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Chapter 1 
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions 
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands, file 

and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The 

underlined text can be entered instead of the full command or option 
name.

monospace italic 
Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

monospace bold 
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate, and for ARM® processor 
signal names.

Feedback on this product 
If you have any comments and suggestions about this product, contact your supplier 
and give:
• your name and company
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 1-1
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Conventions and feedback 
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform, 

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually 

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build 

numbers.

Feedback on content 
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0474F
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your 

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM 
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information 
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles, 

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance, 
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary, 
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 1-2
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Chapter 2 
Overview of the linker

The following topics give an overview of the ARM linker, armlink:

Concepts 
• About the linker on page 2-2
• What the linker can accept as input on page 2-10
• What the linker outputs on page 2-11
• What the linker does when constructing an executable image on page 2-12.

Reference 
• Linker command-line syntax on page 2-4
• Linker command-line options listed in groups on page 2-5.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-1
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Overview of the linker 
2.1 About the linker
The linker, armlink, combines the contents of one or more object files with selected parts of one 
or more object libraries to produce:

• an ARM ELF image

• a partially linked ELF object that can be used as input in a subsequent link step

• ELF files that can be demand-paged efficiently

• a shared object, compatible with the Base Platform Application Binary Interface (BPABI) 
or System V release 4 (SysV) specification, or a BPABI or SysV executable file.

The linker can:

• link ARM code and 16-bit Thumb® and 32-bit Thumb code

• generate interworking veneers to switch processor state when required

• generate inline veneers or long branch veneers, where required, to extend the range of 
branch instructions

• automatically select the appropriate standard C or C++ library variants to link with, based 
on the build attributes of the objects it is linking

• enable you to specify the locations of code and data within the system memory map, using 
either a command-line option or a scatter file

• perform Read/Write data compression to minimize ROM size

• perform unused section elimination to reduce the size of your output image

• control the generation of debug information in the output file

• generate a static callgraph and list the stack usage

• control the contents of the symbol table in output images

• show the sizes of code and data in the output

• use linker feedback to remove individual unused functions

• accept GNU ld scripts, with restrictions.

Note
 A 64-bit version of armlink is provided that can utilize the greater amount of memory available 
to processes on 64-bit operating systems. It supports all the features that are supported by the 
32-bit version of armlink in this release.

2.1.1 See also

Tasks 
Introducing the ARM Compiler toolchain:
• Changing to the 64-bit linker on page 2-7.

Concepts 
• Demand paging on page 4-23
• About linker feedback on page 5-7
• Chapter 3 Linking models supported by armlink
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-2
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Overview of the linker 
• Chapter 4 Image structure and generation
• Chapter 5 Using linker optimizations
• Chapter 6 Getting information about images
• Chapter 7 Accessing and managing symbols with armlink
• Chapter 8 Using scatter files
• Chapter 9 GNU ld script support in armlink
• Chapter 10 BPABI and SysV shared libraries and executables
• Chapter 11 Features of the Base Platform linking model.

Other information 
Base Platform ABI for the ARM Architecture, 
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-3
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Overview of the linker 
2.2 Linker command-line syntax
The command for invoking the linker is:

armlink [options] [input-file-list]

options Linker command-line options.

input-file-list

A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

2.2.1 See also

Reference 
• Linker command-line options listed in groups on page 2-5.
Linker Reference:
• input-file-list on page 2-87
• Chapter 2 Linker command-line options.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-4
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Overview of the linker 
2.3 Linker command-line options listed in groups
See the following command-line options in the Linker Reference:

Controlling library files and paths 
• --add_needed, --no_add_needed on page 2-6
• --add_shared_references, --no_add_shared_references on page 2-7
• --libpath=pathlist on page 2-96
• --library=name on page 2-97
• --library_type=lib on page 2-98
• --reduce_paths, --no_reduce_paths on page 2-129
• --runpath=pathlist on page 2-138
• --scanlib, --no_scanlib on page 2-141
• --search_dynamic_libraries, --no_search_dynamic_libraries on page 2-144
• --thumb2_library, --no_thumb2_library on page 2-172
• --userlibpath=pathlist on page 2-179.

Controlling the linking of object files 
• --match=crossmangled on page 2-109
• --strict on page 2-156
• --strict_ph, --no_strict_ph on page 2-159
• --strict_relocations, --no_strict_relocations on page 2-160
• --sysroot=path on page 2-169
• --unresolved=symbol on page 2-176.

Controlling the output 
• --base_platform on page 2-18
• --bpabi on page 2-24
• --combreloc, --no_combreloc on page 2-33
• --dll on page 2-49
• --ldpartial on page 2-94
• --output=file on page 2-114
• --partial on page 2-119
• --prelink_support, --no_prelink_support on page 2-125
• --reloc on page 2-132
• --shared on page 2-146
• --sysv on page 2-170.

Specifying the image memory map 
• --autoat, --no_autoat on page 2-17
• --fpic on page 2-74
• --linker_script=ld_script on page 2-100
• --predefine="string" on page 2-123
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142
• --split on page 2-154
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-5
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Overview of the linker 
• --use_sysv_default_script, --no_use_sysv_default_script on page 2-178
• --zi_base=address on page 2-193.

Controlling debug information in an image 
• --bestdebug, --no_bestdebug on page 2-21
• --compress_debug, --no_compress_debug on page 2-35
• --debug, --no_debug on page 2-41
• --dynamic_debug on page 2-50
• --emit_debug_overlay_relocs on page 2-54
• --emit_debug_overlay_section on page 2-55
• --emit_non_debug_relocs on page 2-56

Controlling the content of an image 
• --any_contingency on page 2-8
• --any_placement=algorithm on page 2-9
• --any_sort_order=order on page 2-11
• --api, --no_api on page 2-12
• --arm_linux on page 2-13
• --arm_only on page 2-15
• --as_needed, --no_as_needed on page 2-16
• --blx_arm_thumb, --no_blx_arm_thumb on page 2-22
• --blx_thumb_arm, --no_blx_thumb_arm on page 2-23
• --branchnop, --no_branchnop on page 2-25
• --comment_section, --no_comment_section on page 2-34
• --cppinit, --no_cppinit on page 2-36
• --cpu=name on page 2-38
• --datacompressor=opt on page 2-40
• --device=list on page 2-42
• --device=name on page 2-43
• --dynamic_linker=name on page 2-51
• --edit=file_list on page 2-53
• --emit_relocs on page 2-57
• --entry=location on page 2-58
• --exceptions, --no_exceptions on page 2-61
• --exceptions_tables=action on page 2-62
• --execstack, --no_execstack on page 2-63
• --export_all, --no_export_all on page 2-64
• --export_dynamic, --no_export_dynamic on page 2-65
• --filtercomment, --no_filtercomment on page 2-69
• --fini=symbol on page 2-70
• --first=section_id on page 2-71
• --force_explicit_attr on page 2-72
• --force_so_throw, --no_force_so_throw on page 2-73
• --fpu=name on page 2-76
• --gnu_linker_defined_syms on page 2-77
• --import_unresolved, --no_import_unresolved on page 2-79
• --init=symbol on page 2-84
• --inline, --no_inline on page 2-85
• --keep=section_id on page 2-89
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 2-6
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Overview of the linker 
• --keep_protected_symbols on page 2-91
• --largeregions, --no_largeregions on page 2-92
• --last=section_id on page 2-93
• --linux_abitag=version_id on page 2-101
• --locals, --no_locals on page 2-105
• --ltcg on page 2-106
• --max_visibility=type on page 2-111
• --merge, --no_merge on page 2-112
• --muldefweak, --no_muldefweak on page 2-113
• --override_visibility on page 2-115
• --pad=num on page 2-116
• --paged on page 2-117
• --pagesize=pagesize on page 2-118
• --pltgot=type on page 2-121
• --pltgot_opts=mode on page 2-122
• --privacy on page 2-126
• --ref_cpp_init, --no_ref_cpp_init on page 2-130
• --remove, --no_remove on page 2-134
• --soname=name on page 2-151
• --sort=algorithm on page 2-152
• --startup=symbol, --no_startup on page 2-155
• --strict_flags, --no_strict_flags on page 2-158
• --symbolic on page 2-164
• --symver_script=file on page 2-167
• --symver_soname on page 2-168
• --tailreorder, --no_tailreorder on page 2-171
• --tiebreaker=option on page 2-173
• --undefined=symbol on page 2-174
• --undefined_and_export=symbol on page 2-175
• --use_definition_visibility on page 2-177
• --vfemode=mode on page 2-186.

Controlling veneer generation 
• --crosser_veneershare, --no_crosser_veneershare on page 2-39
• --inlineveneer, --no_inlineveneer on page 2-86
• --max_veneer_passess=value on page 2-110
• --piveneer, --no_piveneer on page 2-120
• --veneerinject,--no_veneerinject on page 2-180
• --veneer_inject_type=type on page 2-181
• --veneer_pool_size=size on page 2-182
• --veneershare, --no_veneershare on page 2-183.

Controlling byte addressing mode 
• --be8 on page 2-19
• --be32 on page 2-20.

Controlling the extraction and presentation of image information 
• --callgraph, --no_callgraph on page 2-26
• --callgraph_file=filename on page 2-28
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• --callgraph_output=fmt on page 2-29
• --cgfile=type on page 2-30
• --cgsymbol=type on page 2-31
• --cgundefined=type on page 2-32
• --feedback=file on page 2-66
• --feedback_image=option on page 2-67
• --feedback_type=type on page 2-68
• --info=topic[,topic,...] on page 2-80
• --info_lib_prefix=opt on page 2-83
• --list_mapping_symbols, --no_list_mapping_symbols on page 2-103
• --load_addr_map_info, --no_load_addr_map_info on page 2-104
• --mangled, --unmangled on page 2-107
• --map, --no_map on page 2-108
• --section_index_display=type on page 2-145
• --symbols, --no_symbols on page 2-165
• --symdefs=file on page 2-166
• --xref, --no_xref on page 2-190
• --xrefdbg, --no_xrefdbg on page 2-191
• --xref{from|to}=object(section) on page 2-192.

Note
 With the exception of --callgraph, the linker prints the information you request on the standard 
output stream, stdout, by default.You can redirect the information to a text file using the --list 
command-line option.

Controlling diagnostic messages 
• --diag_error=tag[,tag,...] on page 2-44
• --diag_remark=tag[,tag,...] on page 2-45
• --diag_style=arm|ide|gnu on page 2-46
• --diag_suppress=tag[,tag,...] on page 2-47
• --diag_warning=tag[,tag,...] on page 2-48
• --errors=file on page 2-60
• --list=file on page 2-102
• --remarks on page 2-133
• --show_full_path on page 2-148
• --show_parent_lib on page 2-149
• --show_sec_idx on page 2-150
• --strict_enum_size, --no_strict_enum_size on page 2-157
• --strict_symbols, --no_strict_symbols on page 2-161
• --strict_visibility, --no_strict_visibility on page 2-162
• --strict_wchar_size, --no_strict_wchar_size on page 2-163
• --verbose on page 2-184.

Controlling alignment in legacy images 
• --legacyalign, --no_legacyalign on page 2-95.

Miscellaneous 
• --cpu=list on page 2-37
• --eager_load_debug, --no_eager_load_debug on page 2-52
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• --fpu=list on page 2-75
• --licretry on page 2-99
• --project=filename, --no_project on page 2-127
• --reinitialize_workdir on page 2-131
• --show_cmdline on page 2-147
• --version_number on page 2-185
• --via=file on page 2-187
• --vsn on page 2-188
• --workdir=directory on page 2-189.
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2.4 What the linker can accept as input
Input to armlink consists of one or more object files in ARM ELF. This format is described in 
the ELF for the ARM Architecture (ARM IHI 0044).

Optionally, the following files can be used as input to armlink:
• one or more libraries created by the librarian, armar
• a symbol definitions file
• a scatter file
• a steering file.

2.4.1 See also

Tasks 
• Chapter 8 Using scatter files.
Creating Static Software Libraries with armar:
• Creating a new object library on page 3-2.

Reference 
• Accessing symbols in another image on page 7-18.
Linker Reference:
• Chapter 3 Linker steering file command reference
• Chapter 4 Formal syntax of the scatter file.

Other information 
• ELF for the ARM Architecture (ARM IHI 0044), 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
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2.5 What the linker outputs
Output from armlink can be:
• an ELF executable image
• an ELF shared object
• a partially-linked ELF object
• a relocatable ELF object.

You can use fromelf to convert an ELF executable image to other file formats, or to display, 
process, and protect the content of an ELF executable image.

2.5.1 See also

Concepts 
• Partial linking model on page 3-4
• Section placement with the linker on page 4-19
• The image structure on page 4-3.
Using the fromelf Image Converter:
• Chapter 2 Overview of the fromelf image converter.
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2.6 What the linker does when constructing an executable image
When you use the linker to construct an executable image, it:

• resolves symbolic references between the input object files

• extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references

• sorts input sections according to their attributes and names, and merges sections with 
similar attributes and names into contiguous chunks

• removes unused sections

• eliminates duplicate common groups and common code, data, and debug sections

• organizes object fragments into memory regions according to the grouping and placement 
information provided

• assigns addresses to relocatable values

• generates an executable image.

2.6.1 See also

Tasks 
• Elimination of common debug sections on page 5-2
• Elimination of unused sections on page 5-4.

Concepts 
• The image structure on page 4-3.
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Chapter 3 
Linking models supported by armlink

The following topics describe the linking models supported by the ARM linker, armlink:

Concepts 
• Overview of linking models on page 3-2
• Bare-metal linking model on page 3-3
• Partial linking model on page 3-4
• Base Platform Application Binary Interface (BPABI) linking model on page 3-5
• Base Platform linking model on page 3-6
• SysV linking model on page 3-8
• Concepts common to both BPABI and SysV linking models on page 3-9.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 3-1
ID091611 Non-Confidential



Linking models supported by armlink 
3.1 Overview of linking models
A linking model is a group of command-line options and memory maps that control the behavior 
of the linker.

Bare-metal This model does not target any specific platform. It enables you to create an image 
with your own custom operating system, memory map, and, application code if 
required. Some limited dynamic linking support is available. You can specify 
additional options depending on whether or not a scatter file is in use.

Partial linking 
This model produces a platform-independent object suitable for input to the linker 
in a subsequent link step. It can be used as an intermediate step in the 
development process and performs limited processing of input objects to produce 
a single output object.

BPABI This model supports the DLL-like Base Platform Application Binary Interface 
(BPABI). It is intended to produce applications and DLLs that can run on a 
platform OS that varies in complexity. The memory model is restricted according 
to the BPABI specification.

Base Platform 
This is an extension to the BPABI model to support scatter-loading.

SysV This model supports System V (SysV) models specified in the ELF used by ARM 
Linux. The memory model is restricted according to the ELF specification.

Related options in each model can be combined to tighten control over the output.

3.1.1 See also

Concepts 
• Bare-metal linking model on page 3-3
• Partial linking model on page 3-4
• Base Platform Application Binary Interface (BPABI) linking model on page 3-5
• Base Platform linking model on page 3-6
• SysV linking model on page 3-8
• Concepts common to both BPABI and SysV linking models on page 3-9.

Reference 
• Chapter 10 BPABI and SysV shared libraries and executables.

Other information 
• Base Platform ABI for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
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3.2 Bare-metal linking model
The bare-metal model focuses on the conventional embedded market where the whole program, 
possibly including a Real-Time Operating System (RTOS), is linked in one pass. Very few 
assumptions can be made by the linker about the memory map of a bare metal system. 
Therefore, you must use the scatter-loading mechanism if you want more precise control.

By default, the linker attempts to resolve all the relocations statically. However, it is also 
possible to create a position-independent or relocatable image. Such an image can be executed 
from different addresses and have its relocations resolved at load or run-time. This can be 
achieved using a dynamic model.

With this type of model, you can:

• identify the regions that can be relocated or are position-independent using a scatter file 
or command-line options.

• identify the symbols that can be imported and exported using a steering file

• identify the shared libraries that are required by the ELF file using a steering file.

You can use the following options with this model:
• --edit=file_list

• --scatter=file.

You can use the following options when scatter-loading is not used:
• --reloc

• --ro_base=address

• --ropi

• --rosplit

• --rw_base=address

• --rwpi

• --split

• --zi_base.

3.2.1 See also

Concepts 
• Methods of specifying an image memory map with the linker on page 4-8.

Reference 
Linker Reference:
• --edit=file_list on page 2-53 
• --reloc on page 2-132
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142
• --split on page 2-154
• --zi_base=address on page 2-193
• Chapter 3 Linker steering file command reference.
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3.3 Partial linking model
Partial linking:
• eliminates duplicate copies of debug sections
• merges the symbol tables into one
• leaves unresolved references unresolved
• merges common data (COMDAT) groups
• generates an object that can be used as input to a subsequent link step.

A single output file is produced that can be used as input to a subsequent link step. If the linker 
finds multiple entry points in the input files it generates an error because the output file can have 
only one entry point.

To link with this model, use the --partial command-line option. Other linker command-line 
options supported by this model are:
• --edit=file_list

• --exceptions_tables=action.

Note
 If you use partial linking, you cannot refer to the component objects by name in a scatter file. 
Therefore, you might have to update your scatter file.

3.3.1 See also

Concepts 
• What is a steering file? on page 7-24.

Reference 
• Steering file format on page 7-27.
Linker Reference:
• --edit=file_list on page 2-53
• --exceptions_tables=action on page 2-62
• --partial on page 2-119
• Chapter 3 Linker steering file command reference.
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3.4 Base Platform Application Binary Interface (BPABI) linking model
The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to 
generate their own platform-specific image formats. This means that the BPABI model produces 
as much information as possible without focusing on any specific platform.

Be aware of the following:

• You cannot use scatter-loading. However, the Base Platform linking model is an extension 
to the BPABI model that supports scatter-loading.

• The model assumes that shared objects cannot throw a C++ exception.

• The default value of the --pltgot option is direct.

• Symbol versioning must be used to ensure that all the required symbols are available at 
load time.

To link with this model, use the --bpabi command-line option. Other linker command-line 
options supported by this model are:
• --dll

• --force_so_throw, --no_force_so_throw
• --pltgot=type

• --ro_base=address

• --rosplit

• --rw_base=address

• --rwpi.

3.4.1 See also

Concepts 
• Base Platform linking model on page 3-6
• Concepts common to both BPABI and SysV linking models on page 3-9
• About symbol versioning on page 10-27.

Reference 
Linker Reference:
• --bpabi on page 2-24
• --dll on page 2-49
• --force_so_throw, --no_force_so_throw on page 2-73
• --pltgot=type on page 2-121
• --ro_base=address on page 2-135
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140.

Other information 
• Base Platform ABI for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html.
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3.5 Base Platform linking model
Base Platform enables you to create dynamically linkable images that do not have the memory 
map enforced by the System V (SysV) or Base Platform Application Binary Interface (BPABI) 
linking models. It enables you to:

• Create images with a memory map described in a scatter file.

• Have dynamic relocations so the images can be dynamically linked. The dynamic 
relocations can also target within the same image.

Note
 The BPABI specification places constraints on the memory model that can be violated using 
scatter-loading. However, because Base Platform is a superset of BPABI, it is possible to create 
a BPABI conformant image with Base Platform.

To link with the Base Platform model, use the --base_platform command-line option.

If you specify this option, the linker acts as if you specified --bpabi, with the following 
exceptions:

• Scatter-loading is available with --scatter, in addition to the following options:
— --dll

— --force_so_throw, --no_force_so_throw
— --pltgot=type is restricted to types none or direct
— --ro_base=address

— --rosplit

— --rw_base=address

— --rwpi.

• The default value of the --pltgot option is different to that for --bpabi:
— for --base_platform, the default is --pltgot=none
— for --bpabi the default is --pltgot=direct.

• If you do not use a scatter file, the linker can ensure that the Procedure Linkage Table 
(PLT) section is placed correctly, and contains entries for calls only to imported symbols. 
If you specify a scatter file, the linker might not be able to find a suitable location to place 
the PLT.
Each load region containing code might require a PLT section to indirect calls from the 
load region to functions where the address is not known at static link time. The PLT 
section for a load region LR must be placed in LR and be accessible at all times to code 
within LR.
To ensure calls between relocated load regions ar run-time:
— Use the --pltgot=direct option to turn on PLT generation.
— Use the --pltgot_opts=crosslr option to add entries in the PLT for calls between 

RELOC load regions. The linker generates a PLT for each load region so that calls do 
not have to be extended to reach a distant PLT.

Be aware of the following:

• The model assumes that shared objects cannot throw a C++ exception.

• Symbol versioning must be used to ensure that all the required symbols are available at 
load time.
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• There are restrictions on the type of scatter files you can use.

3.5.1 See also

Concepts 
• Base Platform Application Binary Interface (BPABI) linking model on page 3-5
• Concepts common to both BPABI and SysV linking models on page 3-9
• Methods of specifying an image memory map with the linker on page 4-8
• About symbol versioning on page 10-27
• Restrictions on the use of scatter files with the Base Platform model on page 11-2
• Example scatter file for the Base Platform linking model on page 11-5.

Reference 
Linker Reference:
• --base_platform on page 2-18
• --dll on page 2-49
• --force_so_throw, --no_force_so_throw on page 2-73
• --pltgot=type on page 2-121
• --pltgot_opts=mode on page 2-122
• --ro_base=address on page 2-135
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142.
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3.6 SysV linking model
The System V (SysV) model produces SysV shared objects and executables. It can also be used 
to produce ARM Linux compatible shared objects and executables.

Be aware of the following:
• you cannot use scatter-loading
• the model assumes that shared objects can throw an exception
• thread local storage is supported.

To link with this model, use the --sysv command-line option. Other linker command-line 
options supported by this model are:
• --force_so_throw, --no_force_so_throw
• --fpic

• --linux_abitag=version_id

• --shared.

3.6.1 See also

Concepts 
• Concepts common to both BPABI and SysV linking models on page 3-9.

Reference 
Linker Reference:
• --force_so_throw, --no_force_so_throw on page 2-73
• --fpic on page 2-74
• --linux_abitag=version_id on page 2-101
• --shared on page 2-146
• --sysv on page 2-170.
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3.7 Concepts common to both BPABI and SysV linking models
For both Base Platform Application Binary Interface (BPABI) and System V (SysV) linking 
models, images and shared objects usually run on an existing operating platform.

There are many similarities between the BPABI and the SysV models. For example, both 
produce a program header that maps the exception tables. The main differences are in the 
memory model, and in the Procedure Linkage Table (PLT) and Global Offset Table (GOT) 
structure, referred to collectively as PLTGOT. There are many options that are common to both 
models.

3.7.1 Restrictions of the BPABI and SysV

Both the BPABI and SysV models have the following restrictions:
• unused section elimination is turned off for shared libraries and DLLs
• virtual function elimination is turned off
• read write data compression is not permitted
• scatter-loading is not permitted
• __AT sections are not permitted.

Note
 Scatter-loading is supported in the Base Platform linking model.

3.7.2 See also

Concepts 
• Base Platform Application Binary Interface (BPABI) linking model on page 3-5
• Base Platform linking model on page 3-6
• SysV linking model on page 3-8.

Reference 
Linker Reference:
• --base_platform on page 2-18
• --bpabi on page 2-24
• --dynamic_debug on page 2-50
• --force_so_throw, --no_force_so_throw on page 2-73
• --runpath=pathlist on page 2-138
• --soname=name on page 2-151
• --symver_script=file on page 2-167
• --symver_soname on page 2-168
• --sysv on page 2-170.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 3-9
ID091611 Non-Confidential



Chapter 4 
Image structure and generation

The following topics describe the image structure and the functionality available in the ARM 
linker, armlink, to generate images:

Tasks 
• Using command-line options to control the generation of C++ exception tables on page 4-31
• Controlling how the linker searches for the ARM standard libraries on page 4-36
• Specifying user libraries when linking on page 4-38.

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Methods of specifying an image memory map with the linker on page 4-8
• Types of simple image on page 4-10
• Type 1 image, one load region and contiguous execution regions on page 4-11
• Type 2 image, one load region and non-contiguous execution regions on page 4-13
• Type 3 image, two load regions and non-contiguous execution regions on page 4-15
• Image entry points on page 4-17
• About specifying an initial entry point on page 4-18
• Section placement with the linker on page 4-19
• Placing sections with FIRST and LAST attributes on page 4-21
• Section alignment with the linker on page 4-22
• Demand paging on page 4-23
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• About ordering execution regions containing Thumb code on page 4-25
• Overview of veneers on page 4-26
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30
• About weak references and definitions on page 4-32
• How the linker performs library searching, selection, and scanning on page 4-35
• How the linker resolves references on page 4-39
• Use of the strict family of options in the linker on page 4-40.
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4.1 The image structure
The structure of an image is defined by the:
• number of its constituent regions and output sections
• positions in memory of these regions and sections when the image is loaded
• positions in memory of these regions and sections when the image executes.

Each link stage has a different view of the image:

ELF object file view (linker input) 
The ELF object file view comprises input sections. The ELF object file can be:
• a relocatable file that holds code and data suitable for linking with other 

object files to create an executable or a shared object file
• an executable file that holds a program suitable for execution
• a shared object file that holds code and data in the following contexts:

— the linker processes the file with other relocatable and shared object 
files to create another object file

— the dynamic linker combines the file with an executable file and other 
shared objects to create a process image.

Linker view The linker has two views for the address space of a program that become distinct 
in the presence of overlaid, position-independent, and relocatable program 
fragments (code or data):
• The load address of a program fragment is the target address that the linker 

expects an external agent such as a program loader, dynamic linker, or 
debugger to copy the fragment from the ELF file. This might not be the 
address at which the fragment executes.

• The execution address of a program fragment is the target address where the 
linker expects the fragment to reside whenever it participates in the 
execution of the program.

If a fragment is position-independent or relocatable, its execution address can 
vary during execution.

ELF image file view (linker output) 
The ELF image file view comprises Program Segments and output sections:
• a load region corresponds to a Program Segment
• an execution region corresponds to up to three output sections:

— RO section
— RW section
— ZI section.

One or more execution regions make up a load region.

Note
 With armlink, the maximum size of a Program Segment is 2GB.

When describing a memory view:

• the term root region is used to describe a region that has the same load and execution 
addresses

• load regions are equivalent to ELF segments.
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The following figure shows the relationship between the views at each link stage:

Figure 4-1 Relationship between sections, regions, and segments

4.1.1 See also

Tasks 
Introducing the ARM Compiler toolchain:
• Changing to the 64-bit linker on page 2-7.

Concepts 
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6.

Linker view ELF object file view

Load Region 1

Section Header Table 
(optional)

ELF Header

Load Region 2

Section Header Table

ELF Header

Program Header Table Program Header Table 
(optional)

Input Section 1.1.1

Input Section 1.2.1

Input Section 1.3.1

Input Section 1.1.2

...

...

Execution Region 1

Execution Region 2

Input Section 1.3.2

Input Section n

Input Section 2.1.1

...

Input Section 2.1.2

...

Input Section 2.1.3

...

ELF image file view

Segment 1 (Load Region 1)

Section Header Table 
(optional)

ELF Header

Segment 2 (Load Region 2)

Program Header Table

...

Output sections 1.1

Output section 2.1

Output sections 1.2

Output sections 1.3
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4.2 Input sections, output sections, regions, and Program Segments
An object or image file is constructed from a hierarchy of input sections, output sections, 
regions, and Program Segments:

Input section 
An input section is an individual section from an input object file. It contains 
code, initialized data, or describes a fragment of memory that is not initialized or 
that must be set to zero before the image can execute. These properties are 
represented by attributes such as RO, RW and ZI. These attributes are used by 
armlink to group input sections into bigger building blocks called output sections 
and regions.

Output section 
An output section is a group of input sections that have the same RO, RW, or ZI 
attribute, and that are placed contiguously in memory by the linker. An output 
section has the same attributes as its constituent input sections. Within an output 
section, the input sections are sorted according to the section placement rules.

Region A region is a contiguous sequence of one, two, or three output sections depending 
on the contents of the number of sections with different attributes. The output 
sections in a region are sorted according to their attributes. The RO output section 
is first, then the RW output section, and finally the ZI output section. A region 
typically maps onto a physical memory device, such as ROM, RAM, or 
peripheral.

Program Segment 
A Program Segment corresponds to a load region and contains output sections. 
Program Segments hold information such as text and data.

Note
 With armlink, the maximum size of a Program Segment is 2GB.

4.2.1 See also

Tasks 
Introducing the ARM Compiler toolchain:
• Changing to the 64-bit linker on page 2-7.

Concepts 
• The image structure on page 4-3
• Methods of specifying an image memory map with the linker on page 4-8
• Section placement with the linker on page 4-19.
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4.3 Load view and execution view of an image
Image regions are placed in the system memory map at load time. Before you can execute the 
image, you might have to move some of its regions to their execution addresses and create the 
ZI output sections. For example, initialized RW data might have to be copied from its load 
address in ROM to its execution address in RAM. 

The memory map of an image has the following distinct views:

Load view Describes each image region and section in terms of the address where it 
is located when the image is loaded into memory, that is, the location 
before image execution starts.

Execution view Describes each image region and section in terms of the address where it 
is located during image execution.

The following figure shows these views:

Figure 4-2 Load and execution memory maps

The following table compares the load and execution views:

4.3.1 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Methods of specifying an image memory map with the linker on page 4-8

RW section

RO section RO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

Table 4-1 Comparing load and execution views

Load Description Execution Description

Load 
address

The address where a section or region is 
loaded into memory before the image 
containing it starts executing. The load 
address of a section or a non-root region 
can differ from its execution address

Execution 
address

The address where a section or region is 
located while the image containing it is 
being executed

Load region A region in the load address space Execution 
region

A region in the execution address space
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 4-6
ID091611 Non-Confidential



Image structure and generation 
• Section placement with the linker on page 4-19.
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4.4 Methods of specifying an image memory map with the linker
An image can consist of any number of regions and output sections. Regions can have different 
load and execution addresses. To construct the memory map of an image, armlink must have 
information about:
• how input sections are grouped into output sections and regions
• where regions are to be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to pass this 
information to armlink:

Using command-line options 
The following options can be used for simple cases where an image has only one 
or two load regions and up to three execution regions:
• --first

• --last

• --ro_base

• --rw_base

• --ropi

• --rwpi

• --split

• --rosplit

• --zi_base.
These options provide a simplified notation that gives the same settings as a 
scatter-loading description for a simple image.

Using a scatter file 
A scatter file is a textual description of the memory layout and code and data 
placement. It is used for more complex cases where you require complete control 
over the grouping and placement of image components. To use a scatter file, 
specify --scatter=filename at the command-line.

Note
 You cannot use --scatter with the other memory map related command-line options.

 

Table 4-2 Comparison of scatter file and equivalent command-line options

Scatter file Equivalent command-line options

LR1 0x0000 0x20000
{
    ER1 0x0 0x2000
    {
        init.o (INIT, +FIRST)
        *(+RO)
    }
    RAM 0x400000
    { 
        *(+RW)
    }
    RAM 0x405000
    {
        *(+ZI)
    }
}

--ro_base=0x0

--first=init.o(init)

--rw_base=0x400000

--zi_base=0x405000
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ID091611 Non-Confidential



Image structure and generation 
4.4.1 See also

Tasks 
• Chapter 8 Using scatter files.

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Types of simple image on page 4-10.

Reference 
Linker Reference:
• --first=section_id on page 2-71
• --last=section_id on page 2-93
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142
• --split on page 2-154
• --zi_base=address on page 2-193.
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4.5 Types of simple image
A simple image consists of a number of input sections of type RO, RW, and ZI. These input 
sections are collated to form the RO, RW, and ZI output sections. Depending on how the output 
sections are arranged within load and execution regions, there are three basic types of simple 
image:

Type 1 One region in load view, three contiguous regions in execution view. Use the 
--ro_base option to create this type of image.

Type 2 One region in load view, three non-contiguous regions in execution view. Use the 
--ro_base and --rw_base options to create this type of image.

Type 3 Two regions in load view, three non-contiguous regions in execution view. Use 
the --ro_base, --rw_base, and --split options to create this type of image.

In all the simple image types:
• the first execution region contains the RO output section
• the second execution region contains the RW output section (if present)
• the third execution region contains the ZI output section (if present).

These execution regions are referred to as the RO, the RW, and the ZI execution region.

However, you can also use the --rosplit option for a Type 3 image. This option splits the default 
load region into two RO output sections, one for code and one for data.

You can also use the --zi_base command-line option to specify the base address of a ZI 
execution region for Type 1 and Type 2 images. This option is ignored if you also use the --split 
command-line option that is required for Type 3 images.

You can also create simple images with scatter files.

4.5.1 See also

Concepts 
• Type 1 image, one load region and contiguous execution regions on page 4-11
• Type 2 image, one load region and non-contiguous execution regions on page 4-13
• Type 3 image, two load regions and non-contiguous execution regions on page 4-15
• Equivalent scatter-loading descriptions for simple images on page 8-62.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --scatter=file on page 2-142
• --split on page 2-154
• --zi_base=address on page 2-193.
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4.6 Type 1 image, one load region and contiguous execution regions
A Type 1 image consists of a single load region in the load view and three execution regions 
placed contiguously in the memory map. This approach is suitable for systems that load 
programs into RAM, for example, an OS bootloader or a desktop system.

Figure 4-3 Simple type 1 image

Use the following command for images of this type:

armlink --ro_base 0x8000

Note
 0x8000 is the default address, so you do not have to specify --ro_base for the example.

4.6.1 Load view

The single load region consists of the RO and RW output sections, placed consecutively. The 
RO and RW execution regions are both root regions. The ZI output section does not exist at load 
time. It is created before execution, using the output section description in the image file.

4.6.2 Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged 
contiguously. The execution addresses of the RO and RW execution regions are the same as 
their load addresses, so nothing has to be moved from its load address to its execution address. 
However, the ZI execution region that contains the ZI output section is created at run-time.

Use armlink option --ro_base address to specify the load and execution address of the region 
containing the RO output. The default address is 0x8000.

Use the --zi_base command-line option to specify the base address of a ZI execution region.

RO output section

RW output section

RO output section

RW execution
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Single
load
region
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Execution viewLoad view
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RW output section

0x0000
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4.6.3 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --zi_base=address on page 2-193.
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4.7 Type 2 image, one load region and non-contiguous execution regions
A Type 2 image consists of a single load region, and three execution regions in execution view. 
The RW execution region is not contiguous with the RO execution region. This approach is 
used, for example, for ROM-based embedded systems, where RW data is copied from ROM to 
RAM at startup:

Figure 4-4 Simple type 2 image

Use the following command for images of this type:

armlink --ro_base 0x0 --rw_base 0xA000

4.7.1 Load view

In the load view, the single load region consists of the RO and RW output sections placed 
consecutively, for example, in ROM. Here, the RO region is a root region, and the RW region 
is non-root. The ZI output section does not exist at load time. It is created at runtime.

4.7.2 Execution view

In the execution view, the first execution region contains the RO output section and the second 
execution region contains the RW and ZI output sections. 

The execution address of the region containing the RO output section is the same as its load 
address, so the RO output section does not have to be moved. That is, it is a root region.

The execution address of the region containing the RW output section is different from its load 
address, so the RW output section is moved from its load address (from the single load region) 
to its execution address (into the second execution region). The ZI execution region, and its 
output section, is placed contiguously with the RW execution region.
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Use armlink options --ro_base address to specify the load and execution address for the RO 
output section, and --rw_base exec_address to specify the execution address of the RW output 
section. If you do not use the --ro_base option to specify the address, the default value of 0x8000 
is used by armlink. For an embedded system, 0x0 is typical for the --ro_base value. If you do not 
use the --rw_base option to specify the address, the default is to place RW directly above RO (as 
in a Type 1 image).

Use the --zi_base command-line option to specify the base address of a ZI execution region.

Note
 The execution region for the RW and ZI output sections cannot overlap any of the load regions.

4.7.3 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Type 1 image, one load region and contiguous execution regions on page 4-11.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139
• --zi_base=address on page 2-193.
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4.8 Type 3 image, two load regions and non-contiguous execution regions
A Type 3 image is similar to a Type 2 image except that the single load region is split into two 
root load regions.

Figure 4-5 Simple type 3 image

Use the following command for images of this type:

armlink --split --ro_base 0x8000 --rw_base 0xE000

4.8.1 Load view

In the load view, the first load region consists of the RO output section, and the second load 
region consists of the RW output section. The ZI output section does not exist at load time. It is 
created before execution, using the description of the output section contained in the image file.

4.8.2 Execution view

In the execution view, the first execution region contains the RO output section, and the second 
execution region contains the RW and ZI output sections. 

The execution address of the RO region is the same as its load address, so the contents of the 
RO output section do not have to be moved or copied from their load address to their execution 
address. Both RO and RW are root regions.

The execution address of the RW region is also the same as its load address, so the contents of 
the RW output section are not moved from their load address to their execution address. 
However, the ZI output section is created at run-time and is placed contiguously with the RW 
region.
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Specify the load and execution address using the following linker options:

--split Splits the default single load region, that contains both the RO and RW output 
sections, into two root load regions:
• one containing the RO output section
• one containing the RW output section.
You can then place them separately using --ro_base and --rw_base.

--ro_base address

Instructs armlink to set the load and execution address of the region containing 
the RO section at a four-byte aligned address, for example, the address of the first 
location in ROM. If you do not use the --ro_base option to specify the address, 
the default value of 0x8000 is used by armlink.

--rw_base address

Instructs armlink to set the execution address of the region containing the RW 
output section at a four-byte aligned address. If this option is used with --split, 
this specifies both the load and execution addresses of the RW region, for 
example, a root region.

4.8.3 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Type 2 image, one load region and non-contiguous execution regions on page 4-13.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139
• --split on page 2-154.
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4.9 Image entry points
An entry point in an image is a location where program execution can start. There are two 
distinct types of entry point:

Initial entry point 
The initial entry point for an image is a single value that is stored in the ELF 
header file. For programs loaded into RAM by an operating system or boot loader, 
the loader starts the image execution by transferring control to the initial entry 
point in the image.
An image can have only one initial entry point. The initial entry point can be, but 
is not required to be, one of the entry points set by the ENTRY directive.

Entry points set by the ENTRY directive 
You can select one of many possible entry points for an image. An image can have 
only one entry point.
You create entry points in objects with the ENTRY directive in an assembler file. In 
embedded systems, this directive is typically used to mark code that is entered 
through the processor exception vectors, such as RESET, IRQ, and FIQ. 
The directive marks the output code section with an ENTRY keyword that instructs 
the linker not to remove the section when it performs unused section elimination.
For C and C++ programs, the __main() function in the C library is also an entry 
point.
If an embedded image is to be used by a loader, it must have a single initial entry 
point specified in the header. Use the --entry command-line option to select the 
entry point.

4.9.1 See also

Tasks 
• About specifying an initial entry point on page 4-18.

Reference 
Linker Reference:
• --entry=location on page 2-58.
Assembler Reference:
• ENTRY on page 6-65.
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4.10 About specifying an initial entry point
You must specify at least one initial entry point for a program otherwise the linker produces a 
warning. Not every source file has to have an entry point. Multiple entry points in a single source 
file are not permitted.

For embedded applications with ROM at zero use --entry 0x0, or optionally 0xFFFF0000 for 
CPUs that are using high vectors.

The initial entry point must meet the following conditions:

• the image entry point must always lie within an execution region

• the execution region must not overlay another execution region, and must be a root 
execution region (the load address is the same as the execution address).

If you do not use the --entry option to specify the initial entry point then:

• if the input objects contain only one entry point set by the ENTRY directive, the linker uses 
that entry point as the initial entry point for the image

• the linker generates an image that does not contain an initial entry point when either:
— more than one entry point has been specified by using the ENTRY directive
— no entry point has been specified by using the ENTRY directive.

4.10.1 See also

Concepts 
• What is a root region? on page 8-13.

Reference 
Linker Reference:
• --entry=location on page 2-58.
Assembler Reference:
• ENTRY on page 6-65.
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4.11 Section placement with the linker
By default, the linker places input sections in the following order when generating an image:

1. By attribute as follows:
a. read-only code
b. read-only data
c. read-write code
d. read-write data
e. zero-initialized data.

2. By input section name if they have the same attributes. Names are considered to be 
case-sensitive and are compared in alphabetical order using the ASCII collation sequence 
for characters. 

3. By their relative positions in the input file if they have the same attributes and section 
names., except where overridden by FIRST or LAST.

Portions of the image are collected together into a minimum number of contiguous regions.

Note
 The sorting order is unaffected by ordering within scatter files or object file names.

These rules mean that the positions of input sections with identical attributes and names 
included from libraries is not predictable. If you require more precise positioning, specify the 
individual modules explicitly in a scatter file, and include the modules in the input file list for 
the armlink command.

The base address of each input section is determined by the sorting order defined by the linker, 
and is correctly aligned within the output section that contains it.

By default, the linker creates an image consisting of an RO output section, an RW output 
section, and optionally a ZI output section. The RO output section can be protected at run-time 
on systems that have memory management hardware. RO sections can also be placed into ROM 
in the target.

Alternative sorting orders are available with the --sort=algorithm command-line option. The 
linker might change the algorithm to minimise the amount of veneers generated if no algorithm 
is chosen.

4.11.1 Handling unassigned sections

The linker might not be able to place some input sections in any execution region. When this 
happens, the linker generates an error message. This might occur because your current scatter 
file does not permit all possible module select patterns and input section selectors. How you fix 
this depends on the importance of placing these sections correctly:

• If the sections must be placed at specific locations, then modify your scatter file to include 
specific module selectors and input section selectors as required.

• If the placement of the unassigned sections is not important, you can use one or more ,ANY 
module selectors with optional input section selectors.

When the linker creates an input section for each ELF section in the input objects, it increments 
a global counter. The value of this counter is stored in the section as the creation index. The 
creation index is used when placing any unassigned sections that have identical properties.
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4.11.2 Example

The following scatter file shows how the linker places sections:

LoadRegion 0x8000
{
    ExecRegion1 0x0000 0x4000
    {
        *(sections)
        *(moresections)
    }
    ExecRegion2 0x4000 0x2000
    {
        *(evenmoresections)
    }
}

The order of execution regions within the load region is not altered by the linker.

4.11.3 See also

Tasks 
• Placing sections with FIRST and LAST attributes on page 4-21
• Placing functions and data at specific addresses on page 8-18
• Placing a named section explicitly using scatter-loading on page 8-23
• Placing unassigned sections with the .ANY module selector on page 8-25.

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• About ordering execution regions containing Thumb code on page 4-25
• Overview of veneers on page 4-26
• Section alignment with the linker on page 4-22.

Reference 
Linker Reference:
• --sort=algorithm on page 2-152
• Syntax of an input section description on page 4-22.
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4.12 Placing sections with FIRST and LAST attributes
You can make sure that a section is placed either first or last in its execution region. For example, 
you might want to make sure the section containing the vector table is placed first in the image. 
To do this, use one of the following methods:

• If you are not using scatter-loading, use the --first and --last linker command-line 
options to place input sections.

• If you are using scatter-loading, use the attributes FIRST and LAST in the file to mark the 
first and last input sections in an execution region if the placement order is important.
However, FIRST and LAST must not violate the basic attribute sorting order. For example, 
FIRST RW is placed after any read-only code or read-only data.

4.12.1 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Section placement with the linker on page 4-19
• About scatter-loading on page 8-3.

Reference 
Linker Reference:
• --first=section_id on page 2-71
• --last=section_id on page 2-93
• Syntax of an input section description on page 4-22.
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4.13 Section alignment with the linker
When input sections have been ordered and before the base addresses are fixed, armlink inserts 
padding, if required, to force each input section to start at an address that is a multiple of the 
input section alignment.

The linker permits ELF program headers and output sections to be aligned on a four-byte 
boundary regardless of the maximum alignment of the input sections. This enables armlink to 
minimize the amount of padding that it inserts into the image.

If you require strict conformance with the ELF specification then use the --no_legacyalign 
option. The linker faults the base address of a region if it is not aligned so padding might be 
inserted to ensure compliance. When --no_legacyalign is used the region alignment is the 
maximum alignment of any input section contained by the region.

If you are using scatter-loading, you can increase the alignment of a load region or execution 
region with the ALIGN attribute. For example, you can change an execution region that is 
normally four-byte aligned to be eight-byte aligned. However, you cannot reduce the natural 
alignment. For example, you cannot force two-byte alignment on a region that is normally 
four-byte aligned.

4.13.1 See also

Tasks 
• About creating regions on page boundaries on page 8-56.

Reference 
Linker Reference:
• --legacyalign, --no_legacyalign on page 2-95
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Example of aligning a base address in execution space but still tightly packed in load 

space on page 4-41.
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4.14 Demand paging
In operating systems that support virtual memory an ELF file can be loaded by mapping the ELF 
files into the address space of the process loading the file. When a virtual address in a page that 
is mapped to the file is accessed the operating system loads that page from disk. ELF files that 
are to be used this way must conform to a certain format.

Use the --paged command-line option to enable demand paging mode. This helps produce ELF 
files that can be demand paged efficiently.

Note
 ELF files produced with the --sysv option are already demand-paged compliant. --arm_linux 
also implies --sysv.

The basic constraints on the ELF file are:

• there is no difference between the load and execution address for any Output Section

• all PT_LOAD Program Headers have a minimum alignment, pt_align, of the page size 
for the operating system

• all PT_LOAD Program Headers have a file offset, pt_offset, that is congruent to the 
virtual address (pt_addr) modulo pt_align.

When --paged is on:

• The linker automatically generates the Program Headers from the execution region base 
addresses. The usual situation where one load region generates one Program Header no 
longer holds.

• The operating system page size is controlled by the --pagesize command-line option.

• The linker attempts to place the ELF Header and Program Header in the first PT_LOAD 
program header, if space is available.

4.14.1 Example

This is an example of a demand paged scatter file:

LR1 GetPageSize() + SizeOfHeaders()
{
    ER_RO +0
    {
        *(+RO)
    }
    ER_RW +GetPageSize()
    {
        *(+RW)
    }
    ER_ZI +0
    {
        *(+ZI)
    }
}

4.14.2 See also

Concepts 
• About scatter-loading on page 8-3
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Reference 
Linker Reference:
• --arm_linux on page 2-13
• --paged on page 2-117
• --pagesize=pagesize on page 2-118
• --pagesize=pagesize on page 2-118
• --scatter=file on page 2-142
• --sysv on page 2-170
• GetPageSize() function on page 4-43
• SizeOfHeaders() function on page 4-44.
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4.15 About ordering execution regions containing Thumb code
The 16-bit Thumb branch range is 4MB. When an execution region contains Thumb code that 
exceeds 4MB, armlink attempts to order sections that are at a similar average call depth and to 
place the most commonly called sections centrally. This helps to minimize the number of 
veneers generated.

The 32-bit Thumb branch range is 16MB. Section re-ordering is only required if that limit is 
exceeded.

To disable section re-ordering, use the --no_largeregions command-line option.

4.15.1 See also

Concepts 
• Section placement with the linker on page 4-19
• Overview of veneers on page 4-26.

Reference 
Linker Reference:
• --largeregions, --no_largeregions on page 2-92.
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4.16 Overview of veneers
Veneers are small sections of code generated by the linker and inserted into your program. The 
BL instruction is PC-relative and has a limited branch range. Therefore, armlink must generate 
veneers when a branch involves a destination beyond the branching range of the BL instruction.

The range of a BL instruction is 32MB for ARM, 16MB for 32-bit Thumb, and 4MB for 16-bit 
Thumb. A veneer extends the range of the branch by becoming the intermediate target of the 
branch instruction. The veneer then sets the PC to the destination address. This enables the 
veneer to branch anywhere in the 4 GB address space. If ARM and Thumb are mixed, the veneer 
also handles processor state changes.

The linker can generate the following veneer types depending on what is required:
• inline veneers
• short branch veneers
• long branch veneers.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is generated 
only if no other existing veneer can satisfy the requirements. If two input sections contain a long 
branch to the same destination, only one veneer is generated that is shared by both branch 
instructions. A veneer is only shared in this way if it can be reached by both sections.

If you are using ARMv4T, armlink generates veneers when a branch involves change of state 
between ARM and Thumb. You still get interworking veneers for ARMv5TE and later when 
using conditional branches, because there is no conditional BL instruction.Veneers for state 
changes are also required for B instructions in ARMv5 and later.

4.16.1 See also

Concepts 
• Veneer sharing on page 4-27
• Veneer types on page 4-28
• Generation of position independent to absolute veneers on page 4-29
• Reuse of veneers when scatter-loading on page 4-30.
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4.17 Veneer sharing
If multiple objects result in the same veneer being created, the linker creates a single instance 
of that veneer. The veneer is then shared by those objects.

You can use the command-line option --no_veneershare to specify that veneers are not shared. 
This assigns ownership of the created veneer section to the object that created the veneer and so 
enables you to select veneers from a particular object in a scatter file, for example:

LR 0x8000
{

ER_ROOT +0
{

      object1.o(Veneer$$Code)
}

}

Be aware that veneer sharing makes it impossible to assign an owning object. Using 
--no_veneershare provides a more consistent image layout. However, this comes at the cost of 
a significant increase in code size, because of the extra veneers generated by the linker.

4.17.1 See also

Concepts 
• Overview of veneers on page 4-26
• About scatter-loading on page 8-3.

Reference 
Linker Reference:
• --veneershare, --no_veneershare on page 2-183
• Chapter 4 Formal syntax of the scatter file.
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4.18 Veneer types
Veneers have different capabilities and use different code pieces. The linker selects the most 
appropriate, smallest, and fastest depending on the branching requirements:
• Inline veneer:

— used to perform only a state change
— the veneer must be inserted just before the target section to be in range
— an ARM-Thumb interworking veneer has a range of 256 bytes so the function entry 

point must appear within 256 bytes of the veneer
— a Thumb-ARM interworking veneer has a range of zero bytes so the function entry 

point must appear immediately after the veneer
— an inline veneer is always position-independent.

• Short branch veneer:
— an interworking Thumb to ARM short branch veneer has a range of 32MB, the 

range for an ARM instruction
— a short branch veneer is always position-independent.

• Long branch veneer:
— can branch anywhere in the 4GB address space
— all long branch veneers are also interworking veneers
— there are different long branch veneers for absolute or position-independent code.

When you are using veneers be aware of the following:

• The inline veneer limitations mean that you cannot move inline veneers out of an 
execution region using a scatter file. Use the command-line option --no_inlineveneer to 
prevent the generation of inline veneers.

• All veneers cannot be collected into one input section because the resulting veneer input 
section might not be within range of other input sections. If the sections are not within 
addressing range, long branching is not possible.

• The linker generates position-independent variants of the veneers automatically. 
However, because such veneers are larger than non position-independent variants, the 
linker only does this where necessary, that is, where the source and destination execution 
regions are both position-independent and are rigidly related.

Veneers are generated to optimize code size. armlink, therefore, chooses the variant in order of 
preference:
1. Inline veneer.
2. Short branch veneer.
3. Long veneer.

4.18.1 See also

Concepts 
• Overview of veneers on page 4-26.

Reference 
Linker Reference:
• --inlineveneer, --no_inlineveneer on page 2-86
• --max_veneer_passess=value on page 2-110.
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4.19 Generation of position independent to absolute veneers
The normal call instruction encodes the address of the target as an offset from the calling 
address. When calling from position independent (PI) code to absolute code the offset cannot be 
calculated at link time, so the linker must insert a long-branch veneer.

The generation of PI to absolute veneers can be controlled using the --piveneer option, that is 
set by default. When this option is turned off using --no_piveneer, the linker generates an error 
when a call from PI code to absolute code is detected.

4.19.1 See also

Concepts 
• Overview of veneers on page 4-26.

Reference 
Linker Reference:
• --max_veneer_passess=value on page 2-110
• --piveneer, --no_piveneer on page 2-120.
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4.20 Reuse of veneers when scatter-loading
The linker reuses veneers whenever possible, but there are some limitations on the reuse of 
veneers in protected load regions and overlaid execution regions.

A scatter file enables you to create regions that share the same area of RAM:
• If you use the PROTECTED keyword for a load region it prevents:

— overlapping of load regions
— veneer sharing
— string sharing with the --merge option.

• If you use the OVERLAY keyword for a region, both the following conditions are enforced 
on reuse:
— an overlay execution region cannot reuse a veneer placed in any other overlay 

execution region
— no other execution region can reuse a veneer placed in an overlay execution region.

If these conditions are not met, new veneers are created instead of reusing existing ones. Unless 
you have instructed the linker to place veneers somewhere specific using scatter-loading, a 
veneer is always placed in the execution region that contains the call requiring the veneer. This 
implies that:
• for an overlay execution region, all its veneers are included within the execution region
• an overlay execution region never requires a veneer from another execution region.

4.20.1 See also

Concepts 
• Overview of veneers on page 4-26.

Reference 
• Load region attributes on page 4-7
• Address attributes for load and execution regions on page 4-14.
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4.21 Using command-line options to control the generation of C++ exception tables
By default, or if the option --exceptions is specified, the image can contain exception tables. 
Exception tables are discarded silently if no code throws an exception. However, if the option 
--no_exceptions is specified, the linker generates an error if any exceptions sections are present 
after unused sections have been eliminated.

You can use the --no_exceptions option to ensure that your code is exceptions free. The linker 
generates an error message to highlight that exceptions have been found and does not produce 
a final image.

However, you can use the --no_exceptions option with the --diag_warning option to downgrade 
the error message to a warning. The linker produces a final image but also generates a message 
to warn you that exceptions have been found.

The linker can create exception tables for legacy objects that contain debug frame information. 
The linker can do this safely for C and assembly language objects. By default, the linker does 
not create exception tables. This is the same as using the linker option 
--exceptions_tables=nocreate.

The linker option --exceptions_tables=unwind enables the linker to use the .debug_frame 
information to create a register-restoring unwinding table for each section in your image that 
does not already have an exception table. If this is not possible, the linker creates a nounwind 
table instead.

Use the linker option --exceptions_tables=cantunwind to create a nounwind table for each 
section in your image that does not already have an exception table.

Note
 Be aware of the following:

• With the default settings, that is, --exceptions --exception_tables=nocreate, it is not safe 
to throw an exception through C or assembly code, unless the C code is compiled with the 
option --exceptions.

• The linker can generate frame unwinding instructions from objects with .debug_frame 
information. Frame unwinding is sufficient for C and assembler code. It is not sufficient 
for C++ code, because it does not call the destructors for the objects on the stack that is 
being unwound.
The cleanup code for C++ must be generated by the compiler with the --exceptions 
option.

4.21.1 See also

Reference 
Linker Reference:
• --diag_warning=tag[,tag,...] on page 2-48
• --exceptions, --no_exceptions on page 2-61
• --exceptions_tables=action on page 2-62.
Compiler Reference:
• --exceptions, --no_exceptions on page 3-86.
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4.22 About weak references and definitions
Weak references and definitions provide additional flexibility in the way the linker includes 
various functions and variables in a build. These references are typically to library functions.

Weak references 
If the linker cannot resolve normal, non-weak, references to symbols included in 
the link, it attempts to do so by finding the symbol in a library:
• If it is unable to find such a reference, the linker reports an error.
• If such a reference is resolved, the section it is resolved to is marked as 

used. This ensures the section is not removed by the linker as an unused 
section. Each non-weak reference must be resolved by exactly one 
definition. If there are multiple definitions, the linker reports an error.

Function or variable declarations in C source files can be marked with the __weak 
qualifier. As with extern, this qualifier tells the compiler that a function or 
variable is declared in another source file. Because the definition of this function 
or variable might not be available to the compiler, it creates a weak reference to 
be resolved by the linker.
The linker does not load an object from a library to resolve a weak reference. It is 
able to resolve the weak reference only if the definition is included in the image 
for other reasons. The weak reference does not cause the linker to mark the 
section containing the definition as used, so it might be removed by the linker as 
unused. The definition might already exist in the image for several reasons:
• The symbol is strongly referenced somewhere else in the code.
• The symbol definition exists in the same ELF section as a symbol definition 

that is included for any of these reasons.
• The symbol definition is in a section that has been specified using --keep, 

or contains an ENTRY point.
• The symbol definition is in an object file included in the link and the 

--no_remove option is used. The object file is not referenced from a library 
unless that object file within the library is explicitly included on the linker 
command-line.

In summary, a weak reference is resolved if the definition is already included in 
the image, but it does not determine if that definition is included.
An unresolved weak function call is replaced with either:
• A no-operation instruction, NOP.
• A branch with link instruction, BL, to the following instruction. That is, the 

function call just does not happen.

Weak definitions 
A function definition, or an exported label in assembler, can also be marked as 
weak, as can a variable definition. In this case, a weak symbol definition is 
created in the object file.
A weak definition can be used to resolve any reference to that symbol in the same 
way as a normal definition. However, if another non-weak definition of that 
symbol exists in the build, the linker uses that definition instead of the weak 
definition, and does not produce an error due to multiply-defined symbols.
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4.22.1 Example of a weak reference

A library contains a function foo(), that is called in some builds of an application but not in 
others. If it is used, init_foo() must be called first. Weak references can be used to automate the 
call to init_foo().

The library can define init_foo() and foo() in the same ELF section. The application 
initialization code must call init_foo() weakly. If the application includes foo() for any reason, 
it also includes init_foo() and this is called from the initialization code. In any builds that do 
not include foo(), the call to init_foo() is removed by the linker.

Typically, the code for multiple functions defined within a single source file is placed into a 
single ELF section by the compiler. However, certain build options might alter this behavior, so 
you must use them with caution if your build is relying on the grouping of files into ELF 
sections:

• The compiler command-line option --split_sections results in each function being 
placed in its own section. In this example, compiling the library with this option results in 
foo() and init_foo() being placed in separate sections. Therefore init_foo() is not 
automatically included in the build due to a call to foo().

• The linker feedback mechanism, --feedback, records init_foo() as being unused during 
the link step. This causes the compiler to place init_foo() into its own section during 
subsequent compilations, so that it can be removed.

• The compiler directive #pragma arm section also instructs the compiler to generate a 
separate ELF section for some functions.

In this example, there is no need to rebuild the initialization code between builds that include 
foo() and do not include foo(). There is also no possibility of accidentally building an 
application with a version of the initialization code that does not call init_foo(), and other parts 
of the application that call foo().

An example of foo.c source code that is typically built into a library is:

void init_foo()
{
    // Some initialization code
}

void foo()
{
     // A function that is included in some builds
     // and requires init_foo() to be called first.
}

An example of init.c is:

__weak void init_foo(void);
int main(void)
{
    init_foo();
    //  Rest of code that may make calls foo() directly or indirectly.
}

An example of a weak reference generated by the assembler is:

init.s:

  IMPORT init_foo WEAK
  AREA init, CODE, readonly
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    BL init_foo
    ;Rest of code
  END

4.22.2 Example of a weak definition

A simple or dummy implementation of a function can be provided as a weak definition. This 
enables you to built software with defined behavior without having to provide a full 
implementation of the function. It also enables you to provide a full implementation for some 
builds if required.

4.22.3 See also

Concepts 
• How the linker performs library searching, selection, and scanning on page 4-35
• How the linker resolves references on page 4-39.

Reference 
Linker Reference:
• --feedback=file on page 2-66
• --keep=section_id on page 2-89
• --remove, --no_remove on page 2-134.
Compiler Reference:
• --split_sections on page 3-192
• __weak on page 5-23
• __attribute__((weak)) function attribute on page 5-57
• __attribute__((weakref("target"))) function attribute on page 5-58
• __attribute__((weak)) variable attribute on page 5-77
• __attribute__((weakref("target"))) variable attribute on page 5-78
• #pragma arm section [section_type_list] on page 5-83.
Assembler Reference:
• NOP on page 3-143
• B, BL, BX, BLX, and BXJ on page 3-116
• ENTRY on page 6-65
• EXPORT or GLOBAL on page 6-67.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 4-34
ID091611 Non-Confidential



Image structure and generation 
4.23 How the linker performs library searching, selection, and scanning
The linker always searches user libraries before the ARM libraries. If you specify the 
--no_scanlib command-line option, the linker does not search for the default ARM libraries and 
uses only those libraries that are specified in the input file list to resolve references.

The linker creates an internal list of libraries as follows:

1. Any libraries explicitly specified in the input file list are added to the list.

2. The user-specified search path is examined to identify ARM standard libraries to satisfy 
requests embedded in the input objects.
The best-suited library variants are chosen from the searched directories and their 
subdirectories. Libraries supplied by ARM have multiple variants that are named 
according to the attributes of their members.

Be aware of the following differences between the way the linker adds object files to the image 
and the way it adds libraries to the image:

• Each object file in the input list is added to the output image unconditionally, whether or 
not anything refers to it. At least one object must be specified.

• A member from a library is included in the output only if:
— an object file or an already-included library member makes a non-weak reference 

to it
— the linker is explicitly instructed to add it.

Note
 If a library member is explicitly requested in the input file list, the member is loaded even 

if it does not resolve any current references. In this case, an explicitly requested member 
is treated as if it is an ordinary object.

Unresolved references to weak symbols do not cause library members to be loaded. 

4.23.1 See also

Tasks 
• About weak references and definitions on page 4-32
• Controlling how the linker searches for the ARM standard libraries on page 4-36.

Reference 
Linker Reference:
• --keep=section_id on page 2-89
• --remove, --no_remove on page 2-134
• --scanlib, --no_scanlib on page 2-141.
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4.24 Controlling how the linker searches for the ARM standard libraries
By default, the linker searches for the ARM standard libraries in ../lib, relative to the location 
of the armlink executable. You can also control how the linker searches for the ARM standard 
libraries with either the --libpath command-line option or the ARMLIB or ARMCCnLIB environment 
variables.

Some libraries are stored in subdirectories. If the compiler requires a library from a particular 
subdirectory, it adds an import of a special symbol to identify the subdirectory to the linker. The 
names of subdirectories are placed in each compiled object by using a symbol of the form 
Lib$$Request$$sub_dir_name.

4.24.1 Using the --libpath command-line option

Use the --libpath command-line option with a comma-separated list of parent directories. This 
list must end with the parent directory of the ARM library directories armlib and cpplib.

The linker searches subdirectories given by the symbol Lib$$Request$$sub_dir_name, if you 
include the path separator character on the end of the library path:
• \ on Windows
• / on Red Hat Linux.

For example, for --libpath=mylibs\ and the symbol Lib$$Request$$armlib the linker searches 
the directories:

mylibs
mylibs\armlib

Note
 When the linker command-line option --libpath is used, any paths specified by the ARMCCnLIB 
variable are not searched.

The sequential nature of the search ensures that the linker chooses the library that appears earlier 
in the list if two or more libraries define the same symbol.

4.24.2 Using the ARMCCnLIB or ARMLIB environment variable

You can use either of the ARMLIB or ARMCCnLIB environment variables to specify a library path.

The linker searches subdirectories given by the symbol Lib$$Request$$sub_dir_name, if you 
include the path separator character on the end of the path specified in ARMCCnLIB:
• \ on Windows
• / on Red Hat Linux.

For example, if ARMCC5LIB is set to install_directory\lib\, the linker searches the directories:

lib
lib\armlib
lib\cpplib

4.24.3 Library search order

The linker searches for libraries in the following order:

1. Relative to the current path.

2. At the location specified with the command-line option --libpath.
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3. At the location specified in ARMCCnLIB.

4. At the location specified in ARMLIB.

5. At the location specified in ../lib.

4.24.4 How the linker selects ARM library variants

The ARM Compiler toolchain includes a number of variants of each of the libraries, that are 
built using different build options. For example, architecture versions, endianness, and 
instruction set. The variant of the ARM library is coded into the library name. The linker must 
select the best-suited variant from each of the directories identified during the library search.

The linker accumulates the attributes of each input object and then selects the library variant best 
suited to those attributes. If more than one of the selected libraries are equally suited, the linker 
retains the first library selected and rejects all others.

4.24.5 See also

Concepts 
• How the linker performs library searching, selection, and scanning on page 4-35.

Reference 
Linker Reference:
• --libpath=pathlist on page 2-96.
Using ARM® C and C++ Libraries and Floating-Point Support:
• C and C++ library naming conventions on page 2-120.
ARM® C and C++ Libraries and Floating-Point Support Reference:
• Chapter 2 The C and C++ libraries.
Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-14.
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4.25 Specifying user libraries when linking
To specify user libraries:
• include them with path information explicitly in the input file list
• add the --userlibpath option to the armlink command line with a comma-separated list of 

directories, and then specify the names of the libraries as input files.

You can use the --library=name option to specify static libraries, libname.a, or dynamic shared 
objects, libname.so. Dynamic searching is controlled by the --search_dynamic_libraries option. 
For example, the following command searches for libfoo.so before libfoo.a:

armlink --arm_linux --shared --fpic --search_dynamic_libraries --library=foo

If you do not specify a full path name to a library on the command line, the linker tries to locate 
the library in the directories specified by the --userlibpath option. For example, if the directory 
/mylib contains my_lib.a and other_lib.a, add /mylib/my_lib.a to the input file list with the 
command:

armlink --userlibpath /mylib my_lib.a *.o

If you add a particular member from a library this does not add the library to the list of 
searchable libraries used by the linker. To load a specific member and add the library to the list 
of searchable libraries include the library filename on its own as well as specifying 
library(member). For example, to load strcmp.o and place mystring.lib on the searchable library 
list add the following to the input file list:

mystring.lib(strcmp.o) mystring.lib

Note
 Any search paths used for the ARM standard libraries specified by either the linker 
command-line option --libpath or the ARMLIB or ARMCCnLIB environment variables are not 
searched for user libraries.

4.25.1 See also

Tasks 
• Controlling how the linker searches for the ARM standard libraries on page 4-36.

Reference 
Linker Reference:
• --libpath=pathlist on page 2-96
• --library=name on page 2-97
• --search_dynamic_libraries, --no_search_dynamic_libraries on page 2-144
• --userlibpath=pathlist on page 2-179.
ARM® C and C++ Libraries and Floating-Point Support Reference:
• Chapter 2 The C and C++ libraries.
Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-14.
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4.26 How the linker resolves references
When the linker has constructed the list of libraries, it repeatedly scans each library in the list to 
resolve references. There are two separate lists of files that are maintained. The lists are scanned 
in the following order to resolve all dependencies:

1. List of system libraries found in ../lib, or the directories specified by --libpath, 
ARMCCnLIB, or ARMLIB. These might also be specified by the -Jdir[,dir,...] compiler 
option.

2. The list of all other files that have been loaded. These might be specified by the 
-Idir[,dir,...] compiler option.

Each list is scanned using the following process:

1. Search all specified directories to select the most compatible library variants.

2. Add the variants to the list of libraries.

3. Scan each of the libraries to load the required members:
a. For each currently unsatisfied non-weak reference, search sequentially through the 

list of libraries for a matching definition. The first definition found is marked for 
step b. 
The sequential nature of the search ensures that the linker chooses the library that 
appears earlier in the list if two or more libraries define the same symbol. This 
enables you to override function definitions from other libraries, for example, the 
ARM C libraries, by adding your libraries to the input file list. However you must 
be careful to consistently override all the symbols in a library member or the 
behavior cannot be predicted.

b. Load the library members marked in stage 3a. As each member is loaded it might 
satisfy some unresolved references, possibly including weak ones. Loading a 
library member might also create new unresolved weak and non-weak references.

c. Repeat these stages until all non-weak references are either resolved or cannot be 
resolved by any library.

4. If any non-weak reference remains unsatisfied at the end of the scanning operation, 
generate an error message.

4.26.1 See also

Concepts 
• About weak references and definitions on page 4-32
• How the linker performs library searching, selection, and scanning on page 4-35
• Controlling how the linker searches for the ARM standard libraries on page 4-36
• Specifying user libraries when linking on page 4-38.

Reference 
Linker Reference:
• --libpath=pathlist on page 2-96.
Compiler Reference:
• -Idir[,dir,...] on page 3-113
• -Jdir[,dir,...] on page 3-124.
Introducing the ARM Compiler toolchain:
• Toolchain environment variables on page 2-14.
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4.27 Use of the strict family of options in the linker
The strict family of options are not directly related to error severity. Usually, you add a strict 
option because the standard linker checks are not precise enough or are potentially noisy with 
legacy objects.

The strict family of options are:
• --strict

• --[no_]strict_enum_size

• --[no_]strict_flags

• --[no_]strict_ph

• --[no_]strict_relocations

• --[no_]strict_symbols

• --[no_]strict_visibility

• --[no_]strict_wchar_size.

4.27.1 See also

Reference 
Linker Reference:
• --strict on page 2-156
• --strict_enum_size, --no_strict_enum_size on page 2-157
• --strict_flags, --no_strict_flags on page 2-158
• --strict_ph, --no_strict_ph on page 2-159
• --strict_relocations, --no_strict_relocations on page 2-160
• --strict_symbols, --no_strict_symbols on page 2-161
• --strict_visibility, --no_strict_visibility on page 2-162
• --strict_wchar_size, --no_strict_wchar_size on page 2-163.
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Using linker optimizations

The following topics describe the optimizations available in the linker, armlink:

Tasks 
• Overriding the compression algorithm used by the linker on page 5-15
• Working with RW data compression on page 5-17
• Inlining functions with the linker on page 5-18
• Handling branches that optimize to a NOP on page 5-21

Concepts 
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-6
• About linker feedback on page 5-7
• Example of using linker feedback on page 5-9
• About link-time code generation on page 5-11
• Optimization with RW data compression on page 5-13
• How the linker chooses a compressor on page 5-14
• How compression is applied on page 5-16
• Factors that influence function inlining on page 5-19
• About reordering of tail calling sections on page 5-22
• Restrictions on reordering of tail calling sections on page 5-23
• About merging comment sections on page 5-24.
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5.1 Elimination of common debug sections
In DWARF 2, the compiler and assembler generate one set of debug sections for each source 
file that contributes to a compilation unit. armlink can detect multiple copies of a debug section 
for a particular source file and discard all but one copy in the final image. This can result in a 
considerable reduction in image debug size.

In DWARF 3, common debug sections are placed in common groups. armlink discards all but 
one copy of each group with the same signature.

5.1.1 See also

Concepts 
• Input sections, output sections, regions, and Program Segments on page 4-5.
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-6.

Reference 
Compiler Reference:
• --debug, --no_debug on page 3-55.
Assembler Reference:
• --debug on page 2-9.

Other information 
• The DWARF Debugging Standard web site, http://www.dwarfstd.org/.
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5.2 Elimination of common groups or sections
The ARM compiler generates complete objects for linking. Therefore:

• If there are inline functions in C and C++ sources, each object contains the out-of-line 
copies of the inline functions that the object requires.

• If templates are used in C++ sources, each object contains the template functions that the 
object requires.

When these functions are declared in a common header file, the functions might be defined 
many times in separate objects that are subsequently linked together. To eliminate duplicates, 
the compiler compiles these functions into separate instances of common code sections or 
groups.

It is possible that the separate instances of common code sections, or groups, are not identical. 
Some of the copies, for example, might be found in a library that has been built with different, 
but compatible, build options, different optimization, or debug options.

If the copies are not identical, armlink retains the best available variant of each common code 
section, or group, based on the attributes of the input objects. armlink discards the rest.

If the copies are identical, armlink retains the first section or group located.

You control this optimization with the following linker options:

• Use the --bestdebug option to use the largest common data (COMDAT) group (likely to 
give the best debug view).

• Use the --no_bestdebug option to use the smallest COMDAT group (likely to give the 
smallest code size). This is the default.
Because --no_bestdebug is the default, the final image is the same regardless of whether 
you generate debug tables during compilation with --debug.

5.2.1 See also

Concepts 
• Input sections, output sections, regions, and Program Segments on page 4-5.
• Elimination of common debug sections on page 5-2
• Elimination of unused sections on page 5-4
• Elimination of unused virtual functions on page 5-6.
Using the Compiler:
• Inline functions on page 6-29.

Reference 
Linker Reference:
• --bestdebug, --no_bestdebug on page 2-21.
Compiler Reference:
• --debug, --no_debug on page 3-55.
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5.3 Elimination of unused sections
Unused section elimination is the most significant optimization on image size that is performed 
by the linker. It removes unreachable code and data from the final image.

Unused section elimination is suppressed in cases that might result in the removal of all sections.

To control this optimization use the --remove, --no_remove, --first, --last, and --keep linker 
options.

Unused section elimination requires an entry point. Therefore, if there is no entry point specified 
for an image, use the --entry linker option to specify an entry point and permit unused section 
elimination to work, if it is enabled.

Note
 By default, unused section elimination is disabled if you are building DLLs with --dll, or shared 
libraries with --shared. Therefore, you must explicitly include --remove to re-enable unused 
section elimination.

Use the --info unused linker option to instruct the linker to generate a list of the unused sections 
that it eliminates.

An input section is retained in the final image under the following conditions:

• if it contains an entry point

• if it is referred to, directly or indirectly, by a non-weak reference from an input section 
containing an entry point

• if it is specified as the first or last input section by the --first or --last option (or a 
scatter-loading equivalent)

• if it is marked as unremovable by the --keep option.

Note
 Compilers usually collect functions and data together and emit one section for each category. 
The linker can only eliminate a section if it is entirely unused.

You can mark a function or variable in source code with the __attribute__((used)) attribute. 
This causes armcc to generate the symbol __tagsym$$used for each of the functions and variables, 
and ensures that the function or variable is not removed by the linker.

You can also use the --split_sections compiler command-line option to instruct the compiler 
to generate one ELF section for each function in the source file.

5.3.1 See also

Concepts 
• Input sections, output sections, regions, and Program Segments on page 4-5
• About weak references and definitions on page 4-32
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused virtual functions on page 5-6.
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Reference 
Linker Reference:
• --entry=location on page 2-58
• --first=section_id on page 2-71
• --info=topic[,topic,...] on page 2-80
• --keep=section_id on page 2-89
• --last=section_id on page 2-93
• --remove, --no_remove on page 2-134.
Compiler Reference:
• --split_sections on page 3-192
• __attribute__((used)) function attribute on page 5-55
• __attribute__((used)) variable attribute on page 5-75.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 5-5
ID091611 Non-Confidential



Using linker optimizations 
5.4 Elimination of unused virtual functions
Unused section elimination efficiently removes unused functions from C code. In C++ 
applications, virtual functions and RunTime Type Information (RTTI) objects are referenced by 
pointer tables, known as vtables. Without extra information, the linker cannot determine which 
vtable entries are accessed at runtime. This means that the standard unused section elimination 
algorithm used by the linker cannot guarantee to remove unused virtual functions and RTTI 
objects.

Virtual Function Elimination (VFE) is a refinement of unused section elimination to reduce 
ROM size in images generated from C++ code. This optimization can be used to eliminate 
unused virtual functions and RTTI objects from your code.

An input section that contains more that one function can only be eliminated if all the functions 
are unused. The linker cannot remove unused functions from within a section.

VFE is a collaboration between the ARM compiler and the linker whereby the compiler supplies 
extra information about unused virtual functions that is then used by the linker. Based on this 
analysis, the linker is able to remove unused virtual functions and RTTI objects.

Note
 For VFE to work, the assembler requires all objects using C++ to have VFE annotations. If the 
linker finds a C++ mangled symbol name in the symbol table of an object and VFE information 
is not present, it turns off the optimization.

The compiler places the extra information in sections with names beginning .arm_vfe. These 
sections are ignored by the linker when it is not VFE-aware.

5.4.1 See also

Concepts 
• Elimination of common debug sections on page 5-2
• Elimination of common groups or sections on page 5-3
• Elimination of unused sections on page 5-4.

Reference 
Linker Reference:
• --vfemode=mode on page 2-186.
Compiler Reference:
• --rtti, --no_rtti on page 3-184.
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5.5 About linker feedback
Linker feedback is a collaboration between the compiler and linker that can increase the amount 
of unused code that can be removed from an ELF image.

The feedback option produces a text file containing a list of unused functions, and functions that 
have been inlined by the linker. This information can be fed back to the compiler, which can 
rebuild the objects, placing these functions in their own sections. These sections can then be 
removed by the linker during usual unused section elimination.

The feedback file has the following format:

;#<FEEDBACK># ARM Linker, RVCTN.n [Build num]: Last Updated: day mmm dd hh:mm:ss yyyy
;VERSION 0.2
;FILE filename.o unused_function <= USED 0 inlined_function <= LINKER_INLINED
...

The feedback file contains an entry for each object file. Each entry contains:
• the object filename specified as a comment:

;FILE filename.o

• a list of the functions in that file that are not used:
unused_function <= USED 0

• a list of the functions in that file that are inlined by the linker:
inlined_function <= LINKER_INLINED.

To use linker feedback, specify --feedback file on the linker and compiler command lines.

Note
 The compiler issues a warning message if no feedback file exists. Therefore, you might want to 
leave the --feedback file option off the first invocation of the compiler.

Additional feedback options are provided by the linker:

• If you are using scatter-loading then an executable ELF image cannot be created if your 
code does not fit into the region limits described in your scatter file. In this case use the 
--feedback_image=option command-line option.

• To control the information that the linker puts into the feedback file, use the 
--feedback_type=type command-line option. You can control whether or not to list 
functions that require interworking or unused functions.

5.5.1 See also

Tasks 
• Inlining functions with the linker on page 5-18
• Chapter 8 Using scatter files.

Concepts 
• Example of using linker feedback on page 5-9

Reference 
Linker Reference:
• --feedback=file on page 2-66
• --feedback_image=option on page 2-67
• --feedback_type=type on page 2-68
• --inline, --no_inline on page 2-85
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• --scatter=file on page 2-142.
Compiler Reference:
• --feedback=filename on page 3-92.

Developing Software for ARM® Processors:
• Chapter 5 Interworking ARM and Thumb.
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5.6 Example of using linker feedback
To see how linker feedback works:

1. Create a file fb.c containing the code shown in this example:

Example 5-1 Feedback example

#include <stdio.h>

void legacy()
{
    printf("This is a legacy function that is no longer used.\n");
}

int cubed(int i)
{
    return i*i*i;
}

void main()
{
    int n = 3;
    printf("%d cubed = %d\n",n,cubed(n));
}

2. Compile the program, and ignore the warning that the feedback file does not exist:
armcc --asm -c --feedback fb.txt fb.c

This inlines the cubed() function by default, and creates an assembler file fb.s and an 
object file fb.o. In the assembler file, the code for legacy() and cubed() is still present. 
Because of the inlining, there is no call to cubed() from main.
An out-of-line copy of cubed() is kept because it is not declared as static.

3. Link the object file to create the linker feedback file with the command line:
armlink --info sizes --list fbout1.txt --feedback fb.txt fb.o -o fb.axf

Linker diagnostics are output to the file fbout1.txt.
The linker feedback file identifies the source file that contains the unused functions in a 
comment (not used by the compiler) and includes entries for the legacy() and cubed() 
functions:
;#<FEEDBACK># ARM Linker, RVCT ver [Build num]: Last Updated: Date
;VERSION 0.2
;FILE fb.o
cubed <= USED 0
legacy <= USED 0

This shows that the functions are not used.

4. Repeat the compile and link stages with a different diagnostics file:
armcc --asm -c --feedback fb.txt fb.c

armlink --info sizes --list fbout2.txt fb.o -o fb.axf

5. Compare the two diagnostics files, fbout1.txt and fbout2.txt, to see the sizes of the 
image components (for example, Code, RO Data, RW Data, and ZI Data). The Code 
component is smaller.
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In the assembler file, fb.s, the legacy() and cubed() functions are no longer in the main 
.text area. They are compiled into their own ELF sections. Therefore, armlink can 
remove the legacy() and cubed() functions from the final image.

Note
 To get the maximum benefit from linker feedback you have to do a full compile and link at least 
twice. However, a single compile and link using feedback from a previous build is usually 
sufficient.

5.6.1 See also

Concepts 
• About linker feedback on page 5-7.

Reference 
Linker Reference:
• --feedback=file on page 2-66
• --feedback_image=option on page 2-67
• --feedback_type=type on page 2-68
• --info=topic[,topic,...] on page 2-80
• --list=file on page 2-102
• --scatter=file on page 2-142.
Compiler Reference:
• --asm on page 3-24
• -c on page 3-31
• --feedback=filename on page 3-92.
• --inline, --no_inline on page 3-121.
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5.7 About link-time code generation
Link-time code generation (LTCG) enables cross source-file optimization by delaying code 
generation until the link stage. This can significantly reduce code size. To enable LTCG, compile 
your source with -c --ltcg to create objects in an intermediate format. You must then link these 
object files with --ltcg to instruct the linker to perform code generation.

Both armcc and armlink have a --ltcg command-line option to enable LTCG.

Note
 The LTCG feature is deprecated. As an alternative ARM recommends you use the --multifile 
compiler option.

5.7.1 Considerations when using LTCG

Be aware of the following when using LTCG:

• If no input objects are compiled with --ltcg, the final object is the same as that produced 
without LTCG.

• Debug information is not preserved in any object files compiled with --ltcg. However, 
debug information is still preserved for any object files that are not compiled with --ltcg.

• You cannot use specific object file names in scatter files because LTCG causes a 
temporary object file to be created and used for linking. If you are using a scatter file, then 
you must match files using the wildcard *. Otherwise no match is made on the temporary 
file.

• If there is more than one entry point in the input object files provided to the linker, the 
linker clears all entry points. Therefore, you must specify an entry point on the linker 
command-line with:
--entry=symbol

Any input section containing an entry point is not removed. For example, where an object 
is built without --ltcg.

Note
 The linker option --entry=object(symbol) is not supported when using LTCG.

5.7.2 Example

The following example shows a typical use of LTCG:

1. Create ELF object files one.o and two.o with --ltcg:
armcc -c --ltcg one.c -o one.o

armcc -c --ltcg two.c -o two.o

The compiler generates intermediate code into the object files.

2. Link them using the command:
armlink --ltcg one.o two.o -o ltcg_image.axf

The linker:

1. Combines all the immediate code together, losing the link to original object file names.

2. Performs code generation for the intermediate code.
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3. Creates the output image.

5.7.3 About the intermediate object files generated by link-time code generation

An intermediate ELF object file generated by link-time code generation (LTCG) includes a 
section called .il, This section is marked with the flags SHF_EXECINSTR and SHF_ALLOC.

Using the intermediate object file one.o from the example, you can use the fromelf command to 
view these sections, for example:

fromelf --text -v one.o
...
====================================

** Section #1

    Name        : .il
    Type        : SHT_PROGBITS (0x00000001)
    Flags       : SHF_ALLOC + SHF_EXECINSTR (0x00000006)
...
    Link        : SHN_UNDEF
...
====================================

** Section #3

    Name        : .rel.il
    Type        : SHT_REL (0x00000009)
    Flags       : None (0x00000000)
...
    Link        : Section 2 (.symtab)
    Info        : Section 1 (.il)
...
====================================
...

5.7.4 See also

Reference 
Linker Reference:
• --entry=location on page 2-58
• --ltcg on page 2-106.
Compiler Reference:
• -c on page 3-31
• --ltcg on page 3-142
• --multifile, --no_multifile on page 3-149.
Using the fromelf Image Converter:
• --text on page 4-73.
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5.8 Optimization with RW data compression
RW data areas typically contain a large number of repeated values, such as zeros, that makes 
them suitable for compression. RW data compression is enabled by default to minimize ROM 
size.

The linker compresses the data. This data is then decompressed on the target at run time.

The ARM libraries contain some decompression algorithms and the linker chooses the optimal 
one to add to your image to decompress the data areas when the image is executed. You can 
override the algorithm chosen by the linker.

5.8.1 See also

Concepts 
• How compression is applied on page 5-16.

Tasks 
• Overriding the compression algorithm used by the linker on page 5-15
• Working with RW data compression on page 5-17.

Concepts 
• How the linker chooses a compressor on page 5-14
• How compression is applied on page 5-16.
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5.9 How the linker chooses a compressor
armlink gathers information about the content of data sections before choosing the most 
appropriate compression algorithm to generate the smallest image. If compression is 
appropriate, the linker can only use one data compressor for all the compressible data sections 
in the image. Different compression algorithms might be tried on these sections to produce the 
best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

When a compressor has been chosen, armlink adds the decompressor to the code area of your 
image. If the final image does not contain any compressed data, no decompressor is added.

5.9.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• How compression is applied on page 5-16.

Tasks 
• Overriding the compression algorithm used by the linker on page 5-15
• Working with RW data compression on page 5-17.
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5.10 Overriding the compression algorithm used by the linker
You can override the compression algorithm used by the linker by either:
• using the --datacompressor off option to turn off compression
• specifying a compression algorithm.

To specify a compression algorithm, use the number of the required compressor on the linker 
command line, for example:

armlink --datacompressor 2 ... 

Use the command-line option --datacompressor list to get a list of compression algorithms 
available in the linker:

armlink --datacompressor list
...
Num Compression algorithm
========================================================
0 Run-length encoding
1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression

When choosing a compression algorithm be aware that:
• compressor 0 performs well on data with large areas of zero-bytes but few nonzero bytes
• compressor 1 performs well on data where the nonzero bytes are repeating
• compressor 2 performs well on data that contains repeated values.

The linker prefers compressor 0 or 1 where the data contains mostly zero-bytes (>75%). 
Compressor 2 is chosen where the data contains few zero-bytes (<10%). If the image is made 
up only of ARM code, then ARM decompressors are used automatically. If the image contains 
any Thumb code, Thumb decompressors are used. If there is no clear preference, all 
compressors are tested to produce the best overall size.

Note
 It is not possible to add your own compressors into the linker. The algorithms that are available, 
and how the linker chooses to use them, might change in the future.

5.10.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• How the linker chooses a compressor on page 5-14
• How compression is applied on page 5-16.

Tasks 
• Working with RW data compression on page 5-17.

Reference 
Linker Reference:
• --datacompressor=opt on page 2-40.
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5.11 How compression is applied
Run-length compression encodes data as non-repeated bytes and repeated zero-bytes. 
Non-repeated bytes are output unchanged, followed by a count of zero-bytes. Limpel-Ziv 1977 
(LZ77) compression keeps track of the last n bytes of data seen and, when a phrase is 
encountered that has already been seen, it outputs a pair of values corresponding to the position 
of the phrase in the previously-seen buffer of data, and the length of the phrase.

5.11.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• How the linker chooses a compressor on page 5-14.

Tasks 
• Overriding the compression algorithm used by the linker on page 5-15
• Working with RW data compression on page 5-17.

Reference 
Linker Reference:
• --datacompressor=opt on page 2-40.
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5.12 Working with RW data compression
When working with RW data compression:

• Use the linker option --map to see where compression has been applied to regions in your 
code.

• The linker in RealView Compilation Tools (RVCT) v4.0 and later turns off RW 
compression if there is a reference from a compressed region to a linker-defined symbol 
that uses a load address.

• If you are using an ARM processor with on-chip cache, enable the cache after 
decompression to avoid code coherency problems.

Compressed data sections are automatically decompressed at run time, providing __main is 
executed, using code from the ARM libraries. This code must be placed in a root region. This 
is best done using InRoot$$Sections in a scatter file.

If you are using a scatter file, you can specify that a load or execution region is not to be 
compressed by adding the NOCOMPRESS attribute.

5.12.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• How the linker chooses a compressor on page 5-14
• How compression is applied on page 5-16
• Load$$ execution region symbols on page 7-7
• Chapter 8 Using scatter files.

Developing Software for ARM® Processors:
• Chapter 3 Embedded Software Development.

Tasks 
• Overriding the compression algorithm used by the linker on page 5-15.

Reference 
Linker Reference:
• --map, --no_map on page 2-108
• Chapter 4 Formal syntax of the scatter file.
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5.13 Inlining functions with the linker
The linker can inline small functions in place of a branch instruction to that function. For the 
linker to be able to do this, the function (without the return instruction) must fit in the four bytes 
of the branch instruction.

Use the --inline and --no_inline command-line options to control branch inlining.

If branch inlining optimization is enabled, the linker scans each function call in the image and 
then inlines as appropriate. When the linker finds a suitable function to inline, it replaces the 
function call with the instruction from the function that is being called.

The linker applies branch inlining optimization before any unused sections are eliminated so 
that inlined sections can also be removed if they are no longer called.

Note
 The linker can inline two 16-bit instructions in place of the 32-bit Thumb BL instruction.

Use the --info=inline command-line option to list all the inlined functions.

5.13.1 See also

Reference 
• Factors that influence function inlining on page 5-19
• Elimination of unused sections on page 5-4.
Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --inline, --no_inline on page 2-85.
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5.14 Factors that influence function inlining
The following factors influence the way functions are inlined:

• The linker handles only the simplest cases and does not inline any instructions that read 
or write to the PC because this depends on the location of the function.

• If your image contains both ARM and Thumb code, functions that are called from the 
opposite state must be built for interworking. The linker can inline functions containing 
up to two 16-bit Thumb instructions. However, an ARM calling function can only inline 
functions containing a single 16-bit Thumb instruction or 32-bit Thumb instruction.

• The action that the linker takes depends on the size of the function being called. The 
following table shows the state of both the calling function and the function being called:

The linker can inline in different states if there is an equivalent instruction available. For 
example, if a Thumb instruction is adds r0, r0 then the linker can inline the equivalent 
ARM instruction. It is not possible to inline from ARM to Thumb because there is less 
chance of Thumb equivalent to an ARM instruction.

• For a function to be inlined, the last instruction of the function must be either:
MOV pc, lr

or
BX lr

A function that consists only of a return sequence can be inlined as a NOP.

• A conditional ARM instruction can only be inlined if either:
— The condition on the BL matches the condition on the instruction being inlined. For 

example, BLEQ can only inline an instruction with a matching condition like ADDEQ.
— The BL instruction or the instruction to be inlined is unconditional. An unconditional 

ARM BL can inline any conditional or unconditional instruction that satisfies all the 
other criteria. An instruction that cannot be conditionally executed cannot be inlined 
if the BL instruction is conditional.

• A BL that is the last instruction of a 32-bit Thumb If-Then (IT) block cannot inline a 16-bit 
Thumb instruction or a 32-bit MRS, MSR, or CPS instruction. This is because the IT block 
changes the behavior of the instructions within its scope so inlining the instruction 
changes the behavior of the program.

5.14.1 See also

Concepts 
• Handling branches that optimize to a NOP on page 5-21.
Using the Assembler:
• Conditional instructions on page 6-2.

Table 5-1 Inlining small functions

Calling function 
state

Called function 
state Called function size

ARM ARM 4 to 8 bytes

ARM Thumb 2 to 6 bytes

Thumb Thumb 2 to 6 bytes
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Reference 
Assembler Reference:
• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-50
• B, BL, BX, BLX, and BXJ on page 3-116
• CPS on page 3-140
• MOV and MVN on page 3-61
• MRS on page 3-136
• MSR on page 3-138
• IT on page 3-119.
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5.15 Handling branches that optimize to a NOP
By default, the linker replaces any branch with a relocation that resolves to the next instruction 
with a NOP instruction. This optimization can also be applied if the linker reorders tail calling 
sections.

However, there are cases where you might want to disable the option, for example, when 
performing verification or pipeline flushes.

To control this optimization, use the --branchnop and --no_branchnop command-line options.

5.15.1 See also

Concepts 
• About reordering of tail calling sections on page 5-22.

Reference 
Linker Reference:
• --branchnop, --no_branchnop on page 2-25.
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5.16 About reordering of tail calling sections
A tail calling section is a section that contains a branch instruction at the end of the section. If 
the branch instruction has a relocation that targets a function at the start of another section, the 
linker can place the tail calling section immediately before the called section. The linker can 
then optimize the branch instruction at the end of the tail calling section to a NOP instruction.

You can take advantage of this behavior by using the command-line option --tailreorder to 
move tail calling sections immediately before their target.

Use the --info=tailreorder command-line option to display information about any tail call 
optimizations performed by the linker.

5.16.1 See also

Concepts 
• Veneer types on page 4-28
• Handling branches that optimize to a NOP on page 5-21
• Restrictions on reordering of tail calling sections on page 5-23.

Reference 
Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --tailreorder, --no_tailreorder on page 2-171.
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5.17 Restrictions on reordering of tail calling sections
The linker:

• Can only move one tail calling section for each tail call target. If there are multiple tail 
calls to a single section, the tail calling section with an identical section name is moved 
before the target. If no section name is found in the tail calling section that has a matching 
name, then the linker moves the first section it encounters.

• Cannot move a tail calling section out of its execution region.

• Does not move tail calling sections before inline veneers.

5.17.1 See also

Concepts 
• About reordering of tail calling sections on page 5-22.
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5.18 About merging comment sections
If input object files have any .comment sections that are identical, then the linker merges them to 
produce the smallest .common section while retaining all useful information.

The linker associates each input .comment section with the filename of the corresponding input 
object. If it merges identical .comment sections, then all the filenames that contain the common 
section are listed before the section contents, for example:

file1.o
file2.o
.comment section contents.

The linker merges these sections by default. To prevent the merging of identical .comment 
sections, use the --no_filtercomment command-line option.

Note
 If you do not want to retain the information in a .comment section, then you can use the 
--no_comment_section option to strip this section from the image.

5.18.1 See also

Reference 
Linker Reference:
• --comment_section, --no_comment_section on page 2-34
• --filtercomment, --no_filtercomment on page 2-69
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Getting information about images

The following topics describe how to get image information from armlink:

Tasks 
• Identifying the source of some link errors on page 6-3
• How to find where a symbol is placed when linking on page 6-6.

Concepts 
• Linker options for getting information about images on page 6-2
• Example of using the --info linker option on page 6-4.
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6.1 Linker options for getting information about images
You can use following options to get information about how your image is generated by the 
linker:

--info=topic[,topic,...]

Displays information about various topics.

--map Displays the image memory map, and contains the address and the size of each 
load region, execution region, and input section in the image, including 
linker-generated input sections. It also shows how RW data compression is 
applied.

--section_index_display

Use with --map to change the display of the index column.

--show_cmdline

Outputs the command-line used by the linker.

--symbols Displays a list of each local and global symbol used in the link step, and its value.

--verbose Displays detailed information about the link operation, including the objects that 
are included and the libraries that contain them.

--xref Displays a list of all cross-references between input sections.

--xrefdbg Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --list=file option.

6.1.1 See also

Concepts 
• Section alignment with the linker on page 4-22
• Optimization with RW data compression on page 5-13.
• Identifying the source of some link errors on page 6-3
• Example of using the --info linker option on page 6-4

Reference 
Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --list=file on page 2-102
• --map, --no_map on page 2-108
• --section_index_display=type on page 2-145
• --show_cmdline on page 2-147
• --symbols, --no_symbols on page 2-165
• --verbose on page 2-184
• --xref, --no_xref on page 2-190
• --xrefdbg, --no_xrefdbg on page 2-191.
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6.2 Identifying the source of some link errors
You can use --info inputs to identify the source of some link errors. For example, you can 
search the output to locate undefined references from library objects or multiply defined 
symbols caused by retargeting some library functions and not others. Search backwards from 
the end of this output to find and resolve link errors.

You can also use the --verbose option to output similar text with additional information on the 
linker operations.

6.2.1 See also

Concepts 
• Linker options for getting information about images on page 6-2.

Reference 
Linker Reference:
• --info=topic[,topic,...] on page 2-80
• --verbose on page 2-184.
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6.3 Example of using the --info linker option
To display the component sizes when linking enter:

armlink --info sizes ...

Here, sizes gives a list of the Code and Data sizes for each input object and library member in 
the image. Using this option implies --info sizes,totals.

The following example shows the output in tabular format with the totals separated out for easy 
reading:

Example 6-1 Image component size information

Code (inc. data)   RO Data   RW Data    ZI Data      Debug

3712        1580        19        44      10200       7436   Object Totals
0              0        16         0          0          0   (incl. Generated)
0              0         3         0          0          0   (incl. Padding)
21376        648       805         4        300      10216   Library Totals 
0              0         6         0          0          0   (incl. Padding)

===============================================================================

Code (inc. data)   RO Data    RW Data    ZI Data      Debug
25088       2228       824         48      10500      17652   Grand Totals
25088       2228       824         48      10500      17652   ELF Image Totals
25088       2228       824         48 0 0 ROM Totals

===============================================================================

Total RO  Size (Code + RO Data)             25912 (  25.30kB)
Total RW  Size (RW Data + ZI Data)          10548 (  10.30kB)
Total ROM Size (Code + RO Data + RW Data)   25960 (  25.35kB)

In this example:

Code (inc. Data) 
Shows how many bytes are occupied by code. In this image, there are 3712 bytes 
of code. This includes 1580 bytes of inline data (inc. data), for example, literal 
pools, and short strings. 

RO Data Shows how many bytes are occupied by read-only data. This is in addition to the 
inline data included in the Code (inc. data) column.

RW Data Shows how many bytes are occupied by read-write data.

ZI Data Shows how many bytes are occupied by zero-initialized data.

Debug Shows how many bytes are occupied by debug data, for example, debug input 
sections and the symbol and string table.

Object Totals 
Shows how many bytes are occupied by objects linked together to generate the 
image.
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(incl. Generated) 
armlink might generate image contents, for example, interworking veneers, and 
input sections such as region tables. If the Object Totals row includes this type of 
data, it is shown in this row.
In the example, there are 19 bytes of RO data in total, of which 16 bytes is 
linker-generated RO data.

Library Totals 
Shows how many bytes are occupied by library members that have been extracted 
and added to the image as individual objects.

(incl. Padding) 
armlink inserts padding, if required, to force section alignment. If the Object 
Totals row includes this type of data, it is shown in the associated (incl. Padding) 
row. Similarly, if the Library Totals row includes this type of data, it is shown in 
its associated row.
In the example, there are 19 bytes of RO data in the object total, of which 3 bytes 
is linker-generated padding, and 805 bytes of RO data in the library total, with 6 
bytes of padding.

Grand Totals 
Shows the true size of the image. In the example, there are 10200 bytes of ZI data 
(in Object Totals) and 300 of ZI data (in Library Totals) giving a total of 10500 
bytes.

ELF Image Totals 
If you are using RW data compression (the default) to optimize ROM size, the 
size of the final image changes and this is reflected in the output from --info. 
Compare the number of bytes under Grand Totals and ELF Image Totals to see the 
effect of compression.
In the example, RW data compression is not enabled. If data is compressed, the 
RW value changes.

ROM Totals 
Shows the minimum size of ROM required to contain the image. This does not 
include ZI data and debug information which is not stored in the ROM.

6.3.1 See also

Concepts 
• Linker options for getting information about images on page 6-2.

Reference 
Linker Reference:
• --info=topic[,topic,...] on page 2-80.
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6.4 How to find where a symbol is placed when linking
To find where a symbol is placed in an ELF image file when linking, use the --keep=section_id 
and --map options to view the image memory map. For example, if object(section) is the 
section containing the symbol, enter:

armlink --keep=object(section) --map s.o --output=s.axf

The memory map shows where the section containing the symbol is placed.

6.4.1 Example

Do the following:

1. Create the file s.c containing the following source code:
long long altstack[10] __attribute__ ((section ("STACK"), zero_init));

int main()
{
    return sizeof(altstack);
}

2. Compile the source:
armcc -c s.c -o s.o

3. Link the object s.o, keeping the STACK symbol and displaying the image memory map:
armlink --keep=s.o(STACK) --map s.o --output=s.axf

4. Locate the STACK symbol in the output, for example:
...
Execution Region ER_RW (Base: 0x000081c8, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

**** No section assigned to this execution region ****

Execution Region ER_ZI (Base: 0x000081c8, Size: 0x000000b0, Max: 0xffffffff, ABSOLUTE)

Base Addr    Size         Type   Attr      Idx    E Section Name        Object

0x000081c8   0x00000060   Zero   RW           42    .bss                libspace.o(c_4.l)
0x00008228   0x00000050   Zero   RW            2    STACK               s.o

This shows that the stack is placed in execution region ER_ZI.

6.4.2 See also

Tasks 
• Using fromelf to find where a symbol is placed in an executable ELF image on page 3-12.

Reference 
Compiler Reference:
• -c on page 3-31
• -o filename on page 3-153.
Linker Reference:
• --keep=section_id on page 2-89
• --map, --no_map on page 2-108
• --output=file on page 2-114.
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Chapter 7 
Accessing and managing symbols with armlink

The following topics describe how to access and manage symbols with the linker, armlink:

Tasks 
• About mapping symbols on page 7-3
• Accessing linker-defined symbols on page 7-4
• Using scatter files on page 7-11
• Importing linker-defined symbols in C and C++ on page 7-12
• Importing linker-defined symbols in ARM assembler on page 7-13
• Accessing symbols in another image on page 7-18
• Creating a symdefs file on page 7-19
• Outputting a subset of the global symbols on page 7-20
• Reading a symdefs file on page 7-21
• Specifying steering files on the linker command-line on page 7-25
• Hiding and renaming global symbols with a steering file on page 7-28
• Using $Super$$ and $Sub$$ to patch symbol definitions on page 7-29.

Concepts 
• Region-related symbols on page 7-5
• Region name values when not scatter-loading on page 7-10
• Section-related symbols on page 7-14
• What is a steering file? on page 7-24.

Reference 
• Image$$ execution region symbols on page 7-6
• Load$$ execution region symbols on page 7-7
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 7-1
ID091611 Non-Confidential



Accessing and managing symbols with armlink 
• Load$$LR$$ load region symbols on page 7-9
• Image symbols on page 7-15
• Input section symbols on page 7-17
• Symdefs file format on page 7-22
• Steering file command summary on page 7-26
• Steering file format on page 7-27.
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7.1 About mapping symbols
Mapping symbols are generated by armcc and armasm to identify inline transitions between:
• code and data at literal pool boundaries
• ARM code and Thumb code, such as ARM/Thumb interworking veneers.

The mapping symbols are:
$a start of a sequence of ARM instructions
$t start of a sequence of Thumb instructions
$t.x start of a sequence of ThumbEE instructions
$d start of a sequence of data items, such as a literal pool.

armlink generates the $d.realdata mapping symbol to communicate to fromelf that the data is 
from a non-executable section. Therefore, the code and data sizes output by fromelf -z are the 
same as the output from armlink --info sizes, for example:

      Code (inc. data)   RO Data
         x          y          z

In this example, the y is marked with $d, and RO Data is marked with $d.realdata.

Note
 Symbols beginning with the characters $v are mapping symbols related to VFP and might be 
output when building for a target with VFP. Avoid using symbols beginning with $v in your 
source code.

Be aware that modifying an executable image with the fromelf --elf --strip=localsymbols 
command removes all mapping symbols from the image.

7.1.1 See also

Concepts 
Using the Assembler:
• Symbol naming rules on page 8-3.

Reference 
Linker Reference:
• --list_mapping_symbols, --no_list_mapping_symbols on page 2-103
• --strict_symbols, --no_strict_symbols on page 2-161.
Using the fromelf Image Converter:
• --strip=option[,option,...] on page 4-70
• --text on page 4-73.

Other information 
• ELF for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
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7.2 Accessing linker-defined symbols
The linker defines some symbols that contain the character sequence $$. These symbols, and all 
other external names containing the sequence $$, are names reserved by ARM.

You can import these symbolic addresses and use them as relocatable addresses by your 
assembly language programs, or refer to them as extern symbols from your C or C++ source 
code.

Be aware that:

• If you use the --strict compiler command-line option, the compiler does not accept 
symbol names containing dollar symbols. To re-enable support, include the --dollar 
option on the compiler command line.

• Linker-defined symbols are only generated when your code references them.

7.2.1 See also

Concepts 
• Importing linker-defined symbols in C and C++ on page 7-12
• Importing linker-defined symbols in ARM assembler on page 7-13.

Reference 
Compiler Reference:
• --dollar, --no_dollar on page 3-78
• --strict, --no_strict on page 3-193.
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7.3 Region-related symbols
The linker generates the following types of region-related symbols for each region in the image:
• Image$$

• Load$$

• Load$$LR$$.

If you are using a scatter file these symbols are generated for each region in the scatter file.

If you are not using scatter-loading, the symbols are generated for the default region names. That 
is, the region names are fixed and the same types of symbol are supplied.

7.3.1 See also

Concepts 
• Image$$ execution region symbols on page 7-6
• Load$$ execution region symbols on page 7-7
• Load$$LR$$ load region symbols on page 7-9
• Region name values when not scatter-loading on page 7-10.
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7.4 Image$$ execution region symbols
The following table shows the symbols that the linker generates for every execution region 
present in the image. All the symbols refer to execution addresses after the C library is 
initialized.

7.4.1 See also

Tasks 
• Importing linker-defined symbols in C and C++ on page 7-12
• Importing linker-defined symbols in ARM assembler on page 7-13.

Concepts 
• Region-related symbols on page 7-5
• Region name values when not scatter-loading on page 7-10.

Table 7-1 Image$$ execution region symbols

Symbol Description

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes excluding ZI length.

Image$$region_name$$Limit Address of the byte beyond the end of the non-ZI part 
of the execution region.

Image$$region_name$$RO$$Base Execution address of the RO output section in this 
region.

Image$$region_name$$RO$$Length Length of the RO output section in bytes.

Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output 
section in the execution region.

Image$$region_name$$RW$$Base Execution address of the RW output section in this 
region.

Image$$region_name$$RW$$Length Length of the RW output section in bytes.

Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output 
section in the execution region.

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this 
region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes.

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output 
section in the execution region.
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7.5 Load$$ execution region symbols
The linker performs an extra address assignment and relocation pass for relocations that refer to 
load addresses after RW compression. This delayed relocation permits more information about 
load addresses to be used in linker-defined symbols.

Note
 Load$$region_name symbols apply only to execution regions, and Load$$LR$$load_region_name 
symbols apply only to load regions.

The following table shows the symbols that the linker generates for every Load$$ execution 
region present in the image. All the symbols refer to execution addresses after the C library is 
initialized.

All symbols in this table refer to load addresses before the C library is initialized. Be aware of 
the following:

• The symbols are absolute because section-relative symbols can only have execution 
addresses.

• The symbols take into account RW compression.

Table 7-2 Load$$ execution region symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Load$$region_name$$Length Region length in bytes.

Load$$region_name$$Limit Address of the byte beyond the end of the execution 
region.

Load$$region_name$$RO$$Base Address of the RO output section in this execution 
region.

Load$$region_name$$RO$$Length Length of the RO output section in bytes.

Load$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output 
section in the execution region.

Load$$region_name$$RW$$Base Address of the RW output section in this execution 
region.

Load$$region_name$$RW$$Length Length of the RW output section in bytes.

Load$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output 
section in the execution region.

Load$$region_name$$ZI$$Base Load address of the ZI output section in this execution 
region.

Load$$region_name$$ZI$$Length Load length of the ZI output section in bytes.
The Load Length of ZI is zero unless region_name has 
the ZEROPAD scatter-loading keyword set. If ZEROPAD is 
set then:
Load Length = Image$$region_name$$ZI$$Length

Load$$region_name$$ZI$$Limit Load address of the byte beyond the end of the ZI 
output section in the execution region.
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• The symbols do not include ZI output section because it does not exist before the C library 
is initialized.

• All relocations from RW compressed execution regions must be performed before 
compression, because the linker cannot resolve a delayed relocation on compressed data.

• If the linker detects a relocation from an RW-compressed region to a linker-defined 
symbol that depends on RW compression, then the linker disables compression for that 
region.

• Any zero bytes written to the file are visible. Therefore, the Limit and Length values must 
take into account the zero bytes written into the file.

7.5.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• Region-related symbols on page 7-5
• Image$$ execution region symbols on page 7-6
• Load$$LR$$ load region symbols on page 7-9
• Region name values when not scatter-loading on page 7-10.

Reference: 
Linker Reference:
• Execution region attributes on page 4-11
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7.6 Load$$LR$$ load region symbols
A Load$$LR$$ load region can contain many execution regions, so there are no separate $$RO and 
$$RW components.

Note
 Load$$LR$$load_region_name symbols apply only to load regions, and Load$$region_name 
symbols apply only to execution regions.

The following table shows the symbols that the linker generates for every Load$$LR$$ load 
region present in the image.

7.6.1 See also

Concepts 
• The image structure on page 4-3
• Input sections, output sections, regions, and Program Segments on page 4-5
• Load view and execution view of an image on page 4-6
• Region-related symbols on page 7-5.

Table 7-3 Load$$LR$$ load region symbols

Symbol Description

Load$$LR$$load_region_name$$Base address of the load region

Load$$LR$$load_region_name$$Length length of the load region

Load$$LR$$load_region_name$$Limit address of the byte beyond the end of the load region
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7.7 Region name values when not scatter-loading
If you are not using scatter-loading, the linker uses region name values of:
• ER_RO, for the read-only execution region
• ER_RW, for the read-write execution region
• ER_ZI, for the zero-initialized execution region.

You can insert these names into the following symbols to obtain the required address:
• Image$$ execution region symbols
• Load$$ execution region symbols.

For example, Load$$ER_RO$$Base.

Note
 • The ZI output sections of an image are not created statically, but are automatically created 

dynamically at runtime. Therefore, there is no load address symbol for ZI output sections.

• It is recommended that you use region-related symbols in preference to section-related 
symbols.

7.7.1 See also

Concepts 
• Region-related symbols on page 7-5
• Image$$ execution region symbols on page 7-6
• Load$$ execution region symbols on page 7-7
• Section-related symbols on page 7-14.
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7.8 Using scatter files
If you are using scatter-loading, the names from a scatter file are used in the linker defined 
symbols. The scatter file:

• Names all the execution regions in the image, and provides their load and execution 
addresses.

• Defines both stack and heap. The linker also generates special stack and heap symbols.

7.8.1 See also

Tasks 
• Chapter 8 Using scatter files.

Reference 
Linker Reference:
• --scatter=file on page 2-142.
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7.9 Importing linker-defined symbols in C and C++
You can import linker-defined symbols into your C or C++ source code either by value or by 
reference:

Import by value 
extern unsigned int symbol_name;

Import by reference 
extern void *symbol_name;

If you declare a symbol as an int, then you must use the address-of operator (&) to obtain the 
correct value as shown in these examples:

Example 7-1 Importing a linker-defined symbol

extern unsigned int Image$$ZI$$Limit;
config.heap_base = (unsigned int) &Image$$ZI$$Limit;

Example 7-2 Importing symbols that define a ZI output section

extern unsigned int Image$$ZI$$Length;
extern char Image$$ZI$$Base[];
memset(Image$$ZI$$Base,0,(unsigned int)&Image$$Length);

7.9.1 See also

Concepts 
• Image$$ execution region symbols on page 7-6.
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7.10 Importing linker-defined symbols in ARM assembler
To import linker-defined symbols into your assembler source code, use the IMPORT directive and 
create a 32-bit data word to hold the value of the symbol, for example:

        IMPORT |Image$$ZI$$Limit|
...
zi_limit DCD |Image$$ZI$$Limit|

To load the value into a register, such as r1, use the LDR instruction:

        LDR r1, zi_limit

The LDR instruction must be able to reach the 32-bit data word. The accessible memory range 
varies between ARM and Thumb, and the architecture you are using.

7.10.1 See also

Concepts 
• Image$$ execution region symbols on page 7-6.

Reference 
Assembler Reference:
• Memory access instructions on page 3-9
• IMPORT and EXTERN on page 6-71.
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7.11 Section-related symbols
Section-related symbols are symbols generated by the linker when it creates an image without 
scatter-loading.

The linker generates the following types of section-related symbols:

• Image symbols, if you use command-line options to create a simple image. A simple 
image has three output sections (RO, RW, and ZI) that produce the three execution 
regions.

• Input section symbols, for every input section present in the image.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by 
name. So, for example, all .text sections are placed in one contiguous block. A contiguous 
block of sections with the same attribute and name is known as a consolidated section.

7.11.1 See also

Concepts 
• Image symbols on page 7-15
• Input section symbols on page 7-17.
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7.12 Image symbols
Image symbols are generated by the linker when you use a command-line option to create a 
simple image.

The following table shows the image symbols:

If you are using a scatter file, the image symbols are undefined. If your code accesses any of 
these symbols, you must treat them as a weak reference.

The standard implementation of __user_setup_stackheap() uses the value in Image$$ZI$$Limit. 
Therefore, if you are using a scatter file you must manually place the stack and heap. You can 
do this either:

• in a scatter file using one of the following methods:
— define separate stack and heap regions called ARM_LIB_STACK and ARM_LIB_HEAP
— define a combined region containing both stack and heap called ARM_LIB_STACKHEAP.

• by re-implementing __user_setup_stackheap() to set the heap and stack boundaries.

7.12.1 See also

Tasks 
• Linker-defined symbols that are not defined when scatter-loading on page 8-11
• Specifying stack and heap using the scatter file on page 8-12.

Concepts 
• Types of simple image on page 4-10
• About weak references and definitions on page 4-32.
Using the Compiler:
• Stack use in C and C++ on page 6-17
Migration and Compatibility:
• C and C++ library changes between RVCT v2.2 and RVCT v3.0 on page 10-5.

Table 7-4 Image symbols

Symbol Section type Description

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$RO$$Limit Output Address of the first byte beyond the end of the 
RO output section.

Image$$RW$$Base Output Address of the start of the RW output section. 

Image$$RW$$Limit Output Address of the byte beyond the end of the ZI 
output section. (The choice of the end of the ZI 
region rather than the end of the RW region is to 
maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the ZI 
output section.
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Reference 
Using ARM® C and C++ Libraries and Floating-Point Support:
• __user_setup_stackheap() on page 2-60.
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7.13 Input section symbols
Input section symbols are generated by the linker for every input section present in the image.

The following table shows the input section symbols:

If your code refers to the input-section symbols, it is assumed that you expect all the input 
sections in the image with the same name to be placed contiguously in the image memory map.

If your scatter file places input sections non-contiguously, the linker issues an error. This is 
because the use of the base and limit symbols over non-contiguous memory usually produces 
indeterminate and undesirable effects.

7.13.1 See also

Tasks 
• Chapter 8 Using scatter files.

Concepts 
• Input sections, output sections, regions, and Program Segments on page 4-5.

Table 7-5 Section-related symbols

Symbol Section type Description

SectionName$$Base Input Address of the start of the consolidated section 
called SectionName.

SectionName$$Length Input Length of the consolidated section called 
SectionName (in bytes).

SectionName$$Limit Input Address of the byte beyond the end of the 
consolidated section called SectionName.
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7.14 Accessing symbols in another image
If you want one image to know the global symbol values of another image, you can use a symbol 
definitions (symdefs) file. 

You can use this, for example, if you have one image that always resides in ROM and multiple 
images that are loaded into RAM. The images loaded into RAM can access global functions and 
data from the image located in ROM.

7.14.1 See also

Tasks 
• Creating a symdefs file on page 7-19
• Reading a symdefs file on page 7-21.

Reference 
• Symdefs file format on page 7-22.
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7.15 Creating a symdefs file
Use the armlink option --symdefs=filename to generate a symdefs file. 

The linker produces a symdefs file during a successful final link stage. It is not produced for 
partial linking or for unsuccessful final linking. 

Note
 If filename does not exist, the file is created containing all the global symbols. If filename exists, 
the existing contents of filename are used to select the symbols that are output when the linker 
rewrites the file. This means that only the existing symbols in the filename are updated, and no 
new symbols (if any) are added at all. If you do not want this behavior, ensure that any existing 
symdefs file is deleted before the link step.

7.15.1 See also

Concepts 
• Accessing symbols in another image on page 7-18.

Reference 
• Symdefs file format on page 7-22.
Linker Reference:
• --symdefs=file on page 2-166.
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7.16 Outputting a subset of the global symbols
By default, all global symbols are written to the symdefs file. When a symdefs file exists, the 
linker uses its contents to restrict the output to a subset of the global symbols.

For an application image1 containing symbols that you want to expose to another application 
using a symdefs file:

1. Specify --symdefs=filename when you are doing a final link for image1. The linker creates 
a symdefs file filename.

2. Open filename in a text editor, remove any symbol entries you do not want in the final list, 
and save the file.

3. Specify --symdefs=filename when you are doing a final link for image1.
You can edit filename at any time to add comments and link image1 again, for example, to 
update the symbol definitions after one or more objects used to create image1 have 
changed.

You can now use the symdefs file to link additional applications.

7.16.1 See also

Concepts 
• Accessing symbols in another image on page 7-18.

Reference 
• Symdefs file format on page 7-22.
Linker Reference:
• --symdefs=file on page 2-166.
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7.17 Reading a symdefs file
A symdefs file can be considered as an object file with symbol information but no code or data. 
To read a symdefs file, add it to your file list as you do for any object file. The linker reads the 
file and adds the symbols and their values to the output symbol table. The added symbols have 
ABSOLUTE and GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol table. If 
a full link is being performed, the symbols are added to the image symbol table. 

The linker generates error messages for invalid rows in the file. A row is invalid if:
• any of the columns are missing
• any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in exactly the same way as symbols 
extracted from an object symbol table. The same restrictions apply regarding multiple symbol 
definitions.

Note
 The same function name or symbol name cannot be defined in both ARM code and in Thumb 
code.

7.17.1 See also

Reference 
• Symdefs file format on page 7-22.
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7.18 Symdefs file format
The symdefs file defines symbols and their values. The file consists of:

Identification line 
The identification line in a symdefs file comprises:
• an identifying string, #<SYMDEFS>#, which must be the first 11 characters in 

the file for the linker to recognize it as a symdefs file
• linker version information, in the format:

ARM Linker, ARMCCver [Build num]:

• date and time of the most recent update of the symdefs file, in the format:
Last Updated: Date

The version and update information are not part of the identifying string.

Comments You can insert comments manually with a text editor. Comments have the 
following properties:
• The first line must start with the special identifying comment #<SYMDEFS>#. 

This comment is inserted by the linker when the file is produced and must 
not be manually deleted.

• Any line where the first non-whitespace character is a semicolon (;) or hash 
(#) is a comment. 

• A semicolon (;) or hash (#) after the first non-whitespace character does not 
start a comment.

• Blank lines are ignored and can be inserted to improve readability.

Symbol information 
The symbol information is provided on a single line, and comprises:
Symbol value The linker writes the absolute address of the symbol in fixed 

hexadecimal format, for example, 0x00008000. If you edit 
the file, you can use either hexadecimal or decimal formats 
for the address value.

Type flag A single letter to show symbol type:
A ARM code
T Thumb code
D Data
N Number.

Symbol name The symbol name.

7.18.1 Example symdefs file

This example shows a typical symdefs file format:

Example 7-3 Symdefs file format

#<SYMDEFS># ARM Linker, ARMCC501 [Build num]: Last Updated: Date
;value type name, this is an added comment
0x00008000 A __main
0x00008004 A __scatterload
0x000080E0 T main
0x0000814D T _main_arg
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0x0000814D T __argv_alloc
0x00008199 T __rt_get_argv
...
   # This is also a comment, blank lines are ignored
...
0x0000A4FC D __stdin
0x0000A540 D __stdout
0x0000A584 D __stderr
0xFFFFFFFD N __SIG_IGN

7.18.2 See also

Concepts 
• Accessing symbols in another image on page 7-18
• Creating a symdefs file on page 7-19
• Outputting a subset of the global symbols on page 7-20
• Reading a symdefs file on page 7-21.
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7.19 What is a steering file?
A steering file is a text file that contains a set of commands to edit the symbol tables of output 
objects and the dynamic sections of images. Steering file commands enable you to:
• manage symbols in the symbol table
• control the copying of symbols from the static symbol table to the dynamic symbol table
• store information about the libraries that a link unit depends on.

For example, you can use steering files to protect intellectual property, or avoid namespace 
clashes.

7.19.1 See also

Tasks 
• Specifying steering files on the linker command-line on page 7-25.

Reference 
• Steering file command summary on page 7-26
• Steering file format on page 7-27.
Linker Reference:
• --edit=file_list on page 2-53.
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7.20 Specifying steering files on the linker command-line
Use the option --edit file-list to specify one or more steering files on the linker 
command-line.

When you specify more than one steering file, you can use either of the following command-line 
formats:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3 

Do not include spaces between the comma and the filenames when using a comma-separated 
list.

7.20.1 See also

Concepts 
• What is a steering file? on page 7-24.

Reference 
• Steering file command summary on page 7-26
• Steering file format on page 7-27.
Linker Reference:
• EXPORT on page 3-2
• HIDE on page 3-3
• IMPORT on page 3-4
• RENAME on page 3-5
• REQUIRE on page 3-7
• RESOLVE on page 3-8
• SHOW on page 3-10.
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7.21 Steering file command summary
The steering file commands are:

Note
 The steering file commands control only global symbols. Local symbols are not affected by any 
of these commands.

7.21.1 See also

Tasks 
• Specifying steering files on the linker command-line on page 7-25.

Concepts 
• What is a steering file? on page 7-24.

Reference 
• Steering file format on page 7-27.
Linker Reference:
• EXPORT on page 3-2
• HIDE on page 3-3
• IMPORT on page 3-4
• RENAME on page 3-5
• REQUIRE on page 3-7
• RESOLVE on page 3-8
• SHOW on page 3-10.

Table 7-6 Steering file command summary

Command Description

EXPORT Specifies that a symbol can be accessed by other shared objects 
or executables.

HIDE Makes defined global symbols in the symbol table anonymous.

IMPORT Specifies that a symbol is defined in a shared object at runtime.

RENAME Renames defined and undefined global symbol names.

REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags 
specify dependencies to other shared objects used by the 
application, for example, a shared library.

RESOLVE Matches specific undefined references to a defined global 
symbol.

SHOW Makes global symbols visible. This command is useful if you 
want to make a specific symbol visible that is hidden using a 
HIDE command with a wildcard.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 7-26
ID091611 Non-Confidential



Accessing and managing symbols with armlink 
7.22 Steering file format
A steering file is a plain text file of the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace character are 
interpreted as comments. A comment is treated as a blank line.

• Blank lines are ignored.

• Each non-blank, non-comment line is either a command, or part of a command that is split 
over consecutive non-blank lines.

• Command lines that end with a comma (,) as the last non-whitespace character is 
continued on the next non-blank line.

Each command line consists of a command, followed by one or more comma-separated operand 
groups. Each operand group comprises either one or two operands, depending on the command. 
The command is applied to each operand group in the command. The following rules apply:

• Commands are case-insensitive, but are conventionally shown in uppercase.

• Operands are case-sensitive because they must be matched against case-sensitive symbol 
names. You can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols, are not 
affected.

The following example shows a sample steering file:

Example 7-4 Example steering file

; Import my_func1 as func1
IMPORT my_func1 AS func1

# Rename a very long function name to a shorter name
RENAME a_very_long_function_name AS,
       short_func_name

7.22.1 See also

Tasks 
• Specifying steering files on the linker command-line on page 7-25.

Concepts 
• What is a steering file? on page 7-24.

Reference 
• Steering file command summary on page 7-26.
Linker Reference:
• EXPORT on page 3-2
• HIDE on page 3-3
• IMPORT on page 3-4
• RENAME on page 3-5
• REQUIRE on page 3-7
• RESOLVE on page 3-8
• SHOW on page 3-10.
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7.23 Hiding and renaming global symbols with a steering file
You can use a steering file to hide and rename global symbol names in output files. You use the 
HIDE and RENAME commands accordingly.

For example, you can use steering files to protect intellectual property, or avoid namespace 
clashes.

Example of renaming a symbol:

Example 7-5 RENAME steering command example

RENAME func1 AS my_func1

Example of hiding symbols:

Example 7-6 HIDE steering command example

; Hides all global symbols with the ‘internal’ prefix
HIDE internal*

7.23.1 See also

Tasks 
• Specifying steering files on the linker command-line on page 7-25.

Concepts 
• What is a steering file? on page 7-24
• Steering file command summary on page 7-26.

Reference 
• Steering file format on page 7-27.
Linker Reference:
• --edit=file_list on page 2-53
• HIDE on page 3-3
• RENAME on page 3-5.
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7.24 Using $Super$$ and $Sub$$ to patch symbol definitions
There are situations where an existing symbol cannot be modified because, for example, it is 
located in an external library or in ROM code. In such cases you can use the $Super$$ and $Sub$$ 
patterns to patch an existing symbol.

To patch the definition of the function foo():

$Super$$foo Identifies the original unpatched function foo(). Use this to call the original 
function directly.

$Sub$$foo Identifies the new function that is called instead of the original function foo(). 
Use this to add processing before or after the original function.

Note
 The $Sub$$ and $Super$$ mechanism only works at static link time, $Super$$ references cannot 
be imported or exported into the dynamic symbol table.

The following example shows how to insert a call to the function ExtraFunc() before the call to 
the legacy function foo().

Example 7-7 Using $Super$$ and $Sub$$

extern void ExtraFunc(void); extern void $Super$$foo(void):

/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{
  ExtraFunc();    /* does some extra setup work */
  $Super$$foo();  /* calls the original foo() function */
                  /* To avoid calling the original foo() function
                   * omit the $Super$$foo(); function call.
                   */
}

7.24.1 See also

Other information 
• ELF for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
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Using scatter files

The following topics describe how you use scatter files with armlink to create complex images:

Tasks 
• Specifying stack and heap using the scatter file on page 8-12
• Creating root execution regions on page 8-14
• Using the FIXED attribute to create root regions on page 8-17
• Placing functions and data at specific addresses on page 8-18
• Placing a named section explicitly using scatter-loading on page 8-23
• Placing unassigned sections with the .ANY module selector on page 8-25
• Selecting veneer input sections in scatter-loading descriptions on page 8-34
• Using __attribute__((section("name"))) to place code and data on page 8-35
• Using __at sections to place sections at a specific address on page 8-37
• Placing a key in flash memory using __at on page 8-43
• Placing a structure over a peripheral register using __at on page 8-45
• Reserving an empty region on page 8-54
• Using preprocessing commands in a scatter file on page 8-59
• Using expression evaluation in a scatter file to avoid padding on page 8-61.

Concepts 
• About scatter-loading on page 8-3
• When to use scatter-loading on page 8-4
• Scatter-loading command-line option on page 8-5
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• Images with a simple memory map on page 8-7
• Images with a complex memory map on page 8-9
• Linker-defined symbols that are not defined when scatter-loading on page 8-11
• What is a root region? on page 8-13
• Examples of using placement algorithms for .ANY sections on page 8-28
• Example of next_fit algorithm showing behavior of full regions, selectors, and priority on 

page 8-30
• Examples of using sorting algorithms for .ANY sections on page 8-32
• Restrictions on placing __at sections on page 8-38
• Automatic placement of __at sections on page 8-39
• Manual placement of __at sections on page 8-41
• Placement of sections with overlays on page 8-46
• About placing ARM C and C++ library code on page 8-49
• Example of placing code in a root region on page 8-50
• Example of placing ARM C library code on page 8-51
• Example of placing ARM C++ library code on page 8-52
• Example of placing ARM library helper functions on page 8-53
• About creating regions on page boundaries on page 8-56
• Overalignment of execution regions and input sections on page 8-58
• Expression evaluation in scatter files on page 8-60
• Equivalent scatter-loading descriptions for simple images on page 8-62
• Type 1 image, one load region and contiguous execution regions on page 8-63
• Type 2 image, one load region and non-contiguous execution regions on page 8-65
• Type 3 image, two load regions and non-contiguous execution regions on page 8-67
• Scatter file to ELF mapping on page 8-69.
Developing Software for ARM® Processors:
• Scatter-loading file with link to bit-band objects on page 3-16.
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8.1 About scatter-loading
The scatter-loading mechanism enables you to specify the memory map of an image to the linker 
using a description in a text file. Scatter-loading gives you complete control over the grouping 
and placement of image components. You can use scatter-loading to create simple images, but 
it is generally only used for images that have a complex memory map. That is, where multiple 
memory regions are scattered in the memory map at load and execution time.

An image memory map is made up of regions and output sections. Every region in the memory 
map can have a different load and execution address.

To construct the memory map of an image, the linker must have:

• grouping information that describes how input sections are grouped into output sections 
and regions

• placement information that describes the addresses where regions are to be located in the 
memory maps.

When the linker creates an image using a scatter file, it creates some region-related symbols. 
The linker creates these special symbols only if your code references them.

8.1.1 See also

Concepts 
• The image structure on page 4-3
• Region-related symbols on page 7-5
• When to use scatter-loading on page 8-4
• Scatter file to ELF mapping on page 8-69.
Developing Software for ARM® Processors:
• Scatter-loading file with link to bit-band objects on page 3-16.
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8.2 When to use scatter-loading
The command-line options to the linker give some control over the placement of data and code, 
but complete control of placement requires more detailed instructions than can be entered on the 
command line.

Situations where scatter-loading is either required or very useful:

Complex memory maps 
Code and data that must be placed into many distinct areas of memory require 
detailed instructions on where to place the sections in the memory space.

Different types of memory 
Many systems contain a variety of physical memory devices such as flash, ROM, 
SDRAM, and fast SRAM. A scatter-loading description can match the code and 
data with the most appropriate type of memory. For example, interrupt code might 
be placed into fast SRAM to improve interrupt response time but 
infrequently-used configuration information might be placed into slower flash 
memory.

Memory-mapped peripherals 
The scatter-loading description can place a data section at a precise address in the 
memory map so that memory mapped peripherals can be accessed. 

Functions at a constant location 
A function can be placed at the same location in memory even though the 
surrounding application has been modified and recompiled. This is useful for 
jump table implementation.

Using symbols to identify the heap and stack 
Symbols can be defined for the heap and stack location when the application is 
linked. 

Scatter-loading is usually required for implementing embedded systems because these use 
ROM, RAM, and memory-mapped peripherals.

8.2.1 See also

Concepts 
• About scatter-loading on page 8-3.
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8.3 Scatter-loading command-line option
The armlink command-line option for using scatter-loading is:

--scatter=description_file

This instructs the linker to construct the image memory map as described in description_file.

The Base Platform linking model supports scatter-loading. To enable this model, use the 
--base_platform command-line option.

Be aware that you cannot use --scatter with the following memory map related command-line 
options:
• --bpabi

• --dll

• --partial

• --ro_base

• --rw_base

• --ropi

• --rwpi

• --rosplit

• --split

• --reloc

• --shared

• --startup

• --sysv

• --zi_base.

8.3.1 See also

Concepts 
• Base Platform linking model on page 3-6
• About scatter-loading on page 8-3
• When to use scatter-loading on page 8-4
• Equivalent scatter-loading descriptions for simple images on page 8-62.

Reference 
Linker Reference:
• --base_platform on page 2-18
• --bpabi on page 2-24
• --dll on page 2-49
• --partial on page 2-119
• --reloc on page 2-132
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142
• --shared on page 2-146
• --split on page 2-154
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• --startup=symbol, --no_startup on page 2-155
• --sysv on page 2-170
• --zi_base=address on page 2-193
• Chapter 4 Formal syntax of the scatter file.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 8-6
ID091611 Non-Confidential



Using scatter files 
8.4 Images with a simple memory map
If an image has a simple memory map, you can either:
• use a scatter file
• specify the memory map using basic linker command-line options.

The following figure shows a simple memory map:

Figure 8-1 Simple scatter-loaded memory map

The following example shows the corresponding scatter-loading description that loads the 
segments from the object file into memory:

Example 8-1 Simple memory map in a scatter file

LOAD_ROM 0x0000 0x8000       ; Name of load region (LOAD_ROM),
                             ; Start address for load region (0x0000),
                             ; Maximum size of load region (0x8000)
{
    EXEC_ROM 0x0000 0x8000   ; Name of first exec region (EXEC_ROM),
                             ; Start address for exec region (0x0000),
                             ; Maximum size of first exec region (0x8000)
    {
        * (+RO)              ; Place all code and RO data into
                             ; this exec region
    }

    SRAM 0x10000 0x6000      ; Name of second exec region (RAM),
                             ; Start address of second exec region (0x10000),
                             ; Maximum size of second exec region (0x6000)
    {
        * (+RW, +ZI)         ; Place all RW and ZI data into
                             ; this exec region
    }
}

The maximum size specifications for the regions are optional. However, if you include them, 
they enable the linker to check that a region does not overflow its boundary.

In this example, you can achieve the same result, apart from the limit checking with the 
following linker command-line:

armlink --ro_base 0x0 --rw_base 0x10000

0x0000

0x8000

RO section

RW section

RO section

Execution viewLoad view 0x16000

SRAM

ROM

RW section

ZI sectionZero fill

0x10000

Copy / decompress
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8.4.1 See also

Concepts 
• About scatter-loading on page 8-3
• When to use scatter-loading on page 8-4
• Scatter file to ELF mapping on page 8-69.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139.
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8.5 Images with a complex memory map
For images with a complex memory map, you cannot specify the memory map using basic 
linker command-line options. Such images require the use of a scatter file.

The following figure shows a complex memory map:

Figure 8-2 Complex memory map

The following example shows the corresponding scatter-loading description that loads the 
segments from the program1.o and program2.o files into memory:

Example 8-2 Complex memory map in a scatter file

LOAD_ROM_1 0x0000              ; Start address for first load region (0x0000)
{
    EXEC_ROM_1 0x0000          ; Start address for first exec region (0x0000)
    {
        program1.o (+RO)       ; Place all code and RO data from
                               ; program1.o into this exec region
    }

    DRAM 0x18000 0x8000        ; Start address for this exec region (0x18000),
                               ; Maximum size of this exec region (0x8000)
    {
        program1.o (+RW, +ZI)  ; Place all RW and ZI data from
                               ; program1.o into this exec region
    }
}

LOAD_ROM_2 0x4000              ; Start address for second load region (0x4000)
{
    EXEC_ROM_2 0x4000
    {
        program2.o (+RO)       ; Place all code and RO data from
                               ; program2.o into this exec region
    }

0x00000

0x08000

RO section#2

RO section#1

ZI section#1

RW section#2

RW section#1

RO section#2

RW section#2

0x18000

ZI section#2

RW section#1

RO section#1

Execution viewLoad view 0x20000

DRAM

SRAM

ROM2

Zero fill

0x0000

0x4000

0x10000

ROM1
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    SRAM 0x8000 0x8000
    {
        program2.o (+RW, +ZI)  ; Place all RW and ZI data from
                               ; program2.o into this exec region
    }
}

Caution
 The scatter-loading description in this example specifies the location for code and data for 
program1.o and program2.o only. If you link an additional module, for example, program3.o, and 
use this description file, the location of the code and data for program3.o is not specified. 

Unless you want to be very rigorous in the placement of code and data, it is advisable to use the 
* or .ANY specifier to place leftover code and data.

8.5.1 See also

Tasks 
• Creating root execution regions on page 8-14
• Using the FIXED attribute to create root regions on page 8-17.

Concepts 
• About scatter-loading on page 8-3
• When to use scatter-loading on page 8-4
• Scatter file to ELF mapping on page 8-69.
Linker Reference:
• Scatter files containing relative base address load regions and a ZI execution region on 

page 4-36.
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8.6 Linker-defined symbols that are not defined when scatter-loading
Be aware that the following symbols are undefined when a scatter file is used:
• Image$$RW$$Base

• Image$$RW$$Limit

• Image$$RO$$Base

• Image$$RO$$Limit

• Image$$ZI$$Base

• Image$$ZI$$Limit

If you use a scatter file but do not use the special region names for stack and heap, or do not 
re-implement __user_setup_stackheap(), an error message is generated.

8.6.1 See also

Tasks 
• Accessing linker-defined symbols on page 7-4
• Specifying stack and heap using the scatter file on page 8-12.
Developing Software for ARM® Processors:
• Placing the stack and heap on page 3-13.

Concepts 
Migration and Compatibility:
• C and C++ library changes between RVCT v2.2 and RVCT v3.0 on page 10-5.
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8.7 Specifying stack and heap using the scatter file
The ARM C library provides multiple implementations of the function 
__user_setup_stackheap(), and can select the correct one for you automatically from 
information given in a scatter file.

To select the two region memory model, define two special execution regions in your scatter file 
named ARM_LIB_HEAP and ARM_LIB_STACK. Both regions have the EMPTY attribute. This causes the 
library to select the non-default implementation of __user_setup_stackheap() that uses the value 
of the symbols:
• Image$$ARM_LIB_STACK$$Base

• Image$$ARM_LIB_STACK$$ZI$$Limit

• Image$$ARM_LIB_HEAP$$Base

• Image$$ARM_LIB_HEAP$$ZI$$Limit

Only one ARM_LIB_STACK or ARM_LIB_HEAP region can be specified, and you must allocate a size, 
for example:

ARM_LIB_HEAP 0x20100000 EMPTY 0x100000-0x8000 ; Heap starts at 1MB
; and grows upwards

ARM_LIB_STACK 0x20200000 EMPTY -0x8000 ; Stack space starts at the end
; of the 2MB of RAM
; And grows downwards for 32KB

You can use a combined stack and heap region by defining a single execution region named 
ARM_LIB_STACKHEAP, with the EMPTY attribute. This causes __user_setup_stackheap() to use the 
value of the symbols Image$$ARM_LIB_STACKHEAP$$Base and 
Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.

Note
 If you re-implement __user_setup_stackheap(), this overrides all library implementations.

8.7.1 See also

Tasks 

Developing Software for ARM® Processors:
• Placing the stack and heap on page 3-13.

Concepts 
Migration and Compatibility:
• C and C++ library changes between RVCT v2.2 and RVCT v3.0 on page 10-5.

Reference 
• Region-related symbols on page 7-5.
Using ARM® C and C++ Libraries and Floating-Point Support:
• __user_setup_stackheap() on page 2-60
• Legacy function __user_initial_stackheap() on page 2-70.
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8.8 What is a root region?
A root region is a region with the same load and execution address. The initial entry point of the 
image must be in a root region. If the initial entry point is not in a root region, the link fails and 
the linker gives an error message.

Example 8-3 Root region with the same load and execution address

LR_1 0x040000          ; load region starts at 0x40000   
{                      ; start of execution region descriptions      
    ER_RO 0x040000     ; load address = execution address
    {
        * (+RO)        ; all RO sections (must include section with 
                       ; initial entry point)
    }
    ...  ; rest of scatter-loading description
}

8.8.1 See also

Tasks 
• Creating root execution regions on page 8-14
• Using the FIXED attribute to create root regions on page 8-17
• About placing ARM C and C++ library code on page 8-49.

Concepts 
• The image structure on page 4-3.
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8.9 Creating root execution regions
To specify a region as a root region in a scatter file you can:

• Specify ABSOLUTE as the attribute for the execution region, either explicitly or by 
permitting it to default, and use the same address for the first execution region and the 
enclosing load region. To make the execution region address the same as the load region 
address, either:
— Specify the same numeric value for both the base address for the execution region 

and the base address for the load region.
— Specify a +0 offset for the first execution region in the load region.

If an offset of zero (+0) is specified for all subsequent execution regions in the load 
region, then all execution regions not following an execution region containing ZI 
are also root regions.

The following example shows an implicitly defined root region:

Example 8-4 Implicit root region with the same load and execution address

LR_1 0x040000          ; load region starts at 0x40000   
{                      ; start of execution region descriptions      
    ER_RO 0x040000     ; load address = execution address
    {
        * (+RO)        ; all RO sections (must include section with 
                       ; initial entry point)
    }
    ...  ; rest of scatter-loading description
}

• Use the FIXED execution region attribute to ensure that the load address and execution 
address of a specific region are the same.
You can use the FIXED attribute to place any execution region at a specific address in ROM.
For example, the following memory map shows fixed execution regions:

Figure 8-3 Memory map for fixed execution regions

The following example shows the corresponding scatter-loading description:

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000

init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value defined using
the --pad option

(FIXED)

(movable)
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Example 8-5 Using the FIXED attribute

LR_1 0x040000              ; load region starts at 0x40000   
{                          ; start of execution region descriptions      
    ER_RO 0x040000         ; load address = execution address
    {
        * (+RO)            ; RO sections other than those in init.o
    }
    ER_INIT 0x080000 FIXED ; load address and execution address of this
                           ; execution region are fixed at 0x80000
    {
        init.o(+RO)        ; all RO sections from init.o
    }
    ...  ; rest of scatter-loading description
}

8.9.1 Examples of misusing the FIXED attribute

The following example shows common cases where the FIXED execution region attribute is 
misused:

Example 8-6 Misuse of the FIXED attribute

LR1 0x8000
{
    ER_LOW +0 0x1000
    {
        *(+RO)
    }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available Load
; and Execution address is at most 0x9000
    ER_HIGH 0xF0000000 FIXED
    {
        *(+RW+ZI)
    }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address matches
; execution address
}

; The other common misuse of FIXED is to give a lower execution address than the next
; available load address.

LR_HIGH 0x100000000
{
    ER_LOW 0x1000 FIXED
    {
        *(+RO)
    }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}
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8.9.2 See also

Tasks 
• Using the FIXED attribute to create root regions on page 8-17.

Concepts 
• What is a root region? on page 8-13.
Linker Reference:
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.

Reference 
Linker Reference:
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14.
Assembler Reference:
• ENTRY on page 6-65.
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8.10 Using the FIXED attribute to create root regions
You can use the FIXED attribute in an execution region scatter file to create root regions that load 
and execute at fixed addresses. 

FIXED is used to create multiple root regions within a single load region and therefore typically 
a single ROM device. For example, you can use this to place a function or a block of data, such 
as a constant table or a checksum, at a fixed address in ROM so that it can be accessed easily 
through pointers. 

If you specify, for example, that some initialization code is to be placed at start of ROM and a 
checksum at the end of ROM, some of the memory contents might be unused. Use the * or .ANY 
module selector to flood fill the region between the end of the initialization block and the start 
of the data block.

To make your code easier to maintain and debug, it is suggested that you use the minimum 
amount of placement specifications in scatter files and leave the detailed placement of functions 
and data to the linker.

You cannot specify component objects that have been partially linked. For example, if you 
partially link the objects obj1.o, obj2.o, and obj3.o together to produce obj_all.o, the 
component object names are discarded in the resulting object. Therefore, you cannot refer to one 
of the objects by name, for example, obj1.o. You can refer only to the combined object 
obj_all.o.

Note
 There are some situations where using FIXED and a single load region are not appropriate. Other 
techniques for specifying fixed locations are:

• If your loader can handle multiple load regions, place the RO code or data in its own load 
region.

• If you do not require the function or data to be at a fixed location in ROM, use ABSOLUTE 
instead of FIXED. The loader then copies the data from the load region to the specified 
address in RAM. ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load regions and 
specify UNINIT. UNINIT ensures that the memory locations are not initialized to zero.

8.10.1 See also

Concepts 
Linker Reference:
• About execution region descriptions on page 4-8.

Reference 
Linker Reference:
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14.
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8.11 Placing functions and data at specific addresses
Normally, the compiler produces RO, RW and ZI sections from a single source file. These 
regions contain all the code and data from the source file. To place a single function or data item 
at a fixed address, you must enable the linker to process the function or data separately from the 
rest of the input files.

The linker has two methods that enable you to place a section at a specific address:

• You can create a scatter file that defines an execution region at the required address with 
a section description that selects only one section.

• For a specially-named section the linker can get the placement address from the section 
name. These specially-named sections are called __at sections.

To place a function or variable at a specific address it must be placed in its own section. There 
are several ways to do this:

• Place the function or data item in its own source file.

• Use __attribute__((at(address))) to place variables in a separate section at a specific 
address.

• Use __attribute__((section("name"))) to place functions and variables in a named 
section.

• Use the AREA directive from assembly language. In assembly code, the smallest locatable 
unit is an AREA.

• Use the --split_sections compiler option to generate one ELF section for each function 
in the source file.
This option results in a small increase in code size for some functions because it reduces 
the potential for sharing addresses, data, and string literals between functions. However, 
this can help to reduce the final image size overall by enabling the linker to remove unused 
functions when you specify armlink --remove.

8.11.1 Example of placing a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific 
addresses, and does not require a scatter file:

1. Create the source file main.c containing the following code:
#include <stdio.h>

extern int sqr(int n1);
int gSquared __attribute__((at(0x5000)));  // Place at 0x5000

int main()
{
    gSquared=sqr(3);
    printf("Value squared is: %d\n", gSquared);
}

2. Create the source file function.c containing the following code:
int sqr(int n1)
{
    return n1*n1;
}

3. Compile and link the sources:
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armcc -c -g function.c
armcc -c -g main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((at(0x5000))) specifies that the global variable gSquared is to be 
placed at the absolute address 0x20000. gSquared is placed in the execution region 
ER$$.ARM.__AT_0x00005000 and load region LR$$.ARM.__AT_0x00005000.

The memory map shows:

...
  Load Region LR$$.ARM.__AT_0x00005000 (Base: 0x00005000, Size: 0x00000000, Max: 0x00000004, ABSOLUTE)

    Execution Region ER$$.ARM.__AT_0x00005000 (Base: 0x00005000, Size: 0x00000004, Max: 0x00000004, ABSOLUTE, 
UNINIT)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00005000   0x00000004   Zero   RW           15    .ARM.__AT_0x00005000  main.o

8.11.2 Example of placing a variable in a named section with scatter-loading

This example shows how to modify your source code to place code and data in a specific section 
using a scatter file:

1. Create the source file main.c containing the following code:
#include <stdio.h>

extern int sqr(int n1);
int gSquared __attribute__((section("foo")));  // Place in section foo

int main()
{
    gSquared=sqr(3);
    printf("Value squared is: %d\n", gSquared);
}

2. Create the source file function.c containing the following code:
int sqr(int n1)
{
    return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:
LR1 0x0000 0x20000
{
    ER1 0x0 0x2000
    {
        *(+RO)                      ; rest of code and read-only data
    }
    ER2 0x8000 0x2000
    {
        main.o
    }
    ER3 0x10000 0x2000
    {
        function.o
        *(foo)                      ; Place gSquared in ER3
    }
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    RAM 0x200000 (0x1FF00-0x2000)   ; RW & ZI data to be placed at 0x200000
    {
        *(+RW, +ZI)
    }
    ARM_LIB_STACK 0x800000 EMPTY -0x10000
    {
    }
    ARM_LIB_HEAP  +0 EMPTY 0x10000
    {
    }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being 
linked with the semihosting libraries.

4. Compile and link the sources:
armcc -c -g function.c
armcc -c -g main.c
aarmlink --map --scatter=scatter.scat function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section("foo"))) specifies that the global variable gSquared is 
to be placed in a section called foo. The scatter file specifies that the section foo is to be placed 
in the ER3 execution region.

The memory map shows:

  Load Region LR1 (Base: 0x00000000, Size: 0x00001778, Max: 0x00020000, ABSOLUTE)
...
    Execution Region ER3 (Base: 0x00010000, Size: 0x00000004, Max: 0x00002000, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00010000   0x00000004   Data   RW           15    foo                 main.o
...

Note
 If you omit *(foo) from the scatter file, the section is placed in the region of the same type. That 
is RAM in this example.

8.11.3 Example of placing a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address 
using a scatter file:

1. Create the source file main.c containing the following code:
#include <stdio.h>

extern int sqr(int n1);

// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;

int main()
{
    int squared;
    squared=sqr(gValue);
    printf("Value squared is: %d\n", squared);
}
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2. Create the source file function.c containing the following code:
int sqr(int n1)
{
    return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:
LR1 0x0
{
    ER1 0x0
    {
        *(+RO)                      ; rest of code and read-only data
    }
    ER2 +0
    {
        function.o
        *(.ARM.__at_0x10000)         ; Place gValue at 0x10000
    }
    RAM 0x200000 (0x1FF00-0x2000)   ; RW & ZI data to be placed at 0x200000
    {
        *(+RW, +ZI)
    }
    ARM_LIB_STACK 0x800000 EMPTY -0x10000
    {
    }
    ARM_LIB_HEAP  +0 EMPTY 0x10000
    {
    }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being 
linked with the semihosting libraries.

4. Compile and link the sources:
armcc -c -g function.c
armcc -c -g main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 
0x11000:

...
    Execution Region ER2 (Base: 0x00001598, Size: 0x0000ea6c, Max: 0xffffffff, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00001598   0x0000000c   Code   RO            3    .text               function.o
    0x000015a4   0x0000ea5c   PAD
    0x00010000   0x00000004   Data   RO           15    .ARM.__at_0x10000   main.o...

In this example, the size of ER1 is uknown. Therefore, gValue might be placed in ER1 or ER2. To 
make sure that gValue is placed in ER2, you must include the corresponding selector in ER2 and 
link with the --no_autoat command-line option. If you omit --no_autoat, gValue is to placed in 
a separate load region LR$$.ARM.__AT_0x00010000 that contains the execution region 
ER$$.ARM.__AT_0x00020000.

8.11.4 See also

Tasks 
• Placing a named section explicitly using scatter-loading on page 8-23
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• Using __at sections to place sections at a specific address on page 8-37.

Concept 
• Restrictions on placing __at sections on page 8-38.

Reference 
Compiler Reference:
• --split_sections on page 3-192
• __attribute__((section("name"))) function attribute on page 5-53
• __attribute__((at(address))) variable attribute on page 5-67
• __attribute__((section("name"))) variable attribute on page 5-72
• #pragma arm section [section_type_list] on page 5-83.
Linker Reference:
• --autoat, --no_autoat on page 2-17
• --map, --no_map on page 2-108
• --scatter=file on page 2-142.
Assembler Reference:
• AREA on page 6-61.
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8.12 Placing a named section explicitly using scatter-loading
The following example shows how to place a named section explicitly using scatter-loading:

Example 8-7 Explicit section placement

LR1 0x0 0x10000
{
    ER1 0x0 0x2000             ; Root Region, containing init code
    {
        init.o (INIT, +FIRST)        ; place init code at exactly 0x0
        *(+RO)                       ; rest of code and read-only data  
    }
    RAM_RW 0x400000 (0x1FF00-0x2000) ; RW & ZI data to be placed at 0x400000
    {
        *(+RW)
    }
    RAM_ZI +0
    {
        *(+ZI)
    }
    DATABLOCK 0x1FF00 0xFF           ; execution region at 0x1FF00
    {                                ; maximum space available for table is 0xFF
        data.o(+RO-DATA)             ; place RO data between 0x1FF00 and 0x1FFFF
    }
}

In this example, the scatter-loading description places:

• The initialization code is placed in the INIT section in the init.o file. This example shows 
that the code from the INIT section is placed first, at address 0x0, followed by the 
remainder of the RO code and all of the RO data except for the RO data in the object 
data.o.

• All global RW variables in RAM at 0x400000.

• A table of RO-DATA from data.o at address 0x1FF00.

8.12.1 See also

Tasks 
• Using the FIXED attribute to create root regions on page 8-17.

Concepts 
Linker Reference:
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8.

Reference 
Linker Reference:
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14.
Assembler Reference:
• ENTRY on page 6-65.
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Developing Software for ARM® Processors:
• Scatter-loading file with link to bit-band objects on page 3-16.
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8.13 Placing unassigned sections with the .ANY module selector
The linker attempts to place input sections into specific execution regions. For any input 
sections that cannot be resolved, and where the placement of those sections is not important, you 
can use the .ANY module selector in the scatter file.

In most cases, using a single .ANY selector is equivalent to using the * module selector. However, 
unlike *, you can specify .ANY in multiple execution regions.

8.13.1 Default rules for placing unassigned sections

By default, the linker places unassigned sections using the following criteria:
• Place an unassigned section in the execution region that currently has the most free space. 

You can specify a maximum amount of space to use for unassigned sections with the 
exection region attribute ANY_SIZE.

• Sort sections in descending size order.

8.13.2 Placement rules when using multiple .ANY selectors

If more than one .ANY selector is present in a scatter file, the linker takes the unassigned section 
with the largest size and assigns the section to the most specific .ANY execution region that has 
enough free space. For example, .ANY(.text) is judged to be more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution 
region with the most available remaining space.

For example:

• If you have two equally specific execution regions where one has a size limit of 0x2000 
and the other has no limit, then all the sections are assigned to the second unbounded .ANY 
region.

• If you have two equally specific execution regions where one has a size limit of 0x2000 
and the other has a size limit of 0x3000, then the first sections to be placed are assigned to 
the second .ANY region of size limit 0x3000 until the remaining size of the second .ANY is 
reduced to 0x2000. From this point, sections are assigned alternately between both .ANY 
execution regions.

8.13.3 Prioritizing .ANY sections

You can give a priority ordering if you have multiple .ANY sections with the .ANYnum selector, 
where num is a positive integer from zero upwards. The highest priority is given to the selector 
with the highest integer.

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{

er1 +0 512
{

.ANY1(+RO) ; evenly distributed with er3
}
er2 +0 256
{

.ANY2(+RO) ; Highest priority, so filled first
}
er3 +0 256
{
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.ANY1(+RO) ; evenly distributed with er1
}

}

8.13.4 Controlling the placement of input sections for multiple .ANY selectors

You can modify how the linker places unassigned input sections when using multiple .ANY 
selectors by using a different placement algorithm or a different sort order. The following 
command-line options are available:
• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or 

next_fit

• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections 
worst_fit fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might 
overfill the region. This is because linker-generated content such as padding and veneers are not 
known until sections have been assigned to .ANY selectors. If this occurs you might see the 
following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum. It 
reserves a portion of the region's size for linker-generated content and fills this contingency area 
only if no other regions have space. It is enabled by default for the first_fit and best_fit 
algorithms, because they are most likely to exhibit this behavior.

8.13.5 Specifying the maximum size permitted for placing unassigned sections

The execution region attribute ANY_SIZE max_size enables you to specify the maximum size in a 
region that armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:
• max_size must be less than or equal to the region size
• you can use ANY_SIZE on a region without a .ANY selector but it is ignored by armlink.

When ANY_SIZE is present, armlink:

• Does not override a given .ANY size. That is, it does not reduce the priority then try to fit 
more sections in later.

• Never recalculates contingency.

• Never assigns sections in the contingency space.

ANY_SIZE does not require --any_contingency to be specified. However, when --any_contingency 
is specified and ANY_SIZE is not, armlink attempts to adjust contingencies. The aims are to:
• never overflow a .ANY region
• never refuse to place a section in a contingency reserved space.

If you specify --any_contingency on the command line, it is ignored for regions that have 
ANY_SIZE specified. It is used as normal for regions that do not have ANY_SIZE specified.
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The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
   ER_1 0x0 ANY_SIZE 0xF00 0x1000
   {
      .ANY
   }
   ER_2 0x0 ANY_SIZE 0xFB0 0x1000
   {
      .ANY
   }
   ER_3 0x0 ANY_SIZE 0x1000 0x1000
   {
      .ANY
   }
}

In this example:

• ER_1 has 0x100 reserved for linker-generated content.

• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the 
automatic contingency of --any_contingency.

• ER_3 has no reserved space. Therefore 100% of the region is filled, with no contingency 
for veneers. Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with 
a two percent contingency for veneers.

8.13.6 See also

Concepts 
• Examples of using placement algorithms for .ANY sections on page 8-28
• Example of next_fit algorithm showing behavior of full regions, selectors, and priority on 

page 8-30
• Examples of using sorting algorithms for .ANY sections on page 8-32.
Linker Reference:
• How the linker resolves multiple matches when processing scatter files on page 4-26
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28.

Reference 
Linker Reference:
• --any_contingency on page 2-8
• --any_placement=algorithm on page 2-9
• --any_sort_order=order on page 2-11
• --info=topic[,topic,...] on page 2-80
• --map, --no_map on page 2-108
• --section_index_display=type on page 2-145
• --tiebreaker=option on page 2-173
• Syntax of an input section description on page 4-22.
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8.14 Examples of using placement algorithms for .ANY sections
These examples show the operation of the placement algorithms for RO-CODE sections in 
sections.o.

The input section properties and ordering are shown in the following table:

The scatter file used for the examples is:

LR 0x100
{
  ER_1 0x100 0x10
  {
     .ANY
  }

  ER_2 0x200 0x10
  {
     .ANY
  }
}

Note
 These examples have --any_contingency disabled.

8.14.1 Example for first_fit, next_fit, and best_fit

This example shows the situation where several sections of equal size are assigned to two 
regions with one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have 
no priority.

    Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00000100   0x00000004   Code   RO            1    sec1                sections.o
    0x00000104   0x00000004   Code   RO            2    sec2                sections.o
    0x00000108   0x00000004   Code   RO            3    sec3                sections.o
    0x0000010c   0x00000004   Code   RO            4    sec4                sections.o

    Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

Table 8-1 Input section properties

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4
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    0x00000200   0x00000004   Code   RO            5    sec5                sections.o
    0x00000204   0x00000004   Code   RO            6    sec6                sections.o

In this example:

• For first_fit the linker first assigns all the sections it can to ER_1, then moves on to ER_2 
because that is the next available region.

• For next_fit the linker does the same as first_fit. However, when ER_1 is full it is 
marked as FULL and is not considered again. In this example, ER_1 is completely full. ER_2 
is then considered.

• For best_fit the linker assigns sec1 to ER_1. It then has two regions of equal priority and 
specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, 
and continues assigning sections until ER_1 is full.

8.14.2 Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

    Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00000100   0x00000004   Code   RO            1    sec1                sections.o
    0x00000104   0x00000004   Code   RO            3    sec3                sections.o
    0x00000108   0x00000004   Code   RO            5    sec5                sections.o

    Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00000200   0x00000004   Code   RO            2    sec2                sections.o
    0x00000204   0x00000004   Code   RO            4    sec4                sections.o
    0x00000208   0x00000004   Code   RO            6    sec6                sections.o

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It 
assigns sec2 to the one with the most free space, ER_2 in this example. The regions now have the 
same amount of space remaining, so the linker assigns sec3 to the first one that appears in the 
scatter file, that is ER_1.

Note
 The behavior of worst_fit is the default behavior in this version of the linker, and it is the only 
algorithm available and earlier linker versions.

8.14.3 See also

Concepts 
• Placing unassigned sections with the .ANY module selector on page 8-25
• Example of next_fit algorithm showing behavior of full regions, selectors, and priority on 

page 8-30.

Reference 
Linker Reference:
• --any_placement=algorithm on page 2-9
• --scatter=file on page 2-142.
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8.15 Example of next_fit algorithm showing behavior of full regions, selectors, and 
priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in 
sections.o.

The input section properties and ordering are shown in the following table:

The scatter file used for the examples is:

LR 0x100
{
  ER_1 0x100 0x20
  {
     .ANY1(+RO-CODE)
  }

  ER_2 0x200 0x20
  {
     .ANY2(+RO)
  }

  ER_3 0x300 0x20
  {
     .ANY3(+RO)
  }
}

Note
 This example has --any_contingency disabled.

The next_fit algorithm is different to the others in that it never revisits a region that is 
considered to be full. This example also shows the interaction between priority and specificity 
of selectors - this is the same for all the algorithms.

    Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00000100   0x00000014   Code   RO            1    sec1                sections.o

    Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

Table 8-2 Input section properties

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4
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    0x00000200   0x00000010   Code   RO            3    sec3                sections.o
    0x00000210   0x00000004   Code   RO            4    sec4                sections.o
    0x00000214   0x00000004   Code   RO            5    sec5                sections.o
    0x00000218   0x00000004   Code   RO            6    sec6                sections.o

    Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

    Base Addr    Size         Type   Attr      Idx    E Section Name        Object

    0x00000300   0x00000014   Code   RO            2    sec2                sections.o

In this example:

• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 
0x6 bytes remaining.

• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but 
there is not enough space. Therefore, ER_1 is marked as full and is not considered in 
subsequent placement steps. The linker chooses ER_3 for sec2 because it has higher 
priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the 
linker places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because 
both of these sections have previously been marked as full, they are not considered. The 
linker places all remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to 
link. The algorithm does not attempt to place the section in ER_1 or ER_3 because they have 
previously been marked as full.

8.15.1 See also

Concepts 
• Placing unassigned sections with the .ANY module selector on page 8-25
• Examples of using placement algorithms for .ANY sections on page 8-28.
Linker Reference:
• How the linker resolves multiple matches when processing scatter files on page 4-26
• Behavior when .ANY sections overflow because of linker-generated content on page 4-28.

Reference 
Linker Reference:
• --any_placement=algorithm on page 2-9
• --scatter=file on page 2-142.
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8.16 Examples of using sorting algorithms for .ANY sections
These examples show the operation of the sorting algorithms for RO-CODE sections in 
sections_a.o and sections_b.o.

The input section properties and ordering are shown in the following tables:

8.16.1 Descending size example

The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Sections of the same size use the tiebreak specified by --tiebreaker.

Table 8-3 Input section properties for sections_a.o

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

Table 8-4 Input section properties for sections_b.o

Name Size

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

Table 8-5 Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4
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8.16.2 Command-line example

The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The order that the sections are processed by the .ANY assignment algorithm is:

Sections with the same command-line index use the tiebreak specified by --tiebreaker.

8.16.3 See also

Concepts 
• Placing unassigned sections with the .ANY module selector on page 8-25.

Reference 
Linker Reference:
• --any_sort_order=order on page 2-11
• --scatter=file on page 2-142
• --tiebreaker=option on page 2-173.

Table 8-6 Sort order for cmdline algorithm

Name Size

seca_1 0x4

secb_1 0x4

seca_2 0x4

secb_2 0x4

seca_3 0x10

secb_3 0x10

seca_4 0x14

secb_4 0x14
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 8-33
ID091611 Non-Confidential



Using scatter files 
8.17 Selecting veneer input sections in scatter-loading descriptions
Veneers are used to switch between ARM and Thumb code or to perform a longer program jump 
than can be specified in a single instruction. You can place veneers at a specific location by 
including the linker-generated symbol Veneer$$Code in a scatter file. At most, one execution 
region in the scatter file can have the *(Veneer$$Code) section selector.

If it is safe to do so, the linker places veneer input sections into the region identified by the 
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be 
assigned to the region because of address range problems or execution region size limitations. 
If the veneer cannot be added to the specified region, it is added to the execution region 
containing the relocated input section that generated the veneer.

Note
 Instances of *(IWV$$Code) in scatter files from earlier versions of ARM tools are automatically 
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region exceeds 4Mb of 
Thumb code, 16Mb of 32-bit Thumb code, and 32Mb of ARM code.

8.17.1 See also

Concepts 
• Overview of veneers on page 4-26.
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8.18 Using __attribute__((section("name"))) to place code and data
You can place code and data by separating them into their own objects without having to use 
toolchain-specific pragmas or attributes. However, you can also use 
__attribute__((section("name"))) to place an item in a separate ELF section. You can then use 
a scatter file to place the named sections at specific locations.

To use __attribute__((section("name"))) to place a variable in a separate section:

1. Use __attribute__((section("name"))) to specify the named section where the variable is 
to be placed, for example:

Example 8-8 Naming a section

int variable __attribute__((section("foo"))) = 10;

2. Use a scatter file to place the named section, for example:

Example 8-9 Placing a section

FLASH 0x24000000 0x4000000
{

... ; rest of code

    ADDER 0x08000000
    {
        file.o (foo)                  ; select section foo from file.o
    }
}

Be aware of the following:

• linking with --autoat or --no_autoat does not affect the placement

• if scatter-loading is not used, the section is placed in the default ER_RW execution region of 
the LR_1 load region

• if you have a scatter file that does not include the foo selector, then the section is placed 
in the defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section name. 
For example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));

int sqr(int n1)
{
    return n1*n1;
}

8.18.1 See also

Reference 
• Using __at sections to place sections at a specific address on page 8-37
• Restrictions on placing __at sections on page 8-38.
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Compiler Reference:
• __attribute__((section("name"))) function attribute on page 5-53
• __attribute__((section("name"))) variable attribute on page 5-72
• #pragma arm section [section_type_list] on page 5-83.
Linker Reference:
• --autoat, --no_autoat on page 2-17
• --scatter=file on page 2-142.
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8.19 Using __at sections to place sections at a specific address
You can give a section a special name that encodes the address where it must be placed. You 
specify the name as follows:

.ARM.__at_address

Where:

address is the required address of the section. You can specify this in hexadecimal or 
decimal. Sections in the form of .ARM.__at_address are referred to by the 
abbreviation __at.

In the compiler, you can assign variables to __at sections by:
• explicitly naming the section using the __attribute__((section(”name”)))
• using the attribute __at that sets up the name of the section for you.

Example 8-10 Assigning variables to __at sections in C or C++ code

// place variable1 in a section called .ARM.__at_0x00008000
int variable1 __attribute__((at(0x8000))) = 10;

// place variable2 in a section called .ARM.__at_0x8000
int variable2 __attribute__((section(".ARM.__at_0x8000"))) = 10;

Note
 When using __attribute__((at(address))), the part of the __at section name representing 
address is normalized to an 8 digit hexadecimal number. The name of the section is only 
significant if you are trying to match the section by name in a scatter file. The linker 
automatically assigns __at sections when you use the --autoat command-line option. This 
option is the default.

8.19.1 See also

Concepts 
• Placing functions and data at specific addresses on page 8-18
• Using __attribute__((section("name"))) to place code and data on page 8-35
• Restrictions on placing __at sections on page 8-38
• Automatic placement of __at sections on page 8-39
• Manual placement of __at sections on page 8-41
• Placing a key in flash memory using __at on page 8-43
• Placing a structure over a peripheral register using __at on page 8-45.

Reference 
Linker Reference:
• --autoat, --no_autoat on page 2-17.
Compiler Reference:
• __attribute__((section("name"))) function attribute on page 5-53
• __attribute__((at(address))) variable attribute on page 5-67
• __attribute__((section("name"))) variable attribute on page 5-72.
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8.20 Restrictions on placing __at sections
The following restrictions apply when placing __at sections at specific addresses:

• __at section address ranges must not overlap, unless the overlapping sections are placed 
in different overlay regions

• __at sections are not permitted in position independent execution regions

• you must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at 
section

• __at sections must not be used in System V (SysV) and Base Platform Application Binary 
Interface (BPABI) executables and BPABI dynamic link libraries (DLLs)

• __at sections must have an address that is a multiple of their alignment

• __at sections ignore any +FIRST or +LAST ordering constraints.

8.20.1 See also

Concepts 
• Using __at sections to place sections at a specific address on page 8-37.

Other information 
• Base Platform ABI for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html.
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8.21 Automatic placement of __at sections
The automatic placement of __at sections is enabled by default. This feature is controlled by the 
linker command-line option, --autoat.

Note
 You cannot use __at section placement with position independent execution regions.

When linking with the --autoat option, the __at sections are not placed by the scatter-loading 
selectors. Instead, the linker places the __at section in a compatible region. If no compatible 
region is found, the linker creates a load and execution region for the __at section.

All linker --autoat created execution regions have the UNINIT scatter-loading attribute. If you 
require a ZI __at section to be zero-initialized then it must be placed within a compatible region. 
A linker --autoat created execution region must have a base address that is at least 4 
byte-aligned. The linker produces an error message if any region is incorrectly aligned.

A compatible region is one where:

• The __at address lies within the execution region base and limit, where limit is the base 
address + maximum size of execution region. If no maximum size is set, the linker sets 
the limit for placing __at sections as the current size of the execution region without __at 
sections plus a constant, 10240 bytes.

• The execution region meets at least one of the following conditions:
— it has a selector that matches the __at section by the standard scatter-loading rules
— it has at least one section of the same type (RO, RW or ZI) as the __at section
— it does not have the EMPTY attribute.

Note
 The linker considers an __at section with type RW compatible with RO.

The following example shows the sections .ARM.__at_0x0 type RO, .ARM.__at_0x2000 type RW, 
.ARM.__at_0x4000 type ZI, and .ARM.__at_0x8000 type ZI:

Example 8-11 Placement of the variables in C or C++ code

// place the RW variable in a section called .ARM.__at_0x2000
int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;

// place the ZI variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000"), zero_init));

// place the ZI variable in a section called .ARM.__at_0x8000
int variable __attribute__((section(".ARM.__at_0x8000"), zero_init));

Example 8-12 Automatic placement of __at sections

LR1 0x0
{
    ER_RO 0x0 0x2000
    {
        *(+RO)      ; .ARM.__at_0x0 lies within the bounds of ER_RO
    }
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    ER_RW 0x2000 0x2000
    {
        *(+RW)      ; .ARM.__at_0x2000 lies within the bounds of ER_RW
    }
    ER_ZI 0x4000 0x2000
    {
        *(+ZI)      ; .ARM.__at_0x4000 lies within the bounds of ER_ZI
    }
}

; the linker creates a load and execution region for the __at section
; .ARM.__at_0x8000 because it lies outside all candidate regions.

8.21.1 See also

Concepts 
• Using __attribute__((section("name"))) to place code and data on page 8-35
• Using __at sections to place sections at a specific address on page 8-37
• Restrictions on placing __at sections on page 8-38
• Manual placement of __at sections on page 8-41
• Placing a key in flash memory using __at on page 8-43
• Placing a structure over a peripheral register using __at on page 8-45.
Linker Reference:
• About execution region descriptions on page 4-8.

Reference 
Linker Reference:
• --autoat, --no_autoat on page 2-17
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139
• --zi_base=address on page 2-193
• Execution region attributes on page 4-11.
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8.22 Manual placement of __at sections
You can use the standard section placement rules to place __at sections when using the 
--no_autoat command-line option.

Note
 You cannot use __at section placement with position independent execution regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the 
read-write section .ARM.__at_0x4000. Load and execution regions are not created automatically 
in manual mode. An error is produced if an __at section cannot be placed in an execution region.

Example 8-13 Placement of the variables in C or C++ code

// place the RO variable in a section called .ARM.__at_0x2000
const int FOO __attribute__((section(".ARM.__at_0x2000"))) = 100;

// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

Example 8-14 Manual placement of __at sections

LR1 0x0
{

ER_RO 0x0 0x2000
{

*(+RO) ; .ARM.__at_0x0 is selected by +RO
}
ER_RO2 0x2000
{

*(.ARM.__at_0x2000) ; .ARM.__at_0x2000 is selected by .ARM.__at_0x2000
}
ER2 0x4000
{

*(+RW +ZI) ; .ARM.__at_0x4000 is selected by +RW
}

}

8.22.1 See also

Concepts 
• Using __attribute__((section("name"))) to place code and data on page 8-35
• Using __at sections to place sections at a specific address on page 8-37
• Restrictions on placing __at sections on page 8-38
• Automatic placement of __at sections on page 8-39
• Placing a key in flash memory using __at on page 8-43
• Placing a structure over a peripheral register using __at on page 8-45.
Linker Reference:
• About execution region descriptions on page 4-8.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 8-41
ID091611 Non-Confidential



Using scatter files 
Reference 
Linker Reference:
• --autoat, --no_autoat on page 2-17
• Execution region attributes on page 4-11.
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8.23 Placing a key in flash memory using __at
Some flash devices require a key to be written to an address to activate certain features. An __at 
section provides a simple method of writing a value to a specific address.

Assuming a device has flash memory from 0x8000 to 0x10000 and a key is required in address 
0x8000. To do this with an __at section, you must declare a variable so that the compiler can 
generate a section called .ARM.__at_0x8000.

Example 8-15 Placement of the flash key variable in C or C++ code

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

The following example shows a scatter file with manual placement of the flash execution 
region:

Example 8-16 Manual placement of flash execution regions

ER_FLASH 0x8000 0x2000
{

*(+RO)
*(.ARM.__at_0x8000) ; key

}

Use the linker command-line option --no_autoat to enable manual placement.

The following example shows a scatter file with automatic placement of the flash execution 
region. Use the linker command-line option --autoat to enable automatic placement.

Example 8-17 Automatic placement of flash execution regions

ER_FLASH 0x8000 0x2000
{

*(+RO) ; other code and read-only data, the
; __at section is automatically selected

}

8.23.1 See also

Tasks 
• Placing sections with FIRST and LAST attributes on page 4-21
• Using __at sections to place sections at a specific address on page 8-37.

Concepts 
• Automatic placement of __at sections on page 8-39
• Manual placement of __at sections on page 8-41.
Linker Reference:
• About execution region descriptions on page 4-8.
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Reference 
Linker Reference:
• --autoat, --no_autoat on page 2-17.
Compiler Reference:
• __attribute__((section("name"))) variable attribute on page 5-72.
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8.24 Placing a structure over a peripheral register using __at
To place an uninitialized variable over a peripheral register, you can use a ZI __at section. 
Assuming a register is available for use at 0x10000000, define a ZI __at section called 
.ARM.__at_0x10000000. For example:

int foo __attribute__((section(“.ARM.__at_0x10000000”), zero_init));

The following example shows the a scatter file with the manual placement of the ZI __at section:

Example 8-18 Manual placement of ZI __at sections

ER_PERIPHERAL 0x10000000 UNINIT
{

*(.ARM.__at_0x10000000)
}

Using automatic placement, and assuming that there is no other execution region near 
0x10000000, the linker automatically creates a region with the UNINIT attribute at 0x10000000. The 
UNINIT attribute creates an execution region containing uninitialized data or memory-mapped 
I/O.

8.24.1 See also

Concepts 
• Using __at sections to place sections at a specific address on page 8-37.
Linker Reference:
• About execution region descriptions on page 4-8.

Reference 
Linker Reference:
• Execution region attributes on page 4-11.
Compiler Reference:
• __attribute__((section("name"))) variable attribute on page 5-72.
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8.25 Placement of sections with overlays
You can use the OVERLAY attribute in a scatter file to place multiple execution regions at the same 
address. An overlay manager is required to make sure that only one execution region is 
instantiated at a time. The ARM Compiler toolchain does not provide an overlay manager.

The following example shows the definition of a static section in RAM followed by a series of 
overlays. Here, only one of these sections is instantiated at a time.

Example 8-19 Specifying a root region

EMB_APP 0x8000 
{

.

.
    STATIC_RAM 0x0                  ; contains most of the RW and ZI code/data
    {
            * (+RW,+ZI)
    }
    OVERLAY_A_RAM 0x1000 OVERLAY    ; start address of overlay...
    {
            module1.o (+RW,+ZI)
    }
    OVERLAY_B_RAM 0x1000 OVERLAY
    {
            module2.o (+RW,+ZI)
    }

... ; rest of scatter-loading description...
}

A region marked as OVERLAY is not initialized by the C library at startup. The contents of the 
memory used by the overlay region are the responsibility of an overlay manager. If the region 
contains initialized data, use the NOCOMPRESS attribute to prevent RW data compression.

The linker defined symbols can be used to obtain the addresses required to copy the code and 
data.

The OVERLAY attribute can be used on a single region that is not the same address as a different 
region. Therefore, an overlay region can be used as a method to prevent the initialization of 
particular regions by the C library startup code. As with any overlay region these must be 
manually initialized in your code.

An overlay region can have a relative base. The behavior of an overlay region with a +offset 
base address depends on the regions that precede it and the value of +offset. The linker places 
consecutive +offset regions at the same base address if they have the same +offset value.

When a +offset execution region ER follows a contiguous overlapping block of overlay 
execution regions the base address of ER is:

limit address of the overlapping block of overlay execution regions + offset
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The following table shows the effect of +offset when used with the OVERLAY attribute. REGION1 
appears immediately before REGION2 in the scatter file:

The following example shows the use of relative offsets with overlays and the effect on 
execution region addresses:

Example 8-20 Example of relative offset in overlays

EMB_APP 0x8000{
CODE 0x8000
{

*(+RO)
}

# REGION1 Base = CODE limit
REGION1 +0 OVERLAY
{

module1.o(*)
}

# REGION2 Base = REGION1 Base
REGION2 +0 OVERLAY
{

module2.o(*)
}

# REGION3 Base = REGION2 Base = REGION1 Base
REGION3 +0 OVERLAY
{

module3.o(*)
}

# REGION4 Base = REGION3 Limit + 4
Region4 +4 OVERLAY
{

module4.o(*)
}

}

If the length of the non-overlay area is unknown, a zero relative offset can be used to specify the 
start address of an overlay so that it is placed immediately after the end of the static section.

You can use the following command-line options to add extra debug information to the image:
• --emit_debug_overlay_relocs

• --emit_debug_overlay_section.

These permit an overlay-aware debugger to track which overlay is currently active.

Table 8-7 Using relative offset in overlays

REGION1 is set 
with OVERLAY +offset REGION2 Base Address

NO <offset> REGION1 Limit + <offset>

YES +0 REGION1 Base Address

YES <none-zero offset> REGION1 Limit + <none-zero offset>
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8.25.1 See also

Concepts 
• Using __at sections to place sections at a specific address on page 8-37.
Linker Reference:
• About load region descriptions on page 4-5
• About execution region descriptions on page 4-8
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.

Reference 
• Accessing linker-defined symbols on page 7-4.
Linker Reference:
• --emit_debug_overlay_relocs on page 2-54
• --emit_debug_overlay_section on page 2-55
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14.
Compiler Reference:
• __attribute__((section("name"))) variable attribute on page 5-72.

Other information 
• ABI for the ARM Architecture: Support for Debugging Overlaid Programs, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html
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8.26 About placing ARM C and C++ library code
You can place code from the ARM standard C and C++ libraries in a scatter file. Use *armlib or 
*cpplib* so that the linker can resolve library naming in your scatter file.

Some ARM C and C++ library sections must be placed in a root region, for example __main.o, 
__scatter*.o, __dc*.o, and *Region$$Table. This list can change between releases. The linker 
can place all these sections automatically in a future-proof way with InRoot$$Sections.

8.26.1 See also

Tasks 
• Creating root execution regions on page 8-14
• Using the FIXED attribute to create root regions on page 8-17.

Concepts 
• What is a root region? on page 8-13
• Example of placing code in a root region on page 8-50
• Example of placing ARM C library code on page 8-51
• Example of placing ARM C++ library code on page 8-52.
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8.27 Example of placing code in a root region
Use a scatter file to specify a root section in the same way as a named section. The following 
example uses the section selector InRoot$$Sections to place all sections that must be in a root 
region:

Example 8-21 Specifying a root region

ROM_LOAD 0x0000 0x4000
{
  ROM_EXEC 0x0000 0x4000      ; root region at 0x0
  {
    vectors.o (Vect, +FIRST)  ; Vector table
    * (InRoot$$Sections)      ; All library sections that must be in a
                              ; root region, for example, __main.o,
                              ; __scatter*.o, __dc*.o, and * Region$$Table
  }
  RAM 0x10000 0x8000
  {
    * (+RO, +RW, +ZI)         ; all other sections
  }
}

8.27.1 See also

Tasks 
• Creating root execution regions on page 8-14
• Using the FIXED attribute to create root regions on page 8-17.

Concepts 
• What is a root region? on page 8-13
• About placing ARM C and C++ library code on page 8-49
• Example of placing ARM C library code on page 8-51
• Example of placing ARM C++ library code on page 8-52.
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8.28 Example of placing ARM C library code
The following example shows how to place C library code:

Example 8-22 Placing ARM C library code

ROM1 0
{

* (InRoot$$Sections)
* (+RO)
ROM2 0x1000
{

*armlib/c_* (+RO) ; all ARM-supplied C library functions
}

}
ROM3 0x2000
{

*armlib/h_* (+RO) ; just the ARM-supplied __ARM_*
; redistributable library functions

}
RAM1 0x3000
{

*armlib* (+RO) ; all other ARM-supplied library code
; for example, floating-point libraries

}
RAM2 0x4000
{

* (+RW, +ZI)
}

The name armlib is used to indicate the ARM C library files that are located in the 
install_directory\lib\armlib directory.

8.28.1 See also

Concepts 
• About placing ARM C and C++ library code on page 8-49
• Example of placing code in a root region on page 8-50
• Example of placing ARM C++ library code on page 8-52.

Reference 
Using ARM® C and C++ Libraries and Floating Point Support:
• C and C++ library naming conventions on page 2-120.
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8.29 Example of placing ARM C++ library code
The following is a C++ program that is to be scatter-loaded:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
  cout << "Hello" << endl;
  return 1;
}

To place the C++ library code, define the scatter file as follows:

LR 0x0
{
    ER1 0x0
    {
        *armlib*(+RO)
    }

    ER2 +0
    {
        *cpplib*(+RO)
        *(.init_array)   ; Section .init_array must be placed explicitly,
                         ; otherwise it is shared between two regions, and
                         ; the linker is unable to decide where to place it.
    }

    ER3 +0
    {
        *(+RO)
    }

    ER4 +0
    {
        *(+RW,+ZI)
    }
}

The name install_directory\lib\armlib is used to indicate the ARM C library files that are 
located in the armlib directory.

The name install_directory\lib\cpplib is used to indicate the ARM C++ library files that are 
located in the cpplib directory.

8.29.1 See also

Concepts 
• About placing ARM C and C++ library code on page 8-49
• Example of placing code in a root region on page 8-50
• Example of placing ARM C library code on page 8-51.

Reference 

Using ARM® C and C++ Libraries and Floating Point Support:
• C and C++ library naming conventions on page 2-120.
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8.30 Example of placing ARM library helper functions
ARM library helper functions are generated by the compiler in the resulting object files. 
Therefore, you cannot use armlib and cpplib in a scatter file to place these functions.

To place the helper functions specify *.* (i.__ARM_*) in your scatter file. The *.* part is 
important if you have * (+RO) in your scatter file.

Be aware that if you use * (i.__ARM_*) the following error is generated:

Error: L6223E: Ambiguous selectors...

This is because of the scatter-loading rules for resolving multiple matches.

8.30.1 See also

Concepts 
ARM Compiler toolchain Linker Reference:
• How the linker resolves multiple matches when processing scatter files on page 4-26.
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8.31 Reserving an empty region
You can use the EMPTY attribute in an execution region scatter-loading description to reserve an 
empty block of memory for the stack.

The block of memory does not form part of the load region, but is assigned for use at execution 
time. Because it is created as a dummy ZI region, the linker uses the following symbols to access 
it:
• Image$$region_name$$ZI$$Base

• Image$$region_name$$ZI$$Limit

• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region. 
This must be an absolute address and not a relative one.

In the following example, the execution region definition STACK 0x800000 EMPTY –0x10000 
defines a region called STACK that starts at address 0x7F0000 and ends at address 0x800000:

Example 8-23 Reserving a region for the stack

LR_1 0x80000                          ; load region starts at 0x80000   
{
    STACK 0x800000 EMPTY -0x10000     ; region ends at 0x800000 because of the
                                      ; negative length. The start of the region
                                      ; is calculated using the length.
    {
                                      ; Empty region used to place stack
    }
    HEAP +0 EMPTY 0x10000             ; region starts at the end of previous
                                      ; region. End of region calculated using
                                      ; positive length
    {
                                      ; Empty region used to place heap
    }

... ; rest of scatter-loading description...
}

Note
 The dummy ZI region that is created for an EMPTY execution region is not initialized to zero at 
runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an 
error.

The following figure shows a diagrammatic representation for this example.
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Figure 8-4 Reserving a region for the stack

In this example, the linker generates the symbols:

Image$$STACK$$ZI$$Base      = 0x7f0000
Image$$STACK$$ZI$$Limit     = 0x800000
Image$$STACK$$ZI$$Length    = 0x10000
Image$$HEAP$$ZI$$Base       = 0x800000
Image$$HEAP$$ZI$$Limit      = 0x810000
Image$$HEAP$$ZI$$Length     = 0x10000

Note
 The EMPTY attribute applies only to an execution region. The linker generates a warning and 
ignores an EMPTY attribute used in a load region definition.

The linker checks that the address space used for the EMPTY region does not coincide with any 
other execution region.

8.31.1 See also

Concepts 
Linker Reference:
• About execution region descriptions on page 4-8.

Reference 
• Image$$ execution region symbols on page 7-6.
Linker Reference:
• Execution region attributes on page 4-11.

Heap

Stack

0x810000

0x800000

0x7F0000

Base Limit

Base

Limit
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8.32 About creating regions on page boundaries
You can produce an ELF file that can be loaded directly to a target with each execution region 
starting at a page boundary. 

The linker provides the following built-in functions to help create load and execution regions 
on page boundaries:
• AlignExpr

• GetPageSize.

Note
 Alignment on an execution region causes both the load address and execution address to be 
aligned.

The following example produces an ELF file with each execution region starting on a new page:

Example 8-24 Creating regions on page boundaries

LR1 GetPageSize() + SizeOfHeaders()
{
    ER_RO +0
    {
        *(+RO)
    }
    ER_RW +GetPageSize()
    {
        *(+RW)
    }
    ER_ZI +0
    {
        *(+ZI)
    }
}

The default page size 0x8000, is used. You can change the page size with the --pagesize 
command-line option.

8.32.1 See also

Concepts 
• Demand paging on page 4-23
• Overalignment of execution regions and input sections on page 8-58
• Expression evaluation in scatter files on page 8-60
• Using expression evaluation in a scatter file to avoid padding on page 8-61.

Reference 
Linker Reference:
• --pagesize=pagesize on page 2-118
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Example of aligning a base address in execution space but still tightly packed in load 

space on page 4-41
• AlignExpr(expr, align) function on page 4-42
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• GetPageSize() function on page 4-43.
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8.33 Overalignment of execution regions and input sections
There are situations when you want to overalign code and data sections. How you deal with 
them depends on whether or not you have access to the source code:

• If you have access to the original source code, you can do this at compile time with the 
__align(n) keyword or the --min_array_alignment command-line option, for example.

• If you do not have access to the source code, then you must use the following alignment 
specifiers in a scatter file:
ALIGNALL Increases the section alignment of all the sections in an execution region, for 

example:
ER_DATA ... ALIGNALL 8
{
    ... ;selectors
}

OVERALIGN 
Increases the alignment of a specific section, for example:
ER_DATA ...
{
   *.o(.bar, OVERALIGN 8)
   ... ;selectors
}

8.33.1 See also

Concepts 
• About creating regions on page boundaries on page 8-56

Reference 
Linker Reference:
• Execution region attributes on page 4-11
• About input section descriptions on page 4-21.
Compiler Reference:
• __align on page 5-3
• --min_array_alignment=opt on page 3-146.
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8.34 Using preprocessing commands in a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of 
the C preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to 
process the file. The command is of the form:

#! preprocessor [pre_processor_flags]

Most typically the command is #! armcc -E. This passes the scatter file through the armcc 
preprocessor.

You can:
• add preprocessing directives to the top of the scatter file
• use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armcc -E

#define ADDRESS 0x20000000
#include "include_file_1.h"

lr1 ADDRESS
{
    ...
}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use preprocessing of a scatter file in conjunction with the --predefine 
command-line option. For this example:

1. Modify file.scat to delete the directive #define ADDRESS 0x20000000.

2. Specify the command:
armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

8.34.1 See also

Concepts 
• Expression evaluation in scatter files on page 8-60.

Reference 
Linker Reference:
• --predefine="string" on page 2-123.
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8.35 Expression evaluation in scatter files
The linker can carry out simple expression evaluation with a restricted set of operators, The 
operators are +, -, *, /, AND, OR, and parentheses. The implementation of OR and AND follows C 
operator precedence rules.

8.35.1 Example of using expression evaluation

Use the directives:

#define BASE_ADDRESS 0x8000
#define ALIAS_NUMBER 0x2
#define ALIAS_SIZE 0x400

#define AN_ADDRESS (BASE_ADDRESS+(ALIAS_NUMBER*ALIAS_SIZE))

The scatter file might contain:

LOAD_FLASH AN_ADDRESS    ; start address

After preprocessing, this evaluates to:

LOAD_FLASH ( 0x8000 + ( 0x2 * 0x400 ))  ; start address

After evaluation, the linker parses the scatter file to produce the load region:

LOAD_FLASH 0x8800 ; start address

8.35.2 See also

Concepts 
• Using preprocessing commands in a scatter file on page 8-59
• Using expression evaluation in a scatter file to avoid padding on page 8-61.
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8.36 Using expression evaluation in a scatter file to avoid padding
Using the ALIGN, ALIGNALL, or FIXED attributes in a scatter file can result in a large amount of 
padding in the image. To remove this padding, you can use expression evaluation to specify the 
start address of a load region and execution region. The built-in function AlignExpr is available 
to help you specify address expressions.

8.36.1 Example to avoid padding in scatter file

The following scatter file produces an image with padding:

LR1 0x4000
{
    ER1 +0 ALIGN 0x8000
    {
        ...
    }
}

Using the ALIGN keyword ER1 is aligned to a 0x8000 boundary in both the load and the execution 
view. To align in the load view, the linker must insert 0x4000 bytes of padding.

The following scatter file produces an image without padding:

LR1 0x4000
{
    ER1 AlignExpr(+0, 0x8000)
    {
        ...
    }
}

Using AlignExpr the result of +0 is aligned to a 0x8000 boundary. This creates an execution region 
with a load address of 0x4000 but an Execution Address of 0x8000.

8.36.2 See also

Concepts 
• Expression evaluation in scatter files on page 8-60.
Linker Reference:
• Example of aligning a base address in execution space but still tightly packed in load 

space on page 4-41.

Reference 
Linker Reference:
• Execution region attributes on page 4-11
• AlignExpr(expr, align) function on page 4-42.
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8.37 Equivalent scatter-loading descriptions for simple images
The command-line options --reloc, --ro_base, --rw_base, --ropi, --rwpi, and --split create the 
simple image types:
• Type 1 image, one load region and contiguous execution regions
• Type 2 image, one load region and non-contiguous execution regions
• Type 3 image, two load regions and non-contiguous execution regions.

You can create the same image types by using the --scatter command-line option and a file 
containing one of the corresponding scatter-loading descriptions.

8.37.1 See also

Concepts 
• Types of simple image on page 4-10
• Type 1 image, one load region and contiguous execution regions on page 8-63
• Type 2 image, one load region and non-contiguous execution regions on page 8-65
• Type 3 image, two load regions and non-contiguous execution regions on page 8-67.
Linker Reference:
• About load region descriptions on page 4-5.

Reference 
Linker Reference:
• --reloc on page 2-132
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --scatter=file on page 2-142
• --split on page 2-154
• Load region attributes on page 4-7.
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8.38 Type 1 image, one load region and contiguous execution regions
An image of this type consists of a single load region in the load view and three execution 
regions in the execution view. The execution regions are placed contiguously in the memory 
map.

--ro_base address specifies the load and execution address of the region containing the RO 
output section. The following example shows the scatter-loading description equivalent to using 
--ro_base 0x040000:

Example 8-25 Single load region and contiguous execution regions

LR_1 0x040000     ; Define the load region name as LR_1, the region starts at 0x040000.
{
    ER_RO +0      ; First execution region is called ER_RO, region starts at end of previous region.
                  ; However, since there is no previous region, the address is 0x040000.
    {
        * (+RO)   ; All RO sections go into this region, they are placed consecutively.
    }
    ER_RW +0      ; Second execution region is called ER_RW, the region starts at the end of the 
                  ; previous region. The address is 0x040000 + size of ER_RO region.
    {
        * (+RW)   ; All RW sections go into this region, they are placed consecutively.
    }
    ER_ZI +0      ; Last execution region is called ER_ZI, the region starts at the end of the 
                  ; previous region at 0x040000 + the size of the ER_RO regions + the size of 
                  ; the ER_RW regions.
    {
        * (+ZI)   ; All ZI sections are placed consecutively here.
    }
}

In this example:

• This description creates an image with one load region called LR_1 that has a load address 
of 0x040000. 

• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the 
RO, RW, and ZI output sections respectively. RO, RW are root regions. ZI is created 
dynamically at runtime. The execution address of ER_RO is 0x040000. All three execution 
regions are placed contiguously in the memory map by using the +offset form of the base 
designator for the execution region description. This enables an execution region to be 
placed immediately following the end of the preceding execution region.

Use the --reloc option to make relocatable images. Used on its own, --reloc makes an image 
similar to simple type 1, but the single load region has the RELOC attribute.

8.38.1 ropi example variant

In this variant, the execution regions are placed contiguously in the memory map. However, 
--ropi marks the load and execution regions containing the RO output section as 
position-independent.

The following example shows the scatter-loading description equivalent to using 
--ro_base 0x010000 --ropi:
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Example 8-26 Position-independent code

LR_1 0x010000 PI        ; The first load region is at 0x010000. 
{
    ER_RO +0            ; The PI attribute is inherited from parent.
                        ; The default execution address is 0x010000, but the code can be moved.
    {
        * (+RO)         ; All the RO sections go here.
    }
    ER_RW +0 ABSOLUTE   ; PI attribute is overridden by ABSOLUTE.
    {
        * (+RW)         ; The RW sections are placed next. They cannot be moved.
    }
    ER_ZI +0            ; ER_ZI region placed after ER_RW region.
    {
        * (+ZI)         ; All the ZI sections are placed consecutively here.
    }
}

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. The next 
execution region, ER_RW, is marked as ABSOLUTE and uses the +offset form of base designator. 
This prevents ER_RW from inheriting the PI attribute from ER_RO. Also, because the ER_ZI region 
has an offset of +0, it inherits the ABSOLUTE attribute from the ER_RW region.

8.38.2 See also

Concepts 
Linker Reference:
• About load region descriptions on page 4-5
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.

Reference 
Linker Reference:
• --reloc on page 2-132
• --ro_base=address on page 2-135
• --ropi on page 2-136
• Load region attributes on page 4-7.
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8.39 Type 2 image, one load region and non-contiguous execution regions
An image of this type consists of a single load region in the load view and three execution 
regions in the execution view. It is similar to images of type 1 except that the RW execution 
region is not contiguous with the RO execution region.

--ro_base=address1 specifies the load and execution address of the region containing the RO 
output section. --rw_base=address2 specifies the execution address for the RW execution region.

The following example shows the scatter-loading description equivalent to using 
--ro_base=0x010000 --rw_base=0x040000:

Example 8-27 Single load region and multiple execution regions

LR_1 0x010000        ; Defines the load region name as LR_1
{
    ER_RO +0         ; The first execution region is called ER_RO and starts at end of previous region.
                     ; Because there is no previous region, the address is 0x010000.
    {
        * (+RO)      ; All RO sections are placed consecutively into this region.
    }
    ER_RW 0x040000   ; Second execution region is called ER_RW and starts at 0x040000.
    {
        * (+RW)      ; All RW sections are placed consecutively into this region.
    }
    ER_ZI +0         ; The last execution region is called ER_ZI.
                     ; The address is 0x040000 + size of ER_RW region.
    {
        * (+ZI)      ; All ZI sections are placed consecutively here.
    }
}

In this example:

• This description creates an image with one load region, named LR_1, with a load address 
of 0x010000. 

• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the 
RO, RW, and ZI output sections respectively. The RO region is a root region. The 
execution address of ER_RO is 0x010000. 

• The ER_RW execution region is not contiguous with ER_RO. Its execution address is 0x040000. 

• The ER_ZI execution region is placed immediately following the end of the preceding 
execution region, ER_RW.

8.39.1 rwpi example variant

This is similar to images of type 2 with --rw_base where the RW execution region is separate 
from the RO execution region. However, --rwpi marks the execution regions containing the RW 
output section as position-independent.

The following example shows the scatter-loading description equivalent to using 
--ro_base=0x010000 --rw_base=0x018000 --rwpi:
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Example 8-28 Position-independent data

LR_1 0x010000           ; The first load region is at 0x010000.
{
    ER_RO +0            ; Default ABSOLUTE attribute is inherited from parent. The execution address
                        ; is 0x010000. The code and RO data cannot be moved.
    {
        * (+RO)         ; All the RO sections go here.
    }
    ER_RW 0x018000 PI   ; PI attribute overrides ABSOLUTE
    {
        * (+RW)         ; The RW sections are placed at 0x018000 and they can be moved.
    }
    ER_ZI +0            ; ER_ZI region placed after ER_RW region.
    {
        * (+ZI)         ; All the ZI sections are placed consecutively here.
    }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1. The 
next execution region, ER_RW, is marked as PI. Also, because the ER_ZI region has an offset of +0, 
it inherits the PI attribute from the ER_RW region.

Similar scatter-loading descriptions can also be written to correspond to the usage of other 
combinations of --ropi and --rwpi with type 2 and type 3 images.

8.39.2 See also

Concepts 
Linker Reference:
• About load region descriptions on page 4-5
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.

Reference 
Linker Reference:
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• Load region attributes on page 4-7.
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8.40 Type 3 image, two load regions and non-contiguous execution regions
Type 3 images consist of two load regions in load view and three execution regions in execution 
view. They are similar to images of type 2 except that the single load region in type 2 is now 
split into two load regions.

Relocate and split load regions using the following linker options:

--reloc The combination --reloc --split makes an image similar to simple type 3, but 
the two load regions now have the RELOC attribute. 

--ro_base=address1

Specifies the load and execution address of the region containing the RO output 
section.

--rw_base=address2

Specifies the load and execution address for the region containing the RW output 
section.

--split Splits the default single load region (that contains the RO and RW output 
sections) into two load regions. One load region contains the RO output section 
and one contains the RW output section.

The following example shows the scatter-loading description equivalent to using 
--ro_base=0x010000 --rw_base=0x040000 --split:

Example 8-29 Multiple load regions

LR_1 0x010000     ; The first load region is at 0x010000.
{    
    ER_RO +0      ; The address is 0x010000.
    {
        * (+RO)
    }
}
LR_2 0x040000     ; The second load region is at 0x040000.
{
    ER_RW +0 ; The address is 0x040000.
    {
        * (+RW)   ; All RW sections are placed consecutively into this region.
    }
    ER_ZI +0      ; The address is 0x040000 + size of ER_RW region.
    {
        * (+ZI)   ; All ZI sections are placed consecutively into this region.
    }
}

In this example:

• This description creates an image with two load regions, named LR_1 and LR_2, that have 
load addresses 0x010000 and 0x040000. 

• The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the RO, 
RW, and ZI output sections respectively. The execution address of ER_RO is 0x010000. 

• The ER_RW execution region is not contiguous with ER_RO, because its execution address is 
0x040000.
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• The ER_ZI execution region is placed immediately following the end of the preceding 
execution region, ER_RW.

8.40.1 Relocatable load regions example variant

This type 3 image also consists of two load regions in load view and three execution regions in 
execution view. However, --reloc is used to specify that the two load regions now have the 
RELOC attribute.

The following example shows the scatter-loading description equivalent to using --ro_base 
0x010000 --rw_base 0x040000 --reloc --split:

Example 8-30 Relocatable load regions

LR_1 0x010000 RELOC
{
     ER_RO + 0
     {
         * (+RO)
     }
} 

LR2 0x040000 RELOC
{
     ER_RW + 0
     {
         * (+RW)
     }

     ER_ZI +0
     { 
         * (+ZI)
     }
}

8.40.2 See also

Concepts 
Linker Reference:
• About load region descriptions on page 4-5
• Considerations when using a relative address +offset for load regions on page 4-16
• Considerations when using a relative address +offset for execution regions on page 4-17.

Reference 
Linker Reference:
• --reloc on page 2-132
• --ro_base=address on page 2-135
• --rw_base=address on page 2-139
• --split on page 2-154
• Load region attributes on page 4-7
• Address attributes for load and execution regions on page 4-14.
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8.41 Scatter file to ELF mapping
For simple images, ELF executable files contain segments:

• a load region is represented by an ELF Program Segment with type PT_LOAD

• an execution region is represented by up to three ELF Sections:
— one for RO
— one for RW
— one for ZI. 

For example, you might have a scatter file similar to the following:

Example 8-31 Scatter file

LOAD 0x8000
{
    EXEC_ROM +0
    {
        *(+RO)
    }
    RAM +0
    {
        *(+RW,+ZI)
    }
    HEAP +0x100 EMPTY 0x100
    {
    }
    STACK +0 EMPTY 0x400
    {
    }
}

This scatter file creates a single Program Segment with type PT_LOAD for the load region with 
address 0x8000.

A single Output Section with type SHT_PROGBITS is created to represent the contents of 
EXEC_ROM. Two Output Sections are created to represent RAM. The first has a type 
SHT_PROGBITS and contains the initialized read/write data. The second has a type of 
SHT_NOBITS and describes the zero-initialized data.

The heap and stack are described in the ELF file by SHT_NOBITS sections.

Enter the following fromelf command to see the scatter-loaded sections in the image:

fromelf --text -v my_image.axf

To display the symbol table, enter the command:

fromelf --text -s -v my_image.axf

The following is an example of the fromelf output showing the LOAD, EXEC_ROM, RAM, HEAP, and 
STACK sections:
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Example 8-32 Scatter-loaded sections in the ELF image

...
========================================================================

** Program header #0

    Type          : PT_LOAD (1)
    File Offset   : 52 (0x34)
    Virtual Addr  : 0x00008000
    Physical Addr : 0x00008000
    Size in file  : 764 bytes (0x2fc)
    Size in memory: 2140 bytes (0x85c)
    Flags         : PF_X + PF_W + PF_R + PF_ARM_ENTRY (0x80000007)
    Alignment     : 4
========================================================================

** Section #1

    Name        : EXEC_ROM
...
    Addr        : 0x00008000
    File Offset : 52 (0x34)
    Size        : 740 bytes (0x2e4)
...
====================================

** Section #2

    Name        : RAM
...
    Addr        : 0x000082e4
    File Offset : 792 (0x318)
    Size        : 20 bytes (0x14)
...
====================================

** Section #3

    Name        : RAM
...
    Addr        : 0x000082f8
    File Offset : 812 (0x32c)
    Size        : 96 bytes (0x60)
...
====================================

** Section #4

    Name        : HEAP
...
    Addr        : 0x00008458
    File Offset : 812 (0x32c)
    Size        : 256 bytes (0x100)
...
====================================

** Section #5

    Name        : STACK
...
    Addr        : 0x00008558
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    File Offset : 812 (0x32c)
    Size        : 1024 bytes (0x400)
...

8.41.1 See also

Concepts 
• About scatter-loading on page 8-3
• Images with a simple memory map on page 8-7.
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Chapter 9 
GNU ld script support in armlink

The following topics describe the GNU ld script support in armlink:
• About GNU ld script support and restrictions on page 9-2
• Typical use cases for using ld scripts with armlink on page 9-3
• Important ld script commands that are implemented in armlink on page 9-4
• Specific restrictions for using ld scripts with armlink on page 9-6
• Recommendations for using ld scripts with armlink on page 9-7
• Default GNU ld scripts used by armlink on page 9-8
• Example GNU ld script for linking an ARM Linux executable on page 9-12
• Example GNU ld script for linking an ARM Linux shared object on page 9-14
• Example GNU ld script for linking ld --ldpartial object on page 9-16
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9.1 About GNU ld script support and restrictions
armlink supports the use of GNU ld scripts, but with some restrictions:
• armlink implements a subset of the GNU ld script language
• the subset is focused on support for ARM Linux and partial linking
• Virtual Address (VMA) must equal Load Address (LMA)
• bare-metal support is not supported in this release
• the armlink --sysv command-line option uses an internal ld script. --sysv is also the 

default for the --arm_linux command-line option.

You specify an ld script with the armlink --linker_script ld_script command-line option, or 
the synonym command-line option -T ld_script.

9.1.1 Using ld scripts when linking images and shared objects

To link an image or shared object:

• The --sysv or the --arm_linux option is are required.

• Any unrecognized file is parsed as if it is an ld script.

• All ELF images and shared objects produced by an ld script are demand paged. Use the 
--pagesize option to control the page size. The default is 0x8000.

9.1.2 Using ld scripts when linking partial objects

To link a partial object, you must use the armlink --ldpartial command-line option. The -r 
command-line option is a synonym for --ldpartial.

9.1.3 See also

Concepts 
• Typical use cases for using ld scripts with armlink on page 9-3
• Important ld script commands that are implemented in armlink on page 9-4
• Specific restrictions for using ld scripts with armlink on page 9-6
• Recommendations for using ld scripts with armlink on page 9-7
• Default GNU ld scripts used by armlink on page 9-8.

Reference 
Linker Reference:
• --arm_linux on page 2-13
• --ldpartial on page 2-94
• --linker_script=ld_script on page 2-100
• --pagesize=pagesize on page 2-118
• --sysroot=path on page 2-169
• --sysv on page 2-170.

Other information 
• Using LD The GNU Linker.
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9.2 Typical use cases for using ld scripts with armlink
The following are typical use cases for using ld scripts with armlink:

Wrapping libraries 
Some libraries have a dynamic and static part. An ld script loads both libraries in 
the correct order with the INPUT command, for example:
INPUT(libstatic.a)
INPUT(libdynamic.so)

This script instructs the linker to load libstatic.a then libdynamic.so

Partial linking with the --ldpartial option 
An ld script can be given to control how the linker combines sections, for 
example:
SECTIONS
{
    .text :0
    {
        *(.text)

*(mysection)
    }
}

This script instructs the linker to combine mysection and all the .text sections into 
a single .text output section.

Fine control over an ARM linux link 
You might want to combine sections together in a different order to that given by 
the default linker script. Also, you might want the linker to define symbols at 
specific addresses. This information can be given by a custom linker script.

Note
 To successfully produce a file that can be run on ARM Linux your image must 

include some output sections to contain the meta-data that the dynamic loader can 
use to load the file. It is recommended that you start with one of the example 
scripts and modify it to suit your purpose.

9.2.1 See also

Concepts 
• Example GNU ld script for linking an ARM Linux executable on page 9-12
• Example GNU ld script for linking an ARM Linux shared object on page 9-14
• Example GNU ld script for linking ld --ldpartial object on page 9-16.

Reference 
Linker Reference:
• --ldpartial on page 2-94
• --linker_script=ld_script on page 2-100
• --sysroot=path on page 2-169.
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9.3 Important ld script commands that are implemented in armlink
The following ld script commands are implemented:

Commands that deal with files 
The following commands are implemented:
• AS_NEEDED

• ENTRY

• GROUP

• INCLUDE

• INPUT

• OUTPUT

• OUTPUT_ARCH

• OUTPUT_FORMAT

• SEARCH_DIR

• STARTUP

Commands mapping input sections to output sections 
The SECTIONS command is implemented.
The SECTIONS command is the most complex command and not all features are 
implemented. In particular, the load address features are not implemented:
AT(address)
>region
AT>region

These commands are not supported because they either require the unsupported 
PHDRS command or cause the Virtual Address and Load Address to be different.
The following data definition functions are not implemented:
• BYTE(expression)

• COMMON

• CONSTRUCTORS

• CREATE_OBJECT_SYMBOLS

• SHORT(expression)

• LONG(expression)

• QUAD(expression)

• SQUAD(expression) 
The input section specifier is not available:
archive:file

Commands controlling symbol versioning 
The VERSIONS command is implemented.
The VERSIONS command syntax is exactly the same as that supported by the 
armlink --symver_script command-line option. armlink does not support the 
matching of unmangled symbol names in VERSIONS commands.

9.3.1 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2
• Specific restrictions for using ld scripts with armlink on page 9-6.
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Reference 
Linker Reference:
• --linker_script=ld_script on page 2-100
• --symver_script=file on page 2-167
• --sysroot=path on page 2-169.
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9.4 Specific restrictions for using ld scripts with armlink
The following restrictions apply when using ld scripts with armlink:

PHDRS This command is not implemented. When using an ld script the linker always 
generates program headers automatically.

MEMORY This command is not implemented. The linker assumes that it has a uniform 
memory space from 0 to 0XFFFFFFFF.

OVERLAY This command is not implemented. Overlays are not permitted.

Other commands and built-in functions 
The following commands and built-in functions are not supported:
• ASSERT

• FORCE_COMMON_ALLOCATION

• INHIBIT_COMMON_ALLOCATION

• INSERT AFTER

• INSERT BEFORE

• LENGTH

• NOCROSSREFS

• ORIGIN

• REGION_ALIAS

• TARGET

armlink linker-defined symbols 
Each output section is defined internally as an execution region. The existing 
armlink execution region symbols can be used, for example:
    .text : { *(.text) }

The output section .text is represented by an execution region called .text. You 
can use the symbol Image$$.text$$Base as if the execution region had been 
defined by a scatter file.

Other restrictions 
Other restrictions are:
• __AT sections are not supported when using ld scripts
• RW compression is not supported when using ld scripts.

9.4.1 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2
• Important ld script commands that are implemented in armlink on page 9-4
• Image$$ execution region symbols on page 7-6.

Reference 
Linker Reference:
• --linker_script=ld_script on page 2-100
• --symver_script=file on page 2-167.
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9.5 Recommendations for using ld scripts with armlink
Follow these recommendations when producing ld scripts for use with armlink:

9.5.1 Recommendations for producing ld scripts for ARM Linux

The dynamic loader requires some output sections with a specific type to work properly. These 
are:
• Hash Table
• String Table
• Dynamic Symbol Table
• Dynamic Section
• Version Sections
• Thread Local Storage Sections.

9.5.2 General recommendations

The following are general recommendations:

• Make sure each output section has a homogenous type. For example:
   .text : { *(.text) }
   .data : { *(.data) }
   .bss :  { *(.bss) }

This is preferred to the following:
   .stuff
   {
       *(.text)
       *(.data)
       *(.bss)
   }

• If you are running the ELF file on ARM Linux do not modify the location of the meta-data 
used by the dynamic linker.

• Sections not matched by the SECTIONS command are marked as orphans. The linker places 
orphan sections in appropriate locations. The linker attempts to match the placement of 
orphans used by ld although this is not always possible. Use explicit placement if you do 
not like how armlink places orphans.

9.5.3 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2
• Important ld script commands that are implemented in armlink on page 9-4
• Specific restrictions for using ld scripts with armlink on page 9-6.

Reference 
Linker Reference:
• --linker_script=ld_script on page 2-100
• --symver_script=file on page 2-167.
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9.6 Default GNU ld scripts used by armlink
If you use command-line options that require an ld script, you can specify a script to use with 
the --linker_script command-line option. If you do not specify a script, the default ld script 
used by armlink depends on whether you are building an executable or a shared object:

9.6.1 Default ld script for an executable

SECTIONS
{
  PROVIDE(__executable_start = 0x0008000);
  . = 0x00008000 + SIZEOF_HEADERS;
  .interp         : { *(.interp) }
  .note.ABI-tag   : { *(.note.ABI-tag) }
  .hash           : { *(.hash) }
  .dynsym         : { *(.dynsym) }
  .dynstr         : { *(.dynstr) }
  .version        : { *(.version) }
  .version_d      : { *(.version_d) }
  .version_r      : { *(.version_r) }
  .rel.dyn        : { *(.rel.dyn) }
  .rela.dyn       : { *(.rela.dyn) }
  .rel.plt        : { *(.rel.plt) }
  .rela.plt       : { *(.rela.plt) }
  .init           : { KEEP (*(.init)) }
  .plt            : { *(.plt) }
  .text           : { *(.text .text.*) }
  .fini           : { KEEP (*(.fini)) }
  PROVIDE(__etext = .);
  PROVIDE(_etext = .);
  PROVIDE(etext = .);
  .rodata         : { *(.rodata .rodata.*) }
   __exidx_start = .;
  .ARM.exidx   : { *(.ARM.exidx*) }
   __exidx_end = .;

  . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT 
(MAXPAGESIZE) - 1));
  . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));

  .tdata   : { *(.tdata .tdata.*) }
  .tbss   : { *(.tbss .tbss.*) }
  .preinit_array     :
  {
     PROVIDE_HIDDEN (__preinit_array_start = .); 
     KEEP (*(.preinit_array))
     PROVIDE_HIDDEN (__preinit_array_end = .); 
  }
  .init_array     :
  {
     PROVIDE_HIDDEN (__init_array_start = .); 
     KEEP (*(.init_array*))
     PROVIDE_HIDDEN (__init_array_end = .); 
  }
  .fini_array     :
  {
     PROVIDE_HIDDEN (__fini_array_start = .); 
     KEEP (*(.fini_array*))
     PROVIDE_HIDDEN (__fini_array_end = .); 
  }
  .dynamic        : { *(.dynamic) }
  .got            : { *(.got.plt) *(.got) }
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  .data           :
  {
    __data_start = .;
    *(.data .data.*)
  }
  _edata = .;
  PROVIDE(edata = .);
  __bss_start = .;
  __bss_start__ = .;
  .bss            :
  {
   *(.bss .bss.*)
   . = ALIGN(. != 0 ? 32 / 8 : 1);
  }
  __bss_end__ = .;
  _bss_end__ = .;
  . = ALIGN(4);
  __end = .;
  _end = .;
  PROVIDE(end = .);
}

9.6.2 Default ld script for a shared object

SECTIONS
{
  . = 0 + SIZEOF_HEADERS;
  .note.ABI-tag   : { *(.note.ABI-tag) }
  .hash           : { *(.hash) }
  .dynsym         : { *(.dynsym) }
  .dynstr         : { *(.dynstr) }
  .version        : { *(.version) }
  .version_d      : { *(.version_d) }
  .version_r      : { *(.version_r) }
  .rel.dyn        : { *(.rel.dyn) }
  .rela.dyn       : { *(.rela.dyn) }
  .rel.plt        : { *(.rel.plt) }
  .rela.plt       : { *(.rela.plt) }
  .init           : { KEEP (*(.init)) }
  .plt            : { *(.plt) }
  .text           : { *(.text .text.*) }
  .fini           : { KEEP (*(.fini)) }
  PROVIDE(__etext = .);
  PROVIDE(_etext = .);
  PROVIDE(etext = .);
  .rodata         : { *(.rodata .rodata.*) }
   __exidx_start = .;
  .ARM.exidx   : { *(.ARM.exidx*) }
   __exidx_end = .;
  .interp         : { *(.interp) }

  . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT 
(MAXPAGESIZE) - 1));
  . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));

  .tdata   : { *(.tdata .tdata.*) }
  .tbss   : { *(.tbss .tbss.*) }
  .preinit_array     :
  {
     PROVIDE_HIDDEN (__preinit_array_start = .); 
     KEEP (*(.preinit_array))
     PROVIDE_HIDDEN (__preinit_array_end = .); 
  }
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  .init_array     :
  {
     PROVIDE_HIDDEN (__init_array_start = .); 
     KEEP (*(.init_array*))
     PROVIDE_HIDDEN (__init_array_end = .); 
  }
  .fini_array     :
  {
     PROVIDE_HIDDEN (__fini_array_start = .); 
     KEEP (*(.fini_array*))
     PROVIDE_HIDDEN (__fini_array_end = .); 
  }
  .dynamic        : { *(.dynamic) }
  .got            : { *(.got.plt) *(.got) }
  .data           :
  {
    __data_start = .;
    *(.data .data.*)
  }
  _edata = .;
  PROVIDE(edata = .);
  __bss_start = .;
  __bss_start__ = .;
  .bss            :
  {
   *(.bss .bss.*)
   . = ALIGN(. != 0 ? 32 / 8 : 1);
  }
  __bss_end__ = .;
  _bss_end__ = .;
  . = ALIGN(4);
  __end = .;
  _end = .;
  PROVIDE(end = .);
}

9.6.3 Default ld script for a --ldpartial partially linked object

SECTIONS
{
  .interp       0  : { *(.interp) }
  .note.ABI-tag 0  : { *(.note.ABI-tag) }
  .hash         0  : { *(.hash) }
  .dynsym       0  : { *(.dynsym) }
  .dynstr       0  : { *(.dynstr) }
  .version      0  : { *(.version) }
  .version_d    0  : { *(.version_d) }
  .version_r    0  : { *(.version_r) }
  .rel.dyn      0  : { *(.rel.dyn) }
  .rel.plt      0  : { *(.rel.plt) }
  .init         0  : { KEEP (*(.init)) }
  .plt          0  : { *(.plt) }
  .text         0  : { *(.text) }
  .fini         0  : { KEEP (*(.fini)) }
  .rodata       0  : { *(.rodata) }
  .ARM.exidx    0  : { *(.ARM.exidx*) }
  .tdata        0  : { *(.tdata) }
  .tbss         0  : { *(.tbss) }
  .preinit_array   0  :
  {
     KEEP (*(.preinit_array))
  }
  .dynamic      0  : { *(.dynamic) }
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  .got          0  : { *(.got.plt) *(.got) }
  .data         0  :
  {
    *(.data)
  }
  .bss          0  :
  {
   *(.bss)
  }
}

9.6.4 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2.

Reference 
Linker Reference:
• --ldpartial on page 2-94
• --linker_script=ld_script on page 2-100.
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9.7 Example GNU ld script for linking an ARM Linux executable
The following ld script is sufficient to link a “hello world” application. The most important parts 
are:

• The initial . = 0x00008000 + SIZEOF_HEADERS;
The linker can include the ELF Header and Program Header into the first page.

• The alignment expressions that force the RW into a separate page.

• The output sections for the metadata needed by the dynamic linker.

Use the armlink --linker_script command-line option to specify an ld script file.

SECTIONS
{
  PROVIDE(__executable_start = 0x0008000);
  . = 0x00008000 + SIZEOF_HEADERS;
  .interp         : { *(.interp) }
  .hash           : { *(.hash) }
  .gnu.hash       : { *(.gnu.hash) }
  .dynsym         : { *(.dynsym) }
  .dynstr         : { *(.dynstr) }
  .version        : { *(.version) }
  .version_d      : { *(.version_d) }
  .version_r      : { *(.version_r) }
  .rel.dyn        : { *(.rel.dyn) }
  .rel.plt        : { *(.rel.plt) }
  .init           : { KEEP (*(.init)) }
  .plt            : { *(.plt) }
  .text           : { *(.text .text.*) }
  .fini           : { KEEP (*(.fini)) }
  .rodata         : { *(.rodata .rodata.*) }
  .ARM.extab   : { *(.ARM.extab*) }
   __exidx_start = .;
  .ARM.exidx   : { *(.ARM.exidx*) }
   __exidx_end = .;

  . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT 
(MAXPAGESIZE) - 1));
  . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));

  .tdata   : { *(.tdata .tdata.*) }
  .tbss   : { *(.tbss .tbss.*) }
  .preinit_array     :
  {
     PROVIDE_HIDDEN (__preinit_array_start = .); 
     KEEP (*(.preinit_array))
     PROVIDE_HIDDEN (__preinit_array_end = .); 
  }
  .init_array     :
  {
     PROVIDE_HIDDEN (__init_array_start = .); 
     KEEP (*(SORT(.init_array.*)))
     KEEP (*(.init_array))
     PROVIDE_HIDDEN (__init_array_end = .); 
  }
  .fini_array     :
  {
     PROVIDE_HIDDEN (__fini_array_start = .); 
     KEEP (*(.fini_array))
     KEEP (*(SORT(.fini_array.*)))
     PROVIDE_HIDDEN (__fini_array_end = .); 
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  }
  .dynamic        : { *(.dynamic) }
  .got            : { *(.got.plt) *(.got) }
  .data           :
  {
    *(.data .data.*)
  }
  .bss            :
  {
   *(.bss .bss.*)
   . = ALIGN(. != 0 ? 32 / 8 : 1);
  }
}

9.7.1 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2.

Reference 
Linker Reference:
• --linker_script=ld_script on page 2-100.
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9.8 Example GNU ld script for linking an ARM Linux shared object
The following ld script example is for linking of a shared library, and is similar to that for an 
application. The shared library starts at 0 + SIZEOF_HEADERS.

Use the armlink --linker_script command-line option to specify an ld script file.

SECTIONS
{
  . = 0 + SIZEOF_HEADERS;
  .hash           : { *(.hash) }
  .gnu.hash       : { *(.gnu.hash) }
  .dynsym         : { *(.dynsym) }
  .dynstr         : { *(.dynstr) }
  .version        : { *(.version) }
  .version_d      : { *(.version_d) }
  .version_r      : { *(.version_r) }
  .rel.dyn        : { *(.rel.dyn) }
  .rel.plt        : { *(.rel.plt) }
  .init           : { KEEP (*(.init)) }
  .plt            : { *(.plt) }
  .text           : { *(.text .text.*) }
  .fini           : { KEEP (*(.fini)) }
  .rodata         : { *(.rodata .rodata.*) }
  .ARM.extab   : { *(.ARM.extab*) }
   __exidx_start = .;
  .ARM.exidx   : { *(.ARM.exidx*) }
   __exidx_end = .;
  .interp : { *(.interp) }

  . = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT 
(MAXPAGESIZE) - 1));
  . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));

  .tdata   : { *(.tdata .tdata.*) }
  .tbss   : { *(.tbss .tbss.*) }
  .preinit_array     :
  {
     PROVIDE_HIDDEN (__preinit_array_start = .); 
     KEEP (*(.preinit_array))
     PROVIDE_HIDDEN (__preinit_array_end = .); 
  }
  .init_array     :
  {
     PROVIDE_HIDDEN (__init_array_start = .); 
     KEEP (*(SORT(.init_array.*)))
     KEEP (*(.init_array))
     PROVIDE_HIDDEN (__init_array_end = .); 
  }
  .fini_array     :
  {
     PROVIDE_HIDDEN (__fini_array_start = .); 
     KEEP (*(.fini_array))
     KEEP (*(SORT(.fini_array.*)))
     PROVIDE_HIDDEN (__fini_array_end = .); 
  }
  .dynamic        : { *(.dynamic) }
  .got            : { *(.got.plt) *(.got) }
  .data           :
  {
    *(.data .data.*)
  }
  .bss            :
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  {
   *(.bss .bss.*)
   . = ALIGN(. != 0 ? 32 / 8 : 1);
  }
}

9.8.1 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2.

Reference 
Linker Reference:
• --linker_script=ld_script on page 2-100.
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9.9 Example GNU ld script for linking ld --ldpartial object
The general form of ld --ldpartial is to assign each output section to 0x0. The linker is not 
always be able to honor the instructions in the SECTIONS command. Input sections that are 
merged into one output section cannot be removed in subsequent links. If the linker detects that 
it might have to remove a section in a subsequent link it does not merge the section. Sections 
that cannot be merged are passed through into the output object unchanged.

SECTIONS
{
  .init         0 : { *(.init)   }
  .text         0 : { *(.text)   }
  .fini         0 : { *(.fini)   }
  .rodata       0 : { *(.rodata) }
  .data         0 : { *(.data)   }
  .bss          0 : { *(.bss)    }
}

Use the armlink --linker_script command-line option to specify an ld script file.

9.9.1 See also

Concepts 
• About GNU ld script support and restrictions on page 9-2.

Reference 
Linker Reference:
• --ldpartial on page 2-94
• --linker_script=ld_script on page 2-100.
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Chapter 10 
BPABI and SysV shared libraries and executables

The following topics describe how the linker, armlink, supports the Base Platform Application 
Binary Interface (BPABI) and System V (SysV) shared libraries and executables:

Concepts 
• About the Base Platform Application Binary Interface (BPABI) on page 10-3
• Platforms supported by the BPABI on page 10-4
• Concepts common to all BPABI models on page 10-5
• About importing and exporting symbols for BPABI models on page 10-6
• Symbol visibility for BPABI models on page 10-7
• Automatic import and export for BPABI models on page 10-9
• Manual import and export for BPABI models on page 10-10
• Symbol versioning for BPABI models on page 10-11
• RW compression for BPABI models on page 10-12
• Linker options for SysV models on page 10-13
• SysV memory model on page 10-14
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Changes to command-line defaults with the SysV memory model on page 10-20
• Linker options for bare metal and DLL-like models on page 10-21
• Bare metal and DLL-like memory model on page 10-22
• Mandatory symbol versioning in the BPABI DLL-like model on page 10-23
• Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-24
• Addressing modes in the BPABI DLL-like model on page 10-25
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• C++ initialization in the BPABI DLL-like model on page 10-26
• About symbol versioning on page 10-27
• Symbol versioning script file on page 10-28
• Example of creating versioned symbols on page 10-29
• About embedded symbols on page 10-30
• Linker options for enabling implicit symbol versioning on page 10-31.

Reference 
• Related linker command-line options for the SysV memory model on page 10-19
• Related linker command-line options for the BPABI DLL-like model on page 10-32.
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10.1 About the Base Platform Application Binary Interface (BPABI)
Many embedded systems use an operating system to manage the resources on a device. In many 
cases this is a large, single executable with a Real-Time Operating System (RTOS) that tightly 
integrates with the applications. Other more complex Operating Systems (OS) are referred to as 
a platform OS, for example, ARM Linux. These have the ability to load applications and shared 
libraries on demand.

To run an application or use a shared library on a platform OS, you must conform to the 
Application Binary Interface (ABI) for the platform and also the ABI for the ARM architecture. 
This can involve substantial changes to the linker output, for example, a custom file format. To 
support such a wide variety of platforms, the ABI for the ARM architecture provides the Base 
Platform Application Binary Interface (BPABI).

The BPABI provides a base standard from which a platform ABI can be derived. The linker 
produces a BPABI conforming ELF image or shared library. A platform specific tool called a 
post-linker translates this ELF output file into a platform-specific file format. Post linker tools 
are provided by the platform OS vendor. The following figure shows the BPABI tool flow.

Figure 10-1 BPABI tool flow

10.1.1 See also

Concepts 
• Platforms supported by the BPABI on page 10-4
• Concepts common to all BPABI models on page 10-5.

Other information 
• Base Platform ABI for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html.

.c bin/exe.axf.o

Tool: compiler linker postlinker

Language ABI BPABI Platform 
binary

Format:
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10.2 Platforms supported by the BPABI
The Base Platform Application Binary Interface (BPABI) defines three platform models based 
on the type of shared library:
Bare metal The bare metal model is designed for an offline dynamic loader or a simple 

module loader. References between modules are resolved by the loader directly 
without any additional support structures.

DLL-like The dynamically linked library (DLL) like model sacrifices transparency between 
the dynamic and static library in return for better load and run-time efficiency.

SysV The System V (SysV) model masks the differences between dynamic and static 
libraries. ARM Linux uses this format.

10.2.1 Linker support for the BPABI

The ARM linker supports all three BPABI models enabling you to link a collection of objects 
and libraries into a:
• bare metal executable image
• BPABI DLL or SysV shared object
• BPABI or SysV executable file.

10.2.2 Linker support for ARM Linux

The linker can generate SysV executables and shared libraries with all required data for ARM 
Linux. However, you must specify other command-line options and libraries in addition to the 
--shared or --sysv options.

If all the correct input options and libraries are specified, you can use the ELF file without any 
post-processing.

10.2.3 See also

Tasks 
Building Linux Applications with the ARM® Compiler toolchain and GNU Libraries:
• Chapter 3 Using the ARM Compiler toolchain to build a Linux application or library.

Concepts 
• About the Base Platform Application Binary Interface (BPABI) on page 10-3
• Concepts common to all BPABI models on page 10-5.

Reference 
Linker Reference:
• --dll on page 2-49
• --shared on page 2-146
• --sysv on page 2-170.
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10.3 Concepts common to all BPABI models
The linker enables you to build Base Platform Application Binary Interface (BPABI) shared 
libraries and to link objects against shared libraries. The following concepts are common to all 
BPABI models:
• symbol importing
• symbol exporting
• versioning
• visibility of symbols.

10.3.1 See also

Concepts 
• About importing and exporting symbols for BPABI models on page 10-6
• Symbol visibility for BPABI models on page 10-7
• Automatic import and export for BPABI models on page 10-9
• Manual import and export for BPABI models on page 10-10
• Symbol versioning for BPABI models on page 10-11
• RW compression for BPABI models on page 10-12.
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10.4 About importing and exporting symbols for BPABI models
In traditional linking, all symbols must be defined at link time for linking into a single 
executable file containing all the required code and data. In platforms that support dynamic 
linking, symbol binding can be delayed to load-time or in some cases, run-time. Therefore, the 
application can be split into a number of modules, where a module is either an executable or a 
shared library. Any symbols that are defined in modules other than the current module are 
placed in the dynamic symbol table. Any functions that are suitable for dynamically linking to 
at load or runtime are also listed in the dynamic symbol table.

There are two ways to control the contents of the dynamic symbol table:
• automatic rules that infer the contents from the ELF symbol visibility property
• manual directives that are present in a steering file.

These rules are slightly different for the SysV model.

10.4.1 See also

Concepts 
• Linker options for SysV models on page 10-13
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19
• Linker options for bare metal and DLL-like models on page 10-21
• About symbol versioning on page 10-27.

Other information 
• SysV ELF specification.
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10.5 Symbol visibility for BPABI models
Each symbol has a visibility property that can be controlled by compiler switches, a steering file, 
or attributes in the source code. If the symbol is a reference, the visibility controls the definitions 
that the linker can use to define the symbol. If the symbol is a definition, the visibility controls 
whether the symbol can be made visible outside the current module.

The visibility options defined by the ELF specification are:

Symbol preemption is most common in System V (SysV) systems. Symbol preemption can 
happen in dynamically linked library (DLL) like implementations of the Base Platform 
Application Binary Interface (BPABI). The platform owner defines how this works. See the 
documentation for your specific platform for more information.

10.5.1 See also

Concepts 
• Optimization with RW data compression on page 5-13
• Linker options for SysV models on page 10-13
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19
• Linker options for bare metal and DLL-like models on page 10-21
• About symbol versioning on page 10-27.

Reference 
Linker Reference:
• --keep_protected_symbols on page 2-91
• --max_visibility=type on page 2-111
• --override_visibility on page 2-115
• --use_definition_visibility on page 2-177
• EXPORT on page 3-2
• IMPORT on page 3-4
• REQUIRE on page 3-7.
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11
• --dllexport_all, --no_dllexport_all on page 3-76
• --dllimport_runtime, --no_dllimport_runtime on page 3-77

Table 10-1 Symbol visibility

Visibility Reference Definition

STV_DEFAULT Symbol can be bound to a definition in a 
shared object.

Symbol can be made visible outside the module. 
It can be preempted by the dynamic linker by a 
definition from another module.

STV_PROTECTED Symbol must be resolved within the module. Symbol can be made visible outside the module. 
It cannot be preempted at run-time by a 
definition from another module.

STV_HIDDENSTV_INTERN

AL

Symbol must be resolved within the module. Symbol is not visible outside the module.
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• --hide_all, --no_hide_all on page 3-112.
Assembler Reference:
• EXPORT or GLOBAL on page 6-67.

Other information 
• SysV ELF specification.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 10-8
ID091611 Non-Confidential



BPABI and SysV shared libraries and executables 
10.6 Automatic import and export for BPABI models
The linker can automatically import and export symbols. This behavior depends on a 
combination of the symbol visibility in the input object file, if the output is an executable or a 
shared library, and if the platform model is System V (SysV). This depends on what type of 
linking model is being used.

10.6.1 See also

Concepts 
• Concepts common to all BPABI models on page 10-5
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19
• Linker options for bare metal and DLL-like models on page 10-21
• About symbol versioning on page 10-27.

Other information 
• SysV ELF specification.
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10.7 Manual import and export for BPABI models
Linker steering files can be used to:
• manually control dynamic import and export
• override the automatic rules.

The steering file commands available to control the dynamic symbol table contents are:
• EXPORT

• IMPORT

• REQUIRE.

10.7.1 See also

Concepts 
• What is a steering file? on page 7-24.

Reference 
Linker Reference:
• EXPORT on page 3-2
• IMPORT on page 3-4
• REQUIRE on page 3-7.

Other information 
• SysV ELF specification.
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10.8 Symbol versioning for BPABI models
Symbol versioning provides a way to tightly control the interface of a shared library.

When a symbol is imported from a shared library that has versioned symbols, armlink binds to 
the most recent (default) version of the symbol. At load or run-time when the platform OS 
resolves the symbol version, it always resolves to the version selected by armlink, even if there 
is a more recent version available. This process is automatic.

When a symbol is exported from an executable or a shared library, it can be given a version. 
armlink supports implicit symbol versioning where the version is derived from the shared object 
name (set by --soname), or explicit symbol versioning where a script is used to precisely define 
the versions.

10.8.1 See also

Concepts 
• Linker options for SysV models on page 10-13
• About symbol versioning on page 10-27.

Reference 
Linker Reference:
• --soname=name on page 2-151.

Other information 
• SysV ELF specification.
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10.9 RW compression for BPABI models
The decompressor for compressed RW data is tightly integrated into the start-up code in the 
ARM C library. When running an application on a platform OS, this functionality must provided 
by the platform or platform libraries. Therefore, RW compression is turned off when linking a 
Base Platform Application Binary Interface (BPABI) or System V (SysV) file because there is 
no decompressor. It is not possible to turn compression back on again.

10.9.1 See also

Concepts 
• Optimization with RW data compression on page 5-13.

Other information 
• SysV ELF specification.
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10.10 Linker options for SysV models
The linker enables you to build and link System V (SysV) shared libraries and create SysV 
executables. The following table shows the command-line options that relate to the SysV 
memory model.

10.10.1 See also

Concepts 
• SysV memory model on page 10-14
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19.

Reference 
Linker Reference:
• --fpic on page 2-74
• --import_unresolved, --no_import_unresolved on page 2-79
• --shared on page 2-146
• --sysv on page 2-170.
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11.

Table 10-2 Turning on SysV support

Command-line options Description

--arm_linux this implies --sysv

--sysv to produce a SysV executable

--sysv --shared to produce a SysV shared library
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10.11 SysV memory model
System V (SysV) files have a standard memory model that is described in the generic ELF 
specification. There are several platform operating systems that use the SysV format, for 
example, ARM Linux.

Because of the standard memory model, there are no configuration options available for the 
SysV memory model. The linker ignores any scatter file that you specify on the command-line 
and uses the standard memory map defined by the generic ELF specification.

10.11.1 See also

Concepts 
• Linker options for SysV models on page 10-13
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19

Other information 
• ELF for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
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10.12 Automatic dynamic symbol table rules in the SysV memory model
The following rules apply to the System V (SysV) memory model:

Executable An undefined symbol reference is an undefined symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to 
the dynamic symbol table.
Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to 
the dynamic symbol table unless you specify the --export_all or 
--export_dynamic option.

Shared library 
An undefined symbol reference with STV_DEFAULT visibility is treated as imported 
and is placed in the dynamic symbol table.
An undefined symbol reference without STV_DEFAULT visibility is an undefined 
symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to 
the dynamic symbol table.

Note
 STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation can be 

placed in the dynamic symbol table, however the linker changes them into local 
symbols to prevent them from being accessed from outside the shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported 
to the dynamic symbol table.

10.12.1 Symbol definitions defined for compatibility with glibc

To improve SysV compatibility with glibc, the linker defines the following symbols if the 
corresponding sections exist in an object:
• for .init_array sections:

— __init_array_start

— __init_array_end

• for .fini_array sections:
— __fini_array_start

— __fini_array_end

• for ARM.exidx sections:
— __exidx_start

— __exidx_end

• for .preinit_array sections:
— __preinit_array_start

— __preinit_array_end

• __executable_start

• etext

• _etext 
• __etext

• __data_start

• edata

• _edata

• __bss_start
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• __bss_start__

• _bss_end__

• __bss_end__

• end

• _end

• __end

• __end__

10.12.2 See also

Concepts 
• Linker options for SysV models on page 10-13
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model on page 10-17
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19.

Reference 
• --export_all, --no_export_all on page 2-64
• --export_dynamic, --no_export_dynamic on page 2-65
• --keep_protected_symbols on page 2-91.

Other information 
• ELF for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
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10.13 Addressing modes in the SysV memory model
System V (SysV) has a defined model for accessing the program and imported data and code 
from other models. If required, the linker automatically generates the required Procedure 
Linkage Table (PLT) and Global Offset Table (GOT) sections.

10.13.1 Position independent code

SysV shared libraries are compiled with position independent code using the --apcs=/fpic 
compiler command-line option.

The linker command-line option --fpic must also be used to declare that a shared library is 
position independent because this affects the construction of the PLT and GOT sections. 

Note
 By default, the linker produces an error message if the command-line option --shared is given 
without the --fpic options. If you must create a shared library that is not position independent, 
you can turn the error message off by using --diag_suppress=6403.

10.13.2 See also

Concepts 
• Linker options for SysV models on page 10-13
• Automatic dynamic symbol table rules in the SysV memory model on page 10-15
• Addressing modes in the SysV memory model
• Thread local storage in the SysV memory model on page 10-18
• Related linker command-line options for the SysV memory model on page 10-19.

Reference 
Linker Reference:
• --diag_suppress=tag[,tag,...] on page 2-47
• --fpic on page 2-74
• --import_unresolved, --no_import_unresolved on page 2-79
• --shared on page 2-146.
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-11.
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10.14 Thread local storage in the SysV memory model
The linker supports the ARM Linux thread local storage model as described in the Addenda to, 
and Errata in, the ABI for the ARM Architecture.

10.14.1 See also

Other information 
• Addenda to, and Errata in, the ABI for the ARM Architecture (ABI-addenda), 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html.
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10.15 Related linker command-line options for the SysV memory model
The following linker command-line options relate to the SysV memory model:

Reference 
Linker Reference:
• --arm_linux on page 2-13
• --dynamic_debug on page 2-50
• --dynamic_linker=name on page 2-51
• --export_all, --no_export_all on page 2-64
• --export_dynamic, --no_export_dynamic on page 2-65
• --fpic on page 2-74
• --import_unresolved, --no_import_unresolved on page 2-79
• --linux_abitag=version_id on page 2-101
• --runpath=pathlist on page 2-138
• --shared on page 2-146
• --sysv on page 2-170.
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10.16 Changes to command-line defaults with the SysV memory model
The ARM Compiler toolchain does not provide shared libraries containing the C and C++ 
system libraries. The intended usage model of the System V (SysV) support is to use the system 
libraries that come with the platform. For example, in ARM Linux this is libc.so.

To use libc.so, the linker applies the following changes to the default behavior:
• --arm_linux sets the default options required for ARM Linux
• --no_ref_cpp_init is set to prevent the inclusion of the ARM C++ initialization code
• the linker defines the required symbols to ensure compatibility with libc.so
• --force_so_throw is set which forces the linker to keep exception tables.

10.16.1 See also

Reference 
Linker Reference:
• --arm_linux on page 2-13
• --force_so_throw, --no_force_so_throw on page 2-73
• --ref_cpp_init, --no_ref_cpp_init on page 2-130
• --sysv on page 2-170.
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10.17 Linker options for bare metal and DLL-like models
Use the following command-line options to build bare metal executables and dynamically linked 
library (DLL) like models for a platform OS:

If you are developing applications or DLL for a specific platform OS, based around the Base 
Platform Application Binary Interface (BPABI), you must use the following information in 
conjunction with the platform documentation:
• bare metal and DLL-like memory model
• mandatory symbol versioning in the BPABI DLL-like model
• automatic dynamic symbol table rules in the BPABI DLL-like model
• addressing modes in the BPABI DLL-like model
• C++ initialization in the BPABI DLL-like model.

If you are implementing a platform OS, you must use this information in conjunction with the 
BPABI specification.

10.17.1 See also

Concepts 
• Bare metal and DLL-like memory model on page 10-22
• Mandatory symbol versioning in the BPABI DLL-like model on page 10-23
• Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-24
• Addressing modes in the BPABI DLL-like model on page 10-25
• C++ initialization in the BPABI DLL-like model on page 10-26
• Related linker command-line options for the BPABI DLL-like model on page 10-32.

Reference 
• --base_platform on page 2-18
• --bpabi on page 2-24
• --dll on page 2-49.

Other information 
• Base Platform ABI for the ARM Architecture, 

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

Table 10-3 Turning on BPABI support

Command-line options Description

--base_platform to use scatter-loading with Base Platform ABI (BPABI)

--bpabi to produce a BPABI executable

--bpabi --dll to produce a BPABI DLL
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10.18 Bare metal and DLL-like memory model
Base Platform Application Binary Interface (BPABI) files have a standard memory model that 
is described in the BPABI specification. By using the --bpabi command-line option, the linker 
automatically applies this model and ignores any scatter file that you specify on the 
command-line. This is equivalent to the following image layout:

LR_1 <read-only base address>
{

ER_RO  +0
{

*(+RO)
}

}
LR_2 <read-write base address>
{

ER_RW  +0
{

*(+RW)
}
ER_ZI  +0
{

*(+ZI)
}

}

10.18.1 Customizing the memory model

If the option --ropi is specified, LR_1 is marked as position-independent. Likewise, if the option 
--rwpi is specified, LR_2 is marked as position-independent.

Note
 In most cases, you must specify the --ro_base and --rw_base switches, because the default 
values, 0x8000 and 0 respectively, might not be suitable for your platform. These addresses do 
not have to reflect the addresses to which the image is relocated at run time.

If you require a more complicated memory layout, use the Base Platform linking model, 
--base_platform.

10.18.2 See also

Concepts 
• Base Platform linking model on page 3-6.

Reference 
Linker Reference:
• --base_platform on page 2-18
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --rw_base=address on page 2-139
• --rwpi on page 2-140.
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10.19 Mandatory symbol versioning in the BPABI DLL-like model
The Base Platform Application Binary Interface (BPABI) DLL-like model requires static 
binding. This is because a post-linker might translate the symbolic information in a BPABI DLL 
to an import or export table that is indexed by an ordinal. In which case, it is not possible to 
search for a symbol at run-time.

Static binding is enforced in the BPABI with the use of symbol versioning. The command-line 
option --symver_soname is on by default for BPABI files, this means that all exported symbols 
are given a version based on the name of the DLL.

10.19.1 See also

Concepts 
• About symbol versioning on page 10-27.

Reference 
Linker Reference:
• --soname=name on page 2-151
• --symver_script=file on page 2-167
• --symver_soname on page 2-168.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 10-23
ID091611 Non-Confidential



BPABI and SysV shared libraries and executables 
10.20 Automatic dynamic symbol table rules in the BPABI DLL-like model
The following rules apply to the Base Platform Application Binary Interface (BPABI) DLL-like 
model:

Executable An undefined symbol reference is an undefined symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to 
the dynamic symbol table.
Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to 
the dynamic symbol table unless --export_all or --export_dynamic is set.

DLL An undefined symbol reference is an undefined symbol error.
Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to 
the dynamic symbol table.

Note
 STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation can be 

placed in the dynamic symbol table, however the linker changes them into local 
symbols to prevent them from being accessed from outside the shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported 
to the dynamic symbol table.

You can manually export and import symbols using the EXPORT and IMPORT steering file 
commands. Use the --edit command-line option to specify a steering file command.

10.20.1 See also

Concepts 
• What is a steering file? on page 7-24

Reference 
• Steering file command summary on page 7-26
• Steering file format on page 7-27.
Linker Reference:
• --edit=file_list on page 2-53
• --export_all, --no_export_all on page 2-64
• --export_dynamic, --no_export_dynamic on page 2-65
• --keep_protected_symbols on page 2-91
• EXPORT on page 3-2
• IMPORT on page 3-4.
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10.21 Addressing modes in the BPABI DLL-like model
The main difference between the bare metal and Base Platform Application Binary Interface 
(BPABI) DLL-like models is the addressing mode used to access imported and own-program 
code and data. There are four options available that correspond to categories in the BPABI 
specification:
• None
• Direct references
• Indirect references
• Relative static base address references.

Selection of the required addressing mode is controlled by the following command-line options:
• --pltgot

• --pltgot_opts.

10.21.1 See also

Reference 
Linker Reference:
• --pltgot=type on page 2-121
• --pltgot_opts=mode on page 2-122.
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10.22 C++ initialization in the BPABI DLL-like model
A dynamically linked library (DLL) supports the initialization of static constructors with a table 
that contains references to initializer functions that perform the initialization. The table is stored 
in an ELF section with a special section type of SHT_INIT_ARRAY. For each of these initializers 
there is a relocation of type R_ARM_TARGET1 to a function that performs the initialization.

The ELF Application Binary Interface (ABI) specification describes R_ARM_TARGET1 as either a 
relative form, or an absolute form.

The ARM C libraries use the relative form. For example, if the linker detects a definition of the 
ARM C library __cpp_initialize__aeabi, it uses the relative form of R_ARM_TARGET1 otherwise it 
uses the absolute form.

10.22.1 See also

Concepts 
• Linker options for bare metal and DLL-like models on page 10-21
• Bare metal and DLL-like memory model on page 10-22
• Mandatory symbol versioning in the BPABI DLL-like model on page 10-23
• Automatic dynamic symbol table rules in the BPABI DLL-like model on page 10-24
• Addressing modes in the BPABI DLL-like model on page 10-25
• Related linker command-line options for the BPABI DLL-like model on page 10-32.
Using ARM® C and C++ Libraries and Floating-Point Support:
• Initialization of the execution environment and execution of the application on page 2-55
• C++ initialization, construction and destruction on page 2-56.
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10.23 About symbol versioning
Symbol versioning records extra information about symbols imported from, and exported by, a 
dynamic shared object. The dynamic loader uses this extra information to ensure that all the 
symbols required by an image are available at load time.

Symbol versioning enables shared object creators to produce new versions of symbols for use 
by all new clients, while maintaining compatibility with clients linked against old versions of 
the shared object.

10.23.1 Version

Symbol versioning adds the concept of a version to the dynamic symbol table. A version is a 
name that symbols are associated with. When a dynamic loader tries to resolve a symbol 
reference associated with a version name, it can only match against a symbol definition with the 
same version name. 

Note
 A version might be associated with previous version names to show the revision history of the 
shared object.

10.23.2 Default version

While a shared object might have multiple versions of the same symbol, a client of the shared 
object can only bind against the latest version.

This is called the default version of the symbol.

10.23.3 Creating versioned symbols

By default, the linker does not create versioned symbols for a non Base Platform Application 
Binary Interface (BPABI) shared object.

10.23.4 See also

Reference 
• Symbol versioning script file on page 10-28.
Using the fromelf Image Converter:
• --symbolversions, --no_symbolversions on page 4-72.
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10.24 Symbol versioning script file
You can embed the commands to produce symbol versions in a script file that is specified by the 
command-line option --symver_script=file. Using this option automatically enables symbol 
versioning.

The script file supports the same syntax as the GNU ld linker.

Using a script file enables you to associate a version with an earlier version.

A steering file can be provided in addition to the embedded symbol method. If you choose to do 
this then your script file must match your embedded symbols and use the Backus-Naur Form 
(BNF) notation:

version_definition ::= 

  version_name "{" symbol_association* "}" [depend_version] ";"

The version_name is a string containing the name of the version. depend_version is a string 
containing the name of a version that this version_name depends on. This version must have 
already been defined in the script file. Version names are not significant, but it helps to choose 
readable names, for example:

symbol_association ::= 

  "local:" | "global:" | symbol_name ";"

where:

• "local:" indicates that all subsequent symbol_names in this version definition are local to 
the shared object and are not versioned.

• "global:" indicates that all subsequent symbol_names belong to this version definition.
There is an implicit "global:" at the start of every version definition.

• symbol_name is the name of a global symbol in the static symbol table.

Note
 If you use a script file then the version definitions and symbols associated with them must 
match. The linker warns you if it detects any mismatch.

10.24.1 See also

Concepts 
• About symbol versioning on page 10-27
• Example of creating versioned symbols on page 10-29
• Linker options for enabling implicit symbol versioning on page 10-31.

Reference 
Linker Reference:
• --symver_script=file on page 2-167.
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10.25 Example of creating versioned symbols
The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object 
symbol table:

Example 10-1 Creating versioned symbols, embedded symbols

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The corresponding script file, which includes the addition of dependency information so that 
ver2 depends on ver1 is:

Example 10-2 Creating versioned symbols script file

ver1
{

global:
foo; bar;

local:
*;

};

ver2
{

global:
foo;

} ver1;

10.25.1 See also

Concepts 
• About symbol versioning on page 10-27
• Linker options for enabling implicit symbol versioning on page 10-31.

Reference 
Linker Reference:
• --symver_script=file on page 2-167.
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10.26 About embedded symbols
You can add specially-named symbols to input objects that cause the linker to create symbol 
versions. These symbols are of the form:
• name@version for a non-default version of a symbol
• name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want to export. 
The symbol name is divided into two parts, a symbol name name and a version definition version. 
The name is added to the dynamic symbol table and becomes part of the interface to the shared 
object. Version creates a version called ver if it does not already exist and associates name with 
the version called ver.

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object 
symbol table:

Example 10-3 Creating versioned symbols, embedded symbols

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The linker reads these symbols and creates version definitions ver1 and ver2. The symbol foo is 
associated with a non-default version of ver1, and with a default version of ver2. The symbol 
bar is associated with a default version of ver1. 

There is no way to create associations between versions with this method.

10.26.1 See also

Reference 
Using the Compiler:
• Using compiler and linker support for symbol versions on page 5-32.
Using the Assembler:
• Chapter 5 Writing ARM Assembly Language.
ARM DUI 0474F Copyright © 2010-2011 ARM. All rights reserved. 10-30
ID091611 Non-Confidential



BPABI and SysV shared libraries and executables 
10.27 Linker options for enabling implicit symbol versioning
If you have to version your symbols to force static binding, but you do not care about the version 
number that they are given, you can use implicit symbol versioning.

Use the command-line option --symver_soname to turn on implicit symbol versioning.

Where a symbol has no defined version, the linker uses the SONAME of the file being linked.

This option cannot be combined with embedded symbols or a script file.

10.27.1 See also

Reference 
• About symbol versioning on page 10-27
• Symbol versioning script file on page 10-28
• About embedded symbols on page 10-30.
Linker Reference:
• --symver_soname on page 2-168.
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10.28 Related linker command-line options for the BPABI DLL-like model
The following linker command-line options relate to the Base Platform Application Binary 
Interface (BPABI) DLL-like model:

Reference 
Linker Reference:
• --base_platform on page 2-18
• --bpabi on page 2-24
• --dll on page 2-49
• --dynamic_debug on page 2-50
• --export_all, --no_export_all on page 2-64
• --pltgot=type on page 2-121
• --pltgot_opts=mode on page 2-122
• --ro_base=address on page 2-135
• --ropi on page 2-136
• --rosplit on page 2-137
• --runpath=pathlist on page 2-138
• --rw_base=address on page 2-139
• --rwpi on page 2-140
• --soname=name on page 2-151
• --symver_script=file on page 2-167
• --symver_soname on page 2-168.
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Chapter 11 
Features of the Base Platform linking model

The following topics describe features of the Base Platform linking model supported by the ARM 
linker, armlink:

Concepts 
• Restrictions on the use of scatter files with the Base Platform model on page 11-2
• Example scatter file for the Base Platform linking model on page 11-5
• Placement of PLT sequences with the Base Platform model on page 11-7.
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11.1 Restrictions on the use of scatter files with the Base Platform model
The Base Platform model supports scatter files. Although there are no restrictions on the 
keywords you can use in a scatter file, there are restrictions on the types of scatter files you can 
use:

• A load region marked with the RELOC attribute must contain only execution regions with a 
relative base address of +offset. The following examples show valid and invalid scatter 
files using the RELOC attribute and +offset relative base address:

Example 11-1 Valid scatter file example using RELOC and +offset

# This is valid. All execution regions have +offset addresses.
LR1 0x8000 RELOC
{
    ER_RELATIVE +0
    {
        *(+RO)
    }
}

Example 11-2 Invalid scatter file example using RELOC and +offset

# This is not valid. One execution region has an absolute base address.
LR1 0x8000 RELOC
{
    ER_RELATIVE +0
    {
        *(+RO)
    }
    ER_ABSOLUTE 0x1000
    {
        *(+RW)
    }
}

• Any load region that requires a PLT section must contain at least one execution region 
containing code, that is not marked OVERLAY. This execution region is used to hold the PLT 
section. An OVERLAY region cannot be used as the PLT must remain in memory at all times. 
The following examples show valid and invalid scatter files that define execution regions 
requiring a PLT section:

Example 11-3 Valid scatter file example for a load region that requires a PLT section

# This is valid. ER_1 contains code and is not OVERLAY.
LR_NEEDING_PLT 0x8000
{
    ER_1 +0
    {
        *(+RO)
    }
}
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Example 11-4 Invalid scatter file example for a load region that requires a PLT section

# This is not valid. All execution regions containing code are marked OVERLAY.
LR_NEEDING_PLT 0x8000
{
    ER_1 +0 OVERLAY
    {
        *(+RO)
    }
    ER_2 +0
    {
        *(+RW)
    }
}

• If a load region requires a PLT section, then the PLT section must be placed within the 
load region. By default, if a load region requires a PLT section, the linker places the PLT 
section in the first execution region containing code. You can override this choice with a 
scatter-loading selector.
If there is more than one load region containing code, the PLT section for a load region 
with name name is .plt_name. If there is only one load region containing code, the PLT 
section is called .plt.
The following examples show valid and invalid scatter files that place a PLT section:

Example 11-5 Valid scatter file example for placing a PLT section

#This is valid. The PLT section for LR1 is placed in LR1.
LR1 0x8000
{
    ER1 +0
    {
        *(+RO)
    }
    ER2 +0
    {
        *(.plt_LR1)
    } 
}
LR2 0x10000
{
    ER1 +0
    {
        *(other_code)
    }
}

Example 11-6 Invalid scatter file example for placing a PLT section

#This is not valid. The PLT section of LR1 has been placed in LR2.
LR1 0x8000
{
    ER1 +0
    {
        *(+RO)
    }
}
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LR2 0x10000
{
    ER1 +0
    {
        *(.plt_LR1)
    }
}

11.1.1 See also

Concepts 
• Base Platform linking model on page 3-6
• Placement of PLT sequences with the Base Platform model on page 11-7.

Reference 
Linker Reference:
• Load region attributes on page 4-7
• Execution region attributes on page 4-11
• Address attributes for load and execution regions on page 4-14
• Inheritance rules for load region address attributes on page 4-18
• Inheritance rules for the RELOC address attribute on page 4-20.
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11.2 Example scatter file for the Base Platform linking model
This example shows the use of a scatter file with the Base Platform linking model.

The standard Base Platform Application Binary Interface (BPABI) memory model in scatter file 
format, with relocatable load regions is:

Example 11-7 Standard BPABI scatter file with relocatable load regions

LR1 0x8000 RELOC
{
    ER_RO +0
    {
        *(+RO)
    }
}

LR2 0x0 RELOC
{
    ER_RW +0
    {
        *(+RW)
    }
    ER_ZI +0
    {
        *(+ZI)
    }
}

This example conforms to the BPABI, because it has the same two-region format as the BPABI 
specification.

The next example shows two load regions LR1 and LR2 that are not relocatable.

Example 11-8 Scatter file with some load regions that are not relocatable

LR1 0x8000
{
    ER_RO +0
    {
        *(+RO)
    }
    ER_RW +0
    {
        *(+RW)
    }
    ER_ZI +0
    {
        *(+ZI)
    }
}

LR2 0x10000
{
    ER_KNOWN_ADDRESS +0
    {
        *(fixedsection)
    }
}
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LR3 0x20000 RELOC
{
    ER_RELOCATABLE +0
    {
        *(floatingsection)
    }
}

The linker does not have to generate dynamic relocations between LR1 and LR2 because they 
have fixed addresses. However, the RELOC load region LR3 might be widely separated from load 
regions LR1 and LR2 in the address space. Therefore, dynamic relocations are required between 
LR1 and LR3, and LR2 and LR3.

Use the options --pltgot=direct --pltgot_opts=crosslr to ensure a PLT is generated for each 
load region.

11.2.1 See also

Concepts 
• Base Platform Application Binary Interface (BPABI) linking model on page 3-5
• Base Platform linking model on page 3-6
• Concepts common to both BPABI and SysV linking models on page 3-9
• Restrictions on the use of scatter files with the Base Platform model on page 11-2

Reference 
Linker Reference:
• Load region attributes on page 4-7.
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11.3 Placement of PLT sequences with the Base Platform model
The linker supports Procedure Linkage Table (PLT) generation for multiple load regions 
containing code when in Base Platform mode (--base_platform).

To turn on PLT generation when in Base Platform mode use --pltgot=option that generates 
PLT sequences. You can use the option --pltgot_opts=crosslr to add entries in the PLT for calls 
between RELOC load-regions. PLT generation for multiple Load Regions is only supported for 
--pltgot=direct.

The --pltgot_opts=crosslr option is useful when you have multiple load regions that might be 
moved relative to each other when the image is dynamically loaded. The linker generates a PLT 
for each load region so that calls do not have to be extended to reach a distant PLT.

Placement of linker generated PLT sections:

• When there is only one load region there is one PLT. The linker creates a section called 
.plt with an object anon$$obj.o.

• When there are multiple load regions, a PLT section is created for each load region that 
requires one. By default, the linker places the PLT section in the first execution region 
containing code. You can override this by specifying the exact PLT section name in the 
scatter file.
For example, a load region with name LR Name the PLT section is called .plt_LR_NAME with 
an object of anon$$obj.o. To precisely name this PLT section in a scatter file, use the 
selector:
anon$$obj.o(.plt_LR_NAME)

Be aware of the following:

• The linker gives an error message if the PLT for load region LR_NAME is moved out of load 
region LR_NAME.

• The linker gives an error message if load region LR_NAME contains a mixture of RELOC and 
non-RELOC execution regions. This is because it cannot guarantee that the RELOC execution 
regions are able to reach the PLT at run-time.

• --pltgot=indirect and --pltgot=sbrel are not supported for multiple load regions.

11.3.1 See also

Concepts 
• Base Platform linking model on page 3-6.

Reference 
Linker Reference:
• --base_platform on page 2-18
• --pltgot=type on page 2-121
• --pltgot_opts=mode on page 2-122.
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Appendix A 
Revisions for Using the Linker

The following technical changes have been made to Using the Linker:

Table A-1 Differences between Issue E and Issue F

Change Topics affected

Where appropriate:
• prefixed Thumb with 16-bit
• changed Thumb-2 to 32-bit Thumb.

• About the linker on page 2-2
• About ordering execution regions containing 

Thumb code on page 4-25
• Overview of veneers on page 4-26
• Factors that influence function inlining on 

page 5-19
• Selecting veneer input sections in 

scatter-loading descriptions on page 8-34

Updated the list of environment variables to the new 
version numbering scheme, for example ARMCC5INC.

• Controlling how the linker searches for the 
ARM standard libraries on page 4-36

• Specifying user libraries when linking on 
page 4-38

• How the linker resolves references on 
page 4-39.
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Table A-2 Differences between Issue D and Issue E

Change Topics affected

Added links to --api, --no_api and --veneerinject, 
--no_veneerinject option descriptions.

Linker command-line options listed in groups on 
page 2-5

Added links to the options that work around the ARM 1176 
erratum.

Linker command-line options listed in groups on 
page 2-5

Enhanced the topic title. Using __attribute__((section("name"))) to place 
code and data on page 8-35

Added example C/C++ code. • Automatic placement of __at sections on 
page 8-39

• Manual placement of __at sections on 
page 8-41

• Placing a key in flash memory using __at on 
page 8-43.

Table A-3 Differences between Issue C and Issue D

Change Topics affected

Removed the items about LTCG and profiling from the list 
of linker features.

About the linker on page 2-2

Removed the note about profiling.
Added a note about the LTCG feature being deprecated.

About link-time code generation on page 5-11

Table A-4 Differences between Issue B and Issue C

Change Topics affected

New topic about the strict family of options. Use of the strict family of options in the linker on 
page 4-40

Added details on specifying the maximum size permitted for 
placing unassigned sections with the ANY_SIZE keyword for 
an execution region.

Placing unassigned sections with the .ANY module 
selector on page 8-25

Added a new topic about placing ARM library helper 
functions with scatter files.

Example of placing ARM library helper functions on 
page 8-53

Table A-5 Differences between Issue A and Issue B

Change Topics affected

Added a note about the 64-bit linker support. About the linker on page 2-2

Added links to new command-line options in the Linker 
Reference.

Linker command-line options listed in groups on 
page 2-5

Added a note about Program Segment size limit. • The image structure on page 4-3
• Input sections, output sections, regions, and 

Program Segments on page 4-5.

Added a table to compare scatter file with equivalent 
command-line options.

Methods of specifying an image memory map with 
the linker on page 4-8

Added information on handling unassigned sections. Section placement with the linker on page 4-19
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The PROTECTED keyword also prevents overlapping of load 
regions.

Reuse of veneers when scatter-loading on page 4-30

Added an overview topic for mapping symbols. About mapping symbols on page 7-3

Added Load$$ ZI output section symbols. Load$$ execution region symbols on page 7-7

Added a topic to show how to import linker-defined symbols 
in ARM assembler.

Importing linker-defined symbols in ARM assembler 
on page 7-13

Added examples to show how to place code and data at 
specific addresses.

Placing functions and data at specific addresses on 
page 8-18

Added topics that describe the use of the .ANY module 
selector.

• Placing unassigned sections with the .ANY 
module selector on page 8-25

• Examples of using placement algorithms for 
.ANY sections on page 8-28

• Example of next_fit algorithm showing 
behavior of full regions, selectors, and 
priority on page 8-30

• Examples of using sorting algorithms for 
.ANY sections on page 8-32.

Added information about the affect various linker features 
have when using __attribute__((section("name"))).

Using __attribute__((section("name"))) to place 
code and data on page 8-35

Added information about +offset execution region and 
overlay execution regions.

Placement of sections with overlays on page 8-46

Removed the GNU ld script keywords ABSOLUTE, ADDR, 
ALIGNOF, DEFINED, EXTERN, LOADADDR, and SIZEOF from the list 
of unsupported keywords, because they are now supported.

Specific restrictions for using ld scripts with armlink 
on page 9-6

Modified the default ld scripts for executable and shared 
objects to align to 4 bytes after .bss region.

Default GNU ld scripts used by armlink on page 9-8

Added the default ld script that is used for --ldpartial. Default GNU ld scripts used by armlink on page 9-8

Moved the Base Platform linking model topics to Features 
of the Base Platform linking model.

• Restrictions on the use of scatter files with the 
Base Platform model on page 11-2

• Example scatter file for the Base Platform 
linking model on page 11-5

• Placement of PLT sequences with the Base 
Platform model on page 11-7.

Table A-5 Differences between Issue A and Issue B (continued)

Change Topics affected
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