols. If you specify a scatter file, the linker might not
be able to find a suitable location to place the PLT.

To ensure calls between relocated load regions use a PLT entry:
— Use the --pltgot=direct option to turn on PLT generation.
— Use the --pltgot_opts=crosslr option to add entries in the PLT for calls between RELOC load

regions. The linker generates a PLT for each load region so that calls do not have to be extended
to reach a distant PLT.

Be aware of the following:
• The model by default assumes that shared objects cannot throw a C++ exception

(--no_force_so_throw).
• You must use symbol versioning to ensure that all the required symbols are available at load time.
• There are restrictions on the type of scatter files you can use.

Related concepts
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.
11.1 Restrictions on the use of scatter files with the Base Platform model on page 11-240.
11.2 Scatter files for the Base Platform linking model on page 11-242.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.

2 Linking Models Supported by armlink
2.5 Base Platform linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
10.6 Symbol versioning on page 10-236.

Related references
12.11 --base_platform on page 12-261.
12.41 --dll on page 12-294.
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.109 --pltgot_opts=mode on page 12-366.
12.120 --rosplit on page 12-377.
12.125 --scatter=filename on page 12-382.
12.108 --pltgot=type on page 12-365.

2 Linking Models Supported by armlink
2.5 Base Platform linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

2.6 SysV linking model
Produces ARM Linux compatible shared objects and executables.

Be aware of the following:

• You cannot use scatter-loading. ARM Compiler v4.1 and later provides support for GNU ld scripts.
• The model assumes that shared objects can throw an exception.

To link with this model, use the --sysv command-line option. Other linker command-line options
supported by this model are:
• --force_so_throw, --no_force_so_throw.
• --fpic.
• --linker_script.
• --linux_abitag=version_id.
• --shared.

Related concepts
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.

Related references
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.65 --fpic on page 12-318.
12.86 --linker_script=ld_script on page 12-343.
12.87 --linux_abitag=version_id on page 12-344.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

2 Linking Models Supported by armlink
2.6 SysV linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

2.7 Concepts common to both BPABI and SysV linking models
For both Base Platform Application Binary Interface (BPABI) and System V (SysV) linking models,
images and shared objects usually run on an existing operating platform.

There are many similarities between the BPABI and the SysV models. For example, both produce a
Program Header that maps the exception tables. The main differences are in the memory model, and in
the Procedure Linkage Table (PLT) and Global Offset Table (GOT) structure, referred to collectively as
PLTGOT. There are many options that are common to both models.

Restrictions of the BPABI and SysV
Both the BPABI and SysV models have the following restrictions:
• Unused section elimination treats every symbol that is externally visible as an entry point.
• Virtual function elimination is turned off.
• Read write data compression is not permitted.
• Scatter-loading is not permitted.
• __AT sections are not permitted.

 Note

Scatter-loading is supported in the Base Platform linking model.

Related concepts
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
2.5 Base Platform linking model on page 2-29.
2.6 SysV linking model on page 2-31.

Related references
12.11 --base_platform on page 12-261.
12.17 --bpabi on page 12-267.
12.42 --dynamic_debug on page 12-295.
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.121 --runpath=pathlist on page 12-378.
12.133 --soname=name on page 12-391.
12.148 --symver_script=filename on page 12-407.
12.149 --symver_soname on page 12-408.
12.151 --sysv on page 12-410.

2 Linking Models Supported by armlink
2.7 Concepts common to both BPABI and SysV linking models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

Chapter 3
Image Structure and Generation

Describes the image structure and the functionality available in the ARM linker, armlink, to generate
images.

It contains the following sections:
• 3.1 The structure of an ARM ELF image on page 3-34.
• 3.2 Simple images on page 3-42.
• 3.3 Section placement with the linker on page 3-49.
• 3.4 Linker support for creating demand-paged files on page 3-52.
• 3.5 Linker reordering of execution regions containing Thumb code on page 3-54.
• 3.6 Linker-generated veneers on page 3-55.
• 3.7 Command-line options used to control the generation of C++ exception tables on page 3-59.
• 3.8 Weak references and definitions on page 3-60.
• 3.9 How the linker performs library searching, selection, and scanning on page 3-63.
• 3.10 How the linker searches for the ARM standard libraries on page 3-64.
• 3.11 Specifying user libraries when linking on page 3-66.
• 3.12 How the linker resolves references on page 3-67.
• 3.13 The strict family of linker options on page 3-68.
• 3.14 Avoiding the BLX (immediate) instruction issue on an ARM1176JZ-S or ARM1176JZF-S

processor on page 3-69.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

3.1 The structure of an ARM ELF image
An ARM ELF image contains sections, regions, and segments, and each link stage has a different view
of the image.

The structure of an image is defined by the:
• Number of its constituent regions and output sections.
• Positions in memory of these regions and sections when the image is loaded.
• Positions in memory of these regions and sections when the image executes.

This section contains the following subsections:
• 3.1.1 Views of the image at each link stage on page 3-34.
• 3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
• 3.1.3 Load view and execution view of an image on page 3-36.
• 3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
• 3.1.5 Image entry points on page 3-39.

3.1.1 Views of the image at each link stage

Each link stage has a different view of the image.

The image views are:

ELF object file view (linker input)
The ELF object file view comprises input sections. The ELF object file can be:
• A relocatable file that holds code and data suitable for linking with other object files to

create an executable or a shared object file.
• A shared object file that holds code and data.

Linker view
The linker has two views for the address space of a program that become distinct in the presence
of overlaid, position-independent, and relocatable program fragments (code or data):
• The load address of a program fragment is the target address that the linker expects an

external agent such as a program loader, dynamic linker, or debugger to copy the fragment
from the ELF file. This might not be the address at which the fragment executes.

• The execution address of a program fragment is the target address where the linker expects
the fragment to reside whenever it participates in the execution of the program.

If a fragment is position-independent or relocatable, its execution address can vary during
execution.

ELF image file view (linker output)
The ELF image file view comprises program segments and output sections:
• A load region corresponds to a program segment.
• An execution region contains one or more of the following output sections:

— RO section.
— RW section.
— XO section.
— ZI section.

One or more execution regions make up a load region.

 Note

With armlink, the maximum size of a program segment is 2GB.

When describing a memory view:
• The term root region means a region that has the same load and execution addresses.
• Load regions are equivalent to ELF segments.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

The following figure shows the relationship between the views at each link stage:

Linker view ELF object file view

Load Region 1

Section Header Table
(optional)

ELF Header

Load Region 2

Section Header Table

ELF Header

Program Header Table Program Header Table
(optional)

Input Section 1.1.1

Input Section 1.2.1

Input Section 1.3.1

Input Section 1.1.2

...

...

Execution Region 1

Execution Region 2

Input Section 1.3.2

Input Section n

Input Section 2.1.1

...

Input Section 2.1.2

...

Input Section 2.1.3

...

ELF image file view

Segment 1 (Load Region 1)

Section Header Table
(optional)

ELF Header

Segment 2 (Load Region 2)

Program Header Table

...

Output sections 1.1

Output section 2.1

Output sections 1.2

Output sections 1.3

Figure 3-1 Relationship between sections, regions, and segments

Related concepts
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

Related information
Changing to the 64-bit linker.

3.1.2 Input sections, output sections, regions, and program segments

An object or image file is constructed from a hierarchy of input sections, output sections, regions, and
program segments.

Input section
An input section is an individual section from an input object file. It contains code, initialized
data, or describes a fragment of memory that is not initialized or that must be set to zero before
the image can execute. These properties are represented by attributes such as RO, RW, XO, and
ZI. These attributes are used by armlink to group input sections into bigger building blocks
called output sections and regions.

Output section
An output section is a group of input sections that have the same RO, RW, XO, or ZI attribute,
and that are placed contiguously in memory by the linker. An output section has the same
attributes as its constituent input sections. Within an output section, the input sections are sorted
according to the section placement rules.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395704777.html

Region
A region contains up to three output sections depending on the contents and the number of
sections with different attributes. By default, the output sections in a region are sorted according
to their attributes:
• If no XO output sections are present, then the RO output section is placed first, followed by

the RW output section, and finally the ZI output section.
• If all code in the execution region is execute-only, then an XO output section is placed first,

followed by the RW output section, and finally the ZI output section.

A region typically maps onto a physical memory device, such as ROM, RAM, or peripheral.
You can change the order of output sections using scatter-loading.

Program segment
A program segment corresponds to a load region and contains execution regions. Program
segments hold information such as text and data.

 Note

With armlink, the maximum size of a program segment is 2GB.

Considerations when execute-only sections are present
Be aware of the following when execute-only (XO) sections are present:
• You can mix XO and non-XO sections in the same execution region. In this case, the XO section

loses its XO property and results in the output of a RO section.
• If an input file has one or more XO sections then the linker generates a separate XO ELF execution

region if the XO and RO sections are in distinct regions. In the final image, the XO execution region
immediately precedes the RO execution region, unless otherwise specified by a scatter file or the
--xo_base option.

Related concepts
3.1.1 Views of the image at each link stage on page 3-34.
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.
3.3 Section placement with the linker on page 3-49.

Related information
Changing to the 64-bit linker.

3.1.3 Load view and execution view of an image

Image regions are placed in the system memory map at load time. The location of the regions in memory
might change during execution.

Before you can execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might have to be copied
from its load address in ROM to its execution address in RAM.

The memory map of an image has the following distinct views:

Load view
Describes each image region and section in terms of the address where it is located when the
image is loaded into memory, that is, the location before image execution starts.

Execution view
Describes each image region and section in terms of the address where it is located during image
execution.

The following figure shows these views for an image without an execute-only (XO) section:

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395704777.html

RW section

RO section RO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

Figure 3-2 Load and execution memory maps for an image without an XO section

The following figure shows load and execution views for an image with an XO section:

RW section

RO section

XO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

XO section

RO section

XOM

Figure 3-3 Load and execution memory maps for an image with an XO section

The following table compares the load and execution views:

Table 3-1 Comparing load and execution views

Load Description Execution Description

Load
address

The address where a section or region is loaded into
memory before the image containing it starts executing.
The load address of a section or a non-root region can
differ from its execution address.

Execution
address

The address where a section or region is
located while the image containing it is
being executed.

Load region A load region describes the layout of a contiguous chunk
of memory in load address space.

Execution region An execution region describes the layout
of a contiguous chunk of memory in
execution address space.

Related concepts
3.1.1 Views of the image at each link stage on page 3-34.
3.1.4 Methods of specifying an image memory map with the linker on page 3-38.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.3 Section placement with the linker on page 3-49.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

3.1.4 Methods of specifying an image memory map with the linker

An image can consist of any number of regions and output sections. Regions can have different load and
execution addresses.

When constructing the memory map of an image, armlink must have information about:

• How input sections are grouped into output sections and regions.
• Where regions are to be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to pass this
information to armlink:

Command-line options for simple memory map descriptions
You can use the following options for simple cases where an image has only one or two load
regions and up to three execution regions:
• --first.
• --last.
• --ro_base.
• --rw_base.
• --ropi.
• --rwpi.
• --split.
• --rosplit.
• --xo_base.
• --zi_base.

These options provide a simplified notation that gives the same settings as a scatter-loading
description for a simple image. However, no limit checking for regions is available when using
these options.

 Note

--xo_base cannot be used with --ropi or --rwpi.

Scatter file for complex memory map descriptions
A scatter file is a textual description of the memory layout and code and data placement. It is
used for more complex cases where you require complete control over the grouping and
placement of image components. To use a scatter file, specify --scatter=filename at the
command-line.

 Note

You cannot use --scatter with the other memory map related command-line options.

Table 3-2 Comparison of scatter file and equivalent command-line options

Scatter file Equivalent command-line options

LR1 0x0000 0x20000
{

 ER_RO 0x0 0x2000
 {

--ro_base=0x0

 init.o (INIT, +FIRST)
 *(+RO)
 }

--first=init.o(init)

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

Table 3-2 Comparison of scatter file and equivalent command-line options (continued)

Scatter file Equivalent command-line options

 ER_RW 0x400000
 {
 *(+RW)
 }

--rw_base=0x400000

 ER_ZI 0x405000
 {
 *(+ZI)
 }
}

--zi_base=0x405000

LR_XO 0x8000 0x4000
{

 ER_XO 0x8000
 {
 *(XO)
 }
}

--xo_base=0x8000

 Note

If XO sections are present, a separate load and execution region is created only when you specify
--xo_base. If you do not specify --xo_base, then the ER_XO region is placed in the LR1 region at the
address specified by --ro_base. The ER_RO region is then placed immediately after the ER_XO region.

Related concepts
3.1.3 Load view and execution view of an image on page 3-36.
3.2 Simple images on page 3-42.
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
12.62 --first=section_id on page 12-315.
12.80 --last=section_id on page 12-337.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.125 --scatter=filename on page 12-382.
12.135 --split on page 12-394.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.

3.1.5 Image entry points

An entry point in an image is the location that is loaded into the PC. It is the location where program
execution starts. Although there can be more than one entry point in an image, you can specify only one
when linking.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

Not every ELF file has to have an entry point. Multiple entry points in a single ELF file are not
permitted.

 Note

For embedded Cortex-M programs, the program starts at whatever value is loaded into the PC from the
Reset vector. Typically, the Reset vector points to the CMSIS Reset_Handler function.

Types of entry point

There are two distinct types of entry point:

Initial entry point
The initial entry point for an image is a single value that is stored in the ELF header file. For
programs loaded into RAM by an operating system or boot loader, the loader starts the image
execution by transferring control to the initial entry point in the image.

An image can have only one initial entry point. The initial entry point can be, but is not required
to be, one of the entry points set by the ENTRY directive.

Entry points set by the ENTRY directive
You can select one of many possible entry points for an image. An image can have only one
entry point.

You create entry points in objects with the ENTRY directive in an assembler file. In embedded
systems, typical use of this directive is to mark code that is entered through the processor
exception vectors, such as RESET, IRQ, and FIQ.

The directive marks the output code section with an ENTRY keyword that instructs the linker not
to remove the section when it performs unused section elimination.

For C and C++ programs, the __main() function in the C library is also an entry point.

If an embedded image is to be used by a loader, it must have a single initial entry point specified
in the header. Use the --entry command-line option to select the entry point.

The initial entry point for an image

There can be only one initial entry point for an image, otherwise linker warning L6305W is output.

The initial entry point must meet the following conditions:

• The image entry point must always lie within an execution region.
• The execution region must not overlay another execution region, and must be a root execution region.

That is, where the load address is the same as the execution address.

If you do not use the --entry option to specify the initial entry point then:

• If the input objects contain only one entry point set by the ENTRY directive, the linker uses that entry
point as the initial entry point for the image.

• The linker generates an image that does not contain an initial entry point when either:
— More than one entry point has been specified by using the ENTRY directive.
— No entry point has been specified by using the ENTRY directive.

For embedded applications with ROM at zero use --entry 0x0, or optionally 0xFFFF0000 for
processors that are using high vectors.

 Note

Some processors, such as Cortex-M7, can boot from a different address in some configurations.

Related concepts
7.2 Root execution regions on page 7-124.

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

Related references
12.50 --entry=location on page 12-303.

Related information
ENTRY.
List of the armlink error and warning messages .

3 Image Structure and Generation
3.1 The structure of an ARM ELF image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496-/dom1365073159742.html

3.2 Simple images
A simple image consists of a number of input sections of type RO, RW, XO, and ZI. The linker collates
the input sections to form the RO, RW, XO, and ZI output sections.

This section contains the following subsections:
• 3.2.1 Types of simple image on page 3-42.
• 3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.
• 3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.
• 3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

on page 3-46.

3.2.1 Types of simple image

The types of simple image the linker can create depends on how the output sections are arranged within
load and execution regions.

The types are:

Type 1
One region in load view, four contiguous regions in execution view. Use the --ro_base option
to create this type of image.

Any XO sections are placed in an ER_XO region at the address specified by --ro_base, with
the ER_RO region immediately following the ER_XO region.

Type 2
One region in load view, four non-contiguous regions in execution view. Use the --ro_base and
--rw_base options to create this type of image.

Type 3
Two regions in load view, four non-contiguous regions in execution view. Use the --ro_base,
--rw_base, and --split options to create this type of image.

For all the simple image types when --xo_base is not specified:
• If any XO sections are present, the first execution region contains the XO output section. The address

specified by --ro_base is used as the base address of this output section.
• The second execution region contains the RO output section. This output section immediately follows

an XO output.
• The third execution region contains the RW output section, if present.
• The fourth execution region contains the ZI output section, if present.

These execution regions are referred to as, XO, RO, RW, and ZI execution regions.

When you specify --xo_base, then XO sections are placed in a separate load and execution region.

However, you can also use the --rosplit option for a Type 3 image. This option splits the default load
region into two RO output sections, one for code and one for data.

You can also use the --zi_base command-line option to specify the base address of a ZI execution
region for Type 1 and Type 2 images. This option is ignored if you also use the --split command-line
option that is required for Type 3 images.

You can also create simple images with scatter files.

Related concepts
7.13 Equivalent scatter-loading descriptions for simple images on page 7-164.
3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.
3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.
3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions
on page 3-46.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

Related references
12.118 --ro_base=address on page 12-375.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.125 --scatter=filename on page 12-382.
12.135 --split on page 12-394.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.

3.2.2 Type 1 image structure, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and three default execution regions,
ER_RO, ER_RW, ER_ZI. These are placed contiguously in the memory map. An additional ER_XO
execution region is created only if any input section is execute-only.

This approach is suitable for systems that load programs into RAM, for example, an OS bootloader or a
desktop system. The following figure shows the load and execution view for a Type 1 image without
execute-only (XO) code:

RO output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution viewLoad view

0x8000

RAM

RW output section

0x0000

--ro-base value

ZI execution
region

RO execution
region

Figure 3-4 Simple Type 1 image

Use the following command for images of this type:

armlink --ro_base 0x8000

 Note

0x8000 is the default address, so you do not have to specify --ro_base for the example.

Load view

The single load region consists of the RO and RW output sections, placed consecutively. The RO and
RW execution regions are both root regions. The ZI output section does not exist at load time. It is
created before execution, using the output section description in the image file.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged contiguously.
The execution addresses of the RO and RW regions are the same as their load addresses, so nothing has
to be moved from its load address to its execution address. However, the ZI execution region that
contains the ZI output section is created at run-time.

Use armlink option --ro_base address to specify the load and execution address of the region
containing the RO output. The default address is 0x8000.

Use the --zi_base command-line option to specify the base address of a ZI execution region.

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address that is specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions

For images that contain XO sections, the XO execution region is placed at the address that is specified by
--ro_base. The RO, RW, and ZI execution regions are placed contiguously and immediately after the
XO execution region.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

Related references
12.118 --ro_base=address on page 12-375.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.

3.2.3 Type 2 image structure, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region, and three execution regions in execution view. The RW
execution region is not contiguous with the RO execution region.

This approach is used, for example, for ROM-based embedded systems, where RW data is copied from
ROM to RAM at startup. The following figure shows the load and execution view for a Type 2 image
without execute-only (XO) code:

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

RO output section

RW output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution viewLoad view

RAM

ROM

0x0000
--ro-base value

--rw-base value0xA000

Copy/
decompress

ZI execution
region

RO execution
region

Figure 3-5 Simple Type 2 image

Use the following command for images of this type:

armlink --ro_base 0x0 --rw_base 0xA000

Load view

In the load view, the single load region consists of the RO and RW output sections placed consecutively,
for example, in ROM. Here, the RO region is a root region, and the RW region is non-root. The ZI output
section does not exist at load time. It is created at runtime.

Execution view

In the execution view, the first execution region contains the RO output section and the second execution
region contains the RW and ZI output sections.

The execution address of the region containing the RO output section is the same as its load address, so
the RO output section does not have to be moved. That is, it is a root region.

The execution address of the region containing the RW output section is different from its load address,
so the RW output section is moved from its load address (from the single load region) to its execution
address (into the second execution region). The ZI execution region, and its output section, is placed
contiguously with the RW execution region.

Use armlink options --ro_base address to specify the load and execution address for the RO output
section, and --rw_base address to specify the execution address of the RW output section. If you do
not use the --ro_base option to specify the address, the default value of 0x8000 is used by armlink. For
an embedded system, 0x0 is typical for the --ro_base value. If you do not use the --rw_base option to
specify the address, the default is to place RW directly above RO (as in a Type 1 image).

Use the --zi_base command-line option to specify the base address of a ZI execution region.
 Note

The execution region for the RW and ZI output sections cannot overlap any of the load regions.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at the
specified address.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
3.2.2 Type 1 image structure, one load region and contiguous execution regions on page 3-43.

Related references
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.

3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

A Type 3 image is similar to a Type 2 image except that the single load region is split into multiple root
load regions.

The following figure shows the load and execution view for a Type 3 image without execute-only (XO)
code:

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

RW output section

RO output section
First
load
region

Load view

RAM

--ro-base
value

--rw-base
value

RW output section

RO output section

ZI execution
region

0x8000

ZI output section

Execution view

0x0000

0xE000
RW execution
region

RO execution
region

Second
load
region

Figure 3-6 Simple Type 3 image

Use the following command for images of this type:

armlink --split --ro_base 0x8000 --rw_base 0xE000

Load view

In the load view, the first load region consists of the RO output section, and the second load region
consists of the RW output section. The ZI output section does not exist at load time. It is created before
execution, using the description of the output section contained in the image file.

Execution view

In the execution view, the first execution region contains the RO output section, the second execution
region contains the RW output section, and the third execution region contains the ZI output section.

The execution address of the RO region is the same as its load address, so the contents of the RO output
section do not have to be moved or copied from their load address to their execution address.

The execution address of the RW region is also the same as its load address, so the contents of the RW
output section are not moved from their load address to their execution address. However, the ZI output
section is created at run-time and is placed contiguously with the RW region.

Specify the load and execution address using the following linker options:

--ro_base address
Instructs armlink to set the load and execution address of the region containing the RO section
at a four-byte aligned address, for example, the address of the first location in ROM. If you do
not use the --ro_base option to specify the address, the default value of 0x8000 is used by
armlink.

--rw_base address
Instructs armlink to set the execution address of the region containing the RW output section at
a four-byte aligned address. If this option is used with --split, this specifies both the load and
execution addresses of the RW region, for example, a root region.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

--split
Splits the default single load region, that contains both the RO and RW output sections, into two
root load regions:
• One containing the RO output section.
• One containing the RW output section.

You can then place them separately using --ro_base and --rw_base.

Load view for images containing XO sections

For images that contain XO sections, the XO output section is placed at the address specified by
--ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

If you use --split, then the one load region contains the XO and RO output sections, and the other
contains the RW output section.

Execution view for images containing XO sections

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you specify --split, then the XO and RO execution regions are placed in the first load region, and the
RW and ZI execution regions are placed in the second load region.

If you specify --xo_base address, then the XO execution region is placed at the specified address in a
separate load region from the RO execution region.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
3.2.3 Type 2 image structure, one load region and non-contiguous execution regions on page 3-44.

Related references
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.135 --split on page 12-394.

3 Image Structure and Generation
3.2 Simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.3 Section placement with the linker
The linker places input sections in a specific order by default, but you can specify an alternative sorting
order if required.

This section contains the following subsections:
• 3.3.1 Default section placement on page 3-49.
• 3.3.2 Section placement with the FIRST and LAST attributes on page 3-50.
• 3.3.3 Section alignment with the linker on page 3-51.

3.3.1 Default section placement

By default, the linker places input sections in a specific order within an execution region.

The sections are placed in the following order:

1. By attribute as follows:
a. Read-only code.
b. Read-only data.
c. Read-write code.
d. Read-write data.
e. Zero-initialized data.

2. By input section name if they have the same attributes. Names are considered to be case-sensitive and
are compared in alphabetical order using the ASCII collation sequence for characters.

3. By a tie-breaker if they have the same attributes and section names. By default, it is the order that
armlink processes the section. You can override the tie-breaker and sorting by input section name
with the FIRST or LAST input section attribute.

 Note

The sorting order is unaffected by ordering of section selectors within execution regions.

These rules mean that the positions of input sections with identical attributes and names included from
libraries depend on the order the linker processes objects. This can be difficult to predict when many
libraries are present on the command line. The --tiebreaker=cmdline option uses a more predictable
order based on the order the section appears on the command line.

The base address of each input section is determined by the sorting order defined by the linker, and is
correctly aligned within the output section that contains it.

The linker produces one output section for each attribute present in the execution region:
• One execute-only (XO) section if the execution region contains only XO sections.
• One RO section if the execution region contains read-only code or data.
• One RW section if the execution region contains read-write code or data.
• One ZI section if the execution region contains zero-initialized data.

 Note

If an attempt is made to place data in an XO only execution region, then the linker generates an error.

XO sections lose the XO property if mixed with RO code in the same Execution region.

The XO and RO output sections can be protected at run-time on systems that have memory management
hardware. RO and XO sections can be placed in ROM or Flash.

Alternative sorting orders are available with the --sort=algorithm command-line option. The linker
might change the algorithm to minimize the amount of veneers generated if no algorithm is chosen.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Example

The following scatter file shows how the linker places sections:

LoadRegion 0x8000
{
 ExecRegion1 0x0000 0x4000
 {
 *(sections)
 *(moresections)
 }
 ExecRegion2 0x4000 0x2000
 {
 *(evenmoresections)
 }
}

The order of execution regions within the load region is not altered by the linker.

Handling unassigned sections

The linker might not be able to place some input sections in any execution region.

When the linker is unable to place some input sections it generates an error message. This might occur
because your current scatter file does not permit all possible module select patterns and input section
selectors.

How you fix this depends on the importance of placing these sections correctly:
• If the sections must be placed at specific locations, then modify your scatter file to include specific

module selectors and input section selectors as required.
• If the placement of the unassigned sections is not important, you can use one or more .ANY module

selectors with optional input section selectors.

Related concepts
7.2.4 Methods of placing functions and data at specific addresses on page 7-127.
7.3 Example of how to explicitly place a named section with scatter-loading on page 7-138.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
3.1 The structure of an ARM ELF image on page 3-34.
3.6 Linker-generated veneers on page 3-55.
3.3.3 Section alignment with the linker on page 3-51.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.3.2 Section placement with the FIRST and LAST attributes on page 3-50.
3.5 Linker reordering of execution regions containing Thumb code on page 3-54.

Related references
8.5.2 Syntax of an input section description on page 8-191.
12.134 --sort=algorithm on page 12-392.

3.3.2 Section placement with the FIRST and LAST attributes

You can make sure that a section is placed either first or last in its execution region. For example, you
might want to make sure the section containing the vector table is placed first in the image.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

To do this, use one of the following methods:
• If you are not using scatter-loading, use the --first and --last linker command-line options to

place input sections.
• If you are using scatter-loading, use the attributes FIRST and LAST in the scatter file to mark the first

and last input sections in an execution region if the placement order is important.
 Caution

FIRST and LAST must not violate the basic attribute sorting order. For example, FIRST RW is placed
after any read-only code or read-only data.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.
7.1 The scatter-loading mechanism on page 7-117.

Related references
8.5.2 Syntax of an input section description on page 8-191.
12.62 --first=section_id on page 12-315.
12.80 --last=section_id on page 12-337.

3.3.3 Section alignment with the linker

The linker ensures each input section starts at an address that is a multiple of the input section alignment.

When input sections have been ordered and before the base addresses are fixed, armlink inserts padding,
if required, to force each input section to start at an address that is a multiple of the input section
alignment.

The linker permits ELF program headers and output sections to be aligned on a four-byte boundary
regardless of the maximum alignment of the input sections. This enables armlink to minimize the
amount of padding that it inserts into the image.

If you require strict conformance with the ELF specification then use the --no_legacyalign option. The
linker faults the base address of a region if it is not aligned so padding might be inserted to ensure
compliance. When --no_legacyalign is used the region alignment is the maximum alignment of any
input section contained by the region.

If you are using scatter-loading, you can increase the alignment of a load region or execution region with
the ALIGN attribute. For example, you can change an execution region that is normally four-byte aligned
to be eight-byte aligned. However, you cannot reduce the natural alignment. For example, you cannot
force two-byte alignment on a region that is normally four-byte aligned.

Related concepts
7.9 Creation of regions on page boundaries on page 7-159.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.3.3 Load region attributes on page 8-180.
12.82 --legacyalign, --no_legacyalign on page 12-339.
8.4.3 Execution region attributes on page 8-186.

3 Image Structure and Generation
3.3 Section placement with the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

3.4 Linker support for creating demand-paged files
The linker provides features for you to create files that are memory mapped.

In operating systems that support virtual memory, an ELF file can be loaded by mapping the ELF files
into the address space of the process loading the file. When a virtual address in a page that is mapped to
the file is accessed, the operating system loads that page from disk. ELF files that are to be used this way
must conform to a certain format.

Use the --paged command-line option to enable demand paging mode. This helps produce ELF files that
can be demand paged efficiently.

 Note

ELF files produced with the --sysv option are already demand-paged compliant. --arm_linux also
implies --sysv.

The basic constraints for a demand-paged ELF file are:

• There is no difference between the load and execution address for any output section.
• All PT_LOAD Program Headers have a minimum alignment, pt_align, of the page size for the

operating system.
• All PT_LOAD Program Headers have a file offset, pt_offset, that is congruent to the virtual

address (pt_addr) modulo pt_align.

When you specify --paged:
• The linker automatically generates the Program Headers from the execution region base addresses.

The usual situation where one load region generates one Program Header no longer applies.
• The operating system page size is controlled by the --pagesize command-line option.
• The linker attempts to place the ELF Header and Program Header in the first PT_LOAD program

header, if space is available.

Example

This is an example of a demand paged scatter file:

LR1 GetPageSize() + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +GetPageSize()
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

Related concepts
7.9 Creation of regions on page boundaries on page 7-159.
7.1 The scatter-loading mechanism on page 7-117.

Related references
12.7 --arm_linux on page 12-256.
12.125 --scatter=filename on page 12-382.
8.6.7 GetPageSize() function on page 8-200.
12.104 --paged on page 12-361.
12.105 --pagesize=pagesize on page 12-362.

3 Image Structure and Generation
3.4 Linker support for creating demand-paged files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

12.151 --sysv on page 12-410.
8.6.8 SizeOfHeaders() function on page 8-201.

3 Image Structure and Generation
3.4 Linker support for creating demand-paged files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.5 Linker reordering of execution regions containing Thumb code
The linker reorders execution regions containing Thumb code only if the size of the Thumb code exceeds
the branch range.

If the code size of an execution region exceeds the maximum branch range of a Thumb instruction, then
armlink reorders the input sections using a different sorting algorithm. This sorting algorithm attempts
to minimize the amount of veneers generated.

The Thumb branch instructions that can be veneered are always encoded as a pair of 16-bit instructions.
Processors that support Thumb-2 technology have a range of 16MB. Processors that do not support
Thumb-2 technology have a range of 4MB.

To disable section reordering, use the --no_largeregions command-line option.

Related concepts
3.6 Linker-generated veneers on page 3-55.

Related references
12.79 --largeregions, --no_largeregions on page 12-336.

3 Image Structure and Generation
3.5 Linker reordering of execution regions containing Thumb code

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.6 Linker-generated veneers
Veneers are small sections of code generated by the linker and inserted into your program.

This section contains the following subsections:
• 3.6.1 What is a veneer? on page 3-55.
• 3.6.2 Veneer sharing on page 3-55.
• 3.6.3 Veneer types on page 3-56.
• 3.6.4 Generation of position independent to absolute veneers on page 3-57.
• 3.6.5 Reuse of veneers when scatter-loading on page 3-57.

3.6.1 What is a veneer?

A veneer extends the range of a branch by becoming the intermediate target of the branch instruction.

The branch instruction BL is PC-relative and has a limited branch range. The range of a BL instruction is
32MB for ARM instructions. Processors that support Thumb-2 technology have a range of 16MB.
Processors that do not support Thumb-2 technology have a range of 4MB.

When a branch involves a destination beyond the branching range of the BL instruction, armlink must
generate a veneer. The veneer then sets the PC to the destination address. This enables the veneer to
branch anywhere in the 4GB address space. If the veneer is inserted between ARM and Thumb code, the
veneer also handles the instruction set state change.

The linker can generate the following veneer types depending on what is required:

• Inline veneers.
• Short branch veneers.
• Long branch veneers.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is generated only if no
other existing veneer can satisfy the requirements. If two input sections contain a long branch to the same
destination, only one veneer is generated that is shared by both branch instructions. A veneer is only
shared in this way if it can be reached by both sections.

If you are using ARMv4T, armlink generates veneers when a branch involves change of state between
ARM and Thumb. You still get interworking veneers for ARMv5TE and later when using conditional
branches, because there is no conditional BL instruction. Veneers for state changes are also required for B
instructions in ARMv5 and later.

 Note

If execute-only (XO) sections are present, only XO-compliant veneer code is created in XO regions.

Related concepts
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

3.6.2 Veneer sharing

If multiple objects result in the same veneer being created, the linker creates a single instance of that
veneer. The veneer is then shared by those objects.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

You can use the command-line option --no_veneershare to specify that veneers are not shared. This
assigns ownership of the created veneer section to the object that created the veneer and so enables you
to select veneers from a particular object in a scatter file, for example:

LR 0x8000
{
 ER_ROOT +0
 {
 object1.o(Veneer$$Code)
 }
}

Be aware that veneer sharing makes it impossible to assign an owning object. Using --no_veneershare
provides a more consistent image layout. However, this comes at the cost of a significant increase in
code size, because of the extra veneers generated by the linker.

Related concepts
3.6.1 What is a veneer? on page 3-55.
7.1 The scatter-loading mechanism on page 7-117.

Related references
Chapter 8 Scatter File Syntax on page 8-175.
12.165 --veneershare, --no_veneershare on page 12-424.

3.6.3 Veneer types

Veneers have different capabilities and use different code pieces.

The linker selects the most appropriate, smallest, and fastest depending on the branching requirements:

• Inline veneer:
— Performs only a state change.
— The veneer must be inserted just before the target section to be in range.
— An ARM-Thumb interworking veneer has a range of 256 bytes so the function entry point must

appear within 256 bytes of the veneer.
— A Thumb-ARM interworking veneer has a range of zero bytes so the function entry point must

appear immediately after the veneer.
— An inline veneer is always position-independent.

• Short branch veneer:
— An interworking Thumb to ARM short branch veneer has a range of 32MB, the range for an

ARM instruction.
— A short branch veneer is always position-independent.
— A Range Extension Thumb to Thumb short branch veneer for processors that support Thumb-2

technology.
• Long branch veneer:

— Can branch anywhere in the address space.
— All long branch veneers are also interworking veneers.
— There are different long branch veneers for absolute or position-independent code.

When you are using veneers be aware of the following:

• The inline veneer limitations mean that you cannot move inline veneers out of an execution region
using a scatter file. Use the command-line option --no_inlineveneer to prevent the generation of
inline veneers.

• All veneers cannot be collected into one input section because the resulting veneer input section
might not be within range of other input sections. If the sections are not within addressing range, long
branching is not possible.

• The linker generates position-independent variants of the veneers automatically. However, because
such veneers are larger than non position-independent variants, the linker only does this where
necessary, that is, where the source and destination execution regions are both position-independent
and are rigidly related.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

Veneers are generated to optimize code size. armlink, therefore, chooses the variant in the order of
preference:
1. Inline veneer.
2. Short branch veneer.
3. Long veneer.

Related concepts
3.6.1 What is a veneer? on page 3-55.

Related references
12.96 --max_veneer_passes=value on page 12-353.
12.76 --inlineveneer, --no_inlineveneer on page 12-332.

3.6.4 Generation of position independent to absolute veneers

Calling from position independent code to absolute code requires a veneer.

The normal call instruction encodes the address of the target as an offset from the calling address. When
calling from position independent (PI) code to absolute code the offset cannot be calculated at link time,
so the linker must insert a long-branch veneer.

The generation of PI to absolute veneers can be controlled using the --piveneer option, that is set by
default. When this option is turned off using --no_piveneer, the linker generates an error when a call
from PI code to absolute code is detected.

Related concepts
3.6.1 What is a veneer? on page 3-55.

Related references
12.96 --max_veneer_passes=value on page 12-353.
12.107 --piveneer, --no_piveneer on page 12-364.

3.6.5 Reuse of veneers when scatter-loading

The linker reuses veneers whenever possible, but there are some limitations on the reuse of veneers in
protected load regions and overlaid execution regions.

A scatter file enables you to create regions that share the same area of RAM:
• If you use the PROTECTED keyword for a load region it prevents:

— Overlapping of load regions.
— Veneer sharing.
— String sharing with the --merge option.

• If you use the OVERLAY keyword for a region, no other execution region can reuse a veneer placed in
an overlay execution region.

If it is not possible to reuse a veneer, new veneers are created instead. Unless you have instructed the
linker to place veneers somewhere specific using scatter-loading, a veneer is usually placed in the
execution region that contains the call requiring the veneer. However, in some situations the linker has to
place the veneer in an adjacent execution region, either to maximize sharing opportunities or for a short
branch veneer to reach its target.

Related concepts
3.6.1 What is a veneer? on page 3-55.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

Related references
8.3.3 Load region attributes on page 8-180.

3 Image Structure and Generation
3.6 Linker-generated veneers

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

3.7 Command-line options used to control the generation of C++ exception
tables

You can control the generation of C++ exception tables using command-line options.

By default, or if the option --exceptions is specified, the image can contain exception tables. Exception
tables are discarded silently if no code throws an exception. However, if the option --no_exceptions is
specified, the linker generates an error if any exceptions tables are present after unused sections have
been eliminated.

You can use the --no_exceptions option to ensure that your code is exceptions free. The linker
generates an error message to highlight that exceptions have been found and does not produce a final
image.

However, you can use the --no_exceptions option with the --diag_warning option to downgrade the
error message to a warning. The linker produces a final image but also generates a message to warn you
that exceptions have been found.

The linker can create exception tables for legacy objects that contain debug frame information. The
linker can do this safely for C and assembly language objects. By default, the linker does not create
exception tables. This is the same as using the linker option --exceptions_tables=nocreate.

The linker option --exceptions_tables=unwind enables the linker to use the .debug_frame
information to create a register-restoring unwinding table for each section in your image that does not
already have an exception table. If this is not possible, the linker creates a nounwind table instead.

Use the linker option --exceptions_tables=cantunwind to create a nounwind table for each section in
your image that does not already have an exception table.

 Note

Be aware of the following:
• With the default settings, that is, --exceptions --exceptions_tables=nocreate, it is not safe to

throw an exception through C or assembly code, unless the C code is compiled with the option
--exceptions.

• The linker can generate frame unwinding instructions from objects with .debug_frame information.
Frame unwinding is sufficient for C and assembler code. It is not sufficient for C++ code, because it
does not call the destructors for the objects on the stack that is being unwound.

The cleanup code for C++ must be generated by the compiler with the --exceptions option.

Related references
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.52 --exceptions, --no_exceptions on page 12-305.
12.53 --exceptions_tables=action on page 12-306.

Related information
--exceptions, --no_exceptions compiler option.

3 Image Structure and Generation
3.7 Command-line options used to control the generation of C++ exception tables

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124917660.html

3.8 Weak references and definitions
Weak references and definitions provide additional flexibility in the way the linker includes various
functions and variables in a build.

Weak references and definitions are typically references to library functions.

Weak references
If the linker cannot resolve normal, non-weak, references to symbols from the content loaded so
far, it attempts to do so by finding the symbol in a library:
• If it is unable to find such a reference, the linker reports an error.
• If such a reference is resolved, a section that is reachable from an entry point by at least one

non-weak reference is marked as used. This ensures the section is not removed by the linker
as an unused section. Each non-weak reference must be resolved by exactly one definition. If
there are multiple definitions, the linker reports an error.

Symbols can be given weak binding by the compiler and assembler.

The linker does not load an object from a library to resolve a weak reference. It is able to resolve
the weak reference only if the definition is included in the image for other reasons. The weak
reference does not cause the linker to mark the section containing the definition as used, so it
might be removed by the linker as unused. The definition might already exist in the image for
several reasons:

• The symbol has a non-weak reference from somewhere else in the code.
• The symbol definition exists in the same ELF section as a symbol definition that is included

for any of these reasons.
• The symbol definition is in a section that has been specified using --keep, or contains an

ENTRY point.
• The symbol definition is in an object file included in the link and the --no_remove option is

used. The object file is not referenced from a library unless that object file within the library
is explicitly included on the linker command-line.

In summary, a weak reference is resolved if the definition is already included in the image, but it
does not determine if that definition is included.

An unresolved weak function call is replaced with either:
• A no-operation instruction, NOP.
• A branch with link instruction, BL, to the following instruction. That is, the function call just

does not happen.

Weak definitions
A function definition, or an exported label in assembler, can also be marked as weak, as can a
variable definition. In this case, a weak symbol definition is created in the object file.

You can use a weak definition to resolve any reference to that symbol in the same way as a
normal definition. However, if another non-weak definition of that symbol exists in the build,
the linker uses that definition instead of the weak definition, and does not produce an error due
to multiply-defined symbols.

Example of a weak reference

A library contains a function foo(), that is called in some builds of an application but not in others. If it
is used, init_foo() must be called first. You can use weak references to automate the call to
init_foo().

The library can define init_foo() and foo() in the same ELF section. The application initialization
code must call init_foo() weakly. If the application includes foo() for any reason, it also includes
init_foo() and this is called from the initialization code. In any builds that do not include foo(), the
call to init_foo() is removed by the linker.

3 Image Structure and Generation
3.8 Weak references and definitions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

Typically, the code for multiple functions defined within a single source file is placed into a single ELF
section by the compiler. However, certain build options might alter this behavior, so you must use them
with caution if your build is relying on the grouping of files into ELF sections:
• The compiler command-line option --split_sections results in each function being placed in its

own section. In this example, compiling the library with this option results in foo() and init_foo()
being placed in separate sections. Therefore init_foo() is not automatically included in the build
due to a call to foo().

• The linker feedback mechanism, --feedback, records init_foo() as being unused during the link
step. This causes the compiler to place init_foo() into its own section during subsequent
compilations, so that it can be removed.

• The compiler directive #pragma arm section also instructs the compiler to generate a separate ELF
section for some functions.

In this example, there is no need to rebuild the initialization code between builds that include foo() and
do not include foo(). There is also no possibility of accidentally building an application with a version
of the initialization code that does not call init_foo(), and other parts of the application that call foo().

An example of foo.c source code that is typically built into a library is:

void init_foo()
{
 // Some initialization code
}
void foo()
{
 // A function that is included in some builds
 // and requires init_foo() to be called first.
}

An example of init.c is:

__weak void init_foo(void);
int main(void)
{
 init_foo();
 // Rest of code that may make calls to foo() directly or indirectly.
}

An example of a weak reference generated by the assembler is:

init.s:
 IMPORT init_foo WEAK
 AREA init, CODE, readonly
 BL init_foo
 ;Rest of code
 END

Example of a weak definition

A simple or dummy implementation of a function can be provided as a weak definition. This enables you
to build software with defined behavior without having to provide a full implementation of the function.
It also enables you to provide a full implementation for some builds if required.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.
3.12 How the linker resolves references on page 3-67.

Related references
12.57 --feedback=filename on page 12-310.
12.78 --keep=section_id on page 12-334.
12.117 --remove, --no_remove on page 12-374.

Related information
--split_sections compiler option.
__weak.

3 Image Structure and Generation
3.8 Weak references and definitions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124944914.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124970859.html

__attribute__((weak)) function attribute.
__attribute__((weak)) variable attribute.
__attribute__((weakref("target"))) variable attribute.
#pragma arm section [section_type_list].
EXPORT or GLOBAL.
IMPORT and EXTERN.
NOP.
B.
ENTRY.
EXPORT or GLOBAL.

3 Image Structure and Generation
3.8 Weak references and definitions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124978893.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124983745.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124984010.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124985290.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290009343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290016692.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289883473.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289863797.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290009343.html

3.9 How the linker performs library searching, selection, and scanning
The linker always searches user libraries before the ARM libraries.

If you specify the --no_scanlib command-line option, the linker does not search for the default ARM
libraries and uses only those libraries that are specified in the input file list to resolve references.

The linker creates an internal list of libraries as follows:

1. Any libraries explicitly specified in the input file list are added to the list.
2. The user-specified search path is examined to identify ARM standard libraries to satisfy requests

embedded in the input objects.

The best-suited library variants are chosen from the searched directories and their subdirectories.
Libraries supplied by ARM have multiple variants that are named according to the attributes of their
members.

Be aware of the following differences between the way the linker adds object files to the image and the
way it adds libraries to the image:
• Each object file in the input list is added to the output image unconditionally, whether or not anything

refers to it. At least one object must be specified.
• A member from a library is included in the output only if:

— An object file or an already-included library member makes a non-weak reference to it.
— The linker is explicitly instructed to add it.

 Note

If a library member is explicitly requested in the input file list, the member is loaded even if it does
not resolve any current references. In this case, an explicitly requested member is treated as if it is an
ordinary object.

Unresolved references to weak symbols do not cause library members to be loaded.

Related concepts
3.10 How the linker searches for the ARM standard libraries on page 3-64.

Related references
12.78 --keep=section_id on page 12-334.
12.117 --remove, --no_remove on page 12-374.
12.124 --scanlib, --no_scanlib on page 12-381.

3 Image Structure and Generation
3.9 How the linker performs library searching, selection, and scanning

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

3.10 How the linker searches for the ARM standard libraries
The linker searches for the ARM standard libraries using information specified on the command-line, or
by examining environment variables.

By default, the linker searches for the ARM standard libraries in ../lib, relative to the location of the
armlink executable. Use the --libpath command-line option or the ARMLIB or ARMCC5LIB environment
variables to specify a different location.

Some libraries are stored in subdirectories. If the compiler requires a library from a particular
subdirectory, it adds an import of a special symbol to identify the subdirectory to the linker. The names
of subdirectories are placed in each compiled object by using a symbol of the form Lib$$Request$
$sub_dir_name.

The --libpath command-line option

Use the --libpath command-line option with a comma-separated list of parent directories. This list
must end with the parent directory of the ARM library directories armlib and cpplib.

The linker searches subdirectories given by the symbol Lib$$Request$$sub_dir_name, if you include
the path separator character on the end of the library path:

• \ on Windows.
• / on Red Hat Linux.

For example, for --libpath=mylibs\ and the symbol Lib$$Request$$armlib the linker searches the
directories:

mylibs
mylibs\armlib

 Note

When the linker command-line option --libpath is used, any paths specified by the ARMCC5LIB variable
are not searched.

The sequential nature of the search ensures that armlink chooses the library that appears earlier in the
list if two or more libraries define the same symbol.

The ARMCC5LIB or ARMLIB environment variable

You can use either of the ARMLIB or ARMCC5LIB environment variables to specify a library path.

The linker searches subdirectories given by the symbol Lib$$Request$$sub_dir_name, if you include
the path separator character on the end of the path specified in ARMCC5LIB:
• \ on Windows.
• / on Red Hat Linux.

For example, if ARMCC5LIB is set to install_directory\lib\, the linker searches the directories:

lib
lib\armlib
lib\cpplib

Library search order
The linker searches for libraries in the following order:
1. At the location specified with the command-line option --libpath.
2. At the location specified in ARMCC5LIB.
3. At the location specified in ARMLIB.
4. In ../lib, relative to the location of the armlink executable.

3 Image Structure and Generation
3.10 How the linker searches for the ARM standard libraries

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

How the linker selects ARM library variants

The ARM Compiler toolchain includes a number of variants of each of the libraries, that are built using
different build options. For example, architecture versions, endianness, and instruction set. The variant of
the ARM library is coded into the library name. The linker must select the best-suited variant from each
of the directories identified during the library search.

The linker accumulates the attributes of each input object and then selects the library variant best suited
to those attributes. If more than one of the selected libraries are equally suited, the linker retains the first
library selected and rejects all others.

The --no_scanlib option prevents the linker from searching the directories for the ARM standard
libraries.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.

Related references
12.83 --libpath=pathlist on page 12-340.

Related information
C and C++ library naming conventions.
The C and C++ libraries.
Toolchain environment variables.

3 Image Structure and Generation
3.10 How the linker searches for the ARM standard libraries

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938936497.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122846404.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

3.11 Specifying user libraries when linking
You can specify your own libraries when linking.

To specify user libraries, either:

• Include them with path information explicitly in the input file list.
• Add the --userlibpath option to the armlink command line with a comma-separated list of

directories, and then specify the names of the libraries as input files.

You can use the --library=name option to specify static libraries, libname.a, or dynamic shared
objects, libname.so. Dynamic searching is controlled by the --search_dynamic_libraries option.
For example, the following command searches for libfoo.so before libfoo.a:

armlink --arm_linux --shared --fpic --search_dynamic_libraries --library=foo

If you do not specify a full path name to a library on the command line, the linker tries to locate the
library in the directories specified by the --userlibpath option. For example, if the directory /mylib
contains my_lib.a and other_lib.a, add /mylib/my_lib.a to the input file list with the command:

armlink --userlibpath /mylib my_lib.a *.o

If you add a particular member from a library this does not add the library to the list of searchable
libraries used by the linker. To load a specific member and add the library to the list of searchable
libraries include the library filename on its own as well as specifying library(member). For example,
to load strcmp.o and place mystring.lib on the searchable library list add the following to the input
file list:

mystring.lib(strcmp.o) mystring.lib

 Note

Any search paths used for the ARM standard libraries specified by either the linker command-line option
--libpath or the ARMLIB or ARMCC5LIB environment variables are not searched for user libraries.

Related concepts
3.10 How the linker searches for the ARM standard libraries on page 3-64.

Related references
12.83 --libpath=pathlist on page 12-340.
12.84 --library=name on page 12-341.
12.126 --search_dynamic_libraries, --no_search_dynamic_libraries on page 12-384.
12.161 --userlibpath=pathlist on page 12-420.

Related information
The C and C++ libraries.
Toolchain environment variables.

3 Image Structure and Generation
3.11 Specifying user libraries when linking

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122846404.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

3.12 How the linker resolves references
When the linker has constructed the list of libraries, it repeatedly scans each library in the list to resolve
references.

armlink maintains two separate lists of files. The lists are scanned in the following order to resolve all
dependencies:

1. The list of user files and libraries that have been loaded.
2. List of ARM standard libraries found in a directory relative to the armlink executable, or the

directories specified by --libpath, ARMCC5LIB, or ARMLIB.
Each list is scanned using the following process:
1. Scan each of the libraries to load the required members:

a. For each currently unsatisfied non-weak reference, search sequentially through the list of libraries
for a matching definition. The first definition found is marked for processing in step 1.b.

The sequential nature of the search ensures that the linker chooses the library that appears earlier
in the list if two or more libraries define the same symbol. This enables you to override function
definitions from other libraries, for example, the ARM C libraries, by adding your libraries to the
input file list. However you must be careful to consistently override all the symbols in a library
member. If you do not, you risk the objects from both libraries being loaded when there is a
reference to an overridden symbol and a reference to a symbol that was not overridden. This
results in a multiple symbol definition error L6200E for each overridden symbol.

b. Load the library members marked in step 1.a. As each member is loaded it might satisfy some
unresolved references, possibly including weak ones. Loading a library member might also create
new unresolved weak and non-weak references.

c. Repeat these stages until all non-weak references are either resolved or cannot be resolved by any
library.

2. If any non-weak reference remains unsatisfied at the end of the scanning operation, generate an error
message.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.
3.10 How the linker searches for the ARM standard libraries on page 3-64.

Related tasks
3.11 Specifying user libraries when linking on page 3-66.

Related references
12.83 --libpath=pathlist on page 12-340.

Related information
Toolchain environment variables.
List of the armlink error and warning messages.

3 Image Structure and Generation
3.12 How the linker resolves references

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496-/dom1365073159742.html

3.13 The strict family of linker options
The linker provides options to overcome the limitations of the standard linker checks.

The strict options are not directly related to error severity. Usually, you add a strict option because the
standard linker checks are not precise enough or are potentially noisy with legacy objects.

The strict options are:
• --strict.
• --[no_]strict_enum_size.
• --[no_]strict_flags.
• --[no_]strict_ph.
• --[no_]strict_relocations.
• --[no_]strict_symbols.
• --[no_]strict_visibility.
• --[no_]strict_wchar_size.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

3 Image Structure and Generation
3.13 The strict family of linker options

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

3.14 Avoiding the BLX (immediate) instruction issue on an ARM1176JZ-S or
ARM1176JZF-S processor

The ARM Linker can work around the possible issue on an ARM1176JZ-S or ARM1176JZF-S
processor, where a BLX (immediate) instruction might corrupt the instruction stream.

If your software is likely to run on an ARM1176JZ-S or ARM1176JZF-S processor, see the
ARM1176JZ-S™ and ARM1176JZF-S™ Programmers Advice Notice Use of BLX (immediate) for more
details.

If you decide to apply the workaround, you must use the linker option --no_blx_thumb_arm.

Related references
12.15 --blx_arm_thumb, --no_blx_arm_thumb on page 12-265.

Related information
ARM1176JZ-S and ARM1176JZF-S Programmers Advice Notice Use of BLX (immediate) (ARM UAN
0002).

3 Image Structure and Generation
3.14 Avoiding the BLX (immediate) instruction issue on an ARM1176JZ-S or ARM1176JZF-S processor

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.uan0002-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.uan0002-/index.html

Chapter 4
Linker Optimization Features

Describes the optimization features available in the ARM linker, armlink.

It contains the following sections:
• 4.1 Elimination of common debug sections on page 4-71.
• 4.2 Elimination of common groups or sections on page 4-72.
• 4.3 Elimination of unused sections on page 4-73.
• 4.4 Elimination of unused virtual functions on page 4-75.
• 4.5 About linker feedback on page 4-76.
• 4.6 Example of using linker feedback on page 4-78.
• 4.7 Optimization with RW data compression on page 4-80.
• 4.8 Function inlining with the linker on page 4-83.
• 4.9 Factors that influence function inlining on page 4-85.
• 4.10 About branches that optimize to a NOP on page 4-87.
• 4.11 Linker reordering of tail calling sections on page 4-88.
• 4.12 Restrictions on reordering of tail calling sections on page 4-89.
• 4.13 Linker merging of comment sections on page 4-90.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.1 Elimination of common debug sections
The linker can detect multiple copies of a debug section, and discard the additional copies.

In DWARF 2, the compiler and assembler generate one set of debug sections for each source file that
contributes to a compilation unit. armlink can detect multiple copies of a debug section for a particular
source file and discard all but one copy in the final image. This can result in a considerable reduction in
image debug size.

In DWARF 3, common debug sections are placed in common groups. armlink discards all but one copy
of each group with the same signature.

Related concepts
4.2 Elimination of common groups or sections on page 4-72.
4.3 Elimination of unused sections on page 4-73.
4.4 Elimination of unused virtual functions on page 4-75.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related information
--debug, --no_debug compiler option.
--debug assembler option.
The DWARF Debugging Standard web site.

4 Linker Optimization Features
4.1 Elimination of common debug sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124909829.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822713.html
http://www.dwarfstd.org/

4.2 Elimination of common groups or sections
The linker can detect multiple copies of groups and sections, and discard the additional copies.

The ARM compiler generates complete objects for linking. Therefore:

• If there are inline functions in C and C++ sources, each object contains the out-of-line copies of the
inline functions that the object requires.

• If templates are used in C++ sources, each object contains the template functions that the object
requires.

When these functions are declared in a common header file, the functions might be defined many times
in separate objects that are subsequently linked together. To eliminate duplicates, the compiler compiles
these functions into separate instances of common code sections or groups.

It is possible that the separate instances of common code sections, or groups, are not identical. Some of
the copies, for example, might be found in a library that has been built with different, but compatible,
build options, different optimization, or debug options.

If the copies are not identical, armlink retains the best available variant of each common code section, or
group, based on the attributes of the input objects. armlink discards the rest.

If the copies are identical, armlink retains the first section or group located.

You control this optimization with the following linker options:
• Use the --bestdebug option to use the largest common data (COMDAT) group (likely to give the

best debug view).
• Use the --no_bestdebug option to use the smallest COMDAT group (likely to give the smallest code

size). This is the default.

Because --no_bestdebug is the default, the final image is the same regardless of whether you
generate debug tables during compilation with --debug.

Related concepts
4.1 Elimination of common debug sections on page 4-71.
4.3 Elimination of unused sections on page 4-73.
4.4 Elimination of unused virtual functions on page 4-75.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
12.14 --bestdebug, --no_bestdebug on page 12-264.

Related information
Inline functions.
--debug, --no_debug compiler option.

4 Linker Optimization Features
4.2 Elimination of common groups or sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124226061.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124909829.html

4.3 Elimination of unused sections
Elimination of unused sections is the most significant optimization on image size that is performed by
the linker.

Unused section elimination:

• Removes unreachable code and data from the final image.
• Is suppressed in cases that might result in the removal of all sections.

To control this optimization use the --remove, --no_remove, --first, --last, and --keep linker
options.

Unused section elimination requires an entry point. Therefore, if there is no entry point specified for an
image, use the --entry linker option to specify an entry point and permit unused section elimination to
work, if it is enabled.

 Note

By default, unused section elimination is disabled if you are building DLLs with --dll, or shared
libraries with --shared. Therefore, you must explicitly include --remove to re-enable unused section
elimination.

Use the --info unused linker option to instruct the linker to generate a list of the unused sections that it
eliminates.

An input section is retained in the final image when:
• It contains an entry point.
• It is referred to, directly or indirectly, by a non-weak reference from an input section containing an

entry point.
• It is specified as the first or last input section by the --first or --last option (or a scatter-loading

equivalent).
• It is marked as unremovable by the --keep option.

 Note

Compilers usually collect functions and data together and emit one section for each category. The linker
can only eliminate a section if it is entirely unused.

You can mark a function or variable in source code with the __attribute__((used)) attribute. This
causes armcc to generate the symbol __tagsym$$used for each of the functions and variables. A section
containing a definition of __tagsym$$used is not removed by unused section elimination.

You can also use the --split_sections compiler command-line option to instruct the compiler to
generate one ELF section for each function in the source file.

Related concepts
4.1 Elimination of common debug sections on page 4-71.
4.2 Elimination of common groups or sections on page 4-72.
4.4 Elimination of unused virtual functions on page 4-75.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.8 Weak references and definitions on page 3-60.

Related references
12.117 --remove, --no_remove on page 12-374.
12.50 --entry=location on page 12-303.
12.62 --first=section_id on page 12-315.

4 Linker Optimization Features
4.3 Elimination of unused sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

12.78 --keep=section_id on page 12-334.
12.80 --last=section_id on page 12-337.
12.71 --info=topic[,topic,…] on page 12-325.

Related information
--split_sections compiler option.
__attribute__((used)) function attribute.
__attribute__((used)) variable attribute.

4 Linker Optimization Features
4.3 Elimination of unused sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124944914.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124978363.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124983230.html

4.4 Elimination of unused virtual functions
Unused virtual function elimination is a refinement of unused section elimination.

Unused section elimination efficiently removes unused functions from C code. In C++ applications,
virtual functions and RunTime Type Information (RTTI) objects are referenced by pointer tables, known
as vtables. Without extra information, the linker cannot determine which vtable entries are accessed at
runtime. This means that the standard unused section elimination algorithm used by the linker cannot
guarantee to remove unused virtual functions and RTTI objects. Virtual Function Elimination (VFE) is a
refinement of unused section elimination to reduce ROM size in images generated from C++ code. You
can use this optimization to eliminate unused virtual functions and RTTI objects from your code.

An input section that contains more that one function can only be eliminated if all the functions are
unused. The linker cannot remove unused functions from within a section.

VFE is a collaboration between the ARM compiler and the linker whereby the compiler supplies extra
information about unused virtual functions that is then used by the linker. Based on this analysis, the
linker is able to remove unused virtual functions and RTTI objects.

 Note

For VFE to work, the linker requires all objects using C++ to have VFE annotations. If the linker finds a
C++ mangled symbol name in the symbol table of an object and VFE information is not present, it turns
off the optimization.

The compiler places the extra information in sections with names beginning .arm_vfe. These sections
are ignored by the linker when it is not VFE-aware.

Related concepts
4.1 Elimination of common debug sections on page 4-71.
4.2 Elimination of common groups or sections on page 4-72.
4.3 Elimination of unused sections on page 4-73.

Related references
12.168 --vfemode=mode on page 12-427.

Related information
--rtti, --no_rtti compiler option.

4 Linker Optimization Features
4.4 Elimination of unused virtual functions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124942886.html

4.5 About linker feedback
Linker feedback is a collaboration between the compiler and linker that can increase the amount of
unused code that can be removed from an ELF image.

The feedback option produces a text file containing a list of unused functions, and functions that have
been inlined by the linker. This information can be fed back to the compiler, which can rebuild the
objects, placing these functions in their own sections. These sections can then be removed by the linker
during usual unused section elimination.

The feedback file has the following format:

;#<FEEDBACK># ARM Linker, N.nn [Build num]: Last Updated: day mmm dd hh:mm:ss yyyy
;VERSION 0.2
;FILE filename.o
unused_function <= USED 0
inlined_function <= LINKER_INLINED
…

The feedback file contains an entry for each object file. Each entry contains:

• The object filename specified as a comment:

;FILE filename.o
• A list of the functions in that file that are not used:

unused_function <= USED 0
• A list of the functions in that file that are inlined by the linker:

inlined_function <= LINKER_INLINED

To use linker feedback, specify --feedback file on the linker and compiler command lines.

 Note

The compiler issues a warning message if no feedback file exists. Therefore, you might want to leave the
--feedback file option off the first invocation of the compiler.

Additional feedback options are provided by the linker:
• If you are using scatter-loading then an executable ELF image cannot be created if your code does

not fit into the region limits described in your scatter file. In this case use the
--feedback_image=option command-line option.

• To control the information that the linker puts into the feedback file, use the --feedback_type=type
command-line option. You can control whether or not to list functions that require interworking or
unused functions.

Related concepts
4.8 Function inlining with the linker on page 4-83.

Related tasks
4.6 Example of using linker feedback on page 4-78.

Related references
Chapter 7 Scatter-loading Features on page 7-116.
12.74 --inline, --no_inline on page 12-330.
12.125 --scatter=filename on page 12-382.
12.57 --feedback=filename on page 12-310.
12.58 --feedback_image=option on page 12-311.
12.59 --feedback_type=type on page 12-312.

4 Linker Optimization Features
4.5 About linker feedback

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

Related information
--feedback=filename compiler option.
Interworking ARM and Thumb.

4 Linker Optimization Features
4.5 About linker feedback

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124919064.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358787007185.html

4.6 Example of using linker feedback
This is an example to show how linker feedback works.

Procedure
1. Create a file fb.c containing the code shown in this example:

#include <stdio.h>
void legacy(void)
{
 printf("This is a legacy function that is no longer used.\n");
}
int cubed(int i)
{
 return i*i*i;
}
int main(void)
{
 int n = 3;
 printf("%d cubed = %d\n",n,cubed(n));
 return 0;
}

2. Compile the program, and ignore the warning that the feedback file does not exist:

armcc --asm -c --feedback fb.txt fb.c

This inlines the cubed() function by default, and creates an assembler file fb.s and an object file
fb.o. In the assembler file, the code for legacy() and cubed() is still present. Because of the
inlining, there is no call to cubed() from main.

An out-of-line copy of cubed() is kept because it is not declared as static.
3. Link the object file to create the linker feedback file with the command line:

armlink --info sizes --list fbout1.txt --feedback fb.txt fb.o -o fb.axf

Linker diagnostics are output to the file fbout1.txt.

The linker feedback file identifies the source file that contains the unused functions in a comment
(not used by the compiler) and includes entries for the legacy() and cubed() functions:

;#<FEEDBACK># ARM Linker, 5.01 [Build num]: Last Updated: Date
;VERSION 0.2
;FILE fb.o
cubed <= USED 0
legacy <= USED 0

This shows that the functions are not used.
4. Repeat the compile and link stages with a different diagnostics file:

armcc --asm -c --feedback fb.txt fb.c

armlink --info sizes --list fbout2.txt fb.o -o fb.axf

5. Compare the two diagnostics files, fbout1.txt and fbout2.txt, to see the sizes of the image
components (for example, Code, RO Data, RW Data, and ZI Data). The Code component is smaller.
In the assembler file, fb.s, the legacy() and cubed() functions are no longer in the same area as the
main() function. They are compiled into their own ELF sections. Therefore, armlink can remove the
legacy() and cubed() functions from the final image.

Postrequisites

 Note

To get the maximum benefit from linker feedback you have to do a full compile and link at least twice.
However, a single compile and link using feedback from a previous build is usually sufficient.

4 Linker Optimization Features
4.6 Example of using linker feedback

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

Related concepts
4.5 About linker feedback on page 4-76.

Related references
12.57 --feedback=filename on page 12-310.
12.58 --feedback_image=option on page 12-311.
12.59 --feedback_type=type on page 12-312.
12.71 --info=topic[,topic,…] on page 12-325.
12.88 --list=filename on page 12-345.
12.125 --scatter=filename on page 12-382.

Related information
--asm compiler option.
-c compiler option.
--feedback=filename compiler option.
--inline, --no_inline compiler option.

4 Linker Optimization Features
4.6 Example of using linker feedback

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124901873.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124919064.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124927286.html

4.7 Optimization with RW data compression
RW data areas typically contain a large number of repeated values, such as zeros, that makes them
suitable for compression.

RW data compression is enabled by default to minimize ROM size.

The linker compresses the data. This data is then decompressed on the target at run time.

The ARM libraries contain some decompression algorithms and the linker chooses the optimal one to
add to your image to decompress the data areas when the image is executed. You can override the
algorithm chosen by the linker.

This section contains the following subsections:
• 4.7.1 How the linker chooses a compressor on page 4-80.
• 4.7.2 Options available to override the compression algorithm used by the linker on page 4-80.
• 4.7.3 How compression is applied on page 4-81.
• 4.7.4 Considerations when working with RW data compression on page 4-81.

4.7.1 How the linker chooses a compressor

armlink gathers information about the content of data sections before choosing the most appropriate
compression algorithm to generate the smallest image.

If compression is appropriate, armlink can only use one data compressor for all the compressible data
sections in the image. Different compression algorithms might be tried on these sections to produce the
best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

When a compressor has been chosen, armlink adds the decompressor to the code area of your image. If
the final image does not contain any compressed data, no decompressor is added.

Related concepts
4.7.2 Options available to override the compression algorithm used by the linker on page 4-80.
4.7 Optimization with RW data compression on page 4-80.
4.7.3 How compression is applied on page 4-81.
4.7.4 Considerations when working with RW data compression on page 4-81.

4.7.2 Options available to override the compression algorithm used by the linker

The linker has options to disable compression or to specify a compression algorithm to be used.

You can override the compression algorithm used by the linker by either:

• Using the --datacompressor off option to turn off compression.
• Specifying a compression algorithm.

To specify a compression algorithm, use the number of the required compressor on the linker command
line, for example:

armlink --datacompressor 2 …

Use the command-line option --datacompressor list to get a list of compression algorithms available
in the linker:

armlink --datacompressor list…
Num Compression algorithm
==
0 Run-length encoding
1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression

When choosing a compression algorithm be aware that:

4 Linker Optimization Features
4.7 Optimization with RW data compression

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

• Compressor 0 performs well on data with large areas of zero-bytes but few nonzero bytes.
• Compressor 1 performs well on data where the nonzero bytes are repeating.
• Compressor 2 performs well on data that contains repeated values.

The linker prefers compressor 0 or 1 where the data contains mostly zero-bytes (>75%). Compressor 2 is
chosen where the data contains few zero-bytes (<10%). If the image is made up only of ARM code, then
ARM decompressors are used automatically. If the image contains any Thumb code, Thumb
decompressors are used. If there is no clear preference, all compressors are tested to produce the best
overall size.

 Note

It is not possible to add your own compressors into the linker. The algorithms that are available, and how
the linker chooses to use them, might change in the future.

Related concepts
4.7 Optimization with RW data compression on page 4-80.
4.7.3 How compression is applied on page 4-81.
4.7.1 How the linker chooses a compressor on page 4-80.
4.7.4 Considerations when working with RW data compression on page 4-81.

Related references
12.34 --datacompressor=opt on page 12-287.

4.7.3 How compression is applied

The linker applies compression depending on the compression type specified, and might apply additional
compression on repeated phrases.

Run-length compression encodes data as non-repeated bytes and repeated zero-bytes. Non-repeated bytes
are output unchanged, followed by a count of zero-bytes.

Lempel-Ziv 1977 (LZ77) compression keeps track of the last n bytes of data seen. When a phrase is
encountered that has already been seen, it outputs a pair of values corresponding to:
• The position of the phrase in the previously-seen buffer of data.
• The length of the phrase.

Related concepts
4.7 Optimization with RW data compression on page 4-80.
4.7.2 Options available to override the compression algorithm used by the linker on page 4-80.
4.7.1 How the linker chooses a compressor on page 4-80.
4.7.4 Considerations when working with RW data compression on page 4-81.

Related references
12.34 --datacompressor=opt on page 12-287.

4.7.4 Considerations when working with RW data compression

There are some considerations to be aware of when working with RW data compression.

When working with RW data compression:
• Use the linker option --map to see where compression has been applied to regions in your code.
• The linker in RealView Compiler Tools (RVCT) v4.0 and later turns off RW compression if there is a

reference from a compressed region to a linker-defined symbol that uses a load address.
• If you are using an ARM processor with on-chip cache, enable the cache after decompression to

avoid code coherency problems.

4 Linker Optimization Features
4.7 Optimization with RW data compression

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

Compressed data sections are automatically decompressed at run time, providing __main is executed,
using code from the ARM libraries. This code must be placed in a root region. This is best done using
InRoot$$Sections in a scatter file.

If you are using a scatter file, you can specify that a load or execution region is not to be compressed by
adding the NOCOMPRESS attribute.

Related concepts
4.7 Optimization with RW data compression on page 4-80.
4.7.1 How the linker chooses a compressor on page 4-80.
4.7.2 Options available to override the compression algorithm used by the linker on page 4-80.
4.7.3 How compression is applied on page 4-81.

Related references
6.3.3 Load$$ execution region symbols on page 6-102.
Chapter 7 Scatter-loading Features on page 7-116.
12.93 --map, --no_map on page 12-350.
Chapter 8 Scatter File Syntax on page 8-175.

Related information
Embedded Software Development.

4 Linker Optimization Features
4.7 Optimization with RW data compression

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786970677.html

4.8 Function inlining with the linker
The linker inlines functions depending on what options you specify and the content of the input files.

The linker can inline small functions in place of a branch instruction to that function. For the linker to be
able to do this, the function (without the return instruction) must fit in the four bytes of the branch
instruction.

The following options are available to control function inlining:
• --inline and --no_inline command-line options allow you to control branch inlining. However,

--no_inline only turns off inlining for user-supplied objects. The linker still inlines functions from
the ARM C Library by default.

• --inline_type=type command-line option gives you more control over inlining. You can also inline
functions from the ARM C Library, and turn off inlining completely. This option overrides --inline
if both are present on the command-line.

If branch inlining optimization is enabled, the linker scans each function call in the image and then
inlines as appropriate. When the linker finds a suitable function to inline, it replaces the function call
with the instruction from the function that is being called.

The linker applies branch inlining optimization before any unused sections are eliminated so that inlined
sections can also be removed if they are no longer called.

 Note

The linker can inline two 16-bit encoded Thumb instructions in place of the 32-bit encoded Thumb BL
instruction.

Use the --info=inline command-line option to list all the inlined functions.

For example, consider the following source files:

bar.c
--
int myIncrement(int a)
{
 return a+1;
}

main.c
--
extern int myIncrement(int);

int main()
{
 int i=1;
 i=myIncrement(i);
}

Linking with the --inline option shows that the short function myIncrement() is inlined:

armcc -c bar.c main.c
armlink --inline --info=inline main.o bar.o

==

Small function inlining results

Inlined function myIncrement from bar.o at offset 0x8 in main.o(.text).
Inlined Instruction: ADD r0,r0,#1

Use fromelf to compare the results of linking with and without --inline:

armlink main.o bar.o
fromelf --disassemble __image.axf

...
main PROC
|L1.164|
 PUSH {r4,lr}

4 Linker Optimization Features
4.8 Function inlining with the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

 MOV r0,#1
 BL |L1.184| ; Branch to function
 MOV r0,#0
 POP {r4,pc}
 ENDP

myIncrement PROC
|L1.184|
 ADD r0,r0,#1
 BX lr
 ENDP
...

armlink main.o bar.o --inline
fromelf --disassemble __image.axf

...
main PROC
|L1.164|
 PUSH {r4,lr}
 MOV r0,#1
 ADD r0,r0,#1 ; Inlined function
 MOV r0,#0
 POP {r4,pc}
 ENDP

...

Related concepts
4.9 Factors that influence function inlining on page 4-85.
4.3 Elimination of unused sections on page 4-73.

Related references
12.75 --inline_type=type on page 12-331.
12.71 --info=topic[,topic,…] on page 12-325.
12.74 --inline, --no_inline on page 12-330.

4 Linker Optimization Features
4.8 Function inlining with the linker

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

4.9 Factors that influence function inlining
There are a number of factors that influence the linker inlines functions.

The following factors influence the way functions are inlined:
• The linker handles only the simplest cases and does not inline any instructions that read or write to

the PC because this depends on the location of the function.
• If your image contains both ARM and Thumb code, functions that are called from the opposite state

must be built for interworking. The linker can inline functions containing up to two 16-bit Thumb
instructions. However, an ARM calling function can only inline functions containing either a single
16-bit encoded Thumb instruction or a 32-bit encoded Thumb instruction.

• The action that the linker takes depends on the size of the function being called. The following table
shows the state of both the calling function and the function being called:

Table 4-1 Inlining small functions

Calling function state Called function state Called function size

ARM ARM 4 to 8 bytes

ARM Thumb 2 to 6 bytes

Thumb Thumb 2 to 6 bytes

The linker can inline in different states if there is an equivalent instruction available. For example, if
a Thumb instruction is adds r0, r0 then the linker can inline the equivalent ARM instruction. It is
not possible to inline from ARM to Thumb because there is less chance of Thumb equivalent to an
ARM instruction.

• For a function to be inlined, the last instruction of the function must be either:

MOV pc, lr

or

BX lr

A function that consists only of a return sequence can be inlined as a NOP.
• A conditional ARM instruction can only be inlined if either:

— The condition on the BL matches the condition on the instruction being inlined. For example, BLEQ
can only inline an instruction with a matching condition like ADDEQ.

— The BL instruction or the instruction to be inlined is unconditional. An unconditional ARM BL can
inline any conditional or unconditional instruction that satisfies all the other criteria. An
instruction that cannot be conditionally executed cannot be inlined if the BL instruction is
conditional.

• A BL that is the last instruction of a Thumb If-Then (IT) block cannot inline a 16-bit encoded Thumb
instruction or a 32-bit MRS, MSR, or CPS instruction. This is because the IT block changes the behavior
of the instructions within its scope so inlining the instruction changes the behavior of the program.

Related concepts
4.10 About branches that optimize to a NOP on page 4-87.

Related information
Conditional instructions.
ADD.
B.
CPS.
IT.
MOV.

4 Linker Optimization Features
4.9 Factors that influence function inlining

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731159197.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289861747.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289863797.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289869176.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289872225.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289878994.html

MRS (PSR to general-purpose register).
MSR (general-purpose register to PSR).

4 Linker Optimization Features
4.9 Factors that influence function inlining

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289881054.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289882044.html

4.10 About branches that optimize to a NOP
Although the linker can replace branches with a NOP, there might be some situations where you want to
stop this happening.

By default, the linker replaces any branch with a relocation that resolves to the next instruction with a
NOP instruction. This optimization can also be applied if the linker reorders tail calling sections.

However, there are cases where you might want to disable the option, for example, when performing
verification or pipeline flushes.

To control this optimization, use the --branchnop and --no_branchnop command-line options.

Related concepts
4.11 Linker reordering of tail calling sections on page 4-88.

Related references
12.18 --branchnop, --no_branchnop on page 12-268.

4 Linker Optimization Features
4.10 About branches that optimize to a NOP

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.11 Linker reordering of tail calling sections
There are some situations when you might want the linker to reorder tail calling sections.

A tail calling section is a section that contains a branch instruction at the end of the section. If the branch
instruction has a relocation that targets a function at the start of another section, the linker can place the
tail calling section immediately before the called section. The linker can then optimize the branch
instruction at the end of the tail calling section to a NOP instruction.

To take advantage of this behavior, use the command-line option --tailreorder to move tail calling
sections immediately before their target.

Use the --info=tailreorder command-line option to display information about any tail call
optimizations performed by the linker.

Related concepts
4.10 About branches that optimize to a NOP on page 4-87.
4.12 Restrictions on reordering of tail calling sections on page 4-89.
3.6.3 Veneer types on page 3-56.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
12.152 --tailreorder, --no_tailreorder on page 12-411.

4 Linker Optimization Features
4.11 Linker reordering of tail calling sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.12 Restrictions on reordering of tail calling sections
There are some restrictions on the reordering of tail calling sections.

The linker:
• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a

single section, the tail calling section with an identical section name is moved before the target. If no
section name is found in the tail calling section that has a matching name, then the linker moves the
first section it encounters.

• Cannot move a tail calling section out of its execution region.
• Does not move tail calling sections before inline veneers.

Related concepts
4.11 Linker reordering of tail calling sections on page 4-88.

4 Linker Optimization Features
4.12 Restrictions on reordering of tail calling sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

4.13 Linker merging of comment sections
If input files have any comment sections that are identical, then the linker can merge them.

If input object files have any .comment sections that are identical, then the linker merges them to produce
the smallest .comment section while retaining all useful information.

The linker associates each input .comment section with the filename of the corresponding input object. If
it merges identical .comment sections, then all the filenames that contain the common section are listed
before the section contents, for example:

file1.o
file2.o
.comment section contents.

The linker merges these sections by default. To prevent the merging of identical .comment sections, use
the --no_filtercomment command-line option.

 Note

If you do not want to retain the information in a .comment section, then use the --no_comment_section
option to strip this section from the image.

Related references
12.27 --comment_section, --no_comment_section on page 12-278.
12.60 --filtercomment, --no_filtercomment on page 12-313.

4 Linker Optimization Features
4.13 Linker merging of comment sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

Chapter 5
Getting Image Details

Describes how to get image details from the ARM linker, armlink.

It contains the following sections:
• 5.1 Options for getting information about linker-generated files on page 5-92.
• 5.2 Identifying the source of some link errors on page 5-93.
• 5.3 Example of using the --info linker option on page 5-94.
• 5.4 How to find where a symbol is placed when linking on page 5-96.
• 5.5 How to find the location of a symbol within the map file on page 5-97.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-91

Non-Confidential

5.1 Options for getting information about linker-generated files
The linker provides options for getting information about the files it generates.

You can use following options to get information about how your file is generated by the linker, and
about the properties of the files:

--info
Displays information about various topics.

--map
Displays the image memory map, and contains the address and the size of each load region,
execution region, and input section in the image, including linker-generated input sections. It
also shows how RW data compression is applied.

--show_cmdline
Outputs the command-line used by the linker.

--symbols
Displays a list of each local and global symbol used in the link step, and its value.

--verbose
Displays detailed information about the link operation, including the objects that are included
and the libraries that contain them.

--xref
Displays a list of all cross-references between input sections.

--xrefdbg
Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --list=filename option.

Related concepts
3.3.3 Section alignment with the linker on page 3-51.
4.7 Optimization with RW data compression on page 4-80.

Related tasks
5.2 Identifying the source of some link errors on page 5-93.
5.3 Example of using the --info linker option on page 5-94.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
12.88 --list=filename on page 12-345.
12.93 --map, --no_map on page 12-350.
12.129 --show_cmdline on page 12-387.
12.146 --symbols, --no_symbols on page 12-405.
12.166 --verbose on page 12-425.
12.172 --xref, --no_xref on page 12-431.
12.173 --xrefdbg, --no_xrefdbg on page 12-432.

5 Getting Image Details
5.1 Options for getting information about linker-generated files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-92

Non-Confidential

5.2 Identifying the source of some link errors
The linker provides options to help you identify the source of some link errors.

To identify the source of some link errors, use --info inputs. For example, you can search the output
to locate undefined references from library objects or multiply defined symbols caused by retargeting
some library functions and not others. Search backwards from the end of this output to find and resolve
link errors.

You can also use the --verbose option to output similar text with additional information on the linker
operations.

Related references
5.1 Options for getting information about linker-generated files on page 5-92.
12.71 --info=topic[,topic,…] on page 12-325.
12.166 --verbose on page 12-425.

5 Getting Image Details
5.2 Identifying the source of some link errors

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-93

Non-Confidential

5.3 Example of using the --info linker option
This is an example of the output generated by the --info option

To display the component sizes when linking enter:

armlink --info sizes …

Here, sizes gives a list of the Code and data sizes for each input object and library member in the
image. Using this option implies --info sizes,totals.

The following example shows the output in tabular format with the totals separated out for easy reading:

Code (inc. data) RO Data RW Data ZI Data Debug
3712 1580 19 44 10200 7436 Object Totals
0 0 16 0 0 0 (incl. Generated)
0 0 3 0 0 0 (incl. Padding)
21376 648 805 4 300 10216 Library Totals
0 0 6 0 0 0 (incl. Padding)
===
Code (inc. data) RO Data RW Data ZI Data Debug
25088 2228 824 48 10500 17652 Grand Totals
25088 2228 824 48 10500 17652 ELF Image Totals
25088 2228 824 48 0 0 ROM Totals
===
Total RO Size (Code + RO Data) 25912 (25.30kB)
Total RW Size (RW Data + ZI Data) 10548 (10.30kB)
Total ROM Size (Code + RO Data + RW Data) 25960 (25.35kB)

In this example:

Code (inc. data)
Shows how many bytes are occupied by code. In this image, there are 3712 bytes of code. This
includes 1580 bytes of inline data (inc. data), for example, literal pools, and short strings.

RO Data
Shows how many bytes are occupied by RO data. This is in addition to the inline data included
in the Code (inc. data) column.

RW Data
Shows how many bytes are occupied by RW data.

ZI Data
Shows how many bytes are occupied by ZI data.

Debug
Shows how many bytes are occupied by debug data, for example, debug input sections and the
symbol and string table.

Object Totals
Shows how many bytes are occupied by objects linked together to generate the image.

(incl. Generated)
armlink might generate image contents, for example, interworking veneers, and input sections
such as region tables. If the Object Totals row includes this type of data, it is shown in this
row.

In the example, there are 19 bytes of RO data in total, of which 16 bytes is linker-generated RO
data.

Library Totals
Shows how many bytes are occupied by library members that have been extracted and added to
the image as individual objects.

(incl. Padding)
armlink inserts padding, if required, to force section alignment. If the Object Totals row
includes this type of data, it is shown in the associated (incl. Padding) row. Similarly, if the
Library Totals row includes this type of data, it is shown in its associated row.

In the example, there are 19 bytes of RO data in the object total, of which 3 bytes is linker-
generated padding, and 805 bytes of RO data in the library total, with 6 bytes of padding.

5 Getting Image Details
5.3 Example of using the --info linker option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-94

Non-Confidential

Grand Totals
Shows the true size of the image. In the example, there are 10200 bytes of ZI data (in Object
Totals) and 300 of ZI data (in Library Totals) giving a total of 10500 bytes.

ELF Image Totals
If you are using RW data compression (the default) to optimize ROM size, the size of the final
image changes and this is reflected in the output from --info. Compare the number of bytes
under Grand Totals and ELF Image Totals to see the effect of compression.

In the example, RW data compression is not enabled. If data is compressed, the RW value
changes.

ROM Totals
Shows the minimum size of ROM required to contain the image. This does not include ZI data
and debug information which is not stored in the ROM.

Related references
5.1 Options for getting information about linker-generated files on page 5-92.
12.71 --info=topic[,topic,…] on page 12-325.

5 Getting Image Details
5.3 Example of using the --info linker option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-95

Non-Confidential

5.4 How to find where a symbol is placed when linking
To find where a symbol is placed when linking you must find the section that defines the symbol, and
ensure that the linker has not removed the section.

You can do this with the --keep="section_id" and --symbols options. For example, if
object(section) is the section containing the symbol, enter:

armlink --keep="object(section)" --symbols s.o --output=s.axf

 Note

You can also run fromelf -s on the resultant image.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:

long long altstack[10] __attribute__ ((section ("STACK"), zero_init));

int main(void)
{
 return sizeof(altstack);
}

2. Compile the source:
armcc -c s.c -o s.o

3. Link the object s.o, keeping the STACK symbol and displaying the symbols:
armlink --keep="s.o(STACK)" --map --symbols s.o --output=s.axf

4. Locate the STACK symbol in the output, for example:

==

Image Symbol Table

 Local Symbols

 Symbol Name Value Ov Type Size Object(Section)
…
 STACK 0x00008200 Section 80 s.o(STACK)

 Global Symbols

 Symbol Name Value Ov Type Size Object(Section)
…
 altstack 0x00008200 Data 80 s.o(STACK)
 Image$$ZI$$Limit 0x00008250 Number 0 s.o(STACK)

This shows that the stack is placed in the ZI execution region.

Related references
12.78 --keep=section_id on page 12-334.
12.93 --map, --no_map on page 12-350.
12.100 -o filename, --output=filename on page 12-357.

Related information
Using fromelf to find where a symbol is placed in an executable ELF image.
-c compiler option.
-o filename compiler option.

5 Getting Image Details
5.4 How to find where a symbol is placed when linking

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-96

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128883892.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935523.html

5.5 How to find the location of a symbol within the map file
To find the location of a symbol within the map file you must find the section that defines the symbol,
and ensure that the linker has not removed the section.

To find the location of a symbol within the map file, use the --keep=section_id and --map options to
view the image memory map. For example, if object(section) is the section containing the symbol,
enter:

armlink --keep=object(section) --map s.o --output=s.axf

The memory map shows where the section containing the symbol is placed.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:

long long altstack[10] __attribute__ ((section ("STACK"), zero_init));
int main(void)
{
 return sizeof(altstack);
}

2. Compile the source:
armcc -c s.c -o s.o

3. Link the object s.o, keeping the STACK symbol and displaying the image memory map:
armlink --keep=s.o(STACK) --map s.o --output=s.axf

4. Locate the STACK symbol in the output, for example:

…Execution Region ER_RW (…)
**** No section assigned to this execution region ****
Execution Region ER_ZI (…)
Base Addr Size Type Attr Idx E Section Name Object
…
0x00008228 0x00000050 Zero RW 2 STACK s.o

This shows that the stack is placed in execution region ER_ZI.

Related references
12.78 --keep=section_id on page 12-334.
12.93 --map, --no_map on page 12-350.
12.100 -o filename, --output=filename on page 12-357.

Related information
Using fromelf to find where a symbol is placed in an executable ELF image.
-c compiler option.
-o filename compiler option.

5 Getting Image Details
5.5 How to find the location of a symbol within the map file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-97

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128883892.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935523.html

Chapter 6
Accessing and Managing Symbols with armlink

Describes how to access and manage symbols with the ARM linker, armlink.

It contains the following sections:
• 6.1 About mapping symbols on page 6-99.
• 6.2 Linker-defined symbols on page 6-100.
• 6.3 Region-related symbols on page 6-101.
• 6.4 Section-related symbols on page 6-106.
• 6.5 Access symbols in another image on page 6-108.
• 6.6 Edit the symbol tables with a steering file on page 6-112.
• 6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions on page 6-115.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-98

Non-Confidential

6.1 About mapping symbols
Mapping symbols are generated by the compiler and assembler to identify inline transitions between
code and data at literal pool boundaries, and between ARM code and Thumb code, such as ARM/Thumb
interworking veneers.

The mapping symbols are:

$a
Start of a sequence of ARM instructions.

$t
Start of a sequence of Thumb instructions.

$t.x
Start of a sequence of ThumbEE instructions.

$d
Start of a sequence of data items, such as a literal pool.

armlink generates the $d.realdata mapping symbol to communicate to fromelf that the data is from a
non-executable section. Therefore, the code and data sizes output by fromelf -z are the same as the
output from armlink --info sizes, for example:

 Code (inc. data) RO Data
 x y z

In this example, the y is marked with $d, and RO Data is marked with $d.realdata.
 Note

Symbols beginning with the characters $v are mapping symbols related to VFP and might be output
when building for a target with VFP. Avoid using symbols beginning with $v in your source code.

Be aware that modifying an executable image with the fromelf --elf --strip=localsymbols
command removes all mapping symbols from the image.

Related references
12.89 --list_mapping_symbols, --no_list_mapping_symbols on page 12-346.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.

Related information
Symbol naming rules.
--strip=option[,option,…] fromelf option.
--text fromelf option.
ELF for the ARM Architecture.

6 Accessing and Managing Symbols with armlink
6.1 About mapping symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-99

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731172471.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128923577.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128925577.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

6.2 Linker-defined symbols
The linker defines some symbols that are reserved by ARM, and that you can access if required.

Symbols that contain the character sequence $$, and all other external names containing the sequence $$,
are names reserved by ARM.

You can import these symbolic addresses and use them as relocatable addresses by your assembly
language programs, or refer to them as extern symbols from your C or C++ source code.

Be aware that:
• If you use the --strict compiler command-line option, the compiler does not accept symbol names

containing dollar symbols. To re-enable support, include the --dollar option on the compiler
command line.

• Linker-defined symbols are only generated when your code references them.
• If execute-only (XO) sections are present, linker-defined symbols are defined with the following

constraints:
— XO linker defined symbols cannot be defined with respect to an empty region or a region that has

no XO sections.
— XO linker defined symbols cannot be defined with respect to a region that contains only RO

sections.
— RO linker defined symbols cannot be defined with respect to a region that contains only XO

sections.

Related concepts
6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-104.
6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-105.

Related information
--dollar, --no_dollar compiler option.
--strict, --no_strict compiler option.

6 Accessing and Managing Symbols with armlink
6.2 Linker-defined symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-100

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915617.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945180.html

6.3 Region-related symbols
The linker generates various types of region-related symbols that you can access if required.

This section contains the following subsections:
• 6.3.1 Types of region-related symbols on page 6-101.
• 6.3.2 Image$$ execution region symbols on page 6-101.
• 6.3.3 Load$$ execution region symbols on page 6-102.
• 6.3.4 Load$$LR$$ load region symbols on page 6-103.
• 6.3.5 Region name values when not scatter-loading on page 6-104.
• 6.3.6 Linker defined symbols and scatter files on page 6-104.
• 6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-104.
• 6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-105.

6.3.1 Types of region-related symbols

The linker generates the different types of region-related symbols for each region in the image.

The types are:
• Image$$ and Load$$ for each execution region.
• Load$$LR$$ for each load region.

If you are using a scatter file these symbols are generated for each region in the scatter file.

If you are not using scatter-loading, the symbols are generated for the default region names. That is, the
region names are fixed and the same types of symbol are supplied.

Related concepts
6.3.5 Region name values when not scatter-loading on page 6-104.

Related references
6.3.2 Image$$ execution region symbols on page 6-101.
6.3.3 Load$$ execution region symbols on page 6-102.
6.3.4 Load$$LR$$ load region symbols on page 6-103.

6.3.2 Image$$ execution region symbols

The linker generates Image$$ symbols for every execution region present in the image.

The following table shows the symbols that the linker generates for every execution region present in the
image. All the symbols refer to execution addresses after the C library is initialized.

Table 6-1 Image$$ execution region symbols

Symbol Description

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes excluding ZI length.

Image$$region_name$$Limit Address of the byte beyond the end of the non-ZI part of the
execution region.

Image$$region_name$$RO$$Base Execution address of the RO output section in this region.

Image$$region_name$$RO$$Length Length of the RO output section in bytes.

Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in
the execution region.

Image$$region_name$$RW$$Base Execution address of the RW output section in this region.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-101

Non-Confidential

Table 6-1 Image$$ execution region symbols (continued)

Symbol Description

Image$$region_name$$RW$$Length Length of the RW output section in bytes.

Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in
the execution region.

Image$$region_name$$XO$$Base Execution address of the XO output section in this region.

Image$$region_name$$XO$$Length Length of the XO output section in bytes.

Image$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in
the execution region.

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes.

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section in the
execution region.

Related concepts
6.3.1 Types of region-related symbols on page 6-101.

6.3.3 Load$$ execution region symbols

The linker generates Load$$ symbols for every execution region present in the image.

 Note

Load$$region_name symbols apply only to execution regions. Load$$LR$$load_region_name symbols
apply only to load regions.

The following table shows the symbols that the linker generates for every execution region present in the
image. All the symbols refer to load addresses after the C library is initialized.

Table 6-2 Load$$ execution region symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Load$$region_name$$Length Region length in bytes.

Load$$region_name$$Limit Address of the byte beyond the end of the execution region.

Load$$region_name$$RO$$Base Address of the RO output section in this execution region.

Load$$region_name$$RO$$Length Length of the RO output section in bytes.

Load$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the execution region.

Load$$region_name$$RW$$Base Address of the RW output section in this execution region.

Load$$region_name$$RW$$Length Length of the RW output section in bytes.

Load$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in the execution region.

Load$$region_name$$XO$$Base Address of the XO output section in this execution region.

Load$$region_name$$XO$$Length Length of the XO output section in bytes.

Load$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the execution region.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-102

Non-Confidential

Table 6-2 Load$$ execution region symbols (continued)

Symbol Description

Load$$region_name$$ZI$$Base Load address of the ZI output section in this execution region.

Load$$region_name$$ZI$$Length Load length of the ZI output section in bytes.

The Load Length of ZI is zero unless region_name has the ZEROPAD scatter-loading
keyword set.

Load$$region_name$$ZI$$Limit Load address of the byte beyond the end of the ZI output section in the execution region.

All symbols in this table refer to load addresses before the C library is initialized. Be aware of the
following:
• The symbols are absolute because section-relative symbols can only have execution addresses.
• The symbols take into account RW compression.
• References to linker-defined symbols from RW compressed execution regions must be to symbols

that are resolvable before RW compression is applied.
• If the linker detects a relocation from an RW-compressed region to a linker-defined symbol that

depends on RW compression, then the linker disables compression for that region.
• Any zero-initialized data that is written to the file is taken into account by the Limit and Length

values. Zero-initialized data is written into the file when the ZEROPAD scatter-loading keyword is
used.

Related concepts
6.3.1 Types of region-related symbols on page 6-101.
6.3.7 Methods of importing linker-defined symbols in C and C++ on page 6-104.
6.3.8 Methods of importing linker-defined symbols in ARM® assembly language on page 6-105.
6.3.5 Region name values when not scatter-loading on page 6-104.
4.7 Optimization with RW data compression on page 4-80.

Related references
6.3.2 Image$$ execution region symbols on page 6-101.
6.3.4 Load$$LR$$ load region symbols on page 6-103.
8.4.3 Execution region attributes on page 8-186.

6.3.4 Load$$LR$$ load region symbols

The linker generates Load$$LR$$ symbols for every load region present in the image.

A Load$$LR$$ load region can contain many execution regions, so there are no separate $$RO and $$RW
components.

 Note

Load$$LR$$load_region_name symbols apply only to load regions. Load$$region_name symbols apply
only to execution regions.

The following table shows the symbols that the linker generates for every load region present in the
image.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-103

Non-Confidential

Table 6-3 Load$$LR$$ load region symbols

Symbol Description

Load$$LR$$load_region_name$$Base Address of the load region.

Load$$LR$$load_region_name$$Length Length of the load region.

Load$$LR$$load_region_name$$Limit Address of the byte beyond the end of the load region.

Related concepts
6.3.1 Types of region-related symbols on page 6-101.
3.1 The structure of an ARM ELF image on page 3-34.
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

6.3.5 Region name values when not scatter-loading

When scatter-loading is not used when linking, the linker uses default region name values.

If you are not using scatter-loading, the linker uses region name values of:

• ER_XO, for an execute-only execution region, if present.
• ER_RO, for the read-only execution region.
• ER_RW, for the read-write execution region.
• ER_ZI, for the zero-initialized execution region.

You can insert these names into the following symbols to obtain the required address:
• Image$$ execution region symbols.
• Load$$ execution region symbols.

For example, Load$$ER_RO$$Base.

Related concepts
6.3.1 Types of region-related symbols on page 6-101.
6.4 Section-related symbols on page 6-106.

Related references
6.3.2 Image$$ execution region symbols on page 6-101.
6.3.3 Load$$ execution region symbols on page 6-102.

6.3.6 Linker defined symbols and scatter files

When you are using scatter-loading, the names from a scatter file are used in the linker defined symbols.

The scatter file:
• Names all the execution regions in the image, and provides their load and execution addresses.
• Defines both stack and heap. The linker also generates special stack and heap symbols.

Related references
Chapter 7 Scatter-loading Features on page 7-116.
12.125 --scatter=filename on page 12-382.

6.3.7 Methods of importing linker-defined symbols in C and C++

You can import linker-defined symbols into your C or C++ source code. They are external symbols and
you must take the address of them.

The only case where the & operator is not required is when the array declaration is used, for example
extern char symbol_name[];.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-104

Non-Confidential

The following examples show how to obtain the correct value:

Importing a linker-defined symbol

extern unsigned int Image$$ER_ZI$$Limit;
config.heap_base = (unsigned int) &Image$$ER_ZI$$Limit;

Importing symbols that define a ZI output section

extern unsigned int Image$$ER_ZI$$Length;
extern char Image$$ER_ZI$$Base[];
memset(Image$$ER_ZI$$Base,0,(unsigned int)&Image$$ER_ZI$$Length);

Related references
6.3.2 Image$$ execution region symbols on page 6-101.

6.3.8 Methods of importing linker-defined symbols in ARM® assembly language

You can import linker-defined symbols into your ARM assembly code.

To import linker-defined symbols into your assembly language source code, use the IMPORT directive.

32-bit applications

Create a 32-bit data word to hold the value of the symbol, for example:

 IMPORT |Image$$ER_ZI$$Limit|
 …
zi_limit DCD |Image$$ER_ZI$$Limit|

To load the value into a register, such as r1, use the LDR instruction:

 LDR r1, zi_limit

The LDR instruction must be able to reach the 32-bit data word. The accessible memory range varies
between ARM and Thumb, and the architecture you are using.

Related references
6.3.2 Image$$ execution region symbols on page 6-101.

Related information
ARM and Thumb Instructions.
IMPORT and EXTERN.

6 Accessing and Managing Symbols with armlink
6.3 Region-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-105

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289850039.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290016692.html

6.4 Section-related symbols
Section-related symbols are symbols generated by the linker when it creates an image without scatter-
loading.

This section contains the following subsections:
• 6.4.1 Types of section-related symbols on page 6-106.
• 6.4.2 Image symbols on page 6-106.
• 6.4.3 Input section symbols on page 6-107.

6.4.1 Types of section-related symbols

The linker generates different types of section-related symbols for output and input sections.

The types of symbols are:
• Image symbols, if you do not use scatter-loading to create a simple image. A simple image has up to

four output sections (XO, RO, RW, and ZI) that produce the corresponding execution regions.
• Input section symbols, for every input section present in the image.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by name. So,
for example, all .text sections are placed in one contiguous block. A contiguous block of sections with
the same attribute and name is known as a consolidated section.

Related references
6.4.2 Image symbols on page 6-106.
6.4.3 Input section symbols on page 6-107.

6.4.2 Image symbols

Image symbols are generated by the linker when you do not use scatter-loading to create a simple image.

The following table shows the image symbols:

Table 6-4 Image symbols

Symbol Section type Description

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$RO$$Limit Output Address of the first byte beyond the end of the RO output section.

Image$$RW$$Base Output Address of the start of the RW output section.

Image$$RW$$Limit Output Address of the byte beyond the end of the ZI output section. (The choice of the end of the ZI
region rather than the end of the RW region is to maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the ZI output section.

 Note

• ARM recommends that you use region-related symbols in preference to section-related symbols.
• The ZI output sections of an image are not created statically, but are automatically created

dynamically at runtime.
• There are no load address symbols for RO, RW, and ZI output sections.

If you are using a scatter file, the image symbols are undefined. If your code accesses any of these
symbols, you must treat them as a weak reference.

6 Accessing and Managing Symbols with armlink
6.4 Section-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-106

Non-Confidential

The standard implementation of __user_setup_stackheap() uses the value in Image$$ZI$$Limit.
Therefore, if you are using a scatter file you must manually place the stack and heap. You can do this
either:
• In a scatter file using one of the following methods:

— Define separate stack and heap regions called ARM_LIB_STACK and ARM_LIB_HEAP.
— Define a combined region containing both stack and heap called ARM_LIB_STACKHEAP.

• By re-implementing __user_setup_stackheap() to set the heap and stack boundaries.

Related concepts
3.2 Simple images on page 3-42.
3.8 Weak references and definitions on page 3-60.

Related tasks
7.1.4 Specifying stack and heap using the scatter file on page 7-118.

Related references
7.1.3 Linker-defined symbols that are not defined when scatter-loading on page 7-118.

Related information
Stack use in C and C++.
C and C++ library changes between RVCT v2.2 and RVCT v3.0.
__user_setup_stackheap().

6.4.3 Input section symbols

Input section symbols are generated by the linker for every input section present in the image.

The following table shows the input section symbols:

Table 6-5 Section-related symbols

Symbol Section type Description

SectionName$$Base Input Address of the start of the consolidated section called SectionName.

SectionName$$Length Input Length of the consolidated section called SectionName (in bytes).

SectionName$$Limit Input Address of the byte beyond the end of the consolidated section called SectionName.

If your code refers to the input-section symbols, it is assumed that you expect all the input sections in the
image with the same name to be placed contiguously in the image memory map.

If your scatter file places input sections non-contiguously, the linker issues an error. This is because the
use of the base and limit symbols over non-contiguous memory is ambiguous.

Related concepts
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.

Related references
Chapter 7 Scatter-loading Features on page 7-116.

6 Accessing and Managing Symbols with armlink
6.4 Section-related symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-107

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124223721.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1365152429186.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122863069.html

6.5 Access symbols in another image
Use a symbol definitions (symdefs) file if you want one image to know the global symbol values of
another image.

This section contains the following subsections:
• 6.5.1 Creating a symdefs file on page 6-108.
• 6.5.2 Outputting a subset of the global symbols on page 6-108.
• 6.5.3 Reading a symdefs file on page 6-109.
• 6.5.4 Symdefs file format on page 6-109.

6.5.1 Creating a symdefs file

You can specify a symdefs file on the linker command-line.

You can use a symdefs file, for example, if you have one image that always resides in ROM and multiple
images that are loaded into RAM. The images loaded into RAM can access global functions and data
from the image located in ROM.

Use the armlink option --symdefs=filename to generate a symdefs file.

The linker produces a symdefs file during a successful final link stage. It is not produced for partial
linking or for unsuccessful final linking.

 Note

If filename does not exist, the linker creates the file and adds entries for all the global symbols to that
file. If filename exists, the linker uses the existing contents of filename to select the symbols that are
output when it rewrites the file. This means that only the existing symbols in the filename are updated,
and no new symbols (if any) are added at all. If you do not want this behavior, ensure that any existing
symdefs file is deleted before the link step.

Related tasks
6.5.2 Outputting a subset of the global symbols on page 6-108.
6.5.3 Reading a symdefs file on page 6-109.
6.5.2 Outputting a subset of the global symbols on page 6-108.

Related references
6.5.4 Symdefs file format on page 6-109.
12.147 --symdefs=filename on page 12-406.

6.5.2 Outputting a subset of the global symbols

You can use a symdefs file to output a subset of the global symbols to another application.

By default, all global symbols are written to the symdefs file. When a symdefs file exists, the linker uses
its contents to restrict the output to a subset of the global symbols.

This example uses an application image1 containing symbols that you want to expose to another
application using a symdefs file.

Procedure
1. Specify --symdefs=filename when you are doing a final link for image1. The linker creates a

symdefs file filename.
2. Open filename in a text editor, remove any symbol entries you do not want in the final list, and save

the file.
3. Specify --symdefs=filename when you are doing a final link for image1.

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-108

Non-Confidential

You can edit filename at any time to add comments and link image1 again. For example, to update
the symbol definitions to create image1 after one or more objects have changed.

You can use the symdefs file to link additional applications.

Related concepts
6.5 Access symbols in another image on page 6-108.

Related tasks
6.5.1 Creating a symdefs file on page 6-108.
6.5.1 Creating a symdefs file on page 6-108.

Related references
6.5.4 Symdefs file format on page 6-109.
12.147 --symdefs=filename on page 12-406.

6.5.3 Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code or data.

To read a symdefs file, add it to your file list as you do for any object file. The linker reads the file and
adds the symbols and their values to the output symbol table. The added symbols have ABSOLUTE and
GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol table. If a full link
is being performed, the symbols are added to the image symbol table.

The linker generates error messages for invalid rows in the file. A row is invalid if:

• Any of the columns are missing.
• Any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in exactly the same way as symbols extracted from
an object symbol table. The same restrictions apply regarding multiple symbol definitions.

 Note

The same function name or symbol name cannot be defined in both ARM code and in Thumb code.

Related references
6.5.4 Symdefs file format on page 6-109.

6.5.4 Symdefs file format

A symdefs file defines symbols and their values.

The file consists of:

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-109

Non-Confidential

Identification line
The identification line in a symdefs file comprises:
• An identifying string, #<SYMDEFS>#, which must be the first 11 characters in the file for the

linker to recognize it as a symdefs file.
• Linker version information, in the format:

ARM Linker, vvvvbbb:
• Date and time of the most recent update of the symdefs file, in the format:

Last Updated: day month date hh:mm:ss year

For example, for version 5.05, build 169:

#<SYMDEFS># ARM Linker, 5050169: Last Updated: Thu Jun 4 12:49:45 2015

The version and update information are not part of the identifying string.

Comments
You can insert comments manually with a text editor. Comments have the following properties:
• The first line must start with the special identifying comment #<SYMDEFS>#. This comment

is inserted by the linker when the file is produced and must not be manually deleted.
• Any line where the first non-whitespace character is a semicolon (;) or hash (#) is a

comment.
• A semicolon (;) or hash (#) after the first non-whitespace character does not start a

comment.
• Blank lines are ignored and can be inserted to improve readability.

Symbol information
The symbol information is provided on a single line, and comprises:

Symbol value
The linker writes the absolute address of the symbol in fixed hexadecimal format, for
example, 0x00008000. If you edit the file, you can use either hexadecimal or decimal
formats for the address value.

Type flag
A single letter to show symbol type:

A
ARM code

T
Thumb code

D
Data

N
Number.

Symbol name
The symbol name.

Example

This example shows a typical symdefs file format:

#<SYMDEFS># ARM Linker, 5050169: Last Updated: Date
;value type name, this is an added comment
0x00008000 A __main
0x00008004 A __scatterload
0x000080E0 T main
0x0000814D T _main_arg
0x0000814D T __argv_alloc
0x00008199 T __rt_get_argv
…
 # This is also a comment, blank lines are ignored
…
0x0000A4FC D __stdin
0x0000A540 D __stdout

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-110

Non-Confidential

0x0000A584 D __stderr
0xFFFFFFFD N __SIG_IGN

Related tasks
6.5.1 Creating a symdefs file on page 6-108.
6.5.2 Outputting a subset of the global symbols on page 6-108.
6.5.3 Reading a symdefs file on page 6-109.
6.5.1 Creating a symdefs file on page 6-108.

6 Accessing and Managing Symbols with armlink
6.5 Access symbols in another image

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-111

Non-Confidential

6.6 Edit the symbol tables with a steering file
A steering file is a text file that contains a set of commands to edit the symbol tables of output objects
and the dynamic sections of images.

This section contains the following subsections:
• 6.6.1 Specifying steering files on the linker command-line on page 6-112.
• 6.6.2 Steering file command summary on page 6-112.
• 6.6.3 Steering file format on page 6-113.
• 6.6.4 Hide and rename global symbols with a steering file on page 6-114.

6.6.1 Specifying steering files on the linker command-line

You can specify one or more steering files on the linker command-line.

Use the option --edit file-list to specify one or more steering files on the linker command-line.

When you specify more than one steering file, you can use either of the following command-line
formats:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3

Do not include spaces between the comma and the filenames when using a comma-separated list.

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-112.

Related references
6.6.2 Steering file command summary on page 6-112.
6.6.3 Steering file format on page 6-113.

6.6.2 Steering file command summary

Steering file commands enable you to manage symbols in the symbol table, control the copying of
symbols from the static symbol table to the dynamic symbol table, and store information about the
libraries that a link unit depends on.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

The steering file commands are:

Table 6-6 Steering file command summary

Command Description

EXPORT Specifies that a symbol can be accessed by other shared objects or executables.

HIDE Makes defined global symbols in the symbol table anonymous.

IMPORT Specifies that a symbol is defined in a shared object at runtime.

RENAME Renames defined and undefined global symbol names.

REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags specify dependencies to other shared objects used by
the application, for example, a shared library.

RESOLVE Matches specific undefined references to a defined global symbol.

SHOW Makes global symbols visible. This command is useful if you want to make a specific symbol visible that is hidden using
a HIDE command with a wildcard.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-112

Non-Confidential

 Note

The steering file commands control only global symbols. Local symbols are not affected by any of these
commands.

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-112.

Related references
6.6.3 Steering file format on page 6-113.
12.45 --edit=file_list on page 12-298.
13.1 EXPORT steering file command on page 13-436.
13.2 HIDE steering file command on page 13-437.
13.3 IMPORT steering file command on page 13-438.
13.4 RENAME steering file command on page 13-439.
13.5 REQUIRE steering file command on page 13-440.
13.6 RESOLVE steering file command on page 13-441.
13.7 SHOW steering file command on page 13-443.

6.6.3 Steering file format

Each command in a steering file must be on a separate line.

A steering file has the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace character are interpreted
as comments. A comment is treated as a blank line.

• Blank lines are ignored.
• Each non-blank, non-comment line is either a command, or part of a command that is split over

consecutive non-blank lines.
• Command lines that end with a comma (,) as the last non-whitespace character are continued on the

next non-blank line.

Each command line consists of a command, followed by one or more comma-separated operand groups.
Each operand group comprises either one or two operands, depending on the command. The command is
applied to each operand group in the command. The following rules apply:
• Commands are case-insensitive, but are conventionally shown in uppercase.
• Operands are case-sensitive because they must be matched against case-sensitive symbol names. You

can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols, are not affected.

The following example shows a sample steering file:

; Import my_func1 as func1
IMPORT my_func1 AS func1
Rename a very long function name to a shorter name
RENAME a_very_long_function_name AS,
 short_func_name

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-112.

Related references
6.6.2 Steering file command summary on page 6-112.
13.1 EXPORT steering file command on page 13-436.
13.2 HIDE steering file command on page 13-437.
13.3 IMPORT steering file command on page 13-438.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-113

Non-Confidential

13.4 RENAME steering file command on page 13-439.
13.5 REQUIRE steering file command on page 13-440.
13.6 RESOLVE steering file command on page 13-441.
13.7 SHOW steering file command on page 13-443.

6.6.4 Hide and rename global symbols with a steering file

You can use a steering file to hide and rename global symbol names in output files.

Use the HIDE and RENAME commands as required.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

Example of renaming a symbol:

RENAME steering command example

RENAME func1 AS my_func1

Example of hiding symbols:

HIDE steering command example

; Hides all global symbols with the ‘internal’ prefix
HIDE internal*

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related tasks
6.6.1 Specifying steering files on the linker command-line on page 6-112.

Related references
6.6.2 Steering file command summary on page 6-112.
6.5.4 Symdefs file format on page 6-109.
13.2 HIDE steering file command on page 13-437.
13.4 RENAME steering file command on page 13-439.
12.45 --edit=file_list on page 12-298.

6 Accessing and Managing Symbols with armlink
6.6 Edit the symbol tables with a steering file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-114

Non-Confidential

6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions
There are special patterns you can use for situations where an existing symbol cannot be modified.

An existing symbol cannot be modified, for example, if it is located in an external library or in ROM
code. In such cases you can use the $Super$$ and $Sub$$ patterns to patch an existing symbol.

To patch the definition of the function foo(), $Sub$$foo and the original definition of foo() must be a
global or weak definition:

$Super$$foo
Identifies the original unpatched function foo(). Use this to call the original function directly.

$Sub$$foo
Identifies the new function that is called instead of the original function foo(). Use this to add
processing before or after the original function.

 Note

The $Sub$$ and $Super$$ mechanism only works at static link time, $Super$$ references cannot be
imported or exported into the dynamic symbol table.

Example

The following example shows how to use $Super$$ and $Sub$$ to insert a call to the function
ExtraFunc() before the call to the legacy function foo().

extern void ExtraFunc(void); extern void $Super$$foo(void):
/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
 /* To avoid calling the original foo() function
 * omit the $Super$$foo(); function call.
 */
}

Related information
ELF for the ARM Architecture.

6 Accessing and Managing Symbols with armlink
6.7 Use of $Super$$ and $Sub$$ to patch symbol definitions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-115

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

Chapter 7
Scatter-loading Features

Describes the scatter-loading features and how you use scatter files with the ARM linker, armlink, to
create complex images.

It contains the following sections:
• 7.1 The scatter-loading mechanism on page 7-117.
• 7.2 Root execution regions on page 7-124.
• 7.3 Example of how to explicitly place a named section with scatter-loading on page 7-138.
• 7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
• 7.5 Placement of veneer input sections in a scatter file on page 7-151.
• 7.6 Placement of sections with overlays on page 7-152.
• 7.7 Reserving an empty region on page 7-154.
• 7.8 Placement of ARM C and C++ library code on page 7-156.
• 7.9 Creation of regions on page boundaries on page 7-159.
• 7.10 Overalignment of execution regions and input sections on page 7-160.
• 7.11 Preprocessing of a scatter file on page 7-161.
• 7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-163.
• 7.13 Equivalent scatter-loading descriptions for simple images on page 7-164.
• 7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.
• 7.15 How the linker resolves path names when processing scatter files on page 7-172.
• 7.16 Scatter file to ELF mapping on page 7-173.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-116

Non-Confidential

7.1 The scatter-loading mechanism
The scatter-loading mechanism enables you to specify the memory map of an image to the linker using a
description in a text file.

This section contains the following subsections:
• 7.1.1 Overview of scatter-loading on page 7-117.
• 7.1.2 When to use scatter-loading on page 7-117.
• 7.1.3 Linker-defined symbols that are not defined when scatter-loading on page 7-118.
• 7.1.4 Specifying stack and heap using the scatter file on page 7-118.
• 7.1.5 Scatter-loading command-line options on page 7-119.
• 7.1.6 Scatter-loading images with a simple memory map on page 7-120.
• 7.1.7 Scatter-loading images with a complex memory map on page 7-121.

7.1.1 Overview of scatter-loading

Scatter-loading gives you complete control over the grouping and placement of image components.

You can use scatter-loading to create simple images, but it is generally only used for images that have a
complex memory map. That is, where multiple memory regions are scattered in the memory map at load
and execution time.

An image memory map is made up of regions and output sections. Every region in the memory map can
have a different load and execution address.

To construct the memory map of an image, the linker must have:
• Grouping information that describes how input sections are grouped into output sections and regions.
• Placement information that describes the addresses where regions are to be located in the memory

maps.

When the linker creates an image using a scatter file, it creates some region-related symbols. The linker
creates these special symbols only if your code references them.

Related concepts
7.1.2 When to use scatter-loading on page 7-117.
7.16 Scatter file to ELF mapping on page 7-173.
3.1 The structure of an ARM ELF image on page 3-34.

Related references
6.3 Region-related symbols on page 6-101.

Related information
Scatter file with link to bit-band objects.

7.1.2 When to use scatter-loading

Scatter-loading is usually required for implementing embedded systems because these use ROM, RAM,
and memory-mapped peripherals.

Situations where scatter-loading is either required or very useful:

Complex memory maps
Code and data that must be placed into many distinct areas of memory require detailed
instructions on where to place the sections in the memory space.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-117

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786989454.html

Different types of memory
Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM, and
fast SRAM. A scatter-loading description can match the code and data with the most appropriate
type of memory. For example, interrupt code might be placed into fast SRAM to improve
interrupt response time but infrequently-used configuration information might be placed into
slower flash memory.

Memory-mapped peripherals
The scatter-loading description can place a data section at a precise address in the memory map
so that memory mapped peripherals can be accessed.

Functions at a constant location
A function can be placed at the same location in memory even though the surrounding
application has been modified and recompiled. This is useful for jump table implementation.

Using symbols to identify the heap and stack
Symbols can be defined for the heap and stack location when the application is linked.

Related concepts
7.1.1 Overview of scatter-loading on page 7-117.

7.1.3 Linker-defined symbols that are not defined when scatter-loading

When scatter-loading an image, some linker-defined symbols are undefined.

The following symbols are undefined when a scatter file is used:
• Image$$RO$$Base.
• Image$$RO$$Limit.
• Image$$RW$$Base.
• Image$$RW$$Limit.
• Image$$XO$$Base.
• Image$$XO$$Limit.
• Image$$ZI$$Base.
• Image$$ZI$$Limit.

If you use a scatter file but do not use the special region names for stack and heap, or do not re-
implement __user_setup_stackheap(), an error message is generated.

Related concepts
6.2 Linker-defined symbols on page 6-100.

Related tasks
7.1.4 Specifying stack and heap using the scatter file on page 7-118.

Related information
Placing the stack and heap.
C and C++ library changes between RVCT v2.2 and RVCT v3.0.

7.1.4 Specifying stack and heap using the scatter file

The ARM C library provides multiple implementations of the function __user_setup_stackheap(),
and can select the correct one for you automatically from information given in a scatter file.

To select the two region memory model, define two special execution regions in your scatter file named
ARM_LIB_HEAP and ARM_LIB_STACK. Both regions have the EMPTY attribute. This causes the library to
select the non-default implementation of __user_setup_stackheap() that uses the value of the
symbols:

• Image$$ARM_LIB_STACK$$ZI$$Base.
• Image$$ARM_LIB_STACK$$ZI$$Limit.
• Image$$ARM_LIB_HEAP$$ZI$$Base.
• Image$$ARM_LIB_HEAP$$ZI$$Limit.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-118

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786986174.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1365152429186.html

Only one ARM_LIB_STACK or ARM_LIB_HEAP region can be specified, and you must allocate a size, for
example:

LOAD_FLASH …
{
 …
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 …
}

You can use a combined stack and heap region by defining a single execution region named
ARM_LIB_STACKHEAP, with the EMPTY attribute. This causes __user_setup_stackheap() to use the value
of the symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$
$Limit.

 Note

If you re-implement __user_setup_stackheap(), this overrides all library implementations.

Related references
6.3 Region-related symbols on page 6-101.

Related information
Placing the stack and heap.
C and C++ library changes between RVCT v2.2 and RVCT v3.0.
__user_setup_stackheap().
Legacy function __user_initial_stackheap().

7.1.5 Scatter-loading command-line options

The command-line options to the linker give some control over the placement of data and code, but
complete control of placement requires more detailed instructions than can be entered on the command
line.

Complex memory maps

Placement of code and data in complex memory maps must be specified in a scatter file. You specify the
scatter file with the option:

--scatter=scatter_file

This instructs the linker to construct the image memory map as described in scatter_file.

You can use --scatter with the --base_platform linking model.

Simple memory maps
For simple memory maps, you can place code and data with with the following memory map related
command-line options:
• --bpabi.
• --dll.
• --partial.
• --ro_base.
• --rw_base.
• --ropi.
• --rwpi.
• --rosplit.
• --split.
• --reloc.
• --shared.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-119

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786986174.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1365152429186.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122863069.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122864988.html

• --sysv.
• --xo_base
• --zi_base.

 Note

Apart from --dll, you cannot use --scatter with these options.

Related concepts
2.5 Base Platform linking model on page 2-29.
7.1 The scatter-loading mechanism on page 7-117.
7.1.2 When to use scatter-loading on page 7-117.
7.13 Equivalent scatter-loading descriptions for simple images on page 7-164.

Related references
12.11 --base_platform on page 12-261.
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.106 --partial on page 12-363.
12.115 --reloc on page 12-372.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.125 --scatter=filename on page 12-382.
12.128 --shared on page 12-386.
12.135 --split on page 12-394.
12.151 --sysv on page 12-410.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
Chapter 8 Scatter File Syntax on page 8-175.

7.1.6 Scatter-loading images with a simple memory map

For images with a simple memory map, you can specify the memory map using only linker command-
line options, or with a scatter file.

The following figure shows a simple memory map:

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-120

Non-Confidential

0x0000

0x8000

RO section

RW section

RO section

Execution viewLoad view 0x16000

SRAM

ROM

RW section

ZI sectionZero fill

0x10000

Copy / decompress

Figure 7-1 Simple scatter-loaded memory map

The following example shows the corresponding scatter-loading description that loads the segments from
the object file into memory:

LOAD_ROM 0x0000 0x8000 ; Name of load region (LOAD_ROM),
 ; Start address for load region (0x0000),
 ; Maximum size of load region (0x8000)
{
 EXEC_ROM 0x0000 0x8000 ; Name of first exec region (EXEC_ROM),
 ; Start address for exec region (0x0000),
 ; Maximum size of first exec region (0x8000)
 {
 * (+RO) ; Place all code and RO data into
 ; this exec region
 }
 SRAM 0x10000 0x6000 ; Name of second exec region (SRAM),
 ; Start address of second exec region (0x10000),
 ; Maximum size of second exec region (0x6000)
 {
 * (+RW, +ZI) ; Place all RW and ZI data into
 ; this exec region
 }
}

The maximum size specifications for the regions are optional. However, if you include them, they enable
the linker to check that a region does not overflow its boundary.

Apart from the limit checking, you can achieve the same result with the following linker command-line:

armlink --ro_base 0x0 --rw_base 0x10000

Related concepts
7.16 Scatter file to ELF mapping on page 7-173.
7.1 The scatter-loading mechanism on page 7-117.
7.1.2 When to use scatter-loading on page 7-117.

Related references
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.

7.1.7 Scatter-loading images with a complex memory map

For images with a complex memory map, you cannot specify the memory map using only linker
command-line options. Such images require the use of a scatter file.

The following figure shows a complex memory map:

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-121

Non-Confidential

0x00000

0x08000

RO section#2

RO section#1

ZI section#2

RW section#2

RW section#1

RO section#2

RW section#2

0x18000

ZI section#1

RW section#1

RO section#1

Execution viewLoad view 0x20000

DRAM

SRAM

ROM2

Zero fill

0x0000

0x4000

0x10000

ROM1

Figure 7-2 Complex memory map

The following example shows the corresponding scatter-loading description that loads the segments from
the program1.o and program2.o files into memory:

LOAD_ROM_1 0x0000 ; Start address for first load region (0x0000)
{
 EXEC_ROM_1 0x0000 ; Start address for first exec region (0x0000)
 {
 program1.o (+RO) ; Place all code and RO data from
 ; program1.o into this exec region
 }
 DRAM 0x18000 0x8000 ; Start address for this exec region (0x18000),
 ; Maximum size of this exec region (0x8000)
 {
 program1.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program1.o into this exec region
 }
}
LOAD_ROM_2 0x4000 ; Start address for second load region (0x4000)
{
 EXEC_ROM_2 0x4000
 {
 program2.o (+RO) ; Place all code and RO data from
 ; program2.o into this exec region
 }
 SRAM 0x8000 0x8000
 {
 program2.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program2.o into this exec region
 }
}

 Caution

The scatter-loading description in this example specifies the location for code and data for program1.o
and program2.o only. If you link an additional module, for example, program3.o, and use this
description file, the location of the code and data for program3.o is not specified.

Unless you want to be very rigorous in the placement of code and data, ARM recommends that you use
the * or .ANY specifier to place leftover code and data.

Related concepts
7.1 The scatter-loading mechanism on page 7-117.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-122

Non-Confidential

7.2.2 Root execution regions and the ABSOLUTE attribute on page 7-124.
7.2.3 Root execution regions and the FIXED attribute on page 7-125.
8.6.10 Scatter files containing relative base address load regions and a ZI execution region
on page 8-202.
7.16 Scatter file to ELF mapping on page 7-173.
7.1.2 When to use scatter-loading on page 7-117.

7 Scatter-loading Features
7.1 The scatter-loading mechanism

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-123

Non-Confidential

7.2 Root execution regions
A root region is a region with the same load and execution address.

This section contains the following subsections:
• 7.2.1 Root execution region and the initial entry point on page 7-124.
• 7.2.2 Root execution regions and the ABSOLUTE attribute on page 7-124.
• 7.2.3 Root execution regions and the FIXED attribute on page 7-125.
• 7.2.4 Methods of placing functions and data at specific addresses on page 7-127.
• 7.2.5 Placement of code and data with __attribute__((section("name"))) on page 7-131.
• 7.2.6 Placement of __at sections at a specific address on page 7-132.
• 7.2.7 Restrictions on placing __at sections on page 7-133.
• 7.2.8 Automatic placement of __at sections on page 7-133.
• 7.2.9 Manual placement of __at sections on page 7-135.
• 7.2.10 Placement of a key in flash memory with an __at section on page 7-136.
• 7.2.11 Mapping a structure over a peripheral register with an __at section on page 7-137.

7.2.1 Root execution region and the initial entry point

The initial entry point of the image must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example

Root region with the same load and execution address.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 … ; rest of scatter-loading description
}

Related concepts
7.2.2 Root execution regions and the ABSOLUTE attribute on page 7-124.
7.2.3 Root execution regions and the FIXED attribute on page 7-125.
3.1 The structure of an ARM ELF image on page 3-34.
7.8 Placement of ARM C and C++ library code on page 7-156.

7.2.2 Root execution regions and the ABSOLUTE attribute

You can use the ABSOLUTE attribute to specify root execution regions.

Specify ABSOLUTE as the attribute for the execution region, either explicitly or by permitting it to default,
and use the same address for the first execution region and the enclosing load region.

To make the execution region address the same as the load region address, either:
• Specify the same numeric value for both the base address for the execution region and the base

address for the load region.
• Specify a +0 offset for the first execution region in the load region.

If an offset of zero (+0) is specified for all subsequent execution regions in the load region, then all
execution regions not following an execution region containing ZI are also root regions.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-124

Non-Confidential

Example

The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ABSOLUTE ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 … ; rest of scatter-loading description
}

Related concepts
7.2.1 Root execution region and the initial entry point on page 7-124.
7.2.3 Root execution regions and the FIXED attribute on page 7-125.
8.3 Load region descriptions on page 8-178.
8.4 Execution region descriptions on page 8-184.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.

Related information
ENTRY directive.

7.2.3 Root execution regions and the FIXED attribute

You can use the FIXED attribute for an execution region in a scatter file to create root regions that load
and execute at fixed addresses.

Use the FIXED execution region attribute to ensure that the load address and execution address of a
specific region are the same.

You can use the FIXED attribute to place any execution region at a specific address in ROM.

For example, the following memory map shows fixed execution regions:

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000
init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value defined using
the --pad option

(FIXED)

(movable)

Figure 7-3 Memory map for fixed execution regions

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-125

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008613.html

The following example shows the corresponding scatter-loading description:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 … ; rest of scatter-loading description
}

You can use this to place a function or a block of data, such as a constant table or a checksum, at a fixed
address in ROM so that it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM and a checksum
at the end of ROM, some of the memory contents might be unused. Use the * or .ANY module selector to
flood fill the region between the end of the initialization block and the start of the data block.

To make your code easier to maintain and debug, it is suggested that you use the minimum amount of
placement specifications in scatter files and leave the detailed placement of functions and data to the
linker.

 Note

There are some situations where using FIXED and a single load region are not appropriate. Other
techniques for specifying fixed locations are:
• If your loader can handle multiple load regions, place the RO code or data in its own load region.
• If you do not require the function or data to be at a fixed location in ROM, use ABSOLUTE instead of

FIXED. The loader then copies the data from the load region to the specified address in RAM.
ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load regions and specify
UNINIT. UNINIT ensures that the memory locations are not initialized to zero.

Example showing the misuse of the FIXED attribute

The following example shows common cases where the FIXED execution region attribute is misused:

LR1 0x8000
{
 ER_LOW +0 0x1000
 {
 *(+RO)
 }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available Load
; and Execution address is at most 0x9000
 ER_HIGH 0xF0000000 FIXED
 {
 *(+RW+ZI)
 }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address matches
; execution address
}
; The other common misuse of FIXED is to give a lower execution address than the next
; available load address.
LR_HIGH 0x100000000
{
 ER_LOW 0x1000 FIXED
 {
 *(+RO)
 }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-126

Non-Confidential

Related concepts
8.4 Execution region descriptions on page 8-184.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.

7.2.4 Methods of placing functions and data at specific addresses

There are various methods available to place functions and data at specific addresses.

Where they are required, the compiler normally produces RO, RW, ZI, and XO sections from a single
source file. These sections contain all the code and data from the source file.

Placing functions and data at specific addresses

To place a single function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files.

The linker allows you to place a section at a specific address as follows:

• You can create a scatter file that defines an execution region at the required address with a section
description that selects only one section.

• For a specially-named section the linker can get the placement address from the section name. These
specially-named sections are called __at sections.

To place a function or variable at a specific address it must be placed in its own section. There are several
ways to do this:
• Place the function or data item in its own source file.
• Use __attribute__((at(address))) to place variables in a separate section at a specific address.
• Use __attribute__((section("name"))) to place functions and variables in a named section.
• Use the AREA directive from assembly language. In assembly code, the smallest locatable unit is an

AREA.
• Use the --split_sections compiler option to generate one ELF section for each function in the

source file.

This option results in a small increase in code size for some functions because it reduces the potential
for sharing addresses, data, and string literals between functions. However, this can help to reduce the
final image size overall by enabling the linker to remove unused functions when you specify
armlink --remove.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.3 Example of how to explicitly place a named section with scatter-loading on page 7-138.
7.2.7 Restrictions on placing __at sections on page 7-133.

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.93 --map, --no_map on page 12-350.
12.125 --scatter=filename on page 12-382.
12.100 -o filename, --output=filename on page 12-357.

Related information
--split_sections.
__attribute__((section("name"))) function attribute.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-127

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124944914.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124977848.html

__attribute__((at(address))) variable attribute.
__attribute__((section("name"))) variable attribute.
#pragma arm section [section_type_list].
AREA directive.

Example of how to place a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses, and
does not require a scatter file.

To place code and data at specific addresses without a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>

extern int sqr(int n1);
int gSquared __attribute__((at(0x5000))); // Place at 0x5000
int main(void)
{
 gSquared=sqr(3);
 printf("Value squared is: %d\n", gSquared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Compile and link the sources:

armcc -c function.c
armcc -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.
In this example, __attribute__((at(0x5000))) specifies that the global variable gSquared is to be
placed at the absolute address 0x5000. gSquared is placed in the execution region
ER$$.ARM.__at_0x00005000 and load region LR$$.ARM.__at_0x00005000.

 Note

Although the address is specified as 0x5000 in the source file, the region names and section name
addresses are normalized to eight hexadecimal digits.

The memory map shows:

… Load Region LR$$.ARM.__at_0x00005000 (Base: 0x00005000, Size: 0x00000000, Max:
0x00000004, ABSOLUTE)

 Execution Region ER$$.ARM.__at_0x00005000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00005000 0x00000004 Zero RW 13 .ARM.__at_0x00005000 main.o

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.93 --map, --no_map on page 12-350.
12.100 -o filename, --output=filename on page 12-357.

Related information
__attribute__((at(address))) variable attribute.
-c compiler option.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-128

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124981140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124985290.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290002714.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124981140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html

Example of how to place a variable in a named section with scatter-loading

This example shows how to modify your source code to place code and data in a specific section using a
scatter file.

To modify your source code to place code and data in a specific section using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
int gSquared __attribute__((section("foo"))); // Place in section foo
int main(void)
{
 gSquared=sqr(3);
 printf("Value squared is: %d\n", gSquared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0000 0x20000
{
 ER1 0x0 0x2000
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 0x8000 0x2000
 {
 main.o
 }
 ER3 0x10000 0x2000
 {
 function.o
 *(foo) ; Place gSquared in ER3
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armcc -c function.c
armcc -c main.c
armlink --map --scatter=scatter.scat function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section("foo"))) specifies that the global variable gSquared is to
be placed in a section called foo. The scatter file specifies that the section foo is to be placed in the ER3
execution region.

The memory map shows:

 Load Region LR1 (Base: 0x00000000, Size: 0x00001570, Max: 0x00020000, ABSOLUTE)
…
 Execution Region ER3 (Base: 0x00010000, Size: 0x00000010, Max: 0x00002000, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00010000 0x0000000c Code RO 3 .text function.o

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-129

Non-Confidential

 0x0001000c 0x00000004 Data RW 15 foo main.o
…

 Note

If you omit *(foo) from the scatter file, the section is placed in the region of the same type. That is RAM
in this example.

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.93 --map, --no_map on page 12-350.
12.100 -o filename, --output=filename on page 12-357.
12.125 --scatter=filename on page 12-382.

Related information
__attribute__((section("name"))) variable attribute.
-c compiler option.

Example of how to place a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address using a
scatter file.

To modify your source code to place code and data at a specific address using a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0
{
 ER1 0x0
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 +0
 {
 function.o
 *(.ARM.__at_0x10000) ; Place gValue at 0x10000
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-130

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armcc -c function.c
armcc -c main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 0x10000:

… Execution Region ER2 (Base: 0x00001578, Size: 0x0000ea8c, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00001578 0x0000000c Code RO 3 .text function.o
 0x00001584 0x0000ea7c PAD
 0x00010000 0x00000004 Data RO 15 .ARM.__at_0x10000 main.o…

In this example, the size of ER1 is unknown. Therefore, gValue might be placed in ER1 or ER2. To make
sure that gValue is placed in ER2, you must include the corresponding selector in ER2 and link with the
--no_autoat command-line option. If you omit --no_autoat, gValue is to placed in a separate load
region LR$$.ARM.__at_0x10000 that contains the execution region ER$$.ARM.__at_0x10000.

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.93 --map, --no_map on page 12-350.
12.100 -o filename, --output=filename on page 12-357.
12.125 --scatter=filename on page 12-382.

Related information
__attribute__((section("name"))) variable attribute.
-c compiler option.

7.2.5 Placement of code and data with __attribute__((section("name")))

You can place code and data by separating them into their own objects without having to use toolchain-
specific pragmas or attributes.

However, you can also use __attribute__((section("name"))) to place an item in a separate ELF
section. You can then use a scatter file to place the named sections at specific locations.

Example

To use __attribute__((section("name"))) to place a variable in a separate section:

1. Use __attribute__((section("name"))) to specify the named section where the variable is to be
placed, for example:

Naming a section

int variable __attribute__((section("foo"))) = 10;

2. Use a scatter file to place the named section, for example:

Placing a section

FLASH 0x24000000 0x4000000
{
 … ; rest of code
 ADDER 0x08000000
 {
 file.o (foo) ; select section foo from file.o
 }
}

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-131

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html

The following example shows the memory map for the FLASH load region:

… Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000, ABSOLUTE)
 Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)
 Base Addr Size Type Attr Idx E Section Name Object
 0x08000000 0x00000004 Data RW 16 foo file.o
…

Be aware of the following:
• Linking with --autoat or --no_autoat does not affect the placement.
• If scatter-loading is not used, the section is placed in the default ER_RW execution region of the LR_1

load region.
• If you have a scatter file that does not include the foo selector, then the section is placed in the

defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section name. For
example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));
int sqr(int n1)
{
 return n1*n1;
}

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.7 Restrictions on placing __at sections on page 7-133.

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.125 --scatter=filename on page 12-382.

Related information
__attribute__((section("name"))) function attribute.
__attribute__((section("name"))) variable attribute.
#pragma arm section [section_type_list].

7.2.6 Placement of __at sections at a specific address

You can give a section a special name that encodes the address where it must be placed.

You specify the special name as follows:

.ARM.__at_address

Where address is the required address of the section. The compiler normalizes this to eight hexadecimal
digits. You can specify this in hexadecimal or decimal. Sections in the form of .ARM.__at_address are
referred to by the abbreviation __at.

In the compiler, you can assign variables to __at sections by:
• Explicitly naming the section using the __attribute__((section("name"))).
• Using the attribute __at that sets up the name of the section for you.

Assigning variables to __at sections in C or C++ code

// place variable1 in a section called .ARM.__AT_0x00008000
int variable1 __attribute__((at(0x8000))) = 10;
// place variable2 in a section called .ARM.__at_0x8000
int variable2 __attribute__((section(".ARM.__at_0x8000"))) = 10;

 Note

When using __attribute__((at(address))), the part of the __at section name representing address
is normalized to an eight digit hexadecimal number. The name of the section is only significant if you are
trying to match the section by name in a scatter file. Without overlays, the linker automatically assigns

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-132

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124977848.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124985290.html

__at sections when you use the --autoat command-line option. This option is the default. If you are
using overlays, then you cannot use --autoat to place __at sections.

Related concepts
7.2.7 Restrictions on placing __at sections on page 7-133.
7.2.5 Placement of code and data with __attribute__((section("name"))) on page 7-131.
7.2.7 Restrictions on placing __at sections on page 7-133.
7.2.8 Automatic placement of __at sections on page 7-133.
7.2.9 Manual placement of __at sections on page 7-135.
7.2.10 Placement of a key in flash memory with an __at section on page 7-136.

Related tasks
Placing functions and data at specific addresses on page 7-127.
7.2.11 Mapping a structure over a peripheral register with an __at section on page 7-137.

Related references
12.10 --autoat, --no_autoat on page 12-260.

Related information
__attribute__((section("name"))) function attribute.
__attribute__((at(address))) variable attribute.
__attribute__((section("name"))) variable attribute.

7.2.7 Restrictions on placing __at sections

There are restrictions when placing __at sections at specific addresses.

The following restrictions apply:
• __at section address ranges must not overlap, unless the overlapping sections are placed in different

overlay regions.
• __at sections are not permitted in position independent execution regions.
• You must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at

section.
• __at sections must not be used in System V (SysV) and Base Platform Application Binary Interface

(BPABI) executables and BPABI dynamically linked libraries (DLLs).
• __at sections must have an address that is a multiple of their alignment.
• __at sections ignore any +FIRST or +LAST ordering constraints.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.

Related information
Base Platform ABI for the ARM Architecture.

7.2.8 Automatic placement of __at sections

The linker automatically places __at sections, but you can override this.

The automatic placement of __at sections is enabled by default. This feature is controlled by the linker
command-line option, --autoat.

 Note

You cannot use __at section placement with position independent execution regions.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-133

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124977848.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124981140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

When linking with the --autoat option, the __at sections are not placed by the scatter-loading selectors.
Instead, the linker places the __at section in a compatible region. If no compatible region is found, the
linker creates a load and execution region for the __at section.

All linker --autoat created execution regions have the UNINIT scatter-loading attribute. If you require a
ZI __at section to be zero-initialized then it must be placed within a compatible region. A linker
--autoat created execution region must have a base address that is at least 4 byte-aligned. The linker
produces an error message if any region is incorrectly aligned.

A compatible region is one where:
• The __at address lies within the execution region base and limit, where limit is the base address +

maximum size of execution region. If no maximum size is set, the linker sets the limit for placing
__at sections as the current size of the execution region without __at sections plus a constant. The
default value of this constant is 10240 bytes, but you can change the value using the
--max_er_extension command-line option.

• The execution region meets at least one of the following conditions:
— It has a selector that matches the __at section by the standard scatter-loading rules.
— It has at least one section of the same type (RO, RW or ZI) as the __at section.
— It does not have the EMPTY attribute.

 Note

The linker considers an __at section with type RW compatible with RO.

Example

The following example shows the manual placement of variables is achieved in C or C++ code, with the
sections .ARM.__at_0x0000 type RO, .ARM.__at_0x2000 type RW, .ARM.__at_0x4000 type ZI,
and .ARM.__at_0x8000 type ZI:

// place the RO variable in a section called .ARM.__at_0x00000000
const int baz __attribute__((at(0x0000))) = 100;
// place the RW variable in a section called .ARM.__at_0x00002000
int foo __attribute__((at(0x2000))) = 100;
// place the ZI variable in a section called .ARM.__at_0x00004000
int bar __attribute__((at(0x4000), zero_init));
// place the ZI variable in a section called .ARM.__at_0x00008000
int variable __attribute__((at(0x8000), zero_init));

The following scatter file shows how the placement of __at sections is achieved automatically:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x00000000 lies within the bounds of ER_RO
 }
 ER_RW 0x2000 0x2000
 {
 *(+RW) ; .ARM.__at_0x00002000 lies within the bounds of ER_RW
 }
 ER_ZI 0x4000 0x2000
 {
 *(+ZI) ; .ARM.__at_0x00004000 lies within the bounds of ER_ZI
 }
}
; The linker creates a load and execution region for the __at section
; .ARM.__at_0x00008000 because it lies outside all candidate regions.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.9 Manual placement of __at sections on page 7-135.
7.2.10 Placement of a key in flash memory with an __at section on page 7-136.
8.4 Execution region descriptions on page 8-184.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-134

Non-Confidential

7.2.5 Placement of code and data with __attribute__((section("name"))) on page 7-131.
7.2.7 Restrictions on placing __at sections on page 7-133.

Related tasks
7.2.11 Mapping a structure over a peripheral register with an __at section on page 7-137.

Related references
12.10 --autoat, --no_autoat on page 12-260.
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
8.4.3 Execution region attributes on page 8-186.
12.95 --max_er_extension=size on page 12-352.

Related information
__attribute__((at(address))) variable attribute.

7.2.9 Manual placement of __at sections

You can have direct control over the placement of __at sections, if required.

You can use the standard section placement rules to place __at sections when using the --no_autoat
command-line option.

 Note

You cannot use __at section placement with position independent execution regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the read-
write section .ARM.__at_0x4000. Load and execution regions are not created automatically in manual
mode. An error is produced if an __at section cannot be placed in an execution region.

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM.__at_0x2000
const int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;
// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

The following scatter file shows how the manual placement of __at sections is achieved:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x0000 is selected by +RO
 }
 ER_RO2 0x2000
 {
 *(.ARM.__at_0x02000) ; .ARM.__at_0x2000 is selected by the section named
 ; .ARM.__at_0x2000
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.8 Automatic placement of __at sections on page 7-133.
7.2.10 Placement of a key in flash memory with an __at section on page 7-136.
8.4 Execution region descriptions on page 8-184.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-135

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124981140.html

7.2.5 Placement of code and data with __attribute__((section("name"))) on page 7-131.
7.2.7 Restrictions on placing __at sections on page 7-133.

Related tasks
7.2.11 Mapping a structure over a peripheral register with an __at section on page 7-137.

Related references
12.10 --autoat, --no_autoat on page 12-260.
8.4.3 Execution region attributes on page 8-186.

7.2.10 Placement of a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at section
provides a simple method of writing a value to a specific address.

Placement of the flash key variable in C or C++ code

Assuming a device has flash memory from 0x8000 to 0x10000 and a key is required in address 0x8000.
To do this with an __at section, you must declare a variable so that the compiler can generate a section
called .ARM.__at_0x8000.

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

Manual placement of flash execution regions

The following example shows a fragment of a scatter file with manual placement of the flash execution
region:

ER_FLASH 0x8000 0x2000
{
 *(+RW)
 *(.ARM.__at_0x8000) ; key
}

Use the linker command-line option --no_autoat to enable manual placement.

Automatic placement of flash execution regions

The following example shows a scatter file with automatic placement of the flash execution region. Use
the linker command-line option --autoat to enable automatic placement.

LR1 0x0
{
 ER_FLASH 0x8000 0x2000
 {
 *(+RO) ; other code and read-only data, the
 ; __at section is automatically selected
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.8 Automatic placement of __at sections on page 7-133.
7.2.9 Manual placement of __at sections on page 7-135.
8.4 Execution region descriptions on page 8-184.
3.3.2 Section placement with the FIRST and LAST attributes on page 3-50.

Related references
12.10 --autoat, --no_autoat on page 12-260.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-136

Non-Confidential

Related information
__attribute__((section("name"))) variable attribute.

7.2.11 Mapping a structure over a peripheral register with an __at section

You can place a structure over a peripheral register with scatter-loading.

To place an uninitialized variable over a peripheral register, you can use a ZI __at section. Assuming a
register is available for use at 0x10000000 define a ZI __at section called .ARM.__at_0x10000000. For
example:

int foo __attribute__((section(".ARM.__at_0x10000000"), zero_init));

The following example shows a scatter file with the manual placement of the ZI __at section:

ER_PERIPHERAL 0x10000000 UNINIT
{
 *(.ARM.__at_0x10000000)
}

Using automatic placement, and assuming that there is no other execution region near 0x10000000, the
linker automatically creates a region with the UNINIT attribute at 0x10000000. The UNINIT attribute
creates an execution region containing uninitialized data or memory-mapped I/O.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.8 Automatic placement of __at sections on page 7-133.
7.2.9 Manual placement of __at sections on page 7-135.
8.4 Execution region descriptions on page 8-184.

Related references
8.4.3 Execution region attributes on page 8-186.

Related information
__attribute__((section("name"))) variable attribute.

7 Scatter-loading Features
7.2 Root execution regions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-137

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html

7.3 Example of how to explicitly place a named section with scatter-loading
This example shows how to place a named section explicitly using scatter-loading.

Consider the following source files:

init.c

int foo() __attribute__((section("INIT")));
int foo() {
 return 1;
}

int bar() {
 return 2;
}

data.c

const long padding=123;
int z=5;

The following scatter file shows how to place a named section explicitly:

LR1 0x0 0x10000
{
 ; Root Region, containing init code
 ER1 0x0 0x2000
 {
 init.o (INIT, +FIRST) ; place init code at exactly 0x0
 *(+RO) ; rest of code and read-only data
 }
 ; RW & ZI data to be placed at 0x400000
 RAM_RW 0x400000 (0x1FF00-0x2000)
 {
 *(+RW)
 }
 RAM_ZI +0
 {
 *(+ZI)
 }
 ; execution region at 0x1FF00
 ; maximum space available for table is 0xFF
 DATABLOCK 0x1FF00 0xFF
 {
 data.o(+RO-DATA) ; place RO data between 0x1FF00 and 0x1FFFF
 }
}

In this example, the scatter-loading description places:
• The initialization code is placed in the INIT section in the init.o file. This example shows that the

code from the INIT section is placed first, at address 0x0, followed by the remainder of the RO code
and all of the RO data except for the RO data in the object data.o.

• All global RW variables in RAM at 0x400000.
• A table of RO-DATA from data.o at address 0x1FF00.

The resulting image memory map is as follows:

Memory Map of the image

 Image entry point : Not specified.

 Load Region LR1 (Base: 0x00000000, Size: 0x00000018, Max: 0x00010000, ABSOLUTE)

 Execution Region ER1 (Base: 0x00000000, Size: 0x00000010, Max: 0x00002000, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000000 0x00000008 Code RO 4 INIT init.o
 0x00000008 0x00000008 Code RO 1 .text init.o
 0x00000010 0x00000000 Code RO 16 .text data.o

 Execution Region DATABLOCK (Base: 0x0001ff00, Size: 0x00000004, Max: 0x000000ff,
ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

7 Scatter-loading Features
7.3 Example of how to explicitly place a named section with scatter-loading

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-138

Non-Confidential

 0x0001ff00 0x00000004 Data RO 19 .rodata data.o

 Execution Region RAM_RW (Base: 0x00400000, Size: 0x00000004, Max: 0x0001df00, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400000 0x00000000 Data RW 2 .data init.o
 0x00400000 0x00000004 Data RW 17 .data data.o

 Execution Region RAM_ZI (Base: 0x00400004, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400004 0x00000000 Zero RW 3 .bss init.o
 0x00400004 0x00000000 Zero RW 18 .bss data.o

Related concepts
7.2.3 Root execution regions and the FIXED attribute on page 7-125.
8.3 Load region descriptions on page 8-178.
8.4 Execution region descriptions on page 8-184.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.

Related information
ENTRY.
Scatter file with link to bit-band objects.

7 Scatter-loading Features
7.3 Example of how to explicitly place a named section with scatter-loading

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-139

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786989454.html

7.4 Placement of unassigned sections with the .ANY module selector
The linker attempts to place input sections into specific execution regions. For any input sections that
cannot be resolved, and where the placement of those sections is not important, you can use the .ANY
module selector in the scatter file.

In most cases, using a single .ANY selector is equivalent to using the * module selector. However, unlike
*, you can specify .ANY in multiple execution regions.

This section contains the following subsections:
• 7.4.1 Placement rules when using multiple .ANY selectors on page 7-140.
• 7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY

selectors on page 7-141.
• 7.4.3 Prioritization of .ANY sections on page 7-141.
• 7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-142.
• 7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
• 7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

on page 7-145.
• 7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.
• 7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

7.4.1 Placement rules when using multiple .ANY selectors

The linker has default rules for placing sections when using multiple .ANY selectors.

When more than one .ANY selector is present in a scatter file, the linker sorts sections in descending size
order. It then takes the unassigned section with the largest size and assigns the section to the most
specific .ANY execution region that has enough free space. For example, .ANY(.text) is judged to be
more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution region with
the most available remaining space.

For example:
• If you have two equally specific execution regions where one has a size limit of 0x2000 and the other

has no limit, then all the sections are assigned to the second unbounded .ANY region.
• If you have two equally specific execution regions where one has a size limit of 0x2000 and the other

has a size limit of 0x3000, then the first sections to be placed are assigned to the second .ANY region
of size limit 0x3000 until the remaining size of the second .ANY is reduced to 0x2000. From this
point, sections are assigned alternately between both .ANY execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution region
attribute ANY_SIZE.

Related concepts
7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.4 --any_placement=algorithm on page 12-252.
12.3 --any_contingency on page 12-251.
8.5.2 Syntax of an input section description on page 8-191.
12.71 --info=topic[,topic,…] on page 12-325.

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-140

Non-Confidential

7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY
selectors

You can modify how the linker places unassigned input sections when using multiple .ANY selectors by
using a different placement algorithm or a different sort order.

The following command-line options are available:
• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or

next_fit.
• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections worst_fit
fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are not known
until sections have been assigned to .ANY selectors. If this occurs you might see the following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit
bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum. It
reserves a portion of the region's size for linker-generated content and fills this contingency area only if
no other regions have space. It is enabled by default for the first_fit and best_fit algorithms,
because they are most likely to exhibit this behavior.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.5 --any_sort_order=order on page 12-254.
12.93 --map, --no_map on page 12-350.
12.127 --section_index_display=type on page 12-385.
12.154 --tiebreaker=option on page 12-413.
12.4 --any_placement=algorithm on page 12-252.
12.3 --any_contingency on page 12-251.

7.4.3 Prioritization of .ANY sections

You can give a priority ordering if you have multiple .ANY sections.

Prioritize the order of multiple .ANY sections with the .ANYnum selector, where num is a positive integer
from zero upwards.

The highest priority is given to the selector with the highest integer.

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{
 er1 +0 512
 {
 .ANY1(+RO) ; evenly distributed with er3

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-141

Non-Confidential

 }
 er2 +0 256
 {
 .ANY2(+RO) ; Highest priority, so filled first
 }
 er3 +0 256
 {
 .ANY1(+RO) ; evenly distributed with er1
 }
}

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.

Related references
12.5 --any_sort_order=order on page 12-254.
12.93 --map, --no_map on page 12-350.
12.127 --section_index_display=type on page 12-385.
12.154 --tiebreaker=option on page 12-413.

7.4.4 Specify the maximum region size permitted for placing unassigned sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute ANY_SIZE max_size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

• max_size must be less than or equal to the region size.
• If you use ANY_SIZE on a region without a .ANY selector, it is ignored by armlink.

When ANY_SIZE is present, armlink does not attempt to calculate contingency and strictly follows
the .ANY priorities.

When ANY_SIZE is not present for an execution region containing a .ANY selector, and you specify the
--any_contingency command-line option, then armlink attempts to adjust the contingency for that
execution region. The aims are to:
• Never overflow a .ANY region.
• Make sure there is a contingency reserved space left in the given execution region. This space is

reserved for veneers and section padding.

If you specify --any_contingency on the command line, it is ignored for regions that have ANY_SIZE
specified. It is used as normal for regions that do not have ANY_SIZE specified.

Example

The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 ANY_SIZE 0xF00 0x1000
 {
 .ANY
 }
 ER_2 0x0 ANY_SIZE 0xFB0 0x1000
 {
 .ANY
 }
 ER_3 0x0 ANY_SIZE 0x1000 0x1000
 {
 .ANY

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-142

Non-Confidential

 }
}

In this example:
• ER_1 has 0x100 reserved for linker-generated content.
• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic

contingency of --any_contingency.
• ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for veneers.

Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with a two percent
contingency for veneers.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.5 --any_sort_order=order on page 12-254.
12.93 --map, --no_map on page 12-350.
12.3 --any_contingency on page 12-251.

7.4.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in sections.o.

The input section properties and ordering are shown in the following table:

Table 7-1 Input section properties for placement of .ANY sections

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x10
 {
 .ANY
 }
 ER_2 0x200 0x10
 {
 .ANY
 }
}

 Note

These examples have --any_contingency disabled.

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-143

Non-Confidential

Example for first_fit, next_fit, and best_fit

This example shows the situation where several sections of equal size are assigned to two regions with
one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have no priority.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 2 sec2 sections.o
 0x00000108 0x00000004 Code RO 3 sec3 sections.o
 0x0000010c 0x00000004 Code RO 4 sec4 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 5 sec5 sections.o
 0x00000204 0x00000004 Code RO 6 sec6 sections.o

In this example:
• For first_fit the linker first assigns all the sections it can to ER_1, then moves on to ER_2 because

that is the next available region.
• For next_fit the linker does the same as first_fit. However, when ER_1 is full it is marked as

FULL and is not considered again. In this example, ER_1 is completely full. ER_2 is then considered.
• For best_fit the linker assigns sec1 to ER_1. It then has two regions of equal priority and

specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, and
continues assigning sections until ER_1 is full.

Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 3 sec3 sections.o
 0x00000108 0x00000004 Code RO 5 sec5 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 2 sec2 sections.o
 0x00000204 0x00000004 Code RO 4 sec4 sections.o
 0x00000208 0x00000004 Code RO 6 sec6 sections.o

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It assigns sec2
to the one with the most free space, ER_2 in this example. The regions now have the same amount of
space remaining, so the linker assigns sec3 to the first one that appears in the scatter file, that is ER_1.

 Note

The behavior of worst_fit is the default behavior in this version of the linker, and it is the only
algorithm available in earlier linker versions.

Related concepts
7.4.3 Prioritization of .ANY sections on page 7-141.
7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY selectors
on page 7-141.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-142.

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-144

Non-Confidential

Related references
12.125 --scatter=filename on page 12-382.

7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 7-2 Input section properties for placement of sections with next_fit

Name Size

sec1 0x14

sec2 0x14

sec3 0x10

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x20
 {
 .ANY1(+RO-CODE)
 }
 ER_2 0x200 0x20
 {
 .ANY2(+RO)
 }
 ER_3 0x300 0x20
 {
 .ANY3(+RO)
 }
}

 Note

This example has --any_contingency disabled.

The next_fit algorithm is different to the others in that it never revisits a region that is considered to be
full. This example also shows the interaction between priority and specificity of selectors - this is the
same for all the algorithms.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000014 Code RO 1 sec1 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000010 Code RO 3 sec3 sections.o
 0x00000210 0x00000004 Code RO 4 sec4 sections.o
 0x00000214 0x00000004 Code RO 5 sec5 sections.o
 0x00000218 0x00000004 Code RO 6 sec6 sections.o

 Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-145

Non-Confidential

 0x00000300 0x00000014 Code RO 2 sec2 sections.o

In this example:
• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 0x6 bytes

remaining.
• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but there is not

enough space. Therefore, ER_1 is marked as full and is not considered in subsequent placement steps.
The linker chooses ER_3 for sec2 because it has higher priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the linker
places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because both of
these sections have previously been marked as full, they are not considered. The linker places all
remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to link. The
algorithm does not attempt to place the section in ER_1 or ER_3 because they have previously been
marked as full.

Related concepts
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-142.
7.4.3 Prioritization of .ANY sections on page 7-141.
7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY selectors
on page 7-141.
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.125 --scatter=filename on page 12-382.

7.4.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in sections_a.o and
sections_b.o.

The input section properties and ordering are shown in the following tables:

Table 7-3 Input section properties for sections_a.o

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

Table 7-4 Input section properties for sections_b.o

Name Size

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-146

Non-Confidential

Descending size example

The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Table 7-5 Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4

With --any_sort_order=descending_size, sections of the same size use the creation index as a
tiebreak.

Command-line example

The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Table 7-6 Sort order for cmdline algorithm

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

That is, the input sections are sorted by command-line index.

Related concepts
7.4.3 Prioritization of .ANY sections on page 7-141.
7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY selectors
on page 7-141.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-142.

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-147

Non-Confidential

Related references
12.5 --any_sort_order=order on page 12-254.
12.125 --scatter=filename on page 12-382.

7.4.8 Behavior when .ANY sections overflow because of linker-generated content

Because linker-generated content might cause .ANY regions to overflow, a contingency algorithm is
included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .ANY regions, the linker cannot calculate the contingency space and cannot determine if calling
functions require veneers. The linker provides a contingency algorithm that gives a worst-case estimate
for padding and an additional two percent for veneers. To enable this algorithm use the
--any_contingency command-line option.

The following diagram represents the notional image layout during .ANY placement:

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region

Figure 7-4 .ANY contingency

The downward arrows for prospective padding show that the prospective padding continues to grow as
more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is cleared the
priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .ANY section assignments.

You can use the armlink command-line option --info=any to get extra information on where the linker
has placed sections. This can be useful when trying to debug problems.

Example
1. Create the following foo.c program:

#include "stdio.h"

int array[10] __attribute__ ((section ("ARRAY")));

struct S {
 char A[8];

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-148

Non-Confidential

 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

int sqr(int n1);
int gSquared __attribute__((at(0x5000))); // Place at 0x00005000

int sqr(int n1)
{
 return n1*n1;
}

int main(void) {
 int i;
 for (i=0; i<10; i++) {
 array[i]=i*i;
 printf("%d\n", array[i]);
 }
 gSquared=sqr(i);
 printf("%d squared is: %d\n", i, gSquared);

 return sizeof(array);
}

2. Create the following scatter.scat file:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 0x500
 {
 .ANY
 }
 ER_2 (ImageLimit(ER_1)) 0x400
 {
 .ANY
 }
 ER_3 (ImageLimit(ER_2)) 0x500
 {
 .ANY
 }
 ER_4 (ImageLimit(ER_3)) 0x1000
 {
 *(+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

3. Compile and link the program as follows:

armcc -c --cpu=cortex-m4 -o foo.o foo.c
armlink --cpu=cortex-m4 --any_contingency --scatter=scatter.scat --info=any -o foo.axf
foo.o

The following shows an example of the information generated:

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_1 Assignment: Worst fit 158
0x000001d6 .text c_w.l(flsbuf.o)
ER_3 Assignment: Worst fit 83
0x00000138 .text c_w.l(initio.o)
ER_2 Assignment: Worst fit 289
0x000000f8 .text c_w.l(fseek.o)
ER_3 Assignment: Worst fit 291
0x000000f0 .text c_w.l(stdio.o)
...
ER_2 Assignment: Worst fit 3

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-149

Non-Confidential

0x0000005c .text foo.o
...

.ANY contingency summary
Exec Region Contingency Type
ER_1 53 Auto
ER_2 48 Auto
ER_3 59 Auto

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_1 Info: .ANY limit reached - -
- -
ER_3 Info: .ANY limit reached - -
- -
ER_2 Info: .ANY limit reached - -
- -
ER_3 Assignment: Worst fit 405 0x00000034 !!!
scatter c_w.l(__scatter.o)
ER_3 Assignment: Worst fit 407 0x0000001c !!
handler_zi c_w.l(__scatter_zi.o)

Related concepts
7.4.3 Prioritization of .ANY sections on page 7-141.
7.4.2 Command-line options for controlling the placement of input sections for multiple .ANY selectors
on page 7-141.
7.4.4 Specify the maximum region size permitted for placing unassigned sections on page 7-142.

Related references
12.3 --any_contingency on page 12-251.
12.71 --info=topic[,topic,…] on page 12-325.
8.5.2 Syntax of an input section description on page 8-191.
8.4.3 Execution region attributes on page 8-186.

7 Scatter-loading Features
7.4 Placement of unassigned sections with the .ANY module selector

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-150

Non-Confidential

7.5 Placement of veneer input sections in a scatter file
You can place veneers at a specific location with a linker-generated symbol.

Veneers allow switching between ARM and Thumb code or allow a longer program jump than can be
specified in a single instruction. To place veneers at a specific location include the linker-generated
symbol Veneer$$Code in a scatter file. At most, one execution region in the scatter file can have the
*(Veneer$$Code) section selector.

If it is safe to do so, the linker places veneer input sections into the region identified by the
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be assigned to
the region because of address range problems or execution region size limitations. If the veneer cannot be
added to the specified region, it is added to the execution region containing the relocated input section
that generated the veneer.

 Note

Instances of *(IWV$$Code) in scatter files from earlier versions of ARM tools are automatically
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region exceeds 4MB of 16-bit
encoded Thumb code, 16MB of 32-bit encoded Thumb code, and 32MB of ARM code.

Related concepts
3.6 Linker-generated veneers on page 3-55.

7 Scatter-loading Features
7.5 Placement of veneer input sections in a scatter file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-151

Non-Confidential

7.6 Placement of sections with overlays
You can place multiple execution regions at the same address with overlays.

The OVERLAY attribute allows you to place multiple execution regions at the same address. An overlay
manager is required to make sure that only one execution region is instantiated at a time. ARM Compiler
does not provide an overlay manager.

The following example shows the definition of a static section in RAM followed by a series of overlays.
Here, only one of these sections is instantiated at a time.

EMB_APP 0x8000
{
 …
 STATIC_RAM 0x0 ; contains most of the RW and ZI code/data
 {
 * (+RW,+ZI)
 }
 OVERLAY_A_RAM 0x1000 OVERLAY ; start address of overlay…
 {
 module1.o (+RW,+ZI)
 }
 OVERLAY_B_RAM 0x1000 OVERLAY
 {
 module2.o (+RW,+ZI)
 }
 … ; rest of scatter-loading description
}

A region marked as OVERLAY is not initialized by the C library at startup. The contents of the memory
used by the overlay region are the responsibility of an overlay manager. If the region contains initialized
data, use the NOCOMPRESS attribute to prevent RW data compression.

You can use the linker defined symbols to obtain the addresses required to copy the code and data.

The OVERLAY attribute can be used on a single region that is not the same address as a different region.
Therefore, an overlay region can be used as a method to prevent the initialization of particular regions by
the C library startup code. As with any overlay region these must be manually initialized in your code.

An overlay region can have a relative base. The behavior of an overlay region with a +offset base
address depends on the regions that precede it and the value of +offset. The linker places consecutive
+offset regions at the same base address if they have the same +offset value.

When a +offset execution region ER follows a contiguous overlapping block of overlay execution
regions the base address of ER is:

limit address of the overlapping block of overlay execution regions + offset

The following table shows the effect of +offset when used with the OVERLAY attribute. REGION1 appears
immediately before REGION2 in the scatter file:

Table 7-7 Using relative offset in overlays

REGION1 is set with OVERLAY +offset REGION2 Base Address

NO <offset> REGION1 Limit + <offset>

YES +0 REGION1 Base Address

YES <non-zero offset> REGION1 Limit + <non-zero offset>

The following example shows the use of relative offsets with overlays and the effect on execution region
addresses:

EMB_APP 0x8000
{
 CODE 0x8000
 {
 *(+RO)

7 Scatter-loading Features
7.6 Placement of sections with overlays

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-152

Non-Confidential

 }
 # REGION1 Base = CODE limit
 REGION1 +0 OVERLAY
 {
 module1.o(*)
 }
 # REGION2 Base = REGION1 Base
 REGION2 +0 OVERLAY
 {
 module2.o(*)
 }
 # REGION3 Base = REGION2 Base = REGION1 Base
 REGION3 +0 OVERLAY
 {
 module3.o(*)
 }
 # REGION4 Base = REGION3 Limit + 4
 Region4 +4 OVERLAY
 {
 module4.o(*)
 }
}

If the length of the non-overlay area is unknown, you can use a zero relative offset to specify the start
address of an overlay so that it is placed immediately after the end of the static section.

You can use the following command-line options to add extra debug information to the image:
• --emit_debug_overlay_relocs.
• --emit_debug_overlay_section.

These permit an overlay-aware debugger to track which overlay is currently active.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
8.3 Load region descriptions on page 8-178.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
6.2 Linker-defined symbols on page 6-100.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.

Related references
12.46 --emit_debug_overlay_relocs on page 12-299.
12.47 --emit_debug_overlay_section on page 12-300.
8.3.3 Load region attributes on page 8-180.
8.4.1 Components of an execution region description on page 8-184.

Related information
__attribute__((section("name"))) variable attribute.
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

7 Scatter-loading Features
7.6 Placement of sections with overlays

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-153

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124982450.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

7.7 Reserving an empty region
You can reserve an empty block of memory with a scatter file, such as the area used for the stack. Use
the EMPTY attribute for the execution region in the scatter-loading description.

The block of memory does not form part of the load region, but is assigned for use at execution time.
Because it is created as a dummy ZI region, the linker uses the following symbols to access it:

• Image$$region_name$$ZI$$Base.
• Image$$region_name$$ZI$$Limit.
• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region. This
must be an absolute address and not a relative one.

In the following example, the execution region definition STACK 0x800000 EMPTY –0x10000 defines a
region called STACK that starts at address 0x7F0000 and ends at address 0x800000:

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region for placing the stack
 }

 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region for placing the heap
 }
 … ; rest of scatter-loading description
}

 Note

The dummy ZI region that is created for an EMPTY execution region is not initialized to zero at runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

Heap

Stack

0x810000

0x800000

0x7F0000

Base Limit

Base

Limit

Figure 7-5 Reserving a region for the stack

7 Scatter-loading Features
7.7 Reserving an empty region

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-154

Non-Confidential

In this example, the linker generates the symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x10000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x10000

 Note

The EMPTY attribute applies only to an execution region. The linker generates a warning and ignores an
EMPTY attribute used in a load region definition.

The linker checks that the address space used for the EMPTY region does not coincide with any other
execution region.

Related concepts
8.4 Execution region descriptions on page 8-184.

Related references
6.3.2 Image$$ execution region symbols on page 6-101.
8.4.3 Execution region attributes on page 8-186.

7 Scatter-loading Features
7.7 Reserving an empty region

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-155

Non-Confidential

7.8 Placement of ARM C and C++ library code
You can place code from the ARM standard C and C++ libraries using a scatter file.

This section contains the following subsections:
• 7.8.1 Specifying ARM standard C and C++ libraries in a scatter file on page 7-156.
• 7.8.2 Example of placing code in a root region on page 7-156.
• 7.8.3 Example of placing ARM C library code on page 7-156.
• 7.8.4 Example of placing ARM C++ library code on page 7-157.
• 7.8.5 Example of placing ARM library helper functions on page 7-158.

7.8.1 Specifying ARM standard C and C++ libraries in a scatter file

Use *armlib* or *cpplib* so that the linker can resolve library naming in your scatter file.

Some ARM C and C++ library sections must be placed in a root region, for example __main.o,
__scatter*.o, __dc*.o, and *Region$$Table. This list can change between releases. The linker can
place all these sections automatically in a future-proof way with InRoot$$Sections.

Related concepts
7.8.2 Example of placing code in a root region on page 7-156.
7.8.3 Example of placing ARM C library code on page 7-156.
7.8.4 Example of placing ARM C++ library code on page 7-157.
7.2.2 Root execution regions and the ABSOLUTE attribute on page 7-124.
7.2.3 Root execution regions and the FIXED attribute on page 7-125.

7.8.2 Example of placing code in a root region

This example shows how to use a scatter file to specify a root section. It is similar to placing a named
section.

The section selector InRoot$$Sections in this example places all sections that must be in a root region:

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region at 0x0
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

Related concepts
7.8.3 Example of placing ARM C library code on page 7-156.
7.8.4 Example of placing ARM C++ library code on page 7-157.
7.2.2 Root execution regions and the ABSOLUTE attribute on page 7-124.
7.2.3 Root execution regions and the FIXED attribute on page 7-125.
7.2 Root execution regions on page 7-124.

Related tasks
7.8.1 Specifying ARM standard C and C++ libraries in a scatter file on page 7-156.

7.8.3 Example of placing ARM C library code

You can place C library code using a scatter file.

7 Scatter-loading Features
7.8 Placement of ARM C and C++ library code

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-156

Non-Confidential

The following example shows how to place C library code:

LR1 0x0
{
 ROM1 0
 {
 * (InRoot$$Sections)
 * (+RO)
 }
 ROM2 0x1000
 {
 armlib/c_ (+RO) ; all ARM-supplied C library functions
 }
 ROM3 0x2000
 {
 armlib/h_ (+RO) ; just the ARM-supplied __ARM_*
 ; redistributable library functions
 }
 RAM1 0x3000
 {
 armlib (+RO) ; all other ARM-supplied library code
 ; for example, floating-point libraries
 }
 RAM2 0x4000
 {
 * (+RW, +ZI)
 }
}

The name armlib indicates the ARM C library files that are located in the directory
install_directory\lib\armlib.

Related concepts
7.8.2 Example of placing code in a root region on page 7-156.
7.8.4 Example of placing ARM C++ library code on page 7-157.

Related tasks
7.8.1 Specifying ARM standard C and C++ libraries in a scatter file on page 7-156.

Related information
C and C++ library naming conventions.

7.8.4 Example of placing ARM C++ library code

You can place C++ library code using a scatter file.

The following is a C++ program that is to be scatter-loaded:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
 cout << "Hello" << endl;
 return 1;
}

To place the C++ library code, define the scatter file as follows:

LR 0x0
{
 ER1 0x0
 {
 armlib(+RO)
 }
 ER2 +0
 {
 cpplib(+RO)
 *(.init_array) ; Section .init_array must be placed explicitly,
 ; otherwise it is shared between two regions, and
 ; the linker is unable to decide where to place it.
 }
 ER3 +0
 {

7 Scatter-loading Features
7.8 Placement of ARM C and C++ library code

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-157

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938936497.html

 *(+RO)
 }
 ER4 +0
 {
 *(+RW,+ZI)
 }
}

The name armlib indicates the ARM C library files that are located in the directory
install_directory\lib\armlib.

The name cpplib indicates the ARM C++ library files that are located in the directory
install_directory\lib\cpplib.

Related concepts
7.8.2 Example of placing code in a root region on page 7-156.
7.8.3 Example of placing ARM C library code on page 7-156.

Related tasks
7.8.1 Specifying ARM standard C and C++ libraries in a scatter file on page 7-156.

Related information
C and C++ library naming conventions.

7.8.5 Example of placing ARM library helper functions

Placing ARM library helper functions using a scatter file cannot be done using armlib and cpplib.

ARM library helper functions are generated by the compiler in the resulting object files. Therefore, you
cannot use armlib and cpplib in a scatter file to place these functions.

To place the helper functions specify *.* (i.__ARM_*) in your scatter file. The *.* part is important if
you have * (+RO) in your scatter file.

Be aware that if you use * (i.__ARM_*) the following error is generated:

Error: L6223E: Ambiguous selectors…

This is because of the scatter-loading rules for resolving multiple matches.

Related concepts
7.14 How the linker resolves multiple matches when processing scatter files on page 7-170.

7 Scatter-loading Features
7.8 Placement of ARM C and C++ library code

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-158

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938936497.html

7.9 Creation of regions on page boundaries
You can produce an ELF file that can be loaded directly to a target with each execution region starting at
a page boundary.

The linker provides the following built-in functions to help create load and execution regions on page
boundaries:
• AlignExpr.
• GetPageSize. You must also use the --paged command-line option if you use this function.

 Note

Alignment on an execution region causes both the load address and execution address to be aligned.

The following example produces an ELF file with each execution region starting on a new page:

LR1 GetPageSize() + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW AlignExpr(+0, GetPageSize())
 {
 *(+RW)
 }
 ER_ZI AlignExpr(+0, GetPageSize())
 {
 *(+ZI)
 }
}

The default page size 0x8000, is used. You can change the page size with the --pagesize command-line
option.

Related concepts
7.10 Overalignment of execution regions and input sections on page 7-160.
3.4 Linker support for creating demand-paged files on page 3-52.
8.6 Expression evaluation in scatter files on page 8-195.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-163.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.6.6 AlignExpr(expr, align) function on page 8-199.
8.6.7 GetPageSize() function on page 8-200.
12.105 --pagesize=pagesize on page 12-362.
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.
12.104 --paged on page 12-361.

7 Scatter-loading Features
7.9 Creation of regions on page boundaries

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-159

Non-Confidential

7.10 Overalignment of execution regions and input sections
There are situations when you want to overalign code and data sections. How you deal with them
depends on whether or not you have access to the source code.

Overalignment with access to the source code

If you have access to the original source code, you can do this at compile time with the __align(n)
keyword or the --min_array_alignment command-line option, for example.

Overalignment without access to the source code

If you do not have access to the source code, then you must use the following alignment specifiers in a
scatter file:

ALIGNALL
Increases the section alignment of all the sections in an execution region, for example:

ER_DATA … ALIGNALL 8
{
 … ;selectors
}

OVERALIGN
Increases the alignment of a specific section, for example:

ER_DATA …
{
 *.o(.bar, OVERALIGN 8)
 … ;selectors
}

Related concepts
7.9 Creation of regions on page boundaries on page 7-159.
8.5 Input section descriptions on page 8-191.

Related references
8.4.3 Execution region attributes on page 8-186.

Related information
__align.
--min_array_alignment=opt compiler option.

7 Scatter-loading Features
7.10 Overalignment of execution regions and input sections

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-160

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124966304.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124933511.html

7.11 Preprocessing of a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to process
the file. The command is of the form:

#! preprocessor [pre_processor_flags]

Most typically the command is #! armcc -E. This passes the scatter file through the armcc preprocessor.

You can:

• Add preprocessing directives to the top of the scatter file.
• Use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armcc -E

#define ADDRESS 0x20000000
#include "include_file_1.h"

LR1 ADDRESS
{
 …
}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use preprocessing of a scatter file in conjunction with the --predefine command-line
option. For this example:
1. Modify file.scat to delete the directive #define ADDRESS 0x20000000.
2. Specify the command:

armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

Default behavior for armcc -E
armlink behaves in the same way as armcc when invoking other ARM tools. It searches for the armcc
binary in the following order:
• The same location as armlink.
• The PATH locations.

armcc is invoked with the option -Iscatter_file_path so that any relative #includes work. The linker
only adds this option if the full name of the preprocessor tool given is armcc or armcc.exe. This means
that if an absolute path or a relative path is given, the linker does not give the -Iscatter_file_path
option to the preprocessor. This also happens with the --cpu option.

On Windows, .exe suffixes are handled, so armcc.exe is considered the same as armcc. Executable
names are case insensitive, so ARMCC is considered the same as armcc. The portable way to write scatter
file preprocessing lines is to use correct capitalization, and omit the .exe suffix.

Using other preprocessors
You must ensure that the preprocessing command line is appropriate for execution on the host system.
This means:
• The string must be correctly quoted for the host system. The portable way to do this is to use double-

quotes.
• Single quotes and escaped characters are not supported and might not function correctly.
• The use of a double-quote character in a path name is not supported and might not work.

These rules also apply to any strings passed with the --predefine option.

7 Scatter-loading Features
7.11 Preprocessing of a scatter file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-161

Non-Confidential

All preprocessor executables must accept the -o file option to mean output to file and accept the input
as a filename argument on the command line. These options are automatically added to the user
command line by armlink. Any options to redirect preprocessing output in the user-specified command
line are not supported.

Related concepts
8.6 Expression evaluation in scatter files on page 8-195.

Related references
12.110 --predefine="string" on page 12-367.
12.125 --scatter=filename on page 12-382.

7 Scatter-loading Features
7.11 Preprocessing of a scatter file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-162

Non-Confidential

7.12 Example of using expression evaluation in a scatter file to avoid padding
This example shows how to use expression evaluation in a scatter file to avoid padding.

Using certain scatter-loading attributes in a scatter file can result in a large amount of padding in the
image.

To remove the padding caused by the ALIGN, ALIGNALL, and FIXED attributes, use expression evaluation
to specify the start address of a load region and execution region. The built-in function AlignExpr is
available to help you specify address expressions.

Example

The following scatter file produces an image with padding:

LR1 0x4000
{
 ER1 +0 ALIGN 0x8000
 {
 …
 }
}

In this example, the ALIGN keyword causes ER1 to be aligned to a 0x8000 boundary in both the load and
the execution view. To align in the load view, the linker must insert 0x4000 bytes of padding.

The following scatter file produces an image without padding:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 …
 }
}

Using AlignExpr the result of +0 is aligned to a 0x8000 boundary. This creates an execution region with
a load address of 0x4000 but an Execution Address of 0x8000.

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.6.6 AlignExpr(expr, align) function on page 8-199.
8.4.3 Execution region attributes on page 8-186.

7 Scatter-loading Features
7.12 Example of using expression evaluation in a scatter file to avoid padding

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-163

Non-Confidential

7.13 Equivalent scatter-loading descriptions for simple images
Although you can use command-line options to scatter-load simple images, you can also use a scatter
file.

This section contains the following subsections:
• 7.13.1 Command-line options for creating simple images on page 7-164.
• 7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-164.
• 7.13.3 Type 2 image, one load region and non-contiguous execution regions on page 7-166.
• 7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions on page 7-167.

7.13.1 Command-line options for creating simple images

The command-line options --reloc, --ro_base, --rw_base, --ropi, --rwpi, --split, and --xo_base
create the simple image types.

The simple image types are:
• Type 1 image, one load region and contiguous execution regions.
• Type 2 image, one load region and non-contiguous execution regions.
• Type 3 image, two load regions and non-contiguous execution regions.

You can create the same image types by using the --scatter command-line option and a file containing
one of the corresponding scatter-loading descriptions.

Related concepts
7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-164.
8.3 Load region descriptions on page 8-178.
7.13.3 Type 2 image, one load region and non-contiguous execution regions on page 7-166.
7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions on page 7-167.

Related references
12.115 --reloc on page 12-372.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.125 --scatter=filename on page 12-382.
12.135 --split on page 12-394.
12.171 --xo_base=address on page 12-430.
8.3.3 Load region attributes on page 8-180.

7.13.2 Type 1 image, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and up to four execution regions in the
execution view. The execution regions are placed contiguously in the memory map.

By default, the ER_RO, ER_RW, and ER_ZI execution regions are present. If an image contains any
execute-only (XO) sections, then an ER_XO execution region is also present.

--ro_base address specifies the load and execution address of the region containing the RO output
section. The following example shows the scatter-loading description equivalent to using
--ro_base 0x040000:

LR_1 0x040000 ; Define the load region name as LR_1, the region starts at 0x040000.
{
 ER_RO +0 ; First execution region is called ER_RO, region starts at end of
 ; previous region. Because there is no previous region, the
 ; address is 0x040000.
 {

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-164

Non-Confidential

 * (+RO) ; All RO sections go into this region, they are placed
 ; consecutively.
 }
 ER_RW +0 ; Second execution region is called ER_RW, the region starts at the
 ; end of the previous region.
 ; The address is 0x040000 + size of ER_RO region.
 {
 * (+RW) ; All RW sections go into this region, they are placed
 ; consecutively.
 }
 ER_ZI +0 ; Last execution region is called ER_ZI, the region starts at the
 ; end of the previous region at 0x040000 + the size of the ER_RO
 ; regions + the size of the ER_RW regions.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:
• This description creates an image with one load region called LR_1 that has a load address of

0x040000.
• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO, RW,

and ZI output sections respectively. RO and RW are root regions. ZI is created dynamically at
runtime. The execution address of ER_RO is 0x040000. All three execution regions are placed
contiguously in the memory map by using the +offset form of the base designator for the execution
region description. This enables an execution region to be placed immediately following the end of
the preceding execution region.

Use the --reloc option to make relocatable images. Used on its own, --reloc makes an image similar
to simple type 1, but the single load region has the RELOC attribute.

ROPI example variant

In this variant, the execution regions are placed contiguously in the memory map. However, --ropi
marks the load and execution regions containing the RO output section as position-independent.

The following example shows the scatter-loading description equivalent to using
--ro_base 0x010000 --ropi:

LR_1 0x010000 PI ; The first load region is at 0x010000.
{
 ER_RO +0 ; The PI attribute is inherited from parent.
 ; The default execution address is 0x010000, but the code
 ; can be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
 {
 * (+RW) ; The RW sections are placed next. They cannot be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. The next execution
region, ER_RW, is marked as ABSOLUTE and uses the +offset form of base designator. This prevents
ER_RW from inheriting the PI attribute from ER_RO. Also, because the ER_ZI region has an offset of +0, it
inherits the ABSOLUTE attribute from the ER_RW region.

 Note

If an image contains execute-only sections, ROPI is not supported. If you use --ropi to link such an
image, armlink gives an error.

Related concepts
7.13.1 Command-line options for creating simple images on page 7-164.
8.3 Load region descriptions on page 8-178.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-165

Non-Confidential

8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.

Related references
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
8.3.3 Load region attributes on page 8-180.
12.115 --reloc on page 12-372.

7.13.3 Type 2 image, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region in the load view and three execution regions in the
execution view. It is similar to images of Type 1 except that the RW execution region is not contiguous
with the RO execution region.

--ro_base=address specifies the load and execution address of the region containing the RO output
section. --rw_base=address specifies the execution address for the RW execution region.

For images that contain execute-only (XO) sections, the XO execution region is placed at the address
specified by --ro_base. The RO execution region is placed contiguously and immediately after the XO
execution region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at the
specified address.

Example for single load region and multiple execution regions

The following example shows the scatter-loading description equivalent to using
--ro_base=0x010000 --rw_base=0x040000:

LR_1 0x010000 ; Defines the load region name as LR_1
{
 ER_RO +0 ; The first execution region is called ER_RO and starts at end
 ; of previous region. Because there is no previous region, the
 ; address is 0x010000.
 {
 * (+RO) ; All RO sections are placed consecutively into this region.
 }
 ER_RW 0x040000 ; Second execution region is called ER_RW and starts at 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The last execution region is called ER_ZI.
 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:
• This description creates an image with one load region, named LR_1, with a load address of

0x010000.
• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO, RW,

and ZI output sections respectively. The RO region is a root region. The execution address of ER_RO
is 0x010000.

• The ER_RW execution region is not contiguous with ER_RO. Its execution address is 0x040000.
• The ER_ZI execution region is placed immediately following the end of the preceding execution

region, ER_RW.

RWPI example variant

This is similar to images of Type 2 with --rw_base where the RW execution region is separate from the
RO execution region. However, --rwpi marks the execution regions containing the RW output section as
position-independent.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-166

Non-Confidential

The following example shows the scatter-loading description equivalent to using
--ro_base=0x010000 --rw_base=0x018000 --rwpi:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent.
 ; The execution address is 0x010000. The code and RO data
 ; cannot be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
 {
 * (+RW) ; The RW sections are placed at 0x018000 and they can be
 ; moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1. The next
execution region, ER_RW, is marked as PI. Also, because the ER_ZI region has an offset of +0, it inherits
the PI attribute from the ER_RW region.

Similar scatter-loading descriptions can also be written to correspond to the usage of other combinations
of --ropi and --rwpi with Type 2 and Type 3 images.

 Note

Be aware that if an image contains execute-only memory, RWPI is not supported. armlink gives an error
if you use --rwpi to link such an image.

Related concepts
8.3 Load region descriptions on page 8-178.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.

Related references
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.171 --xo_base=address on page 12-430.
8.3.3 Load region attributes on page 8-180.

7.13.4 Type 3 image, multiple load regions and non-contiguous execution regions

A Type 3 image consists of multiple load regions in load view and multiple execution regions in
execution view. They are similar to images of Type 2 except that the single load region in Type 2 is now
split into multiple load regions.

You can relocate and split load regions using the following linker options:
--reloc

The combination --reloc --split makes an image similar to simple Type 3, but the two load
regions now have the RELOC attribute.

--ro_base=address1
Specifies the load and execution address of the region containing the RO output section.

--rw_base=address2
Specifies the load and execution address for the region containing the RW output section.

--xo_base=address3
Specifies the load and execution address for the region containing the execute-only (XO) output
section, if present.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-167

Non-Confidential

--split
Splits the default single load region that contains the RO and RW output sections into two load
regions. One load region contains the RO output section and one contains the RW output
section.

 Note

For images containing XO sections, and if --xo_base is not used, an XO execution region is placed at
the address specified by --ro_base. The RO execution region is placed immediately after the XO
region.

Example for multiple load regions

The following example shows the scatter-loading description equivalent to using --ro_base=0x010000
--rw_base=0x040000 --split:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; The address is 0x010000.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

In this example:
• This description creates an image with two load regions, named LR_1 and LR_2, that have load

addresses 0x010000 and 0x040000.
• The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the RO, RW,

and ZI output sections respectively. The execution address of ER_RO is 0x010000.
• The ER_RW execution region is not contiguous with ER_RO, because its execution address is 0x040000.
• The ER_ZI execution region is placed immediately after ER_RW.

Example for multiple load regions with an XO region

The following example shows the scatter-loading description equivalent to using --ro_base=0x010000
--rw_base=0x040000 --split when an object file has XO sections:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_XO +0 ; The address is 0x010000.
 {
 * (+XO)
 }
 ER_RO +0 ; The address is 0x010000 + size of ER_XO region.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-168

Non-Confidential

In this example:
• This description creates an image with two load regions, named LR_1 and LR_2, that have load

addresses 0x010000 and 0x040000.
• The image has four execution regions, named ER_XO, ER_RO, ER_RW and ER_ZI, that contain the XO,

RO, RW, and ZI output sections respectively. The execution address of ER_XO is placed at the address
specified by --ro_base, 0x010000. ER_RO is placed immediately after ER_XO.

• The ER_RW execution region is not contiguous with ER_RO, because its execution address is 0x040000.
• The ER_ZI execution region is placed immediately after ER_RW.

 Note

If you also specify --xo_base, then the ER_XO execution region is placed in a load region separate from
the ER_RO execution region, at the specified address.

Relocatable load regions example variant

This Type 3 image also consists of two load regions in load view and three execution regions in
execution view. However, --reloc specifies that the two load regions now have the RELOC attribute.

The following example shows the scatter-loading description equivalent to using --ro_base 0x010000
--rw_base 0x040000 --reloc --split:

LR_1 0x010000 RELOC
{
 ER_RO + 0
 {
 * (+RO)
 }
}
LR2 0x040000 RELOC
{
 ER_RW + 0
 {
 * (+RW)
 }
 ER_ZI +0
 {
 * (+ZI)
 }
}

Related concepts
8.3 Load region descriptions on page 8-178.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
12.115 --reloc on page 12-372.
12.118 --ro_base=address on page 12-375.
12.122 --rw_base=address on page 12-379.
12.135 --split on page 12-394.
12.171 --xo_base=address on page 12-430.
8.3.3 Load region attributes on page 8-180.

7 Scatter-loading Features
7.13 Equivalent scatter-loading descriptions for simple images

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-169

Non-Confidential

7.14 How the linker resolves multiple matches when processing scatter files
An input section must be unique. In the case of multiple matches, the linker attempts to assign the input
section to a region based on the attributes of the input section description.

The linker assignment of the input section is based on a module_select_pattern and
input_section_selector pair that is the most specific. However, if a unique match cannot be found,
the linker faults the scatter-loading description.

The following variables describe how the linker matches multiple input sections:

• m1 and m2 represent module selector patterns.
• s1 and s2 represent input section selectors.

For example, if input section A matches m1,s1 for execution region R1, and A matches m2,s2 for
execution region R2, the linker:

• Assigns A to R1 if m1,s1 is more specific than m2,s2.
• Assigns A to R2 if m2,s2 is more specific than m1,s1.
• Diagnoses the scatter-loading description as faulty if m1,s1 is not more specific than m2,s2 and

m2,s2 is not more specific than m1,s1.

armlink uses the following strategy to determine the most specific module_select_pattern,
input_section_selector pair:

Resolving the priority of two module_selector, section_selector pairs m1, s1 and m2, s2
The strategy starts with two module_select_pattern, input_section_selector pairs.
m1,s1 is more specific than m2,s2 only if any of the following are true:
1. s1 is a literal input section name, that is it contains no pattern characters, and s2 matches

input section attributes other than +ENTRY.
2. m1 is more specific than m2.
3. s1 is more specific than s2.

The conditions are tested in order so condition 1 on page 7-170 takes precedence over condition
2 on page 7-170 and 3 on page 7-170, and condition 2 on page 7-170 takes precedence over
condition 3 on page 7-170.

Resolving the priority of two module selectors m1 and m2 in isolation
For the module selector patterns, m1 is more specific than m2 if the text string m1 matches pattern
m2 and the text string m2 does not match pattern m1.

Resolving the priority of two section selectors s1 and s2 in isolation
For the input section selectors:
• If s1 and s2 are both patterns matching section names, the same definition as for module

selector patterns is used.
• If one of s1 or s2 matches the input section name and the other matches the input section

attributes, s1 and s2 are unordered and the description is diagnosed as faulty.
• If both s1 and s2 match input section attributes, the following relationships determine

whether s1 is more specific than s2:
— ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE or RW-DATA.
— RO-CODE is more specific than RO.
— RO-DATA is more specific than RO.
— RW-CODE is more specific than RW.
— RW-DATA is more specific than RW.
— There are no other members of the (s1 more specific than s2) relationship between

section attributes.

7 Scatter-loading Features
7.14 How the linker resolves multiple matches when processing scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-170

Non-Confidential

This matching strategy has the following consequences:
• Descriptions do not depend on the order they are written in the file.
• Generally, the more specific the description of an object, the more specific the description of the input

sections it contains.
• The input_section_selectors are not examined unless:

— Object selection is inconclusive.
— One selector fully names an input section and the other selects by attribute. In this case, the

explicit input section name is more specific than any attribute, other than ENTRY, that selects
exactly one input section from one object. This is true even if the object selector associated with
the input section name is less specific than that of the attribute.

The .ANY module selector is available to assign any sections that cannot be resolved from the scatter-
loading description.

Example

The following example shows multiple execution regions and pattern matching:

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO-CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO-DATA) ; The RO data goes here
 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

Related concepts
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
8.5 Input section descriptions on page 8-191.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.5.2 Syntax of an input section description on page 8-191.

7 Scatter-loading Features
7.14 How the linker resolves multiple matches when processing scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-171

Non-Confidential

7.15 How the linker resolves path names when processing scatter files
The linker matches wildcard patterns in scatter files against any combination of forward slashes and
backslashes it finds in path names.

This might be useful where the paths are taken from environment variables or multiple sources, or where
you want to use the same scatter file to build on Windows or Unix platforms.

 Note

Use forward slashes in path names to ensure they are understood on Windows and Unix platforms.

Related references
8.2 Syntax of a scatter file on page 8-177.

7 Scatter-loading Features
7.15 How the linker resolves path names when processing scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-172

Non-Confidential

7.16 Scatter file to ELF mapping
Shows how scatter file components map onto ELF.

For simple images, ELF executable files contain segments:
• A load region is represented by an ELF program segment with type PT_LOAD.
• An execution region is represented by one or more of the following ELF sections:

— XO.
— RO.
— RW.
— ZI.

 Note

If XO and RO are mixed within an execution region, that execution region is treated as RO.

For example, you might have a scatter file similar to the following:

LOAD 0x8000
{
 EXEC_ROM +0
 {
 *(+RO)
 }
 RAM +0
 {
 *(+RW,+ZI)
 }
 HEAP +0x100 EMPTY 0x100
 {
 }
 STACK +0 EMPTY 0x400
 {
 }
}

This scatter file creates a single program segment with type PT_LOAD for the load region with address
0x8000.

A single output section with type SHT_PROGBITS is created to represent the contents of EXEC_ROM.
Two output sections are created to represent RAM. The first has a type SHT_PROGBITS and contains
the initialized read/write data. The second has a type of SHT_NOBITS and describes the zero-initialized
data.

The heap and stack are described in the ELF file by SHT_NOBITS sections.

Enter the following fromelf command to see the scatter-loaded sections in the image:

fromelf --text -v my_image.axf

To display the symbol table, enter the command:

fromelf --text -s -v my_image.axf

The following is an example of the fromelf output showing the LOAD, EXEC_ROM, RAM, HEAP, and STACK
sections:

…==
** Program header #0
 Type : PT_LOAD (1)
 File Offset : 52 (0x34)
 Virtual Addr : 0x00008000
 Physical Addr : 0x00008000
 Size in file : 764 bytes (0x2fc)
 Size in memory: 2140 bytes (0x85c)
 Flags : PF_X + PF_W + PF_R + PF_ARM_ENTRY (0x80000007)
 Alignment : 4
==
** Section #1
 Name : EXEC_ROM

7 Scatter-loading Features
7.16 Scatter file to ELF mapping

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-173

Non-Confidential

…
 Addr : 0x00008000
 File Offset : 52 (0x34)
 Size : 740 bytes (0x2e4)
…
====================================
** Section #2
 Name : RAM
…
 Addr : 0x000082e4
 File Offset : 792 (0x318)
 Size : 20 bytes (0x14)
…
====================================
** Section #3
 Name : RAM
…
 Addr : 0x000082f8
 File Offset : 812 (0x32c)
 Size : 96 bytes (0x60)
…
====================================
** Section #4
 Name : HEAP
…
 Addr : 0x00008458
 File Offset : 812 (0x32c)
 Size : 256 bytes (0x100)
…
====================================
** Section #5
 Name : STACK
…
 Addr : 0x00008558
 File Offset : 812 (0x32c)
 Size : 1024 bytes (0x400)
…

Related concepts
7.1.1 Overview of scatter-loading on page 7-117.
7.1.6 Scatter-loading images with a simple memory map on page 7-120.

7 Scatter-loading Features
7.16 Scatter file to ELF mapping

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-174

Non-Confidential

Chapter 8
Scatter File Syntax

Describes the format of scatter files.

It contains the following sections:
• 8.1 BNF notation used in scatter-loading description syntax on page 8-176.
• 8.2 Syntax of a scatter file on page 8-177.
• 8.3 Load region descriptions on page 8-178.
• 8.4 Execution region descriptions on page 8-184.
• 8.5 Input section descriptions on page 8-191.
• 8.6 Expression evaluation in scatter files on page 8-195.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-175

Non-Confidential

8.1 BNF notation used in scatter-loading description syntax
Scatter-loading description syntax uses standard BNF notation.

The following table summarizes the Backus-Naur Form (BNF) symbols that are used for describing the
syntax of scatter-loading descriptions.

Table 8-1 BNF notation

Symbol Description

" Quotation marks indicate that a character that is normally part of the BNF syntax is used as a literal character in the
definition. The definition B"+"C, for example, can only be replaced by the pattern B+C. The definition B+C can be replaced
by, for example, patterns BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is equivalent to either B+ or C. The ::= notation defines a
higher level construct in terms of its components. Each component might also have a ::= definition that defines it in terms
of even simpler components. For example, A::= B and B::= C | D means that the definition A is equivalent to the
patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the definition A can be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A::= B+ means that the definition A can be expanded into B,
BB, or BBB.

A* Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together. This is particularly useful when the | operator is used or when a complex pattern is
repeated. For example, A::=(B C)+ (D | E) means that the definition A can be expanded into any of BCD, BCE, BCBCD,
BCBCE, BCBCBCD, or BCBCBCE.

Related references
8.2 Syntax of a scatter file on page 8-177.

8 Scatter File Syntax
8.1 BNF notation used in scatter-loading description syntax

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-176

Non-Confidential

8.2 Syntax of a scatter file
A scatter file contains one or more load regions. Each load region can contain one or more execution
regions.

The following figure shows the components and organization of a typical scatter file:

Load region description

Execution region description

Input section description

Module selector pattern Input section attributes

Load region description

Execution region description

Input section description

Execution region description

Input section description

Execution region description

Input section description

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

LOAD_ROM_2 0x4000
{

EXEC_ROM_2 0x4000
{

program2.o (+RO)
}

SRAM 0x8000 0x8000
{

program2.o (+RW,+ZI)
}

}

Scatter description

Figure 8-1 Components of a scatter file

Related concepts
8.3 Load region descriptions on page 8-178.
8.4 Execution region descriptions on page 8-184.

Related references
Chapter 7 Scatter-loading Features on page 7-116.

8 Scatter File Syntax
8.2 Syntax of a scatter file

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-177

Non-Confidential

8.3 Load region descriptions
A load region description specifies the region of memory where its child execution regions are to be
placed.

This section contains the following subsections:
• 8.3.1 Components of a load region description on page 8-178.
• 8.3.2 Syntax of a load region description on page 8-179.
• 8.3.3 Load region attributes on page 8-180.
• 8.3.4 Inheritance rules for load region address attributes on page 8-181.
• 8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
• 8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.

8.3.1 Components of a load region description

The components of a load region description allow you to uniquely identify a load region and to control
what parts of an ELF file are placed in that region.

A load region description has the following components:
• A name (used by the linker to identify different load regions).
• A base address (the start address for the code and data in the load view).
• Attributes that specify the properties of the load region.
• An optional maximum size specification.
• One or more execution regions.

The following figure shows an example of a typical load region description:

A load region description contains
one or more execution region
descriptions

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

Load region description

Figure 8-2 Components of a load region description

Related concepts
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.
7.9 Creation of regions on page boundaries on page 7-159.
8.6 Expression evaluation in scatter files on page 8-195.

Related references
8.3.2 Syntax of a load region description on page 8-179.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-178

Non-Confidential

8.3.3 Load region attributes on page 8-180.
Chapter 7 Scatter-loading Features on page 7-116.

8.3.2 Syntax of a load region description

A load region can contain one or more execution region descriptions.

The syntax of a load region description, in Backus-Naur Form (BNF), is:

load_region_description ::=
 load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]
 "{"
 execution_region_description+
 "}"

where:
load_region_name

Names the load region. You can use a quoted name. The name is case-sensitive only if you use
any region-related linker-defined symbols.

base_address
Specifies the address where objects in the region are to be linked. base_address must satisfy
the alignment constraints of the load region.

+offset
Describes a base address that is offset bytes beyond the end of the preceding load region. The
value of offset must be zero modulo four. If this is the first load region, then +offset means
that the base address begins offset bytes from zero.

If you use +offset, then the load region might inherit certain attributes from a previous load
region.

attribute_list
The attributes that specify the properties of the load region contents.

max_size
Specifies the maximum size of the load region. This is the size of the load region before any
decompression or zero initialization take place. If the optional max_size value is specified,
armlink generates an error if the region has more than max_size bytes allocated to it.

execution_region_description
Specifies the execution region name, address, and contents.

 Note

The BNF definitions contain additional line returns and spaces to improve readability. They are not
required in scatter-loading descriptions and are ignored if present in a scatter file.

Related concepts
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.6 Expression evaluation in scatter files on page 8-195.

Related references
8.3.1 Components of a load region description on page 8-178.
8.3.3 Load region attributes on page 8-180.
8.1 BNF notation used in scatter-loading description syntax on page 8-176.
8.2 Syntax of a scatter file on page 8-177.
6.3 Region-related symbols on page 6-101.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-179

Non-Confidential

8.3.3 Load region attributes

A load region has attributes that allow you to control where parts of your image are loaded in the target
memory.

The load region attributes are:

ABSOLUTE
The content is placed at a fixed address that does not change after linking. The load address of
the region is specified by the base designator. This is the default, unless you use PI or RELOC.

ALIGN alignment
Increase the alignment constraint for the load region from 4 to alignment. alignment must be a
positive power of 2. If the load region has a base_address then this must be alignment
aligned. If the load region has a +offset then the linker aligns the calculated base address of the
region to an alignment boundary.

This can also affect the offset in the ELF file. For example, the following causes the data for FOO
to be written out at 4k offset into the ELF file:

FOO +4 ALIGN 4096

NOCOMPRESS
RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that the contents of a load region must not be compressed in the final image.

OVERLAY
The OVERLAY keyword enables you to have multiple load regions at the same address. ARM
tools do not provide an overlay mechanism. To use multiple load regions at the same address,
you must provide your own overlay manager.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

PI
This region is position independent. The content does not depend on any fixed address and
might be moved after linking without any extra processing.

 Note

This attribute is not supported if an image contains execute-only sections.

PROTECTED
The PROTECTED keyword prevents:
• Overlapping of load regions.
• Veneer sharing.
• String sharing with the --merge option.

RELOC
This region is relocatable. The content depends on fixed addresses. Relocation information is
output to enable the content to be moved to another location by another tool.

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.
3.3.3 Section alignment with the linker on page 3-51.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.
7.9 Creation of regions on page boundaries on page 7-159.
7.6 Placement of sections with overlays on page 7-152.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-180

Non-Confidential

3.6.2 Veneer sharing on page 3-55.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
4.7 Optimization with RW data compression on page 4-80.

Related references
12.98 --merge, --no_merge on page 12-355.
8.3.1 Components of a load region description on page 8-178.
8.3.2 Syntax of a load region description on page 8-179.

8.3.4 Inheritance rules for load region address attributes

A load region can inherit the attributes of a previous load region.

For a load region to inherit the attributes of a previous load region, specify a +offset base address for
that region. A load region cannot inherit attributes if:

• You explicitly set the attribute of that load region.
• The load region immediately before has the OVERLAY attribute.

You can explicitly set a load region with the ABSOLUTE, PI, RELOC, or OVERLAY address attributes.

The following inheritance rules apply when no address attribute is specified:
• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.
• A base address load or execution region always defaults to ABSOLUTE.
• A +offset load region inherits the address attribute from the previous load region or ABSOLUTE if no

previous load region exists.

Example

This example shows the inheritance rules for setting the address attributes of load regions:

LR1 0x8000 PI
{
 …
}
LR2 +0 ; LR2 inherits PI from LR1
{
 …
}
LR3 0x1000 ; LR3 does not inherit because it has no relative base
 address, gets default of ABSOLUTE
{
 …
}
LR4 +0 ; LR4 inherits ABSOLUTE from LR3
{
 …
}
LR5 +0 RELOC ; LR5 does not inherit because it explicitly sets RELOC
{
 …
}
LR6 +0 OVERLAY ; LR6 does not inherit, an OVERLAY cannot inherit
{
 …
}
LR7 +0 ; LR7 cannot inherit OVERLAY, gets default of ABSOLUTE
{
 …
}

Related concepts
8.4.4 Inheritance rules for execution region address attributes on page 8-188.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.

Related references
8.3.1 Components of a load region description on page 8-178.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-181

Non-Confidential

8.4.1 Components of an execution region description on page 8-184.
8.3.2 Syntax of a load region description on page 8-179.

8.3.5 Inheritance rules for the RELOC address attribute

You can explicitly set the RELOC attribute for a load region. However, an execution region can only
inherit the RELOC attribute from the parent load region.

 Note

For a Base Platform linking model, if a load region has the RELOC attribute, then all execution regions
within that load region must have a +offset base address. This ensures the execution regions inherit the
relocations from the parent load region.

Example

This example shows the inheritance rules for setting the address attributes with RELOC:

LR1 0x8000 RELOC
{
 ER1 +0 ; inherits RELOC from LR1
 {
 …
 }
 ER2 +0 ; inherits RELOC from ER1
 {
 …
 }
 ER3 +0 RELOC ; Error cannot explicitly set RELOC on an execution region
 {
 …
 }
}

Related concepts
11.1 Restrictions on the use of scatter files with the Base Platform model on page 11-240.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
2.5 Base Platform linking model on page 2-29.

Related references
8.3.1 Components of a load region description on page 8-178.
8.3.2 Syntax of a load region description on page 8-179.
8.4.1 Components of an execution region description on page 8-184.

8.3.6 Considerations when using a relative address +offset for a load region

There are some considerations to be aware of when using a relative address for a load region.

When using +offset to specify a load region base address:
• If the +offset load region LR2 follows a load region LR1 containing ZI data, then LR2 overlaps the

ZI data. To fix this, use the ImageLimit() function to specify the base address of LR2.
• A +offset load region LR2 inherits the attributes of the load region LR1 immediately before it,

unless:
— LR1 has the OVERLAY attribute.
— LR2 has an explicit attribute set.

If a load region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.
• A gap might exist in a ROM image between a +offset load region and a preceding region when the

preceding region has RW data compression applied. This is because the linker calculates the +offset

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-182

Non-Confidential

based on the uncompressed size of the preceding region. However, this gap disappears when the RW
data is decompressed at load time.

Related concepts
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.

Related references
8.2 Syntax of a scatter file on page 8-177.

8 Scatter File Syntax
8.3 Load region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-183

Non-Confidential

8.4 Execution region descriptions
An execution region description specifies the region of memory where parts of your image are to be
placed at run-time.

This section contains the following subsections:
• 8.4.1 Components of an execution region description on page 8-184.
• 8.4.2 Syntax of an execution region description on page 8-184.
• 8.4.3 Execution region attributes on page 8-186.
• 8.4.4 Inheritance rules for execution region address attributes on page 8-188.
• 8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.

8.4.1 Components of an execution region description

The components of an execution region description allow you to uniquely identify each execution region
and its position in the parent load region, and to control what parts of an ELF file are placed in that
execution region.

An execution region description has the following components:
• A name (used by the linker to identify different execution regions).
• A base address (either absolute or relative).
• Attributes that specify the properties of the execution region.
• An optional maximum size specification.
• One or more input section descriptions (the modules placed into this execution region).

The following figure shows the components of a typical execution region description:

An execution region description contains
one or more input section descriptions

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

Execution region description

Figure 8-3 Components of an execution region description

Related concepts
7.6 Placement of sections with overlays on page 7-152.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.
8.6 Expression evaluation in scatter files on page 8-195.
7.9 Creation of regions on page boundaries on page 7-159.
8.5 Input section descriptions on page 8-191.

Related references
8.4.2 Syntax of an execution region description on page 8-184.
8.4.3 Execution region attributes on page 8-186.
Chapter 7 Scatter-loading Features on page 7-116.
8.3.3 Load region attributes on page 8-180.

8.4.2 Syntax of an execution region description

An execution region specifies where the input sections are to be placed in target memory at run-time.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-184

Non-Confidential

The syntax of an execution region description, in Backus-Naur Form (BNF), is:

execution_region_description ::=
 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | length]
 "{"
 input_section_description*
 "}"

where:
exec_region_name

Names the execution region. You can use a quoted name. The name is case-sensitive only if you
use any region-related linker-defined symbols.

base_address
Specifies the address where objects in the region are to be linked. base_address must be word-
aligned.

 Note

Using ALIGN on an execution region causes both the load address and execution address to be
aligned.

+offset
Describes a base address that is offset bytes beyond the end of the preceding execution region.
The value of offset must be zero modulo four.

If this is the first execution region in the load region then +offset means that the base address
begins offset bytes after the base of the containing load region.

If you use +offset, then the execution region might inherit certain attributes from the parent
load region, or from a previous execution region within the same load region.

attribute_list
The attributes that specify the properties of the execution region contents.

max_size
For an execution region marked EMPTY or FILL the max_size value is interpreted as the length
of the region. Otherwise the max_size value is interpreted as the maximum size of the execution
region.

[–]length
Can only be used with EMPTY to represent a stack that grows down in memory. If the length is
given as a negative value, the base_address is taken to be the end address of the region.

input_section_description
Specifies the content of the input sections.

 Note

The BNF definitions contain additional line returns and spaces to improve readability. They are not
required in scatter-loading descriptions and are ignored if present in a scatter file.

Related concepts
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.6 Expression evaluation in scatter files on page 8-195.
2.5 Base Platform linking model on page 2-29.
7.6 Placement of sections with overlays on page 7-152.
7.9 Creation of regions on page boundaries on page 7-159.
11.1 Restrictions on the use of scatter files with the Base Platform model on page 11-240.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.5 Input section descriptions on page 8-191.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-185

Non-Confidential

Related references
8.4.1 Components of an execution region description on page 8-184.
8.4.3 Execution region attributes on page 8-186.
Chapter 7 Scatter-loading Features on page 7-116.
6.3 Region-related symbols on page 6-101.
8.4.3 Execution region attributes on page 8-186.

8.4.3 Execution region attributes

An execution region has attributes that allow you to control where parts of your image are loaded in the
target memory at run-time.

The execution region attributes are:

ABSOLUTE
The content is placed at a fixed address that does not change after linking. The execution
address of the region is specified by the base designator.

ALIGN alignment
Increase the alignment constraint for the execution region from 4 to alignment. alignment
must be a positive power of 2. If the execution region has a base_address then this must be
alignment aligned. If the execution region has a +offset then the linker aligns the calculated
base address of the region to an alignment boundary.

 Note

ALIGN on an execution region causes both the load address and execution address to be aligned.
This can result in padding being added to the ELF file. To align only the execution address, use
the AlignExpr expression on the base address.

ALIGNALL value
Increases the alignment of sections within the execution region.

The value must be a positive power of 2 and must be greater than or equal to 4.

ANY_SIZE max_size
Specifies the maximum size within the execution region that armlink can fill with unassigned
sections. You can use a simple expression to specify the max_size. That is, you cannot use
functions such as ImageLimit().

 Note

Specifying ANY_SIZE overrides any effects that --any_contingency has on the region.

Be aware of the following restrictions when using this keyword:
• max_size must be less than or equal to the region size.
• You can use ANY_SIZE on a region without a .ANY selector but it is ignored by armlink.

EMPTY [–]length
Reserves an empty block of memory of a given size in the execution region, typically used by a
heap or stack. No section can be placed in a region with the EMPTY attribute.

length represents a stack that grows down in memory. If the length is given as a negative value,
the base_address is taken to be the end address of the region.

FILL value
Creates a linker generated region containing a value. If you specify FILL, you must give a
value, for example: FILL 0xFFFFFFFF. The FILL attribute replaces the following combination:
EMPTY ZEROPAD PADVALUE.

In certain situations, for example, simulation, this is preferable to spending a long time in a
zeroing loop.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-186

Non-Confidential

FIXED
Fixed address. The linker attempts to make the execution address equal the load address. This
makes the region a root region. If this is not possible the linker produces an error.

 Note

The linker inserts padding with this attribute.

NOCOMPRESS
RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that RW data in an execution region must not be compressed in the final image.

OVERLAY
Use for sections with overlaying address ranges. If consecutive execution regions have the same
+offset then they are given the same base address.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

PADVALUE value
Defines the value to use for padding. If you specify PADVALUE, you must give a value, for
example:

EXEC 0x10000 PADVALUE 0xFFFFFFFF EMPTY ZEROPAD 0x2000

This creates a region of size 0x2000 full of 0xFFFFFFFF.

PADVALUE must be a word in size. PADVALUE attributes on load regions are ignored.

PI
This region contains only position independent sections. The content does not depend on any
fixed address and might be moved after linking without any extra processing.

 Note

This attribute is not supported if an image contains execute-only sections.

SORTTYPE algorithm
Specifies the sorting algorithm for the execution region, for example:

ER1 +0 SORTTYPE CallTree

 Note

This attribute overrides any sorting algorithm that you specify with the --sort command-line
option.

UNINIT
Use to create execution regions containing uninitialized data or memory-mapped I/O.

 Note

ARM Compiler does not support systems with ECC or parity protection where the memory is
not initialized.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-187

Non-Confidential

ZEROPAD
Zero-initialized sections are written in the ELF file as a block of zeros and, therefore, do not
have to be zero-filled at runtime.

This sets the load length of a ZI output section to Image$$region_name$$ZI$$Length.

Only root execution regions can be zero-initialized using the ZEROPAD attribute. Using the
ZEROPAD attribute with a non root execution region generates a warning and the attribute is
ignored.

In certain situations, for example, simulation, this is preferable to spending a long time in a
zeroing loop.

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.
3.3.3 Section alignment with the linker on page 3-51.
7.9 Creation of regions on page boundaries on page 7-159.
7.10 Overalignment of execution regions and input sections on page 7-160.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-163.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.
7.6 Placement of sections with overlays on page 7-152.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.6 Expression evaluation in scatter files on page 8-195.
4.7 Optimization with RW data compression on page 4-80.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
8.4.2 Syntax of an execution region description on page 8-184.
6.3.3 Load$$ execution region symbols on page 6-102.
8.6.6 AlignExpr(expr, align) function on page 8-199.
8.1 BNF notation used in scatter-loading description syntax on page 8-176.
12.3 --any_contingency on page 12-251.
6.3.2 Image$$ execution region symbols on page 6-101.
8.5.2 Syntax of an input section description on page 8-191.
12.134 --sort=algorithm on page 12-392.

8.4.4 Inheritance rules for execution region address attributes

An execution region can inherit the attributes of a previous execution region.

For an execution region to inherit the attributes of a previous execution region, specify a +offset base
address for that region. The first +offset execution region can inherit the attributes of the parent load
region. An execution region cannot inherit attributes if:

• You explicitly set the attribute of that execution region.
• The previous execution region has the OVERLAY attribute.

You can explicitly set an execution region with the ABSOLUTE, PI, or OVERLAY attributes. However, an
execution region can only inherit the RELOC attribute from the parent load region.

The following inheritance rules apply when no address attribute is specified:
• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.
• A base address load or execution region always defaults to ABSOLUTE.
• A +offset execution region inherits the address attribute from the previous execution region or

parent load region if no previous execution region exists.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-188

Non-Confidential

Example

This example shows the inheritance rules for setting the address attributes of execution regions:

LR1 0x8000 PI
{
 ER1 +0 ; ER1 inherits PI from LR1
 {
 …
 }
 ER2 +0 ; ER2 inherits PI from ER1
 {
 …
 }
 ER3 0x10000 ; ER3 does not inherit because it has no relative base
 address and gets the default of ABSOLUTE
 {
 …
 }
 ER4 +0 ; ER4 inherits ABSOLUTE from ER3
 {
 …
 }
 ER5 +0 PI ; ER5 does not inherit, it explicitly sets PI
 {
 …
 }
 ER6 +0 OVERLAY ; ER6 does not inherit, an OVERLAY cannot inherit
 {
 …
 }
 ER7 +0 ; ER7 cannot inherit OVERLAY, gets the default of ABSOLUTE
 {
 …
 }
}

Related concepts
7.6 Placement of sections with overlays on page 7-152.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.

Related references
8.3.1 Components of a load region description on page 8-178.
8.4.1 Components of an execution region description on page 8-184.
8.4.2 Syntax of an execution region description on page 8-184.

8.4.5 Considerations when using a relative address +offset for execution regions

There are some considerations to be aware of when using a relative address for execution regions.

When using +offset to specify an execution region base address:
• The first execution region inherits the attributes of the parent load region, unless an attribute is

explicitly set on that execution region.
• A +offset execution region ER2 inherits the attributes of the execution region ER1 immediately

before it, unless:
— ER1 has the OVERLAY attribute.
— ER2 has an explicit attribute set.

If an execution region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.
• If the parent load region has the RELOC attribute, then all execution regions within that load region

must have a +offset base address.

Related concepts
8.4.4 Inheritance rules for execution region address attributes on page 8-188.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-189

Non-Confidential

Related references
8.2 Syntax of a scatter file on page 8-177.

8 Scatter File Syntax
8.4 Execution region descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-190

Non-Confidential

8.5 Input section descriptions
An input section description is a pattern that identifies input sections.

This section contains the following subsections:
• 8.5.1 Components of an input section description on page 8-191.
• 8.5.2 Syntax of an input section description on page 8-191.
• 8.5.3 Examples of module and input section specifications on page 8-194.

8.5.1 Components of an input section description

The components of an input section description allow you to identify the parts of an ELF file that are to
be placed in an execution region.

An input section description identifies input sections by:

• Module name (object filename, library member name, or library filename). The module name can use
wildcard characters.

• Input section name, or input section attributes such as READ-ONLY, or CODE. You can use wildcard
characters for the input section name.

• Symbol name.

The following figure shows the components of a typical input section description.

program2.o (+RO)

Input section selectorModule select pattern

Input section description

Figure 8-4 Components of an input section description

 Note

Ordering in an execution region does not affect the ordering of sections in the output image.

Input section descriptions when linking partially-linked objects

You cannot specify partially-linked objects in an input section description, only the combined object file.

For example, if you link the partially linked objects obj1.o, obj2.o, and obj3.o together to produce
obj_all.o, the component object names are discarded in the resulting object. Therefore, you cannot
refer to one of the objects by name, for example, obj1.o. You can refer only to the combined object
obj_all.o.

Related references
8.5.2 Syntax of an input section description on page 8-191.
8.2 Syntax of a scatter file on page 8-177.
12.106 --partial on page 12-363.

8.5.2 Syntax of an input section description

An input section description specifies what input sections are loaded into the parent execution region.

The syntax of an input section description, in Backus-Naur Form (BNF), is:

input_section_description ::=
 module_select_pattern ["(" input_section_selector ("," input_section_selector)*
")"]
input_section_selector ::= "+" input_section_attr
 | input_section_pattern

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-191

Non-Confidential

 | input_symbol_pattern
 | section_properties

where:

module_select_pattern
A pattern constructed from literal text. An input section matches a module selector pattern when
module_select_pattern matches one of the following:
• The name of the object file containing the section.
• The name of the library member (without leading path name).
• The full name of the library (including path name) the section is extracted from. If the names

contain spaces, use wild characters to simplify searching. For example, use *libname.lib to
match C:\lib dir\libname.lib.

The wildcard character * matches zero or more characters and ? matches any single character.

Matching is not case-sensitive, even on hosts with case-sensitive file naming.

Use *.o to match all objects. Use * to match all object files and libraries.

You can use quoted filenames, for example "file one.o".

You cannot have two * selectors in a scatter file. You can, however, use two modified selectors,
for example *A and *B, and you can use a .ANY selector together with a * module selector. The *
module selector has higher precedence than .ANY. If the portion of the file containing the *
selector is removed, the .ANY selector then becomes active.

input_section_attr
An attribute selector matched against the input section attributes. Each input_section_attr
follows a +.

The selectors are not case-sensitive. The following selectors are recognized:

• RO-CODE.
• RO-DATA.
• RO, selects both RO-CODE and RO-DATA.
• RW-DATA.
• RW-CODE.
• RW, selects both RW-CODE and RW-DATA.
• XO.
• ZI.
• ENTRY, that is, a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE.
• CONST for RO-DATA.
• TEXT for RO.
• DATA for RW.
• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST.
• LAST.

Use FIRST and LAST to mark the first and last sections in an execution region if the placement
order is important. For example, if a specific input section must be first in the region and an
input section containing a checksum must be last.

 Caution

FIRST and LAST must not violate the basic attribute sorting order. For example, FIRST RW is
placed after any read-only code or read-only data.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-192

Non-Confidential

There can be only one FIRST or one LAST attribute for an execution region, and it must follow a
single input_section_selector. For example:

*(section, +FIRST)
This pattern is correct.

*(+FIRST, section)
This pattern is incorrect and produces an error message.

input_section_pattern
A pattern that is matched, without case sensitivity, against the input section name. It is
constructed from literal text. The wildcard character * matches 0 or more characters, and ?
matches any single character. You can use a quoted input section name.

 Note

If you use more than one input_section_pattern, ensure that there are no duplicate patterns
in different execution regions to avoid ambiguity errors.

input_symbol_pattern
You can select the input section by the name of a global symbol that the section defines. This
enables you to choose individual sections with the same name from partially linked objects.

The :gdef: prefix distinguishes a global symbol pattern from a section pattern. For example,
use :gdef:mysym to select the section that defines mysym. The following example shows a
scatter file in which ExecReg1 contains the section that defines global symbol mysym1, and the
section that contains global symbol mysym2:

LoadRegion 0x8000
{
 ExecReg1 +0
 {
 *(:gdef:mysym1)
 *(:gdef:mysym2)
 }
 ; rest of scatter-loading description
}

You can use a quoted global symbol pattern. The :gdef: prefix can be inside or outside the
quotes.

 Note

If you use more than one input_symbol_pattern, ensure that there are no duplicate patterns in
different execution regions to avoid ambiguity errors.

section_properties
A section property can be +FIRST, +LAST, and OVERALIGN value.

The value for OVERALIGN must be a positive power of 2 and must be greater than or equal to 4.

 Note

• The order of input section descriptors is not significant.
• Only input sections that match both module_select_pattern and at least one input_section_attr

or input_section_pattern are included in the execution region.

If you omit (+ input_section_attr) and (input_section_pattern), the default is +RO.
• Do not rely on input section names generated by the compiler, or used by ARM library code. These

can change between compilations if, for example, different compiler options are used. In addition,
section naming conventions used by the compiler are not guaranteed to remain constant between
releases.

• The BNF definitions contain additional line returns and spaces to improve readability. They are not
required in scatter-loading descriptions and are ignored if present in a scatter file.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-193

Non-Confidential

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.
8.5.3 Examples of module and input section specifications on page 8-194.
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.
7.10 Overalignment of execution regions and input sections on page 7-160.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.

Related references
8.5.1 Components of an input section description on page 8-191.
8.1 BNF notation used in scatter-loading description syntax on page 8-176.
8.2 Syntax of a scatter file on page 8-177.

8.5.3 Examples of module and input section specifications

Examples of module_select_pattern specifications and input_section_selector specifications.

Examples of module_select_pattern specifications are:

• * matches any module or library.
• *.o matches any object module.
• math.o matches the math.o module.
• *armlib* matches all C libraries supplied by ARM.
• "file 1.o" matches the file file 1.o.
• *math.lib matches any library path ending with math.lib, for example, C:\apps\lib\math

\satmath.lib.

Examples of input_section_selector specifications are:
• +RO is an input section attribute that matches all RO code and all RO data.
• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and all ZI data.
• BLOCK_42 is an input section pattern that matches sections named BLOCK_42. There can be multiple

ELF sections with the same BLOCK_42 name that possess different attributes, for example
+RO-CODE,+RW.

Related references
8.5.1 Components of an input section description on page 8-191.
8.5.2 Syntax of an input section description on page 8-191.

8 Scatter File Syntax
8.5 Input section descriptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-194

Non-Confidential

8.6 Expression evaluation in scatter files
Scatter files frequently contain numeric constants. These can be specific values, or the result of an
expression.

This section contains the following subsections:
• 8.6.1 Expression usage in scatter files on page 8-195.
• 8.6.2 Expression rules in scatter files on page 8-196.
• 8.6.3 Execution address built-in functions for use in scatter files on page 8-196.
• 8.6.4 ScatterAssert function and load address related functions on page 8-198.
• 8.6.5 Symbol related function in a scatter file on page 8-199.
• 8.6.6 AlignExpr(expr, align) function on page 8-199.
• 8.6.7 GetPageSize() function on page 8-200.
• 8.6.8 SizeOfHeaders() function on page 8-201.
• 8.6.9 Example of aligning a base address in execution space but still tightly packed in load space

on page 8-201.
• 8.6.10 Scatter files containing relative base address load regions and a ZI execution region

on page 8-202.

8.6.1 Expression usage in scatter files

You can use expressions for various load and execution region attributes.

Expressions can be used in the following places:
• Load and execution region base_address.
• Load and execution region +offset.
• Load and execution region max_size.
• Parameter for the ALIGN, FILL or PADVALUE keywords.
• Parameter for the ScatterAssert function.

Example of specifying the maximum size in terms of an expression
LR1 0x8000 (2 * 1024)
{
 ER1 +0 (1 * 1024)
 {
 *(+RO)
 }
 ER2 +0 (1 * 1024)
 {
 *(+RW +ZI)
 }
}

Related concepts
8.6.2 Expression rules in scatter files on page 8-196.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.
8.6.4 ScatterAssert function and load address related functions on page 8-198.
8.6.5 Symbol related function in a scatter file on page 8-199.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-195

Non-Confidential

8.6.2 Expression rules in scatter files

Expressions follow the C-Precedence rules.

Expressions are made up of the following:
• Decimal or hexadecimal numbers.
• Arithmetic operators: +, -, /, *, ~, OR, and AND

The OR and AND operators map to the C operators | and & respectively.
• Logical operators: LOR, LAND, and !

The LOR and LAND operators map to the C operators || and && respectively.
• Relational operators: <, <=, >, >=, and ==

Zero is returned when the expression evaluates to false and nonzero is returned when true.
• Conditional operator: Expression ? Expression1 : Expression2

This matches the C conditional operator. If Expression evaluates to nonzero then Expression1 is
evaluated otherwise Expression2 is evaluated.

 Note

When using a conditional operator in a +offset context on an execution region or load region
description, the final expression is considered relative only if both Expression1 and Expression2,
are considered relative. For example:

er1 0x8000
{
 …
}
er2 ((ImageLimit(er1) < 0x9000) ? +0 : +0x1000) ; er2 has a relative address
{
 …
}
er3 ((ImageLimit(er2) < 0x10000) ? 0x0 : +0) ; er3 has an absolute address
{
 …
}

• Functions that return numbers.

All operators match their C counterparts in meaning and precedence.

Expressions are not case-sensitive and you can use parentheses for clarity.

Related concepts
8.6.1 Expression usage in scatter files on page 8-195.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.
8.6.4 ScatterAssert function and load address related functions on page 8-198.
8.6.5 Symbol related function in a scatter file on page 8-199.
8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.

8.6.3 Execution address built-in functions for use in scatter files

Built-in functions are provided for use in scatter files to calculate execution addresses.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-196

Non-Confidential

The execution address related functions can only be used when specifying a base_address, +offset
value, or max_size. They map to combinations of the linker defined symbols shown in the following
table.

Table 8-2 Execution address related functions

Function Linker defined symbol value

ImageBase(region_name) Image$$region_name$$Base

ImageLength(region_name) Image$$region_name$$Length + Image$$region_name$$ZI$$Length

ImageLimit(region_name) Image$$region_name$$Base + Image$$region_name$$Length + Image$$region_name
$$ZI$$Length

The parameter region_name can be either a load or an execution region name. Forward references are
not permitted. The region_name can only refer to load or execution regions that have already been
defined.

 Note

You cannot use these functions when using the .ANY selector pattern. This is because a .ANY region uses
the maximum size when assigning sections. The maximum size might not be available at that point,
because the size of all regions is not known until after the .ANY assignment.

The following example shows how to use ImageLimit(region_name) to place one execution region
immediately after another:

LR1 0x8000
{
 ER1 0x100000
 {
 *(+RO)
 }
}
LR2 0x100000
{
 ER2 (ImageLimit(ER1)) ; Place ER2 after ER1 has finished
 {
 *(+RW +ZI)
 }
}

Using +offset with expressions

A +offset value for an execution region is defined in terms of the previous region. You can use this as
an input to other expressions such as AlignExpr. For example:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 …
 }
}

By using AlignExpr, the result of +0 is aligned to a 0x8000 boundary. This creates an execution region
with a load address of 0x4000 but an execution address of 0x8000.

Related concepts
8.6.1 Expression usage in scatter files on page 8-195.
8.6.2 Expression rules in scatter files on page 8-196.
8.6.4 ScatterAssert function and load address related functions on page 8-198.
8.6.5 Symbol related function in a scatter file on page 8-199.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-197

Non-Confidential

8.3.6 Considerations when using a relative address +offset for a load region on page 8-182.
8.6.10 Scatter files containing relative base address load regions and a ZI execution region
on page 8-202.
8.4.5 Considerations when using a relative address +offset for execution regions on page 8-189.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.
8.6.6 AlignExpr(expr, align) function on page 8-199.
6.3.2 Image$$ execution region symbols on page 6-101.

8.6.4 ScatterAssert function and load address related functions

The ScatterAssert function allows you to perform more complex size checks than those permitted by
the max_size attribute.

The ScatterAssert(expression) function can be used at the top level, or within a load region. It is
evaluated after the link has completed and gives an error message if expression evaluates to false.

The load address related functions can only be used within the ScatterAssert function. They map to the
three linker defined symbol values:

Table 8-3 Load address related functions

Function Linker defined symbol value

LoadBase(region_name) Load$$region_name$$Base

LoadLength(region_name) Load$$region_name$$Length

LoadLimit(region_name) Load$$region_name$$Limit

The parameter region_name can be either a load or an execution region name. Forward references are
not permitted. The region_name can only refer to load or execution regions that have already been
defined.

The following example shows how to use the ScatterAssert function to write more complex size
checks than those permitted by the max_size attribute of the region:

LR1 0x8000
{
 ER0 +0
 {
 *(+RO)
 }
 ER1 +0
 {
 file1.o(+RW)
 }
 ER2 +0
 {
 file2.o(+RW)
 }
 ScatterAssert((LoadLength(ER1) + LoadLength(ER2)) < 0x1000)
 ; LoadLength is compressed size
 ScatterAssert((ImageLength(ER1) + ImageLength(ER2)) < 0x2000)
 ; ImageLength is uncompressed size
}
ScatterAssert(ImageLength(LR1) < 0x3000)
 ; Check uncompressed size of load region LR1

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-198

Non-Confidential

Related concepts
8.6.1 Expression usage in scatter files on page 8-195.
8.6.2 Expression rules in scatter files on page 8-196.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.
8.6.5 Symbol related function in a scatter file on page 8-199.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.
6.3.3 Load$$ execution region symbols on page 6-102.

8.6.5 Symbol related function in a scatter file

The symbol related function defined allows you to assign different values depending on whether or not
a global symbol is defined.

The symbol related function, defined(global_symbol_name) returns zero if global_symbol_name is
not defined and nonzero if it is defined.

Example

The following scatter file shows an example of conditionalizing a base address based on the presence of
the symbol version1:

LR1 0x8000
{
 ER1 (defined(version1) ? 0x8000 : 0x10000) ; Base address is 0x8000
 ; if version1 is defined
 ; 0x10000 if not
 {
 *(+RO)
 }
 ER2 +0
 {
 *(+RW +ZI)
 }
}

Related concepts
8.6.1 Expression usage in scatter files on page 8-195.
8.6.2 Expression rules in scatter files on page 8-196.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.
8.6.4 ScatterAssert function and load address related functions on page 8-198.
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.

8.6.6 AlignExpr(expr, align) function

Aligns an address expression to a specified boundary.

This function returns:

(expr + (align-1)) & ~(align-1))

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-199

Non-Confidential

Where:
• expr is a valid address expression.
• align is the alignment, and must be a positive power of 2.

It increases expr until:

expr ≡ 0 (mod align)

Example

This example aligns the address of ER2 on an 8-byte boundary:

ER +0
{
 …
}
ER2 AlignExpr(+0x8000,8)
{
 …
}

Relationship with the ALIGN keyword

The following relationship exists between ALIGN and AlignExpr:

ALIGN keyword
Load and execution regions already have an ALIGN keyword:
• For load regions the ALIGN keyword aligns the base of the load region in load space and in

the file to the specified alignment.
• For execution regions the ALIGN keyword aligns the base of the execution region in

execution and load space to the specified alignment.

AlignExpr
Aligns the expression it operates on, but has no effect on the properties of the load or execution
region.

Related references
8.4.3 Execution region attributes on page 8-186.

8.6.7 GetPageSize() function

Returns the page size when an image is demand paged, and is useful when used with the AlignExpr
function.

When you link with either the --paged or --sysv command-line option, returns the value of the internal
page size that armlink uses in its alignment calculations. Otherwise, it returns zero.

By default the internal page size is set to 8000, but you can change it with the --pagesize command-line
option.

Example

This example aligns the base address of ER to a Page Boundary:

ER AlignExpr(+0, GetPageSize())
{
 …
}

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-200

Non-Confidential

Related references
12.105 --pagesize=pagesize on page 12-362.
8.6.6 AlignExpr(expr, align) function on page 8-199.

8.6.8 SizeOfHeaders() function

Returns the size of ELF header plus the estimated size of the Program Header table.

This is useful when writing demand paged images to start code and data immediately after the ELF
header and Program Header table.

Example

This example sets the base of LR1 to start immediately after the ELF header and Program Headers:

LR1 SizeOfHeaders()
{
 …
}

Related concepts
8.6.9 Example of aligning a base address in execution space but still tightly packed in load space
on page 8-201.
3.4 Linker support for creating demand-paged files on page 3-52.
7.9 Creation of regions on page boundaries on page 7-159.

8.6.9 Example of aligning a base address in execution space but still tightly packed in load space

This example shows how to use a combination of preprocessor macros and expressions to copy tightly
packed execution regions to execution addresses in a page-boundary.

Using the ALIGN scatter-loading keyword aligns the load addresses of ER2 and ER3 as well as the
execution addresses

Aligning a base address in execution space but still tightly packed in load space

#! armcc -E
#define START_ADDRESS 0x100000
#define PAGE_ALIGNMENT 0x100000

LR1 0x8000
{
 ER0 +0
 {
 *(InRoot$$Sections)
 }
 ER1 START_ADDRESS
 {
 file1.o(*)
 }
 ER2 AlignExpr(ImageLimit(ER1), PAGE_ALIGNMENT)
 {
 file2.o(*)
 }
 ER3 AlignExpr(ImageLimit(ER2), PAGE_ALIGNMENT)
 {
 file3.o(*)
 }
}

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.
8.6.7 GetPageSize() function on page 8-200.
8.6.8 SizeOfHeaders() function on page 8-201.
8.3.2 Syntax of a load region description on page 8-179.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-201

Non-Confidential

8.4.2 Syntax of an execution region description on page 8-184.
8.6.6 AlignExpr(expr, align) function on page 8-199.

8.6.10 Scatter files containing relative base address load regions and a ZI execution region

You might want to place zero-initialized (ZI) data in one load region, and use a relative base address for
the next load region.

To place ZI data in load region LR1, and use a relative base address for the next load region LR2, for
example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 +0 ; Load Region follows immediately from LR1
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Because the linker does not adjust the base address of LR2 to account for ZI data, the execution region
er_zi overlaps the execution region er_moreprogbits. This generates an error when linking.

To correct this, use the ImageLimit() function with the name of the ZI execution region to calculate the
base address of LR2. For example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 ImageLimit(er_zi) ; Set the address of LR2 to limit of er_zi
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Related concepts
8.6 Expression evaluation in scatter files on page 8-195.
8.6.1 Expression usage in scatter files on page 8-195.
8.6.2 Expression rules in scatter files on page 8-196.
8.6.3 Execution address built-in functions for use in scatter files on page 8-196.

Related references
8.2 Syntax of a scatter file on page 8-177.
8.3.2 Syntax of a load region description on page 8-179.
8.4.2 Syntax of an execution region description on page 8-184.
6.3.2 Image$$ execution region symbols on page 6-101.

8 Scatter File Syntax
8.6 Expression evaluation in scatter files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-202

Non-Confidential

Chapter 9
GNU ld Script Support in armlink

Describes the GNU ld script support in the ARM linker, armlink.

It contains the following sections:
• 9.1 About GNU ld script support on page 9-204.
• 9.2 Typical use cases for using ld scripts with armlink on page 9-206.
• 9.3 Important ld script commands that are implemented in armlink on page 9-207.
• 9.4 Specific restrictions for using ld scripts with armlink on page 9-209.
• 9.5 Recommendations for using ld scripts with armlink on page 9-210.
• 9.6 Default GNU ld scripts used by armlink on page 9-211.
• 9.7 Example GNU ld script for linking an ARM Linux executable on page 9-215.
• 9.8 Example GNU ld script for linking an ARM Linux shared object on page 9-217.
• 9.9 Example GNU ld script for linking partial objects on page 9-218.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-203

Non-Confidential

9.1 About GNU ld script support
armlink supports the use of GNU ld scripts.

This section contains the following subsections:
• 9.1.1 Summary of GNU ld script support and restrictions on page 9-204.
• 9.1.2 Considerations when linking images and shared objects with ld scripts on page 9-204.
• 9.1.3 Using ld scripts when linking partial objects on page 9-205.

9.1.1 Summary of GNU ld script support and restrictions

armlink supports GNU ld scripts, but with some restrictions.

GNU ld script support is as follows:
• Implements a subset of the GNU ld script language.
• The subset is focused on support for ARM Linux and partial linking.
• Virtual Address (VMA) must equal Load Address (LMA).
• Bare-metal linking model is not supported.
• The --sysv command-line option uses an internal ld script. --sysv is also the default for the

--arm_linux command-line option.

You specify an ld script with the --linker_script ld_script command-line option, or the synonym
command-line option -T ld_script.

Related concepts
9.1.2 Considerations when linking images and shared objects with ld scripts on page 9-204.
9.4 Specific restrictions for using ld scripts with armlink on page 9-209.
9.5 Recommendations for using ld scripts with armlink on page 9-210.
9.2 Typical use cases for using ld scripts with armlink on page 9-206.

Related tasks
9.1.3 Using ld scripts when linking partial objects on page 9-205.

Related references
9.6 Default GNU ld scripts used by armlink on page 9-211.
12.81 --ldpartial on page 12-338.
9.3 Important ld script commands that are implemented in armlink on page 9-207.
12.7 --arm_linux on page 12-256.
12.105 --pagesize=pagesize on page 12-362.
12.151 --sysv on page 12-410.
12.86 --linker_script=ld_script on page 12-343.

Related information
The GNU Operating System.

9.1.2 Considerations when linking images and shared objects with ld scripts

There are considerations you must be aware of when using ld scripts.

When linking an image or shared object:
• Either the --sysv or the --arm_linux option is required.
• Any unrecognized file is parsed as if it is an ld script.
• All ELF images and shared objects produced by an ld script are demand paged. Use the --pagesize

option to control the page size. The default is 0x8000.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.

9 GNU ld Script Support in armlink
9.1 About GNU ld script support

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-204

Non-Confidential

http://www.gnu.org/

Related references
12.7 --arm_linux on page 12-256.
12.86 --linker_script=ld_script on page 12-343.
12.105 --pagesize=pagesize on page 12-362.
12.151 --sysv on page 12-410.

9.1.3 Using ld scripts when linking partial objects

To link a partial object, you must use the --ldpartial command-line option.

 Note

The -r command-line option is a synonym for --ldpartial.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.

Related references
12.81 --ldpartial on page 12-338.

Related references
12.150 --sysroot=path on page 12-409.

9 GNU ld Script Support in armlink
9.1 About GNU ld script support

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-205

Non-Confidential

9.2 Typical use cases for using ld scripts with armlink
These are typical use cases for using ld scripts with armlink.

Wrapping libraries
Some libraries have a dynamic and static part. An ld script loads both libraries in the correct
order with the INPUT command, for example:

INPUT(libstatic.a)
INPUT(libdynamic.so)

This script instructs the linker to load libstatic.a then libdynamic.so

Partial linking with the --ldpartial option
An ld script can be given to control how the linker combines sections, for example:

SECTIONS
{
 .text :0
 {
 *(.text)
 *(mysection)
 }
}

This script instructs the linker to combine mysection and all the .text sections into a
single .text output section.

Fine control over an ARM linux link
You might want to combine sections together in a different order to that given by the default
linker script. Also, you might want the linker to define symbols at specific addresses. This
information can be given by a custom linker script.

 Note

To successfully produce a file that can be run on ARM Linux your image must include some
output sections to contain the meta-data that the dynamic loader can use to load the file. It is
recommended that you start with one of the example scripts and modify it to suit your purpose.

Related concepts
9.7 Example GNU ld script for linking an ARM Linux executable on page 9-215.
9.8 Example GNU ld script for linking an ARM Linux shared object on page 9-217.
9.9 Example GNU ld script for linking partial objects on page 9-218.

Related references
12.81 --ldpartial on page 12-338.
12.86 --linker_script=ld_script on page 12-343.
12.150 --sysroot=path on page 12-409.

9 GNU ld Script Support in armlink
9.2 Typical use cases for using ld scripts with armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-206

Non-Confidential

9.3 Important ld script commands that are implemented in armlink
A subset of ld script commands is implemented in armlink.

The following ld script commands are implemented:

Commands that deal with files
The following commands are implemented:
• AS_NEEDED.
• ENTRY.
• GROUP.
• INCLUDE.
• INPUT.
• OUTPUT.
• OUTPUT_ARCH.
• OUTPUT_FORMAT.
• SEARCH_DIR.
• STARTUP.

Commands that map input sections to output sections
The SECTIONS command is implemented.

The SECTIONS command is the most complex command and not all features are implemented. In
particular, the load address features are not implemented:

AT(address)
>region
AT>region

These commands are not supported because they either require the unsupported PHDRS
command or cause the Virtual Address and Load Address to be different.

The following data definition functions are not implemented:
• BYTE(expression).
• COMMON.
• CONSTRUCTORS.
• CREATE_OBJECT_SYMBOLS.
• SHORT(expression).
• LONG(expression).
• QUAD(expression).
• SQUAD(expression) .

The input section specifier is not available:

archive:file

Commands that control symbol versioning
The VERSIONS command is implemented.

The VERSIONS command syntax is exactly the same as that supported by the armlink
--symver_script command-line option. armlink does not support the matching of unmangled
symbol names in VERSIONS commands.

Related concepts
9.4 Specific restrictions for using ld scripts with armlink on page 9-209.
9.1 About GNU ld script support on page 9-204.

Related references
12.148 --symver_script=filename on page 12-407.

9 GNU ld Script Support in armlink
9.3 Important ld script commands that are implemented in armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-207

Non-Confidential

12.150 --sysroot=path on page 12-409.
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.3 Important ld script commands that are implemented in armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-208

Non-Confidential

9.4 Specific restrictions for using ld scripts with armlink
There are specific restrictions that apply when using ld scripts with armlink.

The following restrictions apply:

PHDRS
This command is not implemented. When using an ld script the linker always generates program
headers automatically.

MEMORY
This command is not implemented. The linker assumes that it has a uniform memory space from
0 to 0XFFFFFFFF.

OVERLAY
This command is not implemented. Overlays are not permitted.

Other commands and built-in functions
The following commands and built-in functions are not supported:
• ASSERT.
• FORCE_COMMON_ALLOCATION.
• INHIBIT_COMMON_ALLOCATION.
• INSERT AFTER.
• INSERT BEFORE.
• LENGTH.
• NOCROSSREFS.
• ORIGIN.
• REGION_ALIAS.
• TARGET.

 Note

This list is derived from the CodeSourcery 2010q1 release. Anything added after that release is
not supported.

armlink linker-defined symbols
Each output section is defined internally as an execution region. The existing armlink execution
region symbols can be used, for example:

 .text : { *(.text) }

The output section .text is represented by an execution region called .text. You can use the
symbol Image$$.text$$Base as if the execution region had been defined by a scatter file.

Other restrictions
Other restrictions are:
• __AT sections are not supported when using ld scripts.
• RW compression is not supported when using ld scripts.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.

Related references
9.3 Important ld script commands that are implemented in armlink on page 9-207.
6.3.2 Image$$ execution region symbols on page 6-101.
12.148 --symver_script=filename on page 12-407.
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.4 Specific restrictions for using ld scripts with armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-209

Non-Confidential

9.5 Recommendations for using ld scripts with armlink
There are recommendations when producing ld scripts for use with armlink.

Follow these recommendations when producing ld scripts for use with armlink:

Recommendations for producing ld scripts for ARM Linux
The dynamic loader requires some output sections with a specific type to work properly. These are:
• Hash Table.
• String Table.
• Dynamic Symbol Table.
• Dynamic Section.
• Version Sections.
• Thread Local Storage Sections.

General recommendations
The following are general recommendations:
• Make sure each output section has a homogenous type. For example:

 .text : { *(.text) }
 .data : { *(.data) }
 .bss : { *(.bss) }

This is preferred to the following:

 .stuff
 {
 *(.text)
 *(.data)
 *(.bss)
 }

• If you are running the ELF file on ARM Linux do not modify the location of the metadata used by
the dynamic linker.

• Sections not matched by the SECTIONS command are marked as orphans. The linker places orphan
sections in appropriate locations. The linker attempts to match the placement of orphans used by ld
although this is not always possible. Use explicit placement if you do not like how armlink places
orphans.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.
9.4 Specific restrictions for using ld scripts with armlink on page 9-209.

Related references
9.3 Important ld script commands that are implemented in armlink on page 9-207.
12.148 --symver_script=filename on page 12-407.
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.5 Recommendations for using ld scripts with armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-210

Non-Confidential

9.6 Default GNU ld scripts used by armlink
The linker has default ld scripts it can apply in GNU mode if you do not specify an ld script of your own.

If you use command-line options that require an ld script, you can specify a script to use with the
--linker_script command-line option. If you do not specify a script, the default ld script used by
armlink depends on whether you are building an executable or a shared object.

This section contains the following subsections:
• 9.6.1 Default ld script when building an executable on page 9-211.
• 9.6.2 Default ld script when building a shared object on page 9-212.
• 9.6.3 Default ld script when building a partially linked object on page 9-213.

9.6.1 Default ld script when building an executable

The linker has a default ld script it can use when building an executable.

The default ld script used by armlink when building an executable is:

SECTIONS
{
 PROVIDE(__executable_start = 0x0008000);
 . = 0x00008000 + SIZEOF_HEADERS;
 .interp : { *(.interp) }
 .note.ABI-tag : { *(.note.ABI-tag) }
 .hash : { *(.hash) }
 .dynsym : { *(.dynsym) }
 .dynstr : { *(.dynstr) }
 .version : { *(.version) }
 .version_d : { *(.version_d) }
 .version_r : { *(.version_r) }
 .rel.dyn : { *(.rel.dyn) }
 .rela.dyn : { *(.rela.dyn) }
 .rel.plt : { *(.rel.plt) }
 .rela.plt : { *(.rela.plt) }
 .init : { KEEP (*(.init)) }
 .plt : { *(.plt) }
 .text : { *(.text .text.*) }
 .fini : { KEEP (*(.fini)) }
 PROVIDE(__etext = .);
 PROVIDE(_etext = .);
 PROVIDE(etext = .);
 .rodata : { *(.rodata .rodata.*) }
 __exidx_start = .;
 .ARM.exidx : { *(.ARM.exidx*) }
 __exidx_end = .;
 . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT
(MAXPAGESIZE) - 1));
 . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
 .tdata : { *(.tdata .tdata.*) }
 .tbss : { *(.tbss .tbss.*) }
 .preinit_array :
 {
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 }
 .init_array :
 {
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(.init_array*))
 PROVIDE_HIDDEN (__init_array_end = .);
 }
 .fini_array :
 {
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array*))
 PROVIDE_HIDDEN (__fini_array_end = .);
 }
 .dynamic : { *(.dynamic) }
 .got : { *(.got.plt) *(.got) }
 .data :
 {
 __data_start = .;
 (.data .data.)
 }
 _edata = .;

9 GNU ld Script Support in armlink
9.6 Default GNU ld scripts used by armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-211

Non-Confidential

 PROVIDE(edata = .);
 __bss_start = .;
 __bss_start__ = .;
 .bss :
 {
 (.bss .bss.)
 . = ALIGN(. != 0 ? 32 / 8 : 1);
 }
 __bss_end__ = .;
 _bss_end__ = .;
 . = ALIGN(4);
 __end = .;
 _end = .;
 PROVIDE(end = .);
}

Related concepts
9.1 About GNU ld script support on page 9-204.

9.6.2 Default ld script when building a shared object

The linker has a default ld script it can use when building a shared object.

The default ld script used by armlink when building a shared object is:

SECTIONS
{
 . = 0 + SIZEOF_HEADERS;
 .note.ABI-tag : { *(.note.ABI-tag) }
 .hash : { *(.hash) }
 .dynsym : { *(.dynsym) }
 .dynstr : { *(.dynstr) }
 .version : { *(.version) }
 .version_d : { *(.version_d) }
 .version_r : { *(.version_r) }
 .rel.dyn : { *(.rel.dyn) }
 .rela.dyn : { *(.rela.dyn) }
 .rel.plt : { *(.rel.plt) }
 .rela.plt : { *(.rela.plt) }
 .init : { KEEP (*(.init)) }
 .plt : { *(.plt) }
 .text : { *(.text .text.*) }
 .fini : { KEEP (*(.fini)) }
 PROVIDE(__etext = .);
 PROVIDE(_etext = .);
 PROVIDE(etext = .);
 .rodata : { *(.rodata .rodata.*) }
 __exidx_start = .;
 .ARM.exidx : { *(.ARM.exidx*) }
 __exidx_end = .;
 .interp : { *(.interp) }
 . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT
(MAXPAGESIZE) - 1));
 . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
 .tdata : { *(.tdata .tdata.*) }
 .tbss : { *(.tbss .tbss.*) }
 .preinit_array :
 {
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 }
 .init_array :
 {
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(.init_array*))
 PROVIDE_HIDDEN (__init_array_end = .);
 }
 .fini_array :
 {
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array*))
 PROVIDE_HIDDEN (__fini_array_end = .);
 }
 .dynamic : { *(.dynamic) }
 .got : { *(.got.plt) *(.got) }
 .data :
 {
 __data_start = .;
 (.data .data.)
 }

9 GNU ld Script Support in armlink
9.6 Default GNU ld scripts used by armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-212

Non-Confidential

 _edata = .;
 PROVIDE(edata = .);
 __bss_start = .;
 __bss_start__ = .;
 .bss :
 {
 (.bss .bss.)
 . = ALIGN(. != 0 ? 32 / 8 : 1);
 }
 __bss_end__ = .;
 _bss_end__ = .;
 . = ALIGN(4);
 __end = .;
 _end = .;
 PROVIDE(end = .);
}

Related concepts
9.1 About GNU ld script support on page 9-204.

9.6.3 Default ld script when building a partially linked object

The linker has a default ld script it can use when building a partially linked object.

The default ld script used by armlink when building a partially linked object with --ldpartial is:

SECTIONS
{
 .interp 0 : { *(.interp) }
 .note.ABI-tag 0 : { *(.note.ABI-tag) }
 .hash 0 : { *(.hash) }
 .dynsym 0 : { *(.dynsym) }
 .dynstr 0 : { *(.dynstr) }
 .version 0 : { *(.version) }
 .version_d 0 : { *(.version_d) }
 .version_r 0 : { *(.version_r) }
 .rel.dyn 0 : { *(.rel.dyn) }
 .rel.plt 0 : { *(.rel.plt) }
 .init 0 : { KEEP (*(.init)) }
 .plt 0 : { *(.plt) }
 .text 0 : { *(.text) }
 .fini 0 : { KEEP (*(.fini)) }
 .rodata 0 : { *(.rodata) }
 .ARM.exidx 0 : { *(.ARM.exidx*) }
 .tdata 0 : { *(.tdata) }
 .tbss 0 : { *(.tbss) }
 .preinit_array 0 :
 {
 KEEP (*(.preinit_array))
 }
 .dynamic 0 : { *(.dynamic) }
 .got 0 : { *(.got.plt) *(.got) }
 .data 0 :
 {
 *(.data)
 }
 .bss 0 :
 {
 *(.bss)
 }
}

Related concepts
9.1 About GNU ld script support on page 9-204.

Related references
12.81 --ldpartial on page 12-338.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.
9.1 About GNU ld script support on page 9-204.

Related references
9.6.1 Default ld script when building an executable on page 9-211.

9 GNU ld Script Support in armlink
9.6 Default GNU ld scripts used by armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-213

Non-Confidential

9.6.2 Default ld script when building a shared object on page 9-212.
9.6.3 Default ld script when building a partially linked object on page 9-213.
12.81 --ldpartial on page 12-338.
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.6 Default GNU ld scripts used by armlink

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-214

Non-Confidential

9.7 Example GNU ld script for linking an ARM Linux executable
This example shows how to use an ld script to link a hello world application.

The following ld script is sufficient to link a hello world application. The most important parts are:
• The initial . = 0x00008000 + SIZEOF_HEADERS;.

The linker can include the ELF header and Program Header into the first page.
• The alignment expressions that force the RW into a separate page.
• The output sections for the metadata needed by the dynamic linker.

Use the armlink --linker_script command-line option to specify an ld script file.

SECTIONS
{
 PROVIDE(__executable_start = 0x0008000);
 . = 0x00008000 + SIZEOF_HEADERS;
 .interp : { *(.interp) }
 .hash : { *(.hash) }
 .gnu.hash : { *(.gnu.hash) }
 .dynsym : { *(.dynsym) }
 .dynstr : { *(.dynstr) }
 .version : { *(.version) }
 .version_d : { *(.version_d) }
 .version_r : { *(.version_r) }
 .rel.dyn : { *(.rel.dyn) }
 .rel.plt : { *(.rel.plt) }
 .init : { KEEP (*(.init)) }
 .plt : { *(.plt) }
 .text : { *(.text .text.*) }
 .fini : { KEEP (*(.fini)) }
 .rodata : { *(.rodata .rodata.*) }
 .ARM.extab : { *(.ARM.extab*) }
 __exidx_start = .;
 .ARM.exidx : { *(.ARM.exidx*) }
 __exidx_end = .;
 . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT
(MAXPAGESIZE) - 1));
 . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
 .tdata : { *(.tdata .tdata.*) }
 .tbss : { *(.tbss .tbss.*) }
 .preinit_array :
 {
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 }
 .init_array :
 {
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 PROVIDE_HIDDEN (__init_array_end = .);
 }
 .fini_array :
 {
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array))
 KEEP (*(SORT(.fini_array.*)))
 PROVIDE_HIDDEN (__fini_array_end = .);
 }
 .dynamic : { *(.dynamic) }
 .got : { *(.got.plt) *(.got) }
 .data :
 {
 (.data .data.)
 }
 .bss :
 {
 (.bss .bss.)
 . = ALIGN(. != 0 ? 32 / 8 : 1);
 }
}

Related concepts
9.1 About GNU ld script support on page 9-204.

9 GNU ld Script Support in armlink
9.7 Example GNU ld script for linking an ARM Linux executable

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-215

Non-Confidential

Related references
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.7 Example GNU ld script for linking an ARM Linux executable

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-216

Non-Confidential

9.8 Example GNU ld script for linking an ARM Linux shared object
This example shows how to use an ld script for linking a shared library.

The following ld script example is for linking a shared library, and is similar to that for an application.
The shared library starts at 0 + SIZEOF_HEADERS.

Use the --linker_script command-line option to specify an ld script file.

SECTIONS
{
 . = 0 + SIZEOF_HEADERS;
 .hash : { *(.hash) }
 .gnu.hash : { *(.gnu.hash) }
 .dynsym : { *(.dynsym) }
 .dynstr : { *(.dynstr) }
 .version : { *(.version) }
 .version_d : { *(.version_d) }
 .version_r : { *(.version_r) }
 .rel.dyn : { *(.rel.dyn) }
 .rel.plt : { *(.rel.plt) }
 .init : { KEEP (*(.init)) }
 .plt : { *(.plt) }
 .text : { *(.text .text.*) }
 .fini : { KEEP (*(.fini)) }
 .rodata : { *(.rodata .rodata.*) }
 .ARM.extab : { *(.ARM.extab*) }
 __exidx_start = .;
 .ARM.exidx : { *(.ARM.exidx*) }
 __exidx_end = .;
 .interp : { *(.interp) }
 . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT
(MAXPAGESIZE) - 1));
 . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
 .tdata : { *(.tdata .tdata.*) }
 .tbss : { *(.tbss .tbss.*) }
 .preinit_array :
 {
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 }
 .init_array :
 {
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 PROVIDE_HIDDEN (__init_array_end = .);
 }
 .fini_array :
 {
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(.fini_array))
 KEEP (*(SORT(.fini_array.*)))
 PROVIDE_HIDDEN (__fini_array_end = .);
 }
 .dynamic : { *(.dynamic) }
 .got : { *(.got.plt) *(.got) }
 .data :
 {
 (.data .data.)
 }
 .bss :
 {
 (.bss .bss.)
 . = ALIGN(. != 0 ? 32 / 8 : 1);
 }
}

Related concepts
9.1 About GNU ld script support on page 9-204.

Related references
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.8 Example GNU ld script for linking an ARM Linux shared object

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-217

Non-Confidential

9.9 Example GNU ld script for linking partial objects
This example shows how to use an ld script for linking partial objects.

The general form of ld --ldpartial is to assign each output section to 0x0. The linker is not always
able to honor the instructions in the SECTIONS command. Input sections that are merged into one output
section cannot be removed in subsequent links. If the linker detects that it might have to remove a section
in a subsequent link it does not merge the section. Sections that cannot be merged are passed through into
the output object unchanged.

SECTIONS
{
 .init 0 : { *(.init) }
 .text 0 : { *(.text) }
 .fini 0 : { *(.fini) }
 .rodata 0 : { *(.rodata) }
 .data 0 : { *(.data) }
 .bss 0 : { *(.bss) }
}

Use the --linker_script command-line option to specify an ld script file.

Related concepts
9.1 About GNU ld script support on page 9-204.

Related references
12.81 --ldpartial on page 12-338.
12.86 --linker_script=ld_script on page 12-343.

9 GNU ld Script Support in armlink
9.9 Example GNU ld script for linking partial objects

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-218

Non-Confidential

Chapter 10
BPABI and SysV Shared Libraries and Executables

Describes how the ARM linker, armlink, supports the Base Platform Application Binary Interface
(BPABI) and System V (SysV) shared libraries and executables.

It contains the following sections:
• 10.1 About the Base Platform Application Binary Interface (BPABI) on page 10-220.
• 10.2 Platforms supported by the BPABI on page 10-221.
• 10.3 Features common to all BPABI models on page 10-222.
• 10.4 SysV memory model on page 10-226.
• 10.5 Bare metal and DLL-like memory models on page 10-231.
• 10.6 Symbol versioning on page 10-236.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-219

Non-Confidential

10.1 About the Base Platform Application Binary Interface (BPABI)
The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to generate
their own platform-specific image formats.

Many embedded systems use an operating system (OS) to manage the resources on a device. In many
cases this is a large, single executable with a Real-Time Operating System (RTOS) that tightly integrates
with the applications. Other more complex OSs are referred to as a platform OS, for example, ARM
Linux. These have the ability to load applications and shared libraries on demand.

To run an application or use a shared library on a platform OS, you must conform to the Application
Binary Interface (ABI) for the platform and also the ABI for the ARM architecture. This can involve
substantial changes to the linker output, for example, a custom file format. To support such a wide
variety of platforms, the ABI for the ARM architecture provides the BPABI.

The BPABI provides a base standard from which a platform ABI can be derived. The linker produces a
BPABI conforming ELF image or shared library. A platform specific tool called a post-linker translates
this ELF output file into a platform-specific file format. Post linker tools are provided by the platform OS
vendor. The following figure shows the BPABI tool flow.

.c bin/exe.axf.o

Tool: compiler linker postlinker

Language ABI BPABI Platform
binary

Format:

Figure 10-1 BPABI tool flow

Related concepts
10.2 Platforms supported by the BPABI on page 10-221.
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.

Related information
Base Platform ABI for the ARM Architecture.
AN242 Dynamic Linking with the ARM Compiler toolchain.

10 BPABI and SysV Shared Libraries and Executables
10.1 About the Base Platform Application Binary Interface (BPABI)

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-220

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0242-/index.html

10.2 Platforms supported by the BPABI
The Base Platform Application Binary Interface (BPABI) defines three platform models based on the
type of shared library.

The platform models are:

Bare metal
The bare metal model is designed for an offline dynamic loader or a simple module loader.
References between modules are resolved by the loader directly without any additional support
structures.

DLL-like
The dynamically linked library (DLL) like model sacrifices transparency between the dynamic
and static library in return for better load and run-time efficiency.

SysV
The System V (SysV) model masks the differences between dynamic and static libraries. ARM
Linux uses this format.

Linker support for the BPABI
The ARM linker supports all three BPABI models enabling you to link a collection of objects and
libraries into a:
• Bare metal executable image.
• BPABI DLL or SysV shared object.
• BPABI or SysV executable file.

Linker support for ARM Linux

The linker can generate SysV executables and shared libraries with all required data for ARM Linux.
However, you must specify other command-line options and libraries in addition to the --shared or
--sysv options.

If all the correct input options and libraries are specified, you can use the ELF file without any post-
processing.

Related concepts
10.1 About the Base Platform Application Binary Interface (BPABI) on page 10-220.
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.

Related references
12.41 --dll on page 12-294.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

10 BPABI and SysV Shared Libraries and Executables
10.2 Platforms supported by the BPABI

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-221

Non-Confidential

10.3 Features common to all BPABI models
Some features are common to all BPABI models.

The linker enables you to build Base Platform Application Binary Interface (BPABI) shared libraries and
to link objects against shared libraries. The following features are common to all BPABI models:
• Symbol importing.
• Symbol exporting.
• Versioning.
• Visibility of symbols.

This section contains the following subsections:
• 10.3.1 About importing and exporting symbols for BPABI models on page 10-222.
• 10.3.2 Symbol visibility for BPABI models on page 10-223.
• 10.3.3 Automatic import and export for BPABI models on page 10-224.
• 10.3.4 Manual import and export for BPABI models on page 10-224.
• 10.3.5 Symbol versioning for BPABI models on page 10-224.
• 10.3.6 RW compression for BPABI models on page 10-225.

10.3.1 About importing and exporting symbols for BPABI models

How symbols are imported and exported depends on the platform model.

In traditional linking, all symbols must be defined at link time for linking into a single executable file
containing all the required code and data. In platforms that support dynamic linking, symbol binding can
be delayed to load-time or in some cases, run-time. Therefore, the application can be split into a number
of modules, where a module is either an executable or a shared library. Any symbols that are defined in
modules other than the current module are placed in the dynamic symbol table. Any functions that are
suitable for dynamically linking to at load or runtime are also listed in the dynamic symbol table.

There are two ways to control the contents of the dynamic symbol table:
• Automatic rules that infer the contents from the ELF symbol visibility property.
• Manual directives that are present in a steering file.

 Note

These rules are slightly different for the SysV model.

Related concepts
10.3.3 Automatic import and export for BPABI models on page 10-224.
10.3.1 About importing and exporting symbols for BPABI models on page 10-222.
10.3.2 Symbol visibility for BPABI models on page 10-223.
10.3.4 Manual import and export for BPABI models on page 10-224.
10.3.5 Symbol versioning for BPABI models on page 10-224.
10.3.6 RW compression for BPABI models on page 10-225.
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4.6 Linker options for SysV models on page 10-229.
10.4.5 Thread local storage in the SysV memory model on page 10-228.
10.6.3 The symbol versioning script file on page 10-237.

Related references
10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.
10.4.7 Linker command-line options for the SysV memory model on page 10-229.

10 BPABI and SysV Shared Libraries and Executables
10.3 Features common to all BPABI models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-222

Non-Confidential

Related information
SCO Developer Network.

10.3.2 Symbol visibility for BPABI models

For Base Platform Application Binary Interface (BPABI) models, each symbol has a visibility property
that can be controlled by compiler switches, a steering file, or attributes in the source code.

If a symbol is a reference, the visibility controls the definitions that the linker can use to define the
symbol.

If a symbol is a definition, the visibility controls whether the symbol can be made visible outside the
current module.

The visibility options defined by the ELF specification are:

Table 10-1 Symbol visibility

Visibility Reference Definition

STV_DEFAULT Symbol can be bound to a definition in
a shared object.

Symbol can be made visible outside the module. It can be
preempted by the dynamic linker by a definition from another
module.

STV_PROTECTED Symbol must be resolved within the
module.

Symbol can be made visible outside the module. It cannot be
preempted at run-time by a definition from another module.

STV_HIDDEN
STV_INTERNAL

Symbol must be resolved within the
module.

Symbol is not visible outside the module.

Symbol preemption is most common in System V (SysV) systems. Symbol preemption can happen in
dynamically linked library (DLL) like implementations of the BPABI. The platform owner defines how
this works. See the documentation for your specific platform for more information.

Related concepts
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4.6 Linker options for SysV models on page 10-229.
4.7 Optimization with RW data compression on page 4-80.
10.4.5 Thread local storage in the SysV memory model on page 10-228.
10.6.3 The symbol versioning script file on page 10-237.

Related references
10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.
10.4.7 Linker command-line options for the SysV memory model on page 10-229.
12.97 --max_visibility=type on page 12-354.
12.102 --override_visibility on page 12-359.
13.1 EXPORT steering file command on page 13-436.
13.3 IMPORT steering file command on page 13-438.
13.5 REQUIRE steering file command on page 13-440.
12.159 --use_definition_visibility on page 12-418.

Related information
--apcs=qualifier...qualifier compiler option.
--dllexport_all, --no_dllexport_all compiler option.
--dllimport_runtime, --no_dllimport_runtime compiler option.
--hide_all, --no_hide_all compiler option.

10 BPABI and SysV Shared Libraries and Executables
10.3 Features common to all BPABI models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-223

Non-Confidential

http://www.sco.com/developers/gabi/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915071.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915320.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124925039.html

EXPORT or GLOBAL.
SCO Developer Network.

10.3.3 Automatic import and export for BPABI models

The linker can automatically import and export symbols for BPABI models.

This behavior depends on a combination of the symbol visibility in the input object file, if the output is
an executable or a shared library, and if the platform model is System V (SysV). This depends on what
type of linking model is being used.

Related concepts
10.3 Features common to all BPABI models on page 10-222.
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4.5 Thread local storage in the SysV memory model on page 10-228.
10.6 Symbol versioning on page 10-236.

Related references
10.4.7 Linker command-line options for the SysV memory model on page 10-229.
10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.

Related information
SCO Developer Network.

10.3.4 Manual import and export for BPABI models

You can directly control the import and export of symbols with a linker steering file.

You can use linker steering files to:

• Manually control dynamic import and export.
• Override the automatic rules.

The steering file commands available to control the dynamic symbol table contents are:
• EXPORT.
• IMPORT.
• REQUIRE.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
13.1 EXPORT steering file command on page 13-436.
13.3 IMPORT steering file command on page 13-438.
13.5 REQUIRE steering file command on page 13-440.

Related information
SCO Developer Network.

10.3.5 Symbol versioning for BPABI models

Symbol versioning provides a way to tightly control the interface of a shared library.

When a symbol is imported from a shared library that has versioned symbols, armlink binds to the most
recent (default) version of the symbol. At load or run-time when the platform OS resolves the symbol
version, it always resolves to the version selected by armlink, even if there is a more recent version
available. This process is automatic.

10 BPABI and SysV Shared Libraries and Executables
10.3 Features common to all BPABI models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-224

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290009343.html
http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/

When a symbol is exported from an executable or a shared library, it can be given a version. armlink
supports:
• Implicit symbol versioning where the version is derived from the shared object name (set by

--soname).
• Explicit symbol versioning where you use a script to precisely define the versions.

Related concepts
10.4.6 Linker options for SysV models on page 10-229.
10.6 Symbol versioning on page 10-236.

Related references
12.133 --soname=name on page 12-391.

Related information
SCO Developer Network.

10.3.6 RW compression for BPABI models

The decompressor for compressed RW data is tightly integrated into the start-up code in the ARM C
library.

When running an application on a platform OS, this functionality must be provided by the platform or
platform libraries. Therefore, RW compression is turned off when linking a Base Platform Application
Binary Interface (BPABI) or System V (SysV) file because there is no decompressor. It is not possible to
turn compression back on again.

Related concepts
4.7 Optimization with RW data compression on page 4-80.

Related information
SCO Developer Network.

10 BPABI and SysV Shared Libraries and Executables
10.3 Features common to all BPABI models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-225

Non-Confidential

http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/

10.4 SysV memory model
System V (SysV) files have a standard memory model that is described in the generic ELF specification.

There are several platform operating systems that use the SysV format, for example, ARM Linux.

This section contains the following subsections:
• 10.4.1 Customization of the SysV standard memory model on page 10-226.
• 10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
• 10.4.3 Symbol definitions defined for SysV compatibility with glibc on page 10-227.
• 10.4.4 Addressing modes in the SysV memory model on page 10-228.
• 10.4.5 Thread local storage in the SysV memory model on page 10-228.
• 10.4.6 Linker options for SysV models on page 10-229.
• 10.4.7 Linker command-line options for the SysV memory model on page 10-229.

10.4.1 Customization of the SysV standard memory model

The linker uses the SysV standard memory model by default. You can use the --linker_script
command-line option to specify an ld script to configure the memory model.

Related concepts
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4.5 Thread local storage in the SysV memory model on page 10-228.

Related references
10.4.7 Linker command-line options for the SysV memory model on page 10-229.

Related information
ELF for the ARM Architecture.

10.4.2 Automatic dynamic symbol table rules in the SysV memory model

There are rules that apply to dynamic symbol tables for the System V (SysV) memory model.

The following rules apply:

Executable
An undefined symbol reference is an undefined symbol error.

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to the dynamic
symbol table unless you specify the --export_all or --export_dynamic option.

10 BPABI and SysV Shared Libraries and Executables
10.4 SysV memory model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-226

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

Shared library
An undefined symbol reference with STV_DEFAULT visibility is treated as imported and is placed
in the dynamic symbol table.

An undefined symbol reference without STV_DEFAULT visibility is an undefined symbol error.

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

 Note

STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation can be placed in
the dynamic symbol table, however the linker changes them into local symbols to prevent them
from being accessed from outside the shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported to the
dynamic symbol table.

Related concepts
10.4.6 Linker options for SysV models on page 10-229.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4.5 Thread local storage in the SysV memory model on page 10-228.

Related references
10.4.7 Linker command-line options for the SysV memory model on page 10-229.
12.55 --export_all, --no_export_all on page 12-308.
12.56 --export_dynamic, --no_export_dynamic on page 12-309.

Related information
ELF for the ARM Architecture.

10.4.3 Symbol definitions defined for SysV compatibility with glibc

To improve System V (SysV) compatibility with glibc, the linker defines various symbols.

The linker defines the following symbols if the corresponding sections exist in an object:
• For .init_array sections:

— __init_array_start.
— __init_array_end.

• For .fini_array sections:
— __fini_array_start.
— __fini_array_end.

• For ARM.exidx sections:
— __exidx_start.
— __exidx_end.

• For .preinit_array sections:
— __preinit_array_start.
— __preinit_array_end.

• __executable_start.
• etext.
• _etext .
• __etext.
• __data_start.
• edata.
• _edata.
• __bss_start.
• __bss_start__.

10 BPABI and SysV Shared Libraries and Executables
10.4 SysV memory model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-227

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

• _bss_end__.
• __bss_end__.
• end.
• _end.
• __end.
• __end__

Related concepts
10.4 SysV memory model on page 10-226.

Related information
ELF for the ARM Architecture.

10.4.4 Addressing modes in the SysV memory model

System V (SysV) has a defined model for accessing the program and imported data and code from other
modules.

If required, the linker automatically generates the required Procedure Linkage Table (PLT) and Global
Offset Table (GOT) sections.

Position independent code

SysV shared libraries are compiled with position independent code using the --apcs=/fpic compiler
command-line option.

You must also use the linker command-line option --fpic to declare that a shared library is position
independent because this affects the construction of the PLT and GOT sections.

 Note

By default, the linker produces an error message if the command-line option --shared is given without
the --fpic options. If you must create a shared library that is not position independent, you can turn the
error message off by using --diag_suppress=6403.

Related concepts
10.4.6 Linker options for SysV models on page 10-229.
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.5 Thread local storage in the SysV memory model on page 10-228.

Related references
10.4.7 Linker command-line options for the SysV memory model on page 10-229.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.65 --fpic on page 12-318.
12.70 --import_unresolved, --no_import_unresolved on page 12-324.
12.128 --shared on page 12-386.

Related information
--apcs=qualifier...qualifier compiler option.

10.4.5 Thread local storage in the SysV memory model

The linker supports the ARM Linux thread local storage model.

10 BPABI and SysV Shared Libraries and Executables
10.4 SysV memory model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-228

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

The ARM Linux thread local storage model is described in the Addenda to, and Errata in, the ABI for
the ARM Architecture.

 Note

The Application Binary Interface (ABI) ELF for the ARM Architecture references and defines New
experimental TLS relocations. armlink does not support these relocations.

Related concepts
10.4 SysV memory model on page 10-226.

Related information
Addenda to, and Errata in, the ABI for the ARM Architecture (ABI-addenda).

10.4.6 Linker options for SysV models

The linker allows you to build and link System V (SysV) shared libraries and create SysV executables.

The following table shows the command-line options that relate to the SysV memory model.

Table 10-2 Turning on SysV support

Command-line options Description

--arm_linux this implies --sysv

--sysv to produce a SysV executable

--sysv --shared to produce a SysV shared library

Related concepts
10.4.2 Automatic dynamic symbol table rules in the SysV memory model on page 10-226.
10.4.4 Addressing modes in the SysV memory model on page 10-228.
10.4 SysV memory model on page 10-226.
10.4.5 Thread local storage in the SysV memory model on page 10-228.

Related references
10.4.7 Linker command-line options for the SysV memory model on page 10-229.
12.65 --fpic on page 12-318.
12.70 --import_unresolved, --no_import_unresolved on page 12-324.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

Related information
--apcs=qualifier...qualifier.

10.4.7 Linker command-line options for the SysV memory model

There are linker command-line options available for the SysV memory model.

The linker command-line options are:
• --arm_linux.
• --dynamic_debug.
• --dynamic_linker.
• --export_all, --no_export_all.
• --export_dynamic, --no_export_dynamic.
• --fpic.
• --import_unresolved, --no_import_unresolved.

10 BPABI and SysV Shared Libraries and Executables
10.4 SysV memory model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-229

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

• --linux_abitag=version_id.
• --runpath=pathlist.
• --shared.
• --sysv.

Changes to command-line defaults with the SysV memory model

ARM Compiler does not provide shared libraries containing the C and C++ system libraries, but you can
use system libraries that come with the platform.

The intended usage model of the System V (SysV) support is to use the system libraries that come with
the platform. For example, in ARM Linux this is libc.so.

To use libc.so, the linker applies the following changes to the default behavior:
• --arm_linux sets the default options required for ARM Linux.
• --no_ref_cpp_init is set to prevent the inclusion of the ARM C++ initialization code.
• The linker defines the required symbols to ensure compatibility with libc.so.
• --force_so_throw is set which forces the linker to keep exception tables.

Related references
12.7 --arm_linux on page 12-256.
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.114 --ref_cpp_init, --no_ref_cpp_init on page 12-371.
12.151 --sysv on page 12-410.

Related references
Chapter 12 Linker Command-line Options on page 12-245.

10 BPABI and SysV Shared Libraries and Executables
10.4 SysV memory model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-230

Non-Confidential

10.5 Bare metal and DLL-like memory models
If you are developing applications or DLLs for a specific platform OS that are based around the BPABI,
there are some features that you must be aware of.

You must use the following information in conjunction with the platform documentation:
• BPABI standard memory model.
• Mandatory symbol versioning in the BPABI DLL-like model.
• Automatic dynamic symbol table rules in the BPABI DLL-like model.
• Addressing modes in the BPABI DLL-like model.
• C++ initialization in the BPABI DLL-like model.

If you are implementing a platform OS, you must use this information in conjunction with the BPABI
specification.

This section contains the following subsections:
• 10.5.1 BPABI standard memory model on page 10-231.
• 10.5.2 Customization of the BPABI standard memory model on page 10-231.
• 10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.
• 10.5.4 Mandatory symbol versioning in the BPABI DLL-like model on page 10-233.
• 10.5.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-233.
• 10.5.6 Addressing modes in the BPABI DLL-like model on page 10-234.
• 10.5.7 C++ initialization in the BPABI DLL-like model on page 10-235.

10.5.1 BPABI standard memory model

Base Platform Application Binary Interface (BPABI) files have a standard memory model that is
described in the BPABI specification.

When you use the --bpabi command-line option, the linker automatically applies the standard memory
model and ignores any scatter file that you specify on the command-line. This is equivalent to the
following image layout:

LR_1 <read-only base address>
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR_2 <read-write base address>
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

The BPABI model is also referred to as the bare metal and DLL-like memory model.

Related concepts
10.5.2 Customization of the BPABI standard memory model on page 10-231.

10.5.2 Customization of the BPABI standard memory model

You can customize the BPABI standard memory model with the memory map related command-line
options.

10 BPABI and SysV Shared Libraries and Executables
10.5 Bare metal and DLL-like memory models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-231

Non-Confidential

 Note

In most cases, you must specify the --ro_base and --rw_base switches, because the default values,
0x8000 and 0 respectively, might not be suitable for your platform. These addresses do not have to
reflect the addresses to which the image is relocated at run time.

If you require a more complicated memory layout, use the Base Platform linking model,
--base_platform.

Related concepts
2.5 Base Platform linking model on page 2-29.

Related references
12.17 --bpabi on page 12-267.
12.11 --base_platform on page 12-261.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.
12.171 --xo_base=address on page 12-430.

10.5.3 Linker command-line options for bare metal and DLL-like models

There are linker command-line options available for building bare metal executables and dynamically
linked library (DLL) like models for a platform OS.

The command-line options are:

Table 10-3 Turning on BPABI support

Command-line options Description

--base_platform To use scatter-loading with Base Platform Application Binary Interface (BPABI).

--bpabi To produce a BPABI executable.

--bpabi --dll To produce a BPABI DLL.

Additional linker command-line options for the BPABI DLL-like model

There are additional linker command-line options available for the BPABI DLL-like model.

The additional command-line options are:
• --dynamic_debug.
• --export_all, --no_export_all.
• --pltgot=type.
• --pltgot_opts=mode.
• --ro_base=address.
• --ropi.
• --rosplit.
• --runpath=pathlist.
• --rw_base=address.
• --rwpi.
• --soname=name.
• --symver_script=filename.
• --symver_soname.

10 BPABI and SysV Shared Libraries and Executables
10.5 Bare metal and DLL-like memory models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-232

Non-Confidential

Related concepts
10.5.1 BPABI standard memory model on page 10-231.
10.5.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-233.
10.5.6 Addressing modes in the BPABI DLL-like model on page 10-234.
10.5.4 Mandatory symbol versioning in the BPABI DLL-like model on page 10-233.

Related references
10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.
12.11 --base_platform on page 12-261.
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.42 --dynamic_debug on page 12-295.
12.55 --export_all, --no_export_all on page 12-308.
12.108 --pltgot=type on page 12-365.
12.109 --pltgot_opts=mode on page 12-366.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.121 --runpath=pathlist on page 12-378.
12.123 --rwpi on page 12-380.
12.133 --soname=name on page 12-391.
12.148 --symver_script=filename on page 12-407.
12.149 --symver_soname on page 12-408.
Chapter 12 Linker Command-line Options on page 12-245.

Related information
Base Platform ABI for the ARM Architecture.

10.5.4 Mandatory symbol versioning in the BPABI DLL-like model

The Base Platform Application Binary Interface (BPABI) DLL-like model requires static binding to
ensure a symbol can be searched for at run-time.

This is because a post-linker might translate the symbolic information in a BPABI DLL to an import or
export table that is indexed by an ordinal. In which case, it is not possible to search for a symbol at run-
time.

Static binding is enforced in the BPABI with the use of symbol versioning. The command-line option
--symver_soname is on by default for BPABI files, this means that all exported symbols are given a
version based on the name of the DLL.

Related concepts
10.6 Symbol versioning on page 10-236.

Related references
12.133 --soname=name on page 12-391.
12.148 --symver_script=filename on page 12-407.
12.149 --symver_soname on page 12-408.

10.5.5 Automatic dynamic symbol table rules in the BPABI DLL-like model

There are rules that apply to dynamic symbol tables for the Base Platform Application Binary Interface
(BPABI) DLL-like model.

The following rules apply:

10 BPABI and SysV Shared Libraries and Executables
10.5 Bare metal and DLL-like memory models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-233

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

Executable
An undefined symbol reference is an undefined symbol error.

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to the dynamic
symbol table unless --export_all or --export_dynamic is set.

DLL
An undefined symbol reference is an undefined symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

 Note

STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation can be placed in
the dynamic symbol table, however the linker changes them into local symbols to prevent them
from being accessed from outside the shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported to the
dynamic symbol table.

You can manually export and import symbols using the EXPORT and IMPORT steering file commands. Use
the --edit command-line option to specify a steering file command.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
6.6.2 Steering file command summary on page 6-112.
6.6.3 Steering file format on page 6-113.
12.45 --edit=file_list on page 12-298.
12.55 --export_all, --no_export_all on page 12-308.
12.56 --export_dynamic, --no_export_dynamic on page 12-309.
13.1 EXPORT steering file command on page 13-436.
13.3 IMPORT steering file command on page 13-438.

10.5.6 Addressing modes in the BPABI DLL-like model

The main difference between the bare metal and Base Platform Application Binary Interface (BPABI)
DLL-like models is the addressing mode used when accessing imported and own-program code and data.

There are four options available that correspond to categories in the BPABI specification:

• None.
• Direct references.
• Indirect references.
• Relative static base address references.

You can control the selection of the required addressing mode with the following command-line options:
• --pltgot.
• --pltgot_opts.

Related references
12.108 --pltgot=type on page 12-365.
12.109 --pltgot_opts=mode on page 12-366.

10 BPABI and SysV Shared Libraries and Executables
10.5 Bare metal and DLL-like memory models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-234

Non-Confidential

10.5.7 C++ initialization in the BPABI DLL-like model

A dynamically linked library (DLL) supports the initialization of static constructors with a table that
contains references to initializer functions that perform the initialization.

The table is stored in an ELF section with a special section type of SHT_INIT_ARRAY. For each of these
initializers there is a relocation of type R_ARM_TARGET1 to a function that performs the initialization.

The ELF Application Binary Interface (ABI) specification describes R_ARM_TARGET1 as either a relative
form, or an absolute form.

The ARM C libraries use the relative form. For example, if the linker detects a definition of the ARM C
library __cpp_initialize__aeabi, it uses the relative form of R_ARM_TARGET1 otherwise it uses the
absolute form.

Related concepts
10.5.1 BPABI standard memory model on page 10-231.
10.5.4 Mandatory symbol versioning in the BPABI DLL-like model on page 10-233.
10.5.5 Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-233.
10.5.6 Addressing modes in the BPABI DLL-like model on page 10-234.

Related references
10.5.3 Linker command-line options for bare metal and DLL-like models on page 10-232.

Related information
Initialization of the execution environment and execution of the application.
C++ initialization, construction and destruction.

10 BPABI and SysV Shared Libraries and Executables
10.5 Bare metal and DLL-like memory models

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-235

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922456.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922706.html

10.6 Symbol versioning
Symbol versioning records extra information about symbols imported from, and exported by, a dynamic
shared object.

A dynamic loader uses this extra information to ensure that all the symbols required by an image are
available at load time.

This section contains the following subsections:
• 10.6.1 Overview of symbol versioning on page 10-236.
• 10.6.2 Embedded symbols on page 10-236.
• 10.6.3 The symbol versioning script file on page 10-237.
• 10.6.4 Example of creating versioned symbols on page 10-238.
• 10.6.5 Linker options for enabling implicit symbol versioning on page 10-238.

10.6.1 Overview of symbol versioning

Symbol versioning enables shared object creators to produce new versions of symbols for use by all new
clients, while maintaining compatibility with clients linked against old versions of the shared object.

Version
Symbol versioning adds the concept of a version to the dynamic symbol table. A version is a name that
symbols are associated with. When a dynamic loader tries to resolve a symbol reference associated with
a version name, it can only match against a symbol definition with the same version name.

 Note

A version might be associated with previous version names to show the revision history of the shared
object.

Default version

While a shared object might have multiple versions of the same symbol, a client of the shared object can
only bind against the latest version.

This is called the default version of the symbol.

Creation of versioned symbols

By default, the linker does not create versioned symbols for a non Base Platform Application Binary
Interface (BPABI) shared object.

Related concepts
10.6.3 The symbol versioning script file on page 10-237.

Related information
--symbolversions, --no_symbolversions fromelf option.

10.6.2 Embedded symbols

You can add specially-named symbols to input objects that cause the linker to create symbol versions.

These symbols are of the form:
• name@version for a non-default version of a symbol.
• name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want to export. The
symbol name is divided into two parts, a symbol name name and a version definition version. The name
is added to the dynamic symbol table and becomes part of the interface to the shared object. Version
creates a version called ver if it does not already exist and associates name with the version called ver.

10 BPABI and SysV Shared Libraries and Executables
10.6 Symbol versioning

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-236

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128924452.html

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object symbol
table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The linker reads these symbols and creates version definitions ver1 and ver2. The symbol foo is
associated with a non-default version of ver1, and with a default version of ver2. The symbol bar is
associated with a default version of ver1.

There is no way to create associations between versions with this method.

Related information
Using compiler and linker support for symbol versions.
Writing ARM Assembly Language.

10.6.3 The symbol versioning script file

You can embed the commands to produce symbol versions in a script file.

You specify a symbol versioning script file with the command-line option --symver_script=file.
Using this option automatically enables symbol versioning.

The script file supports the same syntax as the GNU ld linker.

Using a script file enables you to associate a version with an earlier version.

You can provide a steering file in addition to the embedded symbol method. If you choose to do this then
your script file must match your embedded symbols and use the Backus-Naur Form (BNF) notation:

version_definition ::=
 version_name "{" symbol_association* "}" [depend_version] ";"

symbol_association ::=
 "local:" | "global:" | symbol_name ";"

Where:

• version_name is a string containing the name of the version.
• depend_version is a string containing the name of a version that this version_name depends on.

This version must have already been defined in the script file.
• "local:" indicates that all subsequent symbol_names in this version definition are local to the shared

object and are not versioned.
• "global:" indicates that all subsequent symbol_names belong to this version definition.

There is an implicit "global:" at the start of every version definition.
• symbol_name is the name of a global symbol in the static symbol table.

Version names have no specific meaning, but they are significant in that they make it into the output. In
the output, they are a part of the version specification of the library and a part of the version requirements
of a program that links against such a library. The following example shows the use of version names:

VERSION_1
{
 ...
};
VERSION_2
{
 ...
} VERSION_1;

 Note

If you use a script file then the version definitions and symbols associated with them must match. The
linker warns you if it detects any mismatch.

10 BPABI and SysV Shared Libraries and Executables
10.6 Symbol versioning

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-237

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124217028.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731144635.html

Related concepts
10.6.1 Overview of symbol versioning on page 10-236.
10.6.5 Linker options for enabling implicit symbol versioning on page 10-238.
10.6.4 Example of creating versioned symbols on page 10-238.

Related references
12.148 --symver_script=filename on page 12-407.

10.6.4 Example of creating versioned symbols

This example shows how to create versioned symbols in code and with a script file.

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object symbol
table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The corresponding script file includes the addition of dependency information so that ver2 depends on
ver1 is:

ver1
{
 global:
 foo; bar;
 local:
 *;
};
ver2
{
 global:
 foo;
} ver1;

Related concepts
10.6 Symbol versioning on page 10-236.
10.6.5 Linker options for enabling implicit symbol versioning on page 10-238.

Related references
12.148 --symver_script=filename on page 12-407.

10.6.5 Linker options for enabling implicit symbol versioning

If you have to version your symbols to force static binding, but you do not care about the version number
that they are given, you can use implicit symbol versioning.

Use the command-line option --symver_soname to turn on implicit symbol versioning.

Where a symbol has no defined version, the linker uses the SONAME of the file being linked.

This option can be combined with embedded symbols or a script file. armlink adds the SONAME { *; };
definition to its internal representation of a symbol versioning script.

Related concepts
10.6.3 The symbol versioning script file on page 10-237.
10.6 Symbol versioning on page 10-236.
10.6.2 Embedded symbols on page 10-236.

Related references
12.149 --symver_soname on page 12-408.

10 BPABI and SysV Shared Libraries and Executables
10.6 Symbol versioning

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-238

Non-Confidential

Chapter 11
Features of the Base Platform Linking Model

Describes features of the Base Platform linking model supported by the ARM linker, armlink.

It contains the following sections:
• 11.1 Restrictions on the use of scatter files with the Base Platform model on page 11-240.
• 11.2 Scatter files for the Base Platform linking model on page 11-242.
• 11.3 Placement of PLT sequences with the Base Platform model on page 11-244.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-239

Non-Confidential

11.1 Restrictions on the use of scatter files with the Base Platform model
The Base Platform model supports scatter files, with some restrictions.

Although there are no restrictions on the keywords you can use in a scatter file, there are restrictions on
the types of scatter files you can use:
• A load region marked with the RELOC attribute must contain only execution regions with a relative

base address of +offset. The following examples show valid and invalid scatter files using the RELOC
attribute and +offset relative base address:

Valid scatter file example using

This is valid. All execution regions have +offset addresses.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
}

Invalid scatter file example using

This is not valid. One execution region has an absolute base address.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
 ER_ABSOLUTE 0x1000
 {
 *(+RW)
 }
}

• Any load region that requires a PLT section must contain at least one execution region containing
code, that is not marked OVERLAY. This execution region holds the PLT section. An OVERLAY region
cannot be used as the PLT must remain in memory at all times. The following examples show valid
and invalid scatter files that define execution regions requiring a PLT section:

Valid scatter file example for a load region that requires a PLT section

This is valid. ER_1 contains code and is not OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0
 {
 *(+RO)
 }
}

Invalid scatter file example for a load region that requires a PLT section

This is not valid. All execution regions containing code are marked OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0 OVERLAY
 {
 *(+RO)
 }
 ER_2 +0
 {
 *(+RW)
 }
}

• If a load region requires a PLT section, then the PLT section must be placed within the load region.
By default, if a load region requires a PLT section, the linker places the PLT section in the first
execution region containing code. You can override this choice with a scatter-loading selector.

If there is more than one load region containing code, the PLT section for a load region with name
name is .plt_name. If there is only one load region containing code, the PLT section is called .plt.

The following examples show valid and invalid scatter files that place a PLT section:

11 Features of the Base Platform Linking Model
11.1 Restrictions on the use of scatter files with the Base Platform model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-240

Non-Confidential

Valid scatter file example for placing a PLT section

#This is valid. The PLT section for LR1 is placed in LR1.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
 ER2 +0
 {
 *(.plt_LR1)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(other_code)
 }
}

Invalid scatter file example for placing a PLT section

#This is not valid. The PLT section of LR1 has been placed in LR2.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(.plt_LR1)
 }
}

Related concepts
2.5 Base Platform linking model on page 2-29.
11.3 Placement of PLT sequences with the Base Platform model on page 11-244.
8.3.4 Inheritance rules for load region address attributes on page 8-181.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.
8.4.4 Inheritance rules for execution region address attributes on page 8-188.

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.

11 Features of the Base Platform Linking Model
11.1 Restrictions on the use of scatter files with the Base Platform model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-241

Non-Confidential

11.2 Scatter files for the Base Platform linking model
Scatter files containing relocatable and non-relocatable load regions for the Base Platform linking model.

Standard BPABI scatter file with relocatable load regions

If you do not specify a scatter file when linking for the Base Platform linking model, the linker uses a
default scatter file defined for the standard Base Platform Application Binary Interface (BPABI) memory
model. This scatter file defines the following relocatable load regions:

LR1 0x8000 RELOC
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR2 0x0 RELOC
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

This example conforms to the BPABI, because it has the same two-region format as the BPABI
specification.

Scatter file with some load regions that are not relocatable

This example shows two load regions LR1 and LR2 that are not relocatable.

LR1 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}
LR2 0x10000
{
 ER_KNOWN_ADDRESS +0
 {
 *(fixedsection)
 }
}
LR3 0x20000 RELOC
{
 ER_RELOCATABLE +0
 {
 *(floatingsection)
 }
}

The linker does not have to generate dynamic relocations between LR1 and LR2 because they have fixed
addresses. However, the RELOC load region LR3 might be widely separated from load regions LR1 and
LR2 in the address space. Therefore, dynamic relocations are required between LR1 and LR3, and LR2
and LR3.

Use the options --pltgot=direct --pltgot_opts=crosslr to ensure a PLT is generated for each load
region.

11 Features of the Base Platform Linking Model
11.2 Scatter files for the Base Platform linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-242

Non-Confidential

Related concepts
2.2 Bare-metal linking model on page 2-25.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
2.7 Concepts common to both BPABI and SysV linking models on page 2-32.
11.1 Restrictions on the use of scatter files with the Base Platform model on page 11-240.

Related references
8.3.3 Load region attributes on page 8-180.

11 Features of the Base Platform Linking Model
11.2 Scatter files for the Base Platform linking model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-243

Non-Confidential

11.3 Placement of PLT sequences with the Base Platform model
The linker supports Procedure Linkage Table (PLT) generation for multiple load regions containing code
when linking in Base Platform mode.

To turn on PLT generation when in Base Platform mode (--base_platform) use --pltgot=option that
generates PLT sequences. You can use the option --pltgot_opts=crosslr to add entries in the PLT for
calls from and to RELOC load-regions. PLT generation for multiple Load Regions is only supported for
--pltgot=direct.

The --pltgot_opts=crosslr option is useful when you have multiple load regions that might be moved
relative to each other when the image is dynamically loaded. The linker generates a PLT for each load
region so that calls do not have to be extended to reach a distant PLT.

Placement of linker generated PLT sections:

• When there is only one load region there is one PLT. The linker creates a section called .plt with an
object anon$$obj.o.

• When there are multiple load regions, a PLT section is created for each load region that requires one.
By default, the linker places the PLT section in the first execution region containing code. You can
override this by specifying the exact PLT section name in the scatter file.

For example, a load region with name LR_NAME the PLT section is called .plt_LR_NAME with an
object of anon$$obj.o. To precisely name this PLT section in a scatter file, use the selector:

anon$$obj.o(.plt_LR_NAME)

Be aware of the following:
• The linker gives an error message if the PLT for load region LR_NAME is moved out of load region

LR_NAME.
• The linker gives an error message if load region LR_NAME contains a mixture of RELOC and non-RELOC

execution regions. This is because it cannot guarantee that the RELOC execution regions are able to
reach the PLT at run-time.

• --pltgot=indirect and --pltgot=sbrel are not supported for multiple load regions.

Related concepts
2.5 Base Platform linking model on page 2-29.

Related references
12.11 --base_platform on page 12-261.
12.108 --pltgot=type on page 12-365.
12.109 --pltgot_opts=mode on page 12-366.

11 Features of the Base Platform Linking Model
11.3 Placement of PLT sequences with the Base Platform model

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-244

Non-Confidential

Chapter 12
Linker Command-line Options

Describes the command-line options supported by the ARM linker, armlink.

It contains the following sections:
• 12.1 --add_needed, --no_add_needed on page 12-249.
• 12.2 --add_shared_references, --no_add_shared_references on page 12-250.
• 12.3 --any_contingency on page 12-251.
• 12.4 --any_placement=algorithm on page 12-252.
• 12.5 --any_sort_order=order on page 12-254.
• 12.6 --api, --no_api on page 12-255.
• 12.7 --arm_linux on page 12-256.
• 12.8 --arm_only on page 12-258.
• 12.9 --as_needed, --no_as_needed on page 12-259.
• 12.10 --autoat, --no_autoat on page 12-260.
• 12.11 --base_platform on page 12-261.
• 12.12 --be8 on page 12-262.
• 12.13 --be32 on page 12-263.
• 12.14 --bestdebug, --no_bestdebug on page 12-264.
• 12.15 --blx_arm_thumb, --no_blx_arm_thumb on page 12-265.
• 12.16 --blx_thumb_arm, --no_blx_thumb_arm on page 12-266.
• 12.17 --bpabi on page 12-267.
• 12.18 --branchnop, --no_branchnop on page 12-268.
• 12.19 --callgraph, --no_callgraph on page 12-269.
• 12.20 --callgraph_file=filename on page 12-271.
• 12.21 --callgraph_output=fmt on page 12-272.
• 12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
• 12.23 --cgfile=type on page 12-274.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-245

Non-Confidential

• 12.24 --cgsymbol=type on page 12-275.
• 12.25 --cgundefined=type on page 12-276.
• 12.26 --combreloc, --no_combreloc on page 12-277.
• 12.27 --comment_section, --no_comment_section on page 12-278.
• 12.28 --compress_debug, --no_compress_debug on page 12-279.
• 12.29 --cpp_compat linker option on page 12-280.
• 12.30 --cppinit, --no_cppinit on page 12-281.
• 12.31 --cpu=list on page 12-282.
• 12.32 --cpu=name on page 12-283.
• 12.33 --crosser_veneershare, --no_crosser_veneershare on page 12-286.
• 12.34 --datacompressor=opt on page 12-287.
• 12.35 --debug, --no_debug on page 12-288.
• 12.36 --diag_error=tag[,tag,…] on page 12-289.
• 12.37 --diag_remark=tag[,tag,…] on page 12-290.
• 12.38 --diag_style=arm|ide|gnu on page 12-291.
• 12.39 --diag_suppress=tag[,tag,…] on page 12-292.
• 12.40 --diag_warning=tag[,tag,…] on page 12-293.
• 12.41 --dll on page 12-294.
• 12.42 --dynamic_debug on page 12-295.
• 12.43 --dynamic_linker=name on page 12-296.
• 12.44 --eager_load_debug, --no_eager_load_debug on page 12-297.
• 12.45 --edit=file_list on page 12-298.
• 12.46 --emit_debug_overlay_relocs on page 12-299.
• 12.47 --emit_debug_overlay_section on page 12-300.
• 12.48 --emit_non_debug_relocs on page 12-301.
• 12.49 --emit_relocs on page 12-302.
• 12.50 --entry=location on page 12-303.
• 12.51 --errors=filename on page 12-304.
• 12.52 --exceptions, --no_exceptions on page 12-305.
• 12.53 --exceptions_tables=action on page 12-306.
• 12.54 --execstack, --no_execstack on page 12-307.
• 12.55 --export_all, --no_export_all on page 12-308.
• 12.56 --export_dynamic, --no_export_dynamic on page 12-309.
• 12.57 --feedback=filename on page 12-310.
• 12.58 --feedback_image=option on page 12-311.
• 12.59 --feedback_type=type on page 12-312.
• 12.60 --filtercomment, --no_filtercomment on page 12-313.
• 12.61 --fini=symbol on page 12-314.
• 12.62 --first=section_id on page 12-315.
• 12.63 --force_explicit_attr on page 12-316.
• 12.64 --force_so_throw, --no_force_so_throw on page 12-317.
• 12.65 --fpic on page 12-318.
• 12.66 --fpu=list on page 12-319.
• 12.67 --fpu=name on page 12-320.
• 12.68 --gnu_linker_defined_syms on page 12-322.
• 12.69 --help on page 12-323.
• 12.70 --import_unresolved, --no_import_unresolved on page 12-324.
• 12.71 --info=topic[,topic,…] on page 12-325.
• 12.72 --info_lib_prefix=opt on page 12-328.
• 12.73 --init=symbol on page 12-329.
• 12.74 --inline, --no_inline on page 12-330.
• 12.75 --inline_type=type on page 12-331.
• 12.76 --inlineveneer, --no_inlineveneer on page 12-332.
• 12.77 input-file-list on page 12-333.
• 12.78 --keep=section_id on page 12-334.
• 12.79 --largeregions, --no_largeregions on page 12-336.

12 Linker Command-line Options

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-246

Non-Confidential

• 12.80 --last=section_id on page 12-337.
• 12.81 --ldpartial on page 12-338.
• 12.82 --legacyalign, --no_legacyalign on page 12-339.
• 12.83 --libpath=pathlist on page 12-340.
• 12.84 --library=name on page 12-341.
• 12.85 --library_type=lib on page 12-342.
• 12.86 --linker_script=ld_script on page 12-343.
• 12.87 --linux_abitag=version_id on page 12-344.
• 12.88 --list=filename on page 12-345.
• 12.89 --list_mapping_symbols, --no_list_mapping_symbols on page 12-346.
• 12.90 --load_addr_map_info, --no_load_addr_map_info on page 12-347.
• 12.91 --locals, --no_locals on page 12-348.
• 12.92 --mangled, --unmangled on page 12-349.
• 12.93 --map, --no_map on page 12-350.
• 12.94 --match=crossmangled on page 12-351.
• 12.95 --max_er_extension=size on page 12-352.
• 12.96 --max_veneer_passes=value on page 12-353.
• 12.97 --max_visibility=type on page 12-354.
• 12.98 --merge, --no_merge on page 12-355.
• 12.99 --muldefweak, --no_muldefweak on page 12-356.
• 12.100 -o filename, --output=filename on page 12-357.
• 12.101 --output_float_abi=option on page 12-358.
• 12.102 --override_visibility on page 12-359.
• 12.103 --pad=num on page 12-360.
• 12.104 --paged on page 12-361.
• 12.105 --pagesize=pagesize on page 12-362.
• 12.106 --partial on page 12-363.
• 12.107 --piveneer, --no_piveneer on page 12-364.
• 12.108 --pltgot=type on page 12-365.
• 12.109 --pltgot_opts=mode on page 12-366.
• 12.110 --predefine="string" on page 12-367.
• 12.111 --prelink_support, --no_prelink_support on page 12-368.
• 12.112 --privacy on page 12-369.
• 12.113 --reduce_paths, --no_reduce_paths on page 12-370.
• 12.114 --ref_cpp_init, --no_ref_cpp_init on page 12-371.
• 12.115 --reloc on page 12-372.
• 12.116 --remarks on page 12-373.
• 12.117 --remove, --no_remove on page 12-374.
• 12.118 --ro_base=address on page 12-375.
• 12.119 --ropi on page 12-376.
• 12.120 --rosplit on page 12-377.
• 12.121 --runpath=pathlist on page 12-378.
• 12.122 --rw_base=address on page 12-379.
• 12.123 --rwpi on page 12-380.
• 12.124 --scanlib, --no_scanlib on page 12-381.
• 12.125 --scatter=filename on page 12-382.
• 12.126 --search_dynamic_libraries, --no_search_dynamic_libraries on page 12-384.
• 12.127 --section_index_display=type on page 12-385.
• 12.128 --shared on page 12-386.
• 12.129 --show_cmdline on page 12-387.
• 12.130 --show_full_path on page 12-388.
• 12.131 --show_parent_lib on page 12-389.
• 12.132 --show_sec_idx on page 12-390.
• 12.133 --soname=name on page 12-391.
• 12.134 --sort=algorithm on page 12-392.
• 12.135 --split on page 12-394.

12 Linker Command-line Options

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-247

Non-Confidential

• 12.136 --startup=symbol, --no_startup on page 12-395.
• 12.137 --strict on page 12-396.
• 12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
• 12.139 --strict_flags, --no_strict_flags on page 12-398.
• 12.140 --strict_ph, --no_strict_ph on page 12-399.
• 12.141 --strict_relocations, --no_strict_relocations on page 12-400.
• 12.142 --strict_symbols, --no_strict_symbols on page 12-401.
• 12.143 --strict_visibility, --no_strict_visibility on page 12-402.
• 12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.
• 12.145 --symbolic on page 12-404.
• 12.146 --symbols, --no_symbols on page 12-405.
• 12.147 --symdefs=filename on page 12-406.
• 12.148 --symver_script=filename on page 12-407.
• 12.149 --symver_soname on page 12-408.
• 12.150 --sysroot=path on page 12-409.
• 12.151 --sysv on page 12-410.
• 12.152 --tailreorder, --no_tailreorder on page 12-411.
• 12.153 --thumb2_library, --no_thumb2_library on page 12-412.
• 12.154 --tiebreaker=option on page 12-413.
• 12.155 --unaligned_access, --no_unaligned_access on page 12-414.
• 12.156 --undefined=symbol on page 12-415.
• 12.157 --undefined_and_export=symbol on page 12-416.
• 12.158 --unresolved=symbol on page 12-417.
• 12.159 --use_definition_visibility on page 12-418.
• 12.160 --use_sysv_default_script, --no_use_sysv_default_script on page 12-419.
• 12.161 --userlibpath=pathlist on page 12-420.
• 12.162 --veneerinject, --no_veneerinject on page 12-421.
• 12.163 --veneer_inject_type=type on page 12-422.
• 12.164 --veneer_pool_size=size on page 12-423.
• 12.165 --veneershare, --no_veneershare on page 12-424.
• 12.166 --verbose on page 12-425.
• 12.167 --version_number on page 12-426.
• 12.168 --vfemode=mode on page 12-427.
• 12.169 --via=filename on page 12-428.
• 12.170 --vsn on page 12-429.
• 12.171 --xo_base=address on page 12-430.
• 12.172 --xref, --no_xref on page 12-431.
• 12.173 --xrefdbg, --no_xrefdbg on page 12-432.
• 12.174 --xref{from|to}=object(section) on page 12-433.
• 12.175 --zi_base=address on page 12-434.

12 Linker Command-line Options

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-248

Non-Confidential

12.1 --add_needed, --no_add_needed
Controls shared object dependencies of libraries that are not specified on the command-line.

Usage

The --add_needed setting applies to any following shared objects until a --no_add_needed option
appears on the command line. The linker adds all shared objects that the shared object depends on and
recursively all of the dependent shared objects to the link.

Default

If you are using the --arm_linux option then the default is --add_needed otherwise the default is
--no_add_needed.

Examples

This example shows how to specify shared objects with dependencies. It assumes that the following
dependencies exist:

• cl1.so depends on dep1.so.
• cl2.so depends on dep2.so.
• cl3.so depends on dep3.so.
• dep2.so depends on depofdep2.so.

For this example, use the following command-line options:

armlink --arm_linux --no_add_needed cl1.so --add_needed cl2.so --no_add_needed cl3.so

This results in the addition of the following shared objects to the link:
• cl1.so.
• cl2.so.
• dep2.so.
• depofdep2.so.
• cl3.so.

Related references
12.7 --arm_linux on page 12-256.
12.9 --as_needed, --no_as_needed on page 12-259.
12.7 --arm_linux on page 12-256.

12 Linker Command-line Options
12.1 --add_needed, --no_add_needed

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-249

Non-Confidential

12.2 --add_shared_references, --no_add_shared_references
Affects the behavior of the --sysv mode.

Usage
If you specify --add_shared_references when linking an application the linker adds references from
shared libraries. The linker gives an undefined symbol error message if these references are not defined
by the application or by some other shared library. These references can be satisfied by static archive
format libraries.

 Note

A reference from a shared library can only be satisfied by a symbol definition with protected or default
visibility, because these are the only symbols that can be exported into dynamic symbol tables. The
linker gives an error message if the symbol reference is resolved by a symbol with hidden or internal
visibility.

Default

The default option is --no_add_shared_references.

However, if you specify --arm_linux, the default option is --add_shared_references.

Related references
12.7 --arm_linux on page 12-256.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.2 --add_shared_references, --no_add_shared_references

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-250

Non-Confidential

12.3 --any_contingency
Permits extra space in any execution regions containing .ANY sections for linker-generated content such
as veneers and alignment padding.

Usage

Two percent of the extra space in such execution regions is reserved for veneers.

When a region is about to overflow because of potential padding, armlink lowers the priority of
the .ANY selector.

This option is off by default. That is, armlink does not attempt to calculate padding and strictly follows
the .ANY priorities.

Use this option with the --scatter option.

Related concepts
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
12.5 --any_sort_order=order on page 12-254.
12.125 --scatter=filename on page 12-382.
8.5.2 Syntax of an input section description on page 8-191.
12.4 --any_placement=algorithm on page 12-252.

12 Linker Command-line Options
12.3 --any_contingency

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-251

Non-Confidential

12.4 --any_placement=algorithm
Controls the placement of sections that are placed using the .ANY module selector.

Syntax

--any_placement=algorithm

where algorithm is one of the following:

best_fit
Place the section in the execution region that currently has the least free space but is also
sufficient to contain the section.

first_fit
Place the section in the first execution region that has sufficient space. The execution regions are
examined in the order they are defined in the scatter file.

next_fit
Place the section using the following rules:
• Place in the current execution region if there is sufficient free space.
• Place in the next execution region only if there is insufficient space in the current region.
• Never place a section in a previous execution region.

worst_fit
Place the section in the execution region that currently has the most free space.

Use this option with the --scatter option.

Usage

The placement algorithms interact with scatter files and --any_contingency as follows:

Interaction with normal scatter-loading rules
Scatter-loading with or without .ANY assigns a section to the most specific selector. All
algorithms continue to assign to the most specific selector in preference to .ANY priority or size
considerations.

Interaction with .ANY priority
Priority is considered after assignment to the most specific selector in all algorithms.

worst_fit and best_fit consider priority before their individual placement criteria. For
example, you might have .ANY1 and .ANY2 selectors, with the .ANY1 region having the most free
space. When using worst_fit the section is assigned to .ANY2 because it has higher priority.
Only if the priorities are equal does the algorithm come into play.

first_fit considers the most specific selector first, then priority. It does not introduce any
more placement rules.

next_fit also does not introduce any more placement rules. If a region is marked full during
next_fit, that region cannot be considered again regardless of priority.

Interaction with --any_contingency
The priority of a .ANY selector is reduced to 0 if the region might overflow because of linker-
generated content. This is enabled and disabled independently of the sorting and placement
algorithms.

armlink calculates a worst-case contingency for each section.

For worst_fit, best_fit, and first_fit, when a region is about to overflow because of the
contingency, armlink lowers the priority of the related .ANY selector.

For next_fit, when a possible overflow is detected, armlink marks that section as FULL and
does not consider it again. This stays consistent with the rule that when a section is full it can
never be revisited.

12 Linker Command-line Options
12.4 --any_placement=algorithm

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-252

Non-Confidential

Default

The default option is worst_fit.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
on page 7-145.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.5 --any_sort_order=order on page 12-254.
12.71 --info=topic[,topic,…] on page 12-325.
12.125 --scatter=filename on page 12-382.
12.3 --any_contingency on page 12-251.
8.5.2 Syntax of an input section description on page 8-191.

12 Linker Command-line Options
12.4 --any_placement=algorithm

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-253

Non-Confidential

12.5 --any_sort_order=order
Controls the sort order of input sections that are placed using the .ANY module selector.

Syntax

--any_sort_order=order

where order is one of the following:

descending_size
Sort input sections in descending size order.

cmdline
The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

By default, sections that have the same properties are resolved using the creation index. The
--tiebreaker command-line option does not have any effect in the context of --any_sort_order.

Use this option with the --scatter option.

Usage

The sorting governs the order that sections are processed during .ANY assignment. Normal scatter-
loading rules, for example RO before RW, are obeyed after the sections are assigned to regions.

Default

The default option is descending_size.

Related concepts
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
7.4.7 Examples of using sorting algorithms for .ANY sections on page 7-146.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
12.125 --scatter=filename on page 12-382.
12.3 --any_contingency on page 12-251.

12 Linker Command-line Options
12.5 --any_sort_order=order

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-254

Non-Confidential

12.6 --api, --no_api
Enables and disables API section sorting. API sections are the sections that are called the most within a
region.

Usage

In large region mode the API sections are extracted from the region and then inserted closest to the
hotspots of the calling sections. This minimises the number of veneers generated.

Default

The default is --no_api. The linker automatically switches to --api if at least one execution region
contains more code than the smallest inter-section branch. The smallest inter-section branch depends on
the code in the region and the target processor:

32MB
Execution region contains only ARM.

16MB
Execution region contains Thumb code and the processor supports Thumb-2 technology.

4MB
Execution region contains Thumb code and the processor does not support Thumb-2 technology.

Related concepts
3.6 Linker-generated veneers on page 3-55.

Related references
12.79 --largeregions, --no_largeregions on page 12-336.

12 Linker Command-line Options
12.6 --api, --no_api

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-255

Non-Confidential

12.7 --arm_linux
Specifies default settings for use when creating ARM Linux applications.

 Note

ELF files produced with the --arm_linux option are demand-paged compliant.

Default
The following default settings are automatically specified:
• --add_needed.
• --add_shared_references.
• --no_as_needed.
• --gnu_linker_defined_syms.
• --keep=*(.init).
• --keep=*(.init_array).
• --keep=*(.fini).
• --keep=*(.fini_array).
• --linux_abitag=2.6.12.
• --muldefweak.
• --no_ref_cpp_init.
• --no_scanlib.
• --no_startup.
• --pltgot_opts=weakrefs
• --prelink_support.
• --sysv.

When migrating from a toolchain earlier than RealView Compiler Tools (RVCT) v4.0, you can replace all
these defaults with a single --arm_linux option.

To override any of the default settings, specify them separately after the --arm_linux option.

Restrictions

This option does not support scatter-loading.

ARM Linux support has been tested up to and including the CodeSourcery 2010q1 GNU tools release.
Compatibility with later GNU tools is not guaranteed.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-52.
2.6 SysV linking model on page 2-31.

Related references
12.1 --add_needed, --no_add_needed on page 12-249.
12.2 --add_shared_references, --no_add_shared_references on page 12-250.
12.109 --pltgot_opts=mode on page 12-366.
12.9 --as_needed, --no_as_needed on page 12-259.
12.68 --gnu_linker_defined_syms on page 12-322.
12.84 --library=name on page 12-341.
12.87 --linux_abitag=version_id on page 12-344.
12.99 --muldefweak, --no_muldefweak on page 12-356.
12.111 --prelink_support, --no_prelink_support on page 12-368.
12.124 --scanlib, --no_scanlib on page 12-381.
12.126 --search_dynamic_libraries, --no_search_dynamic_libraries on page 12-384.

12 Linker Command-line Options
12.7 --arm_linux

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-256

Non-Confidential

12.151 --sysv on page 12-410.
12.78 --keep=section_id on page 12-334.
12.114 --ref_cpp_init, --no_ref_cpp_init on page 12-371.

12 Linker Command-line Options
12.7 --arm_linux

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-257

Non-Confidential

12.8 --arm_only
Enables the linker to target the ARM instruction set only.

Usage

If the linker detects any objects requiring Thumb state, an error is generated.

Related references
12.136 --startup=symbol, --no_startup on page 12-395.

Related information
--arm compiler option.
--arm_only compiler option.
--thumb compiler option.
--arm assembler option.
--arm_only assembler option.
--thumb assembler option.

12 Linker Command-line Options
12.8 --arm_only

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-258

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124901592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818694.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819054.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289843800.html

12.9 --as_needed, --no_as_needed
Controls whether or not a reference to a shared library is added to the DT_NEEDED tags.

Usage
The effect of this option depends on the position on the armlink command-line, and applies only to
subsequent dynamic shared objects:
• --as_needed adds references to the DT_NEEDED tags only if the subsequent shared objects are

used for resolving symbols.
• --no_as_needed unconditionally adds references to the DT_NEEDED tags.

Default

The default is --as_needed.

However, if you specify --arm_linux, the default is --no_as_needed.

Example 12-1 Examples

The following example unconditionally adds a reference to liby.so in the DT_NEEDED tags, but only
adds tags for libx.so and libz.so if they are used for resolving symbols:

armlink … libx.so --no-as-needed liby.so --as-needed libz.so

Related references
12.1 --add_needed, --no_add_needed on page 12-249.
12.7 --arm_linux on page 12-256.

12 Linker Command-line Options
12.9 --as_needed, --no_as_needed

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-259

Non-Confidential

12.10 --autoat, --no_autoat
Controls the automatic assignment of __at sections to execution regions.

__at sections are sections that must be placed at a specific address.

Usage

If enabled, the linker automatically selects an execution region for each __at section. If a suitable
execution region does not exist, the linker creates a load region and an execution region to contain the
__at section.

If disabled, the standard scatter-loading section selection rules apply.

Default

The default is --autoat.

Restrictions

You cannot use __at section placement with position independent execution regions.

If you use __at sections with overlays, you cannot use --autoat to place those sections. You must
specify the names of __at sections in a scatter file manually, and specify the --no_autoat option.

Related concepts
7.2.6 Placement of __at sections at a specific address on page 7-132.
7.2.8 Automatic placement of __at sections on page 7-133.
7.2.9 Manual placement of __at sections on page 7-135.

Related references
8.2 Syntax of a scatter file on page 8-177.

12 Linker Command-line Options
12.10 --autoat, --no_autoat

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-260

Non-Confidential

12.11 --base_platform
Specifies the Base Platform linking model. It is a superset of the Base Platform Application Binary
Interface (BPABI) model, --bpabi option.

Usage

When you specify --base_platform, the linker also acts as if you specified --bpabi with the following
exceptions:

• The full choice of memory models is available, including scatter-loading:
— --dll.
— --force_so_throw, --no_force_so_throw.
— --pltgot=type.
— --rosplit.

 Note

If you do not specify a scatter file with --scatter, then the standard BPABI memory model scatter
file is used.

• The default value of the --pltgot option is different to that for --bpabi:
— For --base_platform, the default is --pltgot=none.
— For --bpabi the default is --pltgot=direct.

• If you specify --pltgot_opts=crosslr then calls to and from a load region marked RELOC go by
way of the Procedure Linkage Table (PLT).

To place unresolved weak references in the dynamic symbol table, use the IMPORT steering file
command.

 Note

If you are linking with --base_platform, and the parent load region has the RELOC attribute, then all
execution regions within that load region must have a +offset base address.

Related concepts
11.2 Scatter files for the Base Platform linking model on page 11-242.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
2.5 Base Platform linking model on page 2-29.
8.3.5 Inheritance rules for the RELOC address attribute on page 8-182.

Related references
12.17 --bpabi on page 12-267.
12.108 --pltgot=type on page 12-365.
12.109 --pltgot_opts=mode on page 12-366.
12.125 --scatter=filename on page 12-382.
12.117 --remove, --no_remove on page 12-374.
12.41 --dll on page 12-294.
12.64 --force_so_throw, --no_force_so_throw on page 12-317.
12.118 --ro_base=address on page 12-375.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.

12 Linker Command-line Options
12.11 --base_platform

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-261

Non-Confidential

12.12 --be8
Specifies ARMv6 Byte Invariant Addressing big-endian mode.

Usage

This is the default byte addressing mode for ARMv6 and later big-endian images. It means that the linker
reverses the endianness of the instructions to give little-endian code and big-endian data for input objects
that have been compiled or assembled as big-endian.

Byte Invariant Addressing mode is only available on ARM processors that support ARMv6 and above.

Related information
ARM Architecture v6.
ARM Architecture Reference Manuals.

12 Linker Command-line Options
12.12 --be8

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-262

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786966756.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture

12.13 --be32
Specifies legacy Word Invariant Addressing big-endian mode. That is, identical to big-endian images
prior to ARMv6.

Usage

This option produces big-endian code and data.

Word Invariant Addressing mode is the default mode for all pre-ARMv6 big-endian images.

Related information
ARM Architecture v4T.
ARM Architecture v5TE.
ARM Architecture Reference Manuals.

12 Linker Command-line Options
12.13 --be32

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-263

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786965538.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358786966100.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture

12.14 --bestdebug, --no_bestdebug
Selects between linking for smallest code and data size or for best debug illusion.

Usage

Input objects might contain common data (COMDAT) groups, but these might not be identical across all
input objects because of differences such as objects compiled with different optimization levels.

Use --bestdebug to select COMDAT groups with the best debug view. Be aware that the code and data
of the final image might not be the same when building with or without debug.

Default

The default is --no_bestdebug. This ensures that the code and data of the final image are the same
regardless of whether you compile for debug or not. The smallest COMDAT groups are selected when
linking, at the expense of a possibly slightly poorer debug illusion.

Example

For two objects compiled with different optimization levels:

armcc -c -O2 file1.c
armcc -c -O0 file2.c
armlink --bestdebug file1.o file2.o -o image.axf

Related concepts
4.1 Elimination of common debug sections on page 4-71.
4.2 Elimination of common groups or sections on page 4-72.
4.3 Elimination of unused sections on page 4-73.
4.4 Elimination of unused virtual functions on page 4-75.

Related references
12.100 -o filename, --output=filename on page 12-357.

Related information
-c compiler option.
-Onum compiler option.

12 Linker Command-line Options
12.14 --bestdebug, --no_bestdebug

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-264

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935804.html

12.15 --blx_arm_thumb, --no_blx_arm_thumb
Enables the linker to use the BLX instruction for ARM to Thumb state changes.

Usage

If the linker cannot use BLX it must use an ARM to Thumb interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support BLX.

Related concepts
3.6.3 Veneer types on page 3-56.

Related references
12.16 --blx_thumb_arm, --no_blx_thumb_arm on page 12-266.

12 Linker Command-line Options
12.15 --blx_arm_thumb, --no_blx_arm_thumb

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-265

Non-Confidential

12.16 --blx_thumb_arm, --no_blx_thumb_arm
Enables the linker to use the BLX instruction for Thumb to ARM state changes.

Usage

If the linker cannot use BLX it must use a Thumb to ARM interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support BLX.
 Note

Using --no_blx_thumb_arm prevents the possible issue with using a BLX (immediate) instruction on an
ARM1176JZ-S or ARM1176JZF-S. See the ARM1176JZ-S™ and ARM1176JZF-S™ Programmers Advice
Notice Use of BLX (immediate) for more details.

Related concepts
3.6.3 Veneer types on page 3-56.

Related references
12.15 --blx_arm_thumb, --no_blx_arm_thumb on page 12-265.

Related information
ARM1176JZ-S and ARM1176JZF-S Programmers Advice Notice Use of BLX (immediate) (ARM UAN
0002).

12 Linker Command-line Options
12.16 --blx_thumb_arm, --no_blx_thumb_arm

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-266

Non-Confidential

http://infocenter.emea.arm.com/help/topic/com.arm.doc.uan0002a/index.html
http://infocenter.emea.arm.com/help/topic/com.arm.doc.uan0002a/index.html

12.17 --bpabi
Creates a Base Platform Application Binary Interface (BPABI) ELF file for passing to a platform-
specific post-linker.

Usage
The BPABI model defines a standard-memory model that enables interoperability of BPABI-compliant
files across toolchains. When you specify this option:
• Procedure Linkage Table (PLT) and Global Offset Table (GOT) generation is supported.
• The default value of the --pltgot option is direct.
• A dynamically linked library (DLL) placed on the command-line can define symbols.

Restrictions

The BPAPI model does not support scatter-loading. However, scatter-loading is supported in the Base
Platform model.

Weak references in the dynamic symbol table are permitted only if the symbol is defined by a DLL
placed on the command-line. You cannot place an unresolved weak reference in the dynamic symbol
table with the IMPORT steering file command.

Related concepts
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.
2.5 Base Platform linking model on page 2-29.

Related references
12.11 --base_platform on page 12-261.
12.117 --remove, --no_remove on page 12-374.
12.41 --dll on page 12-294.
12.108 --pltgot=type on page 12-365.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.17 --bpabi

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-267

Non-Confidential

12.18 --branchnop, --no_branchnop
Enables or disables the replacement of any branch with a relocation that resolves to the next instruction
with a NOP.

Usage

The default behavior is to replace any branch with a relocation that resolves to the next instruction with a
NOP. However, there are cases where you might want to use --no_branchnop to disable this behavior.
For example, when performing verification or pipeline flushes.

Default

The default is --branchnop.

Related concepts
4.10 About branches that optimize to a NOP on page 4-87.

Related references
12.74 --inline, --no_inline on page 12-330.
12.152 --tailreorder, --no_tailreorder on page 12-411.

12 Linker Command-line Options
12.18 --branchnop, --no_branchnop

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-268

Non-Confidential

12.19 --callgraph, --no_callgraph
Creates a file containing a static callgraph of functions.

The callgraph gives definition and reference information for all functions in the image.
 Note

If you use the --partial option to create a partially linked object, then no callgraph file is created.

Usage

The callgraph file:

• Is saved in the same directory as the generated image.
• Has the name of the linked image with the extension, if any, replaced by the callgraph output

extension, either .htm or .txt. Use the --callgraph_file=filename option to specify a different
callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

 Note

If the linker is to calculate the function stack usage, any functions defined in the assembler files must
have the appropriate:
• PROC and ENDP directives.
• FRAME PUSH and FRAME POP directives.

The linker lists the following for each function func:

• Instruction set state for which the function is compiled (ARM or Thumb).
• Set of functions that call func.
• Set of functions that are called by func.
• Number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:

• Called through interworking veneers.
• Defined outside the image.
• Permitted to remain undefined (weak references).
• Called through a Procedure Linkage Table (PLT).
• Not called but still exist in the image.

The static callgraph also gives information about stack usage. It lists the:
• Size of the stack frame used by each function.
• Maximum size of the stack used by the function over any call sequence, that is, over any acyclic

chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size information in the call chain,
+ Unknown is added to the stack usage. A reason is added to indicate why stack usage is unknown.

The linker reports missing stack frame information if there is no debug frame information for the
function.

For indirect functions, the linker cannot reliably determine which function made the indirect call. This
might affect how the maximum stack usage is calculated for a call chain. The linker lists all function
pointers used in the image.

Use frame directives in assembly language code to describe how your code uses the stack. These
directives ensure that debug frame information is present for debuggers to perform stack unwinding or
profiling.

12 Linker Command-line Options
12.19 --callgraph, --no_callgraph

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-269

Non-Confidential

Default

The default is --no_callgraph.

Related references
12.20 --callgraph_file=filename on page 12-271.
12.21 --callgraph_output=fmt on page 12-272.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.23 --cgfile=type on page 12-274.
12.24 --cgsymbol=type on page 12-275.
12.25 --cgundefined=type on page 12-276.
8.2 Syntax of a scatter file on page 8-177.

Related information
FRAME POP.
FRAME PUSH.
FUNCTION or PROC.
ENDFUNC or ENDP.

12 Linker Command-line Options
12.19 --callgraph, --no_callgraph

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-270

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290010463.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290010793.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290014133.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290014472.html

12.20 --callgraph_file=filename
Controls the output filename of the callgraph.

Syntax

--callgraph_file=filename

where filename is the callgraph filename.

The default filename is the name of the linked image with the extension, if any, replaced by the callgraph
output extension, either .htm or .txt.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.21 --callgraph_output=fmt on page 12-272.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.23 --cgfile=type on page 12-274.
12.24 --cgsymbol=type on page 12-275.
12.25 --cgundefined=type on page 12-276.
12.100 -o filename, --output=filename on page 12-357.

12 Linker Command-line Options
12.20 --callgraph_file=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-271

Non-Confidential

12.21 --callgraph_output=fmt
Controls the output format of the callgraph.

Syntax

--callgraph_output=fmt

Where fmt can be one of the following:

html
Outputs the callgraph in HTML format.

text
Outputs the callgraph in plain text format.

Default

The default is --callgraph_output=html.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.20 --callgraph_file=filename on page 12-271.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.23 --cgfile=type on page 12-274.
12.24 --cgsymbol=type on page 12-275.
12.25 --cgundefined=type on page 12-276.

12 Linker Command-line Options
12.21 --callgraph_output=fmt

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-272

Non-Confidential

12.22 --callgraph_subset=symbol[,symbol,...]
Creates a file containing a static callgraph for one or more specified symbols.

Syntax
--callgraph_subset=symbol[,symbol,…]

where symbol is a comma-separated list of symbols.

Usage
The callgraph file:
• Is saved in the same directory as the generated image.
• Has the name of the linked image with the extension, if any, replaced by the callgraph output

extension, either .html or .txt. Use the --callgraph_file=filename option to specify a different
callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.20 --callgraph_file=filename on page 12-271.
12.21 --callgraph_output=fmt on page 12-272.
12.23 --cgfile=type on page 12-274.
12.24 --cgsymbol=type on page 12-275.
12.25 --cgundefined=type on page 12-276.

12 Linker Command-line Options
12.22 --callgraph_subset=symbol[,symbol,...]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-273

Non-Confidential

12.23 --cgfile=type
Controls the type of files to use for obtaining the symbols to be included in the callgraph.

Syntax

--cgfile=type

where type can be one of the following:

all
Includes symbols from all files.

user
Includes only symbols from user defined objects and libraries.

system
Includes only symbols from system libraries.

Default

The default is --cgfile=all.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.20 --callgraph_file=filename on page 12-271.
12.21 --callgraph_output=fmt on page 12-272.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.24 --cgsymbol=type on page 12-275.
12.25 --cgundefined=type on page 12-276.

12 Linker Command-line Options
12.23 --cgfile=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-274

Non-Confidential

12.24 --cgsymbol=type
Controls what symbols are included in the callgraph.

Syntax

--cgsymbol=type

Where type can be one of the following:

all
Includes both local and global symbols.

locals
Includes only local symbols.

globals
Includes only global symbols.

Default

The default is --cgsymbol=all.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.20 --callgraph_file=filename on page 12-271.
12.21 --callgraph_output=fmt on page 12-272.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.23 --cgfile=type on page 12-274.
12.25 --cgundefined=type on page 12-276.

12 Linker Command-line Options
12.24 --cgsymbol=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-275

Non-Confidential

12.25 --cgundefined=type
Controls what undefined references are included in the callgraph.

Syntax

--cgundefined=type

Where type can be one of the following:

all
Includes both function entries and calls to undefined weak references.

entries
Includes function entries for undefined weak references.

calls
Includes calls to undefined weak references.

none
Omits all undefined weak references from the output.

Default

The default is --cgundefined=all.

Related references
12.19 --callgraph, --no_callgraph on page 12-269.
12.20 --callgraph_file=filename on page 12-271.
12.21 --callgraph_output=fmt on page 12-272.
12.22 --callgraph_subset=symbol[,symbol,...] on page 12-273.
12.23 --cgfile=type on page 12-274.
12.24 --cgsymbol=type on page 12-275.

12 Linker Command-line Options
12.25 --cgundefined=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-276

Non-Confidential

12.26 --combreloc, --no_combreloc
Enables or disables the linker reordering of dynamic relocations so that a dynamic loader can process
them more efficiently.

--combreloc is the more efficient option.
 Note

This option only makes a difference when you use --sysv or --arm_linux.

Default

The default is --combreloc.

Related concepts
2.5 Base Platform linking model on page 2-29.
11.2 Scatter files for the Base Platform linking model on page 11-242.

Related references
12.7 --arm_linux on page 12-256.
12.108 --pltgot=type on page 12-365.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.26 --combreloc, --no_combreloc

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-277

Non-Confidential

12.27 --comment_section, --no_comment_section
Controls the inclusion of a comment section .comment in the final image.

Usage
Use --no_comment_section to remove the .comment section, to help reduce the image size.

 Note

You can also use the --filtercomment option to merge comments.

Default

The default is --comment_section.

Related concepts
4.13 Linker merging of comment sections on page 4-90.

Related references
12.60 --filtercomment, --no_filtercomment on page 12-313.

12 Linker Command-line Options
12.27 --comment_section, --no_comment_section

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-278

Non-Confidential

12.28 --compress_debug, --no_compress_debug
Causes the linker to compress .debug_* sections, if it is sensible to do so.

Usage

This removes some redundancy and reduces debug table size. Using --compress_debug can
significantly increase the time required to link an image. Debug compression can only be performed on
DWARF3 debug data, not DWARF2.

Default

The default is --no_compress_debug.

Related information
The DWARF Debugging Standard.

12 Linker Command-line Options
12.28 --compress_debug, --no_compress_debug

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-279

Non-Confidential

http://dwarfstd.org/

12.29 --cpp_compat linker option
Enables the linker to check for name mangling incompatibilities in the input objects.

Usage
Newer versions of armcc implement a more up-to-date version of the Itanium C++ ABI. This means that
in rare circumstances different versions of the compiler might generate different symbols for the same
C++ source code because of the difference in the Itanium C++ ABI. This occurs when:
• Different versions of C++ are used for different compilation units.
• Different versions of the compiler, that implement different ABI versions, are used.

When the --cpp_compat option is selected the linker gives an error message if at least two distinct
mangled names produce the same unmangled name.

You can also use this option with the partial linking options --partial and --ldpartial.

Related references
12.81 --ldpartial on page 12-338.
12.106 --partial on page 12-363.

Related information
--cpp11.
--cpp_compat.
Use of C++11 with the ARM C++ Standard Libraries.

12 Linker Command-line Options
12.29 --cpp_compat linker option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-280

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1406800556948.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1406727522718.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0530-/pge1407229599509.html

12.30 --cppinit, --no_cppinit
Enables the linker to use alternative C++ libraries with a different initialization symbol if required.

Syntax

--cppinit=symbol

Where symbol is the initialization symbol to use.

Usage

If you do not specify --cppinit=symbol then the default symbol __cpp_initialize__aeabi_ is
assumed.

--no_cppinit does not take a symbol argument.

Effect

The linker adds a non-weak reference to symbol if any static constructor or destructor sections are
detected.

For --cppinit=__cpp_initialize__aeabi_, the linker processes R_ARM_TARGET1 relocations as
R_ARM_REL32, because this is required by the __cpp_initialize__aeabi_ function. In all other
cases R_ARM_TARGET1 relocations are processed as R_ARM_ABS32.

--no_cppinit means do not add a reference.

Related references
12.114 --ref_cpp_init, --no_ref_cpp_init on page 12-371.

Related information
Initialization of the execution environment and execution of the application.
C++ initialization, construction and destruction.

12 Linker Command-line Options
12.30 --cppinit, --no_cppinit

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-281

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922456.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922706.html

12.31 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related references
12.32 --cpu=name on page 12-283.
12.66 --fpu=list on page 12-319.
12.67 --fpu=name on page 12-320.

12 Linker Command-line Options
12.31 --cpu=list

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-282

Non-Confidential

12.32 --cpu=name
Enables code generation for the selected ARM processor or architecture.

If you do not include the --cpu option, armlink derives an architecture from the combination of the
input objects.

If you include --cpu=name, armlink:
• Faults any input object that is not compatible with the cpu.
• For library selection, acts as if at least one input object is compiled with --cpu=name.

Syntax

--cpu=name

Where name is the name of a processor or architecture:

• If name is the name of a processor, enter it as shown on ARM data sheets, for example, ARM7TDMI,
ARM1176JZ-S, MPCore.

• If name is the name of an architecture, it must belong to the list of architectures shown in the
following table.

Processor and architecture names are not case-sensitive.

Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported architecture
and processor names, specify the --cpu=list option.

Table 12-1 Supported ARM architectures

Architecture Description

4 ARMv4 without Thumb

4T ARMv4 with Thumb

5T ARMv5 with Thumb and interworking

5TE ARMv5 with Thumb, interworking, DSP multiply, and double-word instructions

5TEJ ARMv5 with Thumb, interworking, DSP multiply, double-word instructions, and Jazelle® extensions
 Note

armlink cannot generate Java bytecodes.

6 ARMv6 with Thumb, interworking, DSP multiply, double-word instructions, unaligned and mixed-endian support,
Jazelle, and media extensions.

6-M ARMv6 microcontroller profile with Thumb only, plus processor state instructions.

6S-M ARMv6 microcontroller profile with Thumb only, plus processor state instructions and OS extensions.

6K ARMv6 with SMP extensions.

6T2 ARMv6 with Thumb (Thumb-2 technology).

6Z ARMv6 with Security Extensions.

7 ARMv7 with Thumb (Thumb-2 technology) only, and without hardware divide.

7-A ARMv7 application profile.

7-A.security ARMv7-A architecture profile with the SMC instruction (formerly SMI).

7-R ARMv7 real-time profile.

12 Linker Command-line Options
12.32 --cpu=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-283

Non-Confidential

Table 12-1 Supported ARM architectures (continued)

Architecture Description

7-M ARMv7 microcontroller profile.

7E-M ARMv7-M architecture profile with DSP extension.

 Note

• ARMv7 is not an actual ARM architecture. --cpu=7 denotes the features that are common to the
ARMv7-A, ARMv7-R, and ARMv7-M architectures. By definition, any given feature used with
--cpu=7 exists on the ARMv7-A, ARMv7-R, and ARMv7-M architectures.

• 7-A.security is not an actual ARM architecture, but rather refers to 7-A plus Security Extensions.
• The full list of supported architectures and processors depends on your license.

Usage

The following general points apply to processor and architecture options:

Processors
• Selecting the processor selects the appropriate architecture, Floating-Point Unit (FPU), and

memory organization.
• The supported --cpu values include all current ARM product names or architecture

versions.

Other ARM architecture-based processors, such as the Marvell Feroceon and the Marvell
XScale, are also supported.

• If you specify a processor for the --cpu option, the generated code is optimized for that
processor.

Architectures
• If you specify an architecture name for the --cpu option, the generated code can run on any

processor supporting that architecture. For example, --cpu=5TE produces code that can be
used by the ARM926EJ-S processor.

FPU
• Some specifications of --cpu imply an --fpu selection.

 Note

Any explicit FPU, set with --fpu on the command line, overrides an implicit FPU.

• If no --fpu option is specified and no --cpu option is specified, --fpu=softvfp is used.

Default

armlink assumes --cpu=ARM7TDMI if you do not specify a --cpu option.

Restrictions

You cannot specify both a processor and an architecture on the same command-line.

Related references
12.31 --cpu=list on page 12-282.
12.66 --fpu=list on page 12-319.
12.67 --fpu=name on page 12-320.

Related information
Types of floating-point linkage.

12 Linker Command-line Options
12.32 --cpu=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-284

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124233939.html

Compiler options for floating-point linkage and computations.
Floating-point linkage and computational requirements of compiler options.
Processors and their implicit Floating-Point Units (FPUs).

12 Linker Command-line Options
12.32 --cpu=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-285

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234220.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234516.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234797.html

12.33 --crosser_veneershare, --no_crosser_veneershare
Enables or disables veneer sharing across execution regions.

Usage

The default is --crosser_veneershare, and enables veneer sharing across execution regions.

--no_crosser_veneershare prohibits veneer sharing across execution regions.

Related references
12.165 --veneershare, --no_veneershare on page 12-424.

12 Linker Command-line Options
12.33 --crosser_veneershare, --no_crosser_veneershare

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-286

Non-Confidential

12.34 --datacompressor=opt
Enables you to specify one of the supplied algorithms for RW data compression.

Syntax

--datacompressor=opt

Where opt is one of the following:

on
Enables RW data compression to minimize ROM size.

off
Disables RW data compression.

list
Lists the data compressors available to the linker.

id
A data compression algorithm:

Table 12-2 Data compressor algorithms

id Compression algorithm

0 run-length encoding

1 run-length encoding, with LZ77 on small-repeats

2 complex LZ77 compression

Specifying a compressor adds a decompressor to the code area. If the final image does not have
compressed data, the decompressor is not added.

Usage

If you do not specify a data compression algorithm, the linker chooses the most appropriate one for you
automatically. In general, it is not necessary to override this choice.

Default

The default is --datacompressor=on.

Related concepts
4.7.3 How compression is applied on page 4-81.
4.7.4 Considerations when working with RW data compression on page 4-81.
4.7.1 How the linker chooses a compressor on page 4-80.

12 Linker Command-line Options
12.34 --datacompressor=opt

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-287

Non-Confidential

12.35 --debug, --no_debug
Controls the generation of debug information in the output file.

Usage

Debug information includes debug input sections and the symbol/string table.

Use --no_debug to exclude debug information from the output file. The resulting ELF image is smaller,
but you cannot debug it at source level. The linker discards any debug input section it finds in the input
objects and library members, and does not include the symbol and string table in the image. This only
affects the image size as loaded into the debugger. It has no effect on the size of any resulting binary
image that is downloaded to the target.

If you are using --partial the linker creates a partially-linked object without any debug data.
 Note

Do not use --no_debug if a fromelf--fieldoffsets step is required. If your image is produced without
debug information, fromelf cannot:
• Translate the image into other file formats.
• Produce a meaningful disassembly listing.

Default

The default is --debug.

Related information
--fieldoffsets fromelf option.

12 Linker Command-line Options
12.35 --debug, --no_debug

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-288

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128901922.html

12.36 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• warning, to treat all warnings as errors.

Related references
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.38 --diag_style=arm|ide|gnu on page 12-291.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.137 --strict on page 12-396.

12 Linker Command-line Options
12.36 --diag_error=tag[,tag,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-289

Non-Confidential

12.37 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

 Note

Remarks are not displayed by default. Use the --remarks option to display these messages.

Syntax

--diag_remark=tag[,tag,…]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related references
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.38 --diag_style=arm|ide|gnu on page 12-291.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.116 --remarks on page 12-373.
12.137 --strict on page 12-396.

12 Linker Command-line Options
12.37 --diag_remark=tag[,tag,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-290

Non-Confidential

12.38 --diag_style=arm|ide|gnu
Specifies the display style for diagnostic messages.

Syntax

--diag_style=string

Where string is one of:

arm
Display messages using the ARM compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu
Display messages in the format used by gcc.

Default

The default is --diag_style=arm.

Usage

--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Related references
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.116 --remarks on page 12-373.
12.137 --strict on page 12-396.

12 Linker Command-line Options
12.38 --diag_style=arm|ide|gnu

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-291

Non-Confidential

12.39 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag_suppress=tag[,tag,…]
Where tag can be:
• A diagnostic message number to be suppressed. This is the four-digit number, nnnn, with the tool

letter prefix, but without the letter suffix indicating the severity.
• error, to suppress all errors that can be downgraded.
• warning, to suppress all warnings.

Example

To suppress the warning messages that have numbers L6314W and L6305W, use the following command:

armlink --diag_suppress=L6314,L6305 …

Related references
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.38 --diag_style=arm|ide|gnu on page 12-291.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.137 --strict on page 12-396.
12.116 --remarks on page 12-373.

12 Linker Command-line Options
12.39 --diag_suppress=tag[,tag,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-292

Non-Confidential

12.40 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag_warning=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• error, to set all errors that can be downgraded to warnings.

Related references
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.38 --diag_style=arm|ide|gnu on page 12-291.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.116 --remarks on page 12-373.

12 Linker Command-line Options
12.40 --diag_warning=tag[,tag,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-293

Non-Confidential

12.41 --dll
Creates a Base Platform Application Binary Interface (BPABI) dynamically linked library (DLL).

Usage

The DLL is marked as a shared object in the ELF file header.

You must use --bpabi with --dll to produce a BPABI-compliant DLL.

You can also use --dll with --base_platform.
 Note

By default, this option disables unused section elimination. Use the --remove option to re-enable unused
sections when building a DLL.

Related references
12.117 --remove, --no_remove on page 12-374.
12.17 --bpabi on page 12-267.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.41 --dll

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-294

Non-Confidential

12.42 --dynamic_debug
Forces the linker to output dynamic relocations for debug sections.

Usage

Using this option permits an OS-aware debugger to debug shared libraries produced by armlink.

Use --dynamic_debug with --sysv and --sysv --shared images and shared libraries.

Related references
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.42 --dynamic_debug

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-295

Non-Confidential

12.43 --dynamic_linker=name
Specifies the dynamic linker to use to load and relocate the file at runtime.

Syntax

--dynamic_linker=name

--dynamiclinker=name

Where name is the name of the dynamic linker to store in the executable.

Usage

When you link with shared objects, the dynamic linker to use is stored in the executable. This option
specifies a particular dynamic linker to use when the file is executed. If you are working on ARM Linux
platforms, the linker assumes that the default dynamic linker is /lib/ld-linux.so.3.

Related references
12.61 --fini=symbol on page 12-314.
12.73 --init=symbol on page 12-329.
12.121 --runpath=pathlist on page 12-378.
12.84 --library=name on page 12-341.
12.145 --symbolic on page 12-404.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.43 --dynamic_linker=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-296

Non-Confidential

12.44 --eager_load_debug, --no_eager_load_debug
Keeps or removes debug section data.

Usage

The --no_eager_load_debug option causes the linker to remove debug section data from memory after
object loading. This lowers the peak memory usage of the linker at the expense of some linker
performance, because much of the debug data has to be loaded again when the final image is written.

Using --no_eager_load_debug option does not affect the debug data that is written into the ELF file.

The default is --eager_load_debug.
 Note

If you use some command-line options, such as --map, the resulting image or object built without debug
information might differ by a small number of bytes. This is because the .comment section contains the
linker command line used, where the options have differed from the default. Therefore
--no_eager_load_debug images are a little larger and contain Program Header and possibly a section
header a small number of bytes later. Use --no_comment_section to eliminate this difference.

Related references
12.27 --comment_section, --no_comment_section on page 12-278.

12 Linker Command-line Options
12.44 --eager_load_debug, --no_eager_load_debug

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-297

Non-Confidential

12.45 --edit=file_list
Enables you to specify steering files containing commands to edit the symbol tables in the output binary.

Syntax

--edit=file_list

Where file_list can be more than one steering file separated by a comma. Do not include a space after
the comma.

Usage
You can specify commands in a steering file to:
• Hide global symbols. Use this option to hide specific global symbols in object files. The hidden

symbols are not publicly visible.
• Rename global symbols. Use this option to resolve symbol naming conflicts.

Examples
--edit=file1 --edit=file2 --edit=file3

--edit=file1,file2,file3

Related concepts
6.6.4 Hide and rename global symbols with a steering file on page 6-114.

Related references
6.6.2 Steering file command summary on page 6-112.
Chapter 13 Linker Steering File Command Reference on page 13-435.

12 Linker Command-line Options
12.45 --edit=file_list

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-298

Non-Confidential

12.46 --emit_debug_overlay_relocs
Outputs only relocations of debug sections with respect to overlaid program sections to aid an overlay-
aware debugger.

Related references
12.47 --emit_debug_overlay_section on page 12-300.
12.49 --emit_relocs on page 12-302.
12.48 --emit_non_debug_relocs on page 12-301.

Related information
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

12 Linker Command-line Options
12.46 --emit_debug_overlay_relocs

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-299

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

12.47 --emit_debug_overlay_section
Emits a special debug overlay section during static linking.

Usage

In a relocatable file, a debug section refers to a location in a program section by way of a relocated
location. A reference from a debug section to a location in a program section has the following format:

<debug_section_index, debug_section_offset>, <program_section_index,
program_section_offset>

During static linking the pair of program values is reduced to single value, the execution address. This is
ambiguous in the presence of overlaid sections.

To resolve this ambiguity, use this option to output a .ARM.debug_overlay section of type
SHT_ARM_DEBUG_OVERLAY = SHT_LOUSER + 4 containing a table of entries as follows:

debug_section_offset, debug_section_index, program_section_index

Related references
12.46 --emit_debug_overlay_relocs on page 12-299.
12.49 --emit_relocs on page 12-302.

Related information
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

12 Linker Command-line Options
12.47 --emit_debug_overlay_section

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-300

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

12.48 --emit_non_debug_relocs
Retains only relocations from non-debug sections in an executable file.

Related references
12.49 --emit_relocs on page 12-302.

12 Linker Command-line Options
12.48 --emit_non_debug_relocs

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-301

Non-Confidential

12.49 --emit_relocs
Retains all relocations in the executable file. This results in larger executable files.

Usage

This is equivalent to the GNU ld --emit-relocs option.

Related references
12.46 --emit_debug_overlay_relocs on page 12-299.
12.48 --emit_non_debug_relocs on page 12-301.

Related information
ABI for the ARM Architecture: Support for Debugging Overlaid Programs.

12 Linker Command-line Options
12.49 --emit_relocs

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-302

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

12.50 --entry=location
Specifies the unique initial entry point of the image. Although an image can have multiple entry points,
only one can be the initial entry point.

Syntax

--entry=location
Where location is one of the following:
entry_address

A numerical value, for example: --entry=0x0
symbol

Specifies an image entry point as the address of symbol, for example: --entry=reset_handler
offset+object(section)

Specifies an image entry point as an offset inside a section within a particular object, for
example:--entry=8+startup.o(startupseg)
There must be no spaces within the argument to --entry. The input section and object names
are matched without case-sensitivity. You can use the following simplified notation:
• object(section), if offset is zero.
• object, if there is only one input section. armlink generates an error message if there is

more than one code input section in object.

 Note

If the entry address of your image is in Thumb state, then the least significant bit of the address must be
set to 1. The linker does this automatically if you specify a symbol. For example, if the entry code starts
at address 0x8000 in Thumb state you must use --entry=0x8001.

Usage
The image can contain multiple entry points. Multiple entry points might be specified with the ENTRY
directive in assembler source files. In such cases, a unique initial entry point must be specified for an
image, otherwise the error L6305E is generated. The initial entry point specified with the --entry option
is stored in the executable file header for use by the loader. There can be only one occurrence of this
option on the command line. A debugger typically uses this entry address to initialize the Program
Counter (PC) when an image is loaded. The initial entry point must meet the following conditions:
• The image entry point must lie within an execution region.
• The execution region must be non-overlay, and must be a root execution region (load address ==

execution address).

Related references
12.136 --startup=symbol, --no_startup on page 12-395.

Related information
ENTRY directive.

12 Linker Command-line Options
12.50 --entry=location

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-303

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290008613.html

12.51 --errors=filename
Redirects the diagnostics from the standard error stream to a specified file.

Syntax

--errors=filename

Usage

The specified file is created at the start of the link stage. If a file of the same name already exists, it is
overwritten.

If filename is specified without path information, the file is created in the current directory.

Related references
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.38 --diag_style=arm|ide|gnu on page 12-291.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.116 --remarks on page 12-373.

12 Linker Command-line Options
12.51 --errors=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-304

Non-Confidential

12.52 --exceptions, --no_exceptions
Controls the generation of exception tables in the final image.

Usage

Using --no_exceptions generates an error message if any exceptions sections are present in the image
after unused sections have been eliminated. Use this option to ensure that your code is exceptions free.

Default

The default is --exceptions.

Related concepts
3.7 Command-line options used to control the generation of C++ exception tables on page 3-59.

12 Linker Command-line Options
12.52 --exceptions, --no_exceptions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-305

Non-Confidential

12.53 --exceptions_tables=action
Specifies how exception tables are generated for objects that do not already contain exception unwinding
tables.

Syntax

--exceptions_tables=action

Where action is one of the following:

nocreate
The linker does not create missing exception tables.

unwind
The linker creates an unwinding table for each section in your image that does not already have
an exception table.

cantunwind
The linker creates a nounwind table for each section in your image that does not already have an
exception table.

Default

The default is --exceptions_tables=nocreate.

Related concepts
3.7 Command-line options used to control the generation of C++ exception tables on page 3-59.

12 Linker Command-line Options
12.53 --exceptions_tables=action

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-306

Non-Confidential

12.54 --execstack, --no_execstack
Forces the linker to use either an executable stack or a non-executable stack.

Usage

To support non-executable stacks, the linker generates the appropriate PT_GNU_STACK Program
Header when you specify either:

• --sysv.
• --arm_linux, because this option implies --sysv.

The linker derives the executable status of the stack from the presence of the .note.GNU-stack section
in input objects:

• If any of the input objects does not contain a .note.GNU-stack section, the linker assumes the final
image requires an executable stack.

• If no input object has a .note.GNU-stack section then the linker does not generate a
PT_GNU_STACK Program Header.

• If at least one object has a .note.GNU-stack then the linker generates a PT_GNU_STACK Program
Header. It is marked non-executable if all input objects have a .note.GNU-stack section that is non-
executable. In all other cases the Program Header is marked executable.

To override the choice made by the linker, use:
• --execstack to force the use of an executable stack.
• --no_execstack to force the use of a non-executable stack.

Related references
12.7 --arm_linux on page 12-256.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.54 --execstack, --no_execstack

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-307

Non-Confidential

12.55 --export_all, --no_export_all
Controls the export of all global, non-hidden symbols to the dynamic symbols table.

Usage

Use --export_all to dynamically export all global, non-hidden symbols from the executable or DLL to
the dynamic symbol table. Use --no_export_all to prevent the exporting of symbols to the dynamic
symbol table.

--export_all always exports non-hidden symbols into the dynamic symbol table. The dynamic symbol
table is created if necessary.

You cannot use --export_all to produce a statically linked image because it always exports non-hidden
symbols, forcing the creation of a dynamic segment.

For more precise control over the exporting of symbols, use one or more steering files.

Default

The default is --export_all for building shared libraries and dynamically linked libraries (DLLs).

The default is --no_export_all for building applications.

Related concepts
6.6.4 Hide and rename global symbols with a steering file on page 6-114.

Related references
12.56 --export_dynamic, --no_export_dynamic on page 12-309.

12 Linker Command-line Options
12.55 --export_all, --no_export_all

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-308

Non-Confidential

12.56 --export_dynamic, --no_export_dynamic
Controls the export of dynamic symbols to the dynamic symbols table.

Usage

If an executable has dynamic symbols, then --export_dynamic exports all externally visible symbols.

--export_dynamic exports non-hidden symbols into the dynamic symbol table only if a dynamic
symbol table already exists.

You can use --export_dynamic to produce a statically linked image if there are no imports or exports.

Default

--no_export_dynamic is the default.

Related references
12.55 --export_all, --no_export_all on page 12-308.

12 Linker Command-line Options
12.56 --export_dynamic, --no_export_dynamic

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-309

Non-Confidential

12.57 --feedback=filename
Generates a feedback file for input to the compiler. This file informs the compiler about unused
functions.

Syntax

--feedback=filename

Usage

During your next compilation, use the compiler option --feedback=filename to specify the feedback
file to use. Unused functions are then placed in their own sections for possible future elimination by the
linker.

Related concepts
4.5 About linker feedback on page 4-76.

Related references
12.58 --feedback_image=option on page 12-311.
12.59 --feedback_type=type on page 12-312.

Related information
--feedback=filename compiler option.

12 Linker Command-line Options
12.57 --feedback=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-310

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124919064.html

12.58 --feedback_image=option
Changes the behavior of the linker when writing a feedback file with scatter-loading.

Syntax

--feedback_image=option

Where option is one of the following:

none
Uses the scatter file to determine region size limits. Disables region overlap and region size
overflow messages. Does not write an ELF image. Error messages are still produced if a region
overflows the 32-bit address space.

noerrors
Uses the scatter file to determine region size limits. Warns on region overlap and region size
overflow messages. Writes an ELF image, which might not be executable. Error messages are
still produced if a region overflows the 32-bit address space.

simple
Ignores the scatter file. Disables ROPI/RWPI errors and warnings. Writes an ELF image, which
might not be executable.

full
Enables all error and warning messages and writes a valid ELF image.

Usage

Use this option to produce a feedback file where an executable ELF image cannot be created. That is,
when your code does not fit into the region limits described in your scatter file before unused functions
are removed using linker feedback.

Default

The default option is --feedback_image=full.

Related concepts
4.5 About linker feedback on page 4-76.

Related references
12.57 --feedback=filename on page 12-310.
12.59 --feedback_type=type on page 12-312.
12.125 --scatter=filename on page 12-382.

Related information
--feedback=filename compiler option.

12 Linker Command-line Options
12.58 --feedback_image=option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-311

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124919064.html

12.59 --feedback_type=type
Controls the information that the linker puts into the feedback file.

Syntax

--feedback_type=type

Where type is a comma-separated list from the following topic keywords:

[no]iw
Controls functions that require interworking support.

[no]unused
Controls unused functions in the image.

Default

The default option is --feedback_type=unused,noiw.

Related concepts
4.5 About linker feedback on page 4-76.

Related references
12.57 --feedback=filename on page 12-310.
12.58 --feedback_image=option on page 12-311.

Related information
--apcs compiler option.
--feedback=filename compiler option.
Interworking ARM and Thumb.

12 Linker Command-line Options
12.59 --feedback_type=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-312

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124919064.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1358787007185.html

12.60 --filtercomment, --no_filtercomment
Controls whether or not the linker modifies the .comment section to assist merging.

Usage

The linker always removes identical comments. The --filtercomment permits the linker to preprocess
the .comment section and remove some information that prevents merging.

Use --no_filtercomment to prevent the linker from modifying the .comment section.

Default

The default is --filtercomment.

Related concepts
4.13 Linker merging of comment sections on page 4-90.

Related references
12.27 --comment_section, --no_comment_section on page 12-278.

12 Linker Command-line Options
12.60 --filtercomment, --no_filtercomment

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-313

Non-Confidential

12.61 --fini=symbol
Specifies the symbol name to use to define the entry point for finalization code.

Syntax

--fini=symbol

Where symbol is the symbol name to use for the entry point to the finalization code.

Usage

The dynamic linker executes this code when it unloads the executable file or shared object.

Related references
12.43 --dynamic_linker=name on page 12-296.
12.73 --init=symbol on page 12-329.
12.121 --runpath=pathlist on page 12-378.
12.84 --library=name on page 12-341.
12.145 --symbolic on page 12-404.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.61 --fini=symbol

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-314

Non-Confidential

12.62 --first=section_id
Places the selected input section first in its execution region. This can, for example, place the section
containing the vector table first in the image.

Syntax

--first=section_id

Where section_id is one of the following:

symbol
Selects the section that defines symbol. You must not specify a symbol that has more than one
definition, because only one section can be placed first. For example: --first=reset.

object(section)
Selects section from object. There must be no space between object and the following open
parenthesis. For example: --first=init.o(init).

object
Selects the single input section in object. If you use this short form and there is more than one
input section, the linker generates an error message. For example: --first=init.o.

Usage

The --first option cannot be used with --scatter. Instead, use the +FIRST attribute in a scatter file.

Related concepts
3.3.2 Section placement with the FIRST and LAST attributes on page 3-50.
3.3 Section placement with the linker on page 3-49.

Related references
12.80 --last=section_id on page 12-337.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.62 --first=section_id

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-315

Non-Confidential

12.63 --force_explicit_attr
Causes the linker to retry the CPU mapping using build attributes constructed when an architecture is
specified with --cpu.

Usage

The --cpu option checks the FPU attributes if the CPU chosen has a built-in FPU.

The error message L6463U: Input Objects contain <archtype> instructions but could not
find valid target for <archtype> architecture based on object attributes. Suggest
using --cpu option to select a specific cpu. is given in the following situations:
• The ELF file contains instructions from architecture archtype yet the build attributes claim that

archtype is not supported.
• The build attributes are inconsistent enough that the linker cannot map them to an existing CPU.

If setting the --cpu option still fails, use --force_explicit_attr to cause the linker to retry the CPU
mapping using build attributes constructed from --cpu=archtype. This might help if the error is being
given solely because of inconsistent build attributes.

Related references
12.32 --cpu=name on page 12-283.
12.67 --fpu=name on page 12-320.

12 Linker Command-line Options
12.63 --force_explicit_attr

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-316

Non-Confidential

12.64 --force_so_throw, --no_force_so_throw
Controls the assumption made by the linker that an input shared object might throw an exception.

Usage

By default, exception tables are discarded if no code throws an exception.

Use --force_so_throw to specify that all shared objects might throw an exception and so force the
linker to keep the exception tables, regardless of whether the image can throw an exception or not.

If the --sysv option is used then --force_so_throw is automatically set.

Default

The default is --no_force_so_throw.

Related references
12.151 --sysv on page 12-410.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.64 --force_so_throw, --no_force_so_throw

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-317

Non-Confidential

12.65 --fpic
Enables you to link Position-Independent Code (PIC).

Usage
PIC is code that has been compiled using the --apcs=/fpic qualifier. Relative addressing is only
implemented when your code makes use of System V shared libraries.

 Note

The linker outputs a downgradable error if --shared is used and --fpic is not used.

You must use --fpic with --sysv and --shared.

Related concepts
10.4.6 Linker options for SysV models on page 10-229.

Related references
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.65 --fpic

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-318

Non-Confidential

12.66 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related references
12.31 --cpu=list on page 12-282.
12.32 --cpu=name on page 12-283.
12.67 --fpu=name on page 12-320.

12 Linker Command-line Options
12.66 --fpu=list

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-319

Non-Confidential

12.67 --fpu=name
Specifies the target FPU architecture.

Syntax

--fpu=name

Where name is one of:

None
Selects no floating-point option. No floating-point code is to be used.

VFPv2
Selects a hardware floating-point unit conforming to architecture VFPv2.

VFPv3
Selects a hardware vector floating-point unit conforming to architecture VFPv3. VFPv3 is
backwards compatible with VFPv2 except that VFPv3 cannot trap floating-point exceptions.

VFPv3_FP16
Selects a hardware vector floating-point unit conforming to architecture VFPv3 that also
provides the half-precision extensions.

VFPv3_D16
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture.

VFPv3_D16_FP16
Selects a hardware vector floating-point unit conforming to VFPv3-D16 architecture, that also
provides the half-precision extensions.

VFPv4
Selects a hardware floating-point unit conforming to the VFPv4 architecture.

VFPv4_D16
Selects a hardware floating-point unit conforming to the VFPv4-D16 architecture.

FPv4-SP
Selects a hardware floating-point unit conforming to the single precision variant of the FPv4
architecture.

FPv5_D16
Selects a hardware floating-point unit conforming to the FPv5-D16 architecture.

FPv5-SP
Selects a hardware floating-point unit conforming to the single precision variant of the FPv5
architecture.

SoftVFP
Selects software floating-point support where floating-point operations are performed by a
floating-point library, fplib. This is the default if you do not specify a --fpu option, or if you
select a CPU that does not have an FPU.

To obtain a full list of FPU architectures use the --fpu=list option.

Usage

If you specify this option, it overrides any implicit FPU option that appears on the command line, for
example, where you use the --cpu option.

The linker also uses this option to optimize the choice of system libraries. The default is to select an FPU
that is compatible with all of the component object files.

The linker fails if any of the component object files rely on features that are incompatible with the
selected FPU architecture.

Any FPU explicitly selected using the --fpu option always overrides any FPU implicitly selected using
the --cpu option. For example, the option --cpu=ARM1136JF-S --fpu=SoftVFP generates code that
uses the software floating-point library fplib, even though the choice of CPU implies the use of
architecture VFPv2.

12 Linker Command-line Options
12.67 --fpu=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-320

Non-Confidential

Restrictions

NEON support is disabled for SoftVFP.

Default

The default target FPU architecture is derived from use of the --cpu option.

If the processor you specify with --cpu has a VFP coprocessor, the default target FPU architecture is the
VFP architecture for that processor. For example, the option --cpu ARM1136JF-S implies the option
--fpu VFPv2. If a VFP coprocessor is present, VFP instructions are generated.

Related references
12.31 --cpu=list on page 12-282.
12.32 --cpu=name on page 12-283.
12.66 --fpu=list on page 12-319.

Related information
Types of floating-point linkage.
Compiler options for floating-point linkage and computations.
Floating-point linkage and computational requirements of compiler options.
Processors and their implicit Floating-Point Units (FPUs).

12 Linker Command-line Options
12.67 --fpu=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-321

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124233939.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234220.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234516.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124234797.html

12.68 --gnu_linker_defined_syms
Enables support for the GNU equivalent of input section symbols.

Usage
If you want GNU-style behavior when treating the ARM symbols SectionName$$Base and
SectionName$$Limit, then specify --gnu_linker_defined_syms.

Table 12-3 GNU equivalent of input sections

GNU symbol ARM symbol Description

__start_SectionName SectionName$$Base Address of the start of the consolidated section called SectionName.

__stop_SectionName SectionName$$Limit Address of the byte beyond the end of the consolidated section called
SectionName

 Note

• A reference to SectionName by a GNU input section symbol is sufficient for armlink to prevent the
section from being removed as unused.

• A reference by an ARM input section symbol is not sufficient to prevent the section from being
removed as unused.

Default

This option is enabled by default when you specify --arm_linux. It is disabled by default in all other
cases.

Related references
12.7 --arm_linux on page 12-256.

12 Linker Command-line Options
12.68 --gnu_linker_defined_syms

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-322

Non-Confidential

12.69 --help
Displays a summary of the main command-line options.

Default

This is the default if you specify armlink without any options or source files.

Related references
12.167 --version_number on page 12-426.
12.170 --vsn on page 12-429.
12.129 --show_cmdline on page 12-387.

12 Linker Command-line Options
12.69 --help

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-323

Non-Confidential

12.70 --import_unresolved, --no_import_unresolved
Enables or disables the importing of unresolved references when linking SysV shared objects.

Usage

When linking a shared object with --sysv --shared unresolved symbols are normally imported.

If you explicitly list object files on the linker command-line, specify the --no_import_unresolved
option so that any unresolved references cause an undefined symbol error rather than being imported.

Default

--import_unresolved is the default option.

Related references
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.70 --import_unresolved, --no_import_unresolved

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-324

Non-Confidential

12.71 --info=topic[,topic,…]
Prints information about specific topics. You can write the output to a text file using --list=file.

Syntax

--info=topic[,topic,…]

Where topic is a comma-separated list from the following topic keywords:

any
For sections placed using the .ANY module selector, lists:
• The sort order.
• The placement algorithm.
• The sections that are assigned to each execution region in the order they are assigned by the

placement algorithm.
• Information about the contingency space and policy used for each region.

This keyword also displays additional information when you use the execution region attribute
ANY_SIZE in a scatter file.

architecture
Summarizes the image architecture by listing the processor, FPU, and byte order.

common
Lists all common sections that are eliminated from the image. Using this option implies
--info=common,totals.

compression
Gives extra information about the RW compression process.

debug
Lists all rejected input debug sections that are eliminated from the image as a result of using
--remove. Using this option implies --info=debug,totals.

exceptions
Gives information on exception table generation and optimization.

inline
Lists all functions that are inlined by the linker, and the total number of inlines if --inline is
used.

inputs
Lists the input symbols, objects and libraries.

libraries
Lists the full path name of every library automatically selected for the link stage.

You can use this option with --info_lib_prefix to display information about a specific
library.

merge
Lists the const strings that are merged by the linker. Each item lists the merged result, the
strings being merged, and the associated object files.

pltgot
Lists the PLT entries built for the executable or DLL.

sizes
Lists the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for each input
object and library member in the image. Using this option implies --info=sizes,totals.

stack
Lists the stack usage of all functions.

summarysizes
Summarizes the code and data sizes of the image.

summarystack
Summarizes the stack usage of all global symbols.

12 Linker Command-line Options
12.71 --info=topic[,topic,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-325

Non-Confidential

tailreorder
Lists all the tail calling sections that are moved above their targets, as a result of using
--tailreorder.

totals
Lists the totals of the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for
input objects and libraries.

unused
Lists all unused sections that are eliminated from the user code as a result of using --remove. It
does not list any unused sections that are loaded from the ARM C libraries.

unusedsymbols
Lists all symbols that have been removed by unused section elimination.

veneers
Lists the linker-generated veneers.

veneercallers
Lists the linker-generated veneers with additional information about the callers to each veneer.
Use with --verbose to list each call individually.

veneerpools
Displays information on how the linker has placed veneer pools.

visibility
Lists the symbol visibility information. You can use this option with either --info=inputs or
--verbose to enhance the output.

weakrefs
Lists all symbols that are the target of weak references, and whether or not they were defined.

Usage

The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

If you are using RW data compression (the default), or if you have specified a compressor using the
--datacompressor=id option, the output from --info=sizes,totals includes an entry under Grand
Totals to reflect the true size of the image.

 Note

Spaces are not permitted between topic keywords in the list. For example, you can enter
--info=sizes,totals but not --info=sizes, totals.

Related concepts
4.3 Elimination of unused sections on page 4-73.
7.4 Placement of unassigned sections with the .ANY module selector on page 7-140.
4.7.4 Considerations when working with RW data compression on page 4-81.
4.7 Optimization with RW data compression on page 4-80.
4.7.1 How the linker chooses a compressor on page 4-80.
4.7.3 How compression is applied on page 4-81.

Related references
12.3 --any_contingency on page 12-251.
12.5 --any_sort_order=order on page 12-254.
12.72 --info_lib_prefix=opt on page 12-328.
12.98 --merge, --no_merge on page 12-355.
12.163 --veneer_inject_type=type on page 12-422.
5.1 Options for getting information about linker-generated files on page 5-92.
12.34 --datacompressor=opt on page 12-287.
12.98 --merge, --no_merge on page 12-355.

12 Linker Command-line Options
12.71 --info=topic[,topic,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-326

Non-Confidential

12.74 --inline, --no_inline on page 12-330.
12.117 --remove, --no_remove on page 12-374.
12.152 --tailreorder, --no_tailreorder on page 12-411.
8.4.3 Execution region attributes on page 8-186.

12 Linker Command-line Options
12.71 --info=topic[,topic,…]

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-327

Non-Confidential

12.72 --info_lib_prefix=opt
Specifies a filter for the --info=libraries option. The linker only displays the libraries that have the
same prefix as the filter.

Syntax

--info=libraries --info_lib_prefix=opt

Where opt is the prefix of the required library.

Examples
• Displaying a list of libraries without the filter:

armlink --info=libraries test.o

Produces a list of libraries, for example:

install_directory\lib\armlib\c_4.l
install_directory\lib\armlib\fz_4s.l
install_directory\lib\armlib\h_4.l
install_directory\lib\armlib\m_4s.l
install_directory\lib\armlib\vfpsupport.l

• Displaying a list of libraries with the filter:

armlink --info=libraries --info_lib_prefix=c test.o

Produces a list of libraries with the specified prefix, for example:

install_directory\lib\armlib\c_4.l

Related references
12.71 --info=topic[,topic,…] on page 12-325.

12 Linker Command-line Options
12.72 --info_lib_prefix=opt

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-328

Non-Confidential

12.73 --init=symbol
Specifies a symbol name to use for the initialization code. A dynamic linker executes this code when it
loads the executable file or shared object.

Syntax

--init=symbol

Where symbol is the symbol name you want to use to define the location of the initialization code.

Related references
12.43 --dynamic_linker=name on page 12-296.
12.61 --fini=symbol on page 12-314.
12.121 --runpath=pathlist on page 12-378.
12.84 --library=name on page 12-341.
12.145 --symbolic on page 12-404.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.73 --init=symbol

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-329

Non-Confidential

12.74 --inline, --no_inline
Enables or disables branch inlining to optimize small function calls in your image.

Default
The default is --no_inline.

 Note

This branch optimization is off by default because enabling it changes the image such that debug
information might be incorrect. If enabled, the linker makes no attempt to correct the debug information.

--no_inline turns off inlining for user-supplied objects only. The linker still inlines functions from the
ARM C Library by default.

Related concepts
4.8 Function inlining with the linker on page 4-83.

Related references
12.18 --branchnop, --no_branchnop on page 12-268.
12.75 --inline_type=type on page 12-331.
12.152 --tailreorder, --no_tailreorder on page 12-411.

12 Linker Command-line Options
12.74 --inline, --no_inline

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-330

Non-Confidential

12.75 --inline_type=type
Inlines functions from all objects, ARM C Library only, or turns of inlining completely.

Syntax

--inline_type=type

Where type is one of:

all
The linker is permitted to inline functions from all input objects.

library
The linker is permitted to inline functions from the ARM C Library.

none
The linker is not permitted to inline functions.

This option takes precedence over --inline if both options are present on the command line. The
mapping between the options is:
• --inline maps to --inline_type=all
• --no_inline maps to --inline_type=library

 Note

To disable linker inlining completely you must use --inline_type=none.

Related references
12.74 --inline, --no_inline on page 12-330.
12.152 --tailreorder, --no_tailreorder on page 12-411.

12 Linker Command-line Options
12.75 --inline_type=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-331

Non-Confidential

12.76 --inlineveneer, --no_inlineveneer
Enables or disables the generation of inline veneers to give greater control over how the linker places
sections.

Default

The default is --inlineveneer.

Related concepts
3.6.3 Veneer types on page 3-56.
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

Related references
12.107 --piveneer, --no_piveneer on page 12-364.
12.165 --veneershare, --no_veneershare on page 12-424.

12 Linker Command-line Options
12.76 --inlineveneer, --no_inlineveneer

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-332

Non-Confidential

12.77 input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Usage

The linker sorts through the input file list in order. If the linker is unable to resolve input file problems
then a diagnostic message is produced.

The symdefs files can be included in the list to provide global symbol addresses for previously generated
image files.

You can use libraries in the input file list in the following ways:

• Specify a library to be added to the list of libraries that the linker uses to extract members if they
resolve any non weak unresolved references. For example, specify mystring.lib in the input file
list.

 Note

Members from the libraries in this list are added to the image only when they resolve an unresolved
non weak reference.

• Specify particular members to be extracted from a library and added to the image as individual
objects. Members are selected from a comma separated list of patterns that can include wild
characters. Spaces are permitted but if you use them you must enclose the whole input file list in
quotes.

The following shows an example of an input file list both with and without spaces:

mystring.lib(strcmp.o,std*.o)

“mystring.lib(strcmp.o, std*.o)”

The linker automatically searches the appropriate C and C++ libraries to select the best standard
functions for your image. You can use --no_scanlib to prevent automatic searching of the standard
system libraries.

The linker processes the input file list in the following order:
1. Objects are added to the image unconditionally.
2. Members selected from libraries using patterns are added to the image unconditionally, as if they are

objects. For example, to add all a*.o objects and stdio.o from mystring.lib use the following:

"mystring.lib(stdio.o, a*.o)"

3. Library files listed on the command-line are searched for any unresolved non-weak references. The
standard C or C++ libraries are added to the list of libraries that the linker later uses to resolve any
remaining references.

Related concepts
6.5 Access symbols in another image on page 6-108.
3.9 How the linker performs library searching, selection, and scanning on page 3-63.

Related references
12.124 --scanlib, --no_scanlib on page 12-381.

12 Linker Command-line Options
12.77 input-file-list

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-333

Non-Confidential

12.78 --keep=section_id
Specifies input sections that must not be removed by unused section elimination.

Syntax

--keep=section_id

Where section_id is one of the following:

symbol
Specifies that an input section defining symbol is to be retained during unused section
elimination. If multiple definitions of symbol exist, armlink generates an error message.

For example, you might use --keep=int_handler.

To keep all sections that define a symbol ending in _handler, use --keep=*_handler.

object(section)
Specifies that section from object is to be retained during unused section elimination. If a
single instance of section is generated, you can omit section, for example, file.o().
Otherwise, you must specify section.

For example, to keep the vect section from the vectors.o object use:
--keep=vectors.o(vect)

To keep all sections from the vectors.o object where the first three characters of the name of
the sections are vec, use: --keep=vectors.o(vec*)

object
Specifies that the single input section from object is to be retained during unused section
elimination. If you use this short form and there is more than one input section in object, the
linker generates an error message.

For example, you might use --keep=dspdata.o.

To keep the single input section from each of the objects that has a name starting with dsp, use
--keep=dsp*.o.

Usage
All forms of the section_id argument can contain the * and ? wild characters. Matching is case-
insensitive, even on hosts with case-sensitive file naming. For example:
• --keep foo.o(Premier*) causes the entire match for Premier* to be case-insensitive.
• --keep foo.o(Premier) causes a case-insensitive match for the string Premier.

 Note

The only case where a case-sensitive match is made is for --keep=symbol when symbol does not contain
any wildcard characters.

Use *.o to match all object files. Use * to match all object files and libraries.

You can specify multiple --keep options on the command line.

Matching a symbol that has the same name as an object
If you name a symbol with the same name as an object, then --keep=symbol_id searches for a symbol
that matches symbol_id:
• If a symbol is found, it matches the symbol.
• If no symbol is found, it matches the object.

You can force --keep to match an object with --keep=symbol_id(). Therefore, to keep both the symbol
and the object, specify --keep foo.o --keep foo.o().

12 Linker Command-line Options
12.78 --keep=section_id

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-334

Non-Confidential

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.
3.1 The structure of an ARM ELF image on page 3-34.

12 Linker Command-line Options
12.78 --keep=section_id

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-335

Non-Confidential

12.79 --largeregions, --no_largeregions
Controls the sorting order of sections in large execution regions to minimize the distance between
sections that call each other.

Usage

If the execution region contains more code than the range of a branch instruction then the linker switches
to large region mode. In this mode the linker sorts according to the approximated average call depth of
each section in ascending order. The linker might also distribute veneers amongst the code sections to
minimize the number of veneers.

 Note

Large region mode can result in large changes to the layout of an image even when small changes are
made to the input.

To disable large region mode and revert to lexical order, use --no_largeregions. Section placement is
then predictable and image comparisons are more predictable. The linker automatically switches on
--veneerinject if it is needed for a branch to reach the veneer.

Large region support enables:
• Average call depth sorting, --sort=AvgCallDepth.
• API sorting, --api.
• Veneer injection, --veneerinject.

The following command lines are equivalent:

armlink --largeregions --no_api --no_veneerinject --sort=Lexical
armlink --no_largeregions

Default

The default is --no_largeregions. The linker automatically switches to --largeregions if at least one
execution region contains more code than the smallest inter-section branch. The smallest inter-section
branch depends on the code in the region and the target processor:

32MB
Execution region contains only ARM instructions.

16MB
Execution region contains Thumb instructions and the processor supports Thumb-2 technology.

4MB
Execution region contains Thumb instructions and the processor does not support Thumb-2
technology.

Related concepts
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.

Related references
12.6 --api, --no_api on page 12-255.
12.134 --sort=algorithm on page 12-392.
12.163 --veneer_inject_type=type on page 12-422.
12.162 --veneerinject, --no_veneerinject on page 12-421.

12 Linker Command-line Options
12.79 --largeregions, --no_largeregions

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-336

Non-Confidential

12.80 --last=section_id
Places the selected input section last in its execution region.

Syntax

--last=section_id

Where section_id is one of the following:

symbol
Selects the section that defines symbol. You must not specify a symbol that has more than one
definition because only a single section can be placed last. For example: --last=checksum.

object(section)
Selects the section from object. There must be no space between object and the following
open parenthesis. For example: --last=checksum.o(check).

object
Selects the single input section from object. If there is more than one input section in object,
armlink generates an error message.

Usage

The --last option cannot be used with --scatter. Instead, use the +LAST attribute in a scatter file.

Example

This option can force an input section that contains a checksum to be placed last in the RW section.

Related concepts
3.3.2 Section placement with the FIRST and LAST attributes on page 3-50.
3.3 Section placement with the linker on page 3-49.

Related references
12.62 --first=section_id on page 12-315.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.80 --last=section_id

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-337

Non-Confidential

12.81 --ldpartial
Enables you to link a partial object and combine sections in the output object.

Usage

You can control how the sections are combined with a scatter file or an ld script.

-r is a synonym for --ldpartial.
 Note

This option contrasts with the --partial option that does not combine sections.

Related concepts
9.1.1 Summary of GNU ld script support and restrictions on page 9-204.
9.1 About GNU ld script support on page 9-204.
9.9 Example GNU ld script for linking partial objects on page 9-218.

Related tasks
9.1.3 Using ld scripts when linking partial objects on page 9-205.

Related references
12.125 --scatter=filename on page 12-382.
12.86 --linker_script=ld_script on page 12-343.

12 Linker Command-line Options
12.81 --ldpartial

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-338

Non-Confidential

12.82 --legacyalign, --no_legacyalign
Controls how padding is inserted into the image.

Usage

By default, the linker assumes execution regions and load regions to be four-byte aligned.
--legacyalign enables the linker to minimize the amount of padding that it inserts into the image.

The --no_legacyalign option instructs the linker to insert padding to force natural alignment of
execution regions. Natural alignment is the highest known alignment for that region.

Use --no_legacyalign to ensure strict conformance with the ELF specification.

You can also use expression evaluation in a scatter file to avoid padding.

Default

The default is --legacyalign,

Related concepts
3.3 Section placement with the linker on page 3-49.
7.12 Example of using expression evaluation in a scatter file to avoid padding on page 7-163.

Related references
8.3.3 Load region attributes on page 8-180.
8.4.3 Execution region attributes on page 8-186.

12 Linker Command-line Options
12.82 --legacyalign, --no_legacyalign

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-339

Non-Confidential

12.83 --libpath=pathlist
Specifies a list of paths that the linker uses to search for the ARM standard C and C++ libraries.

Syntax

--libpath=pathlist

Where pathlist is a comma-separated list of paths that the linker only uses to search for required ARM
libraries. Do not include spaces between the comma and the path name when specifying multiple path
names, for example, path1,path2,path3,…,pathn.

Usage
You can also use the ARMCC5LIB environment variable to specify the path for the parent directory
containing the ARM libraries. Any paths specified with --libpath override the path specified by the
environment variable.

 Note

This option does not affect searches for user libraries. Use --userlibpath instead for user libraries.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.

Related references
12.161 --userlibpath=pathlist on page 12-420.

Related information
Toolchain environment variables.

12 Linker Command-line Options
12.83 --libpath=pathlist

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-340

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

12.84 --library=name
Enables the linker to search either a dynamic library or a static library without you having specifying the
full library filename on the command-line.

Syntax

--library=name

Where name is the name of the library.

Usage
The linker searches either a dynamic library, libname.so, or a static library, libname.a, depending on
whether dynamic library searching is enabled at that point on the command line:
• If dynamic linking is enabled, the linker searches first for libname.so, and if it is not found then

searches for libname.a.
• If dynamic linking is disabled it links with the static library, libname.a.

If you specify the --[no_]search_dynamic_libraries option, it applies to the following --library
options up until the next --[no_]search_dynamic_libraries option.

References to the shared library are added to the image and resolved to the library by the dynamic loader
at runtime. The order that references are resolved to libraries is the order that you specify the libraries on
the command line. This is also the order that the dependencies are resolved by the dynamic linker. You
can specify the runtime location of libraries using the --runpath option.

Default

Dynamic linking is enabled by default. Use the --[no_]search_dynamic_libraries option to control
the searching of dynamic or static libraries.

Example

The following example shows how to search for libfoo.so before libfoo.a, but only search for
libbar.a:

--arm_linux --shared --fpic --search_dynamic_libraries --library=foo
--no_search_dynamic_libraries --library=bar

Related references
12.7 --arm_linux on page 12-256.
12.121 --runpath=pathlist on page 12-378.
12.126 --search_dynamic_libraries, --no_search_dynamic_libraries on page 12-384.
12.65 --fpic on page 12-318.
12.128 --shared on page 12-386.

12 Linker Command-line Options
12.84 --library=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-341

Non-Confidential

12.85 --library_type=lib
Selects the library to be used at link time.

Syntax

--library_type=lib

Where lib can be one of:

standardlib
Specifies that the full ARM Compiler runtime libraries are selected at link time. This is the
default.

microlib
Specifies that the C micro-library (microlib) is selected at link time.

Usage

Use this option when use of the libraries require more specialized optimizations.

Default

If you do not specify --library_type at link time and no object file specifies a preference, then the
linker assumes --library_type=standardlib.

Related information
Building an application with microlib.

12 Linker Command-line Options
12.85 --library_type=lib

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-342

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938939195.html

12.86 --linker_script=ld_script
Specifies a GNU linker ld script to use for linking images and shared objects for ARM Linux and partial
linking.

Syntax

--linker_script=ld_script

or the synonym:

-T ld_script

ld_script is the script path and filename.
 Note

The = is optional with --linker_script, but you must not use = with -T.

Usage

Use this option with --sysv or --arm_linux.

If you do not use the --linker_script option, then armlink uses a default script for a --sysv or
--arm_linux link.

Related concepts
9.4 Specific restrictions for using ld scripts with armlink on page 9-209.
9.5 Recommendations for using ld scripts with armlink on page 9-210.
9.1 About GNU ld script support on page 9-204.

Related references
12.150 --sysroot=path on page 12-409.
12.151 --sysv on page 12-410.
9.3 Important ld script commands that are implemented in armlink on page 9-207.
9.6 Default GNU ld scripts used by armlink on page 9-211.
12.7 --arm_linux on page 12-256.
12.81 --ldpartial on page 12-338.

12 Linker Command-line Options
12.86 --linker_script=ld_script

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-343

Non-Confidential

12.87 --linux_abitag=version_id
Enables you to specify the minimum compatible Linux kernel version for the executable file you are
building.

Usage

This is then stored in the output ELF so it can be checked when running the executable on the target.

The information you specify with --linux_abitag is written into a section called .note.ABI-tag. If
there is no information, the linker does not produce a .note.ABI-tag section in the output ELF file.

Related references
12.7 --arm_linux on page 12-256.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.87 --linux_abitag=version_id

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-344

Non-Confidential

12.88 --list=filename
Redirects diagnostic output to a file.

Syntax

--list=filename

Where filename is the file to use to save the diagnostic output. filename can include a path

Usage

Redirects the diagnostics output by the --info, --map, --symbols, --verbose, --xref, --xreffrom,
and --xrefto options to file.

The specified file is created when diagnostics are output. If a file of the same name already exists, it is
overwritten. However, if diagnostics are not output, a file is not created. In this case, the contents of any
existing file with the same name remain unchanged.

If filename is specified without a path, it is created in the output directory, that is, the directory where
the output image is being written.

Related references
12.93 --map, --no_map on page 12-350.
12.166 --verbose on page 12-425.
12.172 --xref, --no_xref on page 12-431.
12.173 --xrefdbg, --no_xrefdbg on page 12-432.
12.174 --xref{from|to}=object(section) on page 12-433.
12.71 --info=topic[,topic,…] on page 12-325.
12.146 --symbols, --no_symbols on page 12-405.

12 Linker Command-line Options
12.88 --list=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-345

Non-Confidential

12.89 --list_mapping_symbols, --no_list_mapping_symbols
Enables or disables the addition of mapping symbols in the output produced by --symbols.

The mapping symbols $a, $t, $t.x, and $d flag transitions between ARM code, Thumb code, ThumbEE
code, and data.

Default

The default is --no_list_mapping_symbols.

Related concepts
6.1 About mapping symbols on page 6-99.

Related references
12.146 --symbols, --no_symbols on page 12-405.

Related information
ELF for the ARM Architecture.

12 Linker Command-line Options
12.89 --list_mapping_symbols, --no_list_mapping_symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-346

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

12.90 --load_addr_map_info, --no_load_addr_map_info
Includes the load addresses for execution regions and the input sections within them in the map file.

Usage

If an input section is compressed, then the load address has no meaning and COMPRESSED is displayed
instead.

For sections that do not have a load address, such as ZI data, the load address is blank

Default

The default is --no_load_addr_map_info.

Restrictions

You must use --map with this option.

Example

The following example shows the format of the map file output:

 Base Addr Load Addr Size Type Attr Idx E Section Name
Object
 0x00008000 0x00008000 0x00000008 Code RO 25 * !!!main
__main.o(c_4.l)
 0x00010000 COMPRESSED 0x00001000 Data RW 2 dataA
data.o
 0x00003000 - 0x00000004 Zero RW 2 .bss
test.o

Related references
12.93 --map, --no_map on page 12-350.

12 Linker Command-line Options
12.90 --load_addr_map_info, --no_load_addr_map_info

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-347

Non-Confidential

12.91 --locals, --no_locals
Adds local symbols or removes local symbols depending on whether an image or partial object is being
output.

Usage

The --locals option adds local symbols in the output symbol table.

The effect of the --no_locals option is different for images and object files.

When producing an executable image --no_locals removes local symbols from the output symbol
table.

For object files built with the --partial option, the --no_locals option:
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these symbols, the
names are removed. These are marked as [Anonymous Symbol] in the fromelf --text output.

--no_locals is a useful optimization if you want to reduce the size of the output symbol table in the
final image.

Default

The default is --locals.

Related references
12.112 --privacy on page 12-369.

Related information
--privacy fromelf option.
--strip=option[,option,…] fromelf option.

12 Linker Command-line Options
12.91 --locals, --no_locals

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-348

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128916140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128923577.html

12.92 --mangled, --unmangled
Instructs the linker to display mangled or unmangled C++ symbol names in diagnostic messages, and in
listings produced by the --xref, --xreffrom, --xrefto, and --symbols options.

Usage

If --unmangled is selected, C++ symbol names are displayed as they appear in your source code.

If --mangled is selected, C++ symbol names are displayed as they appear in the object symbol tables.

Default

The default is --unmangled.

Related references
12.94 --match=crossmangled on page 12-351.
12.146 --symbols, --no_symbols on page 12-405.
12.172 --xref, --no_xref on page 12-431.
12.173 --xrefdbg, --no_xrefdbg on page 12-432.
12.174 --xref{from|to}=object(section) on page 12-433.

12 Linker Command-line Options
12.92 --mangled, --unmangled

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-349

Non-Confidential

12.93 --map, --no_map
Enables or disables the printing of a memory map.

Usage

The map contains the address and the size of each load region, execution region, and input section in the
image, including linker-generated input sections. This can be output to a text file using
--list=filename.

Default

The default is --no_map.

Related tasks
5.5 How to find the location of a symbol within the map file on page 5-97.

Related references
12.90 --load_addr_map_info, --no_load_addr_map_info on page 12-347.
12.88 --list=filename on page 12-345.
12.127 --section_index_display=type on page 12-385.

12 Linker Command-line Options
12.93 --map, --no_map

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-350

Non-Confidential

12.94 --match=crossmangled
Instructs the linker to match the combinations of mangled and unmangled symbol references and
definitions.

Usage

Matches:

• A reference to an unmangled symbol with the mangled definition.
• A reference to a mangled symbol with the unmangled definition.

Libraries and matching combinations operate as follows:
• If the library members define a mangled definition, and there is an unresolved unmangled reference,

the member is loaded to satisfy it.
• If the library members define an unmangled definition, and there is an unresolved mangled reference,

the member is loaded to satisfy it.

 Note

This option has no effect if used with partial linking. The partial object contains all the unresolved
references to unmangled symbols, even if the mangled definition exists. Matching is done only in the
final link step.

Related references
12.92 --mangled, --unmangled on page 12-349.

12 Linker Command-line Options
12.94 --match=crossmangled

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-351

Non-Confidential

12.95 --max_er_extension=size
Specifies a constant value to add to the size of an execution region when no maximum size is specified
for that region. The value is used only when placing __at sections.

Syntax

--max_er_extension=size

Where size is the constant value in bytes to use when calculating the size of the execution region.

Default

The default size is 10240 bytes.

Related concepts
7.2.8 Automatic placement of __at sections on page 7-133.

12 Linker Command-line Options
12.95 --max_er_extension=size

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-352

Non-Confidential

12.96 --max_veneer_passes=value
Specifies a limit to the number of veneer generation passes the linker attempts to make when certain
conditions are met.

Syntax

--max_veneer_passes=value

Where value is the maximum number of veneer passes the linker is to attempt. The minimum value you
can specify is one.

Usage
The linker applies this limit when both the following conditions are met:
• A section that is sufficiently large has a relocation that requires a veneer.
• The linker cannot place the veneer close enough to the call site.

The linker attempts to diagnose the failure if the maximum number of veneer generation passes you
specify is exceeded, and displays a warning message. You can downgrade this warning message using
--diag_remark.

Default

The default number of passes is 10.

Related references
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.40 --diag_warning=tag[,tag,…] on page 12-293.

12 Linker Command-line Options
12.96 --max_veneer_passes=value

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-353

Non-Confidential

12.97 --max_visibility=type
Controls the visibility of all symbol definitions.

Syntax

--max_visibility=type

Where type can be one of:

default
Default visibility.

protected
Protected visibility.

Usage

Use --max_visibility=protected to limit the visibility of all symbol definitions. Global symbol
definitions that normally have default visibility, are given protected visibility when this option is
specified.

Default

The default is --max_visibility=default.

Related references
12.102 --override_visibility on page 12-359.

12 Linker Command-line Options
12.97 --max_visibility=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-354

Non-Confidential

12.98 --merge, --no_merge
Enables or disables the merging of const strings that are placed in shareable sections by the compiler.

Usage

Using --merge can reduce the size of the image if there are similarities between const strings.

Use --info=merge to see a listing of the merged const strings.

By default, merging happens between different load and execution regions. Therefore, code from one
execution or load region might use a string stored in different region. If you do not want this behavior,
then do one of the following:
• Use the PROTECTED load region attribute if you are using scatter-loading.
• Globally disable merging with --no_merge.

Default

The default is --merge.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
8.3.3 Load region attributes on page 8-180.

12 Linker Command-line Options
12.98 --merge, --no_merge

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-355

Non-Confidential

12.99 --muldefweak, --no_muldefweak
Enables or disables multiple weak definitions of a symbol.

Usage

If enabled, the linker chooses the first definition that it encounters and discards all the other duplicate
definitions. If disabled, the linker generates an error message for all multiply defined weak symbols.

Default

The default is --no_muldefweak.

When --arm_linux is used, --muldefweak is the default.

Related references
12.7 --arm_linux on page 12-256.

12 Linker Command-line Options
12.99 --muldefweak, --no_muldefweak

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-356

Non-Confidential

12.100 -o filename, --output=filename
Specifies the name of the output file. The file can be either a partially-linked object or an executable
image, depending on the command-line options used.

Syntax

--output=filename

-o filename

Where filename is the name of the output file, and can include a path.

Usage

If --output=filename is not specified, the linker uses the following default filenames:

__image.axf
If the output is an executable image.

__object.o
If the output is a partially-linked object.

If filename is specified without path information, it is created in the current working directory. If path
information is specified, then that directory becomes the default output directory.

Related references
12.20 --callgraph_file=filename on page 12-271.
12.106 --partial on page 12-363.

12 Linker Command-line Options
12.100 -o filename, --output=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-357

Non-Confidential

12.101 --output_float_abi=option
Specifies the floating-point procedure call standard to advertise in the ELF header of the executable.

Syntax

--output_float_abi=option

where option is one of the following:

auto
Checks the object files to determine whether the hard float or soft float bit in the ELF header
flag is set.

hard
The executable file is built to conform to the hardware floating-point procedure-call standard.

soft
Conforms to the software floating-point procedure-call standard.

Usage
When the option is set to auto:
• For multiple object files:

— If all the object files specify the same value for the flag, then the executable conforms to the
relevant standard.

— If some files have the hard float and soft float bits in the ELF header flag set to different values
from other files, this option is ignored and the hard float and soft float bits in the executable are
unspecified.

• If a file has the build attribute Tag_ABI_VFP_args set to 2, then the hard float and soft float bits in the
ELF header flag in the executable are set to zero.

• If a file has the build attribute Tag_ABI_VFP_args set to 3, then armlink ignores this option.

You can use fromelf --text on the image to see whether hard or soft float is set in the ELF header flag.

Default

The default option is auto.

Related information
--decode_build_attributes.
--text.
ELF for the ARM Architecture.
Run-time ABI for the ARM Architecture.

12 Linker Command-line Options
12.101 --output_float_abi=option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-358

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128892751.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128925577.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043-/index.html

12.102 --override_visibility
Enables EXPORT and IMPORT directives in a steering file to override the visibility of a symbol.

Usage
By default:
• Only symbol definitions with STV_DEFAULT or STV_PROTECTED visibility can be exported.
• Only symbol references with STV_DEFAULT visibility can be imported.

When you specify --override_visibility, any global symbol definition can be exported and any
global symbol reference can be imported.

Related references
12.157 --undefined_and_export=symbol on page 12-416.
13.1 EXPORT steering file command on page 13-436.
13.3 IMPORT steering file command on page 13-438.

12 Linker Command-line Options
12.102 --override_visibility

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-359

Non-Confidential

12.103 --pad=num
Enables you to set a value for padding bytes. The linker assigns this value to all padding bytes inserted in
load or execution regions.

Syntax

--pad=num

Where num is an integer, which can be given in hexadecimal format.

For example, setting num to 0xFF might help to speed up ROM programming time. If num is greater than
0xFF, then the padding byte is cast to a char, that is (char)num.

Usage
Padding is only inserted:
• Within load regions. No padding is present between load regions.
• Between fixed execution regions (in addition to forcing alignment). Padding is not inserted up to the

maximum length of a load region unless it has a fixed execution region at the top.
• Between sections to ensure that they conform to alignment constraints.

Related concepts
3.1.2 Input sections, output sections, regions, and program segments on page 3-35.
3.1.3 Load view and execution view of an image on page 3-36.

12 Linker Command-line Options
12.103 --pad=num

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-360

Non-Confidential

12.104 --paged
Enables Demand Paging mode to help produce ELF files that can be demand paged efficiently.

Usage

A default page size of 0x8000 bytes is used. You can change this with the --pagesize command-line
option.

Default

This option is the default when linking with --sysv or --arm_linux mode.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-52.
7.9 Creation of regions on page boundaries on page 7-159.

Related references
12.105 --pagesize=pagesize on page 12-362.
12.7 --arm_linux on page 12-256.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.104 --paged

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-361

Non-Confidential

12.105 --pagesize=pagesize
Allows you to change the page size used when demand paging.

Syntax

--pagesize=pagesize

Where pagesize is the page size in bytes.

Default

The default value is 0x8000.

Related concepts
3.4 Linker support for creating demand-paged files on page 3-52.
7.9 Creation of regions on page boundaries on page 7-159.

Related references
12.104 --paged on page 12-361.

12 Linker Command-line Options
12.105 --pagesize=pagesize

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-362

Non-Confidential

12.106 --partial
Creates a partially-linked object that can be used in a subsequent link step.

Restrictions

You cannot use --partial with --scatter.

Related concepts
2.3 Partial linking model on page 2-27.

12 Linker Command-line Options
12.106 --partial

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-363

Non-Confidential

12.107 --piveneer, --no_piveneer
Enables or disables the generation of a veneer for a call from position independent (PI) code to absolute
code.

Usage

When using --no_piveneer, an error message is produced if the linker detects a call from PI code to
absolute code.

Default

The default is --piveneer.

Related concepts
3.6.4 Generation of position independent to absolute veneers on page 3-57.
3.6 Linker-generated veneers on page 3-55.
3.6.2 Veneer sharing on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.5 Reuse of veneers when scatter-loading on page 3-57.

Related references
12.76 --inlineveneer, --no_inlineveneer on page 12-332.
12.165 --veneershare, --no_veneershare on page 12-424.

12 Linker Command-line Options
12.107 --piveneer, --no_piveneer

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-364

Non-Confidential

12.108 --pltgot=type
Specifies the type of Procedure Linkage Table (PLT) and Global Offset Table (GOT) to use,
corresponding to the different addressing modes of the Base Platform Application Binary Interface
(BPABI).

 Note

This option is supported only when using --base_platform or --bpabi.

Syntax

--pltgot=type

Where type is one of the following:

none
References to imported symbols are added as dynamic relocations for processing by a platform
specific post-linker.

direct
References to imported symbols are resolved to read-only pointers to the imported symbols.
These are direct pointer references.

Use this type to turn on PLT generation when using --base_platform.

indirect
The linker creates a GOT and possibly a PLT entry for the imported symbol. The reference
refers to PLT or GOT entry.

This type is not supported if you have multiple load regions.

sbrel
Same referencing as indirect, except that GOT entries are stored as offsets from the static base
address for the segment held in R9 at runtime.

This type is not supported if you have multiple load regions.

Default

When the --bpabi or --dll options are used, the default is --pltgot=direct.

When the --base_platform option is used, the default is --pltgot=none.

Related concepts
2.5 Base Platform linking model on page 2-29.
2.4 Base Platform Application Binary Interface (BPABI) linking model on page 2-28.

Related references
12.11 --base_platform on page 12-261.
12.17 --bpabi on page 12-267.
12.109 --pltgot_opts=mode on page 12-366.
12.41 --dll on page 12-294.

12 Linker Command-line Options
12.108 --pltgot=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-365

Non-Confidential

12.109 --pltgot_opts=mode
Controls the generation of Procedure Linkage Table (PLT) entries for weak references and function calls
to relocatable targets within the same file.

Syntax

--pltgot_opts=mode[,mode,...]

Where mode is one of the following:

crosslr
Calls to and from a load region marked RELOC go by way of the PLT.

nocrosslr
Calls to and from a load region marked RELOC do not generate PLT entries.

noweakrefs
Generates a NOP for a function call, or zero for data. No PLT entry is generated. Weak references
to imported symbols remain unresolved.

weakrefs
Weak references produce a PLT entry. These references must be resolved at a later link stage.

Default

The default is --pltgot_opts=nocrosslr,noweakrefs.

If you specify --arm_linux, then the default is weakrefs.

Related references
12.7 --arm_linux on page 12-256.
12.11 --base_platform on page 12-261.
12.108 --pltgot=type on page 12-365.

12 Linker Command-line Options
12.109 --pltgot_opts=mode

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-366

Non-Confidential

12.110 --predefine="string"
Enables commands to be passed to the preprocessor when preprocessing a scatter file.

You specify a preprocessor on the first line of the scatter file.

Syntax

--predefine="string"

You can use more than one --predefine option on the command-line.

You can also use the synonym --pd="string".

Restrictions

Use this option with --scatter.

Example scatter file before preprocessing

The following example shows the scatter file contents before preprocessing.

#! armcc -E
lr1 BASE
{
 er1 BASE
 {
 *(+RO)
 }
 er2 BASE2
 {
 *(+RW+ZI)
 }
}

Use armlink with the command-line options:

--predefine="-DBASE=0x8000" --predefine="-DBASE2=0x1000000" --scatter=filename

This passes the command-line options: -DBASE=0x8000 -DBASE2=0x1000000 to the compiler to
preprocess the scatter file.

Example scatter file after preprocessing

The following example shows how the scatter file looks after preprocessing:

lr1 0x8000
{
 er1 0x8000
 {
 *(+RO)
 }
 er2 0x1000000
 {
 *(+RW+ZI)
 }
}

Related concepts
7.11 Preprocessing of a scatter file on page 7-161.

Related references
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.110 --predefine="string"

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-367

Non-Confidential

12.111 --prelink_support, --no_prelink_support
Enables or disables the linker addition of extra information required by a dynamic loader.

Usage
The linker adds:
• An extra empty Program Header table entry to an application.
• Some extra DT_NULL dynamic tags to both applications and shared libraries.

The prelink tool uses this reserved space to write extra information that is needed by the dynamic loader.

The --prelink_support option only has an effect when the --sysv option is selected. Building for
ARM Linux with the --arm_linux command line option turns on several command line options that
make the linker behave like GNU ld, and includes --sysv.

Use --no_prelink_support to force the linker not to reserve the extra space when building for ARM
Linux.

Default

The default is --prelink_support when --arm_linux or --sysv is specified.

Related references
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.111 --prelink_support, --no_prelink_support

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-368

Non-Confidential

12.112 --privacy
Modifies parts of an image to help protect your code.

Usage

The effect of this option is different for images and object files.

When producing an executable image it removes local symbols from the output symbol table.

For object files built with the --partial option, this option:
• Changes section names to a default value, for example, changes code section names to .text.
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these symbols, the
names are removed. These are marked as [Anonymous Symbol] in the fromelf --text output.

 Note

To help protect your code in images and objects that are delivered to third parties, use the
fromelf --privacy command.

Related references
12.91 --locals, --no_locals on page 12-348.
12.106 --partial on page 12-363.

Related information
--privacy fromelf option.
--strip=option[,option,…] fromelf option.
Options to protect code in object files with fromelf.

12 Linker Command-line Options
12.112 --privacy

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-369

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128916140.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128923577.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128882517.html

12.113 --reduce_paths, --no_reduce_paths
Enables or disables the elimination of redundant path name information in file paths.

Mode

Effective on Windows systems only. It is supported only on 32-bit host platforms.

Usage
Windows systems impose a 260 character limit on file paths. Where path names exist whose absolute
names expand to longer than 260 characters, you can use the --reduce_paths option to reduce absolute
path name length by matching up directories with corresponding instances of .. and eliminating the
directory/.. sequences in pairs.

 Note

It is recommended that you avoid using long and deeply nested file paths, in preference to minimizing
path lengths using the --reduce_paths option.

Default

The default is --no_reduce_paths.

Example

A file to be linked might be at the location:

..\..\..\xyzzy\xyzzy\objects\file.c

Your current working directory might be at the location:

\foo\bar\baz\gazonk\quux\bop

The combination of these paths results in the path:

\foo\bar\baz\gazonk\quux\bop\..\..\..\xyzzy\xyzzy\objects\file.o

By using the option --reduce_paths the path becomes:

\foo\bar\baz\xyzzy\xyzzy\objects\file.c

12 Linker Command-line Options
12.113 --reduce_paths, --no_reduce_paths

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-370

Non-Confidential

12.114 --ref_cpp_init, --no_ref_cpp_init
Enables or disables the adding of a reference to the C++ static object initialization routine in the ARM
libraries.

Usage

The default reference added is __cpp_initialize__aeabi_. To change this you can use --cppinit.

Use --no_ref_cpp_init if you are not going to use the ARM libraries. For example, if you are building
an ARM Linux application.

Default

The default is --ref_cpp_init.

Related references
12.30 --cppinit, --no_cppinit on page 12-281.

Related information
C++ initialization, construction and destruction.

12 Linker Command-line Options
12.114 --ref_cpp_init, --no_ref_cpp_init

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-371

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922706.html

12.115 --reloc
Creates a single relocatable load region with contiguous execution regions.

Usage

Only use this option for legacy systems with the type of relocatable ELF images that conform to the ELF
for the ARM Architecture specification. The generated image might not be compliant with the ELF for
the ARM Architecture specification.

When relocated MOVT and MOVW instructions are encountered in an image being linked with --reloc,
armlink produces the following additional dynamic tags:

DT_RELA
The address of a relocation table.

DT_RELASZ
The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
The size, in bytes, of the DT_RELA relocation entry.

 Note

For new systems, consider using images that conform to the Base Platform Application Binary Interface
(BPABI).

Restrictions

You cannot use --reloc with --scatter.

You cannot use this option with --xo_base.

Related concepts
7.13.2 Type 1 image, one load region and contiguous execution regions on page 7-164.
3.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions on page 3-46.

Related information
Base Platform ABI for the ARM Architecture.
ELF for the ARM Architecture.

12 Linker Command-line Options
12.115 --reloc

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-372

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

12.116 --remarks
Enables the display of remark messages, including any messages redesignated to remark severity using
--diag_remark.

 Note

The linker does not issue remarks by default.

Related references
12.37 --diag_remark=tag[,tag,…] on page 12-290.
12.51 --errors=filename on page 12-304.

12 Linker Command-line Options
12.116 --remarks

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-373

Non-Confidential

12.117 --remove, --no_remove
Enables or disables the removal of unused input sections from the image.

Usage

An input section is considered used if it contains an entry point, or if it is referred to from a used section.

By default, unused section elimination is disabled when building dynamically linked libraries (DLLs) or
shared objects, Use --remove to re-enable unused section elimination.

Use --no_remove when debugging to retain all input sections in the final image even if they are unused.

Use --remove with the --keep option to retain specific sections in a normal build.

Default

The default is --no_remove.

The default is --no_remove only if you specify one of the following combination of options:
• --base_platform or --bpabi with --dll.
• --sysv with --shared.

Related concepts
4.3 Elimination of unused sections on page 4-73.
3.9 How the linker performs library searching, selection, and scanning on page 3-63.
4.1 Elimination of common debug sections on page 4-71.
4.2 Elimination of common groups or sections on page 4-72.
4.4 Elimination of unused virtual functions on page 4-75.

Related references
12.11 --base_platform on page 12-261.
12.17 --bpabi on page 12-267.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.41 --dll on page 12-294.
12.78 --keep=section_id on page 12-334.

12 Linker Command-line Options
12.117 --remove, --no_remove

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-374

Non-Confidential

12.118 --ro_base=address
Sets both the load and execution addresses of the region containing the RO output section at a specified
address.

Syntax

--ro_base=address

Where address must be word-aligned.

Usage

If execute-only (XO) sections are present, and you specify --ro_base without --xo_base, then an
ER_XO execution region is created at the address specified by --ro_base. The ER_RO execution region
immediately follows the ER_XO region.

Default

If this option is not specified, and no scatter file is specified, the default is --ro_base=0x8000. If XO
sections are present, then this is the default value used to place the ER_XO region.

Restrictions
You cannot use --ro_base with:
• --scatter.
• --shared.
• --sysv.

Related references
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.118 --ro_base=address

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-375

Non-Confidential

12.119 --ropi
Makes the load and execution region containing the RO output section position-independent.

Usage
If this option is not used, the region is marked as absolute. Usually each read-only input section must be
Read-Only Position-Independent (ROPI). If this option is selected, the linker:
• Checks that relocations between sections are valid.
• Ensures that any code generated by the linker itself, such as interworking veneers, is ROPI.

 Note

The linker gives a downgradable error if --ropi is used without --rwpi or --rw_base.

Restrictions
You cannot use --ropi:
• With --scatter, --shared, --sysv, or --xo_base.
• When an object file contains execute-only sections.

Related references
12.118 --ro_base=address on page 12-375.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.119 --ropi

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-376

Non-Confidential

12.120 --rosplit
Splits the default RO load region into two RO output sections.

The RO load region is split into the RO output sections:
• RO-CODE.
• RO-DATA.

Restrictions
You cannot use --rosplit with:
• --scatter.
• --shared.
• --sysv.

Related references
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.120 --rosplit

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-377

Non-Confidential

12.121 --runpath=pathlist
Specifies a list of paths to be added to the search paths in the dynamic section.

Syntax

--runpath=pathlist

Where pathlist is a comma-separated list of paths. Do not include spaces between the comma and the
path name when specifying multiple path names, for example, path1,path2,path3,…,pathn.

Usage

The Linux dynamic linker uses the search paths to locate the required shared objects.

You can use the GNU ld option --rpath as an alias for --runpath.

Related references
12.43 --dynamic_linker=name on page 12-296.
12.84 --library=name on page 12-341.
12.145 --symbolic on page 12-404.

12 Linker Command-line Options
12.121 --runpath=pathlist

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-378

Non-Confidential

12.122 --rw_base=address
Sets the execution addresses of the region containing the RW output section at a specified address.

Syntax

--rw_base=address
Where address must be word-aligned.

 Note

This option does not affect the placement of execute-only sections.

Restrictions
You cannot use --rw_base with:
• --scatter.
• --shared.
• --sysv.

Related references
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.122 --rw_base=address

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-379

Non-Confidential

12.123 --rwpi
Makes the load and execution region containing the RW and ZI output section position-independent.

Usage

If this option is not used the region is marked as absolute. This option requires a value for --rw_base. If
--rw_base is not specified, --rw_base=0 is assumed. Usually each writable input section must be Read-
Write Position-Independent (RWPI).

If this option is selected, the linker:
• Checks that the PI attribute is set on input sections to any read-write execution regions.
• Checks that relocations between sections are valid.
• Generates entries relative to the static base in the table Region$$Table.

This is used when regions are copied, decompressed, or initialized.

Restrictions
You cannot use --rwpi:
• With --scatter, --shared, --sysv, or --xo_base.
• When an object file contains execute-only sections.

Related references
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
12.135 --split on page 12-394.
12.125 --scatter=filename on page 12-382.

12 Linker Command-line Options
12.123 --rwpi

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-380

Non-Confidential

12.124 --scanlib, --no_scanlib
Enables or disables scanning of the ARM libraries to resolve references.

Use --no_scanlib if you want to link your own libraries.

Default

The default is --scanlib.

12 Linker Command-line Options
12.124 --scanlib, --no_scanlib

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-381

Non-Confidential

12.125 --scatter=filename
Creates an image memory map using the scatter-loading description that is contained in the specified file.

The description provides grouping and placement details of the various regions and sections in the
image.

Syntax

--scatter=filename

Where filename is the name of a scatter file.

Usage

To modify the placement of any unassigned input sections when .ANY selectors are present, use the
following command-line options with --scatter:

• --any_contingency.
• --any_placement.
• --any_sort_order.

You cannot use the --scatter option with:
• --bpabi.
• --first.
• --last.
• --partial.
• --reloc.
• --ro_base.
• --ropi.
• --rosplit.
• --rw_base.
• --rwpi.
• --split.
• --shared.
• --sysv.
• --xo_base.
• --zi_base.

You can use --dll when specified with --base_platform.

Related concepts
7.4.5 Examples of using placement algorithms for .ANY sections on page 7-143.
7.11 Preprocessing of a scatter file on page 7-161.
7.4.8 Behavior when .ANY sections overflow because of linker-generated content on page 7-148.

Related references
12.3 --any_contingency on page 12-251.
12.5 --any_sort_order=order on page 12-254.
12.11 --base_platform on page 12-261.
12.62 --first=section_id on page 12-315.
12.80 --last=section_id on page 12-337.
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.123 --rwpi on page 12-380.

12 Linker Command-line Options
12.125 --scatter=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-382

Non-Confidential

12.135 --split on page 12-394.
12.171 --xo_base=address on page 12-430.
12.175 --zi_base=address on page 12-434.
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.106 --partial on page 12-363.
12.115 --reloc on page 12-372.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.
Chapter 7 Scatter-loading Features on page 7-116.

12 Linker Command-line Options
12.125 --scatter=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-383

Non-Confidential

12.126 --search_dynamic_libraries, --no_search_dynamic_libraries
Controls whether or not dynamic or static libraries are used for libraries specified with the --library
option.

Usage
The --search_dynamic_libraries setting applies to any following --library options until a
--no_search_dynamic_libraries option appears on the command line:
• For libraries following --search_dynamic_libraries the linker searches first for any .so libraries,

and if none are found then searches for .a libraries.
• For libraries following --no_search_dynamic_libraries, the linker searches for.a static libraries.

Default

The default is --search_dynamic_libraries.

Related references
12.7 --arm_linux on page 12-256.
12.84 --library=name on page 12-341.

12 Linker Command-line Options
12.126 --search_dynamic_libraries, --no_search_dynamic_libraries

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-384

Non-Confidential

12.127 --section_index_display=type
Changes the display of the index column when printing memory map output.

Syntax

--section_index_display=type

Where type is one of the following:

cmdline
Alters the display of the map file to show the order that a section appears on the command-line.
The command-line order is defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

internal
The index value represents the order in which the linker creates the section.

input
The index value represents the section index of the section in the original input file. This is
useful when you want to find the exact section in an input object.

Usage

Use this option with --map.

Default

The default is --section_index_display=internal.

Related references
12.93 --map, --no_map on page 12-350.
12.154 --tiebreaker=option on page 12-413.

12 Linker Command-line Options
12.127 --section_index_display=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-385

Non-Confidential

12.128 --shared
Creates a System V (SysV) shared object.

Usage
You must use this option with --fpic and --sysv.

 Note

By default, this option disables unused section elimination. Use the --remove option to re-enable unused
section elimination when building a shared object.

Related references
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.65 --fpic on page 12-318.
12.70 --import_unresolved, --no_import_unresolved on page 12-324.
12.151 --sysv on page 12-410.
12.117 --remove, --no_remove on page 12-374.
12.121 --runpath=pathlist on page 12-378.
12.133 --soname=name on page 12-391.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.128 --shared

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-386

Non-Confidential

12.129 --show_cmdline
Outputs the command line used by the linker.

Usage
Shows the command line after processing by the linker, and can be useful to check:
• The command line a build system is using.
• How the linker is interpreting the supplied command line, for example, the ordering of command-line

options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related references
12.69 --help on page 12-323.
12.169 --via=filename on page 12-428.

12 Linker Command-line Options
12.129 --show_cmdline

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-387

Non-Confidential

12.130 --show_full_path
Displays the full path name of an object in any diagnostic messages.

Usage

If the file representing object obj has full path name path/to/obj then the linker displays path/to/obj
instead of obj in any diagnostic message.

Related references
12.131 --show_parent_lib on page 12-389.
12.132 --show_sec_idx on page 12-390.

12 Linker Command-line Options
12.130 --show_full_path

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-388

Non-Confidential

12.131 --show_parent_lib
Displays the library name containing an object in any diagnostic messages.

Usage

If an object obj comes from library lib, then this option displays lib(obj) instead of obj in any
diagnostic messages.

Related references
12.130 --show_full_path on page 12-388.
12.132 --show_sec_idx on page 12-390.

12 Linker Command-line Options
12.131 --show_parent_lib

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-389

Non-Confidential

12.132 --show_sec_idx
Displays the section index, sh_idx, of section in the originating object.

Example

If section sec has section index 3 then it is displayed as sec:3 in all diagnostic messages.

Related references
12.130 --show_full_path on page 12-388.
12.131 --show_parent_lib on page 12-389.

12 Linker Command-line Options
12.132 --show_sec_idx

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-390

Non-Confidential

12.133 --soname=name
Specifies the shared object runtime name that is used as the dependency name by any object that links
against this shared object.

Syntax

--soname=name

Where name is the runtime name of the shared object. The dependency name is stored in the resultant
file.

Related references
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.133 --soname=name

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-391

Non-Confidential

12.134 --sort=algorithm
Specifies the sorting algorithm used by the linker to determine the order of sections in an output image.

Syntax

--sort=algorithm

where algorithm is one of the following:

Alignment
Sorts input sections by ascending order of alignment value.

AlignmentLexical
Sorts input sections by ascending order of alignment value, then sorts lexically.

AvgCallDepth
Sorts all Thumb code before ARM code and then sorts according to the approximated average
call depth of each section in ascending order.
Use this algorithm to minimize the number of long branch veneers.

 Note

The approximation of the average call depth depends on the order of input sections. Therefore,
this sorting algorithm is more dependent on the order of input sections than using, say,
RunningDepth.

BreadthFirstCallTree
This is similar to the CallTree algorithm except that it uses a breadth-first traversal when
flattening the Call Tree into a list.

CallTree
The linker flattens the call tree into a list containing the read-only code sections from all
execution regions that have CallTree sorting enabled.
Sections in this list are copied back into their execution regions, followed by all the non read-
only code sections, sorted lexically. Doing this ensures that sections calling each other are
placed close together.

 Note

This sorting algorithm is less dependent on the order of input sections than using either
RunningDepth or AvgCallDepth.

Lexical
Sorts according to the name of the section and then by input order if the names are the same.

LexicalAlignment
Sorts input sections lexically, then according to the name of the section, and then by input order
if the names are the same.

LexicalState
Sorts Thumb code before ARM code, then sorts lexically.

List
Provides a list of the available sorting algorithms. The linker terminates after displaying the list.

ObjectCode
Sorts code sections by tiebreaker. All other sections are sorted lexically. This is most useful
when used with --tiebreaker=cmdline because it attempts to group all the sections from the
same object together in the memory map.

RunningDepth
Sorts all Thumb code before ARM code and then sorts according to the running depth of the
section in ascending order. The running depth of a section S is the average call depth of all the
sections that call S, weighted by the number of times that they call S.

Use this algorithm to minimize the number of long branch veneers.

12 Linker Command-line Options
12.134 --sort=algorithm

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-392

Non-Confidential

Usage

The sorting algorithms conform to the standard rules, placing input sections in ascending order by
attributes.

You can also specify sort algorithms in a scatter file for individual execution regions. Use the SORTTYPE
keyword to do this.

 Note

The SORTTYPE execution region attribute overrides any sorting algorithm that you specify with this
option.

Default

The default algorithm is --sort=Lexical. In large region mode, the default algorithm is
--sort=AvgCallDepth.

Related concepts
3.3 Section placement with the linker on page 3-49.
8.4 Execution region descriptions on page 8-184.

Related references
12.154 --tiebreaker=option on page 12-413.
12.79 --largeregions, --no_largeregions on page 12-336.
8.4.3 Execution region attributes on page 8-186.

12 Linker Command-line Options
12.134 --sort=algorithm

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-393

Non-Confidential

12.135 --split
Splits the default load region, that contains the RO and RW output sections, into separate load regions.

Usage
The default load region is split into the following load regions:
• One region containing the RO output section. The default load address is 0x8000, but you can specify

a different address with the --ro_base option.
• One region containing the RW and ZI output sections. The default load address is 0x0, but you can

specify a different address with the --rw_base option.

Both regions are root regions.

Considerations when execute-only sections are present

For images containing execute-only (XO) sections, an XO execution region is placed at the address
specified by --ro_base. The RO execution region is placed immediately after the XO region.

If you specify --xo_base address, then the XO execution region is placed at the specified address in a
separate load region from the RO execution region.

Restrictions

You cannot use --split with --scatter, --shared, or --sysv.

Related concepts
3.1 The structure of an ARM ELF image on page 3-34.

Related references
12.125 --scatter=filename on page 12-382.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.135 --split

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-394

Non-Confidential

12.136 --startup=symbol, --no_startup
Enables the linker to use alternative C libraries with a different startup symbol if required.

Syntax

--startup=symbol

By default, symbol is set to __main.

--no_startup does not take a symbol argument.

Usage
The linker includes the C library startup code if there is a reference to a symbol that is defined by the C
library startup code. This symbol reference is called the startup symbol. It is automatically created by the
linker when it sees a definition of main(). The --startup option enables you to change this symbol
reference.
• If the linker finds a definition of main() and does not find a definition of symbol, then it generates an

error.
• If the linker finds a definition of main() and a definition of symbol, but no entry point is specified,

then it generates a warning.

--no_startup does not add a reference.

Default

The default is --startup=__main.

Related references
12.50 --entry=location on page 12-303.

12 Linker Command-line Options
12.136 --startup=symbol, --no_startup

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-395

Non-Confidential

12.137 --strict
Instructs the linker to perform additional conformance checks, such as reporting conditions that might
result in failures.

Usage
--strict causes the linker to check for taking the address of:
• A non-interworking location from a non-interworking location in a different state.
• A RW location from a location that uses the static base register R9.
• A STKCKD function in an image that contains USESV7 functions.
• A ~STKCKD function in an image that contains STKCKD functions.

 Note

STKCKD functions reserve register r10 for Stack Checking, ~STKCKD functions use register r10 as
variable register v7 and USESV7 functions use register r10 as v7. See the Procedure Call Standard for
the ARM Architecture (AAPCS) for more information about v7.

An example of a condition that might result in failure is taking the address of an interworking function
from a non-interworking function.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.
12.39 --diag_suppress=tag[,tag,…] on page 12-292.
12.40 --diag_warning=tag[,tag,…] on page 12-293.
12.36 --diag_error=tag[,tag,…] on page 12-289.
12.51 --errors=filename on page 12-304.

Related information
Procedure Call Standard for the ARM Architecture (AAPCS).

12 Linker Command-line Options
12.137 --strict

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-396

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

12.138 --strict_enum_size, --no_strict_enum_size
Checks whether or not the enum size is consistent across all inputs.

Usage

Use --strict_enum_size to force the linker to display an error message if the enum size is not
consistent across all inputs. This is the default.

Use --no_strict_enum_size for compatibility with objects built using RVCT v3.1 and earlier.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

Related information
--enum_is_int compiler option.

12 Linker Command-line Options
12.138 --strict_enum_size, --no_strict_enum_size

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-397

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124917192.html

12.139 --strict_flags, --no_strict_flags
Prevent or allow the generation of the EF_ARM_HASENTRY flag.

Usage

The option --strict_flags prevents the EF_ARM_HASENTRY flag from being generated.

Default

The default is --no_strict_flags.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

Related information
ARM ELF Specification (SWS ESPC 0003 B-02).

12 Linker Command-line Options
12.139 --strict_flags, --no_strict_flags

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-398

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.espc0003/index.html

12.140 --strict_ph, --no_strict_ph
Enables or disables the sorting of the Program Header Table entries.

Usage

The linker writes the contents of load regions into the output ELF file in the order that load regions are
written in the scatter file. Each load region is represented by one ELF program segment. In RVCT v2.2
the Program Header table entries describing the program segments are given the same order as the
program segments in the ELF file. To be more compliant with the ELF specification, in RVCT v3.0 and
later the Program Header table entries are sorted in ascending virtual address order.

Use the --no_strict_ph command-line option to switch off the sorting of the Program Header table
entries.

Default

The default is --strict_ph.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

12 Linker Command-line Options
12.140 --strict_ph, --no_strict_ph

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-399

Non-Confidential

12.141 --strict_relocations, --no_strict_relocations
Enables you to ensure Application Binary Interface (ABI) compliance of legacy or third party objects.

Usage

This option checks that branch relocation applies to a branch instruction bit-pattern. The linker generates
an error if there is a mismatch.

Use --strict_relocations to instruct the linker to report instances of obsolete and deprecated
relocations.

Relocation errors and warnings are most likely to occur if you are linking object files built with previous
versions of the ARM tools.

Default

The default is --no_strict_relocations.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

12 Linker Command-line Options
12.141 --strict_relocations, --no_strict_relocations

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-400

Non-Confidential

12.142 --strict_symbols, --no_strict_symbols
Checks whether or not a mapping symbol type matches an ABI symbol type.

Usage

The option --strict_symbols checks that the mapping symbol type matches ABI symbol type. The
linker displays a warning if the types do not match.

A mismatch can occur only if you have hand-coded your own assembler.

Default

The default is --no_strict_symbols.

Example

In the following assembler code the symbol sym has type STT_FUNC and is ARM:

 area code, readonly
 DCD sym + 4
 ARM
sym PROC
 NOP
 THUMB
 NOP
 ENDP
 END

The difference in behavior is the meaning of DCD sym + 4:

• In pre-ABI linkers the state of the symbol is the state of the mapping symbol at that location. In this
example, the state is Thumb.

• In ABI linkers the type of the symbol is the state of the location of symbol plus the offset.

Related concepts
3.13 The strict family of linker options on page 3-68.
6.1 About mapping symbols on page 6-99.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

12 Linker Command-line Options
12.142 --strict_symbols, --no_strict_symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-401

Non-Confidential

12.143 --strict_visibility, --no_strict_visibility
Prevents or allows a hidden visibility reference to match against a shared object.

Usage

A linker is not permitted to match a symbol reference with STT_HIDDEN visibility to a dynamic shared
object. Some older linkers might permit this.

Use --no_strict_visibility to permit a hidden visibility reference to match against a shared object.

Default

The default is --strict_visibility.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.144 --strict_wchar_size, --no_strict_wchar_size on page 12-403.

12 Linker Command-line Options
12.143 --strict_visibility, --no_strict_visibility

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-402

Non-Confidential

12.144 --strict_wchar_size, --no_strict_wchar_size
Checks whether or not the wide character size is consistent across all inputs.

Usage

The option --strict_wchar_size causes the linker to display an error message if the wide character
size is not consistent across all inputs. This is the default.

Use --no_strict_wchar_size for compatibility with objects built using RVCT v3.1 and earlier.

Related concepts
3.13 The strict family of linker options on page 3-68.

Related references
12.137 --strict on page 12-396.
12.138 --strict_enum_size, --no_strict_enum_size on page 12-397.
12.139 --strict_flags, --no_strict_flags on page 12-398.
12.140 --strict_ph, --no_strict_ph on page 12-399.
12.141 --strict_relocations, --no_strict_relocations on page 12-400.
12.142 --strict_symbols, --no_strict_symbols on page 12-401.
12.143 --strict_visibility, --no_strict_visibility on page 12-402.

Related information
--wchar16 compiler option.
--wchar32 compiler option.

12 Linker Command-line Options
12.144 --strict_wchar_size, --no_strict_wchar_size

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-403

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124951825.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124952075.html

12.145 --symbolic
Sets the DF_SYMBOLIC flag in the SHT_DYNAMIC section for a shared library.

Usage

The DF_SYMBOLIC flag changes the symbol resolution algorithm of the dynamic linker for references
within the library. The dynamic linker searches for symbols starting with the shared object rather than the
executable image. If the referenced symbol cannot be found in the shared object, the dynamic linker
searches the executable image and other shared objects as usual.

Related references
12.43 --dynamic_linker=name on page 12-296.

12 Linker Command-line Options
12.145 --symbolic

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-404

Non-Confidential

12.146 --symbols, --no_symbols
Enables or disables the listing of each local and global symbol used in the link step, and its value.

 Note

This does not include mapping symbols output to stdout. Use --list_mapping_symbols to include
mapping symbols in the output.

Default

The default is --no_symbols.

Related references
12.89 --list_mapping_symbols, --no_list_mapping_symbols on page 12-346.

12 Linker Command-line Options
12.146 --symbols, --no_symbols

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-405

Non-Confidential

12.147 --symdefs=filename
Creates a file containing the global symbol definitions from the output image.

Syntax

--symdefs=filename

where filename is the name of the text file to contain the global symbol definitions.

Default
By default, all global symbols are written to the symdefs file. If a symdefs file called filename already
exists, the linker restricts its output to the symbols already listed in this file.

 Note

If you do not want this behavior, be sure to delete any existing symdefs file before the link step.

Usage

If filename is specified without path information, the linker searches for it in the directory where the
output image is being written. If it is not found, it is created in that directory.

You can use the symbol definitions file as input when linking another image.

Related concepts
6.5 Access symbols in another image on page 6-108.

12 Linker Command-line Options
12.147 --symdefs=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-406

Non-Confidential

12.148 --symver_script=filename
Enables implicit symbol versioning.

Syntax

--symver_script=filename

where filename is a symbol version script.

Related concepts
10.6 Symbol versioning on page 10-236.

12 Linker Command-line Options
12.148 --symver_script=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-407

Non-Confidential

12.149 --symver_soname
Enables implicit symbol versioning to force static binding.

Usage

Where a symbol has no defined version, the linker uses the shared object name (SONAME) contained in the
file being linked.

Default

This is the default if you are generating a Base Platform Application Binary Interface (BPABI)
compatible executable file but where you do not specify a version script with the option
--symver_script.

Related concepts
10.6 Symbol versioning on page 10-236.

Related information
Base Platform ABI for the ARM Architecture.

12 Linker Command-line Options
12.149 --symver_soname

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-408

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

12.150 --sysroot=path
Enables the linker to treat any absolute paths found in linker scripts to be treated as relative to the
specified path.

Syntax

--sysroot=path

where path is location that is to be treated as the common sysroot.

Usage

GCC and GNU ld are configured against a common sysroot. This means that where ld scripts refer to
their subordinate libraries using an absolute path, the path is still relative to sysroot.

Because implicit ld scripts are going to be enabled only in --sysv mode, this only takes effect when
targeting ARM Linux. Relative paths must still search the normal userlibpath list for the file.

This option affects the following ld script commands:

• INPUT.
• GROUP.
• SEARCH_DIR.

If sysroot is not NULL:
• Any absolute paths in INPUT, GROUP or SEARCH_DIR commands have sysroot prepended.
• Any paths beginning with the = character have that character replaced by sysroot, but only for

SEARCH_PATH commands.
 Note

The linker removes the = character if no sysroot is configured.

Related concepts
9.1 About GNU ld script support on page 9-204.

Related references
12.86 --linker_script=ld_script on page 12-343.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.150 --sysroot=path

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-409

Non-Confidential

12.151 --sysv
Creates a System V (SysV) formatted ELF executable file that can be used on ARM Linux.

Usage
You can also specify a GNU ld script with the --linker_script option.

 Note

ELF files produced with the --sysv option are demand-paged compliant.

Restrictions

The SysV model does not support scatter-loading.

You cannot use this option if an object file contains execute-only sections.

Related concepts
2.6 SysV linking model on page 2-31.
3.4 Linker support for creating demand-paged files on page 3-52.

Related references
12.2 --add_shared_references, --no_add_shared_references on page 12-250.
12.7 --arm_linux on page 12-256.
12.17 --bpabi on page 12-267.
12.41 --dll on page 12-294.
12.117 --remove, --no_remove on page 12-374.
12.65 --fpic on page 12-318.
12.70 --import_unresolved, --no_import_unresolved on page 12-324.
12.86 --linker_script=ld_script on page 12-343.
12.111 --prelink_support, --no_prelink_support on page 12-368.
12.150 --sysroot=path on page 12-409.
12.121 --runpath=pathlist on page 12-378.
12.160 --use_sysv_default_script, --no_use_sysv_default_script on page 12-419.
13.3 IMPORT steering file command on page 13-438.
Chapter 10 BPABI and SysV Shared Libraries and Executables on page 10-219.

12 Linker Command-line Options
12.151 --sysv

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-410

Non-Confidential

12.152 --tailreorder, --no_tailreorder
Moves tail calling sections immediately before their target, if possible, to optimize the branch instruction
at the end of a section.

Usage

A tail calling section is a section that contains a branch instruction at the end of the section. The branch
must have a relocation that targets a function at the start of a section.

Default

The default is --no_tailreorder.

Restrictions
The linker:
• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a

single section, the tail calling section with an identical section name is moved before the target. If no
section name is found in the tail calling section that has a matching name, then the linker moves the
first section it encounters.

• Cannot move a tail calling section out of its execution region.
• Does not move tail calling sections before inline veneers.

Related concepts
4.11 Linker reordering of tail calling sections on page 4-88.
4.10 About branches that optimize to a NOP on page 4-87.

Related references
12.18 --branchnop, --no_branchnop on page 12-268.

12 Linker Command-line Options
12.152 --tailreorder, --no_tailreorder

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-411

Non-Confidential

12.153 --thumb2_library, --no_thumb2_library
Enables you to link against the combined ARM and Thumb library.

Usage

--thumb2_library only applies when the processor supports ARM and Thumb-2 technology, such as
the Cortex-A and Cortex-R series processors.

Use the --no_thumb2_library option to revert to the ARMv5T and later libraries.
 Note

The linker ignores --thumb2_library if the target does not support Thumb-2 technology.

Default

The default is --thumb2_library.

Related information
C and C++ library naming conventions.

12 Linker Command-line Options
12.153 --thumb2_library, --no_thumb2_library

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-412

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938936497.html

12.154 --tiebreaker=option
A tiebreaker is used when a sorting algorithm requires a total ordering of sections. It is used by the linker
to resolve the order when the sorting criteria results in more than one input section with equal properties.

Syntax

--tiebreaker=option

where option is one of:

creation
The order that the linker creates sections in its internal section data structure.

When the linker creates an input section for each ELF section in the input objects, it increments
a global counter. The value of this counter is stored in the section as the creation index.

The creation index of a section is unique apart from the special case of inline veneers.

cmdline
The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:
• Section is the section index, sh_idx, of the Section in the Object.
• Object is the order that Object appears in the File.
• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

This option is useful if you are doing a binary difference between the results of different links,
link1 and link2. If link2 has only small changes from link1, then you might want the differences
in one source file to be localized. In general, creation index works well for objects, but because
of the multiple pass selection of members from libraries, a small difference such as calling a
new function can result in a different order of objects and therefore a different tiebreak. The
command-line index is more stable across builds.

Use this option with the --scatter option.

Default

The default option is creation.

Related references
12.134 --sort=algorithm on page 12-392.
12.93 --map, --no_map on page 12-350.
12.5 --any_sort_order=order on page 12-254.

12 Linker Command-line Options
12.154 --tiebreaker=option

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-413

Non-Confidential

12.155 --unaligned_access, --no_unaligned_access
Enable or disable unaligned accesses to data on ARM architecture-based processors.

Default

The default is --unaligned_access.

Usage
When using --no_unaligned_access, the linker:
• Does not select objects from the ARM C library that allow unaligned accesses.
• Gives an error message if any input object allows unaligned accesses.

 Note

This error message can be downgraded.

12 Linker Command-line Options
12.155 --unaligned_access, --no_unaligned_access

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-414

Non-Confidential

12.156 --undefined=symbol
Prevents the removal of a specified symbol if it is undefined.

Syntax

--undefined=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.
2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from being

removed.

Related references
12.157 --undefined_and_export=symbol on page 12-416.
12.78 --keep=section_id on page 12-334.

12 Linker Command-line Options
12.156 --undefined=symbol

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-415

Non-Confidential

12.157 --undefined_and_export=symbol
Prevents the removal of a specified symbol if it is undefined, and pushes the symbol into the dynamic
symbol table.

Syntax

--undefined_and_export=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.
2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from being

removed.
3. Add an implicit EXPORT symbol to push the specified symbol into the dynamic symbol table.

Considerations
Be aware of the following when using this option:
• It does not change the visibility of a symbol unless you specify the --override_visibility option.
• A warning is issued if the visibility of the specified symbol is not high enough.
• A warning is issued if the visibility of the specified symbol is overridden because you also specified

the --override_visibility option.
• Hidden symbols are not exported unless you specify the --override_visibility option.

Related references
12.102 --override_visibility on page 12-359.
12.156 --undefined=symbol on page 12-415.
12.78 --keep=section_id on page 12-334.
13.1 EXPORT steering file command on page 13-436.

12 Linker Command-line Options
12.157 --undefined_and_export=symbol

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-416

Non-Confidential

12.158 --unresolved=symbol
Takes each reference to an undefined symbol and matches it to the global definition of the specified
symbol.

Syntax

--unresolved=symbol

symbol must be both defined and global, otherwise it appears in the list of undefined symbols and the
link step fails.

Usage

This option is particularly useful during top-down development, because it enables you to test a partially-
implemented system by matching each reference to a missing function to a dummy function.

Related references
12.156 --undefined=symbol on page 12-415.
12.157 --undefined_and_export=symbol on page 12-416.

12 Linker Command-line Options
12.158 --unresolved=symbol

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-417

Non-Confidential

12.159 --use_definition_visibility
Enables the linker to use the visibility of the definition in preference to the visibility of a reference when
combining symbols.

Usage

When the linker combines global symbols the visibility of the symbol is set with the strictest visibility of
the symbols being combined. Therefore, a symbol reference with STV_HIDDEN visibility combined with a
definition with STV_DEFAULT visibility results in a definition with STV_HIDDEN visibility.

For example, a symbol reference with STV_HIDDEN visibility combined with a definition with
STV_DEFAULT visibility results in a definition with STV_DEFAULT visibility.

This can be useful when you want a reference to not match a Shared Library, but you want to export the
definition.

 Note

This option is not ELF-compliant and is disabled by default. To create ELF-compliant images, you must
use symbol references with the appropriate visibility.

Related concepts
10.3.2 Symbol visibility for BPABI models on page 10-223.

12 Linker Command-line Options
12.159 --use_definition_visibility

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-418

Non-Confidential

12.160 --use_sysv_default_script, --no_use_sysv_default_script
Specifies whether to use the built-in ld script or the built-in scatter file.

Usage

--use_sysv_default_script causes armlink to behave more like GNU ld by using a built-in ld script.

Use --no_use_sysv_default_script if you prefer to use the built-in scatter file rather than the built-in
ld script. The built-in scatter file makes the linker behave more like the RVCT v4.0 linker.

Default

The default is --use_sysv_default_script.

Related concepts
11.2 Scatter files for the Base Platform linking model on page 11-242.

Related references
9.6 Default GNU ld scripts used by armlink on page 9-211.

12 Linker Command-line Options
12.160 --use_sysv_default_script, --no_use_sysv_default_script

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-419

Non-Confidential

12.161 --userlibpath=pathlist
Specifies a list of paths that the linker is to use to search for user libraries.

Syntax

--userlibpath=pathlist

Where pathlist is a comma-separated list of paths that the linker is to use to search for the required
libraries. Do not include spaces between the comma and the path name when specifying multiple path
names, for example, path1,path2,path3,…,pathn.

Related concepts
3.9 How the linker performs library searching, selection, and scanning on page 3-63.

Related references
12.83 --libpath=pathlist on page 12-340.

12 Linker Command-line Options
12.161 --userlibpath=pathlist

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-420

Non-Confidential

12.162 --veneerinject, --no_veneerinject
Enables or disables the placement of veneers outside of the sorting order for the Execution Region.

Usage

Use --veneerinject to allow the linker to place veneers outside of the sorting order for the Execution
Region. This option is a subset of the --largeregions command. Use --veneerinject if you want to
allow the veneer placement behavior described, but do not want to implicitly set the --api and
--sort=AvgCallDepth.

Use --no_veneerinject to allow the linker use the sorting order for the Execution Region.

Use --veneer_inject_type to control the strategy the linker uses to place injected veneers.

The following command-line options allow stable veneer placement with large Execution Regions:

--veneerinject --veneer_inject_type=pool --sort=lexical

Default
The default is --no_veneerinject. The linker automatically switches to large region mode if it is
required to successfully link the image. If large region mode is turned off with --no_largeregions then
only --veneerinject is turned on if it is required to successfully link the image.

 Note

--veneerinject is the default for large region mode.

Related references
12.79 --largeregions, --no_largeregions on page 12-336.
12.163 --veneer_inject_type=type on page 12-422.
12.6 --api, --no_api on page 12-255.
12.134 --sort=algorithm on page 12-392.

12 Linker Command-line Options
12.162 --veneerinject, --no_veneerinject

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-421

Non-Confidential

12.163 --veneer_inject_type=type
Controls the veneer layout when --largeregions mode is on.

Syntax

--veneer_inject_type=type

Where type is one of:

individual
The linker places veneers to ensure they can be reached by the largest amount of sections that
use the veneer. Veneer reuse between execution regions is permitted. This type minimizes the
number of veneers that are required but disrupts the structure of the image the most.

pool
The linker:
1. Collects veneers from a contiguous range of the execution region.
2. Places all the veneers generated from that range into a pool.
3. Places that pool at the end of the range.
A large execution region might have more than one range and therefore more than one pool.
Although this type has much less impact on the structure of image, it has fewer opportunities for
reuse. This is because a range of code cannot reuse a veneer in another pool. The linker
calculates the range based on the presence of branch instructions that the linker predicts might
require veneers. A branch is predicted to require a veneer when either:
• A state change is required.
• The distance from source to target plus a contingency greater than the branch range.

You can set the size of the contingency with the --veneer_pool_size=size option. By default
the contingency size is set to 102400 bytes. The --info=veneerpools option provides
information on how the linker has placed veneer pools.

Restrictions

You must use --largeregions with this option.

Related references
12.71 --info=topic[,topic,…] on page 12-325.
12.162 --veneerinject, --no_veneerinject on page 12-421.
12.164 --veneer_pool_size=size on page 12-423.
12.79 --largeregions, --no_largeregions on page 12-336.

12 Linker Command-line Options
12.163 --veneer_inject_type=type

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-422

Non-Confidential

12.164 --veneer_pool_size=size
Sets the contingency size for the veneer pool in an execution region.

Syntax

--veneer_pool_size=pool

where pool is the size in bytes.

Default

The default size is 102400 bytes.

Related references
12.163 --veneer_inject_type=type on page 12-422.

12 Linker Command-line Options
12.164 --veneer_pool_size=size

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-423

Non-Confidential

12.165 --veneershare, --no_veneershare
Enables or disables veneer sharing. Veneer sharing can cause a significant decrease in image size.

Default

The default is --veneershare.

Related concepts
3.6.2 Veneer sharing on page 3-55.
3.6 Linker-generated veneers on page 3-55.
3.6.3 Veneer types on page 3-56.
3.6.4 Generation of position independent to absolute veneers on page 3-57.

Related references
12.76 --inlineveneer, --no_inlineveneer on page 12-332.
12.107 --piveneer, --no_piveneer on page 12-364.
12.33 --crosser_veneershare, --no_crosser_veneershare on page 12-286.

12 Linker Command-line Options
12.165 --veneershare, --no_veneershare

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-424

Non-Confidential

12.166 --verbose
Prints detailed information about the link operation, including the objects that are included and the
libraries from which they are taken.

Usage

This output is particular useful for tracing undefined symbols reference or multiply defined symbols.
Because this output is typically quite long, you might want to use this command with the
--list=filename command to redirect the information to filename.

Use --verbose to output diagnostics to stdout.

Related references
12.88 --list=filename on page 12-345.
12.99 --muldefweak, --no_muldefweak on page 12-356.
12.158 --unresolved=symbol on page 12-417.

12 Linker Command-line Options
12.166 --verbose

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-425

Non-Confidential

12.167 --version_number
Displays the version of armlink you are using.

Usage
The linker displays the version number in the format nnnbbbb, where:
• nnn is the version number.
• bbbb is the build number.

Example

Version 5.06 build 0019 is displayed as 5060019.

Related references
12.69 --help on page 12-323.
12.170 --vsn on page 12-429.

12 Linker Command-line Options
12.167 --version_number

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-426

Non-Confidential

12.168 --vfemode=mode
Specifies how Virtual Function Elimination (VFE), and RunTime Type Information (RTTI) objects, are
eliminated. VFE is a technique that enables the linker to identify more unused sections.

Syntax

--vfemode=mode

where mode is one of the following:

on
Use the command-line option --vfemode=on to make the linker VFE aware.
In this mode the linker chooses force or off mode based on the content of object files:
• Where every object file contains VFE information or does not refer to a symbol with a

mangled C++ name, the linker assumes force mode and continues with the elimination.
• If any object file is missing VFE information and refers to a symbol with a mangled C++

name, for example, where code has been compiled with a previous release of the ARM tools,
the linker assumes off mode, and VFE is disabled silently. Choosing off mode to disable
VFE in this situation ensures that the linker does not remove a virtual function that is used
by an object with no VFE information.

off
Use the command-line option --vfemode=off to make armlink ignore any extra information
supplied by the compiler. In this mode, the final image is the same as that produced by
compiling and linking without VFE awareness. This is the default and only mode supported
when using --shared or --dll.

force
Use the command-line option --vfemode=force to make the linker VFE aware and force the
VFE algorithm to be applied. If some of the object files do not contain VFE information, for
example, where they have been compiled with a previous release of the ARM tools, the linker
continues with the elimination but displays a warning to alert you to possible errors.

force_no_rtti
Use the command-line option --vfemode=force_no_rtti to make the linker VFE aware and
force the removal of all RTTI objects. In this mode all virtual functions are retained.

Default

The default is --vfemode=on when not using --shared or --dll. When using --shared or --dll the
default is --vfemode=off.

Related concepts
4.4 Elimination of unused virtual functions on page 4-75.
4.1 Elimination of common debug sections on page 4-71.
4.2 Elimination of common groups or sections on page 4-72.
4.3 Elimination of unused sections on page 4-73.

12 Linker Command-line Options
12.168 --vfemode=mode

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-427

Non-Confidential

12.169 --via=filename
Reads an additional list of input filenames and linker options from filename.

Syntax

--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the linker command line. The --via options can also be
included within a via file.

Related references
14.2 Via file syntax rules on page 14-446.

12 Linker Command-line Options
12.169 --via=filename

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-428

Non-Confidential

12.170 --vsn
Displays the version information and the license details.

 Note

--vsn is intended to report the version information for manual inspection. The Component line indicates
the release of ARM Compiler you are using. If you need to access the version in other tools or scripts, for
example in build scripts, use the output from --version_number.

Example

> armlink --vsn
Product: ARM Compiler N.nn
Component: ARM Compiler N.nn (toolchain_build_number)
Tool: armlink [build_number]
license_type
Software supplied by: ARM Limited

Related references
12.69 --help on page 12-323.
12.167 --version_number on page 12-426.

12 Linker Command-line Options
12.170 --vsn

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-429

Non-Confidential

12.171 --xo_base=address
Specifies the base address of an execute-only (XO) execution region.

Syntax

--xo_base=address

Where address must be word-aligned.

Usage
When you specify --xo_base:
• XO sections are placed in a separate load and execution region, at the address specified.
• No ER_XO region is created when no XO sections are present.

Restrictions

You can use --xo_base only with the bare-metal linking model.

You cannot use --xo_base with:
• --base_platform.
• --bpabi.
• --reloc.
• --ropi.
• --rwpi.
• --scatter.
• --shared.
• --sysv.

Related concepts
2.2 Bare-metal linking model on page 2-25.

Related references
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.175 --zi_base=address on page 12-434.
12.125 --scatter=filename on page 12-382.
12.128 --shared on page 12-386.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.171 --xo_base=address

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-430

Non-Confidential

12.172 --xref, --no_xref
Lists to stdout all cross-references between input sections.

Default

The default is --no_xref.

Related references
12.173 --xrefdbg, --no_xrefdbg on page 12-432.
12.174 --xref{from|to}=object(section) on page 12-433.
12.88 --list=filename on page 12-345.

12 Linker Command-line Options
12.172 --xref, --no_xref

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-431

Non-Confidential

12.173 --xrefdbg, --no_xrefdbg
Lists to stdout all cross-references between input debug sections.

Default

The default is --no_xrefdbg.

Related references
12.172 --xref, --no_xref on page 12-431.
12.174 --xref{from|to}=object(section) on page 12-433.
12.88 --list=filename on page 12-345.

12 Linker Command-line Options
12.173 --xrefdbg, --no_xrefdbg

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-432

Non-Confidential

12.174 --xref{from|to}=object(section)
Lists to stdout cross-references from and to input sections.

Syntax

--xref{from|to}=object(section)

Usage
This option lists to stdout cross-references:
• From input section in object to other input sections.
• To input section in object from other input sections.

This is a useful subset of the listing produced by the --xref linker option if you are interested in
references from or to a specific input section. You can have multiple occurrences of this option to list
references from or to more than one input section.

Related references
12.172 --xref, --no_xref on page 12-431.
12.173 --xrefdbg, --no_xrefdbg on page 12-432.
12.88 --list=filename on page 12-345.

12 Linker Command-line Options
12.174 --xref{from|to}=object(section)

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-433

Non-Confidential

12.175 --zi_base=address
Specifies the base address of an ER_ZI execution region.

Syntax

--zi_base=address
Where address must be word-aligned.

 Note

This option does not affect the placement of execute-only sections.

Restrictions
The linker ignores --zi_base if one of the following options is also specified:
• --bpabi.
• --base_platform.
• --reloc.
• --rwpi.
• --split.
• --sysv.

You cannot use --zi_base with --scatter.

Related references
12.118 --ro_base=address on page 12-375.
12.119 --ropi on page 12-376.
12.120 --rosplit on page 12-377.
12.122 --rw_base=address on page 12-379.
12.171 --xo_base=address on page 12-430.
12.125 --scatter=filename on page 12-382.
12.17 --bpabi on page 12-267.
12.151 --sysv on page 12-410.

12 Linker Command-line Options
12.175 --zi_base=address

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-434

Non-Confidential

Chapter 13
Linker Steering File Command Reference

Describes the steering file commands supported by the ARM linker, armlink.

It contains the following sections:
• 13.1 EXPORT steering file command on page 13-436.
• 13.2 HIDE steering file command on page 13-437.
• 13.3 IMPORT steering file command on page 13-438.
• 13.4 RENAME steering file command on page 13-439.
• 13.5 REQUIRE steering file command on page 13-440.
• 13.6 RESOLVE steering file command on page 13-441.
• 13.7 SHOW steering file command on page 13-443.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-435

Non-Confidential

13.1 EXPORT steering file command
Specifies that a symbol can be accessed by other shared objects or executables.

 Note

A symbol can be exported only if the definition has STV_DEFAULT or STV_PROTECTED visibility. You must
use the --override_visibility command-line option to enable the linker to override symbol visibility
to STV_DEFAULT.

Syntax

EXPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
defined global symbols. If pattern does not match any defined global symbol, the linker
ignores the command. The operand can match only defined global symbols.

If the symbol is not defined, the linker issues:

Warning: L6331W: No eligible global symbol matches pattern symbol

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the defined global
symbol is to be renamed. Wild characters must have a corresponding wildcard in pattern. The
characters matched by the replacement_pattern wildcard are substituted for the pattern
wildcard.

For example:

EXPORT my_func AS func1

renames and exports the defined symbol my_func as func1.

Usage

You cannot export a symbol to a name that already exists. Only one wildcard character (either * or ?) is
permitted in EXPORT.

The defined global symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
13.3 IMPORT steering file command on page 13-438.
12.102 --override_visibility on page 12-359.

13 Linker Steering File Command Reference
13.1 EXPORT steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-436

Non-Confidential

13.2 HIDE steering file command
Makes defined global symbols in the symbol table anonymous.

Syntax

HIDE pattern[,pattern]

where:

pattern
is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If pattern does not match any defined global symbol, the linker ignores the
command. You cannot hide undefined symbols.

Usage

You can use HIDE and SHOW to make certain global symbols anonymous in an output image or partially
linked object. Hiding symbols in an object file or library can be useful as a means of protecting
intellectual property, as shown in the following example:

; steer.txt
; Hides all global symbols
HIDE *
; Shows all symbols beginning with ’os_’
SHOW os_*

This example produces a partially linked object with all global symbols hidden, except those beginning
with os_.

Link this example with the command:

armlink --partial input_object.o --edit steer.txt -o partial_object.o

You can link the resulting partial object with other objects, provided they do not contain references to the
hidden symbols. When symbols are hidden in the output object, SHOW commands in subsequent link steps
have no effect on them. The hidden references are removed from the output symbol table.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
13.7 SHOW steering file command on page 13-443.
12.45 --edit=file_list on page 12-298.
12.106 --partial on page 12-363.

13 Linker Steering File Command Reference
13.2 HIDE steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-437

Non-Confidential

13.3 IMPORT steering file command
Specifies that a symbol is defined in a shared object at runtime.

 Note

A symbol can be imported only if the reference has STV_DEFAULT visibility. You must use the
--override_visibility command-line option to enable the linker to override symbol visibility to
STV_DEFAULT.

Syntax

IMPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the symbol is to be
renamed. Wild characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example:

IMPORT my_func AS func

imports and renames the undefined symbol my_func as func.

Usage

You cannot import a symbol that has been defined in the current shared object or executable. Only one
wildcard character (either * or ?) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

 Note

The IMPORT command only affects undefined global symbols. Symbols that have been resolved by a
shared library are implicitly imported into the dynamic symbol table. The linker ignores any IMPORT
directive that targets an implicitly imported symbol.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
12.102 --override_visibility on page 12-359.
13.1 EXPORT steering file command on page 13-436.

13 Linker Steering File Command Reference
13.3 IMPORT steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-438

Non-Confidential

13.4 RENAME steering file command
Renames defined and undefined global symbol names.

Syntax

RENAME pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
global symbols. If pattern does not match any global symbol, the linker ignores the command.
The operand can match both defined and undefined symbols.

replacement_pattern
is a string, optionally including wildcard characters (either * or ?), to which the symbol is to be
renamed. Wildcard characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example, for a symbol named func1:

RENAME f* AS my_f*

renames func1 to my_func1.

Usage

You cannot rename a symbol to a global symbol name that already exists, even if the target symbol name
is being renamed itself.

You cannot rename a symbol to the same name as another symbol. For example, you cannot do the
following:

RENAME foo1 AS bar
RENAME foo2 AS bar

Error: L6281E: Cannot rename both foo2 and foo1 to bar.

Renames only take effect at the end of the link step. Therefore, renaming a symbol does not remove its
original name. For example, given an image containing the symbols func1 and func2, you cannot do the
following:

RENAME func1 AS func2
RENAME func2 AS func3

Error: L6282E: Cannot rename func1 to func2 as a global symbol of that name exists

Only one wildcard character (either * or ?) is permitted in RENAME.

Example

Given an image containing the symbols func1, func2, and func3, you might have a steering file
containing the following commands:

; invalid, func2 already exists
RENAME func1 AS func2

; valid
RENAME func3 AS b2

; invalid, func3 still exists because the link step is not yet complete
RENAME func2 AS func3

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

13 Linker Steering File Command Reference
13.4 RENAME steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-439

Non-Confidential

13.5 REQUIRE steering file command
Creates a DT_NEEDED tag in the dynamic array.

DT_NEEDED tags specify dependencies to other shared objects used by the application, for example, a
shared library.

Syntax

REQUIRE pattern[,pattern]

where:

pattern
is a string representing a filename. No wild characters are permitted.

Usage
The linker inserts a DT_NEEDED tag with the value of pattern into the dynamic array. This tells the
dynamic loader that the file it is currently loading requires pattern to be loaded.

 Note

DT_NEEDED tags inserted as a result of a REQUIRE command are added after DT_NEEDED tags generated
from shared objects or dynamically linked libraries (DLLs) placed on the command line.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

13 Linker Steering File Command Reference
13.5 REQUIRE steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-440

Non-Confidential

13.6 RESOLVE steering file command
Matches specific undefined references to a defined global symbol.

Syntax

RESOLVE pattern AS defined_pattern

where:

pattern
is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

defined_pattern
is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If defined_pattern does not match any defined global symbol, the linker ignores the
command. You cannot match an undefined reference to an undefined symbol.

Usage

RESOLVE is an extension of the existing armlink --unresolved command-line option. The difference is
that --unresolved enables all undefined references to match one single definition, whereas RESOLVE
enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.

RESOLVE works when performing partial-linking and when linking normally.

Example

You might have two files file1.c and file2.c, as shown in the following example:

file1.c
extern int foo;
extern void MP3_Init(void);
extern void MP3_Play(void);
int main(void)
{
 int x = foo + 1;
 MP3_Init();
 MP3_Play();
 return x;
}

file2.c:
int foobar;
void MyMP3_Init()
{
}
void MyMP3_Play()
{
}

Create a steering file, ed.txt, containing the line:

RESOLVE MP3* AS MyMP3*.

Enter the following command:

armlink file1.o file2.o --edit ed.txt --unresolved foobar

13 Linker Steering File Command Reference
13.6 RESOLVE steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-441

Non-Confidential

This command has the following effects:
• The references from file1.o (foo, MP3_Init() and MP3_Play()) are matched to the definitions in

file2.o (foobar, MyMP3_Init() and MyMP3_Play() respectively), as specified by the steering file
ed.txt.

• The RESOLVE command in ed.txt matches the MP3 functions and the --unresolved option matches
any other remaining references, in this case, foo to foobar.

• The output symbol table, whether it is an image or a partial object, does not contain the symbols foo,
MP3_Init or MP3_Play.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
12.45 --edit=file_list on page 12-298.
12.158 --unresolved=symbol on page 12-417.

13 Linker Steering File Command Reference
13.6 RESOLVE steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-442

Non-Confidential

13.7 SHOW steering file command
Makes global symbols visible.

The SHOW command is useful if you want to make a specific symbol visible that is hidden using a HIDE
command with a wildcard.

Syntax

SHOW pattern[,pattern]

where:

pattern
is a string, optionally including wildcard characters, that matches zero or more global symbols.
If pattern does not match any global symbol, the linker ignores the command.

Usage

The usage of SHOW is closely related to that of HIDE.

Related concepts
6.6 Edit the symbol tables with a steering file on page 6-112.

Related references
13.2 HIDE steering file command on page 13-437.

13 Linker Steering File Command Reference
13.7 SHOW steering file command

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-443

Non-Confidential

Chapter 14
Via File Syntax

Describes the syntax of via files accepted by armlink.

It contains the following sections:
• 14.1 Overview of via files on page 14-445.
• 14.2 Via file syntax rules on page 14-446.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-444

Non-Confidential

14.1 Overview of via files
Via files are plain text files that allow you to specify linker command-line arguments and options.

Typically, you use a via file to overcome the command-line length limitations. However, you might want
to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

 Note

In general, you can use a via file to specify any command-line option to a tool, including --via. This
means that you can call multiple nested via files from within a via file.

Via file evaluation
When the linker is invoked it:
1. Replaces the first specified --via via_file argument with the sequence of argument words

extracted from the via file, including recursively processing any nested --via commands in the via
file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed completely
including processing nested via files before processing the next via file.

Related references
14.2 Via file syntax rules on page 14-446.
12.169 --via=filename on page 12-428.

14 Via File Syntax
14.1 Overview of via files

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-445

Non-Confidential

14.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted into an
argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings, for example:

--paged --pagesize=0x4000 (two words)

--paged--pagesize=0x4000 (one word)
• The end of a line is treated as whitespace, for example:

--paged
--pagesize=0x4000

This is equivalent to:

--paged --pagesize=0x4000
• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a

quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited word,
a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--errors C:\My Project\errors.txt (three words)

--errors "C:\My Project\errors.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"ARM Compiler"' (one word)
• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)
• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape the

quote, apostrophe, and backslash characters.
• A word that occurs immediately next to a delimited word is treated as a single word, for example:

--errors"C:\Project\errors.txt"

This is treated as the single word:

--errorsC:\Project\errors.txt
• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character are

comment lines. A semicolon or hash character that appears anywhere else in a line is not treated as
the start of a comment, for example:

-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line comments, and
there are no part-line comments.

Related concepts
14.1 Overview of via files on page 14-445.

Related references
12.169 --via=filename on page 12-428.

14 Via File Syntax
14.2 Via file syntax rules

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-446

Non-Confidential

Appendix A
armlink Document Revisions

Describes the technical changes that have been made to the armlink User Guide.

It contains the following sections:
• A.1 Revisions for armlink User Guide on page Appx-A-448.

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-447

Non-Confidential

A.1 Revisions for armlink User Guide
The following technical changes have been made to the armlink User Guide.

Table A-1 Differences between issue L and issue M

Change Topics affected

Removed the topic Linker command-line options listed by group. -

Removed the not about XO memory 2.1 Overview of linking models on page 2-24

Clarified the description or Region 3.1.2 Input sections, output sections, regions, and
program segments on page 3-35

Corrected the search order. 3.10 How the linker searches for the ARM standard
libraries on page 3-64

Clarified the description of how user and system libraries are scanned. 3.12 How the linker resolves references
on page 3-67

Fixed the example. 4.6 Example of using linker feedback on page 4-78

Moved the note to 6.4.2 Image symbols on page 6-106 6.3.5 Region name values when not scatter-loading
on page 6-104

Corrected examples to use region-related symbols. • 6.3.7 Methods of importing linker-defined
symbols in C and C++ on page 6-104.

• 6.3.8 Methods of importing linker-defined
symbols in ARM® assembly language
on page 6-105.

Fixed some symbol names. 7.1.4 Specifying stack and heap using the scatter file
on page 7-118

Fixed the examples. • Example of how to place a variable at a specific
address without scatter-loading on page 7-128.

• Example of how to place a variable in a named
section with scatter-loading on page 7-129.

• Example of how to place a variable at a specific
address with scatter-loading on page 7-130.

• 7.2.8 Automatic placement of __at sections
on page 7-133.

• 7.2.9 Manual placement of __at sections
on page 7-135.

Clarified the description 7.4.4 Specify the maximum region size permitted for
placing unassigned sections on page 7-142

Added an example about using the --info any option. 7.4.8 Behavior when .ANY sections overflow
because of linker-generated content on page 7-148

Corrected the description. 7.14 How the linker resolves multiple matches when
processing scatter files on page 7-170

Removed the topics Methods of specifying numeric constants for expression
evaluation and Available operators for expression evaluation, because they
duplicate information in the remaining topics.

8.6 Expression evaluation in scatter files
on page 8-195

Fixed the version output format. 6.5.4 Symdefs file format on page 6-109

Removed the Restriction section. 12.11 --base_platform on page 12-261

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-448

Non-Confidential

Table A-1 Differences between issue L and issue M (continued)

Change Topics affected

Added information specific to armlink. 12.32 --cpu=name on page 12-283

Removed the SoftVFP+... options because they have no effect with
armlink.

12.67 --fpu=name on page 12-320

Removed references to --licretry as the option no longer has an effect. --licretry

Clarified the Usage section. • 12.82 --legacyalign, --no_legacyalign
on page 12-339.

• 12.84 --library=name on page 12-341.
• 12.85 --library_type=lib on page 12-342.
• 12.126 --search_dynamic_libraries, --

no_search_dynamic_libraries on page 12-384
• 12.136 --startup=symbol, --no_startup

on page 12-395
• 12.137 --strict on page 12-396

Added a description for the new option --output_float_abi. 12.101 --output_float_abi=option on page 12-358

Added nocrosslr and reworded the Default section. 12.109 --pltgot_opts=mode on page 12-366

Added Default section. 12.140 --strict_ph, --no_strict_ph on page 12-399

Added description of --no_unaligned_access. 12.155 --unaligned_access, --no_unaligned_access
on page 12-414

Table A-2 Differences between issue K and issue L

Change Topics affected

Added ARM Compiler product name to pages where it was missing. • 7.6 Placement of sections with overlays
on page 7-152

• Changes to command-line defaults with the SysV
memory model on page 10-230

• 2.6 SysV linking model on page 2-31

Updated the description for image entry points. 3.1.5 Image entry points on page 3-39

Removed the description of --device. Chapter 12 Linker Command-line Options
on page 12-245

Table A-3 Differences between issue J and issue K

Change Topics affected

Added generic notes about supported features in ARM Compiler and code
generation between releases.

1.1 About the linker on page 1-18

Added details about the effect of RW compression when using +offset for a
load region

8.3.6 Considerations when using a relative address
+offset for a load region on page 8-182

Added --cpp_compat option. 12.29 --cpp_compat linker option on page 12-280

Removed the description of --device=list. Chapter 12 Linker Command-line Options
on page 12-245

Removed the description of --keep_protected_symbols. Chapter 12 Linker Command-line Options
on page 12-245

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-449

Non-Confidential

Table A-3 Differences between issue J and issue K (continued)

Change Topics affected

Added topic. Linker command-line options listed by group

Added note about ECC memory to the UNINIT execution region attribute
description.

8.4.3 Execution region attributes on page 8-186

Reordered topics and grouped related topics together. • 1.1 About the linker on page 1-18.
• 3.1 The structure of an ARM ELF image

on page 3-34.
• 3.2 Simple images on page 3-42.
• 3.3 Section placement with the linker

on page 3-49.
• 3.6 Linker-generated veneers on page 3-55.
• 6.3 Region-related symbols on page 6-101.
• 6.4 Section-related symbols on page 6-106.
• 6.5 Access symbols in another image

on page 6-108.
• 6.6 Edit the symbol tables with a steering file

on page 6-112.
• 7.1 The scatter-loading mechanism

on page 7-117.
• 7.2 Root execution regions on page 7-124.
• 7.4 Placement of unassigned sections with

the .ANY module selector on page 7-140.
• 7.8 Placement of ARM C and C++ library code

on page 7-156.
• 7.13 Equivalent scatter-loading descriptions for

simple images on page 7-164.
• 8.3 Load region descriptions on page 8-178.
• 8.4 Execution region descriptions

on page 8-184.
• 8.5 Input section descriptions on page 8-191.
• 8.6 Expression evaluation in scatter files

on page 8-195.
• 10.3 Features common to all BPABI models

on page 10-222.
• 10.4 SysV memory model on page 10-226.
• 10.5 Bare metal and DLL-like memory models

on page 10-231.
• 10.6 Symbol versioning on page 10-236.

Table A-4 Differences between issue I and issue J

Change Topics affected

Added the chapters from the Linker Reference into the armlink User Guide. The
Linker Reference is no longer being provided as a separate document.

• Chapter 12 Linker Command-line Options
on page 12-245

• Chapter 13 Linker Steering File Command
Reference on page 13-435

• Chapter 8 Scatter File Syntax on page 8-175
• Chapter 14 Via File Syntax on page 14-444

Added information about creating images that contain execute-only (XO)
sections.

Various topics

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-450

Non-Confidential

Table A-4 Differences between issue I and issue J (continued)

Change Topics affected

Added the topic on avoiding the BLX (immediate) instruction issue on ARM
1176 processors.

3.14 Avoiding the BLX (immediate) instruction issue
on an ARM1176JZ-S or ARM1176JZF-S processor
on page 3-69

Added topic on linking with partially-linked objects and scatter-loading Input section descriptions when linking partially-
linked objects

Added option --inline_type to provide more control over function inlining,
and updated related topics.

• 4.8 Function inlining with the linker
on page 4-83

• 12.74 --inline, --no_inline on page 12-330
• 12.75 --inline_type=type on page 12-331

Added option --max_er_extension. 12.95 --max_er_extension=size on page 12-352

Added option --xo_base for placing execute-only (XO) code. 12.171 --xo_base=address on page 12-430

--cpu and --fpu options are fully documented • 12.32 --cpu=name on page 12-283
• 12.67 --fpu=name on page 12-320

Added chapter on via file syntax. • Chapter 14 Via File Syntax on page 14-444

Removed the topics --project, --reinitialize_workdir, and
--workdir.

Chapter 12 Linker Command-line Options
on page 12-245

Table A-5 Differences between issue H and issue I

Change Topics affected

Removed the topic About link time code generation. Chapter 4 Linker Optimization Features
on page 4-70

Removed the topic --ltcg. • Chapter 12 Linker Command-line Options
on page 12-245

• Linker command-line options listed by group

Where appropriate, changed the terminology that implied that 16-bit Thumb
and 32-bit Thumb are separate instruction sets.

Various topics

Where appropriate, changed the term processor state to instruction set state. Various topics

Removed the See also Tasks reference from the topic Platforms supported by
the BPABI.

10.2 Platforms supported by the BPABI
on page 10-221

Clarifications to preprocessor invocation in scatter files. 7.11 Preprocessing of a scatter file on page 7-161

Removed the See also Tasks reference from --runpath. 12.121 --runpath=pathlist on page 12-378

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-451

Non-Confidential

Table A-6 Differences between Issue G and Issue H

Change Topics affected

Improved the scatter file example for stack and heap. 7.1.4 Specifying stack and heap using the scatter file
on page 7-118

Corrections and enhancements to various topics related to placing __at
sections.

• 7.2.4 Methods of placing functions and data at
specific addresses on page 7-127

• 7.2.5 Placement of code and data with
__attribute__((section("name"))) on page 7-131

• 7.2.6 Placement of __at sections at a specific
address on page 7-132

• 7.2.9 Manual placement of __at sections
on page 7-135

Corrected the description of --info stack. 12.71 --info=topic[,topic,…] on page 12-325

Enhanced the syntax descriptions for load region, execution region, and input
section description to specify that quoted names can be used.

• 8.3.2 Syntax of a load region description
on page 8-179

• 8.4.2 Syntax of an execution region description
on page 8-184

• 8.5.2 Syntax of an input section description
on page 8-191.

Enhanced the description of --[no_]autoat. 12.10 --autoat, --no_autoat on page 12-260

Enhanced the description of --entry. 12.50 --entry=location on page 12-303

Table A-7 Differences between Issue F and Issue G

Change Topics affected

Corrected the scatter file example. 7.8.3 Example of placing ARM C library code
on page 7-156

Clarified the description of the OVERLAY keyword. 3.6.5 Reuse of veneers when scatter-loading
on page 3-57

Added details about the effect of overriding some but not all the symbols in a
library member.

3.12 How the linker resolves references
on page 3-67

Clarified the description of --[no]thumb2_library. 12.153 --thumb2_library, --no_thumb2_library
on page 12-412

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-452

Non-Confidential

Table A-8 Differences between Issue E and Issue F

Change Topics affected

Where appropriate:
• Prefixed Thumb with 16-bit.
• Changed Thumb-2 to 32-bit Thumb.

• 1.1 About the linker on page 1-18
• 3.5 Linker reordering of execution regions

containing Thumb code on page 3-54
• 3.6 Linker-generated veneers on page 3-55
• 4.9 Factors that influence function inlining

on page 4-85
• 7.5 Placement of veneer input sections in a

scatter file on page 7-151
• 12.6 --api, --no_api on page 12-255
• 12.79 --largeregions, --no_largeregions

on page 12-336
• 12.153 --thumb2_library, --no_thumb2_library

on page 12-412.

Updated the list of environment variables to the new version numbering
scheme, for example ARMCC5INC.

• 3.10 How the linker searches for the ARM
standard libraries on page 3-64

• 3.11 Specifying user libraries when linking
on page 3-66

• 3.12 How the linker resolves references
on page 3-67

Added a note stating that --device option is deprecated. • --device=list
• --device=name

Modified the version number reported by --version_number and --vsn. • 12.167 --version_number on page 12-426
• 12.170 --vsn on page 12-429.

Table A-9 Differences between Issue D and Issue E

Change Topics affected

Added links to --api, --no_api, --veneerinject, and
--no_veneerinject option descriptions.

Linker command-line options listed by group

Added links to the options that work around the ARM 1176 erratum. Linker command-line options listed by group

Enhanced the topic title. 7.2.5 Placement of code and data with
__attribute__((section("name"))) on page 7-131

Added example C/C++ code. • 7.2.8 Automatic placement of __at sections
on page 7-133

• 7.2.9 Manual placement of __at sections
on page 7-135

• 7.2.10 Placement of a key in flash memory with
an __at section on page 7-136

Added a description of the --api, --no_api option. 12.6 --api, --no_api on page 12-255

Added options that work around the BLX (immediate) instruction issue on ARM
1176 processors.

• 12.15 --blx_arm_thumb, --no_blx_arm_thumb
on page 12-265

• 12.16 --blx_thumb_arm, --no_blx_thumb_arm
on page 12-266.

Enhanced the description of --largeregions, --no_largeregions. 12.79 --largeregions, --no_largeregions
on page 12-336

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-453

Non-Confidential

Table A-9 Differences between Issue D and Issue E (continued)

Change Topics affected

Added AlignmentLexical and LexicalAlignment algorithms to --sort. 12.134 --sort=algorithm on page 12-392

Added a description of the --veneerinject, --no_veneerinject option. 12.162 --veneerinject, --no_veneerinject
on page 12-421

Table A-10 Differences between Issue C and Issue D

Change Topics affected

Removed the items about LTCG and profiling from the list of linker features. 1.1 About the linker on page 1-18

Removed the note about profiling. About link-time code generation

Added a note about the LTCG feature being deprecated.

Added a note about --ltcg being deprecated.

--ltcg

Removed the --profile option. • Chapter 12 Linker Command-line Options
on page 12-245

• --ltcg

Added notes to the descriptions of the --project,
--reinitialize_workdir, and --workdir options.

• --project=filename, --no_project.
• --reinitialize_workdir.
• --workdir=directory.

Table A-11 Differences between Issue B and Issue C

Change Topics affected

New topic about the strict family of options. 3.13 The strict family of linker options on page 3-68

Added details on specifying the maximum size that is permitted for placing
unassigned sections with the ANY_SIZE keyword for an execution region.

7.4 Placement of unassigned sections with the .ANY
module selector on page 7-140

Added a topic about placing ARM library helper functions with scatter files. 7.8.5 Example of placing ARM library helper
functions on page 7-158

Added details about the additional information that is displayed when the
ANY_SIZE keyword is used for an execution region.

12.71 --info=topic[,topic,…] on page 12-325

Added details for the ANY_SIZE keyword that can be used on an execution
region.

8.4.3 Execution region attributes on page 8-186

Added the [-]length option to the EMPTY keyword description. 8.4.3 Execution region attributes on page 8-186

Mentioned the use of the ANY_SIZE keyword in an execution region. 7.4.8 Behavior when .ANY sections overflow
because of linker-generated content on page 7-148

Added an introduction to the example. 8.6.3 Execution address built-in functions for use in
scatter files on page 8-196

Table A-12 Differences between Issue A and Issue B

Change Topics affected

Added a note about the 64-bit linker support. 1.1 About the linker on page 1-18

Added links to new command-line options in the Linker Reference. Linker command-line options listed by group

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-454

Non-Confidential

Table A-12 Differences between Issue A and Issue B (continued)

Change Topics affected

Added a note about program segment size limit. • 3.1 The structure of an ARM ELF image
on page 3-34

• 3.1.2 Input sections, output sections, regions,
and program segments on page 3-35

Added a table to compare scatter file with equivalent command-line options. 3.1.4 Methods of specifying an image memory map
with the linker on page 3-38

Added information on handling unassigned sections. 3.3 Section placement with the linker on page 3-49

The PROTECTED keyword also prevents overlapping of load regions. 3.6.5 Reuse of veneers when scatter-loading
on page 3-57

Added an overview topic for mapping symbols. 6.1 About mapping symbols on page 6-99

Added Load$$ ZI output section symbols. 6.3.3 Load$$ execution region symbols
on page 6-102

Added a topic to show how to import linker-defined symbols in ARM
assembler.

6.3.8 Methods of importing linker-defined symbols
in ARM® assembly language on page 6-105

Added examples to show how to place code and data at specific addresses. 7.2.4 Methods of placing functions and data at
specific addresses on page 7-127

Added topics that describe the use of the .ANY module selector. • 7.4 Placement of unassigned sections with
the .ANY module selector on page 7-140

• 7.4.5 Examples of using placement algorithms
for .ANY sections on page 7-143

• 7.4.6 Example of next_fit algorithm showing
behavior of full regions, selectors, and priority
on page 7-145

• 7.4.7 Examples of using sorting algorithms
for .ANY sections on page 7-146

Added information about the affect various linker features have when using
__attribute__((section("name"))).

7.2.5 Placement of code and data with
__attribute__((section("name"))) on page 7-131

Added information about +offset execution region and overlay execution
regions.

7.6 Placement of sections with overlays
on page 7-152

Removed the GNU ld script keywords ABSOLUTE, ADDR, ALIGNOF, DEFINED,
EXTERN, LOADADDR, and SIZEOF from the list of unsupported keywords,
because they are now supported.

9.4 Specific restrictions for using ld scripts with
armlink on page 9-209

Modified the default ld scripts for executable and shared objects to align to 4
bytes after .bss region.

9.6 Default GNU ld scripts used by armlink
on page 9-211

Added the default ld script that is used for --ldpartial. 9.6 Default GNU ld scripts used by armlink
on page 9-211

Moved the Base Platform linking model topics to Features of the Base Platform
linking model.

• 11.1 Restrictions on the use of scatter files with
the Base Platform model on page 11-240

• 11.2 Scatter files for the Base Platform linking
model on page 11-242

• 11.3 Placement of PLT sequences with the Base
Platform model on page 11-244

Added the --any_contingency command-line option. 12.3 --any_contingency on page 12-251

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-455

Non-Confidential

Table A-12 Differences between Issue A and Issue B (continued)

Change Topics affected

Added the --any_placement command-line option. 12.4 --any_placement=algorithm on page 12-252

Added the --any_sort_order command-line option. 12.5 --any_sort_order=order on page 12-254

Added the --[no_]crosser_veneershare command-line option. 12.33 --crosser_veneershare, --
no_crosser_veneershare on page 12-286

Added the --emit_non_debug_relocs command-line option. 12.48 --emit_non_debug_relocs on page 12-301

Added the --[no_]load_addr_map_info command-line option. 12.90 --load_addr_map_info, --
no_load_addr_map_info on page 12-347

Added the --[no_]strict_flags command-line option. 12.139 --strict_flags, --no_strict_flags
on page 12-398

Added the --[no_]strict_symbols command-line option. 12.142 --strict_symbols, --no_strict_symbols
on page 12-401

Added the --[no_]strict_visibility command-line option. 12.143 --strict_visibility, --no_strict_visibility
on page 12-402

Added the --sysroot command-line option. 12.150 --sysroot=path on page 12-409

Added the --tiebreaker command-line option. 12.154 --tiebreaker=option on page 12-413

Added the --veneer_inject_type command-line option. 12.163 --veneer_inject_type=type on page 12-422

Added the --veneer_pool_size command-line option. 12.164 --veneer_pool_size=size on page 12-423

Added restriction details to --[no_]autoat. 12.10 --autoat, --no_autoat on page 12-260

Added any and veneerpools topics to the --info command-line option. 12.71 --info=topic[,topic,…] on page 12-325

Removed the explanations of the mapping symbols from
--[no_]list_mapping_symbols. These are now in the About mapping
symbols topic in Using the Linker.

12.89 --list_mapping_symbols, --
no_list_mapping_symbols on page 12-346

Clarified the description of the --[no_]locals command-line option. 12.91 --locals, --no_locals on page 12-348

Clarified the description of the --privacy command-line option. 12.112 --privacy on page 12-369

Expanded the Usage section of the --scatter command-line option to list the
new command-line options that are related.

12.125 --scatter=filename on page 12-382

Added the cmdline type to the --section_index_display command-line
option.

12.127 --section_index_display=type
on page 12-385

Added the Alignment, BreadthFirstCallTree, and LexicalState
algorithms to the --sort command-line option.

12.134 --sort=algorithm on page 12-392

Expanded the description of the --[no_]strict_relocations command-
line option.

12.141 --strict_relocations, --no_strict_relocations
on page 12-400

Clarified the notes in the EXPORT and IMPORT steering file command
descriptions.

• 13.1 EXPORT steering file command
on page 13-436

• 13.3 IMPORT steering file command
on page 13-438.

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-456

Non-Confidential

Table A-12 Differences between Issue A and Issue B (continued)

Change Topics affected

Added topics to describe considerations when using +offset for load and
executions regions.

• 8.3.6 Considerations when using a relative
address +offset for a load region on page 8-182

• 8.4.5 Considerations when using a relative
address +offset for execution regions
on page 8-189.

Added a note about using +offset in a conditional operator. 8.6.2 Expression rules in scatter files on page 8-196

Added a topic to describe how ZI execution regions are handled when using
+offset in a scatter file.

8.6.10 Scatter files containing relative base address
load regions and a ZI execution region
on page 8-202

The PROTECTED keyword also prevents overlapping of load regions. 8.3.3 Load region attributes on page 8-180

Expanded the description of the ZEROPAD execution region attribute because of
the new Load$$ ZI output section symbols.

8.4.3 Execution region attributes on page 8-186

Expanded the introduction to Inheritance rules for load region address
attributes.

8.3.4 Inheritance rules for load region address
attributes on page 8-181

Expanded the introduction to Inheritance rules for execution region address
attributes.

8.4.4 Inheritance rules for execution region address
attributes on page 8-188

Clarified the description of the input section syntax. Detailed information about
the .ANY module selector is now in Placing unassigned sections with the .ANY
module selector in Using the Linker.

8.5.2 Syntax of an input section description
on page 8-191

Added information about the .ANY module selector to the description of how
the linker resolves multiple matches when processing scatter files.

7.15 How the linker resolves path names when
processing scatter files on page 7-172

Added a topic to describe the behavior when .ANY sections overflow because of
linker-generated content.

7.4.8 Behavior when .ANY sections overflow
because of linker-generated content on page 7-148

Added details of using +offset in a conditional operator, with an example. 8.6.2 Expression rules in scatter files on page 8-196

The execution address built-in functions can now be used for the max_size of
a region.

8.6.3 Execution address built-in functions for use in
scatter files on page 8-196

Added a note to state that the execution address built-in functions cannot be
used when using the .ANY module selector.

8.6.3 Execution address built-in functions for use in
scatter files on page 8-196

A armlink Document Revisions
A.1 Revisions for armlink User Guide

ARM DUI0474M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-457

Non-Confidential

	ARM® Compiler armlink User Guide
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of the Linker
	1.1 : About the linker
	1.1.1 : Summary of the linker features
	1.1.2 : What the linker can accept as input
	1.1.3 : What the linker outputs
	1.1.4 : Linker support for 64-bit host platforms

	1.2 : Linker command-line syntax
	1.3 : What the linker does when constructing an executable image

	2 : Linking Models Supported by armlink
	2.1 : Overview of linking models
	2.2 : Bare-metal linking model
	2.3 : Partial linking model
	2.4 : Base Platform Application Binary Interface (BPABI) linking model
	2.5 : Base Platform linking model
	2.6 : SysV linking model
	2.7 : Concepts common to both BPABI and SysV linking models

	3 : Image Structure and Generation
	3.1 : The structure of an ARM ELF image
	3.1.1 : Views of the image at each link stage
	3.1.2 : Input sections, output sections, regions, and program segments
	3.1.3 : Load view and execution view of an image
	3.1.4 : Methods of specifying an image memory map with the linker
	3.1.5 : Image entry points
	The initial entry point for an image

	3.2 : Simple images
	3.2.1 : Types of simple image
	3.2.2 : Type 1 image structure, one load region and contiguous execution regions
	3.2.3 : Type 2 image structure, one load region and non-contiguous execution regions
	3.2.4 : Type 3 image structure, multiple load regions and non-contiguous execution regions

	3.3 : Section placement with the linker
	3.3.1 : Default section placement
	Handling unassigned sections

	3.3.2 : Section placement with the FIRST and LAST attributes
	3.3.3 : Section alignment with the linker

	3.4 : Linker support for creating demand-paged files
	3.5 : Linker reordering of execution regions containing Thumb code
	3.6 : Linker-generated veneers
	3.6.1 : What is a veneer?
	3.6.2 : Veneer sharing
	3.6.3 : Veneer types
	3.6.4 : Generation of position independent to absolute veneers
	3.6.5 : Reuse of veneers when scatter-loading

	3.7 : Command-line options used to control the generation of C++ exception tables
	3.8 : Weak references and definitions
	3.9 : How the linker performs library searching, selection, and scanning
	3.10 : How the linker searches for the ARM standard libraries
	3.11 : Specifying user libraries when linking
	3.12 : How the linker resolves references
	3.13 : The strict family of linker options
	3.14 : Avoiding the BLX (immediate) instruction issue on an ARM1176JZ-S or ARM1176JZF-S processor

	4 : Linker Optimization Features
	4.1 : Elimination of common debug sections
	4.2 : Elimination of common groups or sections
	4.3 : Elimination of unused sections
	4.4 : Elimination of unused virtual functions
	4.5 : About linker feedback
	4.6 : Example of using linker feedback
	4.7 : Optimization with RW data compression
	4.7.1 : How the linker chooses a compressor
	4.7.2 : Options available to override the compression algorithm used by the linker
	4.7.3 : How compression is applied
	4.7.4 : Considerations when working with RW data compression

	4.8 : Function inlining with the linker
	4.9 : Factors that influence function inlining
	4.10 : About branches that optimize to a NOP
	4.11 : Linker reordering of tail calling sections
	4.12 : Restrictions on reordering of tail calling sections
	4.13 : Linker merging of comment sections

	5 : Getting Image Details
	5.1 : Options for getting information about linker-generated files
	5.2 : Identifying the source of some link errors
	5.3 : Example of using the --info linker option
	5.4 : How to find where a symbol is placed when linking
	5.5 : How to find the location of a symbol within the map file

	6 : Accessing and Managing Symbols with armlink
	6.1 : About mapping symbols
	6.2 : Linker-defined symbols
	6.3 : Region-related symbols
	6.3.1 : Types of region-related symbols
	6.3.2 : Image$$ execution region symbols
	6.3.3 : Load$$ execution region symbols
	6.3.4 : Load$$LR$$ load region symbols
	6.3.5 : Region name values when not scatter-loading
	6.3.6 : Linker defined symbols and scatter files
	6.3.7 : Methods of importing linker-defined symbols in C and C++
	6.3.8 : Methods of importing linker-defined symbols in ARM® assembly language

	6.4 : Section-related symbols
	6.4.1 : Types of section-related symbols
	6.4.2 : Image symbols
	6.4.3 : Input section symbols

	6.5 : Access symbols in another image
	6.5.1 : Creating a symdefs file
	6.5.2 : Outputting a subset of the global symbols
	6.5.3 : Reading a symdefs file
	6.5.4 : Symdefs file format

	6.6 : Edit the symbol tables with a steering file
	6.6.1 : Specifying steering files on the linker command-line
	6.6.2 : Steering file command summary
	6.6.3 : Steering file format
	6.6.4 : Hide and rename global symbols with a steering file

	6.7 : Use of $Super$$ and $Sub$$ to patch symbol definitions

	7 : Scatter-loading Features
	7.1 : The scatter-loading mechanism
	7.1.1 : Overview of scatter-loading
	7.1.2 : When to use scatter-loading
	7.1.3 : Linker-defined symbols that are not defined when scatter-loading
	7.1.4 : Specifying stack and heap using the scatter file
	7.1.5 : Scatter-loading command-line options
	7.1.6 : Scatter-loading images with a simple memory map
	7.1.7 : Scatter-loading images with a complex memory map

	7.2 : Root execution regions
	7.2.1 : Root execution region and the initial entry point
	7.2.2 : Root execution regions and the ABSOLUTE attribute
	7.2.3 : Root execution regions and the FIXED attribute
	7.2.4 : Methods of placing functions and data at specific addresses
	Placing functions and data at specific addresses
	Example of how to place a variable at a specific address without scatter-loading
	Example of how to place a variable in a named section with scatter-loading
	Example of how to place a variable at a specific address with scatter-loading

	7.2.5 : Placement of code and data with __attribute__((section("name")))
	7.2.6 : Placement of __at sections at a specific address
	7.2.7 : Restrictions on placing __at sections
	7.2.8 : Automatic placement of __at sections
	7.2.9 : Manual placement of __at sections
	7.2.10 : Placement of a key in flash memory with an __at section
	7.2.11 : Mapping a structure over a peripheral register with an __at section

	7.3 : Example of how to explicitly place a named section with scatter-loading
	7.4 : Placement of unassigned sections with the .ANY module selector
	7.4.1 : Placement rules when using multiple .ANY selectors
	7.4.2 : Command-line options for controlling the placement of input sections for multiple .ANY selectors
	7.4.3 : Prioritization of .ANY sections
	7.4.4 : Specify the maximum region size permitted for placing unassigned sections
	7.4.5 : Examples of using placement algorithms for .ANY sections
	7.4.6 : Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	7.4.7 : Examples of using sorting algorithms for .ANY sections
	7.4.8 : Behavior when .ANY sections overflow because of linker-generated content

	7.5 : Placement of veneer input sections in a scatter file
	7.6 : Placement of sections with overlays
	7.7 : Reserving an empty region
	7.8 : Placement of ARM C and C++ library code
	7.8.1 : Specifying ARM standard C and C++ libraries in a scatter file
	7.8.2 : Example of placing code in a root region
	7.8.3 : Example of placing ARM C library code
	7.8.4 : Example of placing ARM C++ library code
	7.8.5 : Example of placing ARM library helper functions

	7.9 : Creation of regions on page boundaries
	7.10 : Overalignment of execution regions and input sections
	7.11 : Preprocessing of a scatter file
	7.12 : Example of using expression evaluation in a scatter file to avoid padding
	7.13 : Equivalent scatter-loading descriptions for simple images
	7.13.1 : Command-line options for creating simple images
	7.13.2 : Type 1 image, one load region and contiguous execution regions
	7.13.3 : Type 2 image, one load region and non-contiguous execution regions
	7.13.4 : Type 3 image, multiple load regions and non-contiguous execution regions

	7.14 : How the linker resolves multiple matches when processing scatter files
	7.15 : How the linker resolves path names when processing scatter files
	7.16 : Scatter file to ELF mapping

	8 : Scatter File Syntax
	8.1 : BNF notation used in scatter-loading description syntax
	8.2 : Syntax of a scatter file
	8.3 : Load region descriptions
	8.3.1 : Components of a load region description
	8.3.2 : Syntax of a load region description
	8.3.3 : Load region attributes
	8.3.4 : Inheritance rules for load region address attributes
	8.3.5 : Inheritance rules for the RELOC address attribute
	8.3.6 : Considerations when using a relative address +offset for a load region

	8.4 : Execution region descriptions
	8.4.1 : Components of an execution region description
	8.4.2 : Syntax of an execution region description
	8.4.3 : Execution region attributes
	8.4.4 : Inheritance rules for execution region address attributes
	8.4.5 : Considerations when using a relative address +offset for execution regions

	8.5 : Input section descriptions
	8.5.1 : Components of an input section description
	8.5.2 : Syntax of an input section description
	8.5.3 : Examples of module and input section specifications

	8.6 : Expression evaluation in scatter files
	8.6.1 : Expression usage in scatter files
	8.6.2 : Expression rules in scatter files
	8.6.3 : Execution address built-in functions for use in scatter files
	8.6.4 : ScatterAssert function and load address related functions
	8.6.5 : Symbol related function in a scatter file
	8.6.6 : AlignExpr(expr, align) function
	8.6.7 : GetPageSize() function
	8.6.8 : SizeOfHeaders() function
	8.6.9 : Example of aligning a base address in execution space but still tightly packed in load space
	8.6.10 : Scatter files containing relative base address load regions and a ZI execution region

	9 : GNU ld Script Support in armlink
	9.1 : About GNU ld script support
	9.1.1 : Summary of GNU ld script support and restrictions
	9.1.2 : Considerations when linking images and shared objects with ld scripts
	9.1.3 : Using ld scripts when linking partial objects

	9.2 : Typical use cases for using ld scripts with armlink
	9.3 : Important ld script commands that are implemented in armlink
	9.4 : Specific restrictions for using ld scripts with armlink
	9.5 : Recommendations for using ld scripts with armlink
	9.6 : Default GNU ld scripts used by armlink
	9.6.1 : Default ld script when building an executable
	9.6.2 : Default ld script when building a shared object
	9.6.3 : Default ld script when building a partially linked object

	9.7 : Example GNU ld script for linking an ARM Linux executable
	9.8 : Example GNU ld script for linking an ARM Linux shared object
	9.9 : Example GNU ld script for linking partial objects

	10 : BPABI and SysV Shared Libraries and Executables
	10.1 : About the Base Platform Application Binary Interface (BPABI)
	10.2 : Platforms supported by the BPABI
	10.3 : Features common to all BPABI models
	10.3.1 : About importing and exporting symbols for BPABI models
	10.3.2 : Symbol visibility for BPABI models
	10.3.3 : Automatic import and export for BPABI models
	10.3.4 : Manual import and export for BPABI models
	10.3.5 : Symbol versioning for BPABI models
	10.3.6 : RW compression for BPABI models

	10.4 : SysV memory model
	10.4.1 : Customization of the SysV standard memory model
	10.4.2 : Automatic dynamic symbol table rules in the SysV memory model
	10.4.3 : Symbol definitions defined for SysV compatibility with glibc
	10.4.4 : Addressing modes in the SysV memory model
	10.4.5 : Thread local storage in the SysV memory model
	10.4.6 : Linker options for SysV models
	10.4.7 : Linker command-line options for the SysV memory model
	Changes to command-line defaults with the SysV memory model

	10.5 : Bare metal and DLL-like memory models
	10.5.1 : BPABI standard memory model
	10.5.2 : Customization of the BPABI standard memory model
	10.5.3 : Linker command-line options for bare metal and DLL-like models
	10.5.4 : Mandatory symbol versioning in the BPABI DLL-like model
	10.5.5 : Automatic dynamic symbol table rules in the BPABI DLL-like model
	10.5.6 : Addressing modes in the BPABI DLL-like model
	10.5.7 : C++ initialization in the BPABI DLL-like model

	10.6 : Symbol versioning
	10.6.1 : Overview of symbol versioning
	10.6.2 : Embedded symbols
	10.6.3 : The symbol versioning script file
	10.6.4 : Example of creating versioned symbols
	10.6.5 : Linker options for enabling implicit symbol versioning

	11 : Features of the Base Platform Linking Model
	11.1 : Restrictions on the use of scatter files with the Base Platform model
	11.2 : Scatter files for the Base Platform linking model
	11.3 : Placement of PLT sequences with the Base Platform model

	12 : Linker Command-line Options
	12.1 : --add_needed, --no_add_needed
	12.2 : --add_shared_references, --no_add_shared_references
	12.3 : --any_contingency
	12.4 : --any_placement=algorithm
	12.5 : --any_sort_order=order
	12.6 : --api, --no_api
	12.7 : --arm_linux
	12.8 : --arm_only
	12.9 : --as_needed, --no_as_needed
	12.10 : --autoat, --no_autoat
	12.11 : --base_platform
	12.12 : --be8
	12.13 : --be32
	12.14 : --bestdebug, --no_bestdebug
	12.15 : --blx_arm_thumb, --no_blx_arm_thumb
	12.16 : --blx_thumb_arm, --no_blx_thumb_arm
	12.17 : --bpabi
	12.18 : --branchnop, --no_branchnop
	12.19 : --callgraph, --no_callgraph
	12.20 : --callgraph_file=filename
	12.21 : --callgraph_output=fmt
	12.22 : --callgraph_subset=symbol[,symbol,...]
	12.23 : --cgfile=type
	12.24 : --cgsymbol=type
	12.25 : --cgundefined=type
	12.26 : --combreloc, --no_combreloc
	12.27 : --comment_section, --no_comment_section
	12.28 : --compress_debug, --no_compress_debug
	12.29 : --cpp_compat linker option
	12.30 : --cppinit, --no_cppinit
	12.31 : --cpu=list
	12.32 : --cpu=name
	12.33 : --crosser_veneershare, --no_crosser_veneershare
	12.34 : --datacompressor=opt
	12.35 : --debug, --no_debug
	12.36 : --diag_error=tag[,tag,…]
	12.37 : --diag_remark=tag[,tag,…]
	12.38 : --diag_style=arm|ide|gnu
	12.39 : --diag_suppress=tag[,tag,…]
	12.40 : --diag_warning=tag[,tag,…]
	12.41 : --dll
	12.42 : --dynamic_debug
	12.43 : --dynamic_linker=name
	12.44 : --eager_load_debug, --no_eager_load_debug
	12.45 : --edit=file_list
	12.46 : --emit_debug_overlay_relocs
	12.47 : --emit_debug_overlay_section
	12.48 : --emit_non_debug_relocs
	12.49 : --emit_relocs
	12.50 : --entry=location
	12.51 : --errors=filename
	12.52 : --exceptions, --no_exceptions
	12.53 : --exceptions_tables=action
	12.54 : --execstack, --no_execstack
	12.55 : --export_all, --no_export_all
	12.56 : --export_dynamic, --no_export_dynamic
	12.57 : --feedback=filename
	12.58 : --feedback_image=option
	12.59 : --feedback_type=type
	12.60 : --filtercomment, --no_filtercomment
	12.61 : --fini=symbol
	12.62 : --first=section_id
	12.63 : --force_explicit_attr
	12.64 : --force_so_throw, --no_force_so_throw
	12.65 : --fpic
	12.66 : --fpu=list
	12.67 : --fpu=name
	12.68 : --gnu_linker_defined_syms
	12.69 : --help
	12.70 : --import_unresolved, --no_import_unresolved
	12.71 : --info=topic[,topic,…]
	12.72 : --info_lib_prefix=opt
	12.73 : --init=symbol
	12.74 : --inline, --no_inline
	12.75 : --inline_type=type
	12.76 : --inlineveneer, --no_inlineveneer
	12.77 : input-file-list
	12.78 : --keep=section_id
	12.79 : --largeregions, --no_largeregions
	12.80 : --last=section_id
	12.81 : --ldpartial
	12.82 : --legacyalign, --no_legacyalign
	12.83 : --libpath=pathlist
	12.84 : --library=name
	12.85 : --library_type=lib
	12.86 : --linker_script=ld_script
	12.87 : --linux_abitag=version_id
	12.88 : --list=filename
	12.89 : --list_mapping_symbols, --no_list_mapping_symbols
	12.90 : --load_addr_map_info, --no_load_addr_map_info
	12.91 : --locals, --no_locals
	12.92 : --mangled, --unmangled
	12.93 : --map, --no_map
	12.94 : --match=crossmangled
	12.95 : --max_er_extension=size
	12.96 : --max_veneer_passes=value
	12.97 : --max_visibility=type
	12.98 : --merge, --no_merge
	12.99 : --muldefweak, --no_muldefweak
	12.100 : -o filename, --output=filename
	12.101 : --output_float_abi=option
	12.102 : --override_visibility
	12.103 : --pad=num
	12.104 : --paged
	12.105 : --pagesize=pagesize
	12.106 : --partial
	12.107 : --piveneer, --no_piveneer
	12.108 : --pltgot=type
	12.109 : --pltgot_opts=mode
	12.110 : --predefine="string"
	12.111 : --prelink_support, --no_prelink_support
	12.112 : --privacy
	12.113 : --reduce_paths, --no_reduce_paths
	12.114 : --ref_cpp_init, --no_ref_cpp_init
	12.115 : --reloc
	12.116 : --remarks
	12.117 : --remove, --no_remove
	12.118 : --ro_base=address
	12.119 : --ropi
	12.120 : --rosplit
	12.121 : --runpath=pathlist
	12.122 : --rw_base=address
	12.123 : --rwpi
	12.124 : --scanlib, --no_scanlib
	12.125 : --scatter=filename
	12.126 : --search_dynamic_libraries, --no_search_dynamic_libraries
	12.127 : --section_index_display=type
	12.128 : --shared
	12.129 : --show_cmdline
	12.130 : --show_full_path
	12.131 : --show_parent_lib
	12.132 : --show_sec_idx
	12.133 : --soname=name
	12.134 : --sort=algorithm
	12.135 : --split
	12.136 : --startup=symbol, --no_startup
	12.137 : --strict
	12.138 : --strict_enum_size, --no_strict_enum_size
	12.139 : --strict_flags, --no_strict_flags
	12.140 : --strict_ph, --no_strict_ph
	12.141 : --strict_relocations, --no_strict_relocations
	12.142 : --strict_symbols, --no_strict_symbols
	12.143 : --strict_visibility, --no_strict_visibility
	12.144 : --strict_wchar_size, --no_strict_wchar_size
	12.145 : --symbolic
	12.146 : --symbols, --no_symbols
	12.147 : --symdefs=filename
	12.148 : --symver_script=filename
	12.149 : --symver_soname
	12.150 : --sysroot=path
	12.151 : --sysv
	12.152 : --tailreorder, --no_tailreorder
	12.153 : --thumb2_library, --no_thumb2_library
	12.154 : --tiebreaker=option
	12.155 : --unaligned_access, --no_unaligned_access
	12.156 : --undefined=symbol
	12.157 : --undefined_and_export=symbol
	12.158 : --unresolved=symbol
	12.159 : --use_definition_visibility
	12.160 : --use_sysv_default_script, --no_use_sysv_default_script
	12.161 : --userlibpath=pathlist
	12.162 : --veneerinject, --no_veneerinject
	12.163 : --veneer_inject_type=type
	12.164 : --veneer_pool_size=size
	12.165 : --veneershare, --no_veneershare
	12.166 : --verbose
	12.167 : --version_number
	12.168 : --vfemode=mode
	12.169 : --via=filename
	12.170 : --vsn
	12.171 : --xo_base=address
	12.172 : --xref, --no_xref
	12.173 : --xrefdbg, --no_xrefdbg
	12.174 : --xref{from|to}=object(section)
	12.175 : --zi_base=address

	13 : Linker Steering File Command Reference
	13.1 : EXPORT steering file command
	13.2 : HIDE steering file command
	13.3 : IMPORT steering file command
	13.4 : RENAME steering file command
	13.5 : REQUIRE steering file command
	13.6 : RESOLVE steering file command
	13.7 : SHOW steering file command

	14 : Via File Syntax
	14.1 : Overview of via files
	14.2 : Via file syntax rules

	A : armlink Document Revisions
	A.1 : Revisions for armlink User Guide

