
ARM DS-5
Version 5.12

EB RTSM Reference Guide
Copyright © 2008-2010, 2012 ARM. All rights reserved.
ARM DUI 0424G (ID100912)

ARM DS-5
EB RTSM Reference Guide

Copyright © 2008-2010, 2012 ARM. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM in the EU and other countries, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks
of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Description Issue Confidentiality Change

August 2008 A Non-Confidential Release for RealView Development Suite v4.0 Professional,
System Generator v4.0 SP1.

December 2008 B Non-Confidential Release for Fast Models 4.1. Added changes related to
ARM_RTSM_PATH.

March 2009 C Non-Confidential Release for Fast Models 4.2. Minor changes to text. Added
description for device-accurate-tlb parameter.

November 2009 D Non-Confidential Release for models provided by RealView Development Suite
v4.0 Professional edition.

May 2010 E Non-Confidential Release for models provided by RealView Development Suite
v4.1 Professional edition.

September 2010 F Non-Confidential Release for models provided by RealView Development Suite
v4.1 SP1 Professional edition.

October 2012 G Non-Confidential Release for DS-5 version 5.12.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. ii
ID100912 Non-Confidential

ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. iii
ID100912 Non-Confidential

Contents
ARM DS-5 EB RTSM Reference Guide

Preface
About this book .. v
Feedback .. viii

Chapter 1 Introduction
1.1 Introduction to system models ... 1-2
1.2 Introduction to the EB RTSM ... 1-3

Chapter 2 Getting Started with EB RTSMs
2.1 Starting an RTSM .. 2-2
2.2 Configuring an RTSM .. 2-3
2.3 Using the CLCD window .. 2-5
2.4 Using Ethernet with an EB RTSM .. 2-7
2.5 Using a terminal with a system model ... 2-9
2.6 Virtual filesystem .. 2-11
2.7 Using the VFS with a pre-built RTSM .. 2-13

Chapter 3 Programmer’s Reference for the EB RTSMs
3.1 EB model memory map ... 3-2
3.2 EB model configuration parameters .. 3-5
3.3 EB RTSM baseboard parameters .. 3-6
3.4 Ethernet parameters .. 3-9
3.5 System controller parameters .. 3-10
3.6 UART parameters .. 3-11
3.7 Terminal parameters .. 3-12
3.8 Visualization parameters ... 3-13
3.9 RTSM_EB_Cortex-A8 CoreTile parameters .. 3-14
3.10 Differences between the EB and CoreTile hardware and the models 3-15

Preface

This preface introduces the EB RTSM Reference Guide. It contains the following sections:
• About this book on page v
• Feedback on page viii.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. iv
ID100912 Non-Confidential

Preface
About this book
This book describes how to configure and use the Real-Time System Models (RTSMs). The
models let you run software applications on a virtual implementation of an Emulation
Baseboard (EB) and an attached CoreTile.

The EB RTSMs are models of ARM® application processors.

Intended audience

This book has been written for experienced hardware and software developers to:

• understand how the RTSM examples are constructed

• use the RTSMs as part of a development environment to aid the development of products
that use ARM architecture-based processors or peripherals.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the general description of software models.

Chapter 2 Getting Started with EB RTSMs
Read this for a description of how to start using the EB RTSMs. It also contains
information on the terminal and Ethernet features provided with the EB RTSMs.

Chapter 3 Programmer’s Reference for the EB RTSMs
Read this for a description of the EB memory map and registers, in addition to
information on model parameters and component configuration. It also describes
differences between the EB RTSMs and their hardware equivalents.

Conventions

Conventions that this book can use are described in:
• Conventions
• Signals on page vi.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. v
ID100912 Non-Confidential

Preface
monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. The following publications
provide reference information about the ARM architecture:
• AMBA® Specification (ARM IHI 0011)
• ARM Architecture Reference Manual (ARM DDI 0100).

The following publications provide information about related ARM products and toolkits:
• Component Architecture Debug Interface Developer Guide (ARM DUI 0444)
• Fast Models Reference Manual (ARM DUI 0423)
• Fast Models User Guide (ARM DUI 0370)
• Model Shell for Fast Models Reference Manual (ARM DUI 0457).

The following publications provide information about ARM PrimeCell® and other peripheral or
controller devices:

• ARM® PrimeCell® UART (PL011) Technical Reference Manual (ARM DDI 0183)

• ARM® PrimeCell® Synchronous Serial Port Controller (PL022) Technical Reference
Manual (ARM DDI 0194)

• ARM® PrimeCell® Real-Time Clock Controller (PL031) Technical Reference Manual
(ARM DDI 0224)

• ARM® PrimeCell® Advanced Audio CODEC Interface (PL041) Technical Reference
Manual (ARM DDI 0173)

• ARM® PrimeCell® GPIO (PL061) Technical Reference Manual (ARM DDI 0190)

• ARM® PrimeCell® DMA (PL081) Technical Reference Manual (ARM DDI 0196)

• ARM® PrimeCell® Synchronous Static Memory Controller (PL093) Technical Reference
Manual (ARM DDI 236)
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. vi
ID100912 Non-Confidential

Preface
• ARM® PrimeCell® Color LCD Controller (PL111) Technical Reference Manual (ARM
DDI 0161)

• ARM® PrimeCell® Smart Card Interface (PL131) Technical Reference Manual (ARM
DDI 0228)

• ARM® PrimeCell® Multimedia Card Interface (PL180) Technical Reference Manual
(ARM DDI 0172)

• ARM® PrimeCell® External Bus Interface (PL220) Technical Reference Manual (ARM
DDI 0249)

• PrimeCell® Level 2 Cache Controller (PL310) Technical Reference Manual (ARM DDI
0246)

• ARM® Dynamic Memory Controller (PL340) Technical Reference Manual (ARM DDI
0331)

• PrimeCell® Generic Interrupt Controller (PL390) Technical Reference Manual (ARM
DDI 0416)

• ARM® Dual-Timer Module (SP804) Technical Reference Manual (ARM DDI 0271)

• ARM® PrimeCell® Watchdog Controller (SP805) Technical Reference Manual (ARM DDI
0270)

• ARM® PrimeCell® System Controller (SP810) Technical Reference Manual (ARM DDI
0254).

Other publications

This section lists relevant documents published by third parties. The following data sheets
describe some of the integrated circuits or modules used on the EB:

• CODEC with Sample Rate Conversion and 3D Sound (LM4549) National
Semiconductor, Santa Clara, CA.

• MultiMedia Card Product Manual SanDisk, Sunnyvale, CA.

• Serially Programmable Clock Source (ICS307), ICS, San Jose, CA.

• 1.8 Volt Intel StrataFlash Wireless Memory with 3.0 Volt I/O (28F256L30B90) Intel
Corporation, Santa Clara, CA.

• Three-In-One Fast Ethernet Controller (LAN91C111) SMSC, Hauppauge, NY.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. vii
ID100912 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms if
appropriate.

Feedback on content

If you have any comments on content, send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0424G
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. viii
ID100912 Non-Confidential

Chapter 1
Introduction

This chapter introduces the Real-Time System Models. It contains the following sections:
• Introduction to system models on page 1-2
• Introduction to the EB RTSM on page 1-3.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-1
ID100912 Non-Confidential

Introduction
1.1 Introduction to system models
The Real-Time System Models (RTSM) enable development of software without the
requirement for actual hardware.

The software models provide Programmer’s View (PV) models of processors and devices. The
functional behavior of a model is equivalent to real hardware.

Absolute timing accuracy is sacrificed to achieve fast simulated execution speed. This means
that you can use the PV models for confirming software functionality, but you must not rely on
the accuracy of cycle counts, low-level component interactions, or other hardware-specific
behavior.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-2
ID100912 Non-Confidential

Introduction
1.2 Introduction to the EB RTSM
The EB and CoreTiles are hardware development platforms produced by ARM.

The EB RTSMs are system models implemented in software. They are developed using the
ARM® Fast Models™ library product.

Note
 The EB RTSMs are provided as example platform implementations and are not intended to be
accurate representations of a specific EB hardware revision. The RTSMs support selected
peripherals as described in this book. The supplied RTSMs are sufficiently complete and
accurate to boot the same operating system images as for EB hardware.

See also:
• About the EB and CoreTile hardware
• About the EB Real-Time System Models on page 1-4.

1.2.1 About the EB and CoreTile hardware

The major components on the hardware version of the baseboard are:

• two tile sites (supports ARM CoreTiles and LogicTiles)

• Field Programmable Gate-Array (FPGA) that implements a bus matrix, configuration
interface, peripheral controllers, and interface logic

• 8MB configuration flash that holds FPGA images

• 256MB of 32-bit wide DDR SDRAM

• 4MB of 32-bit wide Cellular (Pseudo-static) RAM

• 64MB of 32-bit wide NOR flash

• up to 320MB (5x64MB) of static memory (flash or RAM) in an optional PISMO
expansion board

• PCI expansion connector

• USB interface controller IC and connector

• Ethernet interface controller IC and connector

• connectors for VGA, color LCD display interface board, four UARTs, GPIO, keyboard,
mouse, Smart Card, audio, MMC, and SSP

• electronic switches that select between the controllers located in the FPGA or on one of
the tile sites

• debug and test connectors for JTAG, Integrated Logic Analyzer, and Trace port

• general purpose DIP switches and LEDs

• 2 row by 16 character LCD display

• power supply circuitry

• Real-Time Clock (RTC)

• time of year clock with backup battery
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-3
ID100912 Non-Confidential

Introduction
• programmable clock generators.

1.2.2 About the EB Real-Time System Models

The Real-Time System Model components for the EB Reference System are:
• Processor CoreTile:

— Cortex™-A8.
• EB model with:

— 64MB Flash memory
— 256MB RAM
— Ethernet interface
— UART interface
— debug DIP switches and LEDs
— Real-Time Clock (RTC)
— time of year clock
— programmable clock generators
— Synchronous Serial Port Interface (SSPI)
— DMA controller configuration registers
— Static Memory Controller (SMC).

The EB RTSM also includes virtual components:
• visualization for Color LCD (CLCD) display, keyboard and mouse
• touch screen controller
• four telnet terminals.

The Real-Time System Models for the EB Reference System are hierarchical models that
consist of:
• the top-level view of the model
• the EB model
• the CoreTile model that is used by the system model.

The EB RTSMs provide a functionally-accurate model for software execution. However, the
model sacrifices timing accuracy to increase simulation speed. Key deviations from actual
hardware are:
• timing is approximate
• buses are simplified.

Many components can be configured at instantiation time. See EB model configuration
parameters on page 3-5.

For more detail on the differences, see Differences between the EB and CoreTile hardware and
the models on page 3-15.

Top-level view of an EB model

A block diagram of the top-level model for an EB with a Cortex-A8 CoreTile is shown in
Figure 1-1 on page 1-5.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-4
ID100912 Non-Confidential

Introduction
Figure 1-1 Block diagram of top-level EB model
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-5
ID100912 Non-Confidential

Introduction
CoreTile component

The CoreTile component provides the processor version and the associated ports that enable
interconnection with other top-level components. The block diagram of the model for the
Cortex-A8 CoreTile is shown in Figure 1-2.

Figure 1-2 Cortex-A8 Block diagram of CoreTile model
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-6
ID100912 Non-Confidential

Introduction
EB component

The block diagram of the EB Baseboard model is shown in Figure 1-3. The figure shows the
components in block form, the ports, and the interconnections between them.

Figure 1-3 Block diagram of the EB Baseboard model
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 1-7
ID100912 Non-Confidential

Chapter 2
Getting Started with EB RTSMs

This chapter describes the procedures for starting and configuring an EB RTSM, and running a
software application on the model. The procedures differ depending on the ARM software tools
you are using. Read the sections that apply to the software you have. This chapter contains the
following sections:
• Starting an RTSM on page 2-2
• Configuring an RTSM on page 2-3
• Using the CLCD window on page 2-5
• Using Ethernet with an EB RTSM on page 2-7
• Using a terminal with a system model on page 2-9
• Virtual filesystem on page 2-11
• Using the VFS with a pre-built RTSM on page 2-13.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-1
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.1 Starting an RTSM
This section describes how to start an EB RTSM. An example of loading and executing an
application is documented separately.

The model can optionally start a CADI debug server allowing a CADI-enabled debugger, such
as ARM DS-5™ Debugger, to be connected to the running model. It can also be configured to
wait for a debugger connection before starting.

To start the RTSM, change to the directory where your model file is and enter the following at
the command prompt:

model_name [--cadi-server] [--config-file filename] [-C instance.parameter=value]

[--application app_filename]

where:

model_name is the name of the model file. By default this file name is typically
RTSM_EB_processor.

filename is the name of your optional plain-text configuration file. Configuration files
simplify managing multiple parameters. See Using a configuration file on
page 2-3.

instance.parameter=value
is the optional direct setting of a configuration parameter. See Using the command
line on page 2-3.

app_filename is the file name of an image to load to your model at startup.

For more information on model options, see the Model Shell for Fast Models Reference Manual.

Note
 RTSMs contain an internal Model Shell, and the model options match.

Starting the model opens the RTSM CLCD display. See Using the CLCD window on page 2-5.

After the RTSM starts, you can use ARM DS-5 Debugger to connect to it.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-2
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.2 Configuring an RTSM
This section describes how to configure EB RTSMs.

Valid user settings for the EB RTSM parameters and their effects are described in EB model
configuration parameters on page 3-5.

2.2.1 Setting model configuration options

The initial state of the RTSM can be controlled by configuration settings provided on the
command line or in the CADI properties for the model.

Using a configuration file

To configure a model that you start from the command line, include a reference to an optional
plain text configuration file as described in Starting an RTSM on page 2-2.

Comment lines in the configuration file must begin with a # character.

Each non-comment line of the configuration file contains:
• the name of the component instance
• the parameter to be modified and its value.

Boolean values can be set using either true/false or 1/0. Strings must be enclosed in
double quotes if they contain whitespace.

A typical configuration file is listed in Example 2-1:

Example 2-1 Configuration file

Disable semihosting using true/false syntax
coretile.core.semihosting-enable=false
#
Enable the boot switch using 1/0 syntax
baseboard.sp810_sysctrl.use_s8=1
#
Set the boot switch position
baseboard.eb_sysregs_0.boot_switch_value=1

Using the command line

You can use the -C switch to define model parameters when you invoke the model. You can also
use --parameter as a synonym for the -C switch. See Starting an RTSM on page 2-2. Use the
same syntax as for a configuration file, but each parameter must be preceded by the -C switch.

Examples

This section contains an example for configuring an EB RTSM.

Example 2-2 shows how to set the boot options.

Example 2-2 Booting a model from a flash image

Boot from a flash image
RTSM_EB_Cortex-A8 \
 --parameter "coretile.core.semihosting-cmd_line="\
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-3
ID100912 Non-Confidential

Getting Started with EB RTSMs
 --parameter "baseboard.flashldr_0.fname=flash.bin" \
 --parameter "baseboard.eb_sysregs_0.user_switches_value=4" \
 --parameter "visualisation.disable_visualisation=false" \
 --parameter "visualisation.rate_limit-enable=0" \
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-4
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.3 Using the CLCD window
When an RTSM starts, the RTSM CLCD window opens.

This window represents the contents of the simulated color LCD framebuffer. It automatically
resizes to match the horizontal and vertical resolution set in the CLCD peripheral registers.

For more information on the CLCD model components and other peripherals, see the Fast
Models Reference Manual.

This section describes the CLCD window for EB RTSMs.

2.3.1 Using the EB CLCD window

Figure 2-1 shows the EB RTSM CLCD in its default state, immediately after being started.

Figure 2-1 CLCD window at startup

The top section of the CLCD window displays the following status information:

USERSW Eight white boxes show the state of the EB User DIP switches:
These represent switch S6 on the EB hardware, USERSW[8:1], which is mapped
to bits [7:0] of the SYS_SW register at address 0x10000004.
The switches are in the off position by default. Click in the area above or below
a white box to change its state. See Switch S6 on page 3-6.

BOOTSW Eight white boxes showing the state of the EB Boot DIP switches.
These represent switch S8 on the EB hardware, BOOTSEL[8:1], which is
mapped to bits [15:8] of the SYS_SW register at address 0x100000004.
The switches are in the off position by default. See Switch S8 on page 3-7.

Note
 ARM recommends you configure the Boot DIP switches using the boot_switch

model parameter rather than by using the CLCD interface.
Changing Boot DIP switch positions while the model is running can result in
unpredictable behavior.

S6LED Eight colored boxes indicate the state of the EB User LEDs.
These represent LEDs D[21:14] on the EB hardware, which are mapped to bits
[7:0] of the SYS_LED register at address 0x10000008. The boxes correspond to the
red/yellow/green LEDs on the EB hardware.

Total Instr A counter showing the total number of instructions executed.
Because the RTSM models provide a programmer’s view of the system, the
CLCD displays total instructions rather than total core cycles. Timing might
differ substantially from the hardware because:
• the bus fabric is simplified
• memory latencies are minimized
• programmer’s view core and peripheral models are used.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-5
ID100912 Non-Confidential

Getting Started with EB RTSMs
In general, the timing of operations within a model is not accurate.

Total Time A counter showing the total elapsed time, in seconds.
This is wall clock time, not simulated time.

Rate Limit A feature that prevents the simulation from running faster than wall clock time.
Because the system model is highly optimized, your code might run faster than it
would on real hardware. This might cause timing issues.
Rate Limit is enabled by default. Simulation time is restricted so that it more
closely matches real time. See Timing considerations on page 3-18.
Click on the square button to disable or enable Rate Limit. The text changes from
ON to OFF and the colored box becomes darker when Rate Limit is disabled.
Figure 2-2 shows the CLCD with Rate Limit disabled.

Note
 You can control whether Rate Limit is enabled by using the rate_limit-enable

parameter when instantiating the model. See on page 3-13Visualization
parameters on page 3-13.

If you click on the Total Instr or Total Time items in the CLCD, the display changes to show
Inst/sec (instructions per second) and Perf Index (performance index) as shown in Figure 2-2.
You can click on the items again to toggle between the original and alternative displays.

Figure 2-2 CLCD window with Rate Limit off

Instr/sec Shows the number of instructions executed per second of wall clock time.

Perf Index The ratio of real time to simulation time. The larger the ratio, the faster the
simulation runs. If you enable the Rate Limit feature, the Perf Index approaches
unity.

You can reset the simulation counters by resetting the model.

If the CLCD window has focus:
• any keyboard input is translated to PS/2 keyboard data.
• Any mouse activity over the window is translated into PS/2 relative mouse motion data.

This is then streamed to the KMI peripheral model FIFOs.

Note
 The simulator only sends relative mouse motion events to the model. As a result, the host mouse
pointer does not necessarily align with the target OS mouse pointer.

You can hide the host mouse pointer by pressing the Left Ctrl+Left Alt keys. Press the keys
again to redisplay the host mouse pointer. Only the Left Ctrl key is operational. The Right Ctrl
key on the right of the keyboard does not have the same effect.

If you prefer to use a different key, use the trap_key configuration option. See the CADI
parameter documentation in the Fast Models Reference Manual.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-6
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.4 Using Ethernet with an EB RTSM
The EB RTSMs provide you with a virtual Ethernet component. This is a model of the
SMSC91C111 Ethernet controller, and uses a TAP device to communicate with the network. By
default, the Ethernet component is disabled.

2.4.1 Host requirements

Before you can use the Ethernet capability of the EB RTSM, you must first set up your host
computer. See the Fast Models User Guide for more information.

2.4.2 Target requirements

The EB RTSMs include a software implementation of the SMSC91C111 device. Your target OS
must therefore include a driver for this specific device, and you must configure the kernel to use
the SMSC chip. Linux is the operating system that supports the SMSC91C111.

There are three Ethernet component parameters you can configure for the Ethernet component:
• enabled
• MAC address
• promiscuous.

Configure these before starting the EB RTSM.

enabled

The default state is false. When the device is disabled, the kernel cannot detect the device. For
more information, see the SMSC_91C111 component section in the Fast Models Reference
Manual. The following figure shows a block diagram of the model networking structure:

Figure 2-3 Model networking structure block diagram

You must configure a HostBridge component to perform read and write operations on the TAP
device. The HostBridge component is a virtual programmer’s view model, acting as a
networking gateway to exchange Ethernet packets with the TAP device on the host, and to
forward packets to NIC models.

Target OS

Drivers

SMSC91C111

TAP device

Virtual Machine

TCP/IP

Operating
System
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-7
ID100912 Non-Confidential

Getting Started with EB RTSMs
mac_address

There are two options for the mac_address parameter.

If you do not specify a MAC address, then when the simulator runs it takes the default MAC
address. The address is randomly-generated to increase the chance of it being unique when
running models on multiple hosts on a local network.

promiscuous

The default state is true. This means that it receives all network traffic, even any not specifically
addressed to the device. You must use the default if you are using a single network device for
multiple MAC addresses. Use it if, for example, you are sharing the same network card between
your host OS and the EB RTSM Ethernet component.

By default, the Ethernet device on the EB RTSM has a randomly-generated MAC address.

2.4.3 Configuring Ethernet

For information on configuring a connection to the Ethernet interface on the RTSM from
Microsoft Windows or Linux, see the Fast Models User Guide.

2.4.4 See also

Reference
• Fast Models Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423-/index.html

• Fast Models User Guide,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0370-/index.html.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-8
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.5 Using a terminal with a system model
The Terminal component is a virtual component that enables UART data to be transferred
between a TCP/IP socket on the host and a serial port on the target.

Note
 To use the Terminal component with a Microsoft Windows 7 client, you must first install Telnet.
The Telnet application is not installed on Microsoft Windows Vista by default.

Download the application by following the instructions on the Microsoft web site. Search for
“Windows 7 Telnet” to find the Telnet FAQ page. To install Telnet:

1. Select Start → Control Panel → Programs and Features. This opens a window that
enables you uninstall or change programs.

2. Select Turn Windows features on or off on the left side of the bar. This opens the
Microsoft Windows Features dialog. Select the Telnet Client check box.

3. Click OK. The installation of Telnet might take several minutes to complete.

Figure 2-4 shows a block diagram of one possible relationship between the target and host
through the Terminal component. The TelnetTerminal block is what you configure when you
define Terminal component parameters. The Virtual Machine is your EB RTSM.

Figure 2-4 Terminal block diagram

On the target side, the console process invoked by your target OS relies on a suitable driver
being present. Such drivers are normally part of the OS kernel. The driver passes serial data
through a UART. The data is forwarded to the TelnetTerminal component, that exposes a
TCP/IP port to the world outside of the RTSM. This port can be connected to by, for example,
a telnet process on the host.

Console

Driver

UART

TelnetTerminal

Telnet

TCP/IP

Serial

Virtual Machine

Target OS

Kernel
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-9
ID100912 Non-Confidential

Getting Started with EB RTSMs
By default, the EB RTSM starts four telnet Terminals when the model is initialized. You can
change the startup behavior for each of the four Terminals by modifying the corresponding
component parameters.

If the Terminal connection is broken, for example by closing a client telnet session, the port is
re-opened on the host. This might have a different port number if the original one is no longer
available. Before the first data access, you can connect a client of your choice to the network
socket. If there is no existing connection when the first data access is made, and the start_telnet
parameter is true, a host telnet session is started automatically.

The port number of a particular Terminal instance can be defined when the RTSM starts. The
actual value of the port used by each Terminal is declared when it starts or restarts, and might
not be the value you specified if the port is already in use. The port numbers are displayed in the
host window in which you started the model.

You can start the Terminal component in either telnet mode or raw mode.

2.5.1 Telnet mode

In telnet mode, the Terminal component supports a subset of the RFC 854 protocol. This means
that the Terminal participates in negotiations between the host and client concerning what is and
is not supported, but flow control is not implemented.

2.5.2 Raw mode

Raw mode enables the byte stream to pass unmodified between the host and the target. This
means that the Terminal component does not participate in initial capability negotiations
between the host and client. It acts as a TCP/IP port. You can use this feature to directly connect
to your target through the Terminal component.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-10
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.6 Virtual filesystem
The Virtual FileSystem (VFS) allows your target to access parts of a host filesystem. This access
is achieved through a target OS-specific driver and a memory mapped device called the
MessageBox. When using the VFS, access to the host filesystem is analogous to access to a
shared network drive, and can be expected to behave in the same way.

If you want to build your own system that includes the VFS, see the Fast Models Reference
Manual. See also the WritingADriver.txt file in %PVLIB_HOME%\VFS\docs\.

The VFS supports the following filesystem operations:
getattr retrieves metadata for the file, directory or symbolic link
mkdir creates a new directory
remove removes a file, directory or symbolic link
rename renames a file, directory or symbolic link
rmdir removes an empty directory
setattr sets metadata for the file, directory or symbolic link.

Note
 setattr is not implemented.

Symbolic links are not supported. Hard links cannot be created by the model but hard links
created by the host operating system function correctly.

The VFS supports the following mount points:
closemounts

frees the iterator handle returned from openmounts
openmounts

retrieves an iterator handle for the list of available mounts
readmounts reads one entry from the mount iterator ID.

The VFS supports the following directory iterators:
closedir frees a directory iterator handle retrieved by opendir
opendir retrieves an iterator handle for the directory specified
readdir reads the next entry from the directory iterator.

Note
 Datestamps returned are in milliseconds elapsed since the VFS epoch of January 01 1970 00:00
UTC and are host datestamps. The host datestamp might be in the future relative to the simulated
OS datestamp.

The VFS supports the following file operations:

closefile frees a handle opened with openfile

filesync forces the host OS to flush all file data to persistent storage

getfilesize returns the size of a file, in bytes

openfile returns a handle to the file specified

readfile reads a block of data from a file

setfilesize sets the size of a file in bytes, either by truncating, or extending the file with
zeroes
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-11
ID100912 Non-Confidential

Getting Started with EB RTSMs
writefile writes a block of data to a file.

2.6.1 See also

Reference
• Using the VFS with a pre-built RTSM on page 2-13
• Fast Models Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423-/index.html.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-12
ID100912 Non-Confidential

Getting Started with EB RTSMs
2.7 Using the VFS with a pre-built RTSM
The supplied EB RTSMs include the necessary VFS components. This permits you to run a
Linux image, for example, on the EB RTSM and access the filesystem running on your
computer.

To use the VFS functionality of the EB RTSM, use the motherboard.vfs2.mount configuration
parameter when you start the model. The value of the parameter is the path to the host filesystem
directory that is to be made accessible within the model.

2.7.1 Mount names

When the target OS is running, create a mount point, such as /mnt/host. For example, on a Linux
target, use the mount command as follows:

mount -t vmfs A /mnt/host

You can then access the host filesystem from the target OS through a supported filesystem
operation. See the ReadMe.txt file in the %PVLIB_HOME%\VFS2\linux\ directory.

2.7.2 Path names

All path names must be fully qualified paths of the form:

mountpoint:/path/to/object

2.7.3 See also

Reference
• Virtual filesystem on page 2-11
• Fast Models Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423-/index.html.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 2-13
ID100912 Non-Confidential

Chapter 3
Programmer’s Reference for the EB RTSMs

The following topics describe the memory map and the configuration registers for the peripheral
and system component models:
• EB model memory map on page 3-2
• EB model configuration parameters on page 3-5
• EB RTSM baseboard parameters on page 3-6
• Ethernet parameters on page 3-9
• UART parameters on page 3-11
• Terminal parameters on page 3-12
• Visualization parameters on page 3-13
• RTSM_EB_Cortex-A8 CoreTile parameters on page 3-14
• Differences between the EB and CoreTile hardware and the models on page 3-15.

Note
 For detailed information on the programming interface for ARM PrimeCell® peripherals and
controllers, see the appropriate technical reference manual.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-1
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.1 EB model memory map
Table 3-1 lists the locations and interrupts for memory, peripherals, and controllers used in the
EB Real-Time System Models. See the Emulation Baseboard User Guide for more details on
the controllers and peripherals.

Table 3-1 Memory map and interrupts for standard peripherals

Peripheral Modeled Address range Bus Size GIC
Inta

DCCI
Intb

Dynamic memory Yes 0x00000000–0x0FFFFFFF AHB 256MB - -

System registers (see Status and system
control registers on page 3-17)

Yes 0x10000000–0x10000FFF APB 4KB - -

SP810 System Controller Yes 0x10001000–0x10001FFF APB 4KB - -

Two-Wire Serial Bus Interface No 0x10002000–0x10002FFF APB 4KB - -

Reserved - 0x10003000–0x10003FFF APB 4KB - -

PL041 Advanced Audio CODEC
Interface (AACI)

Partialc 0x10004000–0x10004FFF APB 4KB 51 51

PL180 MultiMedia Card Interface
(MCI)

Partiald 0x10005000–0x10005FFF APB 4KB 49, 50 49, 50

Keyboard/Mouse Interface 0 Yes 0x10006000–0x10006FFF APB 4KB 52 7

Keyboard/Mouse Interface 1 Yes 0x10007000–0x10007FFF APB 4KB 53 8

Character LCD Interface No 0x10008000–0x10008FFF APB 4KB 55 55

UART 0 Interface Yes 0x10009000–0x10009FFF APB 4KB 44 4

UART 1 Interface Yes 0x1000A000–0x1000AFFF APB 4KB 45 5

UART 2 Interface Yes 0x1000B000–0x1000BFFF APB 4KB 46 46

UART 3 Interface Yes 0x1000C000–0x1000CFFF APB 4KB 47 47

Synchronous Serial Port Interface Yes 0x1000D000–0x1000DFFF APB 4KB 43 43

Smart Card Interface No 0x1000E000–0x1000EFFF APB 4KB 62 62

Reserved - 0x1000F000–0x1000FFFF APB 4KB - -

SP805 Watchdog Interface Yes 0x10010000–0x10010FFF APB 4KB 32 32

SP804 Timer modules 0 and 1 interface
(Timer 1 starts at 0x10011020)

Yes 0x10011000–0x10011FFF APB 4KB 36 1

SP804 Timer modules 2 and 3 interface
(Timer 3 starts at 0x10020020)

Yes 0x10012000–0x10012FFF APB 4KB 37 2

PL061 GPIO Interface 0 Yes 0x10013000–0x10013FFF APB 4KB 38 38

PL061 GPIO Interface 1 Yes 0x10014000–0x10014FFF APB 4KB 39 39

PL061 GPIO Interface 2
(miscellaneous onboard I/O)

Yes 0x10015000–0x10015FFF APB 4KB 40 40

Reserved - 0x10016000–0x10016FFF APB 4KB - -

PL030 Real-Time Clock Interface Yes 0x10017000–0x10017FFF APB 4KB - -
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-2
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
Dynamic Memory Controller
configuration

Partiale 0x10018000–0x10018FFF APB 4KB - -

PCI controller configuration registers No 0x10019000–0x10019FFF AHB 4KB - -

Reserved - 0x1001A000–0x1001FFFF APB 24KB - -

PL111 Color LCD Controller Yes 0x10020000–0x1002FFFF AHB 64KB 55 55

DMA Controller configuration registers Yes 0x10030000–0x1003FFFF AHB 64KB - -

Generic Interrupt Controller 1
CPU interface

Yesb 0x10040000–0x10040FFF AHB 4KB - -

Generic Interrupt Controller 1
Distributor interface

Yes 0x10041000–0x10041FFF AHB 4KB - -

Generic Interrupt Controller 2
CPU interface (nFIQ for tile 1)

Nof 0x10050000–0x10050FFF AHB 4KB - -

Generic Interrupt Controller 2
Distributor interface

Yes 0x10051000–0x10051FFF AHB 4KB - -

Generic Interrupt Controller 3
CPU interface (nIRQ for tile 2)

Nof 0x10060000–0x10060FFF AHB 4KB - -

Generic Interrupt Controller 3
Distributor interface

No 0x10061000–0x10061FFF AHB 4KB - -

Generic Interrupt Controller 4
CPU interface (nFIQ for tile 2)

Nof 0x10070000–0x10070FFF AHB 4KB - -

Generic Interrupt Controller 4
Distributor interface

No 0x10071000–0x10071FFF AHB 4KB - -

PL350 Static Memory Controller
configurationg

Yes 0x10080000–0x1008FFFF AHB 64KB - -

Reserved - 0x10090000–0x100EFFFF AHB 448MB - -

Debug Access Port (DAP) ROM table.
Some debuggers read information on
the target processor and the debug chain
from the DAP table.

No 0x100F0000–0x100FFFFF AHB 64KB - -

Reserved - 0x10100000–0x1FFFFFFF - 255MB - -

Reserved - 0x20000000–0x3FFFFFFF - 512MB - -

NOR Flash Yesh 0x40000000–0x43FFFFFF AXI 64MB - -

Disk on Chip No 0x44000000–0x47FFFFFF AXI 64MB 41 41

SRAM Yes 0x48000000–0x4BFFFFFF AXI 64MB - -

Configuration flash No 0x4C000000–0x4DFFFFFF AXI 32MB - -

Ethernet Yesi 0x4E000000–0x4EFFFFFF AXI 16MB 60 60

USB No 0x4F000000–0x4FFFFFFF AXI 16MB - -

Table 3-1 Memory map and interrupts for standard peripherals (continued)

Peripheral Modeled Address range Bus Size GIC
Inta

DCCI
Intb
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-3
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
Note
 The EB RTSM implementation of memory does not require programming the memory
controller with the correct values.

This means you must ensure that the memory controller is set up properly if you run an
application on actual hardware. If this is not done, applications that run on an RTSM might fail
on actual hardware.

PISMO expansion memory No 0x50000000–0x5FFFFFFF AXI 256MB 58 58

PCI interface bus windows No 0x60000000–0x6FFFFFFF AXI 256MB - -

Dynamic memory (mirror) Yes 0x70000000–0x7FFFFFFF AXI 256MB - -

Memory tile (Second CoreTile) Yes 0x70000000–0x7FFFFFFF AXI 0 to 1GB - -

a. The Interrupt signal column lists the value to use to program your interrupt controller. The values shown are after mapping the
SPI number by adding 32. The interrupt numbers from the peripherals are modified by adding 32 to form the interrupt number
seen by the GIC. GIC interrupts 0-31 are for internal use.

b. The numbers in this column are the interrupt numbers used by the DCCI system.
c. See Sound on page 3-15.
d. The implementation of the PL180 is limited, so not all features are present.
e. See Differences between the EB and CoreTile hardware and the models on page 3-15.
f. The EB RTSM GICs are not the same as those implemented on the EB hardware as the register map is different. See Generic

Interrupt Controller on page 3-18.
g. Although the EB hardware uses the PL093 static memory controller, the model implements PL350. These are functionally

equivalent.
h. This peripheral is implemented in the IntelStrataFlashJ3 component in the EB RTSM.
i. This peripheral is implemented in the SC91C111 component in the EB RTSM.

Table 3-1 Memory map and interrupts for standard peripherals (continued)

Peripheral Modeled Address range Bus Size GIC
Inta

DCCI
Intb
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-4
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.2 EB model configuration parameters
The Real-Time System Models for the EB reference system have parameters that you can define
at run time:

• EB RTSM baseboard parameters on page 3-6

• Ethernet parameters on page 3-9

• UART parameters on page 3-11

• Terminal parameters on page 3-12

• Visualization parameters on page 3-13

• RTSM_EB_Cortex-A8 CoreTile parameters on page 3-14.

Note
 Parameters that you can modify only at model build time, or that you would not normally
modify in the equivalent hardware system, are not described.

3.2.1 See also

Reference
• EB model memory map on page 3-2
• Differences between the EB and CoreTile hardware and the models on page 3-15.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-5
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.3 EB RTSM baseboard parameters
Table 3-2 lists the baseboard instantiation time parameters that you can change when you start
the model.

The syntax to use in a configuration file is:

baseboard.component_name.parameter=value

3.3.1 Switch S6

Switch S6 is equivalent to the Boot Monitor configuration switch on the EB hardware. Default
settings are listed in Table 3-3 on page 3-7.

If you have the standard ARM Boot Monitor flash image loaded, the setting of switch S6-1
changes what happens on model reset. Otherwise, the function of switch S6 is implementation
dependent.

Table 3-2 EB Baseboard Model instantiation parameters

Component
name Parameter Description Type Values Default

eb_sysregs_0 user_switches_value switch S6 setting integer see Switch S6 0

eb_sysregs_0 boot_switch_value switch S8 setting integer see Switch S8
on page 3-7

0

flashldr_0 fname path to flash image file string valid path ""

fnameWrite name of flash image file string valid
filename

""

flashldr_1 fname path to flash image file string valid
filename

""

fnameWrite name of flash image file string valid
filename

""

mmc p_mmc_file multimedia card filename string valid
filename

mmc.dat

pl111_clcd_0 pixel_double_limit sets threshold in horizontal
pixels below which pixels
sent to framebuffer are
doubled in size in both
dimensions

integer - 0x12c

sdram_size sdram_size sets the size of the
SDRAM on the second
installed CoreTile

integer 0 to
0x40000000

0

sp805_watchdog_0 simhalt enables or disables the
ARM Watchdog Module
(SP805)

boolean true or false false

sp810_sysctrl use_s8 indicates whether to read
boot_switches_value

boolean true or false false

vfs2 mount name of mount directory string valid
filename

""
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-6
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
To write the switch position directly to the S6 parameter in the model, you must convert the
switch settings to an integer value from the equivalent binary, where 1 is on and 0 is off.

If S6-1 is in the ON position, the Boot Monitor executes the boot script that was loaded into
flash. If there is no script, the Boot Monitor prompt is displayed.

The settings of S6-2 and S6-3 affect STDIO source and destination on model reset as defined in
Table 3-4.

For more information on Boot Monitor configuration and commands, see the Emulation
Baseboard User Guide (Lead Free).

3.3.2 Switch S8

Switch S8 is disabled by default. To enable it, you must change the state of the parameter
baseboard.sp810_sysctrl.use_s8 to true before you start the model. See EB RTSM baseboard
parameters on page 3-6.

If you have a Boot Monitor flash image loaded, switch S8 enables you to remap boot memory.

Table 3-3 Default positions for EB System Model switch S6

Switch Default
Position Function in default position

S6-1 OFF Displays prompt allowing Boot
Monitor command entry after
system start.

S6-2 OFF See Table 3-4.

S6-3 OFF See Table 3-4.

S6-4 to S6-8 OFF Reserved for application use.

Table 3-4 STDIO redirection

S6-2 S6-3 Output Input Description

OFF OFF UART0 UART0 STDIO autodetects whether to use semihosting I/O or a
UART. If a debugger is connected, STDIO is redirected to
the debugger output window, otherwise STDIO goes to
UART0.

OFF ON UART0 UART0 STDIO is redirected to UART0, regardless of semihosting
settings.

ON OFF CLCD Keyboard STDIO is redirected to the CLCD and keyboard,
regardless of semihosting settings.

ON ON CLCD UART0 STDIO output is redirected to the LCD and input is
redirected to the keyboard, regardless of semihosting
settings.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-7
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
On reset, the EB hardware starts to execute code at 0x0, which is typically volatile DRAM. You
can put the contents of non-volatile RAM at this location by setting the S8 switch in the EB
RTSM CLCD as shown in Table 3-5. The settings take effect on model reset.

Note
 Attempting to change switch S8 settings after the model has started, for example by using the
CLCD DIP switches, might lead to unpredictable behavior.

Table 3-5 EB System Model switch S8 settings

Switch
S8[4:1] Memory Range Description

0000 0x40000000–0x4FEFFFFF NOR flash remapped to 0x0

0001 0x44000000–0x47FFFFFF NOR flash remapped to 0x0

0010 0x48000000–0x4BFFFFFF SRAM remapped to 0x0
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-8
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.4 Ethernet parameters
Table 3-6 lists the Ethernet instantiation-time parameters that you can change.

The syntax to use in a configuration file or on the command line is:

motherboard.smsc_91c111_0.parameter=value

3.4.1 mac_address parameter

There are two options for the mac_address parameter:

• If you do not specify a MAC address, then when the simulator is run it takes the default
MAC address and changes its bottom two bytes from 00:02 to the bottom two bytes of the
MAC address of one of the adaptors on the host PC. This increases the chance of the MAC
address being unique when running models on multiple hosts on a local network.

• If you specify the MAC address as auto, the local MAC address is randomly generated
each time the simulator runs. The address has bit 1 set and bit 0 clear in the first byte to
indicate a locally-administered unicast MAC address.

Note
 DHCP servers allocate IP addresses, but because they sometimes do this based on the MAC
address provided to them, then using random MAC addresses might conflict with some DHCP
servers.

Table 3-6 Ethernet configuration parameters

Parameter Description Type Values Default

enabled Host interface connection enabled boolean true or false false

mac_address Host/model MAC address string See
mac_address
parameter

00:02:f7:ef:31:11

promiscuous Put host into promiscuous mode,
for example when sharing the
Ethernet controller with the host
OS.

boolean true or false true
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-9
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.5 System controller parameters
Table 3-7 lists the system controller instantiation-time parameters that you can change when the
model is started.

The syntax to use in a configuration file or on the command line is:

motherboard.sp810_sysctrl.parameter=value

Table 3-7 System controller configuration parameters

Parameter Description Type Values Default

sysid Value for system identification register Integer 0, 1, 2a 0x00000000

use_s8 Select whether switch S8 is enabled Boolean true or false false

a. The sysid parameter takes values 0, 1, or 2. These correspond to SYS_ID register read values of:
sysid parameter value = 0 => SYS_ID register value = 0x0225f500, corresponding to REV_A
sysid parameter value = 1 => SYS_ID register value = 0x12257500, corresponding to REV_B
sysid parameter value = 2 => SYS_ID register value = 0x22252500, corresponding to REV_C.
Any other value for parameter sysid results in a SYS_ID register value of 0x0.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-10
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.6 UART parameters
Table 3-8 lists the UART instantiation-time parameters that you can change.

The syntax to use in a configuration file or on the command line is:

motherboard.pl011_uartx.parameter=value

where x is the UART identifier 0, 1, 2 or 3.

Table 3-8 UART configuration parameters

Parameter Description Type Values Default

baud_rate Baud rate Integer - 0x9600

clock_rate Clock rate for PL011 Integer - 0xE10000

in_file Input file String [empty string]

out_file Output file (use “-” to send all output to stdout) String [empty string]

in_file_escape_sequence Input file escape sequence String ##

shutdown_on_eot Shutdown simulation when an EOT (ASCII 4) char is
transmitted

Boolean true or false false

unbufferred_output Unbuffered output Boolean true or false false

untimed_fifos Ignore the clock rate and transmit/receive serial data
immediately

Boolean true or false false

uart_enable Enable the UART when the system starts Boolean true or false false
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-11
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.7 Terminal parameters
Table 3-9 lists the terminal instantiation-time parameters that you can change when you start the
model.

The syntax to use in a configuration file or on the command line is:

motherboard.terminal_x.parameter=value

where x is the terminal ID 0, 1, 2 or 3.

Table 3-9 Terminal instantiation parameters

Parameter Description Type Values Default

mode Terminal operation mode. String telnet, raw telnet

start_telnet Enable terminal when the system starts. Boolean true or false true

start_port Port used for the terminal when the
system starts. If the specified port is not
free, the port value is incremented by 1
until a free port is found.

Integer Valid port
number

5000
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-12
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.8 Visualization parameters
Table 3-10 lists the Visualization instantiation-time parameters that you can change when you
start the model. For more information on the Visualisation component, see the Fast Models
Reference Manual. The syntax to use in a configuration file is:

visualisation.parameter=value.

Note
 The component name spelling is British, so use visualisation rather than visualization.

Table 3-10 Visualisation instantiation parameters

Parameter Description Type Values Default

disable_visualisation disable the EBVisualisation
component on model
startup

boolean true or false false

rate_limit-enablea

a. You can click the Rate Limit button in the CLCD instead of setting the parameter at instantiation time. See
Using the CLCD window on page 2-5.

restrict simulation speed so
that simulation time more
closely matches real time
rather than running as fast
as possible

boolean true or false true

trap_key trap key that works with
Left Ctrl key to toggle
mouse pointer display

integer valid ATKeyCode
key valueb

b. If you have Fast Models installed, see the header file, %PVLIB_HOME%\components\KeyCode.h, for a list of
ATKeyCode values. On Linux, see the file $PVLIB_HOME/components/KeyCode.h.

74c

c. This is equivalent to the Left Alt key.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-13
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.9 RTSM_EB_Cortex-A8 CoreTile parameters
Table 3-11 lists the Cortex-A8 CoreTile RTSM parameters that you can change when you start
the model. All listed parameters are instantiation-time parameters. This CoreTile RTSM is
based on r2p1 of the Cortex-A8 processor.

The syntax to use in a configuration file is:

coretile.core.parameter=value

The Cortex-A8 CoreTile RTSM also includes a GIC but this cannot be configured at
instantiation time.

Table 3-11 RTSM_EB_Cortex-A8 CoreTile parameters

Parameter Description Type Values Default

semihosting-cmd_line Command line available to
semihosting SVC calls.

string no limit
except
memory

[empty
string]

semihosting-debuga

a. Ignored.

Enable debug output of
semihosting SVC calls.

boolean true or false false

semihosting-enable Enable semihosting SVC
traps.

boolean true or false true

semihosting-ARM_SVC ARM SVC number for
semihosting.

integer 24 bit integer 0x123456

semihosting-Thumb_SVC Thumb SVC number for
semihosting.

integer 8 bit integer 0xAB

semihosting-heap_base Virtual address of heap
base.

integer 0x00000000 -

0xFFFFFFFF

0x0

semihosting-heap_limit Virtual address of top of
heap.

integer 0x00000000 -

0xFFFFFFFF

0x0F000000

semihosting-stack_base Virtual address of base of
descending stack.

integer 0x00000000 -

0xFFFFFFFF

0x10000000

semihosting-stack_limit Virtual address of stack
limit.

integer 0x00000000 -

0xFFFFFFFF

0x0F0000000
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-14
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
3.10 Differences between the EB and CoreTile hardware and the models
The following sections describe features of the Emulation Baseboard and CoreTile hardware
that are not implemented in the models or have significant differences in implementation:
• Features not present in the baseboard model
• Restrictions on the processor models on page 3-16
• Remapping and DRAM aliasing on page 3-17
• Dynamic memory characteristics on page 3-17
• Status and system control registers on page 3-17
• Generic Interrupt Controller on page 3-18
• GPIO2 on page 3-18
• Timing considerations on page 3-18.

3.10.1 Features not present in the baseboard model

The following features present on the hardware version of the Emulation Baseboard are not
implemented in the system models:
• two wire serial bus interface
• character LCD interface
• smart card interface
• PCI controller configuration registers
• debug access port
• disk on chip
• configuration flash
• USB
• PISMO expansion memory
• PCI interface bus windows
• UART Modem handshake signals
• VGA support.

Note
 For more information on memory-mapped peripherals, see EB model memory map on page 3-2.

The following features present on the hardware version of the Emulation Baseboard are only
partially implemented in the Real-Time System Models:
• Sound
• Dynamic memory controller on page 3-16.

Partial implementation means that some of the components are present but the functionality has
not been fully modeled. If you use these features, they might not work as you expect. See the
model release notes for the latest information.

Sound

The EB RTSMs implement the PL041 AACI PrimeCell and the audio codec as in the EB
hardware, but with a limited number of sample rates.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-15
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
Dynamic memory controller

The dynamic memory controller, though modeled in the EB RTSMs, does not provide direct
memory access to all peripherals. Only the audio and synchronous serial port interface
components can be accessed through the DMC.

3.10.2 Restrictions on the processor models

For detailed information concerning what features are not fully implemented in the processor
models included with the EB RTSMs, see the Fast Models Reference Manual. The following
general restrictions apply to the Real-Time System Model implementations of ARM processors:

• Fast Models does not model accurate instruction timing. A processor issues a set of
instructions (a “quantum”) at a point in simulation time, and then waits before executing
the next quantum. The processor averages one instruction per clock tick.
Consequently:
— The perceived performance of software running on the model differs from

real-world software. In particular, memory accesses and arithmetic operations all
take the same amount of time.

— A program might be able to detect the quantized execution behavior of a processor,
for example by polling a high-resolution timer.

— All instructions in a quantum are effectively atomic.

Note
 This might mask some race-condition bugs in software.

• Although cache control registers are included, in most cases they only enable you to check
register access permissions. Cache flush operations are supported, but they have no effect.
As a consequence, code that might fail on real hardware because of cache aliasing
problems might run without problems on the EB RTSM.

• VFP and NEON™ instruction set execution on the model is not high performance.

• Write buffers are not modeled.

• Most aspects of TLB behavior are implemented in the models. In Architecture v7 models,
the TLB memory attribute settings are used when stateful cache is enabled.

• No MicroTLB is implemented.

• A single memory access port is implemented. The port combines accesses for instruction,
data, DMA and peripherals. Configuration of the peripheral port memory map register is
ignored.

• All memory accesses are atomic and are performed in programmer’s view order. All
memory transactions are a maximum of 32 bits wide. Unaligned accesses are always
performed as byte transfers.

• Interrupts are not taken at every instruction boundary.

• The semihosting-debug configuration parameter is ignored.

• Integration and test registers are not implemented.

• On some processor models, only one CP14 debug coprocessor register is included, CP14
DSCR. The register reads 0 and ignores writes. Access to other CP14 registers causes an
undefined instruction exception. To debug an RTSM you must use an external debugger.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-16
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
• Breakpoint types supported directly by the model are:
— single address unconditional instruction breakpoints
— single address unconditional data breakpoints
— unconditional instruction address range breakpoints.

• Processor exception breakpoints are supported by pseudo-registers in the debugger.
Setting an exception register to a non-zero value stops execution on entry to the associated
exception vector.

• The Performance Management Unit (PMU) is not implemented except for the instruction
counter.

RTSM_EB_Cortex-A8 CoreTile

The following additional restrictions apply to the Real-Time System Model implementation of
the Cortex-A8 processor:

• Two 4GB address spaces are seen by the model core, one as seen from secure mode and
one as seen from normal mode. The address spaces contain zero-wait state memory and
peripherals, but a lot of the space is unmapped.

• The PLE model is purely register-based and has no implemented behavior.

• VFP and NEON instruction set execution on the model is not high performance.

• Unaligned accesses with the MMU disabled do not cause data aborts.

3.10.3 Remapping and DRAM aliasing

The EB hardware provides considerable memory remap functionality. During this boot
remapping, the bottom 64MB of the physical address map can be:
• NOR flash
• Static expansion memory.

In addition to providing remap functionality, the hardware aliases all 256MB of system DRAM
at 0x70000000.

Remapping does not typically apply to the system models. However, NOR flash is modeled and
can be remapped. See Switch S8 on page 3-7.

In the memory map, memory regions that are not explicitly occupied by a peripheral or by
memory are unmapped. This includes regions otherwise occupied by a peripheral that is not
implemented, and those areas that are documented as reserved. Accessing these regions from
the host processor results in the model presenting a warning.

3.10.4 Dynamic memory characteristics

The Emulation Baseboard hardware contains a PL340 DMC. This presents a configuration
interface at address 0x10030000 in the memory map.

The system models configure a generic area of DRAM and do not model the PL340. This
simplification helps speed the simulation.

3.10.5 Status and system control registers

For the hardware version of the Emulation Baseboard, the status and system control registers
enable the processor to determine its environment and to control some on-board operations.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-17
ID100912 Non-Confidential

Programmer’s Reference for the EB RTSMs
Note
 Most of the EB RTSM functionality is determined by its configuration on startup. See
Configuring an RTSM on page 2-3.

All EB system registers have been implemented in the system model, except for
SYS_TEST_OSC[4:0], the oscillator test registers. Registers that are not implemented function
as memory and the values written to them do not alter the behavior of the model.

3.10.6 Generic Interrupt Controller

The Generic Interrupt Controller (GIC) provided with the EB RTSMs differs substantially from
that in the Emulation Board firmware. The programmer’s model of the newer device is largely
backwards compatible. The model GIC is an implementation of the PL390 PrimeCell, for which
comprehensive documentation is provided elsewhere. See PrimeCell® Generic Interrupt
Controller (PL390) Technical Reference Manual.

3.10.7 GPIO2

On the EB hardware, GPIO2 is dedicated to USB, a push button, and MCI status signals. USB
and MCI are not implemented in the EB RTSMs, and no push button is modeled. The GPIO is
therefore provided as another generic IO device.

3.10.8 Timing considerations

The Real-Time System Models provide you with an environment that enables running software
applications in a functionally-accurate simulation. However, because of the relative balance of
fast simulation speed over timing accuracy, there are situations where the models might behave
unexpectedly.

When your code interacts with real world devices like timers and keyboards, data arrives in the
modeled device in real world (or wall clock) time, but simulation time can be running much
faster than the wall clock. This means that a single keypress might be interpreted as several
repeated key presses, or a single mouse click incorrectly becomes a double click.

The EB RTSMs provide the Rate Limit feature to match simulation time to match wall-clock
time. Enabling Rate Limit, either by using the Rate Limit button in the CLCD display, or the
rate_limit-enable model instantiation parameter, forces the model to run at wall clock time.
This avoids issues with two clocks running at significantly different rates. For interactive
applications, ARM recommends enabling Rate Limit.
ARM DUI 0424G Copyright © 2008-2010, 2012 ARM. All rights reserved. 3-18
ID100912 Non-Confidential

	ARM DS-5 EB RTSM Reference Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 Introduction to system models
	1.2 Introduction to the EB RTSM
	1.2.1 About the EB and CoreTile hardware
	1.2.2 About the EB Real-Time System Models

	2: Getting Started with EB RTSMs
	2.1 Starting an RTSM
	2.2 Configuring an RTSM
	2.2.1 Setting model configuration options

	2.3 Using the CLCD window
	2.3.1 Using the EB CLCD window

	2.4 Using Ethernet with an EB RTSM
	2.4.1 Host requirements
	2.4.2 Target requirements
	2.4.3 Configuring Ethernet
	2.4.4 See also

	2.5 Using a terminal with a system model
	2.5.1 Telnet mode
	2.5.2 Raw mode

	2.6 Virtual filesystem
	2.6.1 See also

	2.7 Using the VFS with a pre-built RTSM
	2.7.1 Mount names
	2.7.2 Path names
	2.7.3 See also

	3: Programmer’s Reference for the EB RTSMs
	3.1 EB model memory map
	3.2 EB model configuration parameters
	3.2.1 See also

	3.3 EB RTSM baseboard parameters
	3.3.1 Switch S6
	3.3.2 Switch S8

	3.4 Ethernet parameters
	3.4.1 mac_address parameter

	3.5 System controller parameters
	3.6 UART parameters
	3.7 Terminal parameters
	3.8 Visualization parameters
	3.9 RTSM_EB_Cortex-A8 CoreTile parameters
	3.10 Differences between the EB and CoreTile hardware and the models
	3.10.1 Features not present in the baseboard model
	3.10.2 Restrictions on the processor models
	3.10.3 Remapping and DRAM aliasing
	3.10.4 Dynamic memory characteristics
	3.10.5 Status and system control registers
	3.10.6 Generic Interrupt Controller
	3.10.7 GPIO2
	3.10.8 Timing considerations

