ARM[®] LogicTile Express 3MG V2F-1XV5

Technical Reference Manual

ARM LogicTile Express 3MG Technical Reference Manual

Copyright © 2009-2015 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

			Change history
Date	Issue	Confidentiality	Change
27 November 2009	А	Non-Confidential	First release
06 August 2010	В	Non-Confidential	Second release
15 October 2010	С	Non-Confidential	Third release
28 March 2011	D	Non-Confidential	Fourth release
22 June 2012	Е	Non-Confidential	Fifth release
28 May 2014	F	Non-Confidential	Sixth release
25 May 2015	G	Non-Confidential	Seventh release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to ARM's customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow ARM's trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright ©, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

CE

The system should be powered down when not in use.

The LogicTile Express 3MG generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- Ensure attached cables do not lie across the card.
- Reorient the receiving antenna.
- Increase the distance between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

— Note —

It is recommended that wherever possible shielded interface cables be used.

Contents ARM LogicTile Express 3MG Technical Reference Manual

	Prefa	ace	
		About this book	viii
		Feedback	
Chapter 1	Intro	duction	
	1.1	Precautions	1-2
	1.2	About the LogicTile Express 3MG daughterboard	1-3
Chapter 2	Hard	Iware Description	
	2.1	Overview of the daughterboard hardware	2-2
	2.2	System interconnect	2-4
	2.3	FPGA configuration and initialization	
	2.4	FPGA debug and trace	
	2.5	Minimum design settings for daughterboard operation	2-14
Chapter 3	Prog	rammers Model	
•	3.1	About this programmers model	3-2
	3.2	Register summary	
	3.3	Memory map	
	3.4	SCC register descriptions	
Appendix A	Sign	al Descriptions	
	A.1	Daughterboard connectors	A-2
Appendix B	Spec	cifications	
••	B.1	Electrical specification	B-2

Appendix C Revisions

Preface

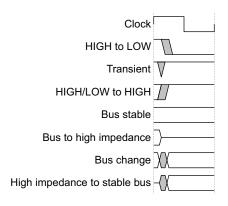
This *Technical Reference Manual* (TRM) is for the *LogicTile Express 3MG*. It contains the following sections:

- *About this book* on page viii
- *Feedback* on page xi.

About this book	
	This book is for LogicTile Express 3MG, V2F-1XV5, daughterboard.
Intended audience	
	This book is written for experienced hardware and software engineers who are developing ARM-based products using the daughterboard as part of a Versatile [™] Express development platform.
Using this book	
	This book is organized into the following chapters:
	Chapter 1 Introduction
	Read this for an introduction to the daughterboard.
	Chapter 2 Hardware Description
	Read this for a description of the hardware present on the daughterboard.
	Chapter 3 Programmers Model
	Read this for a description of the configuration registers present on the LogicTile Express 3MG board.
	Appendix A Signal Descriptions
	Read this for a description of the signals present at the external interface connectors of the daughterboard.
	Appendix B Specifications
	Read this for the electrical and timing specifications of the daughterboard.
	Appendix C Revisions
	Read this for a description of the technical changes between released issues of this book.
Glossary	
	The <i>ARM Glossary</i> is a list of terms used in ARM documentation, together with definitions for those terms. The <i>ARM Glossary</i> does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.
	See ARM Glossary http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
Typographical Convent	tions
	 Conventions that this book can use are described in: <i>Typographical</i> <i>Timing diagrams</i> on page ix <i>Signals</i> on page ix.
	Typographical

The typographical conventions are:

italic


Highlights important notes, introduces special terminology, denotes internal cross-references, and citations.

bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
<u>mono</u> space	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
monospace italic	Denotes arguments to monospace text where the argument is to be replaced by a specific value.
monospace bold	Denotes language keywords when used outside example code.
< and >	Enclose replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0 <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to the bus change shown in *Key to timing diagram conventions*. If a timing diagram shows a single-bit signal in this way then its value does not affect the accompanying description.

Signals

The signal conventions are:

Signal level	The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:
	• HIGH for active-HIGH signals
	• LOW for active-LOW signals.
Lower-case n	At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter http://infocenter.arm.com, for access to ARM documentation.

See onARM http://onarm.com, for embedded software development resources including the *Cortex*[®] *Microcontroller Software Interface Standard* (CMSIS).

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- Application Note AN224. Example LogicTile Express 3MG design for a Core Tile Express A9x4
- ARM[®] Motherboard Express µATX Technical Reference Manual (ARM DUI 0447)
- *ARM[®] Versatile[™] Express Configuration Technical Reference Manual* (ARM DDI 0496)
- ARM[®] CoreTile Express A9x4 Technical Reference Manual (ARM DUI 0448)
- ARM[®] CoreTile Express A5x2 Technical Reference Manual (ARM DUI 0541)
- ARM[®] CoreTile Express A15x2 Technical Reference Manual (ARM DUI 0604)
- ARM[®] Versatile[™] Express Boot Monitor Reference Manual (ARM DUI 0465).

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- the title
- the number, DUI0449G
- the page numbers to which your comments apply
- a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Chapter 1 Introduction

This chapter introduces the LogicTile Express 3MG daughterboard. It contains the following sections:

- *Precautions* on page 1-2
- *About the LogicTile Express 3MG daughterboard* on page 1-3.

1.1 Precautions

This section contains advice about how to prevent damage to your daughterboard.

1.1.1 Ensuring safety

The daughterboard is powered from a 3V3 DC and a 5V DC supply. Power is supplied to the daughterboard through the header HDRY connectors.

—— Warning ——

Do not use the daughterboard near equipment that is sensitive to electromagnetic emissions, for example medical equipment.

1.1.2 Preventing damage

The daughterboard is intended for use within a laboratory or engineering development environment. It is supplied without an enclosure and this leaves the board sensitive to electrostatic discharges and permits electromagnetic emissions.

——Caution ——

To avoid damage to the board, observe the following precautions:

- Never subject the board to high electrostatic potentials. Observe *ElectroStatic Discharge* (ESD) precautions when handling any board.
- Always wear a grounding strap when handling the board.
- Only hold the board by the edges.
- Avoid touching the component pins or any other metallic element.
- Ensure that the voltage on the pins of the FPGA and interface circuitry on the daughterboard is at the correct level. Some of the daughterboard FPGA signals are connected directly to the Versatile Express µATX Motherboard.
- FPGA pins connected to an external signal source must not be configured as outputs.
- Do not use the board near a transmitter of electromagnetic emissions.

1.2 About the LogicTile Express 3MG daughterboard

The daughterboard is designed as a platform for developing systems based on *Advanced Microcontroller Bus Architecture* (AMBA[®]) that use the *Advanced eXtensible Interface* (AXI^m) or custom logic for use with ARM cores.

— Note —

The daughterboard is designed only to be used with a Versatile Express μATX Motherboard.

The daughterboard contains the following devices:

- Xilinx Virtex-5 XC5VLX330T FPGA:
 - Speed-grade -1.
- 256MB of Flash memory for FPGA images.
- 16MB of on-board ZBT RAM.
- HDRX header with two *High-Speed Buses* (HSBs) that connects to the other daughterboard site.
- HDRY header with five buses to the motherboard.
- Serial Advanced Technology Attachment (SATA) connectors.
- JTAG and Trace debug interfaces.
- Eight general-purpose Dual In-line Package (DIP) switches.
- Eight status and user LEDs.
- Daughterboard Configuration Controller.

Figure 1-1 on page 1-4 shows the layout of the daughterboard.

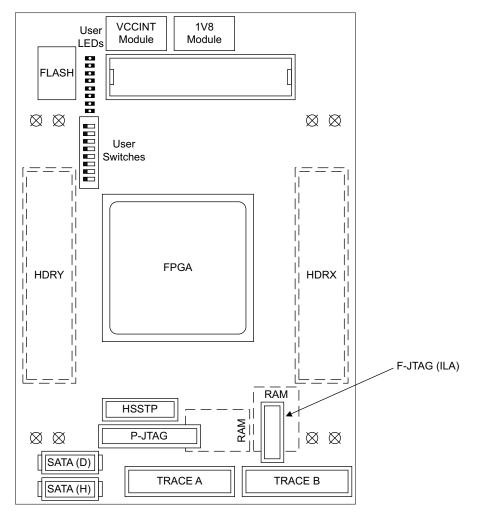


Figure 1-1 Daughterboard layout

Chapter 2 Hardware Description

This chapter describes the LogicTile Express 3MG daughterboard hardware. It contains the following sections:

- *Overview of the daughterboard hardware* on page 2-2
- System interconnect on page 2-4
- FPGA configuration and initialization on page 2-7
- *FPGA debug and trace* on page 2-13
- *Minimum design settings for daughterboard operation* on page 2-14.

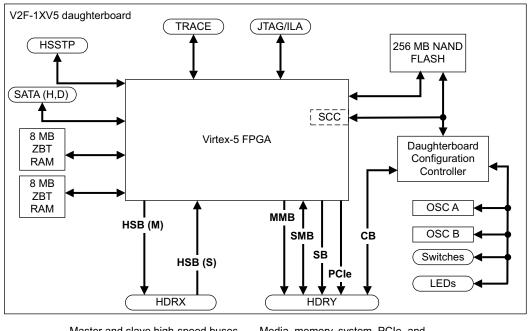

2.1 Overview of the daughterboard hardware

Figure 2-1 shows the high-level hardware infrastructure.

The hardware infrastructure supports system expansion and a number of debug interfaces. For information on the connector pinouts to these additional interfaces, see Appendix A *Signal Descriptions*.

— Note ——

A configuration image loaded into the FPGA at power-up defines the functionality of the daughterboard. The Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4*, provided by ARM, implements an example AMBA system using the daughterboard. See the documentation supplied on the accompanying media and the *Application Notes* listing http://infocenter.arm.com for more information.

Master and slave high-speed buses connect to second daughterboard through motherboard

Media, memory, system, PCIe, and configuration buses to motherboard

Figure 2-1 Hardware infrastructure

The hardware infrastructure of the daughterboard comprises:

- Single Xilinx Virtex-5 XC5VLX330T FPGA:
 - Up to 512KB of internal FPGA block RAM is available.
 - Speed-grade -1.
- 256MB of NAND Flash memory for FPGA images.
- 16MB of on-board ZBT RAM:
 - Two independent banks of 8MB are supported.
- Two High-Speed Buses (HSBs) routed to the HDRX header:
 - A high speed bus Master, M, interface.
 - A high speed bus Slave, S, interface.

- Low Voltage Differential Signaling (LVDS) support.
- Motherboard interfaces routed to the HDRY header:
 - Multi Media Bus (MMB).
 - PCI-Express Bus (PCIe).
 - System Bus (SB).
 - Static Memory Bus (SMB).
 - Configuration Bus (CB).
- Serial Advanced Technology Attachment (SATA) connectors:
 - A Host, H, connector.
 - A Device, D, connector.
- Debug interfaces:
 - JTAG port for *RealView*[®] *ICE*[®] (RVI).
 - Integrated Logic Analyzer (ILA) port for ChipScope[™].
 - Trace A and Trace B ports supporting up to 32-bit trace.
 - High Speed Serial Trace Port (HSSTP) for prototyping of high-speed trace.
- Eight general purpose *Dual In-line Package* (DIP) switches.
- FPGA DONE LED, FPGA configured.
- OverTemp LED.
- Eight general purpose LEDs.
- Local *Daughterboard Configuration Controller* (DCC) that configures the oscillators and power supplies on the daughterboard.
- Battery for FPGA image AES encryption key.
- On-board programmable oscillators.
- Support for *Serial Configuration Controller* (SCC) for correct functioning of LEDs and switches.

For more information, see System interconnect on page 2-4.

2.2 System interconnect

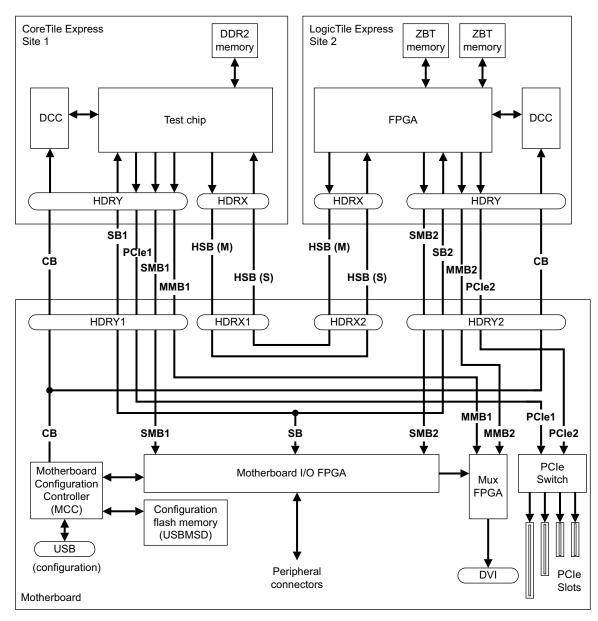


Figure 2-2 shows a typical system interconnect.

Figure 2-2 System interconnect

The signals on the daughterboard are routed to the motherboard over two header connectors, HDRX and HDRY. For more information on the motherboard signals, see the *Hardware Description* chapter in the *ARM*[®] *Motherboard Express* µATX *Technical Reference Manual*.

——Caution ——

You can damage the FPGA if pins configured as outputs are connected, and output different logic levels.

2.2.1 High-Speed Buses to other daughterboard

The HDRX header connects the daughterboard high-speed master and slave buses to the other daughterboard through dedicated headers on the motherboard. The most common use of these bus lanes is to implement a multiplexed AXI master and slave interface between the V2F-1XV5 and V2P-CA9 daughterboards.

— Note —

The Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4* supplied on the supporting product media provides an example AXI design implementing external multiplexed AXI master and slave buses at the HDRX header.

2.2.2 Static Memory Bus (SMB)

The daughterboard uses the Static Memory Bus for peripheral and memory accesses to the motherboard. This is the minimum bus implementation required to enable the daughterboards to boot and run applications.

2.2.3 MultiMedia Bus (MMB)

The optional MultiMedia Bus is implemented to enable a daughterboard to drive audio and video data. This enables the daughterboard to drive up to 1080p UXGA video, and audio formats from stereo to 8-channel surround sound.

2.2.4 System Bus (SB)

The System Bus carries interrupt and DMA signals between the daughterboard and the memory and peripherals on the motherboard.

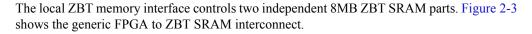
2.2.5 Configuration Bus (CB)

Use the Configuration Bus to determine the functionality and capabilities of the daughterboards prior to controlling the power and reset sequence. You can also use it to update the FPGA images and software on the daughterboards. See *FPGA configuration and initialization* on page 2-7.

2.2.6 PCI-Express Bus (PCIe)

The daughterboard can implement a *root complex* to connect to the PCI-Express Gen1 Card slots on the motherboard. The daughterboard supports a maximum of eight lanes downwards to HDRY.

_____Note _____


ARM does not supply the PCI-Express *root complex*. You can license it from a third party vendor.

—— Note ———

The V2M-P1 motherboard can support a *root complex* either on the daughterboard in Site 1 or in Site 2, but not both. You select which site contains the *root complex* by editing the config.txt file. By default, the daughterboard in Site 1 is the *root complex*.

The V2M-P1 motherboard tile sites do not support *endpoints* connected to the switch.

2.2.7 ZBT memory interface

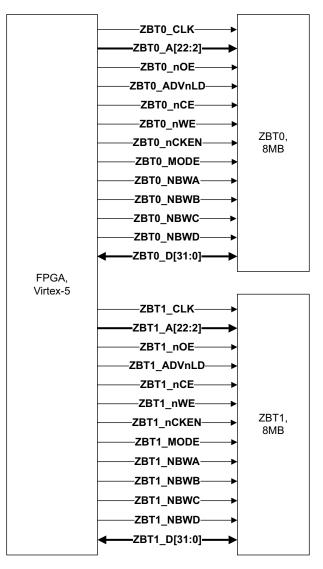


Figure 2-3 Dual ZBT SRAM interface

2.2.8 FPGA configuration flash memory interface

A local 256MB NAND Flash memory stores the FPGA image. The DCC loads data into the Flash memory and initializes the data transfer from the Flash memory to the FPGA.

2.2.9 SATA connectors

Four SATA lanes from the FPGA connect to a SATA connector.

— Note ——

The four SATA lanes consist of two transmit lanes and two receive lanes.

2.3 FPGA configuration and initialization

The daughterboard is fitted with a Xilinx Virtex-5 XC5VLX330T FPGA. Figure 2-4 shows a simplified view of the daughterboard and shows how the FPGA connects to the other on-board devices and the external interfaces.

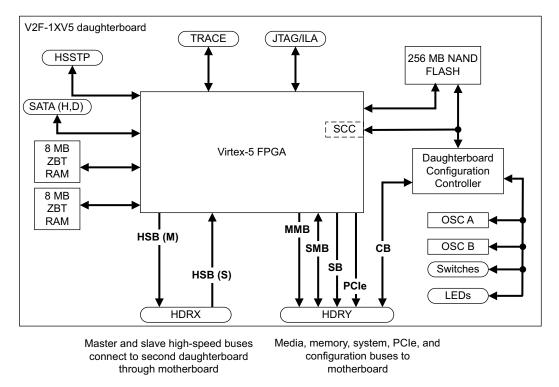


Figure 2-4 Daughterboard block diagram

2.3.1 FPGA image programming and configuration

See the ARM^{\circledast} VersatileTM Express Configuration Technical Reference Manual and ARM^{\circledast} Motherboard Express (μATX) or ARM^{\circledast} Programmer Module (V2M-CP1) for information on how to configure the V2F-1XV5 daughterboard using the configuration files on the motherboard.

——Caution —

ARM recommends that you use the configuration files for all system configuration. *SCC register descriptions* on page 3-5, however, describes registers that directly modify the FPGA configuration.

—— Note ———

A battery-backed encryption key enables DES encrypted FPGA images.

2.3.2 Clocks

The majority of the clocks that the daughterboard uses are generated locally by two on-board clock generators, or within the FPGA. Figure 2-5 on page 2-9 shows the clock domains of the daughterboard.

The on-board Daughterboard Configuration Controller configures the Texas Instruments CDCE937 programmable clock generators during power-up sequencing. See the $ARM^{\mathbb{R}}$ *Versatile*TM *Express Configuration Technical Reference Manual* for more information on how to adjust the clock values.

_____ Note _____

The frequencies of the clocks that Figure 2-5 on page 2-9 shows are user-defined.

All OSC are unreserved, and reset to 24MHz with an operating range of 2MHz-230MHz with 1% resolution.

The MCC configures the daughterboard clocks on power-up with the values that the daughterboard configuration board file defines. Daughterboard clocks can also be read or written to while the system is running using the motherboard System Configuration registers (CFG) interface, or Boot Monitor. For more information, see the *ARM*[®] *Versatile*[™] *Express Configuration Technical Reference Manual*.

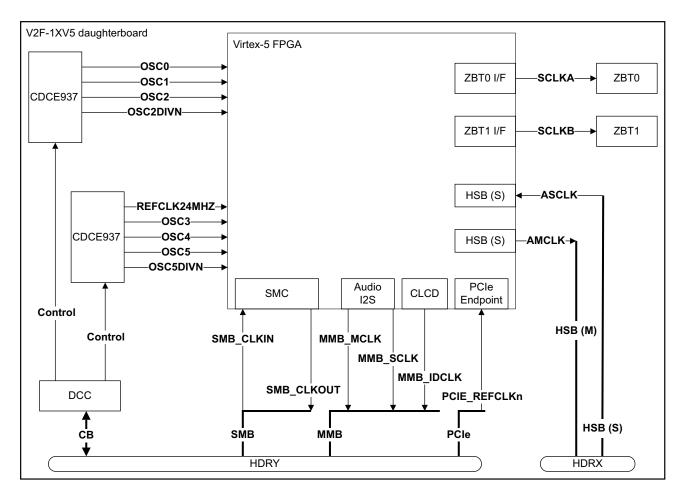
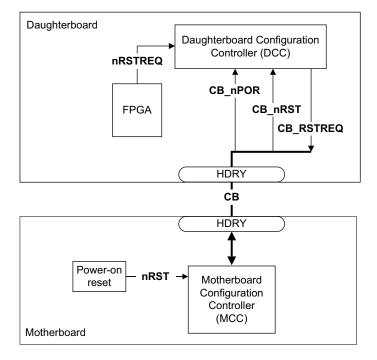


Figure 2-5 Daughterboard clock domains

2.3.3 Resets


The the MCC on the motherboard controls the daughterboard resets. Figure 2-6 on page 2-10 shows the resets from the motherboard and the reset acknowledge signals from the daughterboard.

The **nSRST** signal from the P-JTAG connector or an internal signal can be connected to the **NAND_D[7]** pin in the FPGA. This pin connects to **CB_RESTREQ** using the DCC to request an external reset. This external reset results in **CB_nRST** being asserted. **CB_nPOR** can optionally be asserted by the **ASSERTNPOR** setting, that can be either TRUE or FALSE in the daughterboard configuration files.

See the ARM^{e} VersatileTM Express Configuration Technical Reference Manual for an example of the daughterboard configuration file directory structure. See the ARM^{e} VersatileTM Express Configuration Technical Reference Manual for examples of daughterboard configuration files.

— Note —

Only the **CB_nPOR** and **CB_nRST** signals are driven to the daughterboard FPGA. Depending on the motherboard configuration file settings, you can drive **CB_RSTREQ** from the FPGA through the DCC to request a cold or warm reset.

Figure 2-6 Daughterboard resets

Figure 2-7 shows the basic power-up and power-down reset cycle.

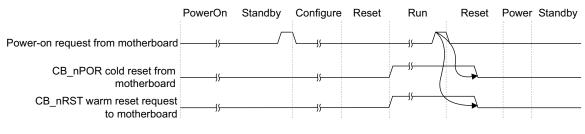


Figure 2-7 Reset timing cycle

2.3.4 DCC FPGA SERIAL INTERFACE

The DCC enables communication to the FPGA. It uses a serial communication channel to receive and transmit information to the FPGA on the daughterboard. It does this by issuing commands to the FPGA. The FPGA must implement a *Serial Configuration Controller* (SCC) to support these commands. See Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4* for an example of a SCC implementation.

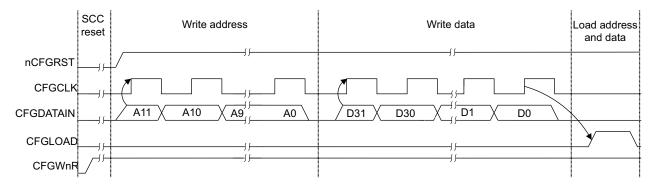
The MCC configures the daughterboard SCC registers on power-up with the values that the daughterboard configuration board file defines. SCC registers can also be read or written to while the system is running, using the motherboard SYS CFG register interface.

SCC Serial Configuration Controller

The SCC serial interface operates at 0.5MHz. The serial interface is similar to a memory-mapped peripheral because it has an address and a data phase. Figure 2-8 on page 2-11 and Figure 2-9 on page 2-11 show the timing diagrams for a write and read operation of a design with one address and four data bits, for simplicity. The SCC operates a 12-bit address and 32-bit data phase.

The **nCFGRST** output from the DCC loads the default configuration settings into the FPGA. **CFGLOAD** determines when WRITE DATA is completed, or when READ DATA is expected to be ready. The DCC provides **CGFCLK** to the FPGA. **CFGWnR** changes depending on the access type.

WRITE DATA is sent Most Significant Bit (MSB) first.


READ DATA is received Least Significant Bit (LSB) first.

— Note —

If the SCC serial interface is not implemented in the FPGA design, ARM recommends that you tie-off the **CFGDATAOUT** and **nRSTREQ** signals as follows:

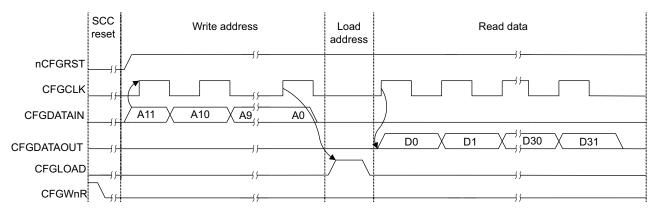

- You must tie the CFGDATAOUT signal LOW. This is the NAND_D[5] pin on the FPGA.
- You must tie the **nRSTREQ** signal HIGH. This is the **NAND_D**[7] pin on the FPGA.

Figure 2-8 shows the DCC write to SCC.

Figure 2-8 DCC write to SCC

Figure 2-9 DCC read from SCC

Table 2-1 shows the DCC AC timing requirements.

Table 2-1 DCC AC timing requirements for SCC interface

Variable	Time
DCC output valid time, DCCTov	1µs
DCC output hold time, DCCToh	1µs
DCC input setup time, DCCTis	1µs
DCC input hold time, DCCTih	1µs

2.4 FPGA debug and trace

This section describes the debug and trace interfaces provided on the daughterboard.

The following separate JTAG paths exist on the daughterboard:

- F-JTAG, FPGA debug, using F-JTAG (ILA), J6.
- P-JTAG, Processor, using J 13 to connect to a virtual TAP controller synthesized into the FPGA.

The daughterboard supports 32-bit parallel TRACE and six lane HSSTP. The voltage domain for TRACE and HSSTP control is 3V3. See Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4* for FPGA connectivity.

2.5 Minimum design settings for daughterboard operation

The minimum RTL in the LogicTile Express 3MG FPGA to operate correctly involves:

- Setting the SMB_CLK0 output to the inactive LOW state.
- Setting the SMB chip select to the inactive HIGH state.
- Setting CFGDATAOUT to the inactive LOW state.
- Setting the **nRSTREQ** pin to the inactive HIGH state.
- 1. Set the SMB_CLK0 to the inactive LOW state as follows:

Tie SMB_CLK0 to b0.

_____Note _____

This stops data being clocked to the IOFPGA on the motherboard.

 Set the SMB chip select to the inactive HIGH state as follows: Tie the chip selects SMB nCS to b11111111.

This stops static memory access to the motherboard.

 Set the CFGATAOUT signal to the inactive LOW state as follows: Tie NAND_D[5] to b0, as the note in SCC Serial Configuration Controller on page 2-10 describes.

_____Note _____

—— Note ———

This informs the DCC that no DCC features are implemented.

 Set the nRSTREQ pin to the inactive HIGH state as follows: Tie NAND_D[7] to b1.

This prevents **nRSTREQ** from generating a reset. **nRSTREQ** is usually a system-wide master soft reset signal that is both generated and observed by the JTAG debug box.

-Note -

ARM recommends that all unused pins must be tied to their inactive states.

Chapter 3 Programmers Model

This chapter describes the programmers model. It contains the following sections:

- *About this programmers model* on page 3-2
- *Register summary* on page 3-3
- *Memory map* on page 3-4
- SCC register descriptions on page 3-5.

3.1 About this programmers model

The following information applies to the SCC registers:

- The base address is not fixed, and can be different for any particular system implementation. The offset of each register from the base address is fixed.
- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in Unpredictable behavior.
- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register bits are reset to a logic 0 by a system or power-on reset.
- Access type in Table 3-1 on page 3-3 is described as follows:
 - **RW** Read and write.
 - **RO** Read only.
 - **WO** Write only.

3.2 Register summary

Table 3-1 shows the registers in offset order from the base memory address.

Offset	Name	Туре	Reset	Width	Description
0x000-0x0FC	DCC_CFGx	RW	ØxXXXXXXXX a	32	DCC_CFGx Registers on page 3-5
0x100	DCC_LOCK	RO	0xFFXX000X ^b	32	DCC_LOCK Register on page 3-5
0x104	DCC_LED	RO	0x0000000F	32	DCC_LED Register on page 3-6
0x108	DCC_SW	RO	0×00000000	32	DCC_SW Register on page 3-7
0xFF8	DCC_AID	RO	0xXXXXXXXXXa	32	DCC_AID Register on page 3-7
0xFFC	DCC_ID	RO	ØxXXXXXXXXX	32	DCC_ID Register on page 3-8

Table 3-1 Register summary

a. Where X = unknown at reset.

b. Last X = b000X, either b0000 or b0001.

3.3 Memory map

The LogicTile Express 3MG has an empty memory, so you must determine the memory map.

3.4 SCC register descriptions

The DCC writes to the SCC registers at power-up with the values that the configuration board file defines. The DCC also reads the LOCK and ID registers to determine whether the PLLs in the FPGA are locked, and to determine which FPGA image has been loaded. During run-time, the DCC polls the LED and Switch values to ensure that they match SCC register values. The SCC registers are also available during run-time from the motherboard SYG_CFG register interface.

3.4.1 DCC_CFGx Registers

The DCC_CFGx Registers characteristics are:

PurposeThese registers write the USER configuration value. You can define up to
64 write registers. The register address must be in increments of 0x004 and
the data must be 32 bits wide. The MCC reads the daughterboard
configuration file during board configuration and writes the register values
to the FPGA SCC registers. You must implement the appropriate decoder
and logic in the FPGA for these to have any effect.

Usage constraints There are no usage constraints.

Configurations Available in all LogicTile Express 3MG configurations.

Attributes See Table 3-1 on page 3-3.

Figure 3-1 shows the bit assignments.

31						0
		D	CC_CFGx[31	:0]		

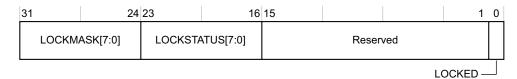
Figure 3-1 DCC_CFGx Registers bit assignments

Table 3-2 shows the bit assignments.

Table 3-2 DCC_CFGx Registers bit assignments

Bits	Name	Function
[31:0]	DCC_CFGx[31:0]	User registers configured during board initialization up from configuration file

— Note —


You can also update the DCC_CFGx Registers during run-time using the motherboard SYS_CFG register interface, or motherboard serial port command line interface or SCC APB interface.

3.4.2 DCC_LOCK Register

The DCC_LOCK Register characteristics are:

Purpose	PLL lock status bits from the FPGA.
Usage constraints	There are no usage constraints.
Configurations	Available in all LogicTile Express 3MG configurations.
Attributes	See Table 3-1 on page 3-3.

Figure 3-2 shows the bit assignments.

Figure 3-2 DCC_LOCK Register bit assignments

Table 3-3 shows the bit assignments.

Table 3-3 DCC_LOCK Register bit assignments

Bits	Name	Function		
[31:24]	LOCK_MASK[7:0]	These bits inc	These bits indicate if the individual lock bits are masked.	
[23:16]	LOCK_STATUS[7:0]	These bits indicate the individual lock status:		
		b0	Unlocked.	
		b1	Locked.	
[15:1]	-	Reserved		
[0]	LOCKED	This bit indic	ates whether all unmasked lock bits are locked:	
		b0	Unlocked.	
		b1	Locked.	

DCC_LED Register 3.4.3

The DCC_LED Register characteristics are:

Purpose	Controls the USER LEDs on the daughterboard. The DCC polls this SCC register from the FPGA and updates the appropriate LEDs.	
Usage constraints	There are no usage constraints.	
Configurations	Available in all LogicTile Express 3MG configurations.	
Attributes	See Table 3-1 on page 3-3.	
Figure 3-3 shows the bit assignments		

Figure 3-3 shows the bit assignments.

31				8 7		0
		Reserved			LED[7:0]	

Figure 3-3 DCC_LED Register bit assignments

Table 3-4 shows the bit assignments.

Table 3-4 DCC_LED Register bit assignments

Bits	Name	Function
[31:8]	-	Reserved
[7:0]	LED[7:0]	These bits control the individual USER LEDs

3.4.4 DCC_SW Register

The DCC_SW Register characteristics are:

Purpose	Determines the state of the eight user switches on the daughterboard. The DCC polls the switches and updates this SCC register in the FPGA.		
Usage constraints	There are no usage constraints.		
Configurations	Available in all LogicTile Express 3MG configurations.		
Attributes	See Table 3-1 on page 3-3.		

Figure 3-4 shows the bit assignments.

31			8	7	
	Rese	erved		SW[7	':0]

Figure 3-4 DCC_SW Register bit assignments

Table 3-5 shows the bit assignments.

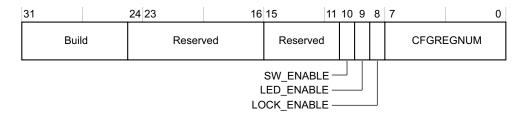
Table 3-5 DCC_SW Register bit assignments

Bits	Name	Function	
[31:8]	-	Reserved	
[7:0]	SW[7:0]	These bits indicate state of user switches	

3.4.5 DCC_AID Register

The DCC_AID Register characteristics are:

Purpose


The DCC reads this information and uses it to determine the number of
DCC_CFGx registers, and the registers that are supported that can be read
from the motherboard SYS-CFG register interface. If this register is not
implemented, the DCC does not support user switches or LEDs, lock, or
user config commands.

Usage constraints There are no usage constraints.

Configurations Available in all LogicTile Express 3MG configurations.

Attributes See Table 3-1 on page 3-3.

Figure 3-5 shows the bit assignments.

Figure 3-5 DCC_AID Register bit assignments

Table 3-6 shows the bit assignments.

Table 3-6 DCC_AID Register bit assignments

Bits	Name	Function
[31:24]	Build	FPGA build number.
[23:16]	-	Reserved.
[15:11]	-	Reserved.
[10]	SW_ENABLE	This bit indicates whether the DCC_SW_READ command is supported.
[9]	LED_ENABLE	This bit indicates whether the DCC_LED_READ command is supported.
[8]	LOCK_ENABLE	This bit indicates whether the DCC_LOCK_READ command is supported.
[7:0]	CFGREGNUM	These bits indicate the number of user config commands. The maximum number supported is 64.

3.4.6 DCC_ID Register

The DCC_ID Register characteristics are:

Purpose	The DCC reads this register and uses it to determine information about the design in the FPGA that can be read through the motherboard SYS_CFG register interface.
Usage constraints	There are no usage constraints.
Configurations	Available in all LogicTile Express 3MG configurations.
Attributes	See Table 3-1 on page 3-3.

Figure 3-6 shows the bit assignments.

31	24	23 20	19 16	15	4	3 0
	Implementer	Variant	Architecture		AN	Revision

Figure 3-6 DCC_ID Register bit assignments

Table 3-7 shows the bit assignments.

Table 3-7 DCC_ID Register bit assignments

Bits	Name	Function
[31:24]	Implementer	Implementer ID
[23:20]	Variant	Variant number
[19:16]	Architecture	Architecture. 0x00 for Application Notes
[15:4]	AN	Application Note number
[3:0]	Revision	Revision number

Appendix A Signal Descriptions

This chapter describes the signals present at the interface connectors. The on board connectors are:

- *Header connectors* on page A-2
- *Trace connectors* on page A-2
- *P-JTAG connector* on page A-4
- *F-JTAG (ILA) connector* on page A-5
- SATA connectors on page A-6
- *HSSTP connector* on page A-7.

A.1 Daughterboard connectors

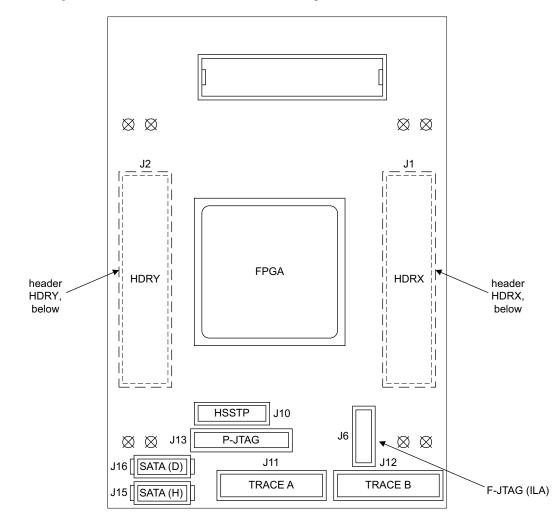
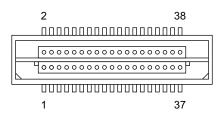


Figure A-1 shows the connectors fitted to the daughterboard.

Figure A-1 Daughterboard connectors

A.1.1 Header connectors

There are two high density headers fitted to the underside of the daughterboard. These headers, designated HDRX, J1, and HDRY, J2, route the signal and power interconnect between a daughterboard and the motherboard. The daughterboard is not stackable.


A.1.2 Trace connectors

Trace connectors are provided for up to 32-bit trace. The two trace connectors provide access to a *Trace Port Interface Unit* (TPIU) that you can implement in the FPGA.

— Note —

The trace connectors are connected to the FPGA to support up to 32-bit trace port widths when using RealView Trace 2 and the 32-bit dual-Mictor probe. JTAG signals on the Trace Connector are wired in parallel to the ICE JTAG port. If required, you can also implement a RealView ICE JTAG connection and *Serial Wire Debug* (SWD) at the Trace A port.

Figure A-2 shows the trace connector.

_____Note _____

The part number for the Mictor connector is AMP 2-767004-2.

Table A-1 shows the trace pin mapping for each Trace Port A signal. See the Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4* constraints file for FPGA mapping.

	Table A-	Trace	Port A connector, JTT
Pin	Signal	Pin	Signal
1	Not connected	2	Not connected
3	Not connected	4	Not connected
5	GND	6	TRACECLKA
7	TRACEDBGRQ	8	TRACEDBGACK
9	nSRST	10	TRACEEXTTRIGX
11	TDO	12	VTREFA
13	RTCK	14	VSUPPLYA
15	ТСК	16	TRACEDATA7
17	TMS	18	TRACEDATA6
19	TDI	20	TRACEDATA5
21	nTRST	22	TRACEDATA4
23	TRACEDATA15	24	TRACEDATA3
25	TRACEDATA14	26	TRACEDATA2
27	TRACEDATA13	28	TRACEDATA1
29	TRACEDATA12	30	GND
31	TRACEDATA11	32	GND
33	TRACEDATA10	34	3V3
35	TRACEDATA9	36	TRACECTL
37	TRACEDATA8	38	TRACEDATA0

Table A-1 Trace Port A connector, J11

—Note —

You must program pull-down resistors on the **TRACEDBGRQ** and **TRACEDBGACK** pins in the constraints file in Application Note AN224 *Example LogicTile Express 3MG design for a CoreTile Express A9x4*.

Table A-2 shows the Trace pin mapping for each Trace Port B signal. See the Application Note AN224 *Example LogicTile Express 3MG design for a Core Tile Express A9x4* for FPGA mapping.

Pin	Signal	Pin	Signal
1	Not connected	2	Not connected
3	Not connected	4	Not connected
5	GND	6	TRACECLKB
7	Not connected	8	Not connected
9	Not connected	10	Not connected
11	Not connected	12	VTREFB
13	Not connected	14	Not connected
15	Not connected	16	TRACEDATA23
17	Not connected	18	TRACEDATA22
19	Not connected	20	TRACEDATA21
21	Not connected	22	TRACEDATA20
23	TRACEDATA31	24	TRACEDATA19
25	TRACEDATA30	26	TRACEDATA18
27	TRACEDATA29	28	TRACEDATA17
29	TRACEDATA28	30	GND
31	TRACEDATA27	32	GND
33	TRACEDATA26	34	3V3
35	TRACEDATA25	36	GND
37	TRACEDATA24	38	TRACEDATA16

Table A-2	Trace	Port B	connector, J12
			•••••••••••••••••••••••

A.1.3 P-JTAG connector

The P-JTAG connector is provided on the daughterboard to enable connection of RealView ICE or a compatible third-party debugger. Figure A-3 on page A-5 shows the P-JTAG connector, J13.

–Note –

All signal connections on the P-JTAG connector have pull-up resistors to 3V3.

2

Figure A-3 P-JTAG connector, J13

Table A-3 shows the JTAG pin mapping for each JTAG signal.

JTAG pin	JTAG signal	JTAG pin	JTAG signal
1	3V3	2	3V3
3	nTRST	4	GND
5	TDI	6	GND
7	TMS	8	GND
9	ТСК	10	GND
11	RTCK	12	GND
13	TDO	14	GND
15	nSRST	16	GND
17	Not connected	18	GND
19	Not connected	20	nICEDETECT

A.1.4 F-JTAG (ILA) connector

Figure A-4 shows the F-JTAG (ILA) connector, J6. You can use an ILA device such as $ChipScope^{M}$ to debug designs in the FPGA.

— Note —

_

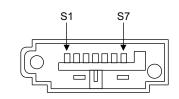
Pins 4, 6, and 10 on the F-JTAG (ILA) connector have pull-up resistors to 3V3.

2 🗆				14
1 🗆				13

Figure A-4 F-JTAG (ILA) connector, J6

Table A-4 shows the F-JTAG (ILA) pin mapping for each ILA signal.

Table A-4 F-JTAG (ILA) connector, J6


ILA pin	ILA signal	ILA pin	ILA signal
1	GND	2	3V3
3	GND	4	ILA_TMA
5	GND	6	ILA_TCLK
7	GND	8	ILA_TDO

ILA pin	ILA signal	ILA pin	ILA signal
9	GND	10	ILA_TDI
11	GND	12	Not connected
13	GND	14	Not connected

Table A-4 F-JTAG (ILA) connector, J6 (continued)

A.1.5 SATA connectors

There are two SATA connectors on the daughterboard. Connectivity for a SATA Host, H, and SATA Device, D, interface is provided. Figure A-5 shows the SATA connector.

Figure A-5 SATA connector, J15, J16

Table A-5 shows the SATA Host pin mapping for each SATA signal. The GTX location for the SATA Host signals is X0Y3. See application note AN224, *Example LogicTile Express 3MG design for a CoreTile Express A9x4* constraints file v2f_1xv5_rev(b or c).ucf for FPGA mapping.

——Caution ——

The SATA host signals B+ and B- connect to the FPGA with their polarity reversed from the default to improve signal integrity. Signal pairs must be swapped in the FPGA by setting the inverted polarity input in the instantiation of the transceiver module.

Table A-5 shows the SATA Host pin mapping for each SATA signal.

	<i>,</i> , , , , , , , , , , , , , , , , , ,
SATA pin	SATA host signal, J15
S1	GND
S2	A+
S3	А-
S4	GND
S5	В-
S6	B+
S7	GND

Table A-5 SATA host, J15, signal list

Table A-6 on page A-7 shows the SATA Device pin to FPGA pin mapping for each SATA signal. The GTX location for the SATA Device signals is X0Y3. See application note AN224, *Example LogicTile Express 3MG design for a CoreTile Express A9x4* constraints file v2f_1xv5_rev(b or c).ucf for FPGA mapping.

— Caution ——

The SATA device signals A+ and A- connect to the FPGA with their polarity reversed from the default to improve signal integrity. Signal pairs must be swapped in the FPGA by setting the inverted polarity input in the instantiation of the transceiver module.

Table A-6 shows the SATA device pin to FPGA pin mapping for each SATA signal.

SATA Device signal, J16
GND
A+
А-
GND
B-
B+
GND

Table A-6 SATA device. J16. to FPGA signal list

A.1.6 HSSTP connector

The daughterboard includes the interconnect to implement a *High Speed Serial Trace Port* (HSSTP). The interconnect supports six lanes of LVDS signaling. Figure A-6 on page A-8 shows the HSSTP connector, J10.

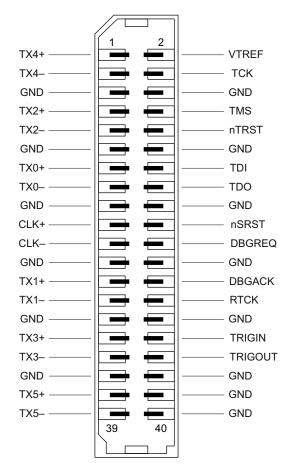


Figure A-6 HSSTP connector, J10

Table A-7 shows the HSSTP pin mapping.

—— Caution ——

The LVDS Device signal pairs, TX1+ and TX1-, TX2+ and TX2-, and TX5+ and TX5-, connect to the FPGA with their polarity reversed from the default to improve signal integrity. Signal pairs must be swapped in the FPGA by setting the inverted polarity input in the instantiation of the transceiver module.

Table A-7 shows the HSSTP pin mapping.

	or, J10, signal list		
HSSTP pin	HSSTP signal	HSSTP pin	HSSTP signal
1	TX4+	2	VTREF
3	TX4-	4	ТСК
5	GND	6	GND
7	TX2+	8	TMS
9	ТХ2-	10	nTRST
11	GND	12	GND
13	TX0+	14	TDI

Table A-7 HSSTP connector, J10, signal list

HSSTP pin	HSSTP signal	HSSTP pin	HSSTP signal
15	ТХ0-	16	TDO
17	GND	18	GND
19	CLK+	20	nSRST
21	CLK-	22	DBGREQ
23	GND	24	GND
25	TX1+	26	DBGACK
27	TX1-	28	RTCK
29	GND	30	GND
31	TX3+	32	TRIGIN
33	ТХ3-	34	TRIGOUT
35	GND	36	GND
37	TX5+	38	GND
39	ТХ5-	40	GND

Table A-7 HSSTP connector, J10, signal list (continued)

Table A-8 shows the HSSTP TX signal FPGA-GTX connectivity.

Table A-8 HSSTP TX signal FPGA-GTX connectivity

HSSTP signal	GTX location
HSSTP_TX0_P	X0Y1
HSSTP_TX0_N	-
HSSTP_TX1_P	X0Y1
HSSTP_TX1_N	-
HSSTP_TX2_P	X0Y0
HSSTP_TX2_N	-
HSSTP_TX3_P	X0Y2
HSSTP_TX3_N	-
HSSTP_TX4_P	X0Y0
HSSTP_TX4_N	-
HSSTP_TX5_P	X0Y1
HSSTP_TX5_N	-

Appendix B Specifications

This appendix contains the specification of the daughterboard. It contains the following section:

• *Electrical specification* on page B-2.

B.1 Electrical specification

This section provides information on the voltage and current characteristics for the daughterboard and describes:

- Bus interface characteristics
- FPGA current requirements.

B.1.1 Bus interface characteristics

Table B-1 shows the daughterboard electrical characteristics.

Table B-1 Electrical characteristics for 3V3 I/O

Symbol	Description	Min	Мах	Unit
V _{IH}	High-level input voltage	1.2	3.3	V
V_{IL}	Low-level input voltage	0	0.8	V
V _{OH}	High-level output voltage	2.4	-	V
V _{OL}	Low-level output voltage	-	0.4	V

B.1.2 FPGA current requirements

Table B-2 shows the maximum current requirements for the daughterboard voltage supplies listed by system component when using the example images supplied on the *Versatile Express DVD*.

— Note —

The actual current depends on the complexity of the design in the daughterboard and the clock speed used for the system. For a fuller implementation and higher clock rate, the observed value can be several times the value that Table B-2 shows.

Software to help in calculating the current requirements for your particular application is available on the Xilinx web site http://www.xilinx.com.

Table B-2 shows the maximum current requirements for the daughterboard voltage supplies.

	Table B-2 Current requirements		
Component	Voltage range	Maximum current	
Core	1V	5A	
I/O	1.2 - 3.3V	1.5A	
AUX	2.5V	2A	

Table B 2 Current requirements

The current requirements that Table B-2 shows require a maximum current of 2.5A from the external 5V supply to the daughterboard.

Appendix C **Revisions**

This appendix describes the technical changes between released issues of this book

Table C-1 Issue A

Change	Location	Affects
No changes, first release	-	-

Table C-2 Differences between Issue A and Issue B

Change	Location	Affects
Flash memory diagram removed because it is not required in the document.	FPGA configuration flash memory interface on page 2-6.	All versions
Section DCC FPGA SERIAL INTERFACE reworded.	DCC FPGA SERIAL INTERFACE on page 2-10.	Version B
Figure altered with daughterboard header names swapped so that site 2 becomes daughterboard site 1.	Figure 2-2 on page 2-4.	All versions
Programmers Model chapter created.	Chapter 3 Programmers Model.	Version B
Table Trace Port A connector, J11, pin names changed toreflect signal names in schematic:Pins 9 to 21 and Pin 34.	Table A-1 on page A-3.	All versions
Table Trace Port B connector, J12, pin 34 name changed to reflect signal names in schematic.	Table A-2 on page A-4.	All versions

Table C-2 Differences between Issue A and Issue B (continued)

Change	Location	Affects
Table headings changed from Command name to Register name.	Table A-1 on page A-3.Table A-2 on page A-4.	Version B
Updated section below SATA connector, J15, J16.	Figure A-5 on page A-6.	All versions
Caution statement changed to The SATA host.	SATA connectors on page A-6.	All versions
Updated section below SATA Host, J15, signal list.	Table A-5 on page A-6.	All versions
New table added showing HSSTP TX signal FPGA-GTX connectivity.	Table A-8 on page A-9.	All versions

Table C-3 Differences between Issue B and Issue C

Change	Location	Affects
 System interconnect diagram updated: HDRY1 position corrected. HDRX1 position corrected. HDRX2 position corrected. HDRY2 position corrected. 	Figure 2-2 on page 2-4.	All versions
Clocks section clarified.	Clocks on page 2-8.	All versions
Minimum design settings for daughterboard operation section added.	Minimum design settings for daughterboard operation on page 2-14.	All versions
PISMO2 connector section updated.		All versions

Table C-4 Differences between Issue C and Issue D

Change	Location	Affects
Document updated to latest Technical Publications <i>Element Definition Document</i> (EDD).	All of document.	Version D
Signal name nRSTREQ added to daughterboard resets diagram for additional clarification. This signal was formerly called nSRST but not identified in the diagram.	Figure 2-6 on page 2-10.	Version D
Reference in main text to tying CFGDATAOUT HIGH removed.	DCC FPGA SERIAL INTERFACE on page 2-10.	Version D
Note added to say that signal nRSTREQ must be tied HIGH when the FPGA design does not support the SCC serial interface.	DCC FPGA SERIAL INTERFACE on page 2-10.	Version D
Replaced NAND_D[7] pin with nRSTREQ .	Minimum design settings for daughterboard operation on page 2-14.	Version D
Changed signal names from nSRST to nRSTREQ .	Minimum design settings for daughterboard operation on page 2-14.	Version D
Signals chapter changed to Signal Descriptions appendix to match other documents in the Versatile Express set.	Appendix A Signal Descriptions.	Version D

Table C-5 Differences between Issue D and Issue E

Change	Location	Affects
User must program pull-down resistors on TRACEDBGRQ and TRACEDBGACK pins in constraints file.	Trace connectors on page A-2.	Version E
Glossary removed. Reference and link to <i>ARM Glossary</i> added to Preface.	Glossary on page viii.	Version E
Configuration section shortened. Information is now in new document <i>ARM[®] Versatile Express</i> <i>Configuration Technical Reference Manual.</i>	<i>FPGA configuration and initialization</i> on page 2-7.	Version E
 Added new documents to Additional Reading section of Preface: ARM[®] Versatile Express Configuration Technical Reference Manual. ARM[®] CoreTile Express A5x2 Technical Reference Manual. ARM[®] CoreTile Express A15x2 Technical Reference Manual. 	Additional reading on page x.	Version E
Add speed-grade to FPGA description.	About the LogicTile Express 3MG daughterboard on page 1-3. Overview of the daughterboard hardware on page 2-2.	Version E
	Table C-6 Differences between Issue	E and Issue
Change	Location	Affects
Corrected description of PCI-Express system.	PCI-Express Bus (PCIe) on page 2-5.	All versions

Change	Location	Affects
Removed references to PISMO2.	Throughout document.	All versions