RealView Platform Baseboard for Cortex - A8

HBI-0178 HBI-0176 HBI-0175

User Guide

RealView Platform Baseboard for Cortex-A8 User Guide

Copyright © 2008-2011 ARM Limited. All rights reserved.

Release Information

Change History

Date	Issue	Confidentiality	Change
May 2008	A	Non-Confidential	First release
March 2009	В	Non-Confidential	Fixed reported defects and added requested enhancements
July 2010	C	Non-Confidential	Document update
April 2011	D	Non-Confidential	Document update

Proprietary Notice

Words and logos marked with $^{\circ}$ or $^{\bowtie}$ are registered trademarks or trademarks owned by ARM Limited, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

The system should be powered down when not in use.

The PB-A8 generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- ensure attached cables do not lie across the card
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- consult the dealer or an experienced radio/TV technician for help

Note		
It is recommended that wherever po	ssible shielded interface cables be use	ed

Contents

RealView Platform Baseboard for Cortex-A8 User Guide

	Preta		
		About this book	
		Feedback	xxv
Chapter 1	Intro	oduction	
•	1.1	Precautions	1-2
	1.2	About the PB-A8	
Chapter 2	Gett	ing Started	
•	2.1	Setting up the baseboard	2-2
	2.2	Boot Monitor configuration	
	2.3	JTAG debugger and USB config support	2-5
	2.4	Baseboard configuration switches	2-7
Chapter 3	Harc	dware Description	
•	3.1	PB-A8 architecture	3-2
	3.2	Tile interconnections	
	3.3	Cortex-A8 test chip	3-14
	3.4	Debug FPGA	
	3.5	Northbridge	

3.7 Ethernet interface 3.8 USB Interface 3.9 DVI Interface 3.10 PCI interface 3.11 Power supply control 3.12 Clock architecture 3.13 Resets 3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces ACI Test, configuration, debug and trace interface, ACI Test, configu	
3.9 DVI Interface 3.10 PCI interface 3.11 Power supply control 3.12 Clock architecture 3.13 Resets 3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces Test, configuration, debug and trace interfaces Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 Compact Flash interface 4.10 Compact Flash interface 4.11 Compact Flash	2 00
3.10 PCI interface	3-3 3
3.11 Power supply control 3.12 Clock architecture 3.13 Resets 3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-34
3.12 Clock architecture 3.13 Resets 3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-35
3.13 Resets 3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-37
3.14 Interrupts 3.15 Test, configuration, debug and trace interfaces Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-39
Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-47
Chapter 4 Programmer's Reference 4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	3-50
4.1 Memory map 4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	3-56
4.2 Configuration and initialization 4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	
4.3 Status and system control registers 4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-3
4.4 System Controller (SYSCTRL) 4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-9
4.5 Advanced Audio CODEC Interface, AACI 4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface	4-11
4.6 Color LCD Controller, CLCDC 4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	
4.7 Single Master Direct Memory Access Controller, SMDMAC 4.8 Dynamic Memory Controller, DMC 4.9 Ethernet 4.10 General Purpose Input/Output, GPIO 4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-53
4.8 Dynamic Memory Controller, DMC 4.9 Ethernet	
4.9 Ethernet	4-57
4.9 Ethernet	4-58
4.11 Generic Interrupt Controller, GIC 4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	
4.12 Keyboard and Mouse Interface, KMI 4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-60
4.13 MultiMedia Card Interface, MCI 4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-61
4.14 AXI to PCI bridge 4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-96
4.15 Real Time Clock, RTC 4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-97
4.16 Two-wire serial bus interface, SBCon 4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-98
4.17 Smart Card Interface, SCI 4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-100
4.18 Synchronous Serial Port, SSP 4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-101
4.19 Static Memory Controller, SMC 4.20 Timers 4.21 UART 4.22 USB interface 4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-104
4.20 Timers	4-105
4.21 UART	4-106
4.22 USB interface	4-107
4.23 Watchdog 4.24 CompactFlash interface Appendix A Signal Descriptions A.1 Compact Flash interface	4-108
Appendix A Signal Descriptions A.1 Compact Flash interface	4-110
Appendix A Signal Descriptions A.1 Compact Flash interface	4-112
A.1 Compact Flash interface	4-113
A 2 Audio CODEC interface	A-2
ALL AUGIO OODLO IIILEITAGE	A-6
A.3 MMC and SD card interface	A-7
A.4 Keyboard and mouse interface	
A.5 GPIO interface	A-10
A.6 UART interface	A-11
A.7 Synchronous Serial Port interface	
A.8 Smart Card interface	A-13
A.9 Ethernet interface	A-15

	A.10	USB interface	A-16			
	A.11	DVI display interface	A-17			
	A.12	RealView Logic Tile header connectors				
	A.13	Test and debug connections				
Appendix B	Spec	ifications				
	B.1	Electrical Specification	B-2			
	B.2	Timing specifications	B-3			
Appendix C	Mem	ory Expansion Boards				
	C.1	About memory expansion	C-2			
	C.2	Fitting a memory board				
	C.3	Connector pinout	C-5			
Appendix D	Real	RealView Logic Tile Expansion				
	D.1	About the RealView Logic Tile	D-2			
	D.2	Header connectors	D-3			
Appendix E	Boot Monitor and platform library					
• •	E.1	About the Boot Monitor	E-2			
	E.2	About the platform library				
	E.3	Using the baseboard Boot Monitor and platform library				
Appendix F	Boot	Monitor Commands				
• •	F.1	About Boot Monitor commands	F-2			
	F.2	Boot Monitor command set				
Appendix G	Load	ling FPGA Images				
• •	G.1	General procedure	G-2			
	G.2	Board files				
	G.3	The progcards utilities				
	G.4	Upgrading your hardware				
	Glos	sarv				

Contents

List of Tables

RealView Platform Baseboard for Cortex-A8 User Guide

	Change History	1
Table 2-1	Boot Monitor startup behavior	
Table 2-2	STDIO redirection	2-4
Table 2-3	Selecting the boot device	2-7
Table 2-4	Tile site frequency options	2-8
Table 3-1	FPGA image selection	3-24
Table 3-2	Serial interface device addresses	3-3 ⁻
Table 3-3	VCO specification	3-45
Table 4-1	System memory map	
Table 4-2	Memory map for standard peripherals	
Table 4-3	Boot memory	4-9
Table 4-4	Memory chip selects and address range	4-10
Table 4-5	Register map for status and system control registers	4-1 ⁻
Table 4-6	SYS_ID register bit assignments	4-16
Table 4-7	SYS_OSCx registers	4-18
Table 4-8	SYS_OSCx register bit assignments	4-19
Table 4-9	SYS_LOCK register bit assignments	
Table 4-10	Flag registers	
Table 4-11	SYS_RESETCTL register bit assignments	4-23
Table 4-12	SYS_MCI register bit assignment	
Table 4-13	SYS_FLASH register bit assignments	4-25

Table 4-14	SYS_CLCD register bit register assignments	4-27
Table 4-15	SYS_MISC register bit assignment	
Table 4-16	SYS_DMAPSR register bit assignments	4-30
Table 4-17	SYS_DMAPSR register bit coding	4-31
Table 4-18	SYS_PEX_STAT register bit assignments	4-32
Table 4-19	SYS_PCI_STAT register bit assignments	4-33
Table 4-20	SYS_PLD_CTRL1 register bit assignments	4-35
Table 4-21	SYS_PLD_CTRL2 register bit assignments	4-37
Table 4-22	SYS_PLL_INIT register bit assignments	4-38
Table 4-23	SYS_PROCID0 register bit assignments	4-39
Table 4-24	SYS_PROCID1 register bit assignments	
Table 4-25	SYS_OSCRESETx registers	
Table 4-26	SYS_VOLTAGE_CTLx registers	
Table 4-27	SYS_TEST_OSCx registers	4-44
Table 4-28	SYS_DEBUG register	4-45
Table 4-29	SYS_TESTMODE register	
Table 4-30	SYS_PLL_RESET register	
Table 4-31	SYSCTRL implementation	4-50
Table 4-32	SYS_CTRL0 register	4-51
Table 4-33	SYS_CTRL1 register	4-52
Table 4-34	AACI implementation	
Table 4-35	Modified AACI PeriphID3 register	
Table 4-36	CLCDC implementation	
Table 4-37	Values for different display resolutions	
Table 4-38	SMDMAC implementation	
Table 4-39	DMC implementation	
Table 4-40	Ethernet implementation	
Table 4-41	GPIO implementation	
Table 4-42	GPIO2 and MCI status signals	
Table 4-43	Generic Interrupt Controller implementation	
Table 4-44	GIC interrupt allocation	
Table 4-45	Interrupt control register addresses	4-67
Table 4-46	CPU interface registers address offset values	
Table 4-47	CPU control register	
Table 4-48	Priority mask	
Table 4-49	Binary point	
Table 4-50	Binary Point bit values assignment	
Table 4-51	Interrupt acknowledge	
Table 4-52	End of interrupt	
Table 4-53	Running interrupt	
Table 4-54	Highest pending interrupt	
Table 4-55	Distribution registers address offset values	
Table 4-56	Distributor control	
Table 4-57	Controller type	
Table 4-58	Set-enable1	
Table 4-59	Reserved interrupts	
Table 4-60	Set-enable2	4-81

Table 4-61	Reserved interrupts	4-82
Table 4-62	Clear-enable1	4-83
Table 4-63	Clear-enable2	4-83
Table 4-64	Set-pending1	4-84
Table 4-65	Set-pending2	4-85
Table 4-66	Clear-pending1	4-85
Table 4-67	Clear-pending2	4-86
Table 4-68	Active1	4-87
Table 4-69	Active2	4-88
Table 4-70	Priority register address offsets and Interrupt IDs	
Table 4-71	CPU targets register address offsets and Interrupt IDs	4-90
Table 4-72	Configuration register address offsets	
Table 4-73	Software interrupt	
Table 4-74	KMI implementation	4-96
Table 4-75	MCI implementation	4-97
Table 4-76	AXI to PCI bridge implementation	4-98
Table 4-77	PCI bus memory map	4-98
Table 4-78	PCI slot interrupt mappings	4-99
Table 4-79	PCI virtual interrupt mappings	4-99
Table 4-80	RTC implementation	4-100
Table 4-81	Serial bus implementation	4-101
Table 4-82	Serial interface device addresses	4-102
Table 4-83	SBCon 0 serial bus register	4-102
Table 4-84	SBCon 1 serial bus register	
Table 4-85	SCI implementation	4-104
Table 4-86	SSP implementation	4-105
Table 4-87	SMC implementation	4-106
Table 4-88	Timer implementation	4-107
Table 4-89	UART implementation	
Table 4-90	USB implementation	
Table 4-91	USB controller base address	
Table 4-92	Watchdog implementation	
Table 4-93	CompactFlash implementation	
Table 4-94	CF_CTRL register bit assignments	
Table A-1	Compact Flash connector pinout	
Table A-2	Multimedia Card interface signals	
Table A-3	Mouse and keyboard port signal descriptions	
Table A-4	Serial interface signal assignment	
Table A-5	SSP signal assignment	
Table A-6	Smartcard connector signal assignment	
Table A-7	Signals on SCI expansion connector	
Table A-8	Ethernet signals	
Table A-9	DVI connector signals	
Table A-10	HDRX signals	
Table A-11	HDRY signals	
Table A-12	HDRZ signals	
Table A-13	Trace Port A (TRACEA) connector J54	A-44

Table A-14	Trace Port B (TRACEB) connector J55	A-45
Table B-1	Baseboard electrical characteristics	B-2
Table B-2	AC Specifications	B-3
Table C-1	Static memory connector signals	
Table E-1	STDIO redirection	E-5
Table E-2	platform library options	E-12
Table E-3	NFU commands	E-18
Table E-4	NFU MANAGE commands	E-19
Table F-1	Standard Boot Monitor command set	F-3
Table F-2	MMC, SD, and CompactFlash card sub-menu commands	F-5
Table F-3	Boot Monitor Configure commands	F-6
Table F-4	Boot Monitor Debug commands	
Table F-5	Boot Monitor NOR flash commands	

List of Figures

RealView Platform Baseboard for Cortex-A8 User Guide

	Key to timing diagram conventions	XX
Figure 1-1	Cortex A8 system architecture	1-4
Figure 3-1	Baseboard layout	3-3
Figure 3-2	Front panel layout	3-5
Figure 3-3	Rear panel layout	3-6
Figure 3-4	PB-A8 top level architecture diagram	3-7
Figure 3-5	Tile site and main system bus routing	3-13
Figure 3-6	top-level view of Cortex-A8 test chip	3-15
Figure 3-7	top level view of the Debug FPGA	3-17
Figure 3-8	Northbridge block diagram	3-18
Figure 3-9	Southbridge block diagram	3-23
Figure 3-10	PCI-PCI Express interface	3-35
Figure 3-11	PB-A8 OSCx clock routing	3-40
Figure 3-12	Test chip PLL and output divider	3-43
Figure 3-13	PLL clock frequency equations	3-44
Figure 3-14	Northbridge clock domains	3-46
Figure 3-15	Reset domains	3-47
Figure 3-16	Reset Controller state diagram	3-48
Figure 3-17	Reset timings	3-49
Figure 3-18	Internal and tile site interrupt routing	3-51
Figure 3-19	Interrupt priority calculation	3-55

Figure 4-1	System memory map	4-8
Figure 4-2	SYS_ID register	
Figure 4-3	SYS_USERSW register	
Figure 4-4	SYS_LED register	4-17
Figure 4-5	SYS_OSCx register	4-19
Figure 4-6	SYS_LOCK register	
Figure 4-7	100Hz Counter, SYS_100HZ register	
Figure 4-8	SYS_RESETCTL register	4-22
Figure 4-9	SYS_MCI register	
Figure 4-10	SYS_FLASH register	
Figure 4-11	SYS_CLCD register	4-26
Figure 4-12	SYS_CFGSW register	
Figure 4-13	SYS_24MHZ register	4-28
Figure 4-14	SYS_MISC register	
Figure 4-15	SYS_DMAPSR register	
Figure 4-16	SYS_PEX_STAT register	4-32
Figure 4-17	SYS_PCI_STAT register	
Figure 4-18	SYS_PLD_CTRL1 register	
Figure 4-19	SYS_PLD_CTRL2 register	
Figure 4-20	SYS_PLL_INIT register	4-38
Figure 4-21	SYS_PROCID0 register	
Figure 4-22	SYS_PROCID1 register	
Figure 4-23	SYS_OSCRESETx register	
Figure 4-24	SYS_DEBUG register	4-45
Figure 4-25	SYS_TESTMODE register	4-47
Figure 4-26	SYS_PLL_RESET register	4-48
Figure 4-27	AACI ID register	4-54
Figure 4-28	CPU control register	4-68
Figure 4-29	Priority mask register	4-69
Figure 4-30	Binary point register	4-70
Figure 4-31	Binary point example	4-71
Figure 4-32	Interrupt acknowledge register	4-72
Figure 4-33	End of interrupt register	4-73
Figure 4-34	Running interrupt register	4-74
Figure 4-35	Highest pending interrupt register	4-75
Figure 4-36	Distributor control register	4-78
Figure 4-37	Controller type register	4-79
Figure 4-38	Set-enable1 register	4-80
Figure 4-39	Set-enable2	4-81
Figure 4-40	Clear-enable1 register	4-82
Figure 4-41	Clear-enable2 register	
Figure 4-42	Set-pending1 register	
Figure 4-43	Set-pending2 register	
Figure 4-44	Clear-pending1 register	
Figure 4-45	Clear-pending2 register	4-86
Figure 4-46	Active1 register	
Figure 4-47	Active2 register	4-87

Figure 4-48	Priority register	4-89
Figure 4-49	CPU targets register	4-91
Figure 4-50	Configuration register	4-92
Figure 4-51	Software interrupt register	4-93
Figure 4-52	CF_CTRL Register	4-114
Figure A-1	Compact Flash connector pin numbering	A-2
Figure A-2	Audio connectors	
Figure A-3	MMC/SD card socket pin numbering	A-7
Figure A-4	MMC card	
Figure A-5	KMI connector	A-9
Figure A-6	GPIO connector	A-10
Figure A-7	Serial interface connector	A-11
Figure A-8	SSP expansion interface	A-12
Figure A-9	Smartcard contacts assignment	A-13
Figure A-10	SCI expansion	A-14
Figure A-11	Ethernet connector	A-15
Figure A-12	USB connectors	A-16
Figure A-13	DVI connector	A-17
Figure A-14	HDRX, HDRY, and HDRZ pin numbering	A-19
Figure A-15	JTAG connector	A-41
Figure A-16	USB debug connector	A-42
Figure A-17	Integrated Logic Analyzer (ILA) connector	A-42
Figure A-18	AMP Mictor connector	A-43
Figure B-1	Tile site multiplexed AXI timing	B-4
Figure C-1	Static memory board block diagram	C-2
Figure C-2	Samtec 120-way connector	C-5
Figure D-1	Signal groups on the PB-A8 tile site	D-2
Figure D-2	HDRX, HDRY, and HDRZ (upper) pin numbering	D-4

List of Figures

Preface

This preface introduces the *RealView® Platform Baseboard for Cortex-A8 User Guide*. It contains the following sections:

- About this book on page xviii
- Feedback on page xxvi.

About this book

This book describes how to set up and use the RealView Platform Baseboard for Cortex-A8 (PB-A8).

Intended audience

This document has been written for experienced hardware and software developers to aid the development of ARM®-based products using the PB-A8 as part of a development system.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the PB-A8. This chapter shows the physical layout of the baseboard, the high level architecture, and identifies the main system components.

Chapter 2 Getting Started

Read this chapter for a description of how to set up and start using the PB-A8. This chapter describes connecting the debug equipment and initializing and configuring the baseboard.

Chapter 3 Hardware Description

Read this chapter for a description of the hardware architecture of the PB-A8. This chapter describes the peripherals, clocks, resets, interrupts, and the debug hardware provided by the baseboard.

Chapter 4 Programmer's Reference

Read this chapter for a description of the PB-A8 memory map and registers. There is also basic information on the peripherals and controllers present on the baseboard.

Appendix A Signal Descriptions

Refer to this appendix for a description of the signals on the connectors.

Appendix B Specifications

Refer to this appendix for electrical and timing specifications.

Appendix C Memory Expansion Boards

Refer to this appendix for details on using the available PISMO™ memory expansion boards.

Appendix D RealView Logic Tile Expansion

Refer to this appendix for details of the signals present on the Logic Tile expansion headers and the steps required to interface a Logic Tile to the baseboard.

Appendix E Boot Monitor and platform library

Refer to this appendix for details of how to use the ARM Boot Monitor and platform library.

Appendix F Boot Monitor Commands

Refer to this appendix for details of the user commands accepted by the Boot Monitor command interpreter.

Appendix G Loading FPGA Images

Refer to this appendix for details of how to use the prograds utilities to load images from the supplied Versatile CD into the baseboard and Logic Tile FPGAs and PLDs.

Product revision status

The rnpnvn identifier indicates the revision status of products, such as *PrimeCells*, described in this document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

vn Identifies a version that does not affect the external functionality of the

product.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,

denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes

ARM processor signal names. Also used for terms in descriptive

lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as

commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or

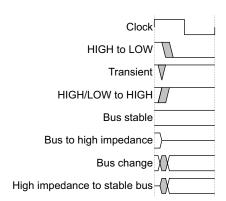
option name.

monospace italic Denotes arguments to commands and functions where the

argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Other conventions


This document uses other conventions. They are described in the following sections:

- Timing diagrams
- Signals on page xxii
- Bytes, Halfwords, and Words on page xxii
- Bits, bytes, k, and M on page xxii
- Register fields on page xxiii.
- Numbering on page xxiii.

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Signals

When a signal is described as being asserted, the level depends on whether the signal is active HIGH or active LOW. Asserted means HIGH for active high signals and LOW for active low signals:

Prefix n Active LOW signals are prefixed by a lowercase n except in the case of

AXI, AHB or APB reset signals. These are named ARESETn,

HRESETn and **PRESETn** respectively.

Prefix A Denotes global *Advanced eXtensible Interface* (AXI) signals:

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H AHB signals are prefixed by an upper case H.

Prefix P APB signals are prefixed by an upper case P.

Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.

Bytes, Halfwords, and Words

Byte Eight bits.

Halfword Two bytes (16 bits).

Word Four bytes (32 bits).

Quadword 16 contiguous bytes (128 bits).

Bits, bytes, k, and M

Suffix b Indicates bits.

Suffix B Indicates bytes.

Suffix k When used to indicate an amount of memory means 1024 and is

uppercase. When used to indicate a frequency means 1000 and is

lowercase.

Suffix M When used to indicate an amount of memory means $1024^2 = 1048576$ and is uppercase. When used to indicate a frequency means 1000000 and is uppercase.

Register fields

All reserved or unused address locations must not be accessed as this can result in unpredictable behavior of the device.

All reserved or unused bits of registers must be written as zero, and ignored on read unless otherwise stated in the relevant text.

All registers bits are reset to logic 0 by a system reset unless otherwise stated in the relevant text.

Unless otherwise stated in the relevant text, all registers support read and write accesses. A write updates the contents of the register and a read returns the contents of the register.

All registers defined in this document can only be accessed using word reads and word writes, unless otherwise stated in the relevant text.

Numbering

The numbering convention is:

Hexadecimal numbers

Hexadecimal numbers are always prefixed with 0x, and use uppercase alphabetical characters, for example 0xFFDD00CC.

Binary numbers – less than 8-bits

Binary numbers less than eight-bit wide are prefixed with a lowercase b, for example b1001001.

Binary numbers – 8-bits or greater

Binary numbers eight-bit wide or greater use Verilog syntax to allow leading zeros to be omitted improving clarity.

For example 8'b101 is an eight-bit wide binary value of b00000101.

Ranges

Ranges use a standard dash to indicate a range of numbers, for example 12-19.

Bit numbers

Single bit numbers are enclosed in brackets, for example [2]. A bit range is enclosed in brackets with a colon, for example [7:0].

Further reading

This section lists publications from both ARM and third parties that provide additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for current errata sheets, addenda, and the Frequently Asked Ouestions list.

ARM publications

This manual contains information that is specific to the PB-A8. See the following documents for other relevant information:

The following publications provide reference information about the ARM architecture:

- *AMBA*® *Specification* (ARM IHI 0011)
- AMBA 3 AXI Protocol (ARM IHI 0022)
- ARM Architecture Reference Manual (ARM DDI 0100)

The following publication provides information about the Cortex-A8 processor:

• Coretex-A8 Technical Reference Manual (ARM DDI 0344)

The following publications provide information about ARM PrimeCell® controllers and bus interconnect used in the PB-A8 Northbridge ASIC:

- ARM PrimeCell Dynamic Memory Controller (PL340) Technical Reference Manual (ARM DDI 0331)
- ARM PrimeCell Static Memory Controller (PL354 series) Technical Reference Manual (ARM DDI 0380)
- ARM PrimeCell Single Master DMA Controller (PL081) Technical Reference Manual (ARM DDI 0218)
- ARM PrimeCell Color LCD Controller (PL111) Technical Reference Manual (ARM DDI 0293)
- ARM PrimeCell AXI Configurable Interconnect (PL300) Technical Reference Manual (ARM DDI 0354)

The following publications are open access documents that provide information about ARM PrimeCell peripherals and controllers used in the Southbridge FPGA:

• ARM PrimeCell Advanced Audio CODEC Interface (PL041) Technical Reference Manual (ARM DDI 0173)

- ARM PrimeCell Multimedia Card Interface (PL180) Technical Reference Manual (ARM DDI 0172)
- ARM PrimeCell System Controller (SP810) Technical Reference Manual (ARM DDI 0254)
- ARM PrimeCell PS2 Keyboard/Mouse Interface (PL050) Technical Reference Manual (ARM DDI 0143)
- ARM PrimeCell UART (PL011) Technical Reference Manual (ARM DDI 0183)
- ARM PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual (ARM DDI 0194)
- ARM PrimeCell Smart Card Interface (PL131) Technical Reference Manual (ARM DDI 0228)
- ARM PrimeCell General Purpose Input/Output (PL061) Technical Reference Manual (ARM DDI 0190)
- ARM PrimeCell Real Time Clock (PL031) Technical Reference Manual (ARM DDI 0224)

The following publications provide information about related ARM products and toolkits:

- RealView® Logic Tile LT-XC2V4000+ User Guide (ARM DUI 0186)
- RealView Logic Tile LT-XC4VLX100+ User Guide (ARM DUI 0345)
- RealView Logic Tile LT-XC5VLX330 User Guide (ARM DUI 0365)
- RealView ICE and RealView Trace User Guide (ARM DUI 0155)
- RealView Debugger User Guide (ARM DUI 0153)
- RealView Compilation Tools Compiler User Guide (ARM DUI 0205)
- RealView Compilation Tools Compiler Reference Guide (ARM DUI 0348)
- RealView Compilation Tools Libraries and Floating Point Support Guide (ARM DUI 0349)
- RealView Compilation Tools Linker and Utilities Guide (ARM DUI 0206).

Other Publications

The following publication describes the JTAG ports with which RealView ICE communicates:

• IEEE Standard Test Access Port and Boundary Scan Achitecture (IEEE Std. 1149.1).

Feedback

ARM Limited welcomes feedback both on the PB-A8 and on the documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier giving:

- the product name
- a concise explanation of your comments.

Feedback on this manual

If you have any comments about this document, send email to errata@arm.com giving:

- the title
- the number
- the relevant page number(s) to which your comments apply
- a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.

Chapter 1 Introduction

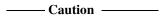
This chapter introduces the *RealView Platform Baseboard for Cortex A8* (PB-A8). It contains the following sections:

- *Precautions* on page 1-2.
- About the PB-A8 on page 1-3.

1.1 Precautions

This section contains safety information and advice on how to avoid damage to the baseboard.

1.1.1 Ensuring safety


The baseboard is powered from an ATX power supply unit within the ATX enclosure.

—— Warning ——

To avoid a safety hazard, use the baseboard in its enclosure and only provide power via the ATX power connector (J39) using the integral ATX power supply unit.

1.1.2 Preventing damage

The baseboard is intended for use in a laboratory or engineering development environment. If removed from its enclosure, the board will become more sensitive to electrostatic discharges and will generate increased electromagnetic emissions.

To avoid damage, observe the following precautions:

- never subject the board to high electrostatic potentials
- always wear a grounding strap when touching the board in or away from its enclosure
- avoid touching the component pins or any other metallic element
- always power down the board when connecting Logic Tiles, memory expansion boards, or making external connections.

Do not use near equipment that is:

- sensitive to electromagnetic emissions (such as medical equipment)
- a transmitter of electromagnetic emissions.

1.2 About the PB-A8

The *Platform Baseboard for Cortex*®-A8 (PB-A8) is the first highly integrated software and hardware development system to be based on the ARM Cortex family of superscalar processors. The baseboard is supplied self-powered in an ATX profile enclosure.

Used standalone the PB-A8 serves as a fast software development platform with a Cortex A8 processor and memory system running at near ASIC speed.

Used with FPGA-based *RealView Logic Tiles*, stacked on the baseboard, it enables custom *AMBA 3* peripherals, processors, and DSPs to be added to the existing ARM development system.

The PB-A8 is intended for development of applications software based on the ARMv7-A with Advanced SIMD architecture and NEON™ technology for multimedia and signal processing applications. The ability to add Logic Tiles to the baseboard enables new custom hardware to be prototyped and validated, and drivers to be debugged.

The PB-A8 includes:

- a Cortex A8 test chip
- a structured ASIC (Northbridge)
- an FPGA (Southbridge)
- a Debug FPGA (CoreSight[™] components)
- static and dynamic memory
- integrated peripherals
- tile site to enable connection of RealView Logic Tiles
- connectors for external peripherals and JTAG configuration, debug and trace.

Figure 1-1 on page 1-4 shows the top level system architecture of the baseboard.

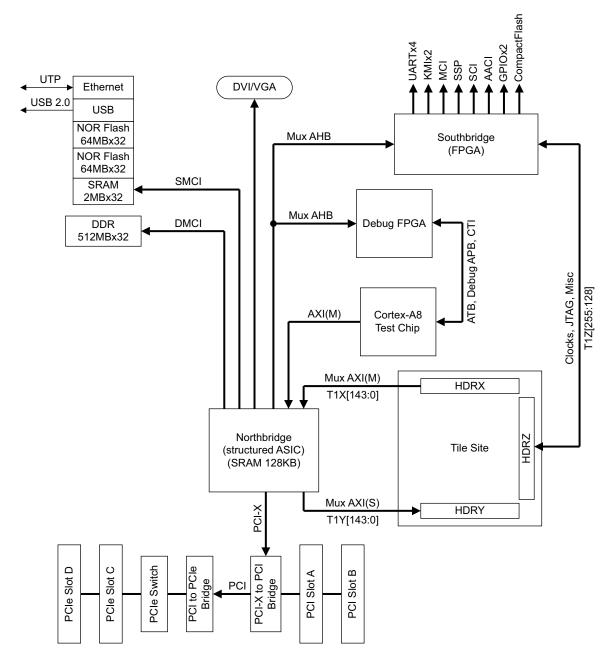


Figure 1-1 Cortex A8 system architecture

The following sections introduce the major system components:

- Cortex A8 test chip
- Debug FPGA
- Northbridge
- Southbridge on page 1-6
- *PB-A8 expansion* on page 1-7.

1.2.1 Cortex A8 test chip

The PB-A8 test chip implements the following system components and interfaces:

- Cortex A8 processor with:
 - Level 1 Data and Instruction Caches (32KB)
 - Level 2 Cache (256KB) with NEON support
 - NEON co-processor
 - CoreSight APB and ATB interfaces.
- AXI interface (64-bit).

See Cortex-A8 test chip on page 3-8 for details.

1.2.2 Debug FPGA

The Debug FPGA implements the system components required for CoreSight debug and trace visibility of the Cortex A8 processor.

See *Debug FPGA* on page 3-8 for FPGA details and the *CoreSight Technology System Design Guide* (DGI 0012) for details on Coresight technology.

1.2.3 Northbridge

The Northbridge implements the following major system components and interfaces:

- Static Memory Controller (PL354)
- Dynamic Memory Controller (PL340)
- Single Master DMA Controller (PL081)
- Color LCD Controller (PL111)
- AXI Configurable Interconnect (PL300)
- multiplexed AXI interfaces to and from the tile site
- multiplexed AHB-Lite interface to the Southbridge and Debug FPGA
- PCI/PCI-X interface.

See *Northbridge* on page 3-8 and the appropriate *Technical Reference Manual* (TRM) for details of the *PrimeCell* components that are integrated in the Nothbridge structured ASIC.

1.2.4 Southbridge

The Southbridge implements the following peripheral components and interfaces:

- Advanced Audio CODEC Interface (PL041)
- Multimedia Card Interface (PL180)
- PS2 Keyboard/Mouse Interface (PL050) x 2
- UART (PL011) x 4
- Watchdog Module (SP805) x 2
- Dual-Timer Module (SP804) x 4
- Synchronous Serial Port (PL022)
- Smart Card Interface (PL131)
- General Purpose Input/Output (PL061) x 3
 - sixteen GPIO ports available for external use
 - eight GPIO ports reserved for internal use.
- Real Time Clock (PL031)
- Generic Interrupt Controller x 4
- multiplexed AHB-Lite interface to the Northbridge
- AHB interface to the baseboard CompactFlash memory.

See *Southbridge* on page 3-8 and the appropriate *Technical Reference Manual* (TRM) for details of the *PrimeCell* components that are integrated in the Southbridge FPGA.

Note
ARM does not support modifications made to the ARM Southbridge FPGA design.
Custom peripheral development is only supported when using an attached Logic Tile
such as the LT-XC5VLX330. Specific Application Notes are made available on the CD
supplied with the PB-A8.

1.2.5 PB-A8 expansion

You can expand the PB-A8 by adding:

- one or more stacked Logic Tiles containing your custom IP
- one or more PCI or PCI Express® cards
- one or more stacked PISMO static memory expansion boards
- Compact Flash card
- VGA monitor or color LCD display (DVI connection)
- MMC, SD, or SIM cards
- USB devices to the three USB ports (1 OTG and 2 standard host ports)
- serial devices to the synchronous serial port (SSP) and the four UARTs
- a keyboard and mouse
- audio devices to the onboard CODEC (AAC)
- a 10/100Mbps Ethernet network to the onboard Ethernet controller
- custom I/O to the 16-bit GPIO header.

Introduction

Chapter 2 Getting Started

This chapter describes how to set up and prepare the PB-A8 for use. It contains the following sections:

- Setting up the baseboard on page 2-2
- Boot Monitor configuration on page 2-3
- JTAG debugger and USB config support on page 2-5
- Baseboard configuration switches on page 2-7.

2.1 Setting up the baseboard

The following items are supplied:

•	a custom A1X	enclosure	containing:	

- a PB-A8 (micro ATX profile) printed-circuit board (HBI-0178)
- front panel printed-circuit boards (HBI-0176, HBI-0175)
- an ATX mains operated power supply (110V/230V AC)
- a CD containing sample programs, Boot Monitor code, FPGA and PLD images, and additional release documentation.

Note
For normal standalone operation, it is not necessary to change any of the default switch
settings on the baseboard. See Baseboard configuration switches on page 2-7.

Before fitting any Logic Tiles, you should test that the system boots normally.

To set up the PB-A8 as a standalone development system:

- If you are using one or more expansion Logic Tiles, open the enclosure and stack
 the tiles on the tile expansion connectors on the baseboard.
 See Appendix D *RealView Logic Tile Expansion* and the user guide for your
 Logic Tile for details.
- If you are using one or more memory expansion boards, open the enclosure and stack the boards on the PISMO[™] connector on the baseboard.
 See Appendix C *Memory Expansion Boards* for details.
- 3. If you are using an external display:
 - for analog VGA displays, connect a DVI-A cable from the display to the DVI connector on the back panel of the enclosure
 - for digital CLCD displays, connect a DVI-D cable from the display to the DVI connector on the back panel of the enclosure.

Note			
A DVI-I cable can be used to	connect a digital	l or analog	display

4. If you are using a debugger, connect to the JTAG connector (JTAG-ICE) on the rear panel of the enclosure. See *Rear panel layout* on page 3-6 for the location of the JTAG connector, and *JTAG debugger and USB config support* on page 2-5 for information on debug support.

- 5. Apply power to the ATX enclosure, switch on the mains switch on the rear panel. See *Rear panel layout* on page 3-6 for the location of the mains switch. Press the power button on the front panel. The power indicator will light. See *Front panel layout* on page 3-5 for the location of the power button and indicator.
- 6. If you are using the supplied Boot Monitor software to select and run an application, see Appendix E *Boot Monitor and platform library*.

2.2 Boot Monitor configuration

The Boot Monitor application is typically loaded into the NOR flash memory and selected to run at power on. Follow the instructions in *Loading Boot Monitor into NOR flash* on page E-7 for details of loading the boot flash with the image from the supplied CD. How the Boot Monitor runs is determined by the setting of User Switches.

It is not necessary to open the enclosure to configure the Boot Monitor. The User Switches 1 to 3 on the front panel of the ATX enclosure (see *Front panel layout* on page 3-5) control this. The User Switches in switch bank S4 on the baseboard (see *Baseboard layout* on page 3-3) duplicate the front panel User Switches and must be left in the default all switches OFF position for normal operation.

User Switches 4 to 8 (S4-4 to S4-8) are not used by the Boot Monitor and are available for user applications.

If a different loader program is present at the boot location, the function of the entire User Switch bank becomes implementation dependent.

User Switch 1 (S4-1) determines the Boot Monitor behavior after a reset. The available options are shown in Table 2-1.

Table 2-1 Boot Monitor startup behavior

User Switch 1	Startup Behavior
OFF	A prompt is displayed enabling you to enter Boot Monitor commands.
ON	The Boot Monitor executes a boot script that has been loaded into NOR flash, a Multimedia (MMC), or Secure Digital (SD) card. If a boot script is not present, the Boot Monitor prompt is displayed.

The boot script can execute any Boot Monitor commands. It typically selects and runs an application image that has been stored in either NOR flash memory or on a MMC or SD card. You can store one or more code images in flash memory and use the boot script to start an image at reset. Use the SET BOOTSCRIPT command to set the boot script file name from the Boot Monitor (see *Standard Boot Monitor command set* on page F-3).

Output and input of text from STDIO for both applications and Boot Monitor I/O depends on the setting of User Switch 2 (S4-2) and User Switch 3 (S4-3) as listed in Table 2-2.

Table 2-2 STDIO redirection

User Switch 2	User Switch 3	Output	Input	Description
OFF	OFF	UART0 or console	UART0 or console	STDIO auto-detects whether to use semihosting I/O or a UART. If a debugger is connected and semihosting is enabled, STDIO is redirected to the debugger console window. Otherwise, STDIO goes to UARTO.
OFF	ON	UART0	UART0	STDIO is redirected to UART0. This occurs even under semihosting.
ON	OFF	DVI	Keyboard	STDIO is redirected to the DVI display and keyboard. This occurs even under semihosting.
ON	ON	DVI	UART0	STDIO output is redirected to the DVI display and input is redirected to UARTO. This occurs even under semihosting.

User Switches 2 and 3 (S4-2 and S4-3) do not affect file I/O operations performed under semihosting. Semihosting operation requires a debugger and a JTAG interface device. See *Redirecting character output to hardware devices* on page E-8 for more details on I/O.

2.3 JTAG debugger and USB config support

In configuration mode, you can use either a JTAG debugger, such as RealView ICE or
the custom USB config port to configure the baseboard configuration flash, FPGA, and
PLDs.
Note

You cannot program normal flash memory from configuration mode.

2.3.1 JTAG debugger

You can use a JTAG debugger connected to the JTAG connector on the rear panel to:

connect to the Cortex-A8 test chip and download programs to memory and debug them
 Note
 You gain access to the Cortex-A8 test chip Debug Advanced Peripheral Bus (Debug APB) through the Debug Access Port (DAP) integrated in the PB-A8 Debug FPGA.

- program new FPGA and PLD images on the baseboard
- program new FPGA and PLD images on a Logic Tile fitted to the baseboard.

See *Rear panel layout* on page 3-6 for the location of the JTAG ICE connector, and Appendix G *Loading FPGA Images* for device programming details.

2.3.2 USB config port

The PB-A8 contains custom logic that interfaces the USB config port to the onboard JTAG signals. You can use a PC connected to the custom USB config port connector on the front panel to:

- program new FPGA and PLD images on the baseboard
- program new FPGA and PLD images on a Logic Tile fitted to the baseboard.

See *Front panel layout* on page 3-5 for the location of the USB config connector, and Appendix G *Loading FPGA Images* for device programming details.

——— Caution ————
The baseboard is supplied with the FPGA and PLD images already programmed.
Information is provided in Appendix G Loading FPGA Images however, in case of
accidental erasure of the FPGA or PLDs. You are advised not to reprogram the FPGA or
PLDs with any images other than those provided by ARM.

2.4 Baseboard configuration switches

For normal operation, it is not necessary to open the ATX enclosure and change the baseboard configuration switch bank (S7) settings. The default setting is all switches OFF.

The location of the configuration switch bank (S7) on the baseboard is shown in *Baseboard layout* on page 3-3.

The location of the configuration switch bank (S7) on the baseboard is shown in *Baseboard layout* on page 3-3.

The switch settings determine at power up:

- boot memory configuration
- tile site clock frequency.

2.4.1 Boot memory configuration

Use switch S7-1 to change the boot device. The available options are shown in Table 2-3.

Table 2-3 Selecting the boot device

S7-1	Device
OFF	NOR flash (default)
ON	PISMO expansion memory

2.4.2 Tile site clock frequency

Use switches S7-3 and S7-4 to select the tile site frequency (**TSCLK**). The available options are shown in Table 2-4.

Table 2-4 Tile site frequency options

S7-4	S7-3	Frequency
OFF	OFF	25MHz (default)
OFF	ON	10MHz
ON	OFF	30MHz
ON	ON	45MHz

_____Note _____

All remaining switches on switch bank S7 are reserved and should be left in the default OFF position.

Chapter 3 **Hardware Description**

This chapter describes the on-board hardware. It contains the following sections:

- *PB-A8 architecture* on page 3-2
- *Tile interconnections* on page 3-12
- Cortex-A8 test chip on page 3-14
- *Northbridge* on page 3-18
- Southbridge on page 3-23
- *Ethernet interface* on page 3-32
- *USB Interface* on page 3-33
- *DVI Interface* on page 3-34
- *PCI interface* on page 3-35
- Power supply control on page 3-37
- *Clock architecture* on page 3-39
- Resets on page 3-47
- *Interrupts* on page 3-50
- Test, configuration, debug and trace interfaces on page 3-56.

3.1 PB-A8 architecture

Figure 3-1 on page 3-3 shows the layout of the baseboard.

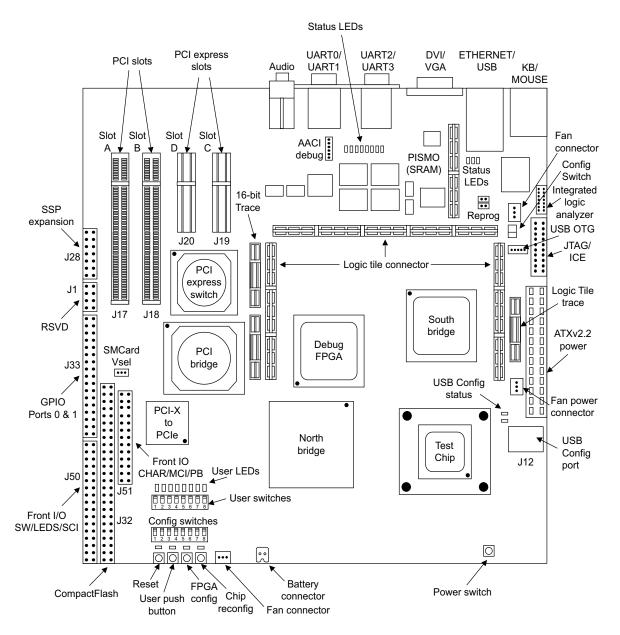


Figure 3-1 Baseboard layout

The major system components and interfaces provided by the baseboard are:

- a tile site to support RealView Logic Tiles
- a Cortex-A8 test chip
- a Debug FPGA implementing the CoreSight[™] infrastructure
- a Northbridge implementing the major system controllers and interfaces
- a Southbridge implementing most of the remaining system peripherals
- 512MB of 32-bit wide (DDR) SDRAM (2 x 256MB banks)
- 2MB of 32-bit wide (Pseudo) SRAM
- 128MB of 32-bit wide NOR flash in two banks of 64MB
- PISMO connector for up to 256MB (4x 64MB) of static memory expansion
- PCI and PCI Express expansion buses (2 slots for each interface type)
- USB interface providing 1 OTG and 2 Full Speed USB 2.0 host ports
- Ethernet interface providing 10Base-T and 100Base-TX support
- DVI-I interface providing color LCD display and analog VGA monitor support
- Synchronous Serial Port (SSP) interface
- 4x RS232 interfaces with modem support
- PS2 keyboard and mouse interfaces
- audio CODEC interface (AAC)
- CompactFlash, MMC, SD and SIM Card interfaces
- 8x general purpose (User) switches and LEDs
- Real-Time Clock (RTC)
- Time Of Year clock (TOY) with backup battery
- programmable clock generators
- power supplies, voltage control, and current monitoring circuitry
- JTAG config and debug, and Integrated Logic Analyzer (ILA) support
- Trace port (32-bit) with Embedded Trace Buffer
- USB config port.

Figure 3-2 shows the front panel of the ATX enclosure that provides:

- power on-off button and indicator
- USB Config port connector
- USB Config switch and indicator
- Soft Reset switch
- Hard Reset switch
- CompactFlash interface connector
- USB OTG interface connector
- SD and MMC memory card interface connector
- User Switches 1 to 8
- User LEDs 1 to 8
- SIM card interface
- 5¼ inch bay (for customer hardware expansion).

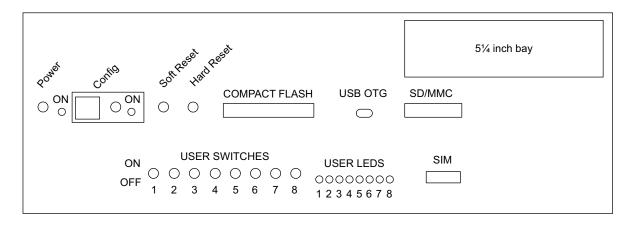


Figure 3-2 Front panel layout

Figure 3-3 shows the rear panel of the ATX enclosure that provides:

- power connector and on-off switch
- keyboard and mouse interface (PS/2)
- Ethernet interface (10Base-T and 100Base-TX)
- 2x USB 2.0 host ports
- video interface (DVI color LCD and analog VGA support)
- JTAG debugger interface
- 4x RS232 serial ports (includes handshake signals for modem support)
- audio interface (analog mic-in, line-in, and line-out supported)
- 2x PCI and 2x PCI Express slots.

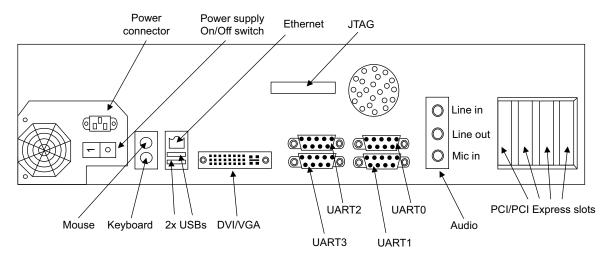


Figure 3-3 Rear panel layout

3.1.1 Bypassing the power switch

The power button on the front panel of the PB-A8 baseboard is typically used to power on the system.

If a link is placed across J41 (FORCE ON), the power is forced on and the Power push switch has no effect.

A jumper must not be placed across connector J40 (POWER). You can, however, use this connector to attach an external push button if the Power push button is not accessible or the board is mounted in the enclosure.

3.1.2 Top level architecture

Figure 3-4 shows the top level architecture of the baseboard.

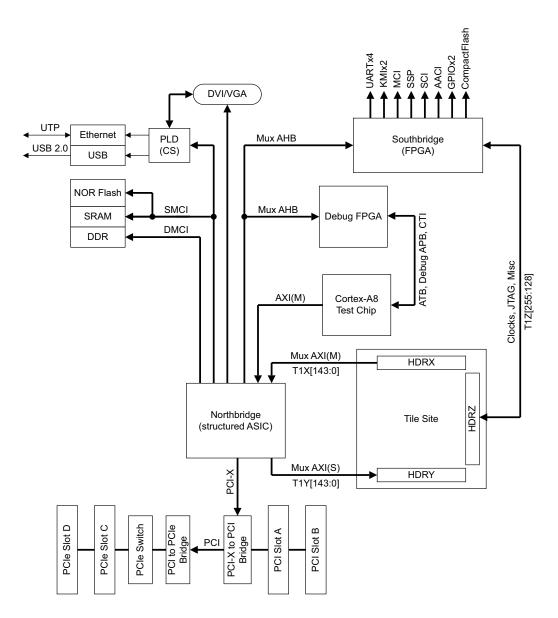


Figure 3-4 PB-A8 top level architecture diagram

3.1.3 Cortex-A8 test chip

The Cortex-A8 test chip is an ASIC that includes a Cortex-A8 processor, a Phase Locked Loop (PLL), and Boundary Scan components. See *Cortex-A8 test chip* on page 3-14 for details.

3.1.4 Debug FPGA

The Debug FPGA implements CoreSight® Technology for debug and trace of the on-board Cortex-A8 processor.

See *Debug FPGA* on page 3-17 for details.

3.1.5 Northbridge

The Northbridge is a structured ASIC and provides the major system controllers and interfaces, and interfaces to the onboard Cortex-A8 test chip. This enables the PB-A8 to operate as a standalone development system for Cortex-A8 based applications.

The Northbridge also interfaces to the tile site. This enables the PB-A8 to operate as a standalone AMBA 3 AXI peripheral development system using an attached Logic Tile. See *Northbridge* on page 3-18 for details.

3.1.6 Southbridge

The Southbridge is an FPGA (Xilinx XC4VLX40) and provides the majority of the system peripherals. It also implements the system control and configuration functions required by the PB-A8.

See Southbridge on page 3-23 for details.

Note
The majority of the controllers and interfaces implemented in the Northbridge and
Southbridge are ARM PrimeCell® components.
Caution
The image loaded into the Southbridge FPGA must match the system configuration or
ooth the baseboard and an attached Logic Tile may be damaged. A copy of the
onfiguration FPGA image is supplied on the Versatile Family CD in case of accidental
orruption of the preloaded image.
See Appendix G Loading FPGA Images for details.

3.1.7 PCI bus connectors

Two PCI and two PCI Express bus connectors are provided to allow PCI and PCI Express profile cards to be connected directly to the baseboard. Rear panel access to the card back plates is provide. See *Rear panel layout* on page 3-6 for details.

3.1.8 Displays

The color LCD signals are sourced either from the CLCD controller in the Northbridge or custom logic implemented in a Logic Tile fitted to the PB-A8 tile site. See *Tile site and main system bus routing* on page 3-13 for interconnect details. The color LCD signals are processed by a DVI transmitter chip and fed to the baseboard DVI-I connector. The color LCD signals are also converted to analog VGA signals by a video DAC and fed to the baseboard DVI-I connector. A serial 2-wire interface implemented in the Southbridge provides the DDC2B interface. See *DVI Interface* on page 3-34 for details.

_____ Note _____

A DVI-D cable is required to connect a digital display, and a DVI-A cable is required to connect an analog display. Alternatively, a DVI-I cable can be used to connect a digital or analog display.

3.1.9 Logic Tile expansion

Logic Tiles, such as the LT-XC5VLX330, can be connected to enable developing of additional AMBA 3 AXI peripherals, or custom logic, for use with ARM processors. See Appendix D *RealView Logic Tile Expansion* and *RealView Logic Tile header connectors* on page A-19 for details.

——— Caution ————

Due to pin limitations, the PB-A8 implements multiplexed AMBA 3 AXI interfaces at the HDRX and HDRY tile site headers. The Logic Tile used must implement a similar scheme to be compatible with the PB-A8 external AMBA 3 AXI interfaces.

ARM Application Note AN151 *Example AXI design for a Logic Tile on top of AXI Versatile baseboards* describes the multiplexed AMBA 3 AXI interface requirements and includes example code.

3.1.10 Clock generation

Clock generation on the PB-A8 is provided by a PLL implemented in the Cortex-A8 test chip and a number of on-board programmable clock generators. The PLL provides the internal clock source for the processor internal clock divider and external AXI interface. The on-board programmable clock generators provide clock sources for the peripherals in the Northbridge, Southbridge and dedicated peripheral interface devices. See *Clock architecture* on page 3-39 for details of PB-A8 clock usage and routing.

3.1.11 Debug, Trace and USB Config support

The PB-A8 supports CoreSight debug and trace of the on-board Cortex-A8 processor.

Debug support

The JTAG connector on the rear panel of the ATX enclosure enables JTAG hardware debugging equipment, such as RealView ICE, to be connected to the PB-A8. The JTAG equipment enables you to debug ARM-based applications running on the Cortex-A8 processor.

An *Integrated Logic Analyzer* (ILA) connector on the baseboard enables debugging of the Logic Tile FPGA designs at the same time as the JTAG connector is being used to debug application code running on the Cortex-A8. An example of an ILA debugging device is the Xilinx ChipScope.

Trace support

The Cortex-A8 processor supports *CoreSight Technology* for debug and trace. The *Debug APB* and *Trace ATB* buses from the processor are routed to the Debug FPGA on the PB-A8.

—— Note ———
The CoreSight interface components are implemented in an FPGA so it may not be
possible to trace software at the maximum speed allowed by test chip.

The Debug FPGA implements a *Debug Access Port* (DAP), for interfacing to an external JTAG debugger such as *RealView Debugger*, and an *Embedded Trace Buffer* (ETB) and *Trace Port Interface* (TPIU), for interfacing to an external trace unit such as *RealView Trace*.

USB config support

The progcards_usb utility can use the dedicated USB config port provided on the front panel to download images to the FPGA and PLDs on the PB-A8, and a Logic Tile if fitted, using a PC.

See JTAG debugger and USB config support on page 2-5.

3.2 Tile interconnections

The tile site on the baseboard enables the board to be used with Logic Tiles. The tiles
are stackable and each tile has three connectors on the top and bottom (HDRX, HDRY,
and HDRZ). See <i>RealView Logic Tile header connectors</i> on page A-19 for details.

Note
ARM support the use of Logic Tiles at the PB-A8 tile site. Support is available through
pplications Notes provided on the Versatile Family CD and on the ARM Infocenter at
nfocenter.arm.com

The bus usage on the tiles depend on the type of baseboard and the combination of tiles used. For PB-A8, HDRX (Bus T1X) carries the mux AXI master bus signals and HDRY carries the mux AXI slave bus signals (Bus T1Y). HDRZ (Bus T1Z) carries the additional I/O signals required by the Logic Tile (clocks, resets, JTAG etc). See Figure 3-5 on page 3-13 for a simplified diagram of the main tile and system bus routing.

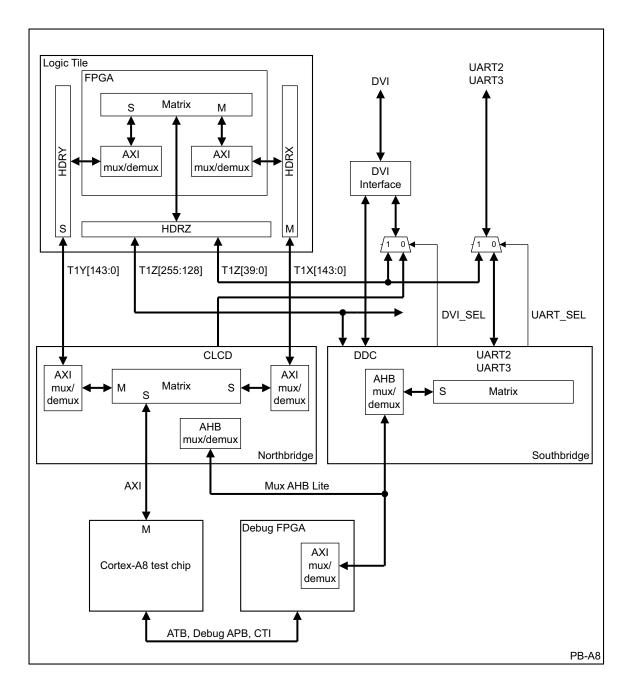


Figure 3-5 Tile site and main system bus routing

On the PB-A8 CLCD, UART2, and UART3 interfaces can be sourced from the baseboard or logic implemented in the FPGA on an attached Logic Tile. The CLCD source and the UART 2 and UART3 source are controlled independently by signals **DVI_SEL** and **UART_SEL** respectively.

3.2.1 AXI bus multiplexing

A bus multiplexing scheme is necessary to reduce the number of pins required on the HDRX and HDRY headers. Refer to *Application Note AN151* for details and example code.

3.3 Cortex-A8 test chip

The Cortex-A8 test chip is a proof-of-concept vehicle for the Cortex-A8 macrocell and is built for two reasons:

- It enables you to functionally validate the Cortex-A8 macrocell on the silicon process it is built on.
- You can use it as a building block to create prototype systems designed for product and operating system development.

The Cortex-A8 test chip consists of:

- Cortex-A8 macrocell
 - Instruction and Load/Store Units (including Level 1 Caches and RAM)
 - Level 2 Cache Controller
 - Level 2 RAM
 - NEON[™] Coprocessor
 - Embedded Trace Macrocell (ETM)
 - AMBA Trace Bus interface
 - Debug APB interface
 - Design For Test (DFT) interface
- PLL
- Boundary Scan Tap.

3.3.1 Cortex-A8 test chip overview

Figure 3-6 shows the top-level functionality of the test chip.

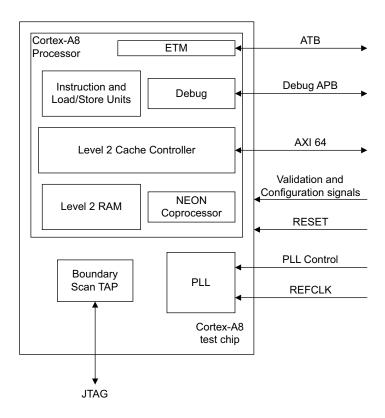


Figure 3-6 top-level view of Cortex-A8 test chip

——Note ———
On the PB-A8, the test chip is tightly coupled to the Debug FPGA to implement CoreSight™ technology for system trace and debug. See *Debug FPGA* on page 3-17.

Cortex-A8 processor

For details on the Cortex-A8 processor components see *Cortex-A8 Technical Reference Manual* (ARM DDI 0344).

PLL

The PLL includes a *Voltage Controlled Oscillator* (VCO) and digital circuitry. Either the PLL or an external reference clock provides the timing required by the Cortex-A8 test chip.

Boundary Scan TAP

An IEEE 1149.1 TAP controller provides and controls the test chip boundary scan chain. This TAP controller is required by ARM during reconfiguration of the PB-A8. It is not required for normal configuration or debug of the PB-A8. It uses the same test chip IEEE 1149.1 pins for JTAG communications to keep the number of additional pins required to a minimum.

3.4 Debug FPGA

The Debug FPGA implements the components required for CoreSight debug and trace visibility at the Cortex-A8 test chip.

Figure 3-7 shows the top level view of the Debug FPGA.

For an introduction to CoreSight, and details on the Debug FPGA CoreSight components see *CoreSight Technology System Design Guide* (DGI 0012).

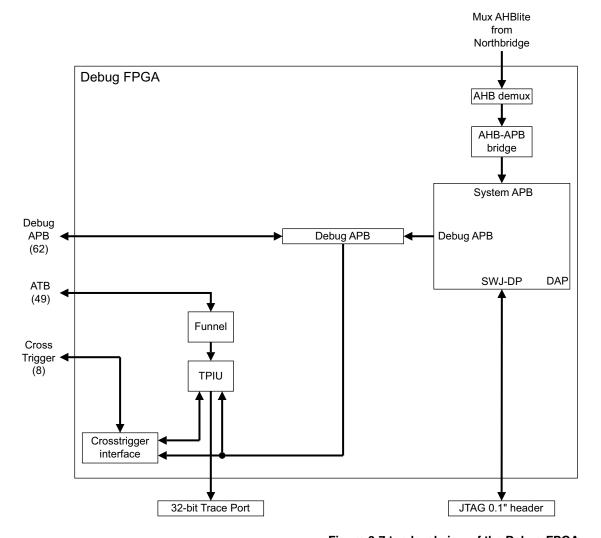


Figure 3-7 top level view of the Debug FPGA

3.5 Northbridge

Figure 3-8 shows in simplified form the architecture of the Northbridge on the Cortex-A8. The Northbridge is implemented as a structured ASIC.

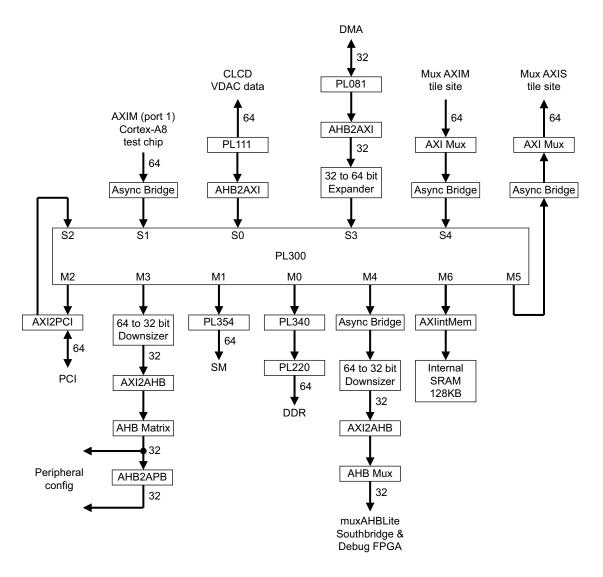


Figure 3-8 Northbridge block diagram

For details on the Northbridge see:

- Cortex-A8 test chip interface
- CLCD controller
- *Memory controllers* on page 3-20
- *Multiplexed AHB-Lite interface* on page 3-21
- Multiplexed AXI interfaces on page 3-22
- *PCI interface* on page 3-22.

3.5.1 Cortex-A8 test chip interface

The Cortex-A8 test chip interfaces to the Northbridge via an asynchronous non-multiplexed 64-bit AXI bus to give the highest possible data transfer rate.

See AMBA 3 AXI Protocol (ARM IHI 0022) for details of the AXI interface.

3.5.2 CLCD controller

The Northbridge implements the PrimeCell PL111 *Color LCD Controller*, an Advanced Microcontroller Bus Architecture (AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

The PrimeCell PL111 provides all of the necessary control signals to interface directly to a variety of color and monochrome LCD panels. It supports:

- single- and dual-panel mono Super Twisted Nematic (STN) displays with 4 or 8-bit interfaces
- single- and dual-panel color STN displays
- Thin Film Transistor (TFT) color displays.

Display resolutions are programmable up to 1024x768, and hardware cursor support for single-panel displays is provided.

See *Color LCD Controller*, *CLCDC* on page 4-55 for details of PB-A8 usage and the *ARM PrimeCell Color LCD Controller* (*PL111*) *Technical Reference Manual* (ARM DDI 0293) for full programming details.

3.5.3 Memory controllers

The Northbridge implements memory controllers for:

- static memory
- dynamic memory
- direct memory access.

Static memory controller, SMC

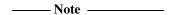
The Northbridge implements the PrimeCell PL354 *Static Memory Controller*, an Advanced Microcontroller Bus Architecture (AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

The PrimeCell PL354 is part of the PL350 series of area-optimized SRAM and NAND memory controllers with on-chip bus interfaces that conform to the AMBA Advanced eXtensible Interface (AXI) protocol.

On the PB-A8 the PrimeCell PL354 supports:

- Pseudo Static Random Access Memory (PSRAM)
- NOR flash devices with an SRAM interface
- Ethernet and USB controllers with an SRAM interface
- SRAM expansion memory via a PISMO interface.

See *Static Memory Controller*, *SMC* on page 4-106 for details of PB-A8 usage and the *ARM PrimeCell Static Memory Controller (PL350 series) Technical Reference Manual* (ARM DDI 0380) for full programming details.


Dynamic memory controller, DMC

The Northbridge implements the PrimeCell PL340 *Dynamic Memory Controller*, an Advanced Microcontroller Bus Architecture (AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

The PL340 DMC is a high-performance, area-optimized SDRAM memory controller with on-chip bus interfaces that conform to the AMBA Advanced eXtensible Interface (AXI) protocol.

On the PB-A8 the PrimeCell PL340 supports:

- Synchronous Dynamic Random Access Memory (DDR SDRAM)
- a shared external memory bus interface.

To reduce the pinout requirements, the Northbridge uses the PL340 DMC in conjunction with the PrimeCell PL220 *External Bus Interface* (EBI) to implement a shared external memory bus interface. See *ARM PrimeCell External Bus Interface* (PL220) Technical Reference Manual (DDI 0249) for details.

See *Dynamic Memory Controller, DMC* on page 4-58 for details of PB-A8 usage and the *ARM PrimeCell Dynamic Memory Controller (PL340) Technical Reference Manual* (ARM DDI 0331) for full programming details.

Single master direct memory access controller, SMDMAC

The Northbridge implements the PrimeCell PL081 *Single Master DMA Controller*, an Advanced Microcontroller Bus Architecture (AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

The PrimeCell PL081 is an AMBA AHB module, and connects to the Advanced High-performance Bus (AHB). Two DMA channels, each supporting a unidirectional transfer are provided. There are 16 peripheral DMA request lines and each peripheral connected to the PL081 can assert either a single DMA request, or a burst DMA request, the DMA burst size is programmable.

In the Northbridge the PrimeCell PL081 supports:

- eight channels of direct memory access (with DMAC flow control only)
- DMA access to the tile site
- two selectable DMA channel to peripheral mappings

See Single Master Direct Memory Access Controller, SMDMAC on page 4-57 for details of PB-A8 usage and the ARM PrimeCell Single Master DMA Controller (PL081) Technical Reference Manual (ARM DDI 0218) for full programming details.

3.5.4 Multiplexed AHB-Lite interface

The Northbridge interfaces to the Compact Flash interface and low speed peripherals in the Southbridge via a custom multiplexed AHB-Lite master port.

See *AMBA*[®] *Specification* (ARM IHI 0011) for details of the AHB-Lite interface and *Southbridge* on page 3-23 for details of the Southbridge peripherals.

3.5.5 Multiplexed AXI interfaces

The Northbridge interfaces to the tile site via two multiplexed 64-bit AXI buses. Bus multiplexing is required at the tile site to reduce the pin count. Header HDRX carries a master multiplexed AXI bus from the tile site to the baseboard, and header HDRY carries a slave multiplexed AXI bus from the tile site to the baseboard.

See *Application Note AN151*, available on the *Versatile Family CD* or the *ARM Infocenter*, for details of the multiplexing scheme and *RealView Logic Tile header connectors* on page A-19 for details of the baseboard signal pinout.

3.5.6 PCI interface

The Northbridge implements an AXI to PCI bridge (AXI2PCI) that provides interface functions conforming to the PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a.

See AXI to PCI bridge on page 4-98 for details of PB-A8 usage and user programming details.

3.6 Southbridge

Figure 3-9 shows the architecture of the Southbridge on the PB-A8. The Southbridge is implemented by ARM as a custom FPGA.

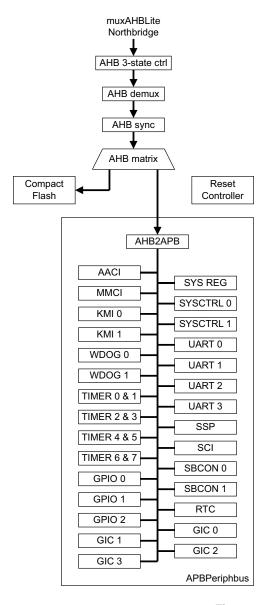


Figure 3-9 Southbridge block diagram

For details on the Southbridge see:

• FPGA configuration

3.6.1 FPGA configuration

At power-up the FPGA loads its configuration data from configuration flash memory.

The image loaded into the FPGA is determined by the image select switch S1 on the baseboard (see *Baseboard layout* on page 3-3 for the location of S1).

The image selection options are listed in Table 3-1.

Table 3-1 FPGA image selection

S1-1	FPGA image
OFF	FPGA image 1 (this is the image supplied with the board)
ON	FPGA image 2 (this area is available for future use)

The configuration flash can hold two FPGA images however, only one FPGA image is provided.

The configuration flash is a separate device and not part of the user NOR flash.

You can use the appropriate Progcards utility connected via a JTAG debugger or the USB Config port to reprogram the PLDs, FPGA, and flash if the PB-A8 is placed in configuration mode. See *The progcards utilities* on page G-5.

— Caution ——

You are advised not to program these devices with any images other than those provided by ARM.

 Caution	

The 1.5V cell battery provides the **VBATT** backup voltage to the external DS1338 time-of-year clock. The battery is expected to last for approximately 10 years from manufacture of the PB-A8.

To replace the battery:

- 1. Power on the PB-A8. If the battery is removed while the board is powered down, the time-of-year data will be lost.
- 2. Remove the old battery.
- 3. Insert the new battery. Ensure that the positive terminal is facing upwards in the holder.

3.6.2 Reset controller

Correct initialization of the PB-A8 and Logic Tiles requires a timed reset sequence. The custom Reset controller in the Southbridge monitors the reset sources and sequences the baseboard and Logic Tile resets during power-up (power-on reset sequence) and during baseboard configuration (system reset sequence).

See Resets on page 3-47 for details.

3.6.3 CompactFlash

The CompactFlash interface is a custom *Advanced Microcontroller Bus Architecture* (*AMBA*) slave block that connects to the *Advanced High-performance Bus* (AHB).

The host (CF/CF+ card slot) 50 pin connector is positioned on the front panel of the enclosure, see *Front panel layout* on page 3-5 for details.

See *CompactFlash interface* on page 4-113 for details of PB-A8 usage. The physical interface provided by the PB-A8 is shown in *Compact Flash interface* on page A-2

3.6.4 APB peripherals

The majority of the controllers and interfaces implemented in the Southbridge are standard ARM PrimeCell® components:

- Advanced Audio CODEC Interface, AACI on page 3-27
- Multimedia Card Interface, MCI on page 3-27
- Keyboard and Mouse Interface, KMI on page 3-27
- Watchdog Module on page 3-28
- Dual-Timer Module on page 3-28
- General Purpose Input/Output, GPIO on page 3-28
- Generic Interrupt Controller on page 3-28
- Status and System Control Register Block on page 3-29
- System Controller on page 3-29
- *UART* on page 3-29
- Synchronous Serial Port, SSP on page 3-30
- Smart Card Interface, SCI on page 3-30
- *Two-wire serial bus interface* on page 3-31
- Real Time Clock, RTC on page 3-31.

Advanced Audio CODEC Interface, AACI

The ARM PrimeCell Advanced Audio CODEC Interface (AACI) PL041 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The PrimeCell AACI provides communication to an off-chip CODEC (LM4549) that supports the *AC-link* protocol.

See Advanced Audio CODEC Interface, AACI on page 4-53 for details of PB-A8 usage and the ARM PrimeCell Advanced Audio CODEC Interface (PL041) Technical Reference Manual (ARM DDI 0173) for full programming details.

The physical interface provided by the PB-A8 is shown in *Audio CODEC interface* on page A-6.

Multimedia Card Interface, MCI

The ARM PrimeCell Multimedia Card Interface (MCI) PL180 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The PrimeCell MCI provides all functions specific to the multimedia and secure digital memory card such as the clock generation unit, power management control, and command a data transfer. The interface conforms to *Multimedia Card Specification* v2.11 and *Secure Digital Memory Card Physical Layer Specification* v0.96.

See *MultiMedia Card Interface, MCI* on page 4-97 for details of PB-A8 usage and the *ARM PrimeCell Multimedia Card Interface (PL180) Technical Reference Manual* (ARM DDI 0172) for full programming details.

The physical interface provided by the PB-A8 is shown in *MMC and SD card interface* on page A-7.

Keyboard and Mouse Interface, KMI

The ARM PrimeCell *PS2 Keyboard/Mouse Interface (KMI)* PL050 is an *Advanced Microcontroller Bus Architecture (AMBA)* slave block that connects to the *Advanced Peripheral Bus (APB)*.

The PrimeCell KMI can be used to implement a keyboard or mouse interface that is IBM PS2 or AT compatible.

See Keyboard and Mouse Interface, KMI on page 4-96 for details of PB-A8 usage and the ARM PrimeCell PS2 Keyboard/Mouse Interface (PL050) Technical Reference Manual (ARM DDI 0143) for full programming details.

The physical interface provided by the PB-A8 is shown in *Keyboard and mouse interface* on page A-9.

Watchdog Module

The ARM Watchdog Module SP805 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The Watchdog module consists of a 32-bit down counter with a programmable time-out interval that has the capability to generate an interrupt and a reset signal on timing out. It is intended to be used to apply a reset to a system in the event of a software failure.

See *Watchdog* on page 4-112 for details of PB-A8 usage and the *ARM Watchdog Module (SP805) Technical Reference Manual* (ARM DDI 0270) for full programming details.

Dual-Timer Module

The Dual-Timer module consists of two programmable 32/16-bit down counters that can generate interrupts on reaching zero.

See *Timers* on page 4-107 for details of PB-A8 usage and the *ARM Dual-Timer Module* (SP804) Technical Reference Manual (ARM DDI 0271) for full programming details.

General Purpose Input/Output, GPIO

The ARM PrimeCell General Purpose Input/Output (GPIO) PL061 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The PrimeCell GPIO provides eight programmable inputs or outputs, both software and hardware control modes are supported. An interrupt interface is provided to configure any number of pins as level or transitional interrupt sources.

See *General Purpose Input/Output*, *GPIO* on page 4-60 for details of PB-A8 usage and the *ARM PrimeCell General Purpose Input/Output (PL061) Technical Reference Manual* (ARM DDI 0190) for full programming details.

The physical interface provided by the PB-A8 is shown in *GPIO interface* on page A-10.

Generic Interrupt Controller

The Generic Interrupt controller (GIC) is a custom *Advanced Microcontroller Bus Architecture (AMBA)* slave block that connects to the *Advanced Peripheral Bus (APB)*

The custom GIC can accept interrupts from multiple sources and generates **nFIQ** and **nIRQ** responses for the system.

See *Generic Interrupt Controller, GIC* on page 4-61 for PB-A8 usage, and *Interrupts* on page 3-50 for routing details.

Status and System Control Register Block

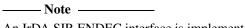
The baseboard status and system control registers enable the PB-A8 to determine its environment and to control the on-board systems.

See Status and system control registers on page 4-11 for a description of each register.

System Controller

The ARM System Controller SP810 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The System Controller provides an interface to control the operation of subsystems within the Southbridge. It supports the following functionality:


- a system mode control state machine
- crystal and PLL control
- definition of system response to interrupts
- reset status capture and soft reset generation
- Watchdog and Timer module clock enable generation
- remap control
- general purpose peripheral control registers
- system/peripheral clock control and status.

See *System Controller (SYSCTRL)* on page 4-50 for details of PB-A8 usage and the *PrimeXsys System Controller (SP810) Technical Reference Manual* (ARM DDI 0254) for full programming details.

UART

The ARM PrimeCell UART PL011 is an Advanced Microcontroller Bus Architecture (AMBA) slave block that connects to the Advanced Peripheral Bus (APB).

The PrimeCell UART performs serial-to-parallel conversion of received data and parallel-to-serial conversion of transmitted data. Separate receive and transmit FIFO buffers, a progammable Baud rate generator, hardware or software flow control, and modem support functions are provided.

An IrDA SIR ENDEC interface is implemented by the PrimeCell but this is not supported by the PB-A8.

See *UART* on page 4-108 for details of PB-A8 usage and the *ARM PrimeCell UART* (*PL011*) *Technical Reference Manual* (ARM DDI 0183) for full programming details. The physical interface provided by the PB-A8 is shown in *UART interface* on page A-11.

Synchronous Serial Port, SSP

The ARM PrimeCell *Synchronous Serial Port (SSP)* PL022 is an *Advanced Microcontroller Bus Architecture (AMBA)* slave block that connects to the *Advanced Peripheral Bus (APB)*.

The PrimeCell SSP is a master or slave interface that enables synchronous serial communication with slave or master peripherals having one of the following:

- a Motorola SPI-compatible interface
- a Texas Instruments synchronous serial interface
- a National Semiconductor Microwire interface.

See *Synchronous Serial Port*, *SSP* on page 4-105 for details of PB-A8 usage and the *ARM PrimeCell Synchronous Serial Port* (*PL022*) *Technical Reference Manual* (ARM DDI 0194) for full programming details.

The physical interface provided by the PB-A8 is shown in *Synchronous Serial Port interface* on page A-12.

Smart Card Interface, SCI

The ARM PrimeCell *Smart Card Interface (SCI)* PL131 is an *Advanced Microcontroller Bus Architecture (AMBA)* slave block that connects to the *Advanced Peripheral Bus (APB)*.

The PrimeCell Smart Card Interface (SCI) interfaces to an external Smart Card reader. The SCI can autonomously control data transfer to and from the smart card. Transmit and receive data FIFOs are provided to reduce the required interaction between the host system and the peripheral.

See *Smart Card Interface*, *SCI* on page 4-104 for details of PB-A8 usage and the *ARM PrimeCell Smart Card Interface* (*PL131*) *Technical Reference Manual* (ARM DDI 0228) for full programming details.

The physical interface provided by the PB-A8 is shown in *Smart Card interface* on page A-13.

Two-wire serial bus interface

The Southbridge implements a custom two-wire serial bus interface that is used to identify the PISMO memory expansion modules present in the PISMO expansion memory socket, and to read and set the time-of-year (TOY) clock on the baseboard. A second interface is used to identify and control display equipment connected to the DVI connector on the rear panel of the ATX enclosure.

Each device on the serial bus has its own slave address. The unique write and read addresses for the PISMO memory and the TOY slave on the serial bus are listed in Table 3-2. The address for the DVI display slave is device dependant and must be obtained from the display manufacturer.

Table 3-2 Serial interface device addresses

Device	Write address	Read address	Description
PISMO (static memory module)	0xA2	0xA3	Identifies the type of memory on the board and how it is configured.
TOY (DS1338 RTC)	0xD0	0xD1	Reads time data and writes control data to the RTC.
DVI (external display)	display dependant	display dependant	Reads the capabilities of the external display connected to the DVI connector on the rear panel of the ATX enclosure. Can control display settings of <i>E-DDC</i> displays.

See *Two-wire serial bus interface*, *SBCon* on page 4-101 for details of PB-A8 usage and for information on programming the interface.

Real Time Clock, RTC

The ARM PrimeCell *Real Time Clock (RTC)* PL031 is an *Advanced Microcontroller Bus Architecture (AMBA)* slave block that connects to the *Advanced Peripheral Bus (APB)*.

The PrimeCell Real Time Clock (RTC) can be used to provide a basic alarm function or long time base counter. An interrupt signal is generated after counting for a programmed number of cycles of real time clock input. Counting in one second intervals is achieved by use of a 1Hz clock input to the PrimeCell RTC.

See *Real Time Clock*, *RTC* on page 4-100 for details of PB-A8 usage and the *ARM PrimeCell Real Time Clock* (*PL031*) *Technical Reference Manual* (ARM DDI 0224) for full programming details.

3.7 Ethernet interface

The Ethernet interface is implemented using a SMCS LAN9118 10/100 Ethernet controller. The LAN9118 incorporates a *Media ACcess* (MAC) Layer, a *PHYsical* (PHY) layer, *Host Bus Interface* (HBI), receive and transmit FIFOs, power management controls, and a serial configuration EEPROM interface.

The HBI models an asynchronous SRAM and interfaces directly to the Northbridge static memory bus.

When manufactured, an ARM value for the Ethernet MAC address is loaded into a configuration EEPROM connected to the Ethernet controller.

See *Ethernet* on page 4-59 for details of PB-A8 usage and the *SMC LAN9118 Data Sheet* for full programming details.

3.8 USB Interface

The Nothbridge provides a SMC bus interface to an external Philips ISP1761 USB 2.0 controller. Three USB interfaces are provided on the baseboard,

USB port 1 provides a Full Speed OTG device interface and connects to the mini USB A-Type connector on the front panel of the enclosure.

See *Front panel layout* on page 3-5 for the location of the connector.

USB ports 2 and USB port 3 are Full Speed implementations that can function in either master or slave mode and connect to the dual A-Type connector on the rear panel of the enclosure.

See *Rear panel layout* on page 3-6 for the location of the connectors (USB port 2 is the top connector).

The physical interface provided by the PB-A8 is shown in *USB connectors* on page A-16.

3.9 DVI Interface

The PL111 CLCD controller in the Northbridge is interfaced to the *Digital Visual Interface* (DVI) port on the PB-A8 using on-board components to provide support for both analog and digital displays. See *CLCD controller* on page 3-19 for details.

The digital portion of the interface is VESA compliant, operates in One Pixel/Clock Input/Output mode, and supports displays up to UXGA resolution.

The analog portion of the interface converts the 8-bit RGB data from the PL111 CLCD controller to analog VGA signals.

The DDC2B portion of the interface is provided by a custom *Two-wire Serial Interface* (SBCon) implemented the Southbridge. See *Two-wire serial bus interface* on page 3-31 for details.

The physical interface provided by the PB-A8 is shown in *DVI display interface* on page A-17.

Note
The on-board DVI interface can be controlled either by the PL111 Color LCD
Controller implemented in the Northbridge, or by logic implemented in the FPGA on
an attached Logic Tile. See Tile interconnections on page 3-12 and RealView Logic Tile
header connectors on page A-19 for details.

3.10 PCI interface

The PCI interface comprises of:

- AXI to PCI bridge implemented in the Northbridge
- PCI-X to PCI asynchronous bridge (PCI 6520)
- PCI-X to PCI Express asynchronous bridge (PEX 8114)
- PCI Express switch (PEX 8518).

Figure 3-10 shows the PB-A8 PCI and PCI Express implementation.

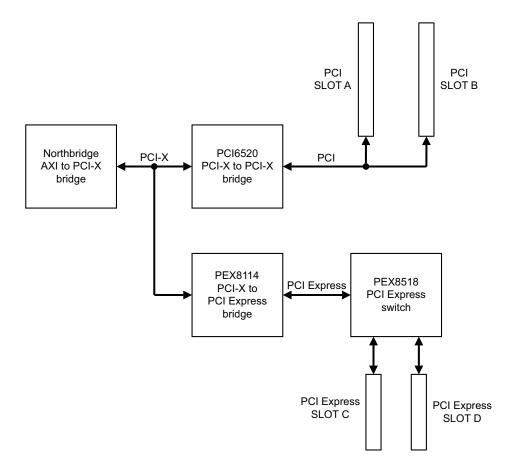


Figure 3-10 PCI-PCI Express interface

The AXI to PCI bridge provides interface functions conforming to the PCI or PCI-X Specification. The PB-A8 configures this interface for PCI-X operation.

The PCI-X to PCI-X asynchronous bridge (PCI6520) interfaces the AXI to PCI bridge to the PB-A8 PCI slots.

The PCI-X to PCI Express asynchronous bridge (PEX8114) and PCI Express switch (PEX8518) interface the AXI to PCI bridge to the PB-A8 PCI Express slots.

See AXI to PCI bridge on page 4-98 for details of PB-A8 usage and the PCI-to-PCI Bridge Architecture Specification Revision 1.2 and the PCI Express Base Specification Revision 1.1 for further details.

For details on the bridge and switch components used on the PB-A8 see the PLX Technology Inc website: www.plxtech.com.

3.11 Power supply control

The Southbridge implements external interfaces to converters to enable you to:

- change the voltage supplied to the Cortex-A8 test chip by writing values to the SYS_VOLTAGE_CTLx status and system control registers.
- read Cortex-A8 test chip voltages and currents from the SYS_VOLTAGE_CTLx status and system control registers.

3.11.1 Setting the Cortex-A8 test chip voltages

The three DACs are updated with voltage control values written to bits [7:0] in the SYS_VOLTAGE_CTLx registers in the Southbridge.

There is a voltage adjustment range of approximately $\pm 10\%$ for the **VDDCORE**, **AVDD**, and **VDDTC** supply voltages. The default value loaded into the **SYS_VOLTAGE_CTLx** registers at power-on is 0x80. A value of 0xFF gives maximum negative offset from the default, and a value of 0x0 gives maximum positive offset from the default.

See SYS_VOLTAGE_CTLx registers on page 4-43 for details of the registers that set the **VDDCORE**, **AVDD**, and **VDDTC** voltages.

Note			
The remaining PB-A8 supply	y voltages are se	t during manufac	ture

3.11.2 Reading the Cortex-A8 test chip voltages

The SYS_VOLTAGE_CTLx registers in the Southbridge are updated with test chip voltage values provided by the on-board ADC.

The relationship between the voltage and the LSB of the register field is given by the following formula:

 $V = SYS_VOLTAGE_CTL[19:8] * 2.5/4096 volts (2.5V full scale)$

See *Voltage control registers*, *SYS_VOLTAGE_CTLx* on page 4-43 for details of the registers that monitor the **VDDCORE**, **AVDD**, **VDDTC**, **1V8**, and **1V2** voltages.

3.11.3 Reading the Cortex-A8 test chip currents

The SYS_VOLTAGE_CTLx registers in the Southbridge are continually updated with voltage values provided by the ADC that are proportional to the test chip currents.

The relationship between the test chip currents and the LSB of the register field is given by the following formulae:

VDDCORE I_{VDD} = SYS_VOLTAGE_CTL0[19:8] * 2.5/1024 ampere: 2.5A full scale

AVDD $I_{AVDD} = SYS_VOLTAGE_CTL1[19:8] * 0.25/1024 ampere: 250mA full scale$

VDDTC I_{VDDTC} = SYS_VOLTAGE_CTL6[19:8] * 0.5/1024 ampere: 500mA full scale

See *Voltage control registers, SYS_VOLTAGE_CTLx* on page 4-43 for details of the registers that monitor the **VDDCORE**, **AVDD** and **VDDTC** current sensing values.

3.12 Clock architecture

The OSCx clock routing for the PB-A8 is sho	own in Figure 3-11 on page 3-40.
Note	
The frequencies shown are the default values.	

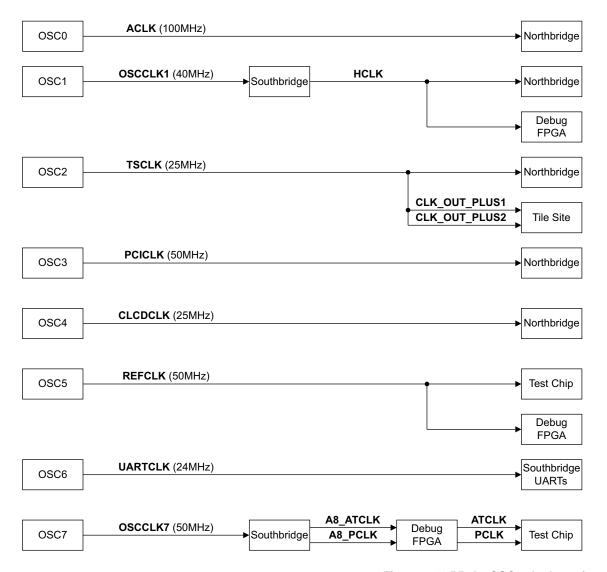


Figure 3-11 PB-A8 OSCx clock routing

3.12.1 PB-A8 clocks

This section describes the clocks used by the PB-A8.

ICS307 programmable clock generators

Eight programmable (6–200 MHz) clocks, **OSCCLK[7:0]** are supplied to the Southbridge by the programmable MicroClock ICS307 clock generators (OSC0–OSC7):

OSCCLK0 Default frequency: 100MHz.

- generates **ACLK** for the Northbridge:
 - AXI infrastructure
 - PL340 Dynamic Memory Controller
 - PL081 DMA Controller
 - internal memory
 - peripheral configuration.
- generates SMCCLK for Northbridge (50MHz).

OSCCLK1 Default frequency: 40MHz.

Generates **HCLK** for the AHB interface between the Southbridge, Northbridge, and Debug FPGA.

OSCCLK2 Default frequency: 25MHz.

Generates **TSCLK** for distribution to the tile site. **TSCLK** is also supplied to the Northbridge async bridges to synchronize AXI signals to and from the tile site.

OSCCLK3 Default frequency: 50MHz.

Generates **PCICLK** the reference clock for the PCI unit in the Northbridge, and the external PCI and PCI Express bridges.

——— Note	

The PCI external interface speed is determined by the slowest PCI card connected to a PCI expansion slot.

The PCI Express external interface speed is 100MHz.

OSCCLK4 Default frequency: 25MHz.

Generates **CLCDCLK** the reference clock for the PL111 CLCD controller in the Northbridge, and the external video DAC and DVI transmitter (1024x768 resolution at 60Hz frame rate support).

OSCCLK5 Default frequency: 50MHz.

Generates **REFCLK** for the Cortex-A8 test chip PLL and Debug FPGA. See *PLL* on page 3-43 for details of the Cortex-A8 PLL.

OSCCLK6 Default frequency: 24MHz.

Generates **UARTCLK** the reference clock for the PL011 UART in the Southbridge.

OSCCLK7 Default frequency: 50MHz.

Generates **ATCLK** (ATB bus clock) and **PCLK** (debug logic clock) for the Cortex-A8 test chip and Debug FPGA.

The output frequencies of the ICS307s are controlled by divider values loaded into the serial data input pins on the oscillators.

The serial interface logic is implemented in the Southbridge. The only user interface to the clock control logic is through the SYS_OSCx registers. See *Oscillator Registers*, *SYS_OSCx* on page 4-18 and *Oscillator reset registers*, *SYS_OSCRESETx* on page 4-41 for programming details.

You can calculate the oscillator output frequency from the formula:

$$OSCCLKx = \frac{48 \times (VDW+8)}{(RDW+2) \times DIVIDE} MHz$$

where:

VDW

Is the VCO divider word (4-511) from SYS_OSCx[8:0]

RDW

Is the reference divider word (1 - 127) from SYS_OSCx[15:9]

OD Is the output divider select (2 to 10) selected from SYS_OSCx[18:16]:

- b000 selects divide by 10
- b001 selects divide by 2
- b010 selects divide by 8
- b011 selects divide by 4
- b100 selects divide by 5
- b101 selects divide by 7
- b110 selects divide by 3
- b111 selects divide by 6.

For more information on the ICS clock generator and a frequency calculator, see the IDT web site at www.idt.com.

A crystal on the board provides a fixed frequency 24MHz reference clock for the programmable oscillators OSC0-OSC7 and to generate other fixed frequency clocks in the design.

3.12.2 PLL

The test chip contains an on-board PLL with a VCO and digital circuitry. The test chip clocks are provided by the Output divider. The clock source for the Output divider can be either the output of the PLL or the reference clock to the test chip, **REFCLK**. A glitchless mux is included to ensure clean switching between the Output divider clock sources.

A simplified diagram of the PLL and Output divider is shown in Figure 3-12.

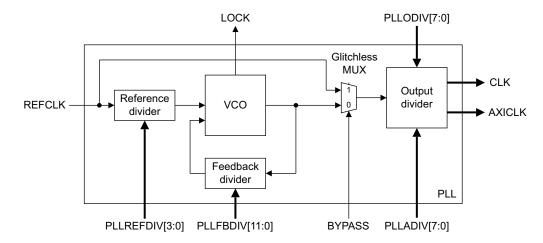


Figure 3-12 Test chip PLL and output divider

The PLL can generate two discrete clocks, **CLK** and **AXICLK**. Each clock is an integer multiple of the input reference clock, **REFCLK**. The output depends on the PLL operating mode. The modes are bypass mode or at-speed mode. Figure 3-13 on page 3-44 shows the clock frequency equations that describe the behavior of **CLK** and **AXICLK** as simple functions of **BYPASS**.

$$CLK = \frac{REFCLK}{(PLLODIV[7:0] + 1)}$$

$$AXICLK = \frac{REFCLK}{(PLLODIV[7:0] + 1) \times (PLLADIV[7:0] + 1)}$$

$$CLK = \frac{REFCLK \times (PLLFBDIV[11:0] + 1)}{(PLLREFDIV[3:0] + 1) \times (PLLODIV[7:0] + 1)}$$

$$BYPASS = 0$$

$$(At-speed mode)$$

$$AXICLK = \frac{REFCLK \times (PLLFBDIV[11:0] + 1)}{(PLLREFDIV[3:0] + 1) \times (PLLODIV[7:0] + 1)}$$

Figure 3-13 PLL clock frequency equations

——Note ———
In the above equations **PLLODIV** = 0 is not supported. Therefore, if **PLLODIV** = 0, assume **PLLODIV** = 1.

The divider values are set by writing to the PLL initialization register SYS_PLL_INIT. Default divider values are loaded during power-on initialization and do not need to be changed for normal operation. If you need to adjust the **CLK** and **AXICLK** frequencies, see *PLL initialization register*, *SYS_PLL_INIT* on page 4-38 for details.

VCO specification

The VCO is a voltage-controlled oscillator integrated into the PLL. Table 3-3 shows the specification for the VCO. Unless stated otherwise, all data in the table refers to worst case conditions.

Table 3-3 VCO specification

VCO characteristic		Data
Reference frequency range		5MHz – 200MHz
VCO output frequency range		200MHz – 2GHz
Reference divider values		1-16, bit range [3:0]
Feedback divider values		1-4096, bit range [11:0]
Output divider values		1-256, bit range [7:0]
Output duty cycle, all corners with tolerance		50% ± 2%
Cycle-to-cycle jitter, peak-to-peak, maximum		2% output cycle
Lock time, maximum allowed at reset		300 reference cycles
Relock time, when divider ratios are changed		< 50 VCO output cycles
Frequency overshoot, maximum	full frequency	40%
	half frequency	50%
Low frequency supply noise, estimated maximum, peak-to-peak		10% AVDD
Low frequency sub-threshold noise, estimated maximum, peak-to-peak		10% AVDD

Northbridge clocks

The clock domains within the Northbridge are shown in Figure 3-14.

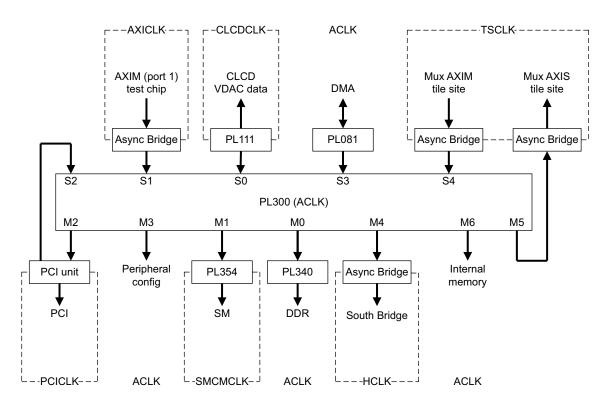


Figure 3-14 Northbridge clock domains

3.12.3 Southbridge clocks

The UART, Smart Card Interface (SCI), and Synchronous Serial Port (SSP) are clocked from a 24MHz reference clock.

The Dual Timer Counter modules and the Watchdog modules are clocked by a 1MHz reference clock.

3.13 Resets

The resets domains for the PB-A8 are shown in Figure 3-15.

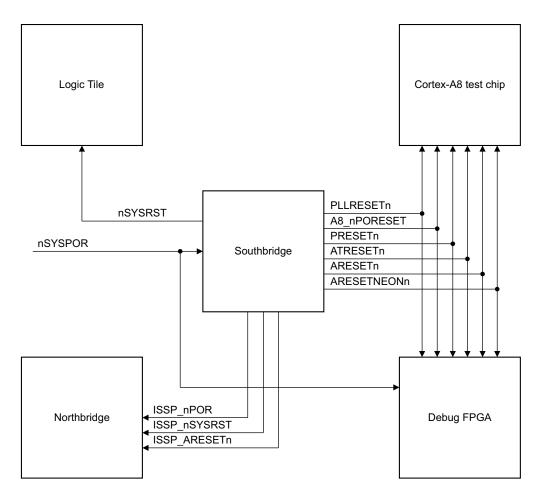


Figure 3-15 Reset domains

The Reset Controller state diagram and reset timings are shown respectively in Figure 3-16 on page 3-48, and Figure 3-17 on page 3-49.

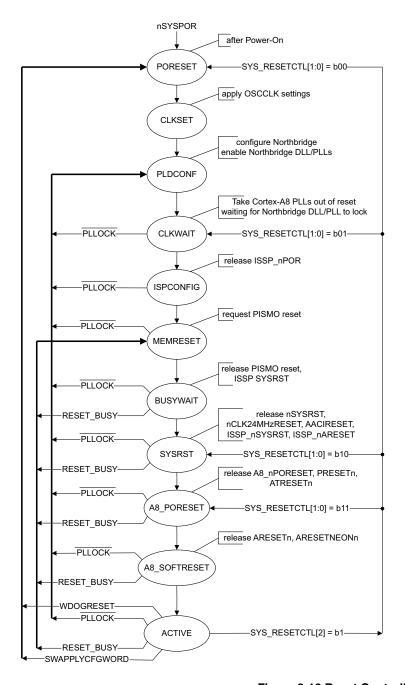


Figure 3-16 Reset Controller state diagram

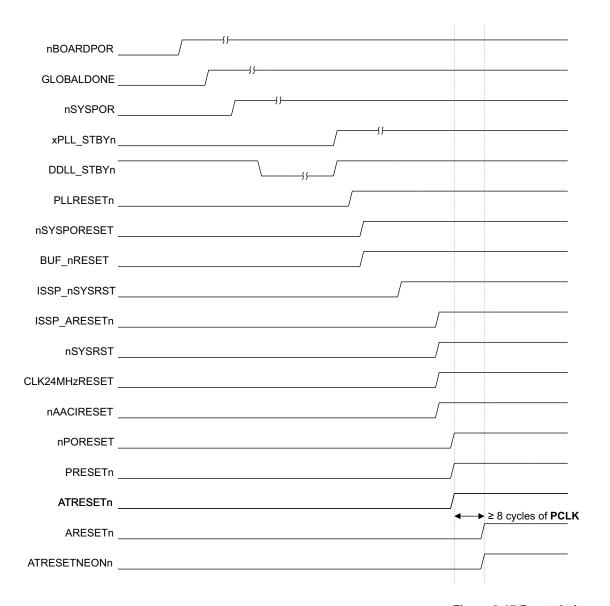


Figure 3-17 Reset timings

3.14 Interrupts

The PB-A8 implements four custom <i>Generic Interrupt Controllers</i> (GICs) in the Southbridge.
Note
The GICs have 16 software interrupts, INT[15:0] and 16 reserved software interrupts INT[31:16]. The external interrupts are allocated from INT[32] upwards. Some of thes external interrupts are reserved. See <i>GIC interrupt allocation</i> on page 4-62 for details

Figure 3-18 on page 3-51 shows the PB-A8 interrupt routing to the GICs.

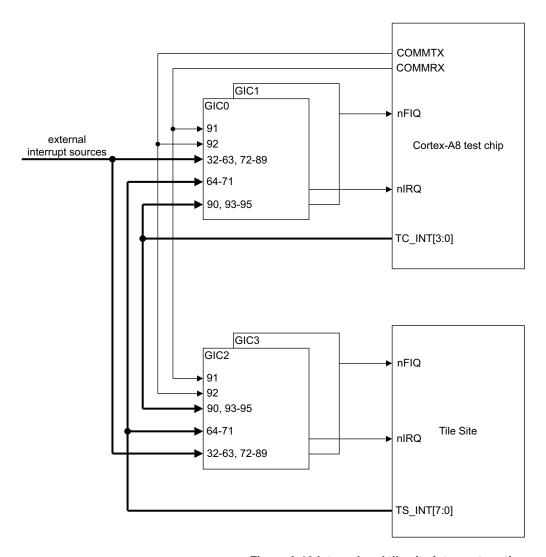


Figure 3-18 Internal and tile site interrupt routing

The GICs accept interrupts from peripherals in the Northbridge, Southbridge, on-board peripherals, and the tile site. The GICs generate **nFIQ** and **nIRQ** signals to the Cortex-A8 test chip and the tile site:

GIC0 generates the Cortex-A8 nIRQ
GIC1 generates the Cortex-A8 nFIQ
GIC2 generates the tile site nIRQ
GIC3 generates the tile site nFIQ.

The **COMMRX** and **COMMTX** debug signals from the Cortex-A8 are available as interrupt sources. **COMMRX** and **COMMTX** are used for the Debug Communication Channel (DCC) on ARM processors. The DCC enables you to communicate with your application over the JTAG interface without stopping the processor. DCC can be polled or interrupt driven, but using interrupts is faster.

See *Generic Interrupt Controller, GIC* on page 4-61 for details of the GIC programmer's interface, the full PB-A8 interrupt allocation, and guidelines on interrupt handling.

3.14.1 Generic Interrupt Controller

The PB-A8 interrupt controller consists of four custom *Generic Interrupt Controllers* (GICs).

The GIC allows you to:

- enable or disable an individual interrupt
- disable all interrupts below a given priority
- configure interrupt priority
- configure pre-emption.

The GIC holds three states for each interrupt source:

Inactive not asserted

Pending has been asserted, but is not yet complete **Active** processing has started but is not yet complete.

T 1		
Hach	(+1(-)	contains:

- a distributor
- a CPU interface.

In the PB-A8 there is a single Cortex-A8 processor so only one distributor and one CPU interface is implemented per GIC. In a multiprocessor system, such as the PB11MPCore, a distributor and multiple CPU interfaces are implemented, one CPU interface for each processor.

Distributor

The Distributor centralizes all interrupt sources and provides the highest priority interrupt to the corresponding CPU interface. Interrupts with a lower priority are forwarded to the appropriate CPU interfaces once they have attained the highest priority.

CPU interface

The CPU interface contains a progammable interrupt priority mask and a binary point mask. It only accepts pending interrupts that have a priority higher than the level set in the priority mask, the binary point mask, and a priority higher than those that the CPU is currently servicing.

—— Note	
11000	

The binary point mask is a novel feature of the GIC that allows you to reduce the amount of pre-emption in the system and effectively acts as a *pre-emption mask*.

Calculating the next interrupt

The algorithm use by the GIC to calculate which interrupt to service next is described by the pseudo code:

```
if highest pending priority > priority mask
   if no interrupt currently being processed
      issue highest priority pending interrupt
   else if binary point mask calculation > running priority
      pre-empt with highest priority pending interrupt
   end if
end if
```

A diagram of the algorithm is given in Figure 3-19 on page 3-55

The finite state machine shown in Figure 3-19 on page 3-55 is repeated for each interrupt source, and for each processor in the system.

See *Interrupt signals* on page 4-62 for the GIC interrupt allocations, and *Generic interrupt controller registers* on page 4-67 for GIC programming details.

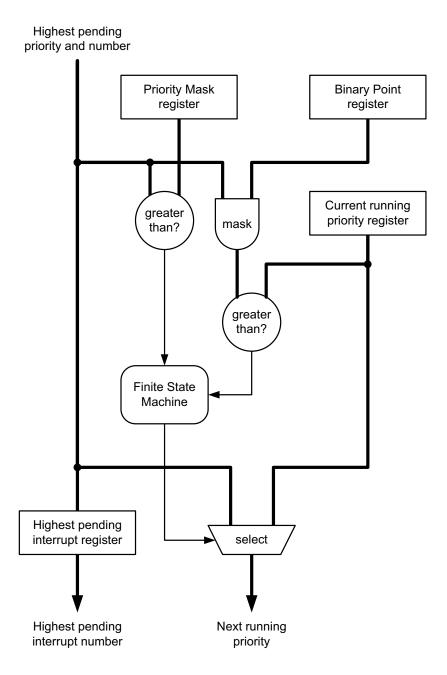


Figure 3-19 Interrupt priority calculation

3.15 Test, configuration, debug and trace interfaces

The following test and configuration interfaces are located on the PB-A8:

- configuration switches, see *Baseboard configuration switches* on page 2-7
- JTAG, see JTAG on page A-41
- Logic analyzer, see *Integrated Logic Analyzer (ILA)* on page A-42
- Boot Monitor, see *Using the baseboard Boot Monitor and platform library* on page E-4.

3.15.1 Debug and Config port support

The PB-A8 supports debugging and configuration using embedded and external hardware. The debugging interface is controlled by JTAG, the configuration interface is controlled by either JTAG or USB.

JTAG hardware

The RealView Debugger, for example, uses an external RealView ICE interface box to connect to the JTAG connector on the rear panel. See *JTAG* on page A-41 for pinout details.

Note

The JTAG connector also supports *Single Wire JTAG* via the SWJ-DP port of the CoreSight DAP in the Debug FPGA. See *JTAG* on page A-41 for the SWJ pinout and *Debug FPGA* on page 3-8 for interconnect

details.

USB config port

The USB config port is implemented by a PLD on the PB-A8. An application, Progcards USB can control the JTAG config signals from the USB port of the PC when the PC is connected to the USB config port on the front panel by a standard USB cable. See *USB config port* on page A-42 for pinout details.

_____Note _____

ARM RealView ICE grounds pin 20 of the JTAG connector. On the PB-A8, pin 20 is connected to a pull-up resistor and the **nICEDETECT** signal. The USB config port is automatically disabled if a JTAG emulator is connected and **nICEDETECT** is LOW. If you are using third-party debugging hardware, ensure that a ground is present on pin 20 of the JTAG connector.

3.15.2 USB config interface

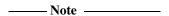
An ARM custom PLD design provides access to the internal JTAG signals via a dedicated USB config port. A USB B-Type interface connector is provided on the front panel of the enclosure for USB config access by the host PC.

See *Front panel layout* on page 3-5 for the location of the connector, and Appendix G *Loading FPGA Images* for details on using the programs configuration utilities.

3.15.3 Integrated logic analyzer (ILA)

See *Integrated Logic Analyzer (ILA)* on page A-42 for pinout details. For more details on the integrated logic analyzer, see the ChipScope details on the Xilinx website (www.xilinx.com).

Hardware Description


Chapter 4 **Programmer's Reference**

This chapter describes the memory map and the configuration registers for the peripherals in the baseboard FPGA (Southbridge). It contains the following sections:

- *Memory map* on page 4-3
- *Configuration and initialization* on page 4-9
- Status and system control registers on page 4-11
- System Controller (SYSCTRL) on page 4-50
- Advanced Audio CODEC Interface, AACI on page 4-53
- *Color LCD Controller, CLCDC* on page 4-55
- Single Master Direct Memory Access Controller, SMDMAC on page 4-57
- *Dynamic Memory Controller, DMC* on page 4-58
- Ethernet on page 4-59
- General Purpose Input/Output, GPIO on page 4-60
- Generic Interrupt Controller, GIC on page 4-61
- Keyboard and Mouse Interface, KMI on page 4-96
- MultiMedia Card Interface, MCI on page 4-97
- AXI to PCI bridge implementation on page 4-98
- Real Time Clock, RTC on page 4-100
- Two-wire serial bus interface, SBCon on page 4-101

- Smart Card Interface, SCI on page 4-104
- Synchronous Serial Port, SSP on page 4-105
- Static Memory Controller, SMC on page 4-106
- Timers on page 4-107
- *UART* on page 4-108
- *USB interface* on page 4-110
- Watchdog on page 4-112
- *CompactFlash interface* on page 4-113.

For detailed information on the programming interface for the ARM PrimeCells or other ARM IP, see the appropriate technical reference manual. For the DMA channels, interrupt signals, release versions, and any modifications made to the standard part, see the section of this chapter that describes the peripheral or controller.

The peripherals and controllers implemented in the Southbridge are in the standard images distributed by ARM on the Versatile Family CD.

ARM only support the peripherals and controllers provided in the standard image for the Southbridge. Custom IP development should be done using an attached Logic Tile. ARM will provide support for Logic Tiles but cannot provide support for custom peripherals implemented in Logic Tiles.

4.1 Memory map

The system memory map is divided with sections assigned to the Northbridge, Southbridge, and the Logic Tile site as shown in Table 4-1.

Table 4-1 System memory map

Owner	Address range	Bus type	Memory region size
Northbridge	0×00000000- 0×0FFFFFF	DMC	256MB (DDR mirror)
Southbridge	0×10000000- 0×1001FFFF	APB	128KB
Northbridge	0×10020000- 0×100DFFFF	AHB	768KB
Northbridge	0×100E0000- 0×100FFFFF	APB	128KB
Northbridge	0×10100000- 0×17FFFFFF	Reserved	127MB
Southbridge	0×18000000- 0×1FFFFFFF	AHB	128MB
Northbridge	0×20000000- 0×3FFFFFF	Reserved	512MB
Northbridge	0x40000000- 0x5FFFFFF	SMC	512MB
Northbridge	0x60000000- 0x6FFFFFF	PCI	256MB
Northbridge	0×70000000- 0×8FFFFFF	DMC	512MB
Northbridge	0x90000000- 0xBFFFFFF	PCI	768MB
Logic Tile site	0xC0000000- 0xFFFFFFF	External	1GB

_____Note _____

The 16MB memory region 0x00000000-0x00FFFFFF can be remapped to:

- NOR flash (SMC CS0)
- PISMO expansion memory (SMC CS4).

The other memory regions have fixed decoding and are handled either internally or externally.

The locations for memory, peripherals, and controllers for the Northbridge and the Southbridge are listed in Table 4-2.

Table 4-2 Memory map for standard peripherals

Peripheral	Address range	Bus type	Region size
Dynamic memory mirror (0x70000000-0x7FFFFFFF) During boot remapping however, the bottom 16MB of this	0x00000000-0x0FFFFFF	AXI	256MB
memory region (0x00000000-0x00FFFFF) can be: NOR flash: 0x40000000-0x40FFFFFF			
• static expansion memory (PISMO): 0x50000000-0x50FFFFFF			
System registers	0x10000000-0x10000FFF	APB	4KB
System controller 0	0x10001000-0x10001FFF	APB	4KB
3-Wire Serial Bus Control	0x10002000-0x10002FFF	APB	4KB
Reserved	0x10003000-0x10003FFF	APB	4KB
Advanced Audio CODEC	0x10004000-0x10004FFF	APB	4KB
MultiMedia Card Interface	0x10005000-0x10005FFF	APB	4KB
Keyboard/Mouse Interface 0	0x10006000-0x10006FFF	APB	4KB
Keyboard/Mouse Interface 1	0x10007000-0x10007FFF	APB	4KB
Reserved for future use	0x10008000-0x10008FFF	APB	4KB
UART 0 Interface	0x10009000-0x10009FFF	APB	4KB
UART 1 Interface	0x1000A000-0x1000AFFF	APB	4KB
UART 2 Interface	0x1000B000-0x1000BFFF	APB	4KB

Table 4-2 Memory map for standard peripherals (continued)

Peripheral	Address range	Bus type	Region size
UART 3 Interface	0x1000C000-0x1000CFFF	APB	4KB
Synchronous Serial Port Interface	0x1000D000-0x1000DFFF	APB	4KB
Smart Card Interface	0x1000E000-0x1000EFFF	APB	4KB
Watchdog 0 Interface	0x1000F000-0x1000FFFF	APB	4KB
Watchdog 1 Interface	0x10010000-0x10010FFF	APB	4KB
Timer modules 0 and 1 Interface (Timer 1 registers start at 0x10011020)	0x10011000-0x10011FFF	APB	4KB
Timer modules 2 and 3 Interface (Timer 3 registers start at 0x10012020)	0x10012000-0x10012FFF	APB	4KB
GPIO Interface 0	0x10013000-0x10013FFF	APB	4KB
GPIO Interface 1	0x10014000-0x10014FFF	APB	4KB
GPIO Interface 2 (miscellaneous onboard I/O)	0x10015000-0x10015FFF	APB	4KB
Serial Bus Control (DVI)	0x10016000-0x10016FFF	APB	4KB
Real Time Clock Interface	0x10017000-0x10017FFF	APB	4KB
Timer Modules 4 and 5 Interface (Timer 5 registers start at 0x10018020)	0x10018000-0x10018FFF	APB	4KB
Timer Modules 6 and 7 Interface (Timer 7 registers start at 0x10019020)	0x10019000-0x10019FFF	APB	4KB
System Controller 1	0x1001A000-0x1001AFFF	APB	4KB
Reserved for future use (4K x 5)	0x1001B000-0x1001FFFF	APB	20KB
Color LCD Controller configuration	0x10020000-0x1002FFFF	AHB	64KB
DMA Controller configuration	0x10030000-0x1003FFFF	AHB	64KB
Reserved (64K x 2)	0x10040000-0x1005FFFF	AHB	128KB
Internal Northbridge SRAM	0x10060000-0x1007FFFF	AXI	128KB
Reserved (64K x 6)	0x10080000-0x100DFFFF	AHB	384KB
Dynamic Memory Controller configuration	0x100E0000-0x100E0FFF	APB	4KB

Table 4-2 Memory map for standard peripherals (continued)

Peripheral	Address range	Bus type	Region size
Static Memory Controller configuration	0x100E1000-0x100E1FFF	APB	4KB
Reserved	0x100E2000-0x100E2FFF	APB	4KB
APB Registers (PLL configuration)	0x100E3000-0x100E3FFF	APB	4KB
Reserved for future use	0x100E4000-0x100EFFFF	APB	48KB
Reserved for future use	0x100F0000-0x100FFFFF	APB	64KB
Reserved	0x10100000-0x103FFFFF	-	3MB
Reserved for future use	0x10400000-0x16FFFFF	AHB or AXI	108MB
Reserved for future use	0x17000000-0x17FFFFF	AXI	16MB
Compact Flash	0x18000000-0x18000FFF	AHB	4KB
Reserved for future use	0x18001000-0x1BFFFFFF	AHB	63.096MB
DAP ROM table	0x1C000000-0x1DFFFFFF	AHB	32MB
Generic Interrupt Controller 1 (GIC1) (nIRQ interrupt handling for Cortex-A8)	0x1E000000-0x1E00FFFF	APB	64KB
Generic Interrupt Controller 2 (GIC2) (nFIQ interrupt handling for Cortex-A8)	0x1E010000-0x1E01FFFF	APB	64KB
Generic Interrupt Controller 3 (GIC3) (nIRQ interrupt handling for Tile Site)	0x1E020000-0x1E02FFFF	APB	64KB
Generic Interrupt Controller 4 (GIC4) (nFIQ interrupt handling for Tile Site)	0x1E030000-0x1E03FFFF	APB	64KB
Reserved for future use	0x1E040000-0x1EFFFFFF	AHB	15.75MB
Reserved for future use	0x1F000000-0x1FFFFFF	AHB	16MB
Reserved	0x20000000-0x3FFFFFFF	AHB or AXI	512MB

Table 4-2 Memory map for standard peripherals (continued)

Peripheral	Address range	Bus type	Region size
SMC Chip Selects:	0x40000000-0x5FFFFFFF	SMC	512MB
PCI interface	0x60000000-0x6FFFFFF	PCI	256MB
Dynamic memory (CS0)	0x70000000-0x7FFFFFF	DDR	256MB
Dynamic memory (CS1)	0x80000000-0x8FFFFFF	DDR	256MB
PCI interface	0x90000000-0xBFFFFFF	PCI	768MB
Logic Tile site expansion. (If a Logic tile is not fitted, the baseboard aborts accesses to this memory region)	0xC0000000-0xFFFFFFF	External	1GB

Figure 4-1 on page 4-8 shows an overview of the memory map.

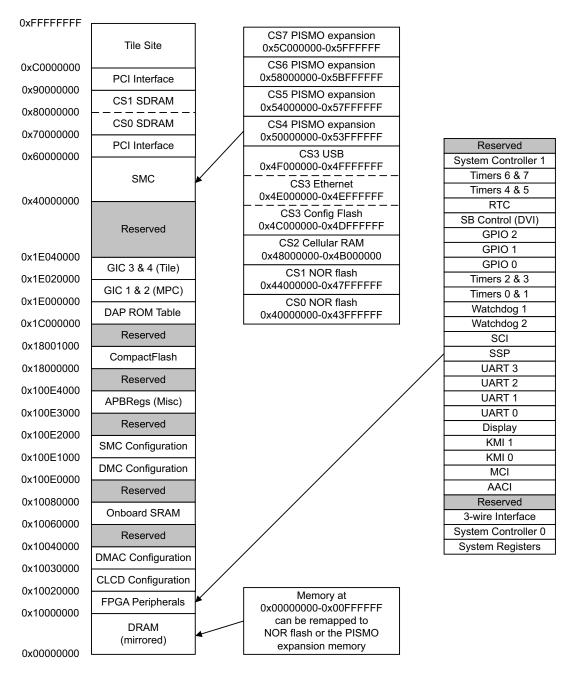


Figure 4-1 System memory map

4.2 Configuration and initialization

This section describes how the baseboard and external memory and peripherals are configured and initialized at power on. See *Status and system control registers* on page 4-11 for details on configuring the PB-A8 once the system is out of reset.

4.2.1 Remapping of boot memory

On reset, the Cortex-A8 begins executing code at address 0x0000000. During normal operation this address is mirrored volatile DRAM but at reset, remapping enables mirrored non-volatile static memory to be accessed. The non-volatile memory to be remapped is determined by configuration switch S7-1 as listed in Table 4-3.

Table 4-3 Boot memory

S7-1	Chip select	Memory Range	Comment
OFF	SMC CS0	0x40000000— 0x40FFFFF	Lower 16MB bank of NOR flash is remapped to 0x00000000-0x00FFFFFF.
ON	SMC CS4	0x50000000— 0x50FFFFFF	Lower 16MB bank of PISMO expansion memory is remapped to 0x00000000-0x00FFFFFF.

_____ Note _____

While NOR flash or PISMO expansion memory is remapped, any access to an address in the range 0x01000000 to 0x03FFFFFF will be read back as zero.

4.2.2 Memory characteristics

Table 4-4 lists the DMC and SMC chip selects, and memory range. Addresses not listed are decoded by the Northbridge or the Southbridge for local peripheral selection or are passed to the Logic Tile site.

Table 4-4 Memory chip selects and address range

Chip Select	Address range	Device
DMC CS0	0x70000000-0x7FFFFFFF (0x00000000-0x0FFFFFFF)	DRAM (mirrored)
DMC CS1	0x80000000-0x8FFFFFF	DRAM
SMC CS0	0x40000000-0x43FFFFFF (0x00000000-0x00FFFFFF)	NOR flash (when remapped: 0x01000000-0x03FFFFFF will be read back as zero)
SMC CS1	0x44000000-0x47FFFFF	NOR flash
SMC CS2	0x48000000-0x4BFFFFFF	Cellular RAM
SMC CS3	0x4C000000-0x4DFFFFFF	Configuration flash
Additional address decoding is handled	0x4E000000-0x4EFFFFF	Ethernet
by the CS PLD.	0x4F000000-0x4FFFFFF	USB
SMC CS4	0x50000000-0x53FFFFFF (0x00000000-0x00FFFFFF)	PISMO expansion memory (nCS0) (when remapped: 0x01000000-0x03FFFFFF will be read back as zero)
SMC CS5	0x54000000-0x57FFFFF	PISMO expansion memory (nCS1)
SMC CS6	0x58000000-0x5BFFFFFF	PISMO expansion memory (nCS2)
SMC CS7	0x5C000000-0x5FFFFFF	PISMO expansion memory (nCS3)

4.3 Status and system control registers

The baseboard status and system control registers enable the PB-A8 to determine its environment and to control the on-board systems. The register set is listed in Table 4-5.

_____Note _____

All registers are 32 bits wide and do not support byte writes. Write operations must be word-wide and bits marked as *reserved* must be preserved using read-modify-write.

The status and system control registers base address is 0x10000000.

Table 4-5 Register map for status and system control registers

Register	Offset Value	Accessa	Reset Value	Description
SYS_ID	0x0000	Read-only	0x01780500	System Identifier. See ID Register, SYS_ID on page 4-16.
SYS_USERSW	0x0004	Read-only	0×0000000XX	Bits [7:0] map to front panel User Switches 1 to 8 and baseboard switches S4-1 to S4-8. See <i>User Switch Register</i> ; <i>SYS_USERSW</i> on page 4-17.
SYS_LED	0x0008	Read/Write	0x000000000	Bits [7:0] map to User LEDs 1 to 8. See <i>LED Register</i> , <i>SYS_LED</i> on page 4-17.
SYS_OSC[0:4]	0x000C- 0x001C	Read/Write Lockable	0: 0x00012C5C 1: 0x00002CC0 2: 0x00002C75 3: 0x00020211 4: 0x00002C75	Settings for the ICS307 programmable oscillators: OSC0 - OSC4. See <i>Oscillator Registers</i> , <i>SYS_OSCx</i> on page 4-18.
SYS_LOCK	0x0020	Read/Write	0x00010000	Write 0xA05F to unlock lockable registers. See <i>Lock Register, SYS_LOCK</i> on page 4-20.
SYS_100HZ	0x0024	Read-only	0x00000000	100Hz counter. See 100Hz Counter, SYS_100HZ on page 4-21.
Reserved	0x0028- 0x002C	_	_	-
SYS_FLAGS	0x0030	Read	0x00000000	General-purpose flags (reset by any reset). See <i>Flag Registers</i> , <i>SYS_FLAGSx and</i> <i>SYS_NVFLAGSx</i> on page 4-21.
SYS_FLAGSSET	0x0030	Write	0×00000000	Set bits in general-purpose flags.

Table 4-5 Register map for status and system control registers (continued)

Register	Offset Value	Accessa	Reset Value	Description
SYS_FLAGSCLR	0x0034	Write-only	_	Clear bits in general-purpose flags.
SYS_NVFLAGS	0x0038	Read	0×XXXXXXXX	General-purpose nonvolatile flags (reset only on power up).
SYS_NVFLAGSSET	0x0038	Write	0×00000000	Set bits in general-purpose nonvolatile flags.
SYS_NVFLAGSCLR	0x003C	Write-only	_	Clear bits in general-purpose nonvolatile flags.
SYS_RESETCTL	0x0040	Read/Write Lockable	0×00000000	Controls the software reset level to be applied to system components. See <i>Reset Control Register, SYS_RESETCTL</i> on page 4-22.
Reserved	0x0044	_	_	-
SYS_MCI	0x0048	Read-only	0x0000000X	MCI status and control register. See MCI Register, SYS_MCI on page 4-24.
SYS_FLASH	0x004C	Read/Write	0x00000000	Controls write protection of flash devices. See <i>Flash Control Register</i> , <i>SYS_FLASH</i> on page 4-25.
SYS_CLCD	0x0050	Read/Write	0x00001F00	Controls LCD power and multiplexing. See <i>CLCD Control Register</i> , <i>SYS_CLCD</i> on page 4-26.
Reserved	0x0054	Read/Write	_	Not used by the PB-A8.
SYS_CFGSW	0x0058	Read-only	0x000000XX	Read register returns the current switch settings of switch S7. See <i>Configuration select switch</i> , <i>SYS_CFGSW</i> on page 4-28.
SYS_24MHZ	0x005C	Read-only	0x00000000	32-bit counter clocked at 24MHz. See 24MHz Counter, SYS_24MHZ on page 4-28.
SYS_MISC	0x0060	Read-only	0x000XX000	Miscellaneous control flags. See <i>Miscellaneous flags</i> , <i>SYS_MISC</i> on page 4-29.

Table 4-5 Register map for status and system control registers (continued)

SYS_PEX_STAT 0x0068 Read-only 0x0000XXXX PCI Express status register. See PCI Express status register. See PCI status					
external peripherals to DM See DMA peripheral map SYS_DMAPSR on page 4-: SYS_PEX_STAT 0x0068 Read-only 0x0000XXXX PCI Express status register. See PCI Express status register. See PCI Express status register. See PCI	Register	0	Accessa		Description
See PCI Express status reg SYS_PEX_STAT on page 4 SYS_PCI_STAT 0x006C Read/Write Lockable 0x00000337 PCI status register. See PCI status register. See PCI status register, SY page 4-33. Reserved 0x0070 SYS_PLD_CTRL1 0x0074 Read/Write Lockable 0x000011F8 This register sets the Configuratest chip. See PLD control register I sys_PLD_CTRL1 on page 1 SYS_PLD_CTRL2 0x0078 Read/Write Lockable 0xxxxxxxxxx This register reads the Configuratest fields that provide from the Cortex-A8 test of See PLD control register Sys_PLD_CTRL2 on page 1 SYS_PLD_CTRL2 on page 1 SYS_PLD_CTRL2 on page 2 SYS_PLD_CTRL2 on page 3 SYS_PLD_CTRL2 on page 4 SYS_PLD_CTRL3	SYS_DMAPSR	0x0064	Read/Write	0x00000000	Selection control for remapping DMA from external peripherals to DMA. See <i>DMA peripheral map register</i> , SYS_DMAPSR on page 4-30.
Reserved Ox0070 SYS_PLD_CTRL1 Ox0074 Read/Write Lockable SYS_PLD_CTRL1 Ox0078 Read/Write Lockable Ox00070 Read/Write Lockable SYS_PLD_CTRL2 Ox0078 Read/Write Lockable Ox00070 Read/Write Lockable SYS_PLD_CTRL2 Ox0070 Read/Write Lockable Ox00070 Read/Write Lockable SYS_PLD_CTRL2 Ox0070 PLL initialization register, SYS_page 4-38. Reserved Ox0080 SYS_PROCIDO Ox0084 Read-only Ox0E024000 Read returns a description present on the platform ba See Processor ID register on page 4-39.	SYS_PEX_STAT	0x0068	Read-only	0x0000XXXX	PCI Express status register. See PCI Express status register, SYS_PEX_STAT on page 4-32.
SYS_PLD_CTRL1 0x0074 Read/Write Lockable SYS_PLD_CTRL1 0x0078 Read/Write Lockable SYS_PLD_CTRL2 0x0078 Read/Write Lockable OxXXXXXXXX This register sets the Confrequency fields that configure test chip. See PLD control register If SYS_PLD_CTRL1 on page OxXXXXXXXX This register reads the Confrequency fields that provide from the Cortex-A8 test chose PLD control register 2 SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 on page Lockable Ox00070 Read/Write Lockable Ox000011F8 This register sets the Confrequency fields that configure test chip. See PLD control register 2 SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 on page Full initialization values Sinitialization register, SYS_page 4-38. Reserved Ox00080 Ox00080 Read returns a description present on the platform base Processor ID register on page 4-39.	SYS_PCI_STAT	0x006C		0x00000337	See PCI status register, SYS_PCI_STAT on
Lockable register fields that configuratest chip. See PLD control register In SYS_PLD_CTRL1 on page SYS_PLD_CTRL2 0x0078 Read/Write Lockable Lockable register fields that provide from the Cortex-A8 test of See PLD control register 2 SYS_PLD_CTRL2 on page SYS_PLD_CTRL2 0x007C Read/Write 0x080101D0 This register defines the Cortex-A8 test of See PLD control register 2 SYS_PLD_CTRL2 on page SYS_PLL_INIT 0x007C Read/Write 0x080101D0 This register defines the Cortex-A8 test of See PLD control register, SYS_page 4-38. Reserved 0x0080	Reserved	0x0070	_	_	-
Lockable register fields that provide from the Cortex-A8 test ch See PLD control register 2 SYS_PLD_CTRL2 on page SYS_PLL_INIT 0x007C Read/Write 0x0B0101D0 This register defines the C PLL initialization values. Sinitialization register, SYS_page 4-38. Reserved 0x0080 SYS_PROCIDO 0x0084 Read-only 0x0E024000 Read returns a description present on the platform base See Processor ID register on page 4-39.	SYS_PLD_CTRL1	0x0074		0x000011F8	This register sets the Config PLD write data register fields that configure the Cortex-A8 test chip. See <i>PLD control register 1</i> , SYS_PLD_CTRL1 on page 4-34.
Lockable Lockable PLL initialization values. Sinitialization register, SYS_page 4-38. Reserved 0x0080 SYS_PROCID0 0x0084 Read-only 0x0E024000 Read returns a description present on the platform base See Processor ID register on page 4-39.	SYS_PLD_CTRL2	0x0078		0xXXXXXXX	This register reads the Config PLD read data register fields that provide status information from the Cortex-A8 test chip. See PLD control register 2, SYS_PLD_CTRL2 on page 4-37
SYS_PROCIDO 0x0084 Read-only 0x0E024000 Read returns a description present on the platform base See Processor ID register on page 4-39.	SYS_PLL_INIT	0x007C		0x0B0101D0	This register defines the Cortex-A8 test chip PLL initialization values. See <i>PLL initialization register</i> , <i>SYS_PLL_INIT</i> on page 4-38.
present on the platform base See Processor ID register on page 4-39.	Reserved	0x0080	_	-	-
SYS PROCID1 0x0088 Read-only 0xFF000000 Indicates that there is no C	SYS_PROCID0	0x0084	Read-only	0x0E024000	Read returns a description for the test chip present on the platform baseboard (PB). See <i>Processor ID register 0, SYS_PROCID0</i> on page 4-39.
575_11COLD1 500000 Read only 50115000000 indicates that there is no C	SYS_PROCID1	0x0088	Read-only	0xFF000000	Indicates that there is no Core Tile fitted.

Table 4-5 Register map for status and system control registers (continued)

Register	Offset Value	Accessa	Reset Value	Description
SYS_OSCRESET[0:4]	0x008C- 0x009C	Read/Write	0: 0x00012C5C 1: 0x00002CC0 2: 0x00002C75 3: 0x00020211 4: 0x00002C75	Value to load into the SYS_OSC[0:4] registers on a manual reset. See Oscillator reset registers, SYS_OSCRESETx on page 4-41.
SYS_VOLTAGE_CTL[0:7]	0x00A0— 0x00BC	Read/Write Lockable	-	Monitoring and control of Cortex-A8 voltages and currents. See <i>Voltage control registers</i> , SYS_VOLTAGE_CTLx on page 4-43.
SYS_TEST_OSC[0:4]	0x00C0— 0x00D0	Read-only	-	32-bit counters clocked from the ICS307 programmable oscillators OSC0 - OSC4. See <i>Oscillator test registers</i> , <i>SYS_TEST_OSCx</i> on page 4-44.
SYS_OSC[5:6]	0x00D4— 0x00D8	Read/Write Lockable	5: 0x00032C5C 6: 0x00002C70	Settings for the ICS307 programmable oscillators OSC5 - OSC6. See <i>Oscillator Registers</i> , <i>SYS_OSCx</i> on page 4-18.
SYS_OSCRESET[5:6]	0x00DC- 0x00E0	Read/Write Lockable	5: 0x00032C5C 6: 0x00002C70	Value to load into the SYS_OSC[5:6] registers on a manual reset. See Oscillator reset registers, SYS_OSCRESETx on page 4-41.
SYS_TEST_OSC[5:6]	0x00E4— 0x00E8	Read-only	-	32-bit counters clocked from the ICS307 programmable oscillators OSC5 - OSC6. See <i>Oscillator test registers</i> , <i>SYS_TEST_OSCx</i> on page 4-44.
SYS_OSC7	0x00EC	Read/Write Lockable	0x00032C5C	Settings for the ICS307 programmable oscillator OSC7. See <i>Oscillator Registers</i> , <i>SYS_OSCx</i> on page 4-18.
SYS_OSCRESET7	0x00F0	Read/Write Lockable	0x00032C5C	Value to load into the SYS_OSC7 register on a manual reset. See Oscillator reset registers, SYS_OSCRESETx on page 4-41.

Table 4-5 Register map for status and system control registers (continued)

Register	Offset Value	Accessa	Reset Value	Description
SYS_TEST_OSC7	0x00F4	Read-only	-	32-bit counter clocked from the ICS307 programmable oscillator OSC7. See <i>Oscillator test registers</i> , <i>SYS_TEST_OSCx</i> on page 4-44.
SYS_DEBUG	0x00F8	Read/Write Lockable	0xX000014D	Cortex-A8 debug unit control and status. See <i>Debug control and status register</i> , SYS_DEBUG on page 4-45.
SYS_TESTMODE	0x00FC	Read/Write Lockable	0×00000000	Processor test mode control. See <i>Test mode register</i> , <i>SYS_TESTMODE</i> on page 4-47.
SYS_PLL_RESET	0x0100	Read/Write Lockable	0x0B0101D0	This register defines the Cortex-A8 test chip PLL initialization values. See <i>PLL Reset register</i> , <i>SYS_PLL_RESET</i> on page 4-48.

 $a. \quad If Access is lockable, the register can only be written if SYS_LOCK is unlocked (see {\it Lock Register}, {\it SYS_LOCK} on page 4-20).$

4.3.1 ID Register, SYS_ID

The SYS_ID register at 0x10000000 is a read-only register that identifies the board and FPGA.

Figure 4-2 shows the register bit assignment.

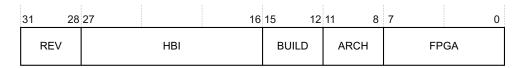


Figure 4-2 SYS_ID register

The function of the register bits are shown in Table 4-6. The register value depends on the image loaded into the FPGA.

Table 4-6 SYS_ID register bit assignments

Bits	Access	Name	Reset	Description
[31:28]	Read-only	REV	-	Board revision: 0x0 = Rev A 0x1 = Rev B 0x2 = Rev C
[27:16]	Read-only	НВІ	0x178	HBI board number (0178)
[15:12]	Read-only	BUILD	_	Build variant of board (from BOM) 0xF: all builds
[11:8]	Read-only	ARCH	0x5	Bus architecture 0x4 = AHB 0x5 = AXI
[7:0]	Read-only	FPGA	-	FPGA build

4.3.2 User Switch Register, SYS_USERSW

The SYS_USERSW register at 0x10000004 reads the front panel User Switches and the baseboard general purpose (user) switch bank S4. A value of 1 indicates that the switch is on.

Figure 4-3 shows the register bit assignment.



Figure 4-3 SYS_USERSW register

4.3.3 LED Register, SYS_LED

The SYS_LED register at 0x10000008 controls the User LEDs. Set the corresponding register bit to 1 to light the LED. At reset all LEDs are turned off.

Figure 4-4 shows the register bit assignment.

Figure 4-4 SYS_LED register

4.3.4 Oscillator Registers, SYS_OSCx

The oscillator registers, SYS_OSC0 through to SYS_OSC7 are read/write lockable registers that control the frequency of the clocks generated by the ICS307 programmable oscillators OSC0 through to OSC7.

Table 4-7 lists the SYS_OSCx registers address locations.

Table 4-7 SYS_OSCx registers

Register	Address	Access	Description
SYS_OSC0	0x1000000C	Read/Write Lockable	Sets OSC0 clock frequency
SYS_OSC1	0x10000010	Read/Write Lockable	Sets OSC1 clock frequency
SYS_OSC2	0x10000014	Read/Write Lockable	Sets OSC2 clock frequency
SYS_OSC3	0x10000018	Read/Write Lockable	Sets OSC3 clock frequency
SYS_OSC4	0x1000001C	Read/Write Lockable	Sets OSC4 clock frequency
SYS_OSC5	0x100000D4	Read/Write Lockable	Sets OSC5 clock frequency
SYS_OSC6	0x100000D8	Read/Write Lockable	Sets OSC6 clock frequency
SYS_OSC7	0x100000EC	Read/Write Lockable	Sets OSC7 clock frequency

Figure 4-5 shows the registers bit assignment.

_____Note _____

The values written take effect after the next soft reset (**nSYSRST**).

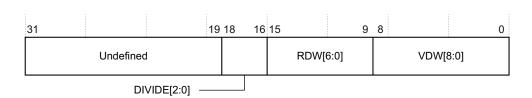


Figure 4-5 SYS_OSCx register

The function of the register bits are shown in Table 4-8. For more detail on bit values, see *ICS307 programmable clock generators* on page 3-41 and *Clock frequency restrictions* on page B-3.

Table 4-8 SYS_OSCx register bit assignments

Bits	Access	Name	Reset	Description
[31:20]	Write ignored, read as zero	-	0×000	Undefined
[19]	Write ignored, read as zero	_	b0	Undefined
[18:16]	Read/Write	DIVIDE[2:0]	bxxx	Output divider select
[15:9]	Read/Write	RDW[6:0]	bxxxxxx	Reference divider value
[8:0]	Read/Write	VDW[8:0]	bxxxxxxxx	VCO divider value

_____ Note _____

Before you can write to a SYS_OSCx register, you must unlock it by writing the value 0x0000A05F to the SYS_LOCK register. After writing to the SYS_OSCx register, you should relock it by writing any value other than 0x0000A05F to the SYS_LOCK register.

4.3.5 Lock Register, SYS_LOCK

The SYS_LOCK register at 0x10000020 locks or unlocks access to all lockable registers.

Lockable registers cannot be modified while they are locked. This mechanism prevents the registers from being overwritten accidently. The registers are locked by default after a reset.

Figure 4-6 shows the register bit assignment.

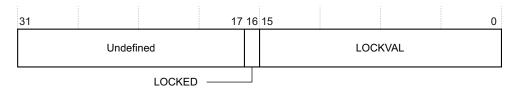


Figure 4-6 SYS_LOCK register

The function of the register bits are shown in Table 4-9.

Table 4-9 SYS_LOCK register bit assignments

Bits	Access	Name	Reset	Description
[31:20]	Write ignored, read as zero	-	0x000	Undefined
[19:17]	Write ignored, read as zero	-	b00	Undefined
[16]	Read-only	LOCKED	b1	This bit indicates if the lockable registers are locked or unlocked:
				b0 = unlocked
				b1 = locked.
[15:0]	Read/Write	LOCKVAL	0x0000	Write the value 0xA05F to unlock the lockable registers. Write any other value to this register to lock them.

4.3.6 100Hz Counter, SYS 100HZ

The SYS_100HZ register at 0x10000024 is a 32-bit counter incremented at 100Hz. The 100Hz reference is derived from the on-board 32.768kHz crystal oscillator. The register is set to zero by a reset and when read returns the count since the last reset.

Figure 4-7 shows the register bit assignment.

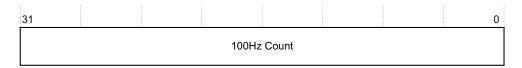


Figure 4-7 100Hz Counter, SYS_100HZ register

4.3.7 Flag Registers, SYS_FLAGSx and SYS_NVFLAGSx

The registers listed in Table 4-10 (SYS_FLAGS and SYS_NVFLAGS) provide two 32-bit register locations containing general-purpose flags. You can assign any meaning to the flags.

Register **Address** Reset by Description Access SYS FLAGS 0x10000030 Read Reset Flag register SYS_FLAGSSET Write 0x10000030 Reset Flag Set register SYS_FLAGSCLR 0x10000034 Write Reset Flag Clear register SYS_NVFLAGS 0x10000038 Read POR Nonvolatile Flag register POR SYS_NVFLAGSSET 0x10000038 Write Nonvolatile Flag Set register SYS_NVFLAGSCLR 0x1000003C Write POR Nonvolatile Flag Clear register

Table 4-10 Flag registers

The board provides two distinct types of flag register:

- The SYS_FLAGS register is cleared by a normal reset, such as a reset caused by pressing the reset button.
- The SYS_NVFLAGS register retains its contents after a normal reset and is only cleared by a *Power-On Reset* (POR).

Flag and Nonvolatile Flag Registers

The SYS_FLAGS and SYS_NVFLAGS registers contain the current state of the flags.

Flag and Nonvolatile Flag Set Registers

The SYS_FLAGSSET and SYS_NVFLAGSSET registers are used to set bits in the SYS_FLAGS and SYS_NVFLAGS registers:

- write 1 to SET the associated flag
- write 0 to leave the associated flag unchanged.

Flag and Nonvolatile Flag Clear Registers

The SYS_FLAGSCLR and SYS_NVFLAGSCLR registers are used to clear bits in the SYS_FLAGS and SYS_NVFLAGS registers:

- write 1 to CLEAR the associated flag
- write 0 to leave the associated flag unchanged.

4.3.8 Reset Control Register, SYS_RESETCTL

The SYS_RESETCTL register at 0x10000040 allows a software reset to be applied to selected system components.

Figure 4-8 shows the register bit assignment.

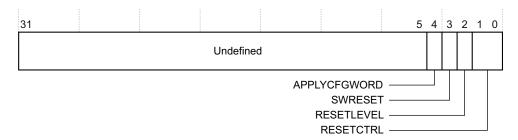


Figure 4-8 SYS_RESETCTL register

The function of the register bits are shown in Table 4-11.

Table 4-11 SYS_RESETCTL register bit assignments

Bits	Access	Name	Reset	Description
[31:5]	Write ignored, read as zero	_	0x0000000	Undefined
[4]	Write only Lockable	APPLYCFGWORD	b0	Updates OSCCLK registers and applies a PORESET.
[3]	Write only Lockable	SWRESET	b0	Software equivalent of the PBRESET button.
[2]	Write only Lockable	RESETLEVEL	b0	Resets the PB-A8 to the level requested by RESETCTRL.
[1:0]	Read/Write Lockable	RESETCTRL	b00	Sets the depth of a software reset b00 = PORESET b01 = CLKWAIT b10 = SYSRST b11 = A8_PORESET Set RESETLEVEL to 1 to apply.

----- Note -----

Before you can write to the SYS_RESETCTRL register, you must unlock it by writing the value 0x0000A05F to the SYS_LOCK register at 0x10000020. After writing to the SYS_RESETCTRL register, you should relock it by writing any value other than 0x0000A05F to the SYS_LOCK register.

See Reset Controller state diagram on page 3-48 for details of the reset entry points.

4.3.9 MCI Register, SYS_MCI

The SYS_MCI register at 0x10000048 provides status information on the Multimedia card socket.

Figure 4-9 shows the register bit assignment.

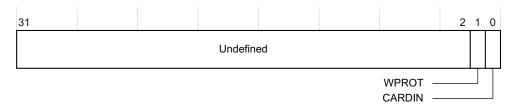


Figure 4-9 SYS_MCI register

The function of the register bits are shown in Table 4-12.

Table 4-12 SYS_MCI register bit assignment

Bits	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	_	0x0000000	Undefined
[3:2]	Write ignored, read as zero	-	b00	Undefined
[1]	Read-only	WPROT	b0	Status of the Write Protect bit (WPROT)
[0]	Read-only	CARDIN	b0	Card Detect: b0 = no card detected b1 = card detected

4.3.10 Flash Control Register, SYS_FLASH

The SYS_FLASH register at 0x1000004C controls write protection of static memory devices.

Figure 4-10 shows the register bit assignment.

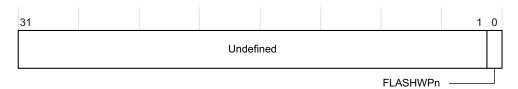


Figure 4-10 SYS_FLASH register

The function of the register bits are listed in Table 4-13.

Table 4-13 SYS_FLASH register bit assignments

Bits	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	_	0×0000000	Undefined
[3:1]	Write ignored, read as zero	-	b000	Undefined
[0]	Read/Write	FLASHWPn	b0	Controls writing to Flash (power-on reset state is b0) b0 = writing to Flash is disabled b1 = writing to Flash is enabled

4.3.11 CLCD Control Register, SYS_CLCD

The SYS_CLCD register at 0x10000050 returns CLCD adaptor board status and enables external serial communication via the baseboard *Synchronous Serial Port* SSP expansion connector J27.

The CLCD adaptor board status signals are provided for legacy compatibility only.

Figure 4-11 shows the register bit assignment.

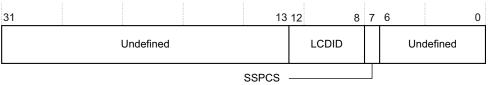


Figure 4-11 SYS_CLCD register

The function of the register bits are listed in Table 4-14.

Table 4-14 SYS_CLCD register bit register assignments

Bits	Access	Name	Reset	Description
[31:16]	Write ignored, read as zero	-	0x0000	Undefined
[15:13]	Write ignored, read as zero	-	b000	Undefined
[12:8]	Read-only	LCDID	b11111	Returns the setting of the ID links on the CLCD adaptor board
				——— Note ————
				Retained for legacy compatibility only.
[7]	Read/Write	SSPCS	b0	Enables external serial communication via the
				baseboard Synchronous Serial Port SSP expansion
				connector J27.
				b1 = SSPnCS at J27 is active b0 = SSPnCS at J27 is not active
				See Synchronous Serial Port, SSP on page 3-30.
FC 41	XX :4 : 1		1.000	
[6:4]	Write ignored, read as zero	_	b000	Undefined
[3:0]	Write ignored,	_	0x0	Undefined
	read as zero			

4.3.12 Configuration select switch, SYS_CFGSW

This SYS_CFGSW register at 0x10000058 is a read-only register that reads the configuration select switch bank S7 settings. A value of 1 indicates that a switch is on.

Figure 4-12 shows the register bit assignment.

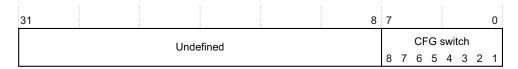


Figure 4-12 SYS_CFGSW register

4.3.13 24MHz Counter, SYS_24MHZ

The SYS_24MHZ register at 0x1000005C is a read-only register that provides a 32-bit count value. The count increments at 24MHz frequency from the 24MHz crystal reference output **REFCLK24MHZ** from OSC0. The register is set to zero by a reset.

Figure 4-13 shows the register bit assignment.



Figure 4-13 SYS_24MHZ register

4.3.14 Miscellaneous flags, SYS_MISC

The SYS_MISC register at 0x10000060 is a read-only register that returns the value of the tile site tile detect signal and other miscellaneous flags related to communication. See Table 4-15 for details.

Figure 4-14 shows the register bit assignment.

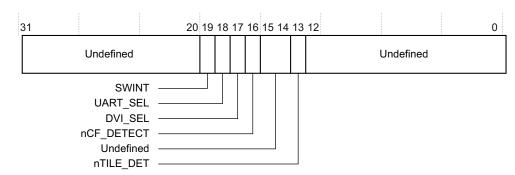


Figure 4-14 SYS_MISC register

The function of the register bits are listed in Table 4-15.

Table 4-15 SYS_MISC register bit assignment

Bits	Access	Name	Reset	Description
[31:20]	Write ignored, read as zero	_	0x0000	Undefined
[19]	Read/Write	SW_INT	b0	Software interrupt
[18]	Read/Write	UART_SEL	b0	Selects the source for the UART 2 and UART 3 connectors: b0: baseboard interface b1: tile site interface
[17]	Read/Write	DVI_SEL	b0	Selects the source for the DVI connector: b0: baseboard interface b1: tile site interface
[16]	Read-only	nCF_DETECT	b1	b0: CompactFlash card detected b1: No CompactFlash card detected
[15:14]	Write ignored, read as zero	_	b000	Undefined

Table 4-15 SYS_MISC register bit assignment (continued)

Bits	Access	Name	Reset	Description
[13]	Read-only	nTILE_DET	b0	Tile Detect b0 = tile present b1 = tile not present
[12]	Write ignored, read as zero	_	b0	Undefined
[11:0]	Write ignored, read as zero	_	0x000	Undefined

4.3.15 DMA peripheral map register, SYS_DMAPSR

The DMA peripheral map register, SYS_DMAPSR at 0x10000064 permits the mapping of DMA channels to external interfaces. The register is set to zero by a reset. The DMA mapping is disabled by default.

Figure 4-15 shows the register bit assignment.

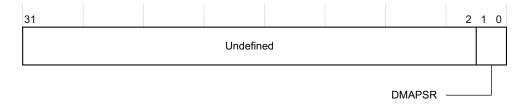


Figure 4-15 SYS_DMAPSR register

The function of the register bits are listed in Table 4-16.

Table 4-16 SYS_DMAPSR register bit assignments

Bit	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	-	0x0000000	Undefined
[3:2]	Write ignored, read as zero	-	b00	Undefined
[1:0]	Read/Write	DMAPSR	b00	Selects the peripheral group to be mapped to DMA. See Table 4-17 on page 4-31 for the bit encoding.

Table 4-17 lists the bit encoding. See *Single Master Direct Memory Access Controller, SMDMAC* on page 4-57 for more information on the DMA logic.

Table 4-17 SYS_DMAPSR register bit coding

DMAPSR = b00	DMAPSR = b01	DMAPSR = b1X	DMA Request and Response
Peripheral	Peripheral	Peripheral	DMACSREQ DMACBREQ DMACCLR
reserved	reserved	reserved	[15:8]
SCI TX	UART0 TX	reserved	[7]
SCI RX	UART0 RX	reserved	[6]
AACI RX	UART1 TX	reserved	[5]
AACI TX	UART1 RX	reserved	[4]
MCI	UART2 TX	reserved	[3]
T1DMAC[0]	UART2 RX	reserved	[2]
USB[1]	SSP TX	reserved	[1]
USB[0]	SSP RX	reserved	[0]

4.3.16 PCI Express status register, SYS_PEX_STAT

The PCI express status register, SYS_PEX_STAT at 0x10000068 monitors the lane status of the PCI-X to PCI Express bridge (PEX8114) and PCI Express switch (PEX 8518) components.

Figure 4-16 shows the register bit assignment.

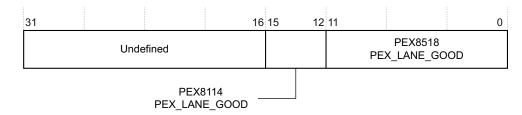


Figure 4-16 SYS_PEX_STAT register

The function of the register bits are listed in Table 4-18.

Table 4-18 SYS_PEX_STAT register bit assignments

Bits	Access	Name	Reset	Description
[31:16]	Write ignored, read as zero	-	0x0000	Undefined
[15:12]	Read-only	PEX8114 PEX_LANE_GOOD	0xX	PCI-X to PCI Express bridge lane status
[11:0]	Read-only	PEX8518 PEX_LANE_GOOD	0xXXX	PCI Express switch lane status

_____ Note _____

The **PEX_LANE_GOOD** signals indicate the presence and link-up state of each PCI Express lane. These determine which lanes are active, and provide the status of the final negotiated link width as follows:

- if the **PEX_LANE_GOODx** signal is continuously active, the link is *trained* to its programmed width
- if the **PEX_LANE_GOODx** signal alternates to and from the active state, the link is *trained* with fewer lanes than the programmed width.

Please refer to the PEX 8114 and PEX 8518 technical documentation at the PLX Technology Inc website: www.plxtech.com for further details.

4.3.17 PCI status register, SYS_PCI_STAT

The PCI status register, SYS_PCI_STAT at 0x1000006C monitors the status of the PCI-X bridge (PCI6520) component.

ARM do not recommend changing the register default values as this may affect the reliability of the PCI interface.

Figure 4-17 shows the register bit assignment.

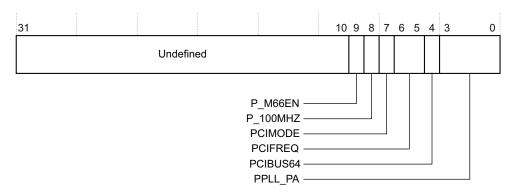
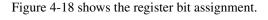


Figure 4-17 SYS_PCI_STAT register

The function of the register bits are listed in Table 4-19.

Table 4-19 SYS_PCI_STAT register bit assignments


Bits	Access	Name	Reset	Description
[31:12]	Write ignored, read as zero	_	0x00000	Undefined
[11:10]	Write ignored, read as zero	_	b00	Undefined
[9]	Read/Write	P_M66EN	b1	66MHz PCI-X enable
[8]	Read/Write	P_100MHZ	b1	Clock control
[7]	Read/Write	PCIMODE	b0	PCI mode: b0 = PCI-X host to PCI-X bridging b1 = PCI-X host to PCI bridging

				,
Bits	Access	Name	Reset	Description
[6:5]	Read/Write	PCIFREQ	b01	PCI frequency: b00 = 33MHz b01 = 66MHz b10 = 100MHz b11 = 133MHz
[4]	Read/Write	PCIBUS64	b1	64-bit PCI bus enable
[3:0]	Read/Write	PPLL_PA	0x7	PLL range: 0x1 = PPLL_RANGE300_600MHz 0x3 = PPLL_RANGE150_300MHz 0x4 = PPLL_RANGE100_200MHz 0x5 = PPLL_RANGE75_150MHz 0x7 = PPLL_RANGE50_100MHz

Table 4-19 SYS_PCI_STAT register bit assignments (continued)

4.3.18 PLD control register 1, SYS_PLD_CTRL1

The SYS_PLD_CTRL1 register at 0x10000074 sets the Config PLD write data register fields that configure the Cortex-A8 test chip.

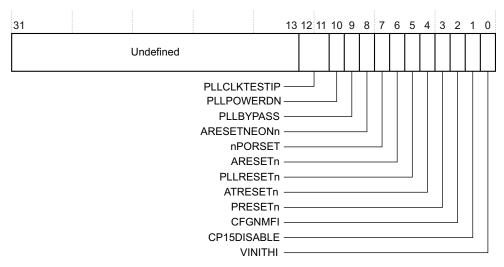


Figure 4-18 SYS_PLD_CTRL1 register

The function of the register bits are listed in Table 4-20 on page 4-35.

Table 4-20 SYS_PLD_CTRL1 register bit assignments

Bits	Access	Name	Reset	Description
[31:15]	Write ignored, read as zero	-	0x0000	Undefined
[14:13]	Write ignored, read as zero	-	b00	Undefined
[12:11]	Read/Write Lockable	PLLCLKTESTIP	b10	Selects which clock is output on the PLLCLKTESTOUT pin from the Cortex-A8 test chip (TP56 on PB-A8). Used for viewing internal PLL clocks during baseboard production test.
[10]	Read/Write Lockable	PLLPOWERDN	b0	PLL control signal. Powers down the VCO in the PLL of the Cortex-A8 test chip.
[9]	Read/Write Lockable	PLLBYPASS	b0	PLL control signal. Bypasses the PLL of the Cortex-A8 test chip. REFCLK drives all logic on the test chip when the PLL is in bypass mode.
[8]	Read/Write Lockable	ARESETNEONn	b1	NEON reset signal. Resets the NEON coprocessor of the Cortex-A8 test chip. This is an active LOW signal.
[7]	Read/Write Lockable	nPORSET	b1	Active-LOW AXI reset input, that resets non-debug flops.
[6]	Read/Write Lockable	ARESETn	b1	AXI reset signal. Resets the AXI interface of the Cortex-A8 test chip. This is an active LOW signal.
[5]	Read/Write Lockable	PLLRESETn	b1	Active-LOW hard reset input that resets the PLL.
[4]	Read/Write Lockable	ATRESETn	b1	ATB and CTI reset signal. Resets the ETM ATB interface, and the Cross Trigger Interface (CTI) of the Cortex-A8 test chip. This is an active LOW signal.
[3]	Read/Write Lockable	PRESETn	b1	APB reset signal. Resets the Debug APB interface of the Cortex-A8 test chip. This is an active LOW signal.

Table 4-20 SYS_PLD_CTRL1 register bit assignments (continued)

Bits	Access	Name	Reset	Description
[2]	Read/Write Lockable	CFGNMFI	bØ	Configures fast interrupts to be non-maskable: 0 = clear the NMFI bit in the CP15 c1 Control Register 1 = set the NMFI bit in the CP15 c1 Control Register. This pin is only sampled during reset of the processor. See the Cortex-A8 Technical Reference Manual (ARM DDI 0344).
[1]	Read/Write Lockable	CP15DISABLE	b0	Disables CP15. See the <i>Cortex-A8 Technical Reference Manual</i> (ARM DDI 0344).
[0]	Read/Write Lockable	VINITHI	b0	Controls the location of the exception vectors at reset: 0 = start exception vectors at address 0x00000000 1 = start exception vectors at address 0xFFFF0000. This pin is only sampled during reset of the processor. See Cortex-A8 Technical Reference Manual (ARM DDI 0344).

4.3.19 PLD control register 2, SYS_PLD_CTRL2

The SYS_PLD_CTRL2 register at 0x10000078 reads the PLD read data register fields that provide status on the Cortex-A8 test chip and the PLD.

Figure 4-19 shows the register bit assignment.

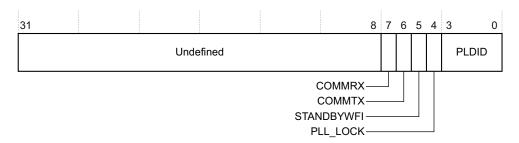


Figure 4-19 SYS_PLD_CTRL2 register

The function of the register bits are listed in Table 4-21.

Table 4-21 SYS_PLD_CTRL2 register bit assignments

Bits	Access	Name	Reset	Description
[31:8]	Read as zero, write ignored.	-	0x000000	Undefined
[7]	Read-only	COMMRX	b0	Comms channel receive.
[6]	Read-only	COMMTX	b0	Comms channel transmit.
[5]	Read-only	STANDBYWFI	b0	WFI indicator. Indicates if the Cortex-A8 processor and the AXI interface are in idle state.
				See the <i>Cortex-A8 Technical Reference Manual</i> (ARM DDI 0344).
[4]	Read -only	PLL_LOCK	b0	PLL locked indicator. Indicates when the Cortex-A8 test chip and onboard PLLs are locked.
[3:0]	Read-only	PLDID	0x0	PLD identifier. Provides PLD build information.

4.3.20 PLL initialization register, SYS_PLL_INIT

The SYS_PLL_INIT register at 0x1000007C sets the Cortex-A8 test chip PLL hardware initialization values. See *PLL* on page 3-43 for further information on setting up the PLL.

Figure 4-20 shows the register bit assignment.

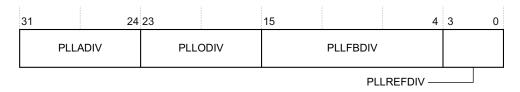


Figure 4-20 SYS_PLL_INIT register

The function of the register bits are listed in Table 4-22.

Table 4-22 SYS_PLL_INIT register bit assignments

Bits	Access	Name	Reset	Description
[31:24]	Read/Write Lockable	PLLADIV	0x0B	AXICLK divider value (ADIV[7:0]) when TESTSELECT = 0. See <i>PLL</i> on page 3-43 for divider details and <i>Test mode register</i> , <i>SYS_TESTMODE</i> on page 4-47 for details on controlling TESTSELECT.
[23:16]	Read/Write Lockable	PLLODIV	0x01	CLK divider value (ODIV[7:0]) when TESTSELECT = 0. See <i>PLL</i> on page 3-43 for divider details and <i>Test mode register</i> , <i>SYS_TESTMODE</i> on page 4-47 for details on controlling TESTSELECT.
[15:4]	Read/Write Lockable	PLLFBDIV	0x01D	PLL multiplication factor (FBDIV [11:0]). See <i>PLL</i> on page 3-43 for divider details.
[3:0]	Read/Write Lockable	PLLREFDIV	0×0	Reference clock (REFCLK) divider value (NDIV[3:0]). See <i>PLL</i> on page 3-43 for divider details.

4.3.21 Processor ID register 0, SYS_PROCID0

This register at 0x10000084 indicates the test chip fitted to the baseboard.

Figure 4-21 shows the register bit assignment.

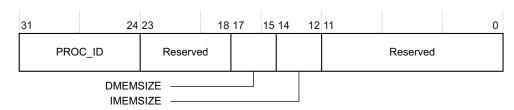


Figure 4-21 SYS_PROCID0 register

The function of the register bits are listed in Table 4-23.

Table 4-23 SYS_PROCID0 register bit assignments

Bits	Access	Name	Reset	Description
[31:24]	Read-only	PROC_ID	0x06	Returns the test chip processor type: 0x00 = ARM7TDMI 0x02 = ARM9xx 0x04 = ARM1136 0x06 = ARM11 MPCore 0x08 = ARM1156 0x0A = ARM1176 0x0C = reserved 0x0E = Cortex-A8 0xFF = not fitted
[23:18]	Read-only	_	b000000	Reserved.
[17:15]	Read-only	DMEMSIZE	b100	Returns the size of the data cache memory in the processor, default is 32KB for Cortex-A8 test chip.
[14:12]	Read-only	IMEMSIZE	b100	Returns the size of the instruction cache memory in the processor, default is 32KB for Cortex-A8 test chip.
[11:0]	Read-only	_	0x000	Reserved.

4.3.22 Processor ID register 1, SYS_PROCID1

This register at 0x10000088 identifies the tile fitted to the baseboard.

Figure 4-22 shows the register bit assignment.

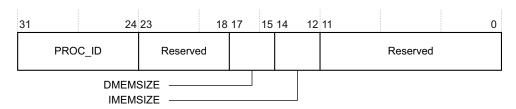


Figure 4-22 SYS_PROCID1 register

The function of the register bits are listed in Table 4-24.

Table 4-24 SYS_PROCID1 register bit assignments

Bits	Access	Name	Reset	Description	
[31:24]	Read-only	PROC_ID	0xFF	Returns processor type on the tile site: 0x00 = ARM7TDMI 0x02 = ARM9xx 0x04 = ARM1136 0x06 = ARM11 MPCore 0x08 = ARM1156 0x0A = ARM1176 0x0C = reserved 0x0E = Cortex-A8 0xFF = not fitted (default for a Logic Tile)	
[23:18]	Read-only	_	b000000	Reserved	
[19:18]	Read-only	_	b00	Reserved	
[17:15]	Read-only	DMEMSIZE	b000	Returns the size of the data cache memory for a processor on the tile site. Default = b000 for a Logic Tile.	
[14:12]	Read-only	IMEMSIZE	b000	Returns the size of the instruction cache memory for a processor on the tile site, Default = b000 for a Logic Tile.	
[11:0]	Read-only	_	0x000	Reserved	

4.3.23 Oscillator reset registers, SYS_OSCRESETx

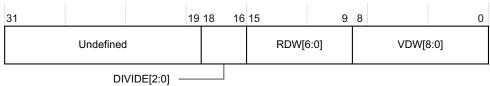

The oscillator reset registers, SYS_OSCRESET0 through to SYS_OSCRESET7, are read/write registers that control the frequency of the clocks generated by clock generators OSC0 through to OSC7 when a manual reset is generated.

Table 4-25 lists the SYS_OSCRESETx registers address locations.

Table 4-25 SYS_OSCRESETx registers

Register	Address	Access	Description
SYS_OSCRESET0	0x1000008C	Read/Write Lockable	Sets OSC0 clock frequency after a manual reset
SYS_OSCRESET1	0x10000090	Read/Write Lockable	Sets OSC1 clock frequency after a manual reset
SYS_OSCRESET2	0x10000094	Read/Write Lockable	Sets OSC2 clock frequency after a manual reset
SYS_OSCRESET3	0x10000098	Read/Write Lockable	Sets OSC3 clock frequency after a manual reset
SYS_OSCRESET4	0x1000009C	Read/Write Lockable	Sets OSC4 clock frequency after a manual reset
SYS_OSCRESET5	0x100000DC	Read/Write Lockable	Sets OSC5 clock frequency after a manual reset
SYS_OSCRESET6	0x100000E0	Read/Write Lockable	Sets OSC6 clock frequency after a manual reset
SYS_OSCRESET7	0x100000F0	Read/Write Lockable	Sets OSC7 clock frequency after a manual reset

Figure 4-23 shows the register bit assignment.

er

DIVIDE[2:0] ———
Figure 4-23 SYS_OSCRESETx register
Note
Before writing to a SYS_OSCRESETx register you must unlock it by writing the value 0x0000A05F to the SYS_LOCK register (see <i>Lock Register, SYS_LOCK</i> on page 4-20). After writing to the SYS_OSCRESETx register, you should relock it by writing any value other than 0x0000A05F to the SYS_LOCK register.
For more details on bit values, see <i>ICS307 programmable clock generators</i> on page 3-41 and <i>Oscillator Registers</i> , <i>SYS_OSCx</i> on page 4-18.
Note
At power-on reset (nSYSPOR), the SYS_OSCRESETx registers are loaded with the same default values used for the SYS_OSCx registers.
The values of the SYS_OSCRESETx values can be changed after powering on the

baseboard. Pushing the reset push button loads the values of the SYS_OSCRESETx registers into the SYS_OSCx registers and loads the programmable oscillators with the new values.

4.3.24 Voltage control registers, SYS_VOLTAGE_CTLx

These registers are used to:

- set the voltages applied to the test chip
- read the voltages applied to the test chip
- read the current drawn by the test chip.

Note
The currents drawn by the test chip are measured by a voltage drop across a curren
sense resistor (VDDCORE_DIFFx).

The function of the registers bits are listed in Table 4-26.

Table 4-26 SYS_VOLTAGE_CTLx registers

Register	Address	Bits [31:20] (Read-only)	Bits [19:8] (Read-only)	Bits [7:0] (Read/Write)
SYS_VOLTAGE_CTL0	0x100000A0	Reserved, read as zero	Read IVDDCORE	Set VDDCORE
SYS_VOLTAGE_CTL1	0x100000A4	Reserved, read as zero	Read IAVDD	Set AVDD
SYS_VOLTAGE_CTL2	0x100000A8	Reserved, read as zero	Read VDDCORE	Set VDDTC
SYS_VOLTAGE_CTL3	0x100000AC	Reserved, read as zero	Read AVDD	Reserved
SYS_VOLTAGE_CTL4	0x100000B0	Reserved, read as zero	Read 1V8_ADC	Reserved
SYS_VOLTAGE_CTL5	0x100000B4	Reserved, read as zero	Read 1V2_ADC	Reserved
SYS_VOLTAGE_CTL6	0x100000B8	Reserved, read as zero	Read IVDDTC	Reserved
SYS_VOLTAGE_CTL7	0x100000BC	Reserved, read as zero	Read VDDTC	Reserved

4.3.25 Oscillator test registers, SYS_TEST_OSCx

The oscillator test registers, SYS_TEST_OSC0 through to SYS_TEST_OSC7 provide 32-bit count values. The count increments at the frequency of the corresponding ICS307 programmable oscillator (OSC0 through to OSC7). The registers are set to zero by a reset.

Table 4-27 lists the SYS_TEST_OSCx registers address locations.

Table 4-27 SYS_TEST_OSCx registers

Register	Address	Access	Description
SYS_TEST_OSC0	0x100000C0	Read-only	Counter clocked from OSC0
SYS_TEST_OSC1	0x100000C4	Read-only	Counter clocked from OSC1
SYS_TEST_OSC2	0x100000C8	Read-only	Counter clocked from OSC2
SYS_TEST_OSC3	0x100000CC	Read-only	Counter clocked from OSC3
SYS_TEST_OSC4	0x100000D0	Read-only	Counter clocked from OSC4
SYS_TEST_OSC5	0x100000E4	Read-only	Counter clocked from OSC5
SYS_TEST_OSC6	0x100000E8	Read-only	Counter clocked from OSC6
SYS_TEST_OSC7	0x100000F4	Read-only	Counter clocked from OSC7

4.3.26 Debug control and status register, SYS_DEBUG

This register at 0x100000F8 provides Cortex-A8 debug control and status.

Figure 4-24 shows the register bit assignment.

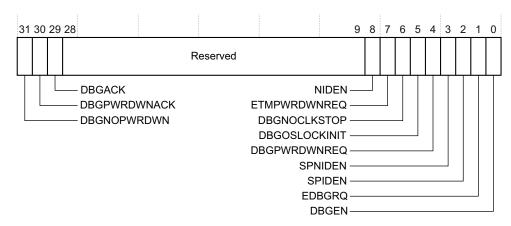


Figure 4-24 SYS_DEBUG register

The function of the register bits are listed in Table 4-28.

Table 4-28 SYS_DEBUG register

Bits	Access	Name	Reset	Description
[31]	Read-only	DBGNOPWRDWN	b0	No power down indicator from Cortex-A8 processor. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[30]	Read-only	DBGPWRDWNACK	b0	Power-down acknowledge from Cortex-A8 processor. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[29]	Read-only	DBGACK	b0	Indicates that the system has entered debug state. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[28:9]	Read/Write	_	0x00000	Reserved.
[8]	Read/Write	NIDEN	b1	Authentication signal: Noninvasive debug enable. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).

Table 4-28 SYS_DEBUG register (continued)

Bits	Access	Name	Reset	Description
[7]	Read/Write	ETMPWRDWNREQ	b0	ETM power-down request. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[6]	Read/Write	DBGNOCLKSTOP	b1	Debug clock control signal. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[5]	Read/Write	DBGOSLOCKINIT	b0	Reset value for the OS lock. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[4]	Read/Write	DBGPWRDWNREQ	b0	Processor power-down request. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[3]	Read/Write	SPNIDEN	b1	Authentication signal: Secure privileged noninvasive debug enable. See Cortex-A8 Technical Reference Manual (DDI 0344).
[2]	Read/Write	SPIDEN	b1	Authentication signal: Secure privileged invasive debug enable. See Cortex-A8 Technical Reference Manual (DDI 0344).
[1]	Read/Write	EDBGRQ	b0	External debug request. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[0]	Read/Write	DBGEN	b1	Authentication signal: Invasive debug enable. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).

4.3.27 Test mode register, SYS_TESTMODE

This register at 0x100000FC provides Cortex-A8 test control and status.

Figure 4-25 shows the register bit assignment.

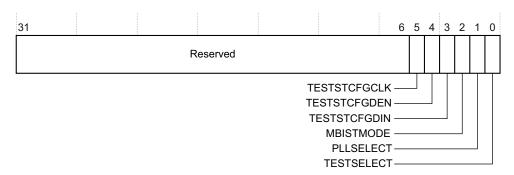


Figure 4-25 SYS_TESTMODE register

The function of the register bits are listed in Table 4-29.

Table 4-29 SYS_TESTMODE register

Bits	Access	Name	Reset	Description
[31:8]	Read/Write	_	0×000000	Reserved.
[7:6]	Read/Write	_	b00	Reserved.
[5]	Read/Write	TESTSTCFGCLK	b0	Test Input to the Cortex-A8 test chip. Must be set to 0 during normal functional operation.
[4]	Read/Write	TESTSTCFGDEN	b0	Test Input to the Cortex-A8 test chip. Must be set to 0 during normal functional operation.
[3]	Read/Write	TESTSTCFGDIN	b0	Test Input to the Cortex-A8 test chip. Must be set to 0 during normal functional operation.

Table 4-29 SYS_TESTMODE register (continued)

Bits	Access	Name	Reset	Description
[2]	Read/Write	MBISTMODE	b0	Enables MBIST mode on the Cortex-A8 processor. Must be set to 0 during normal functional operation. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).
[1]	Read/Write	PLLSELECT	b0	Enables DFT clocking features of the PLL. Must be set to 0 to disable test circuitry during normal functional operation.
[0]	Read/Write	TESTSELECT	b0	Scan test mode select. Controls TESTMODE on the Cortex-A8 processor. Must be set to 0 during normal functional operation. See <i>Cortex-A8 Technical Reference Manual</i> (DDI 0344).

4.3.28 PLL Reset register, SYS_PLL_RESET

This register at 0x10000100 sets the Cortex-A8 test chip PLL hardware reset values.

Figure 4-26 shows the register bit assignment.

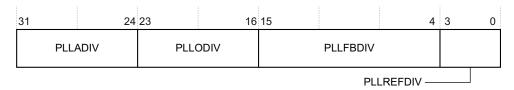


Figure 4-26 SYS_PLL_RESET register

The function of the register bits are listed in Table 4-30 on page 4-49.

Table 4-30 SYS_PLL_RESET register

Bits	Access	Name	Reset	Description
[31:24]	Read/Write Lockable	PLLADIV	0x0B	AXICLK divider value (ADIV[7:0]) when TESTSELECT = 0. See <i>PLL</i> on page 3-43 for divider details and <i>Test mode register, SYS_TESTMODE</i> on page 4-47 for details on controlling TESTSELECT.
[23:16]	Read/Write Lockable	PLLODIV	0x01	CLK divider value (ODIV[7:0]) when TESTSELECT = 0. See <i>PLL</i> on page 3-43 for divider details and <i>Test mode register</i> , <i>SYS_TESTMODE</i> on page 4-47 for details on controlling TESTSELECT.
[15:4]	Read/Write Lockable	PLLFBDIV	0x01D	PLL multiplication factor (FBDIV [11:0]). See <i>PLL</i> on page 3-43 for divider details.
[3:0]	Read/Write Lockable	PLLREFDIV	0x0	Reference clock (REFCLK) divider value (NDIV [3:0]). See <i>PLL</i> on page 3-43 for divider details.

4.4 System Controller (SYSCTRL)

The SP810 System Controller (SYSCTRL) is an AMBA compliant SoC peripheral that is developed and tested by ARM Limited.

Table 4-31 SYSCTRL implementation

Property		Value		
Location	S	Southbridge		
Memory base address		SYSCTRL 0: 0x10001000 SYSCTRL 1: 0x1001A000		
Interrupt	_	-		
DMA	_	-		
Release version	A	ARM SYSCTRL SP810 r0p0		
Reference documentation		PrimeXsys System Controller (SP810) Technical Reference Manual DDI 0254B See also System Controller on page 3-29.		
SYSCTRL 0 Controls the remap signal, watchdog 0 clock enable, and t enables for timers 0,1,2 and 3.				
SYSCTRL 1 Control 4,5,6 a		s watchdog 1 clock enable, and timer enables for timers d 7.		

4.4.1 PrimeCell modifications

The PrimeXsys System Controller (SP810) used in the Southbridge implements only the SYS_CTRL and peripheral ID registers. These registers support the following functionality:

- Identification of the build version of the System Controller
- Watchdog and timer module clock enable generation
- memory remap control.

The function of the bits in the SYS_CTRL0 register at address 0x10001000 is listed in SYS CTRL0 register on page 4-51.

——Note		
TIMCLK is	1MHz. REFCLK i	s 32.768kHz

Table 4-32 SYS_CTRL0 register

Bits	Function	
[31:24]	Reserved. Use read-modify-write to preserve value.	
[23]	Watchdog0 enable override. If 0, the enable output is derived from the REFCLK source. If 1, the enable output is forced HIGH.	
[22]	Timer 3 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[21]	Timer 3 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[20]	Timer 2 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[19]	Timer 2 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[18]	Timer 1 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[17]	Timer 1 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[16]	Timer 0 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[15]	Timer 0 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[14:10]	Reserved. Use read-modify-write to preserve value.	
[9]	Remap status. This read-only bit returns the remap status.	
[8]	Remap clear request. Set this bit to disable memory remapping and return to normal mapping with dynamic memory selected for memory accesses to the region 0x00000000-0x00FFFFFF.	
[7:0]	Reserved. Use read-modify-write to preserve value.	

The function of the bits in the SYS_CTRL1 register at address 0x1001A000 is listed in Table 4-33.

Table 4-33 SYS_CTRL1 register

Bits	Function	
[31:24]	Reserved. Use read-modify-write to preserve value.	
[23]	Watchdog1 enable override. If 0, the enable output is derived from the REFCLK source. If 1, the enable output is forced HIGH.	
[22]	Timer7 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[21]	Timer7 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[20]	Timer6 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[19]	Timer6 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[18]	Timer5 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[17]	Timer5 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[16]	Timer4 enable override. If 0, the enable output is derived from the Timing Reference Select signal. If 1, the enable output is forced HIGH.	
[15]	Timer4 enable/ Timer Reference Select. If 0, the timing reference is REFCLK . If 1, the timing reference is TIMCLK .	
[14:10]	Reserved. Use read-modify-write to preserve value.	
[9]	Reserved. Use read-modify-write to preserve value.	
[8]	Reserved. Use read-modify-write to preserve value.	
[7:0]	Reserved. Use read-modify-write to preserve value.	

4.5 Advanced Audio CODEC Interface, AACI

The PL041 PrimeCell *Advanced Audio CODEC Interface* (AACI) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-34 AACI implementation

Property	Value		
Location	Southbridge (the CODEC is an external component, LM4549)		
Memory base address	0x10004000		
Interrupt	51		
DMA	 AACI TX: channel 4 AACI RX: channel 5 Note You must set DMAPSR = b00 in the SYS_DMAPSR register to select this peripheral for DMA access. 		
Release version	ARM AACI PL041 r1p0 (modified to one channel and 256 FIFO depth in compact mode and 512 FIFO depth in non-compact mode)		
Platform Library support	No support provided.		
Reference documentation	ARM PrimeCell Advanced Audio CODEC Interface (PL041) Technical Reference Manual DDI 0173 and National Semiconductor LM4549 Data Sheet. See also Modified AACI PeriphID3 register on page 4-54.		

4.5.1 PrimeCell Modifications

The AACI PrimeCell in the Southbridge has a different FIFO depth than the standard PL041. Therefore, the AACIPeriphID3 register contains the values listed in Table 4-35.

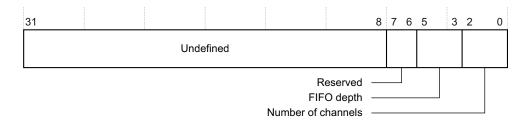


Figure 4-27 AACI ID register

Table 4-35 Modified AACI PeriphID3 register

Bit	Access	Description
[31:8]	Write as zeros, read is undefined	Undefined
[7:6]	Read-modify-write to preserve value	Reserved
[5:3]	Read-only	FIFO depth in compact mode b000 8 b001 16 b010 32 b011 64 b100 128 b101 256 b110 512 (default) b111 1024
[2:0]	Read-only	number of channels b000 4 b001 1 (default) b010 2 b011 3 b100 4 b101 5 b110 6 b111 7

4.6 Color LCD Controller, CLCDC

The PL111 PrimeCell *Color LCD Controller* (CLCDC) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-36 CLCDC implementation

Property	Value
Location	Northbridge
Memory base address	0×10020000
	Note
	There is also a LCD system control register at 0x10000050. See <i>CLCD Control Register</i> , <i>SYS_CLCD</i> on page 4-26.
Interrupt	55
DMA	_
Release version	ARM CLCDC PL111 (version r0p0)
Reference documentation	ARM PrimeCell Color LCD Controller (PL111) Technical Reference Manual DDI 0293.

The following locations are reserved, and must not be used during normal operation:

- locations at offsets 0x030 to 0x1FE are reserved for possible future extensions
- locations at offsets 0x400 to 0x7FF are reserved for test purposes.

Note	
Different display reso	olutions require different data and synchronization timing.
OSCCLK4 (25MHz	default) is assigned as CLCDCLK for the LCD controller.
Default display resolu	ution is 1024x768 at 60Hz frame rate.
See PrimeCell Color	LCD Controller (PL111) Technical Reference Manual (DDI 0293
for details of the LCI) timing registers.

4.6.1 Display resolutions and display memory organization

Note

Use registers CLCD_TIM0, CLCD_TIM1, CLCD_TIM2, and SYS_OSCCLK4 to define the display timings. Table 4-37 lists the register and clock values for different display resolutions.

Table 4-37 Values for different display resolutions

Display resolution	CLCDCLK frequency and SYS_OSCCLK4 register value	CLCD_TIM0 register at 0x10020000	CLCD_TIM1 register at 0x10020004	CLCD_TIM2 register at 0x10020008
QVGA(240x320) (portrait) on VGA	25MHz, 0x2C77	0xC7A7BF38	0x595B613F	0x04eF1800
QVGA (320x240) (landscape) on VGA	25MHz, 0x2C77	0x9F7FBF4C	0x818360eF	0x053F1800
QCIF (176x220) (portrait) on VGA	25MHz, 0x2C77	0xe7C7BF28	0x8B8D60DB	0x04AF1800
VGA (640x480) on VGA	25MHz, 0x2C77	0x3F1F3F9C	0x090B61DF	0x067F1800
SVGA (800x600) on SVGA	36MHz, 0x2CAC	0x1313A4C4	0x0505F657	0x071F1800
Epson 2.2in panel QCIF (176x220)	16MHz, 0x2C48	0x02010228	0x010004DB	0x04AF3800
Sanyo 3.8in panel QVGA (320x240)	10MHz, 0x2C2A	0x0505054C	0x050514eF	0x053F1800

The mapping of the 32 bits of pixel data in memory to the RGB display signals depends on the resolution and display mode.

For details on setting the red, green, and blue brightness for direct (non-palettized) 24-bit and 16-bit color modes see the *CLCD Technical Reference Manual*. Selftest example code, that displays 24-bit and 16-bit VGA images, is provided on the accompanying CD.

- Hote		
For resolutions based on one to	o sixteen bits per pixel	, multiple pixels are encoded into
each 32-bit word.		

All monochrome modes, and color modes using 8 or fewer bits per pixel, use the palette to encode the color value from the data bits, see the *CLCD Technical Reference Manual* for details.

4.7 Single Master Direct Memory Access Controller, SMDMAC

The PL081 PrimeCell *Single Master DMA Controller* (SMDMAC) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-38 SMDMAC implementation

Property	Value
Location	Northbridge
Memory base address	0x10030000 for SMDMAC configuration
	Note
	There is also a DMA mapping register SYS_DMAPSR at 0x10000064. See <i>DMA peripheral map register, SYS_DMAPSR</i> on page 4-30.
Interrupt	56
DMA	-
Release version	ARM DMAC PL081 r1p2
Reference documentation	ARM PrimeCell Single Master DMA Controller (PL081) Technical Reference Manual. See also Dynamic memory controller, DMC on page 3-20.

Eight peripheral DMA interfaces are provided in two selectable DMA mappings, a third mapping option has been reserved for future use. Only DMAC flow control is supported.

4.7.1 DMAC flow control

In DMAC flow control mode, the SMDMAC is programmed with the amount of data that is to be transferred and requires only request signals from the peripheral to show that its buffer is ready for access. Each channel requires three signals, **DMASREQ**, **DMABREQ**, and **DMACLR**, see *ARM PrimeCell Single Master DMA Controller* (*PL081*) *Technical Reference Manual* (DDI 0218) for details.

4.7.2 DMA channel allocation

The DMA channel allocation is selected by the SYS_DMAPSR register in the System Register block, see *DMA peripheral map register*, *SYS_DMAPSR* on page 4-30 for details of the DMAPSR field bit encoding.

4.8 Dynamic Memory Controller, DMC

The PL340 PrimeCell *Dynamic Memory Controller* (DMC) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-39 DMC implementation

Property	Value
Location	Northbridge
Memory base address	0x100E0000
Interrupt	-
DMA	-
Release version	ARM DMC PL340 r0p0
Reference documentation	ARM PrimeCell Dynamic Memory Controller (PL340) Technical Reference Manual See also Remapping of boot memory on page 4-9.

The DMC controls the 512MB of DDR 100MHz dynamic memory that is available on the baseboard. Sample programs that configure and use dynamic memory can be found on the CD that accompanies the baseboard.

4.8.1 Register values

For detailed register descriptions, see the ARM PrimeCell Dynamic Memory Controller (PL340) Technical Reference Manual.

——— Caution ————	-
------------------	---

Refer to the application note for your baseboard and Logic Tile combination for values for your system.

The application note package contains a Boot Monitor and platform library that initializes the DDR registers after power up (the platform.a library contains memory setup routines), see *Using the baseboard Boot Monitor and platform library* on page E-4 for details on using these utilities.

4.9 Ethernet

The Ethernet interface is implemented in an external SMCS LAN9118 10/100 Ethernet single-chip MAC and PHY. The internal registers of the LAN9118 are memory-mapped onto the static memory bus and occupy locations starting at base address 0x4E000000.

Table 4-40 Ethernet implementation

Property	Value
Location	Board (LAN9118 chip)
Memory base address	0x4E000000 (mapped onto the SMC bus)
Interrupt	60
DMA	None, use memory to memory DMA to access the FIFO buffers in the LAN9118 Host Bus Interface.
Release version	Custom interface to external controller.
Reference documentation	LAN9118 Data Sheet. Ethernet interface on page 3-32.

Refer to the LAN9118 application note or to the self test program supplied on the CD for additional information.

When manufactured, an ARM value for the Ethernet MAC address and the register base address are loaded into the EEPROM. The register base address is 0. The MAC address is unique, but can be reprogrammed if required.

4.10 General Purpose Input/Output, GPIO

The PL061 PrimeCell *General Purpose Input/Output* (GPIO) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited. You may use the GPIO to generate or detect low frequency signals (less than 1MHz).

Table 4-41 GPIO implementation

Property	Value		
Location	Southbridge		
Memory base address	• GPIO 0: 0x10013000		
	• GPIO 1: 0x10014000		
	• GPIO 2: 0x10015000		
Interrupt	• GPIO 0: 38		
	• GPIO 1: 39		
	• GPIO 2: 40		
DMA	NA		
Release version	ARM GPIO PL061 r1p0		
Reference documentation	ARM PrimeCell General Purpose Input/Output (PL061) Technical Reference Manual. See also General Purpose Input/Output, GPIO on page 3-28.		

4.10.1 Onboard I/O control

GPIO2 is dedicated to the USB, push button, and MCI status signals as listed in Table 4-42.

Table 4-42 GPIO2 and MCI status signals

GPIO2 bit	Access	Reset	Description
[7:5]	_	_	Reserved
[4]	Read/Write	Input	USB HC suspend and wakeup control
[3]	Read/Write	Input	USB suspend and wakeup control
[2]	Read-only	Input	General-Purpose push button
[1]	Read-only	Input	MCI Write-protect status
[0]	Read-only	Input	MCI Card-present status

4.11 Generic Interrupt Controller, GIC

A custom Generic Interrupt Controller (GIC) is implemented in the Southbridge.

Table 4-43 Generic Interrupt Controller implementation

Property	Value	
Location	Southbridge	
Memory base address	 GIC0: 0x1E000000 GIC1: 0x1E010000 GIC2: 0x1E020000 GIC3: 0x1E030000 	
Interrupt	nFIQ and nIRQ signals are output to the Cortex-A8 and the tile site in response to an interrupt from a peripheral.	
DMA	-	
Release version	Custom logic	
Reference documentation	See Interrupts on page 3-50.	

The four GICs implemented in the Southbridge are assigned as follows:

GIC0	generates Cortex-A8 nIRQ
GIC1	generates Cortex-A8 nFIQ
GIC2	generates tile site nIRQ
GIC3	generates tile site nFIQ

The GICs accept interrupts from peripherals in the Northbridge, Southbridge, on-board peripherals, and the tile site. The GICs generate **nFIQ** and **nIRQ** signals to the Cortex-A8 and the tile site. See *Interrupts* on page 3-50.

4.11.1 Interrupt signals

	The GIC	interrupt	allocation	is	listed	in	Table	4-44
--	---------	-----------	------------	----	--------	----	--------------	------

Refer to the application note for your product for details on how interrupts are handled for your system and the interrupts signals present on the connectors.

Table 4-44 GIC interrupt allocation

INT ID	Interrupt	Source	Description	From
[95]	nDMAEXTERRIRQ	Cortex-A8 test chip	DMA interrupt	TC_INT [3:0]
[94]	nDMASIRQ	Cortex-A8 test chip	DMA interrupt	TC_INT [3:0]
[93]	nDMAIRQ	Cortex-A8 test chip	DMA interrupt	TC_INT [3:0]
[92]	COMMTX	Cortex-A8 test chip	DCC transmit side interrupt	COMMTX
[91]	COMMRX	Cortex-A8 test chip	DCC receive side interrupt	COMMRX
[90]	nCTIIRQ	Cortex-A8 test chip	Cross trigger interrupt	TC_INT [3:0]
[89]	P_nINT[7]	PB-A8	PCI Express-to-PCI-X bridge (PEX8114) P_nINTD	Ext INT ^a source
[88]	P_nINT[6]	PB-A8	PCI Express-to-PCI-X bridge (PEX8114) P_nINTC	Ext INT source
[87]	P_nINT[5]	PB-A8	PCI Express-to-PCI-X bridge (PEX8114) P_nINTB	Ext INT source
[86]	P_nINT[4]	PB-A8	PCI Express-to-PCI-X bridge (PEX8114) P_nINTA	Ext INT source
[85]	P_nINT[3]	PB-A8	PCI-X SLOT A P_nINTD or SLOT B P_nINTB	Ext INT source

Table 4-44 GIC interrupt allocation (continued)

INT ID	Interrupt	Source	Description	From
[84]	P_nINT[2]	PB-A8	PCI-X SLOT A P_nINTB or SLOT B P_nINTA	Ext INT source
[83]	P_nINT[1]	PB-A8	PCI-X SLOT A P_nINTA or SLOT B P_nINTD	Ext INT source
[82]	P_nINT[0]	PB-A8	PCI-X SLOT A P_nINTD or SLOT B P_nINTC	Ext INT source
[81]	P_NMI	PB-A8	Southbridge PCI bridge NMI	Ext INT source
[80]	PCI_INTR	PB-A8	Southbridge PCI bridge INT	Ext INT source
[79]	nPMUIRQ	Cortex-A8 test chip	System metrics interrupt	Ext INT source
[78]	Reserved	Northbridge	-	Ext INT source
[77]	Reserved	Northbridge	_	Ext INT source
[76]	Reserved	Northbridge	-	Ext INT source
[75]	Reserved	Northbridge	-	Ext INT source
[74]	Timer 6-7	Southbridge	Timers 6 and 7	Ext INT source
[73]	Timer 4-5	Southbridge	Timers 4 and 5	Ext INT source
[72]	Watchdog1	Southbridge	Watchdog 1 alarm	Ext INT source

Table 4-44 GIC interrupt allocation (continued)

INT ID	Interrupt	Source	Description	From
[71]	T1_INT7	Tile Site	Interrupts from tile site	TS_INT [7:0]
[70]	T1_INT6			TS_INT [7:0]
[69]	T1_INT5			TS_INT [7:0]
[68]	T1_INT4			TS_INT [7:0]
[67]	T1_INT3			TS_INT [7:0]
[66]	T1_INT2			TS_INT [7:0]
[65]	T1_INT1			TS_INT [7:0]
[64]	T1_INT0			TS_INT [7:0]
[63]	Reserved	-	-	Ext INT ^a source
[62]	Reserved	-	-	Ext INT source
[61]	USB	PB-A8	Interrupt from USB controller IC	Ext INT source
[60]	Ethernet	PB-A8	Interrupt from Ethernet controller IC	Ext INT source
[59]	Reserved	-	-	Ext INT source
[58]	PISMO	PB-A8	PISMO interrupt from memory expansion board	Ext INT source
[57]	Reserved	-	-	Ext INT source

4-64

Table 4-44 GIC interrupt allocation (continued)

INT ID	Interrupt	Source	Description	From
[56]	DMAC	Northbridge	DMA controller	Ext INT source
[55]	CLCD	Northbridge	CLCD display	Ext INT source
[54]	Reserved	Southbridge	Character LCD display (not currently supported)	Ext INT source
[53]	KMI1	Southbridge	Keyboard/Mouse Interface	Ext INT source
[52]	KMI0	Southbridge	Keyboard/Mouse Interface	Ext INT source
[51]	AACI	Southbridge	CODEC controller interrupt	Ext INT source
[50]	MCIb	Southbridge	Multimedia Card Interface interrupt b	Ext INT source
[49]	MCIa	Southbridge	Multimedia Card Interface interrupt a	Ext INT source
[48]	SCI	Southbridge	Smart Card interface	Ext INT source
[47]	UART3	Southbridge	UART3	Ext INT source
[46]	UART2	Southbridge	UART2	Ext INT source
[45]	UART1	Southbridge	UART1	Ext INT source
[44]	UART0	Southbridge	UART0	Ext INT source
[43]	SSP	Southbridge	Synchronous serial port	Ext INT source
[42]	RTC	Southbridge	Real time clock	Ext INT source

Table 4-44 GIC interrupt allocation (continued)

INT ID	Interrupt	Source	Description	From
[41]	Reserved	_	-	Ext INT source
[40]	GPIO2	Southbridge	GPIO controller	Ext INT source
[39]	GPIO1	Southbridge	GPIO controller	Ext INT source
[38]	GPIO0	Southbridge	GPIO controller	Ext INT source
[37]	Timer 2-3	Southbridge	Timers 2 and 3	Ext INT source
[36]	Timer 0-1	Southbridge	Timers 0 and 1	Ext INT source
[35]	Reserved	-	-	Ext INT source
[34]	Reserved	-	-	Ext INT source
[33]	S/W interrupt	Southbridge	Software interrupt	Ext INT source
[32]	Watchdog0	Southbridge	Watchdog timer 0	Ext INT source
[31:16]	GIC	Southbridge	reserved for GIC software interrupts	-
[15:0]	GIC	Southbridge	Software interrupts	-

a. Ext INT = External Interrupt sources

4.11.2 Generic interrupt controller registers

This section describes the GIC programming registers.

Memory map

To access a GIC register, use the base address for the specific GIC listed in Table 4-45 together with the offset value for the specific CPU interface register listed in Table 4-46 or the specific Distributor register listed in Table 4-55 on page 4-76.

Table 4-45 Interrupt control register addresses

Registers	Base Address
PB-A8 GIC0 CPU interface registers	0x1E000000
PB-A8 GIC0 distributor registers	0x1E001000
PB-A8 GIC1 CPU interface registers	0x1E010000
PB-A8 GIC1 distributor registers	0x1E011000
PB-A8 GIC2 CPU interface registers	0x1E020000
PB-A8 GIC2 distributor registers	0x1E021000
PB-A8 GIC3 CPU interface registers	0x1E030000
PB-A8 GIC3 distributor registers	0x1E031000

CPU Interface registers

The CPU interface registers address offset values are listed in Table 4-46.

Table 4-46 CPU interface registers address offset values

Register	Offset Address
CPU control	0×000
Priority mask	0x004
Binary point	0x008
Interrupt acknowledge	0x00C

Table 4-46 CPU interface registers address offset values (continued)

Register	Offset Address
End of interrupt	0x010
Running interrupt	0x014
Highest pending interrupt	0x018

CPU control register

The CPU control register is shown in Figure 4-28.

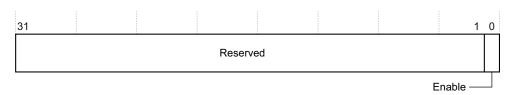


Figure 4-28 CPU control register

The function of the register bits are listed in Table 4-47.

Table 4-47 CPU control register

Bits	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	-	0×0000000	Reserved
[3:2]	Write ignored, read as zero	-	b00	
[0]	Read/Write	Enable	b0	b0 = disable the CPU interface for this GIC b1 = enable the CPU interface for this GIC

Priority mask register

The Priority mask register is shown in Figure 4-29.

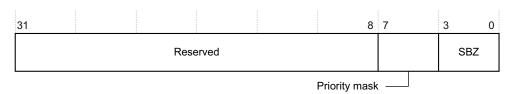


Figure 4-29 Priority mask register

The function of the register bits are listed in Table 4-48.

Table 4-48 Priority mask

Bits	Access	Name	Reset	Description
[31:8]	Write ignored, read as zero	_	0x000000	Reserved
[7:4]	Read/Write	Priority mask	0x0	The Priority mask is used to prevent interrupts from being sent to the processor. The CPU Interface asserts an an interrupt request if the priority of the highest pending interrupt sent by the Distributor is greater than the priority set in the Priority mask field. For example: 0x0 means all interrupts are masked. A Priority mask value of 0xF means interrupts with priority 0xF are masked but interrupts with higher priority values 0x0 to 0xE are not masked.
[3:0]	Write ignored, read as zero	-	0x0	Reserved

Binary point register

The Binary point register is shown in Figure 4-30.

Figure 4-30 Binary point register

The function of the register bits are listed in Table 4-49.

Table 4-49 Binary point

Bits	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	_	0x0000000	Reserved
[3]	Write ignored, read as zero	_	b0	Reserved
[2:0]	Read/Write	Binary point	b011	Sets the position of a 'binary point' that controls which bits of an interrupt's priority are compared for pre-emption purposes. This allows software to adjust the level of interrupt pre-emption in the system.

The Binary point register bit assignments are listed in Table 4-50.

Table 4-50 Binary Point bit values assignment

Bit value	Meaning
b011	All priority bits are compared for pre-emption
b100	Only bits [7:5] of priority are compared for pre-emption
b101	Only bits [7:6] of priority are compared for pre-emption
b110	Only bit [7] of priority is compared for pre-emption
b111	No pre-emption is performed

_____Note _____

Writing a value not listed in Table 4-50 on page 4-70 has the same effect as writing b011.

An example of Binary point register operation is shown in Figure 4-31.

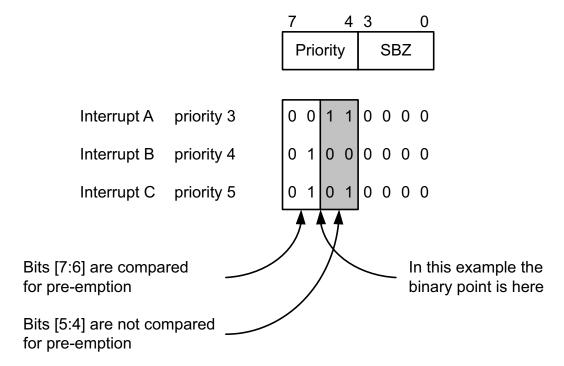


Figure 4-31 Binary point example

In this example there are three interrupts A, B, C that use 4 priority bits, and the Binary point register is set to 0x00000005 so the *binary point* is set between bit-6 and bit-5.

Zero (b0000) is the highest priority, so A is a higher priority interrupt than B and C. For pre-emption, any bits to the right of the *binary point* are ignored, so A can interrupt B or C, but B cannot interrupt C.

If interrupt A is active and interrupts B and C are pending, when A has completed B will be taken as it has a higher priority than C.

Interrupt acknowledge

The Interrupt acknowledge register is shown in Figure 4-32.

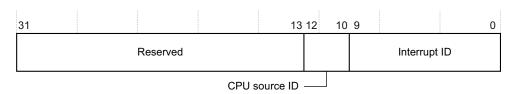


Figure 4-32 Interrupt acknowledge register

The function of the register bits are listed in Table 4-51.

Table 4-51 Interrupt acknowledge

Bits	Access	Name	Reset	Description
[31:16]	Write ignored, read as zero	_	0x0000	Reserved
[15:13]	Write ignored, read as zero	-	b00	Reserved
[12:10]	Read-only	CPU source ID	b000	Reserved for multi-processor use
[9:0]	Read-only	Interrupt ID	b1111111111	The processor acquires the interrupt number by reading this register from the interrupting GIC. Pre-empted interrupts are recorded as active.

—— Note ———

In the event that interrupt priorities are changed before the processor reads the interrupt number, and the interrupt has become a lower priority, the interrupt number returned is 1023 to indicate a spurious interrupt.

End of interrupt

The End of interrupt register is shown in Figure 4-33.

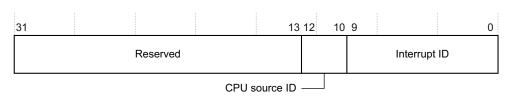


Figure 4-33 End of interrupt register

The function of the register bits are listed in Table 4-52.

Table 4-52 End of interrupt

Bits	Access	Name	Reset	Description
[31:13]	WriteIgnored	-	-	Reserved
[12:10]	Write-only	CPU source ID	-	Reserved for multi-processor use
[9:0]	Write-only	Interrupt ID	-	When the interrupt has been completed by the processor, it writes the interrupt number to this register in the interrupting GIC.

Running interrupt

The Running interrupt register is shown in Figure 4-34.

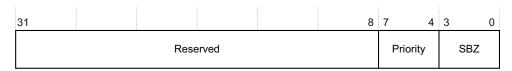


Figure 4-34 Running interrupt register

The function of the register bits are listed in Table 4-53.

Table 4-53 Running interrupt

Bits	Access	Name	Reset	Description
[31:8]	Read-only	_	0x000000	Reserved
[7:4]	Read-only	Priority	0xF	Contains the priority level of the currently running interrupt.
[3:0]	Read-only	_	0x0	Reserved

Highest pending interrupt

The Highest pending interrupt register is shown in Figure 4-35.

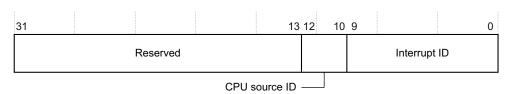


Figure 4-35 Highest pending interrupt register

The function of the register bits are listed in Table 4-54.

Table 4-54 Highest pending interrupt

Bits	Access	Name	Reset	Description
[31:16]	Write ignored, read as zero	_	0×0000	Reserved
[15:13]	Write ignored, read as zero	_	b000	Reserved
[12:10]	Read-only	CPU source ID	b000	Reserved for multi-processor use
[9:0]	Read-only	Interrupt ID	b1111111111	The processor acquires the interrupt number of the highest pending interrupt being presented to the CPU Interface by the Distributor. If no interrupt is Pending then the Interrupt ID returned is 1023, indicating a spurious interrupt.

Distribution registers

The Distribution registers address offset values are listed in Table 4-55. See *Interrupt control register addresses* on page 4-67 for each GICs Distributor base address.

Table 4-55 Distribution registers address offset values

Distribution Register	Offset Address
Distributor control	0×000
Controller type	0x004
Reserved	0x008 — 0x0FC
Set-enable0 a	0x100
Set-enable1	0x104
Set-enable2	0x108
Reserved	0x10C - 0x17C
Clear-enable0 a	0x180
Clear-enable1	0×184
Clear-enable2	0x188
Reserved	0x18C — 0x1FC
Set-pending0 a	0x200
Set-pending1	0x204
Set-pending2	0x208
Reserved	0x20C — 0x27C
Clear-pending0 a	0x280
Clear-pending1	0x284
Clear-pending2	0x288
Reserved	0x28C — 0x2FC
Active0 a	0x300
Active1	0x304

Table 4-55 Distribution registers address offset values (continued)

Distribution Register	Offset Address
Active2	0x308
Reserved	0x30C - 0x3FC
Priority	0x400 — 0x45C
Reserved	0x460 — 0x7FC
CPU targets	0x800 — 0x85C
Reserved	0x860 -0xBFC
Configuration	0xC00 — 0xC14
Reserved	0xC18 — EFC
Software interrupt	0xF00
Reserved	0xF04 — 0xFFC

a. Private on PB-A8.

Distributor control register

The Distributor control register is shown in Figure 4-36.

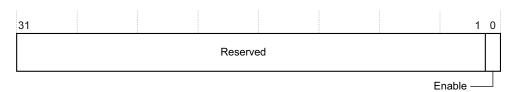


Figure 4-36 Distributor control register

The function of the register bits are listed in Table 4-56.

Table 4-56 Distributor control

Bits	Access	Name	Reset	Description
[31:4]	Write ignored, read as zero	_	0×0000000	Reserved
[3:2]	Write ignored, read as zero	_	b00	Reserved
[0]	Read/Write	Enable	b0	b0 = interrupts are disable for this GIC b1 = interrupts are enabled for this GIC

Controller type register

The Controller type register is shown in Figure 4-37.

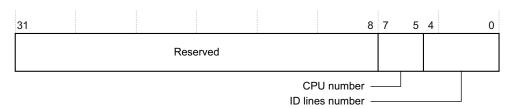


Figure 4-37 Controller type register

The function of the register bits are listed in Table 4-57.

Table 4-57 Controller type

Bits	Access	Name	Reset	Description
[31:8]	Write ignored, read as zero	-	0×000000	Reserved
[7:5]	Read-only	CPU number	b000	Fixed value indicating a single CPU is serviced by this GIC.
[4:0]	Read-only	ID lines number	b00010	Fixed value indicating 64 external interrupt input lines are available for this GIC.

Set-enable0 register

The Set-enable0 register at address offset 0x100 is reserved for private use in the PB-A8.

Set-enable1 register

The Set-enable1 register is shown in Figure 4-38.

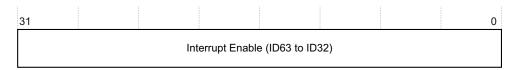


Figure 4-38 Set-enable1 register

The function of the register bits are listed in Table 4-58.

Table 4-58 Set-enable1

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Enable	0x00000000	Read this register to determine which interrupts are enabled. Bits 0 to 31 correspond to PB-A8 interrupt input lines 32 to 63 respectively. A bit set to 1 indicates an enabled interrupt. Write a 1 to a bit to enable the corresponding interrupt. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

____ Note _____

There are a number of PB-A8 reserved interrupt input lines that should not be enabled using the Set-enable1 register as the result will be unpredictable. Table 4-59 on page 4-81 lists the PB-A8 reserved interrupt input lines for the corresponding Set-enable1 register bit.

Table 4-59 Reserved interrupts

Set-enable1Bit	Reserved Interrupt
[2]	34
[3]	35
[9]	41
[22]	54
[25]	57
[27]	59
[30]	62
[31]	63

Set-enable2 register

The Set-enable2 register is shown in Figure 4-39.

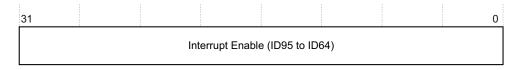


Figure 4-39 Set-enable2

The function of the register bits are listed in Table 4-60.

Table 4-60 Set-enable2

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Enable	0x00000000	Read this register to determine which interrupts are enabled. Bits 0 to 31 correspond to PB-A8 interrupt input lines 64 to 95 respectively. A bit set to 1 indicates an enabled interrupt. Write a 1 to a bit to enable the corresponding interrupt. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

There are a number of PB-A8 reserved interrupt input lines that should not be enabled using the Set-enable2 register as the result will be unpredictable. Table 4-61 lists the PB-A8 reserved interrupt input lines for the corresponding Set-enable2 register bit.

Table 4-61 Reserved interrupts

Set-enable2 Bit	Reserved Interrupt
[11]	75
[12]	76
[13]	77
[14]	78

Clear-enable0 register

The Clear-enable0 register at address offset 0x180 is reserved for private use in the PB-A8.

Clear-enable1 register

The Clear-enable1 register is shown in Figure 4-40.

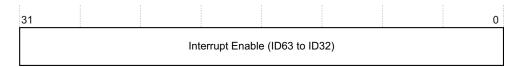


Figure 4-40 Clear-enable1 register

The function of the register bits are listed in Table 4-62.

Table 4-62 Clear-enable1

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Enable	0x00000000	Read this register to determine which interrupts are cleared. Bits 0 to 31 correspond to PB-A8 interrupt input lines 32 to 63 respectively. A bit set to 0 indicates a cleared interrupt. Write a 1 to a bit to clear the corresponding interrupt. Use Read-Modify-Write to maintain reserved interrupt states. See GIC interrupt allocation on page 4-62 for details of the PB-A8 external interrupt sources.

Clear-enable2 register

The Clear-enable2 register is shown in Figure 4-41.

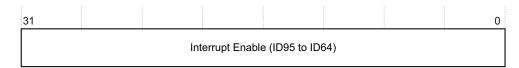


Figure 4-41 Clear-enable2 register

The function of the register bits are listed in Table 4-63.

Table 4-63 Clear-enable2

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Enable	0x00000000	Read this register to determine which interrupts are cleared. Bits 0 to 31 correspond to PB-A8 interrupt input lines 64 to 95 respectively. A bit set to 0 indicates a cleared interrupt. Write a 1 to a bit to clear the corresponding interrupt. Use Read-Modify-Write to maintain reserved interrupt states. See GIC interrupt allocation on page 4-62 for details of the PB-A8 external interrupt sources.

Set-pending0 register

The Set-pending0 register at address offset 0x200 is reserved for private use in the PB-A8.

Set-pending1 register

The Set-pending1 register is shown in Figure 4-42.

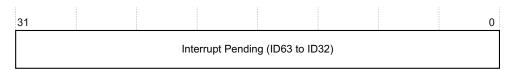


Figure 4-42 Set-pending1 register

The function of the register bits are listed in Table 4-64.

Table 4-64 Set-pending1

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Pending	0x00000000	Read this register to determine which interrupts are pending. Bits 0 to 31 correspond to PB-A8 interrupt input lines 32 to 63 respectively. A bit set to 1 indicates a pending interrupt. Write a 1 to a bit to set the corresponding interrupt into <i>Pending</i> state. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Set-pending2 register

The Set-pending2 register is shown in Figure 4-43.

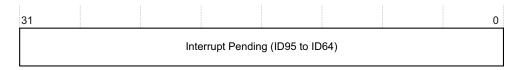


Figure 4-43 Set-pending2 register

The function of the register bits are listed in Table 4-65.

Table 4-65 Set-pending2

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Pending	0x00000000	Read this register to determine which interrupts are pending. Bits 0 to 31 correspond to PB-A8 interrupt input lines 64 to 95 respectively. A bit set to 1 indicates a pending interrupt. Write a 1 to a bit to set the corresponding interrupt into <i>Pending</i> state. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Clear-pending0 register

The Clear-pending0 register at address offset 0x280 is reserved for private use in the PB-A8.

Clear-pending1 register

The Clear-pending1 register is shown in Figure 4-44.

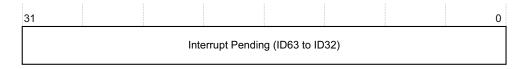


Figure 4-44 Clear-pending1 register

The function of the register bits are listed in Table 4-66.

Table 4-66 Clear-pending1

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Pending	0x00000000	Read this register to determine which interrupts are pending. Bits 0 to 31 correspond to PB-A8 interrupt input lines 32 to 63 respectively. A bit set to 1 indicates a pending interrupt. Write a 1 to a bit to set the corresponding interrupt into the <i>Inactive</i> state. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Clear-pending2 register

The Clear-pending2 register is shown in Figure 4-45.

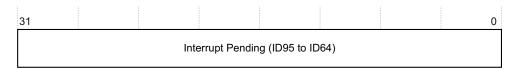


Figure 4-45 Clear-pending2 register

The function of the register bits are listed in Table 4-67.

Table 4-67 Clear-pending2

Bits	Access	Name	Reset	Description
[31:0]	Read/Write	Interrupt Pending	0x00000000	Read this register to determine which interrupts are pending. Bits 0 to 31 correspond to PB-A8 interrupt input lines 64 to 95 respectively. A bit set to 1 indicates a pending interrupt. Write a 1 to a bit to set the corresponding interrupt into the <i>Inactive</i> state. Use Read-Modify-Write to maintain reserved interrupt states. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Active0 register

The ActiveO register at address offset 0x300 is reserved for private use in the PB-A8.

Active1 register

The Active1 register is shown in Figure 4-46.

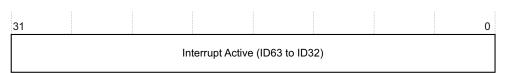


Figure 4-46 Active1 register

The function of the register bits are listed in Table 4-68.

Table 4-68 Active1

Bits	Access	Name	Reset	Description
[31:0]	Read-only	Interrupt Active	0×00000000	Read this register to determine which interrupts are active. Bits 0 to 31 correspond to PB-A8 interrupt input lines 32 to 63 respectively. A bit set to 1 indicates an interrupt is in the <i>Active</i> state. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Active2 register

The Active2 register is shown in Figure 4-47.

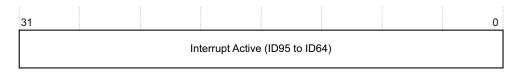


Figure 4-47 Active2 register

The function of the register bits are listed in Table 4-69.

Table 4-69 Active2

Bits	Access	Name	Reset	Description
[31:0]	Read-only	Interrupt Active	0x00000000	Read this register to determine which interrupts are active. Bits 0 to 31 correspond to PB-A8 interrupt input lines 64 to 95 respectively. A bit set to 1 indicates an interrupt is in the <i>Active</i> state. See <i>GIC interrupt allocation</i> on page 4-62 for details of the PB-A8 external interrupt sources.

Priority registers

There are 24 Priority registers. Each register holds the priority level for 4 interrupt IDs. Priority registers 0 to 7 at address offsets 0x400 to 0x41C are reserved for Interrupt IDs 0 to 31 that are for private use in the PB-A8. Priority registers 8 to 23 at address offsets 0x420 to 0x45C hold priority levels for Interrupt IDs 32 to 95 respectively. Priority registers 8 to 23 address offsets and Interrupt IDs are listed in Table 4-70.

Table 4-70 Priority register address offsets and Interrupt IDs

Priority Register	Address Offset	Interrupt ID
Priority8	0x420	ID32 – ID35
Priority9	0x424	ID36 – ID39
Priority10	0x428	ID40 – ID43
Priority11	0x42C	ID44 – ID47
Priority12	0x430	ID48- ID51
Priority13	0x434	ID52 – ID55
Priority14	0x438	ID56- ID59
Priority15	0x43C	ID60 – ID63
Priority16	0x440	ID64 – ID67
Priority17	0x444	ID68 – ID71
Priority18	0x448	ID72 – ID75
Priority19	0x44C	ID76 – ID79
Priority20	0x450	ID80 – ID83

Table 4-70 Priority register address offsets and Interrupt IDs (continued)

Priority Register	Address Offset	Interrupt ID
Priority21	0x454	ID84 – ID87
Priority22	0x458	ID88 – ID91
Priority23	0x45C	ID92 – ID95

The Priority register fields are shown in Figure 4-48.

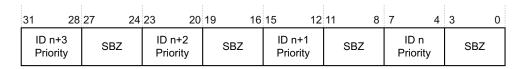


Figure 4-48 Priority register

_____ Note _____

Priority is a 4-bit number where zero is the highest priority. Future implementations of the GIC may use 8-bits for priority so the priority is stored in the most significant bits of an 8-bit field.

Each 32-bit register holds the priority for 4 interrupts.

For example, interrupt ID 32 - 35 are stored in Priority8 register at address offset 0x420:

- Interrupt ID 32 is stored in bits [7:4], bits 3:0 are unused and set to zero
- Interrupt ID 33 is stored in bits [15:12], bits [11:8] are unused and set to zero
- Interrupt ID 34 is stored in bits [23:20], bits [19:16] are unused and set to zero
- Interrupt ID 35 is stored in bits [31:28], bits [27:24] are unused and set to zero.

CPU targets registers

There are 24 CPU targets registers. Each register holds the target CPU data for 4 interrupt IDs. CPU targets registers 0 to 7 at address offsets 0x800 to 0x81C are reserved for Interrupt IDs 0 to 31 that are for private use in the PB-A8. CPU targets registers 8 to 23 at address offsets 0x820 to 0x85C hold CPU targets data for Interrupt IDs 32 to 95 respectively. CPU targets registers 8 to 23 address offsets and Interrupt IDs are listed in Table 4-71.

Table 4-71 CPU targets register address offsets and Interrupt IDs

Priority Register	Address Offset	Interrupt ID
CPUtargets8	0x820	ID32 – ID35
CPUtargets9	0x824	ID36 – ID39
CPUtargets10	0x828	ID40 – ID43
CPUtargets11	0x82C	ID44 – ID47
CPUtargets12	0x830	ID48- ID51
CPUtargets13	0x834	ID52 – ID55
CPUtargets14	0x838	ID56- ID59
CPUtargets15	0x83C	ID60 – ID63
CPUtargets16	0x840	ID64 – ID67
CPUtargets17	0x844	ID68 – ID71
CPUtargets18	0x848	ID72 – ID75
CPUtargets19	0x84C	ID76 – ID79
CPUtargets20	0x850	ID80 – ID83
CPUtargets21	0x854	ID84 – ID87
CPUtargets22	0x858	ID88 – ID91
CPUtargets23	0x85C	ID92 – ID95

The CPU targets register fields are shown in Figure 4-49 on page 4-91.

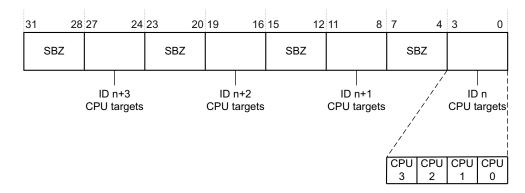


Figure 4-49 CPU targets register

Each register can store a bit-map for 4 Interrupt IDs x 4 CPUs. The GICs in the PB-A8 have been implemented for one target CPU (CPU 0) so the CPU target registers are initialized to 0x01010101.

Configuration register

There are 6 Configuration registers. Each register holds the configuration data for 16 interrupt IDs. Configuration registers 0 and 1 at address offsets 0xC00 and 0xC04 are reserved for Interrupt IDs 0 to 31 that are for private use in the PB-A8. Configuration registers 2 to 5 at address offsets 0xC08 to 0xC14 hold configuration data for Interrupt IDs 32 to 95 respectively. Configuration registers 2 to 5 address offsets and Interrupt IDs are listed in Table 4-72.

Table 4-72 Configuration register address offsets

Configuration register	Address Offset	Interrupt IDs
Configuration2	0xC08	ID32 – ID47
Configuration3	0xC0C	ID48 – ID63
Configuration4	0xC10	ID64 – ID79
Configuration5	0xC14	ID80 – ID95

The Configuration register fields are shown in Figure 4-50 on page 4-92.

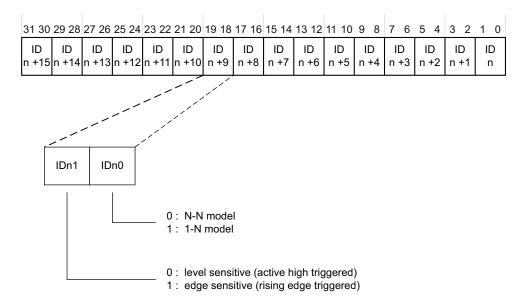
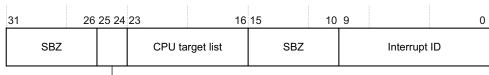


Figure 4-50 Configuration register

The Interrupt Configuration registers have 2 bits IDn[1:0] for each interrupt ID n. These two bits set each interrupt to be level or edge sensitive, and determine which *software model* is used:

1-N model Only one CPU takes the interrupt. An interrupt that is taken up by any CPU clears the pending status on all CPUs. This is the only model available for the PB-A8 GIC implementation as there is a single CPU.


N-N model This model has been deprecated and should not be used.

For example, for Interrupt ID 32 set bits [1:0] of Configuration2 register at address offset 0xC08 to b01 for level-sensitive or b11 for edge sensitive. The default is all interrupts are level-sensitive, set by the Boot Monitor writing 0x55555555 to the Configuration registers.

Software interrupt register

This is a write-only register. Write to this register to trigger an interrupt ID32 – ID95.

The Software interrupt register fields are shown in Figure 4-51.

Target list filter -

Figure 4-51 Software interrupt register

The function of the register bits are listed in Table 4-73.

——— Caution ————

If you attempt to trigger an interrupt with an ID larger than the number of supported interrupts, or that references a CPU that is not present, there can be unpredictable results in the Distributor.

Table 4-73 Software interrupt

Bits	Access	Name	Reset	Description
[31:26]	Write-only	_	_	Reserved
[25:24]	Write-only	Target list filter	_	The filter options are: 00: Interrupt sent to CPUs listed in CPU target list. 01: CPU target list is ignored, interrupt is sent to all but the requesting CPU. 10: CPU target list is ignored, interrupt is sent to the requesting CPU arget list is ignored, interrupt is sent to the requesting CPU only. 11: Reserved. Valid entries for the PB-A8 are: b00 if CPU target list = b00000001 b10 otherwise.

Table 4-73 Software interrupt (continued)

Bits	Access	Name	Reset	Description
[23:16]	Write-only	CPU target list	-	There can be up to 8 CPU targets. PB-A8 has 1 CPU target only. Valid entry is: b00000001 (CPU0)
[15:10]	Write-only	_	_	Reserved
[9:0]	Write-only	Interrupt ID	-	ID of interrupt to be triggered. Valid range for the PB-A8 is ID32 to ID95: b0000100000 to b0001011111

For example, write 0x02000021 to the PB-A8 Software interrupt register to trigger Interrupt ID 33. Bits [9:0] contain the interrupt ID, bits [25:24] are set to b10 to ignore the list of CPU targets in bits [23:16]. The remaining bits should be set to zero. You should see the *Set-pending1* register at offset 0x204 set to 0x00000002.

4.11.3 Handling interrupts

This section describes interrupt handling and clearing in general.

For examples of interrupt detection and handling, see the platform library code supplied on the CD.

All interrupts are routed to all four GICs.

The sequence to determine and clear an interrupt is:

- If required, stack the workspace. If interrupt pre-emption is used, also stack R14 and SPSR.
- 2. Determine interrupt ID by reading the Interrupt Ack Register of the interface.
- 3. If interrupt pre-emption is required, re-enable interrupts by setting CPSR bit 7.

——— Caution —	
---------------	--

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save the state for the new processor mode before branching to a nested subroutine or C function.

See 6.7.3 Reenntrant interrupt handlers in the RealView Compilation Tools Developer Guide for details.

- 4. Jump to the interrupt service routine. For hardware-triggered interrupts, the service routine must clear the interrupt in the peripheral by setting the appropriate bit in the peripheral interrupt-control register.
- 5. Write the interrupt number to the End of Interrupt Register.
- 6. Restore the workspace.
- 7. Return from the interrupt.

The peripheral might contain its own interrupt mask and clear registers that must be configured before an interrupt is enabled.

4.12 Keyboard and Mouse Interface, KMI

The PL050 PrimeCell PS2 *Keyboard/Mouse Interface* (KMI) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited. Two KMIs are present on the baseboard:

KMI0 is used for keyboard inputKMI1 is used for mouse input.

Table 4-74 KMI implementation

Property	Value	
Location	Southbridge	
Memory base address	0x10006000 KMI 0 (keyboard) 0x10007000 KMI 1 (mouse)	
Interrupt	52 KMI 0 53 KMI 1	
DMA	-	
Release version	ARM KMI PL050 r1p0	
Reference documentation	ARM PrimeCell PS2 Keyboard/Mouse Interface (PL050) Technical Reference Manual	

4.13 MultiMedia Card Interface, MCI

The PL180 PrimeCell *MultiMedia Card Interface* (MCI) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited. The interface supports both Multimedia Cards and Secure Digital cards.

Table 4-75 MCI implementation

Property	Value	
Location	Southbridge	
Memory base address	0x10005000	
Interrupt	MCIa: 49MCIb: 50	
DMA	3	
Release version	ARM MCI PL180 r1p0	
Reference documentation	ARM PrimeCell Multimedia Card Interface (PL180) Technical Reference Manual	

The interrupts for the MCI card are managed by the GPIO 2 PrimeCell. See *General Purpose Input/Output*, *GPIO* on page 4-60.

4.14 AXI to PCI bridge

The AXI to PCI bridge is implemented in the Northbridge.

Table 4-76 AXI to PCI bridge implementation

Property	Value		
Location	Northbridge		
Memory base address	0x90000000 0x60000000 (reserved for PCI expansion)		
Interrupt	 P_nINT[0]: 82 P_nINT[1]: 83 P_nINT[2]: 84 P_nINT[3]: 85 P_nINT[4]: 86 P_nINT[5]: 87 P_nINT[6]: 88 P_nINT[7]: 89 		
DMA	None. Memory to memory transfers can be set up in the DMAC.		
Release version	NEC (AXI2PCI)		
Reference documentation	-		

4.14.1 Addresses

The windows that provide access to the PCI expansion bus are listed in Table 4-77.

Table 4-77 PCI bus memory map

Usage	Address
AXI2PCI	0x90040000
PCI I/O window	0x90050000 to 0x9005FFFF
PCI Memory window	0xA0000000 to 0xBFFFFFFF

The AXI to PCI bridge enables you to use the PB-A8 with third-party PCI or PCI-Express expansion cards. PB-A8 functions as a PCI host, that is, it generates clocks to the PCI or PCI Express card.

The Northbridge AXI to PCI bridge recognizes accesses to addresses 0x90000000 to 0xBFFFFFFF within the memory map as being intended for a target within PCI address space. There is also an additional region from 0x60000000 to 0x6FFFFFFF that is reserved for PCI expansion if required.

Note -	
--------	--

Only one PCI bus may use the I/O window at a time, as it is 4KB aligned.

PCI bridge initialization and configuration routines are included as part of the selftest suite on the Versatile Family CD.

4.14.2 Interrupts

Table 4-78 lists the PCI slot interrupt mappings to the GICs primary interrupts.

Table 4-78 PCI slot interrupt mappings

Davimbaval	Dulmanus	DOLCI-+ A	DOLCIAL D
Peripheral	Primary	PCI Slot A	PCI Slot B
P_nINT[0]	82	P_nINTD	P_nINTC
P_nINT[1]	83	P_nINTA	P_nINTD
P_nINT[2]	84	P_nINTB	P_nINTA
P_nINT[3]	85	P_nINTD	P_nINTB

The PCI to PCI Express bridge (PEX8114) provides INTx emulation. Table 4-79 lists the PCI Express virtual interrupt mappings to the GICs primary interrupts.

Table 4-79 PCI virtual interrupt mappings

Peripheral	Primary	PCI Express
P_nINT[4]	86	P_nINTA
P_nINT[5]	87	P_nINTB
P_nINT[6]	88	P_nINTC
P_nINT[7]	89	P_nINTD

4.15 Real Time Clock, RTC

The PL031 PrimeCell *Real Time Clock Controller* (RTC) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

A counter in the RTC is incremented every second. The RTC can therefore be used as a basic alarm function or long time-base counter.

The current value of the clock can be read at any time or the RTC can be programmed to generate an interrupt after counting for a programmed number of seconds. The interrupt can be masked by writing to the interrupt match set or clear register.

Table 4-80 RTC implementation

Property	Value
Location	Southbridge
Memory base address	0x10017000
Interrupt	42
DMA	-
Release version	ARM RTC PL031 r1p0
Reference documentation	ARM PrimeCell Real Time Clock (PL031) Technical Reference Manual

_____Note _____

There is also a separate Time-of-Year (TOY) implemented in an external RTC chip (DS1338) on the baseboard. The external RTC can be accessed by the serial bus interface (see *Two-wire serial bus interface*, *SBCon* on page 4-101). For details on the programming interface to the Time-of-Year RTC, see the data sheet for the Maxim DS1338 integrated circuit (www.maxim-ic.com).

4.16 Two-wire serial bus interface, SBCon

Two custom two-wire serial bus interfaces (SBCon 0 and SBCon 1) are implemented in the Southbridge.

SBCon 0 provides access to:

- the serial EEPROM on PISMO static memory expansion boards
- the Maxim DS1338 RTC on the baseboard.

SBCon 1 provides access to:

• the *Digital Data Channel* (DDC) of the external display connected to the DVI connector on the rear panel.

Table 4-81 Serial bus implementation

Property	Value	
Location	Southbridge	
Memory base address	SBCon 0: 0x10002000 SBCon 1: 0x10016000	
Interrupt	_	
DMA	-	
Release version	Custom logic	
Reference documentation	 Two-wire serial bus interface on page 3-31 Appendix C Memory Expansion Boards PISMO Specification Version 1.0 (www.pismoworld.org) data sheet for the Maxim DS1338 RTC (www.maxim-ic.com) VESA DDC Specification Version 3.0 	

The registered device addresses are listed in Table 4-82

Table 4-82 Serial interface device addresses

Device	Write address	Read address	Description
PISMO (static memory module)	0xA2	0xA3	Identifies the type of memory on the board and how it is configured.
TOY (DS1338 RTC)	0xD0	0xD1	Reads time data and writes control data to the RTC.
DVI (external display)	display dependant	display dependant	Reads external display capabilities at the DVI connector. Can control display settings of <i>E-DDC</i> displays.

The registers listed in Table 4-83 and Table 4-84 on page 4-103 control the serial bus interfaces.

Table 4-83 SBCon 0 serial bus register

Address	Name	Access	Description
0x10002000	SB_CONTROL	Read	Read serial control bits: Bit [0] is SCL Bit [1] is SDA
0x10002000	SB_CONTROLS	Write	Set serial control bits: Bit [0] is SCL Bit [1] is SDA
0x10002004	SB_CONTROLC	Write	Clear serial control bits: Bit [0] is SCL Bit [1] is SDA

Table 4-84 SBCon 1 serial bus register

Address	Name	Access	Description
0x10016000	SB_CONTROL	Read	Read serial control bits: Bit [0] is SCL
			Bit [1] is SDA
0x10016000	SB_CONTROLS	Write	Set serial control bits:
			Bit [0] is SCL
			Bit [1] is SDA
0x10016004	SB_CONTROLC	Write	Clear serial control bits:
			Bit [0] is SCL
			Bit [1] is SDA

____ Note _____

SDA is an open-collector signal that is used for sending and receiving data. Set the output (sending) value HIGH before reading the current value.

Software must manipulate the **SCL** and **SDA** bits directly to access the data in the three devices. See the \firmware\examples directory on the CD for example code for reading the EEPROM that is on the memory expansion board.

4.17 Smart Card Interface, SCI

The PL131 PrimeCell *Smart Card Interface* (SCI) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-85 SCI implementation

Property	Value
Location	Southbridge
Memory base address	0x1000E0000
Interrupt	48
DMA	7 SCI transmit 6 SCI receive Note You must set DMAPSR = b00 in the SYS_DMAPSR register to select this peripheral for DMA access.
Release version	ARM SCI PL131 r1p0
Platform Library support	No support provided
Reference documentation	ARM SCI PrimeCell (PL131) Technical Reference Manual ARM DDI 0228

See the self-test software that is supplied on the CD accompanying the PB-A8 for an example of detecting a SIM card response to a reset.

4.18 Synchronous Serial Port, SSP

The PL022 PrimeCell *Synchronous Serial Port* (SSP) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-86 SSP implementation

Property	Value
Location	Southbridge
Memory base address	0x1000D000
Interrupt	43
DMA	1 SSP transmit 0 SSP receive Note You must set DMAPSR = b01 in the SYS_DMAPSR register to select this peripheral for DMA access.
Release version	ARM SSP PL022 r1p0
Platform Library support	No support provided
Reference documentation	ARM PrimeCell Synchronous Serial Port Controller (PL022) Technical Reference Manual ARM DDI 0194

4.19 Static Memory Controller, SMC

The PrimeCell *Static Memory Controller* (SMC) is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited.

Table 4-87 SMC implementation

Property	Value
Location	Northbridge
Memory base address	0x100E1000
Interrupt	-
DMA	-
Release version	ARM SMC PL354 r0p0
Reference documentation	ARM PrimeCell Static Memory Controller (PL350 series) Technical Reference Manual, Configuration and initialization on page 4-9

4.20 Timers

The SP804 Dual-Timer module is an AMBA compliant SoC peripheral that is developed and tested by ARM Limited.

The module is an AMBA slave module and connects to the *Advanced Peripheral Bus* (APB). The Dual-Timer module consists of two programmable 32/16-bit down counters that can generate interrupts on reaching zero.

Table 4-88 Timer implementation

Property	Value	
Location	Southbridge	
Memory base address	• Timer 0-1: 0x10011000	
	• Timer 2-3: 0x10012000	
	• Timer 4-5: 0x10018000	
	• Timer 6-7: 0x10019000	
Interrupt	• Timer 0-1: 36	
	• Timer 2-3: 37	
	• Timer 4-5: 73	
	• Timer 6-7: 74	
DMA	-	
Release version	ARM Dual-Timer SP804 r1p2	
Platform Library support	timer_enable Enables a timer with a given period and mode	
	timer_disable Disables the defined timer	
	timer_interrupt_clear Clears the timer interrupt	
Reference documentation	ARM Timer Module (SP804) Technical Reference Manual ARM DDI 0271	

At reset, the timers are clocked by a 32.768kHz reference from an external oscillator module. Use the System Controller to change the timer reference from 32.768kHz to 1MHz.

4.21 **UART**

The PL011 PrimeCell UART is an AMBA compliant SoC peripheral that is developed, tested, and licensed by ARM Limited. The 24MHz reference clock to the UARTs is from the crystal oscillator that is part of OSC0.

Table 4-89 UART implementation

Property	Value	
Location	Southbridge	
Memory base address	• UART 0: 0x10009000	
	• UART 1: 0x1000A000	
	• UART 2: 0x1000B000	
	• UART 3: 0x1000C000	
Interrupt	• UART 0: 44	
	• UART 1: 45	
	• UART 2: 46	
	• UART 3: 47	
DMA	• UART 0 TX: 7	
	• UART 0 RX: 6	
	• UART 1 TX: 5	
	• UART 1 RX: 4	
	• UART 2 TX: 3	
	• UART 2 RX: 2	
	Note	
	You must set DMAPSR = b01 in the SYS_DMAPSR register to select this peripheral for DMA access.	
Release version	ARM UART PL011 r1p3	
Platform Library support	_platform_uart_entry Handles all channel operations for the UART channels, reading characters, writing characters, and opening the channel.	
Reference documentation	PrimeCell UART (PL011) Technical Reference Manual ARM DDI 0183	

4.21.1 PrimeCell Modifications

The PrimeCell UART varies from the industry-standard 16C550 UART device as follows:

- receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8
- the internal register map address space, and the bit function of each register differ
- the deltas of the modem status signals are not available
- 1.5 stop bits not available (1 or 2 stop bits only are supported)
- no independent receive clock.

4.22 USB interface

The USB interface is provided by a Philips ISP1761 controller that provides a standard USB host controller and an *On-The-Go* (OTG) dual role device controller. The USB host has two downstream ports. The OTG can function as either a host or slave device.

Table 4-90 USB implementation

Property	Value				
Location	Baseboard (an ISP1761 chip)				
Memory base address	0x4F000000 (mapped onto the SMC bus)				
Interrupt	61				
DMA	There are two DMA channels available for the USB controller. These are selectable as 0 or 1. See <i>Single Master Direct Memory Access Controller</i> ; <i>SMDMAC</i> on page 4-57. Note You must set DMAPSR = b00 in the SYS_DMAPSR register to select this peripheral for DMA access.				
Release version	Custom interface to external controller				
Reference documentation	ISP1761 Hi-Speed Universal Serial Bus On-The-Go controller Product data sheet. See also USB Interface on page 3-33, and the USB test program supplied on the CD.				

The ISP1761 has the following features:

- fully compliant to the USB Rev. 2.0 specification
- fully compliant to the USB On-The-Go specification
- includes high-performance USB peripheral controller with integrated Serial Interface Engine, FIFO memory, and transceiver
- configurable number of downstream and upstream hosts or functions
- USB host is USB 2.0 compliant and supports 480Mb/s, 12Mb/s, and 1.5Mb/s
- programmable interrupts and DMA
- FIFO and 63KB on-chip RAM for USB.

The ISP1761 register base addresses are shown in Table 4-91.

Table 4-91 USB controller base address

Address	Description		
0x4F000000	Host controller EHCI registers		
0x4F00200	Peripheral controller registers		
0x4F00300	Host controller configuration registers		
0x4F000370	OTG controller registers		
0x4F000400	Host controller buffer memory (63KB)		

____ Note ____

The suspend/wakeup signals for the device and host controllers are connected to GPIO2 (see *General Purpose Input/Output, GPIO* on page 4-60).

4.23 Watchdog

The SP805 Watchdog module is an AMBA compliant SoC peripheral developed and tested by ARM Limited.

The module is an AMBA slave module and connects to the *Advanced Peripheral Bus* (APB). The Watchdog module consists of a 32-bit down counter with a programmable timeout interval that has the capability to generate an interrupt and a reset signal on timing out. It is intended to be used to apply a reset to a system in the event of a software failure.

Table 4-92 Watchdog implementation

Property	Value				
Location	Southbridge				
Memory base address	Watchdog 0: 0x1000F000Watchdog 1: 0x10010000				
Interrupt	Watchdog 0: 32Watchdog 1: 72				
DMA	-				
Release version	ARM WDOG SP805 r2p0				
Platform Library support	No support provided.				
Reference documentation	ARM Watchdog Controller (SP805) Technical Reference Manual				

_____Note _____

The Watchdog counter is disabled if the core is in debug state.

4.24 CompactFlash interface

The CompactFlash interface is a custom AMBA AHB compliant peripheral developed by ARM Limited.

The module is an AMBA slave module and connects to the *Advanced High-performance Bus* (AHB). The interface supports:

- True IDE Mode (16-bit)
- I/O Mode (data and task file register read and write access only).

Table 4-93 CompactFlash implementation

Property	Value			
Location	Southbridge			
Memory base address	 Access: 0x18000000 Access: 0x18000100 (alternative status and control registers) Control: 0x18000300 Expansion: 0x18000304 			
Interrupt	59			
DMA	=			
Release version	Custom logic			
Platform Library support	Yes			
Reference documentation	CF+ and CompactFlash Specification Revision 4.1			

4.24.1 CompactFlash Control Register, CF_CTRL

The CompactFlash control register at 0x18000300 provides control and status information for the inserted CF card.

Figure 4-52 shows the register bit allocations.

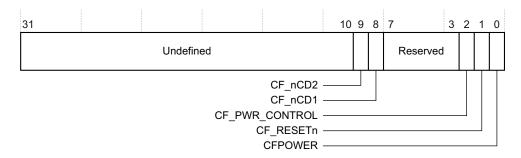


Figure 4-52 CF_CTRL Register

The function of the register bits are shown in

Table 4-94 CF_CTRL register bit assignments

Bits	Access	Name	Reset	Description
[31:12]	Write ignored, read as zero	-	0x00000	Undefined
[11:10]	Write ignored, read as zero	_	b00	Undefined
[9]	Read only	CF_nCD2	b1	Card Detection:
[8]	Read only	CF_nCD1	b1	b00: card insertedbx1: card not insertedb1x: card not inserted
[7:3]	Write ignored, read as zero	-	b00000	Reserved
[2]	Read/Write	CF_PWR_CONTROL	b0	Power Control: b0: determined by CFPOWER (bit 0) b1: determined by chip detect (CF card)
[1]	Read/Write	CF_RESETn	b0	Card Reset (active low)
[0]	Read/Write	CFPOWER	b0	Card Power: b0: no power applied to card b1: 3V3 applied to card

Appendix A Signal Descriptions

This appendix provides a summary of signals present on the PB-A8 connectors. It contains the following sections:

- *Compact Flash interface* on page A-2
- Audio CODEC interface on page A-6
- *MMC and SD card interface* on page A-7
- Keyboard and mouse interface on page A-9
- GPIO interface on page A-10
- *UART interface* on page A-11
- Synchronous Serial Port interface on page A-12
- Smart Card interface on page A-13
- Ethernet interface on page A-15
- USB interface on page A-16
- DVI display interface on page A-17
- RealView Logic Tile header connectors on page A-19
- *Test and debug connections* on page A-41.

A.1 Compact Flash interface

The PB-A8 provides a Compact Flash connector on the front panel that enables you to connect a CompactFlash Storage Card to the Compact Flash interface. See *Front panel layout* on page 3-5 for the connector location.

Figure A-1 shows the connector pin numbering.

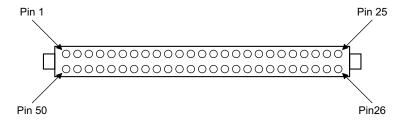


Figure A-1 Compact Flash connector pin numbering

The Compact Flash connector pinout specification supports three basic CompactFlash Storage Card modes:

- PC Card ATA using Memory Mode
- PC Card ATA using I/O Mode
- True IDE Mode

Some pin functions change dependant on the mode, and some also change dependant on the interface protocol used. For example, when PC Card I/O Mode is used, pin 34 has the following three protocol dependant functions:

~IORD	When I	Ultra	DMA	Protocol	is not	active:
~IUKD	w nen u	O Itra	DMA	Protocol	IS HOU	active

This is an I/O Read strobe generated by the host.

~HDMARDY When Ultra DMA Protocol DMA Read is active:

This signal indicates that the host is ready to receive Ultra DMA

data-in bursts.

HSTROBE When Ultra DMA Protocol DMA Write is active:

This signal is the data out strobe generated by the host.

_____Note _____

The PB-A8 CompactFlash interface provides limited support:

- True IDE Mode (16-bit)
- PC Card I/O Mode (data and task file register read and write access only).

PC Card Memory Mode is not supported.

Table A-1 lists the CompactFlash connector standard pinout. Refer to the CF+ & CF Specification Rev 4.1 for signal descriptions.

Table A-1 Compact Flash connector pinout

PC C	ard Memory Mo	ode	PC C	Card I/O Mode		True	IDE Mode	
Pin	Signal	Туре	Pin	Signal	Туре	Pin	Signal	Туре
1	GND		1	GND		1	GND	
2	D03	I/O	2	D03	I/O	2	D03	I/O
3	D04	I/O	3	D04	I/O	3	D04	I/O
4	D05	I/O	4	D05	I/O	4	D05	I/O
5	D06	I/O	5	D06	I/O	5	D06	I/O
6	D07	I/O	6	D07	I/O	6	D07	I/O
7	~CE1	I	7	~CE1	I	7	~CE0	I
8	A10	I	8	A10	I	8	A10	I
9	~OE	I	9	~OE	I	9	~ATA_SEL	I
10	A09	I	10	A09	I	10	A09	I
11	A08	I	11	A08	I	11	A08	I
12	A07	I	12	A07	I	12	A07	I
13	VCC		13	VCC		13	VCC	
14	A06	I	14	A06	I	14	A06	I
15	A05	I	15	A05	I	15	A05	I

Table A-1 Compact Flash connector pinout (continued)

PC C	ard Memory Mo	ode	PC C	Card I/O Mode		True	IDE Mode	
Pin	Signal	Туре	Pin	Signal	Туре	Pin	Signal	Туре
16	A04	I	16	A04	I	16	A04	I
17	A03	I	17	A03	I	17	A03	I
18	A02	I	18	A02	I	18	A02	I
19	A01	I	19	A01	I	19	A01	I
20	A00	I	20	A00	I	20	A00	I
21	D00	I/O	21	D00	I/O	21	D00	I/O
22	D01	I/O	22	D01	I/O	22	D01	I/O
23	D02	I/O	23	D02	I/O	23	D02	I/O
24	WP	O	24	~IOIS16	О	24	~IOCS16	0
25	~CD2	О	25	~CD2	0	25	~CD2	О
26	~CD1	O	26	~CD1	0	26	~CD1	0
27	D11	I/O	27	D11	I/O	27	D11	I/O
28	D12	I/O	28	D12	I/O	28	D12	I/O
29	D13	I/O	29	D13	I/O	29	D13	I/O
30	D14	I/O	30	D14	I/O	30	D14	I/O
31	D15	I/O	31	D15	I/O	31	D15	I/O
32	~CE2	I	32	~CE2	I	32	~CS1	I
33	~VS1	О	33	~VS1	O	33	~VS1	O
34	~IORD HSTROBE ~HDMARDY	I	34	~IORD HSTROBE ~HDMARDY	I	34	~IORD HSTROBE ~HDMARDY	I
35	~IOWR STOP	I	35	~IOWR STOP	I	35	~IOWR STOP	I
36	~WE	I	36	~WE	I	36	~WE	I
37	READY	О	37	~IREQ	О	37	INTRQ	О

Table A-1 Compact Flash connector pinout (continued)

PC C	ard Memory Mo	de	PC C	Card I/O Mode		True	IDE Mode	
Pin	Signal	Туре	Pin	Signal	Туре	Pin	Signal	Туре
38	VCC		38	VCC		38	VCC	
39	~CSEL	I	39	~CSEL	I	39	~CSEL	I
40	~VS2	О	40	~VS2	О	40	~VS2	O
41	RESET	I	41	RESET	I	41	RESET	I
42	~WAIT ~DDMARDY DSTROBE	О	42	~WAIT ~DDMARDY DSTROBE	О	42	IORDY ~DDMARDY DSTROBE	О
43	~INPACK ~DMARQ	О	43	~INPACK ~DMARQ	О	43	DMARQ	О
44	~REG ~DMACK	I	44	~REG DMACK	I	44	~DMACK	I
45	BVD2	О	45	~SPKR	О	45	~DSAP	I/O
46	BVD1	O	46	~STSCHG	О	46	~PDIAG	I/O
47	D08	I/O	47	D08	I/O	47	D08	I/O
48	D09	I/O	48	D09	I/O	48	D09	I/O
49	D10	I/O	49	D10	I/O	49	D10	I/O
50	GND		50	GND		50	GND	

A.2 Audio CODEC interface

The PB-A8 provides three stacked 3.5mm jack connectors on the rear panel that enable you to connect to the analog microphone and auxiliary line level input and output on the CODEC.

Figure A-2 shows the pinouts of the sockets. See *Rear panel layout* on page 3-6 for the connector location.

Note A link (LK3) on the baseboard enables bias voltage to be applied to the microphone.

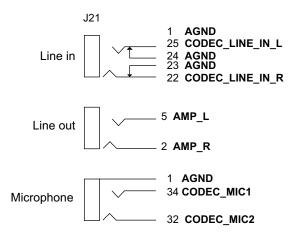


Figure A-2 Audio connectors

A.3 MMC and SD card interface

The MMC/SD card socket is positioned on the front panel of the enclosure, see *Front panel layout* on page 3-5 for the connector location.

——— Caution ————
The MMC or SD card must be inserted into the front panel socket with the contacts facing down.

Figure A-3 shows the pin numbering and signal assignment. In addition, the socket contains switches that are operated by card insertion that provide signaling on the CARDINx and MCI_WPROT signals.

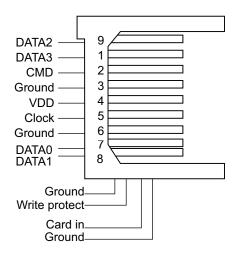


Figure A-3 MMC/SD card socket pin numbering

The MMC card uses seven pins, and the SD card uses all nine pins. The additional pins are located as shown in Figure A-3 on page A-7 with pin 9 next to pin 1 and pins 7 and 8 spaced more closely together than the other pins. Figure A-4 shows an MMC card, with the contacts face up.

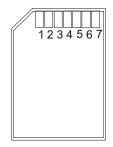


Figure A-4 MMC card

Table A-2 lists the signal assignments.

Table A-2 Multimedia Card interface signals

Pin	Signal	Function SD	Function MCI
1	MCIxDATA3	Data	Chip select
2	MCIxCMD	Command/response	Data in
3	GND	Ground	Ground
4	MCIVDDx	Supply voltage	Supply voltage
5	MCICLKx	Clock	Clock
6	GND	Ground	Ground
7	MCIxDATA0	Data 0	Data out
8	MCIxDATA1	Data 1	NC
9	MCIxDATA2	Data 2	NC
10 (DET A)	CARDINx	Card insertion detect	Card insertion detect
11 (DET B)	WPROTx	Write protect status	Write protect status

A.4 Keyboard and mouse interface

The PS-2 keyboard and mouse connectors are positioned on the rear panel of the enclosure. See *Rear panel layout* on page 3-6 for the location of the connectors.

The pinout of the KMI connectors J30A and J30B is shown in Figure A-5.

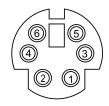


Figure A-5 KMI connector

Table A-3 shows signals on the KMI connectors.

Table A-3 Mouse and keyboard port signal descriptions

Pin	Keyboard (KMI0, J30B)		Mouse (KMI1, J30A)		
PIII	Signal	Function	Signal	Function	
1	KDATA_FILT	Keyboard data (filtered)	MDATA_FILT	Mouse Data (filtered)	
2	NC	Not connected	NC	Not connected	
3	GNDKBD_FILT	Ground (filtered)	GNDMSE_FILT	Ground (filtered)	
4	5VF2	5V (filtered)	5VF1	5V (filtered)	
5	KCLK_FILT	Keyboard clock (filtered)	MCLK_FILT	Mouse clock (filtered)	
6	NC	Not connected	NC	Not connected	

A.5 GPIO interface

Three eight-bit *General Purpose Input/Output* (GPIO) controllers are implemented in the Southbridge. GPIO ports 0 and 1 are available for use as general purpose external I/O on header J33 on the baseboard. GPIO port 3 is used internally by the PB-A8. See *Baseboard layout* on page 3-3 for the location of the GPIO header. The signals are shown in Figure A-6, note the position of the polarizing key.

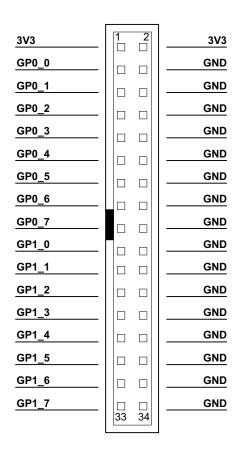


Figure A-6 GPIO connector

Note	
Each data pin has an on-boar	rd $10\text{K}\Omega$ pull-up resistor to 3.3V

A.6 UART interface

The PB-A8 provides four serial transceivers on the rear panel of the enclosure. See *Rear panel layout* on page 3-6 for the location of the connectors.

Figure A-7 shows the pin numbering for the 9-pin D-type male connector used on the PB-A8.

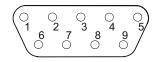


Figure A-7 Serial interface connector

Table A-4 shows the signal assignment for the connectors.

Table A-4 Serial interface signal assignment

Pin	UARTO J24A (top)	UART1 J24B (bottom)	UART2 J25A (top)	UART3 J25B (bottom)
1	SER0_DCD	NC	NC	NC
2	SER0_RX	SER1_RX	SER2_RX	SER3_RX
3	SER0_TX	SER1_TX	SER2_TX	SER3_TX
4	SER0_DTR	SER1_DTR ^a	SER2_DTRa	SER3_DTRa
5	SER0_GND	SER1_GND	SER2_GND	SER3_GND
6	SER0_DSR	SER1_DSR	SER2_DSR	SER3_DSR
7	SER0_RTS	SER1_RTS	SER2_RTS	SER3_RTS
8	SER0_CTS	SER1_CTS	SER2_CTS	SER3_CTS
9	SER0_RI	NC	NC	NC

a. The signals SER1_DTR, SER2_DTR, and SER3_DTR are connected to the corresponding SER1_DSR, SER2_DSR, and SER3_DSR signals. These signals cannot be set or read under program control.

A.7 Synchronous Serial Port interface

Figure A-8 shows the signals on the expansion SSP interface connector J28. See *Baseboard layout* on page 3-3 for the location of the connector.

3V3 1	2 GND
SSPnCS 3	4 GND
SSPCLKOUT 5	6 SSPCLKIN
SSPFSSOUT 7	8 SSPFSSIN
SSPTXD 9	10 SSPRXD
NC 11	12 NC
GND 13	14 GND

Figure A-8 SSP expansion interface

The signals associated with the SSP are shown in Table A-5.

Table A-5 SSP signal assignment

Signal name	Description
SSPCLKOUT	Clock output from controller
SSPCLKIN	Clock input to controller
SSPFSSOUT	Frame sync output
SSPFSSIN	Frame sync input
SSPTXD	Data output
SSPRXD	Data input
SSPnCS	Chip select

A.8 Smart Card interface

The PB-A8 provides a SIM socket on the front panel of the enclosure. See *Front panel layout* on page 3-5 for the location of the SIM socket.

The SIM card must be inserted into the SIM socket with the contacts facing down and the chamfered edge toward you.

The signals associated with the SCI are shown in Table A-6.

Table A-6 Smartcard connector signal assignment

Pin	Signal	Description
1	SC_VCC	Card power (1.8V, 3.3V, or 5V)
2	SC_RST	Reset to card
3	SC_CLK	Clock to or from card
4	GND	Ground
5	SC_VCC	Programming voltage
6	SC_IO	Serial data to or from the card
7	-	Reserved for future use
8	-	Reserved for future use

Figure A-9 shows the signal assignment of a smartcard. Pins 7 and 8 are not connected and are omitted on some cards.

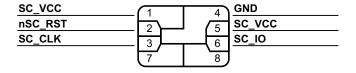


Figure A-9 Smartcard contacts assignment

Figure A-10 on page A-14 shows the pinout of the SCI Expansion connector. The connector (J11) is located on the front panel PCB (HBI 0176) behind the Compact Flash socket (J14) and Compact Flash header (J13). This can be used to connect to an external smart card device.

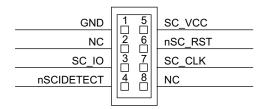


Figure A-10 SCI expansion

Table A-7 lists the signals on the SCI expansion connector.

Table A-7 Signals on SCI expansion connector

Pin	Signal	Description
1	GND	Ground
2	NC	Not connected
3	SCI_IO	SIM data
4	nSCIDETECT	Card detect for SIM
5	SC_VCC	SIM power
6	nSC_RST	Active LOW reset to SIM
7	SC_CLK	SIM clock
8	NC	Not connected

A.9 Ethernet interface

The RJ45 Ethernet connector (J14a) is shown in Figure A-11. It is part of the combined RJ45 and Dual USB Type A connector J14, positioned on the rear panel. See *USB interface* on page A-16 for details of the combined Dual USB Type A connector (J14b) and *Rear panel layout* on page 3-6 for the location of the connector.

LEDA (green) and LEDB (yellow) are connected to the LAN9118 controller. The function of the LEDs is determined by registers in the controller. Typical usage is to monitor transmit activity and packet detection.

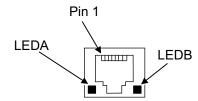


Figure A-11 Ethernet connector

The signals on the Ethernet cable are shown in Table A-8.

Table A-8 Ethernet signals

Pin	Signal
1	Transmit +
2	Transmit -
3	Receive +
4	NC
5	NC
6	Receive -
7	NC
8	NC

A.10 USB interface

USB1 provides an OTG interface and connects through the OTG connector J2 positioned on the front panel of the enclosure. See *Front panel layout* on page 3-5 for the location of the connector.

USB2 and USB3 (J14b) provide USB host interfaces and connect through the combined RJ45 and Dual USB Type A connector J14, positioned on the rear panel of the enclosure. See *Ethernet interface* on page A-15 for details of the combined RJ45 connector (J14a) and *Rear panel layout* on page 3-6 for the location of the connectors.

——Note ———
For a full description of the USB signals refer to the datasheet for the NXP ISP1761 On-The-Go controller.

Figure A-12 shows the USB connectors and signals.

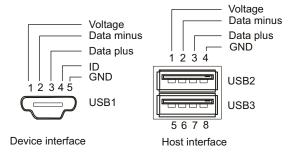


Figure A-12 USB connectors

A.11 DVI display interface

The digital CLCD data from the Northbridge is passed to a T.M.D.S. transmitter to provide the DVI digital data and to a triple video DAC to provide the analogue RGB signals. The DDC2B interface is provided by a custom *Two-wire Interface* (SBCon) implemented in the Southbridge.

The DVI combined connector (J16) is positioned on the rear panel of the enclosure. See *Rear panel layout* on page 3-6 for the location of the connector.

The mechanical interconnect includes 29 signal contacts, that are divided into two sections. The first section is organized as three rows of eight contacts. The second section contains five signals that are designed specifically for analog video signals. Hoizontal Sync, Vertical Sync, R, G, and B are all required for analog implementations.

A fused (1A anti-surge) +5V supply (pin 14) is provided by the PB-A8.

The combined DVI connector is shown in Figure A-13.

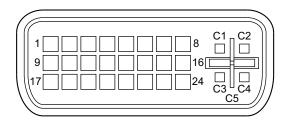


Figure A-13 DVI connector

The DVI connector signals are listed in Table A-9.

Table A-9 DVI connector signals

Pin	Signal	Pin	Signal	Pin	Signal
1	T.M.D.S. Data2-	9	T.M.D.S. Data1-	17	T.M.D.S. Data0-
2	T.M.D.S. Data2+	10	T.M.D.S. Data1+	18	T.M.D.S. Data0+
3	T.M.D.S. Data2/4 Shield	11	T.M.D.S. Data1/3 Shield	19	T.M.D.S. Data0/5 Shield
4	T.M.D.S. Data4-	12	T.M.D.S. Data3-	20	T.M.D.S. Data5-
5	T.M.D.S. Data4+	13	T.M.D.S. Data3+	21	T.M.D.S. Data5+
6	DDC Clock	14	+5V Power	22	T.M.D.S. Clock Shield
7	DDC Data	15	Ground (for +5V)	23	T.M.D.S. Clock+
8	Analog Vertical sync	16	Hot Plug Detect	24	T.M.D.S. Clock-
C1	Analog Red	C2	Analog Green	C3	Analog Blue
C4	Analog Horizontal Sync	C5	Analog Ground (analog R, G, and B return)		

_____Note _____

The PB-A8 implements a single link, T.M.D.S. Data 3, 4, and 5 connections are not used.

A.12 RealView Logic Tile header connectors

These headers allow the connection of a RealView Logic Tile to the PB-A8. Figure A-14 shows the pin numbers and power-blade usage of the HDRX, HDRY, and HDRZ headers.

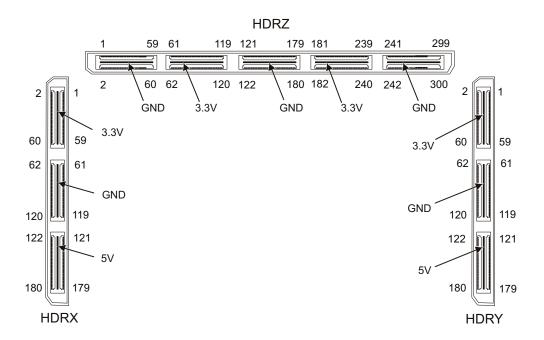


Figure A-14 HDRX, HDRY, and HDRZ pin numbering

— Warning —

The I/O voltage on a RealView Logic Tile (VCCO1 and VCCO2) can be changed by removing resistors on the tile and supplying the I/O voltage from either the tile above or the tile below in a tile stack. However, all signals from the PB-A8 to a RealView Logic Tile use 3.3V I/O levels and all signals from a RealView Logic Tile to the PB-A8 must use 3.3V I/O levels.

The 5V supply on the headers is to power voltage converters that may be present on the Logic Tile.

Tables *HDRX signals* on page A-20, *HDRX signals* on page A-20, and *HDRZ signals* on page A-34 list the signals on each header pin.

The designation used for a multiplexed signal is X / Y, where signal X is present when **CLKOUTDIV** is HIGH and signal Y is present when **CLKOUTDIV** is LOW. See *Application Note AN151* for details of the AXI multiplexing scheme.

A.12.1 HDRX signals

Table A-10 describes the signals on the HDRX header pins. For a description of the signals refer to AMBA 3 AXI Protocol (ARM IHI 0022).

Table A-10 HDRX signals

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
ARADDR12 / ARADDR28	X89	2	1	X90	ARADDR13 / ARADDR29
ARADDR11 / ARADDR27	X88	4	3	X91	ARADDR14 / ARADDR30
ARADDR10 / ARADDR26	X87	6	5	X92	ARADDR15 / ARADDR31
ARADDR9 / ARADDR25	X86	8	7	X93	ARID0 / ARID2
ARADDR8 / ARADDR24	X85	10	9	X94	ARID1 / ARID3
ARADDR7 / ARADDR23	X84	12	11	X95	ARLEN0 / ARLEN2
ARADDR6 / ARADDR22	X83	14	13	X96	ARLEN1 / ARLEN3
ARADDR5 / ARADDR21	X82	16	15	X97	ARSIZE0 / ARSIZE1
ARADDR4 / ARADDR20	X81	18	17	X98	ARID4 / ARPROT2
ARADDR3 / ARADDR19	X80	20	19	X99	ARPROT0 / ARPROT1
ARADDR2 / ARADDR18	X79	22	21	X100	ARBURST0 / ARBURST1

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
ARADDR1 / ARADDR17	X78	24	23	X101	ARLOCK0 / ARLOCK1
ARADDR0 / ARADDR16	X77	26	25	X102	ARCACHE0 / ARCACHE2
BREADY	X76	28	27	X103	ARCACHE1 / ARCACHE3
BVALID	X75	30	29	X104	ARVALID / ARID5
BRESP0 / BRESP1	X74	32	31	X105	ARREADY
BID4 / BID5	X73	34	33	X106	RDATA0 / RDATA32
BID1 / BID3	X72	36	35	X107	RDATA1 / RDATA33
BID0 / BID2	X71	38	37	X108	RDATA2 / RDATA34
AWREADY	X70	40	39	X109	RDATA3 / RDATA35
AWVALID / AWID5	X69	42	41	X110	RDATA4 / RDATA36
AWCACHE1 / AWCACHE3	X68	44	43	X111	RDATA5 / RDATA37
AWCACHE0 / AWCACHE2	X67	46	45	X112	RDATA6 / RDATA38
AWLOCK0 / AWLOCK1	X66	48	47	X113	RDATA7 / RDATA39
AWBURST0 / AWBURST1	X65	50	49	X114	RDATA8 / RDATA40
AWPROT0 / AWPROT1	X64	52	51	X115	RDATA9 / RDATA41

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
nRST_X	X63	54	53	X116	RDATA10 / RDATA42
AWID4 / AWPROT2	X62	56	55	X117	RDATA11 / RDATA43
AWSIZE0 / AWSIZE1	X61	58	57	X118	RDATA12 / RDATA44
AWLEN1 / AWLEN3	X60	60	59	X119	RDATA13 / RDATA45
AWLEN0 / AWLEN2	X59	62	61	X120	RDATA14 / RDATA46
AWID1 / AWID3	X58	64	63	X121	RDATA15 / RDATA47
AWID0 / AWID2	X57	66	65	X122	RDATA16 / RDATA48
AWADDR15 / AWADDR31	X56	68	67	X123	RDATA17 / RDATA49
AWADDR14 / AWADDR30	X55	70	69	X124	RDATA18 / RDATA50
AWADDR13 / AWADDR29	X54	72	71	X125	RDATA19 / RDATA51
AWADDR12 / AWADDR28	X53	74	73	X126	RDATA20 / RDATA52
AWADDR11 / AWADDR27	X52	76	75	X127	RDATA21 / RDATA53
AWADDR10 / AWADDR26	X51	78	77	X128	RDATA22 / RDATA54
AWADDR9 / AWADDR25	X50	80	79	X129	RDATA23 / RDATA55
AWADDR8 / AWADDR24	X49	82	81	X130	RDATA24 / RDATA56

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
AWADDR7 / AWADDR23	X48	84	83	X131	RDATA25 / RDATA57
AWADDR6 / AWADDR22	X47	86	85	X132	RDATA26 / RDATA58
AWADDR5 / AWADDR21	X46	88	87	X133	RDATA27 / RDATA59
AWADDR4 / AWADDR20	X45	90	89	X134	RDATA28 / RDATA60
AWADDR3 / AWADDR19	X44	92	91	X135	RDATA29 / RDATA61
AWADDR2 / AWADDR18	X43	94	93	X136	RDATA30 / RDATA62
AWADDR1 / AWADDR17	X42	96	95	X137	RDATA31 / RDATA63
AWADDR0 / AWADDR16	X41	98	97	X138	RID0 / RID2
WREADY	X40	100	99	X139	RID1 / RID3
WVALID / WID5	X39	102	101	X140	RRESP0 / RRESP1
WLAST / WID4	X38	104	103	X141	RLAST / RID4
WSTRB3 / WSTRB7	X37	106	105	X142	RVALID / RID5
WSTRB2 / WSTRB6	X36	108	107	X143	RREADY
WSTRB1 / WSTRB5	X35	110	109	X144	X144
WSTRB0 / WSTRB4	X34	112	111	X145	X145

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
WID1 / WID3	X33	114	113	X146	X146
WID0 / WID2	X32	116	115	X147	X147
WDATA31 / WDATA63	X31	118	117	X148	X148
WDATA30 / WDATA62	X30	120	119	X149	X149
WDATA29 / WDATA61	X29	122	121	X150	X150
WDATA28 / WDATA60	X28	124	123	X151	X151
WDATA27 / WDATA59	X27	126	125	X152	X152
WDATA26 / WDATA58	X26	128	127	X153	X153
WDATA25 / WDATA57	X25	130	129	X154	X154
WDATA24 / WDATA56	X24	132	131	X155	X155
WDATA23 / WDATA55	X23	134	133	X156	X156
WDATA22 / WDATA54	X22	136	135	X157	X157
WDATA21 / WDATA53	X21	138	137	X158	X158
WDATA20 / WDATA52	X20	140	139	X159	X159
WDATA19 / WDATA51	X19	142	141	X160	X160

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
WDATA18 / WDATA50	X18	144	143	X161	X161
WDATA17 / WDATA49	X17	146	145	X162	X162
WDATA16 / WDATA48	X16	148	147	X163	X163
WDATA15 / WDATA47	X15	150	149	X164	X164
WDATA14 / WDATA46	X14	152	151	X165	X165
WDATA13 / WDATA45	X13	154	153	X166	X166
WDATA12 / WDATA44	X12	156	155	X167	X167
WDATA11 / WDATA43	X11	158	157	X168	X168
WDATA10 / WDATA42	X10	160	159	X169	X169
WDATA9 / WDATA41	X9	162	161	X170	X170
WDATA8 / WDATA40	X8	164	163	X171	X171
WDATA7 / WDATA39	X7	166	165	X172	X172
WDATA6 / WDATA38	X6	168	167	X173	X173
WDATA5 / WDATA37	X5	170	169	X174	X174
WDATA4/ WDATA36	X4	172	171	X175	X175

Table A-10 HDRX signals (continued)

Baseboard signals	X Bus	Even pins	Odd pins	X Bus	Baseboard signals
WDATA3 / WDATA35	Х3	174	173	X176	X176
WDATA2 / WDATA34	X2	176	175	X177	X177
WDATA1 / WDATA33	X1	178	177	X178	X178
WDATA0 / WDATA32	X0	180	179	X179	X179

A.12.2 HDRY signals

Table A-11 lists the signals on the HDRY header pins. For a description of the signals refer to AMBA 3 AXI Protocol (ARM IHI 0022).

Table A-11 HDRY signals

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
ARADDR13 / ARADDR29	Y90	2	1	Y89	ARADDR12 / ARADDR28
ARADDR14 / ARADDR30	Y91	4	3	Y88	ARADDR11 / ARADDR27
ARADDR15 / ARADDR31	Y92	6	5	Y87	ARADDR10 / ARADDR26
ARID0 / ARID2	Y93	8	7	Y86	ARADDR9 / ARADDR25
ARID1 / ARID3	Y94	10	9	Y85	ARADDR8 / ARADDR24
ARLEN0 / ARLEN2	Y95	12	11	Y84	ARADDR7 / ARADDR23
ARLEN1 / ARLEN3	Y96	14	13	Y83	ARADDR6 / ARADDR22
ARSIZE0 / ARSIZE1	Y97	16	15	Y82	ARADDR5 / ARADDR21
ARID4 / ARPROT2	Y98	18	17	Y81	ARADDR4 / ARADDR20
ARPROT0 / ARPROT1	Y99	20	19	Y80	ARADDR3 / ARADDR19
ARBURST0 / ARBURST1	Y100	22	21	Y79	ARADDR2 / ARADDR18
ARLOCK0 / ARLOCK1	Y101	24	23	Y78	ARADDR1 / ARADDR17
ARCACHE0 / ARCACHE2	Y102	26	25	Y77	ARADDR0 / ARADDR16
ARCACHE1 / ARCACHE3	Y103	28	27	Y76	BREADY

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
ARVALID / ARID5	Y104	30	29	Y75	BVALID
ARREADY	Y105	32	31	Y74	BRESP0 / BRESP1
RDATA0 / RDATA32	Y106	34	33	Y73	BID4 / BID5
RDATA1 / RDATA33	Y107	36	35	Y72	BID1 / BID3
RDATA2 / RDATA34	Y108	38	37	Y71	BID0 / BID2
RDATA3 / RDATA35	Y109	40	39	Y70	AWREADY
RDATA4 / RDATA36	Y110	42	41	Y69	AWVALID / AWID5
RDATA5 / RDATA37	Y111	44	43	Y68	AWCACHE1 / AWCACHE3
RDATA6 / RDATA38	Y112	46	45	Y67	AWCACHE0 / AWCACHE2
RDATA7 / RDATA39	Y113	48	47	Y66	AWLOCK0 / AWLOCK1
RDATA8 / RDATA40	Y114	50	49	Y65	AWBURST0 / AWBURST1
RDATA9 / RDATA41	Y115	52	51	Y64	AWPROT0 / AWPROT1
RDATA10 / RDATA42	Y116	54	53	Y63	nRST_Y
RDATA11 / RDATA43	Y117	56	55	Y62	AWID4 / AWPROT2
RDATA12 / RDATA44	Y118	58	57	Y61	AWSIZE0 / AWSIZE1

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
RDATA13 / RDATA45	Y119	60	59	Y60	AWLEN1 / AWLEN3
RDATA14 / RDATA46	Y120	62	61	Y59	AWLEN0 / AWLEN2
RDATA15 / RDATA47	Y121	64	63	Y58	AWID1 / AWID3
RDATA16 / RDATA48	Y122	66	65	Y57	AWID0 / AWID2
RDATA17 / RDATA49	Y123	68	67	Y56	AWADDR15 / AWADDR31
RDATA18 / RDATA50	Y124	70	69	Y55	AWADDR14 / AWADDR30
RDATA19 / RDATA51	Y125	72	71	Y54	AWADDR13 / AWADDR29
RDATA20 / RDATA52	Y126	74	73	Y53	AWADDR12 / AWADDR28
RDATA21 / RDATA53	Y127	76	75	Y52	AWADDR11 / AWADDR27
RDATA22 / RDATA54	Y128	78	77	Y51	AWADDR10 / AWADDR26
RDATA23 / RDATA55	Y129	80	79	Y50	AWADDR9 / AWADDR25
RDATA24 / RDATA56	Y130	82	81	Y49	AWADDR8 / AWADDR24
RDATA25 / RDATA57	Y131	84	83	Y48	AWADDR7 / AWADDR23
RDATA26 / RDATA58	Y132	86	85	Y47	AWADDR6 / AWADDR22
RDATA27 / RDATA59	Y133	88	87	Y46	AWADDR5 / AWADDR21

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
RDATA28 / RDATA60	Y134	90	89	Y45	AWADDR4 / AWADDR20
RDATA29 / RDATA61	Y135	92	91	Y44	AWADDR3 / AWADDR19
RDATA30 / RDATA62	Y136	94	93	Y43	AWADDR2 / AWADDR18
RDATA31 / RDATA63	Y137	96	95	Y42	AWADDR1 / AWADDR17
RID0 / RID2	Y138	98	97	Y41	AWADDR0 / AWADDR16
RID1 / RID3	Y139	100	99	Y40	WREADY
RRESP0 / RRESP1	Y140	102	101	Y39	WVALID / WID5
RLAST / RID4	Y141	104	103	Y38	WLAST / WID4
RVALID / RID5	Y142	106	105	Y37	WSTRB3 / WSTRB7
RREADY	Y143	108	107	Y36	WSTRB2 / WSTRB6
Y144	Y144	110	109	Y35	WSTRB1 / WSTRB5
Y145	Y145	112	111	Y34	WSTRB0 / WSTRB4
Y146	Y146	114	113	Y33	WID1 / WID3
Y147	Y147	116	115	Y32	WID0 / WID2
Y148	Y148	118	117	Y31	WDATA31 / WDATA63

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
Y149	Y149	120	119	Y30	WDATA30 / WDATA62
Y150	Y150	122	121	Y29	WDATA29 / WDATA61
Y151	Y151	124	123	Y28	WDATA28 / WDATA60
Y152	Y152	126	125	Y27	WDATA27 / WDATA59
Y153	Y153	128	127	Y26	WDATA26 / WDATA58
Y154	Y154	130	129	Y25	WDATA25 / WDATA57
Y155	Y155	132	131	Y24	WDATA24 / WDATA56
Y156	Y156	134	133	Y23	WDATA23 / WDATA55
Y157	Y157	136	135	Y22	WDATA22 / WDATA54
Y158	Y158	138	137	Y21	WDATA21 / WDATA53
Y159	Y159	140	139	Y20	WDATA20 / WDATA52
Y160	Y160	142	141	Y19	WDATA19 / WDATA51
Y161	Y161	144	143	Y18	WDATA18 / WDATA50
Y162	Y162	146	145	Y17	WDATA17 / WDATA49
Y163	Y163	148	147	Y16	WDATA16 / WDATA48

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
Y164	Y164	150	149	Y15	WDATA15 / WDATA47
Y165	Y165	152	151	Y14	WDATA14 / WDATA46
Y166	Y166	154	153	Y13	WDATA13 / WDATA45
Y167	Y167	156	155	Y12	WDATA12 / WDATA44
Y168	Y168	158	157	Y11	WDATA11 / WDATA43
Y169	Y169	160	159	Y10	WDATA10 / WDATA42
Y160	Y170	162	161	Y9	WDATA9 / WDATA41
Y171	Y171	164	163	Y8	WDATA8 / WDATA40
Y172	Y172	166	165	Y7	WDATA7 / WDATA39
Y173	Y173	168	167	Y6	WDATA6 / WDATA38
Y174	Y174	170	169	Y5	WDATA5 / WDATA37
Y175	Y175	172	171	Y4	WDATA4 / WDATA36
Y176	Y176	174	173	Y3	WDATA3 / WDATA35

Table A-11 HDRY signals (continued)

Baseboard signals	Y Bus	Even pins	Odd pins	Baseboard signals	Y Bus
Y177	Y177	176	175	Y2	WDATA2 / WDATA34
Y178	Y178	178	177	Y1	WDATA1 / WDATA33
Y179	Y179	180	179	Y0	WDATA0 / WDATA32

A.12.3 HDRZ signals

Table A-12 lists the signals on the HDRZ header pins. Refer to the user guide for the fitted Logic Tile for the Logic Tile specific HDRZ upper (U) and HDRZ lower (L) signal listings.

Table A-12 HDRZ signals

Baseboard signals	Even pins	Odd pins	Baseboard signals
Z255	2	1	Z128
Z254	4	3	Z129
Z253	6	5	Z130
Z252	8	7	Z131
Z251	10	9	Z132
Z250	12	11	Z133
Z249	14	13	Z134
Z248	16	15	Z135
Z247	18	17	Z136
Z246	20	19	Z137
Z245	22	21	Z138
Z244	24	23	Z139
Z243	26	25	Z140
Z242	28	27	Z141
Z241	30	29	Z142
Z240	32	31	Z143
Z239	34	33	Z144
Z238	36	35	Z145
Z237	38	37	Z146
Z236	40	39	Z147
Z235	42	41	Z148

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
Z234	44	43	Z149
МВТҮРЕ	46	45	Z150
МВТҮРЕ	48	47	Z151
Z231	50	49	Z152
PLDCLK	52	51	Z153
PLDnRST	54	53	Z154
PLDDOUT	56	55	Z155
PLDDIN	58	57	Z156
Z226	60	59	Z157
Z225	62	61	Z158
Z224	64	63	Z159
Z223	66	65	Z160
7.222	68	67	Z161
Z221	70	69	Z162
Z220	72	71	Z163
Z219	74	73	Z164
DMACCLR[1]	76	75	Z165
Z217	78	77	Z166
Z216	80	79	Z167
DMACBREQ[1]	82	81	Z168
DMACSREQ[1]	84	83	Z169
Z213	86	85	Z170
DMACCLR[0]	88	87	Z171
nFIQ	90	89	Z172

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
nIRQ	92	91	Z173
DMACBREQ[0]	94	93	Z174
DMACSREQ[0]	96	95	Z175
INT[7]	98	97	Z176
INT[6]	100	99	Z177
INT[5]	102	101	Z178
INT[4]	104	103	Z179
INT[3]	106	105	Z180
INT[2]	108	107	Z181
INT[1]	110	109	Z182
INT[0]	112	111	Z183
Z199	114	113	Z184
Z198	116	115	Z185
Z197	118	117	Z186
Z196	120	119	Z187
Z195	122	121	Z188
Z194	124	123	Z189
Z193	126	125	Z190
Z192	128	127	Z191
CLK_POS_DN_IN	130	129	D_nSRST
CLK_NEG_DN_IN	132	131	D_nTRST
CLK_POS_UP_OUT	134	133	D_TDO_IN
CLK_NEG_UP	136	135	D_TDI
GND (CLK_UP_THRU)	138	137	D_TCK_OUT

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
CLK_OUT_PLUS1	140	139	D_TMS_OUT
CLK_OUT_PLUS2	142	141	D_RTCK
CLK_IN_PLUS2	144	143	C_nSRST
CLK_IN_PLUS1	146	145	C_nTRST
(CLK_DN_THRU)	148	147	C_TDO_IN
CLK_GLOBAL	150	149	C_TDI
FPGA_IMAGE	152	151	C_TCK_OUT
nSYSPOR	154	153	C_TMS_OUT
nSYSRST	156	155	nTILE_DET
(nRTCKEN)	158	157	nCFGEN
SPARE12 (reserved)	160	159	GLOBAL_DONE
SPARE10 (reserved)	162	161	SPARE11 (reserved)
SPARE8 (reserved)	164	163	SPARE9 (reserved)
SPARE6 (reserved)	166	165	SPARE7 (reserved)
SPARE4 (reserved)	168	167	SPARE5 (reserved)
SPARE2 (reserved)	170	169	SPARE3 (reserved)
SPARE0 (reserved)	172	171	SPARE1 (reserved)
Z64	174	173	Z63
Z65	176	175	Z62
Z66	178	177	Z61
Z 67	180	179	Z60
Z68	182	181	Z59
Z69	184	183	Z58
Z70	186	185	Z 57

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
Z71	188	187	Z56
Z72	190	189	Z55
Z73	192	191	Z 54
Z 74	194	193	Z53
Z 75	196	195	Z 52
Z76	198	197	Z 51
Z 77	200	199	Z50
Z78	202	201	Z49
Z 79	204	203	Z48
Z80	206	205	PADDR8 / DAPADDR8
Z81	208	207	PADDR7 / DAPADDR7
Z82	210	209	PADDR6 / DAPADDR6
Z83	212	211	PADDR5 / DAPADDR5
Z84	214	213	PADDR4 / DAPADDR4
Z85	216	215	PADDR3 / DAPADDR3
Z86	218	217	PADDR2 / DAPADDR2
Z87	220	219	PSEL / DAPSEL
Z88	222	221	UART3RXD
Z89	224	223	nUART3CTS
Z90	226	225	UART3TXD

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
Z91	228	227	nUART3RTS
Z92	230	229	UART2RXD
Z93	232	231	nUART2CTS
Z94	234	233	UART2TXD
Z95	236	235	nUART2RTS
Z96	238	237	CLCP
Z97	240	239	Z30
Z98	242	241	CLPOWER
Z99	244	243	CLLP
Z100	246	245	Z27
Z101	248	247	CLFP
Z102	250	249	CLCP
Z103	252	251	CLAC
Z104	254	253	CLD23
Z105	256	255	CLD22
Z106	258	257	CLD21
Z107	260	259	CLD20
Z108	262	261	CLD19
Z109	264	263	CLD18
Z110	266	265	CLD17
Z111	268	267	CLD16
Z112	270	269	CLD15
Z113	272	271	CLD14
Z114	274	273	CLD13

Table A-12 HDRZ signals (continued)

Baseboard signals	Even pins	Odd pins	Baseboard signals
Z115	276	275	CLD12
Z116	278	277	CLD11
Z117	280	279	CLD10
Z118	282	281	CLD9
Z119	284	283	CLD8
Z120	286	285	CLD7
Z121	288	287	CLD6
Z122	290	289	CLD5
Z123	292	291	CLD4
Z124	294	293	CLD3
Z125	296	295	CLD2
Z126	298	297	CLD1
Z127	300	299	CLD0

A.13 Test and debug connections

The PB-A8 provides connectors to aid diagnostics.

This section contains the following subsections:

- JTAG
- *USB config port* on page A-42
- Integrated Logic Analyzer (ILA) on page A-42.

A.13.1 JTAG

Figure A-15 shows the pinout of the JTAG connector J10 that is located on the rear panel of the ATX enclosure. All JTAG active HIGH input signals have pull-up resistors.

See *Rear panel layout* on page 3-6 to locate the connector and see *Test, configuration, debug and trace interfaces* on page 3-56 for a description of how the JTAG config and debug interfaces are implemented on the PB-A8.

The term JTAG equipment refers to any hardware that can drive the JTAG signals to devices in the scan chain. Typically this is RealView ICE, although hardware from other suppliers can also be used to debug ARM processors.

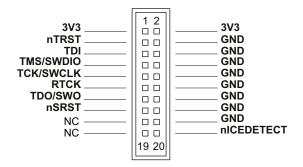


Figure A-15 JTAG connector

A.13.2 USB config port

Figure A-16 shows the signals on the USB config connector J12. USBDP and USBDM are the positive and negative USB data signals.

See *Front panel layout* on page 3-5 to locate the connector and see *Test, configuration, debug and trace interfaces* on page 3-56 for a description of how the USB debug interface is implemented on the PB-A8.

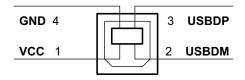


Figure A-16 USB debug connector

A.13.3 Integrated Logic Analyzer (ILA)

Figure A-17 shows the signals on the ILA connector J9. You may use an ILA and JTAG to debug FPGA designs and software at the same time.

See *Baseboard layout* on page 3-3 to locate the connector, and for more information, see the documentation supplied with your analyzer. (The ChipScope product is described on the Xilinx web site at www.xilinx.com.)

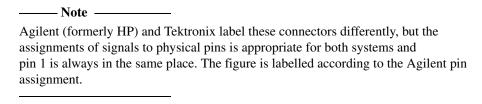



Figure A-17 Integrated Logic Analyzer (ILA) connector

A.13.4 Trace Connectors

Trace connectors are provided on the PB-A8. Use the JTAG connector J10 to provide the JTAG signals that are required for controlling the ETM in the Cortex-A8.

The Mictor 19x2 way connector (part number AMP 2-767004-2) is shown in Figure A-18.

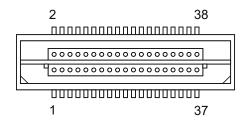


Figure A-18 AMP Mictor connector

Table A-13 on page A-44 and Table A-14 on page A-45 list the pinout of the trace connectors: TRACEA (J54) and TRACEB (J55) respectively.

Table A-13 Trace Port A (TRACEA) connector J54

Trace Port signal	Pin	Pin	Trace Port signal
Not connected	1	2	Not connected
Not connected	3	4	Not connected
GND	5	6	TRACECLKA
DBGRQ	7	8	TRACEDBGACK
Not connected	9	10	EXTTRIGX
Not connected	11	12	VTREFA_R
Not connected	13	14	VSUPPLYA_R
Not connected	15	16	TRACEDATA7
Not connected	17	18	TRACEDATA6
Not connected	19	20	TRACEDATA5
Not connected	21	22	TRACEDATA4
TRACEDATA15	23	24	TRACEDATA3
TRACEDATA14	25	26	TRACEDATA2
TRACEDATA13	27	28	TRACEDATA1
TRACEDATA12	29	30	GND
TRACEDATA11	31	32	GND
TRACEDATA10	33	34	3V3
TRACEDATA9	35	36	TRACECTL
TRACEDATA8	37	38	TRACEDATA0

Table A-14 Trace Port B (TRACEB) connector J55

Trace Port signal	Pin	Pin	Trace Port signal
Not connected	1	2	Not connected
Not connected	3	4	Not connected
GND	5	6	TRACECLKB
Not connected	7	8	Not connected
Not connected	9	10	Not connected
Not connected	11	12	VTREFB_R
Not connected	13	14	Not connected
Not connected	15	16	TRACEDATA23
Not connected	17	18	TRACEDATA22
Not connected	19	20	TRACEDATA21
Not connected	21	22	TRACEDATA20
TRACEDATA31	23	24	TRACEDATA19
TRACEDATA30	25	26	TRACEDATA18
TRACEDATA29	27	28	TRACEDATA17
TRACEDATA28	29	30	GND
TRACEDATA27	31	32	GND
TRACEDATA26	33	34	3V3
TRACEDATA25	35	36	GND
TRACEDATA24	37	38	TRACEDATA16

Signal Descriptions

Appendix B **Specifications**

This appendix contains the specification for the baseboard. It contains the following sections:

- Electrical Specification on page B-2
- *Timing specifications* on page B-3.

B.1 Electrical Specification

This section provides details of the voltage and current characteristics for the baseboard.

B.1.1 Bus interface characteristics

Table B-1 lists the baseboard electrical characteristics for normal operation.

Table B-1 Baseboard electrical characteristics

Symbol	Description	Min.	Max.	Unit
3V3	3V3 from power connector J39 or tile site interface (VIO)	3.1	3.5	V
5V	5V from power connector J39	4.75	5.25	V
12V	12V from power connector J39	11.4	12.6	V
-12V	-12V from power connector J39	-11.4	-12.6	V
V_{IH}	High-level input voltage at tile site interface	2.0	3.6	V
V _{IL}	Low-level input voltage at tile site interface	0	0.8	V
V _{OH}	High-level output voltage at tile site interface	2.4	-	V
V _{OL}	Low-level output voltage at tile site interface	_	0.4	V
C _{IN}	Capacitance on any pin	_	20	pF

B.2 Timing specifications

This section provides details of the baseboard maximum clock frequencies and the tile site AXI bus timings when used stand-alone or with a Logic Tile fitted.

B.2.1 Clock frequency restrictions

The maximum tile site clock (**TSCLK**) frequency that can be used for reliable operation depends on the type of Logic Tile fitted. The default frequency setting is 25MHz and assumes that a LTXC2V8000 is to be used.

The eight ICS307 programmable oscillators (OSC0 – OSC7) can be programmed to deliver very high frequency clock signals (200MHZ). The settings for VCO divider, output divider, and output select values are interrelated and must be set correctly. Some combinations of settings do not result in stable operation. For more information on the ICS clock generator and a frequency calculator, see the IDT web site: www.idt.com.

B.2.2 AXI bus timings

Table B-2 lists the tile site multiplexed AXI bus timings.

Table B-2 AC Specifications

Parameter	Symbol	Min	Max	Units	Notes
Clock Cycle	tTScyc	22.2	_	ns	Cmax=15pF
Output valid time after clock edge	tTSov	_	9.92	ns	
Output hold time after clock edge	tTSoh	0.99	-	ns	
Input setup time to clock edge	tTSis	_	7.38	ns	
Input hold time after clock edge	tTSih	0.88	-	ns	

Figure B-1 on page B-4 shows the tile site multiplexed AXI timing diagram.

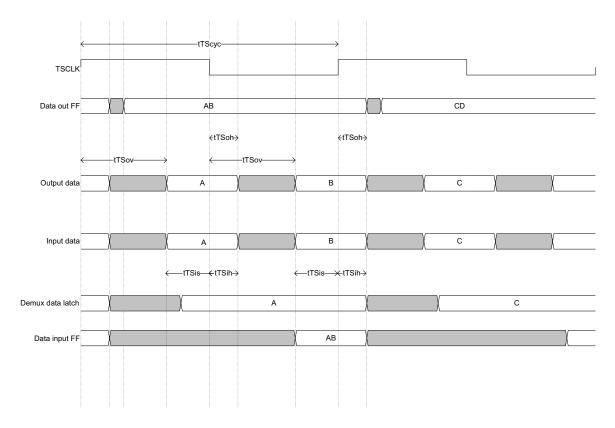


Figure B-1 Tile site multiplexed AXI timing

Appendix C **Memory Expansion Boards**

This appendix describes expansion memory modules for the PB-A8. It contains the following sections:

- About memory expansion on page C-2
- Fitting a memory board on page C-4
- *Connector pinout* on page C-5.

C.1 About memory expansion

Only static memory expansion is supported by the PB-A8. You can stack static memory expansion boards on the PB-A8 using the PISMO[™] connector provided. There are five chip select signals available on the PISMO connector, each of these can select 64MB of SRAM. The distribution of the chip select signals is determined by the expansion memory boards themselves.

The block diagram for a typical static memory board is shown in Figure C-1.

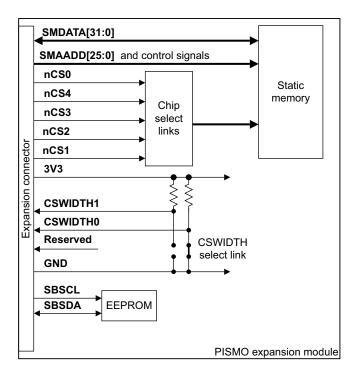


Figure C-1 Static memory board block diagram

——Note	

Figure C-1 on page C-2 is only a typical example of a PISMO static memory expansion board, different expansion boards may have different features.

See the documentation provided with your memory board for details on specific signals and link options.

The PB-A8 supports static memory modules compliant to the *Platform Independent Storage Module* (PISMO) specification Version 1.0.

General information and specifications are available from the PISMO website: www.pismoworld.org.

C.1.1 Operation without expansion memory

You can operate the PB-A8 without a memory expansion board connected because it has 2MB of pseudo SRAM, 512MB of SDRAM, and 64MB of NOR flash permanently fitted.

C.1.2 Memory board configuration

The PISMO memory module includes a configuration EEPROM that can be read from the PB-A8 to identify the type of memory on the board and how it is configured. This information can be used by the application or operating system to initialize the memory space. For details of the EEPROM data structure and information elements refer to the *PISMO Specification Version 1.0*.

C.2 Fitting a memory board

To install a memory expansion board:

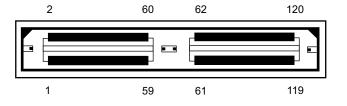
- 1. Ensure that the PB-A8 is not powered.
- 2. Align the memory expansion board with the PISMO connector on the PB-A8. See *Baseboard layout* on page 3-3 for the location of the PISMO connector.
- 3. Press the module into the connector.
- 4. Stack additional modules as required (up to five modules may be stacked) using the mating connectors on the PISMO memory modules.

C.3 Connector pinout

This section describes the connector present on the expansion memory board.

——— Caution ————

The pinout and naming in Table C-1 on page C-6 are valid for the *PISMO Version 1.0* specification.


The PB-A8 memory expansion port is not compatible with the *PISMO2 Version 1.0* specification.

C.3.1 Expansion connector

The static memory expansion board uses a 120-way Samtec connector as shown in Figure C-2. The connector pinout is shown in Table C-1 on page C-6.

_____Note _____

The numbering of pins on the connector is for the connector as viewed from below.

Samtec QSH static expansion connector

Figure C-2 Samtec 120-way connector

Table C-1 Static memory connector signals

Pin No.	Signal	Pin No.	Signal
1	DATA[0]	2	3V3
3	DATA[1]	4	3V3
5	DATA[2]	6	3V3
7	DATA[3]	8	3V3
9	DATA[4]	10	VDDIOa
11	DATA[5]	12	VDDIO ^a
13	DATA[6]	14	VDDIO ^a
15	DATA[7]	16	VDDIO ^a
17	DATA[8]	18	1V8
19	DATA[9]	20	1V8
21	DATA[10]	22	1V8
23	DATA[11]	24	1V8
25	DATA[12]	26	NC
27	DATA[13]	28	Reserved, not driven
29	DATA[14]	30	Reserved, not driven
31	DATA[15]	32	Reserved, not driven
33	DATA[16]	34	5V
35	DATA[17]	36	5V
37	DATA[18]	38	5V
39	DATA[19]	40	5V
41	DATA[20]	42	Reserved, not driven
43	DATA[21]	44	Reserved, not driven
45	DATA[22]	46	Reserved, not driven
47	DATA[23]	48	Reserved, not driven

Table C-1 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal
49	DATA[24]	50	Reserved, not driven
51	DATA[25]	52	Reserved, not driven
53	DATA[26]	54	Reserved, not driven
55	DATA[27]	56	Reserved, not driven
57	DATA[28]	58	Reserved, not driven
59	DATA[29]	60	Reserved, not driven
61	DATA[30]	62	SBSCL, E2PROM serial interface clock (3.3V signal level)
63	DATA[31]	64	SBSDA, E2PROM serial interface data (3.3V signal level)
65	ADDR[0]	66	nRESET
67	ADDR[1]	68	nBOARDPOR, asserted on hardware power cycle
69	ADDR[2]	70	nFLWP , flash write protect. Drive HIGH to write to flash.
71	ADDR[3]	72	nEARLYRESET , Reset signal. Differs from nRESET in that it is not delayed by nWAIT .
73	ADDR[4]	74	nWAIT, Wait mode input from external memory controller. Pulled HIGH if not used.
75	ADDR[5]	76	nBURSTWAIT, Synchronous burst wait input. This is used by the external device to delay a synchronous burst transfer if LOW. Pulled HIGH if not used.
77	ADDR[6]	78	CANCELWAIT, If HIGH, this signal enables the system to recover from an externally waited transfer that has taken longer than expected to finish. Pulled LOW if not used.

Table C-1 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal
79	ADDR[7]	80	nCS[4]
81	ADDR[8]	82	nCS[3]
83	ADDR[9]	84	nCS[2]
85	ADDR[10]	86	nCS[1]
87	ADDR[11]	88	Reserved, not driven
89	ADDR[12]	90	Reserved, not driven
91	ADDR[13]	92	Reserved, not driven
93	ADDR[14]	94	Reserved, not driven
95	ADDR[15]	96	nCS[0]
97	ADDR[16]	98	nBUSY , Indicates that memory is not ready to be released from reset. If LOW, this signal holds nRESET active.
99	ADDR[17]	100	nIRQ
101	ADDR[18]	102	nWEN
103	ADDR[19]	104	nOEN
105	ADDR[20]	106	nBLS[3] , Byte Lane Select for bits [31:24]
107	ADDR[21]	108	nBLS[2] , Byte Lane Select for bits [23:16]
109	ADDR[22]	110	nBLS[1] , Byte Lane Select for bits [15:8]
111	ADDR[23]	111	nBLS[0] , Byte Lane Select for bits [7:0]
113	ADDR[24]	114	CSWIDTH[0], Indicates bus width for fitted part. Not routed through stackable boards.

Table C-1 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal
115	ADDR[25]	116	CSWIDTH[1], Indicates bus width for fitted part. Not routed through stackable boards.
117	ADDRVALID, Indicates that the address output is stable during synchronous burst transfers	118	CLK[1]
119	BAA, Burst Address Advance. Used to advance the address count in the memory device	120	CLK[0]

a. VDDIO is the data voltage to host. This is not routed through stackable boards

Memory Expansion Boards

Appendix D **RealView Logic Tile Expansion**

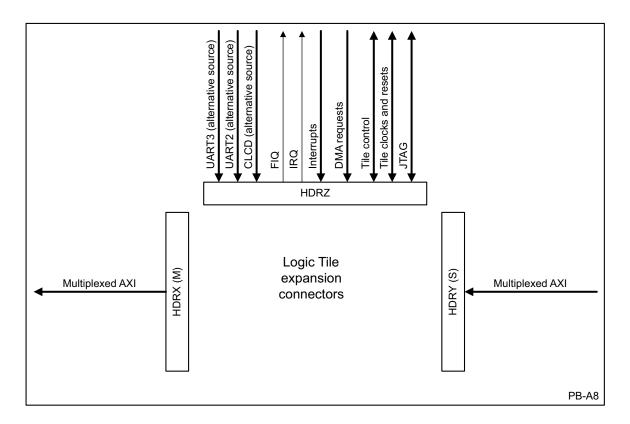
This appendix describes the signals present on the Logic Tile expansion headers and the steps required to interface a Logic Tile to the baseboard. It contains the following sections:

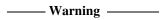
- About the RealView Logic Tile on page D-2
- *Header connectors* on page D-3.

D.1 About the RealView Logic Tile

RealView Logic Tiles, such as the LT-XC5VLX330, enable developing AMBA 3 AXI, and AMBA APB peripherals, or custom logic, for use with ARM processors.

Figure D-1 shows the signal grouping on the tile site provided for RealView Logic Tile expansion.




Figure D-1 Signal groups on the PB-A8 tile site

——Note ———
If you connect a RealView Logic Tile, the design in the tile FPGA must implement logic to handle the Multiplexed AXI bus signals, see Application Note 151: *Example AXI design for a Logic Tile on top of AXI Versatile baseboards* for an example of suitable code.

D.2 Header connectors

This section gives a brief overview of the RealView Logic Tile header connectors and the associated signal groups. For detailed information on a specific tile site interface, see the documentation for the RealView Logic Tile you are using.

There are three headers on the top and bottom of the tile. The HDRX and HDRY headers are 180-way and the HDRZ connectors are 300-way.

There is a limit to the number of RealView Logic Tiles which can be stacked on a RealView baseboard. Please contact ARM support for the current recommended limits for the PB-A8.

When stacking tiles ensure that the power source can maintain the required voltage at the top tile when supplying maximum current to the system.

The FPGA signals on a RealView Logic Tile are fully programmable. Ensure that there are no clashes between the signals on the tiles or with the signals from the PB-A8.

The FPGA can be damaged if several pins configured as outputs are connected together and attempt to output different logic levels.

Figure D-2 on page D-4 shows the pin numbers and power-blade usage of the HDRX, HDRY, and HDRZ headers on the upper side of the tile. See *RealView Logic Tile header connectors* on page A-19 for details of the signals on the PB-A8 header connectors.

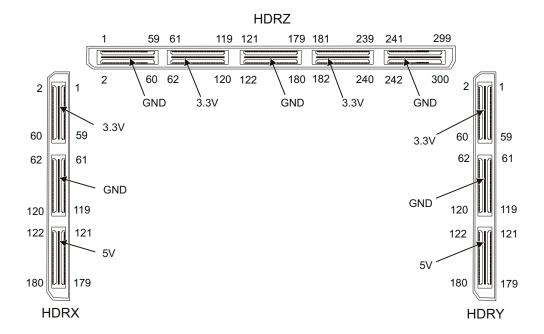


Figure D-2 HDRX, HDRY, and HDRZ (upper) pin numbering

D.2.1 Variable I/O levels

All HDRX, HDRY, and HDRZ connector signals on the PB-A8 are fixed at a 3.3V I/O signalling level.

——— Caution ————

The RealView Logic Tile mounted on the PB-A8 must use the default $3.3\mathrm{V}$ signal levels.

D.2.2 RealView Logic Tile clock

The PB-A8 provides an individually buffered tile site clock **TSCLK** at the HDRZ connector on **CLK_OUT_PLUS1** (pin 140) and **CLK_OUT_PLUS2** (pin 142). The default frequency for **TSCLK** is 25MHz and is set by **OSCCLK2** on the PB-A8. **TSCLK** is also supplied to the Northbridge async bridges to synchronize AXI signals to and from the tile site.

The remaining RealView Logic Tile clock sources are not used. Ensure that your RealView Logic Tile configuration is compatible with the available clock sources. See *Clock architecture* on page 3-39 for more information on PB-A8 clock routing.

D.2.3 JTAG

There is no JTAG connector on the RealView Logic Tile, you must use the JTAG debug or USB config connector on the ATX enclosure to debug and configure the Logic Tile.

If multiple RealView Logic Tiles are stacked on the baseboard, the JTAG signals are routed upwards to the top tile and then back down to the baseboard.

Use the JTAG interface to program the configuration flash in the RealView Logic Tile or to directly load the RealView Logic Tile FPGA image. For more information on the JTAG signals, see *Test, configuration, debug and trace interfaces* on page 3-56.

D.2.4 AXI buses used by the Northbridge and RealView Logic Tiles

Multiplexed AXI buses AXI M and AXI S are connected between the Northbridge and the RealView Logic Tile stack. The user-implemented system in the Logic Tile must co-operate with the system implemented within the Northbridge when using these buses:

AXI M The AXI M bus can only be connected to Mux AXI slaves in the

Logic Tile stack.

AXI S The Mux AXI S bus can only be connected to Mux AXI masters

in the Logic Tile stack.

AXIM

The Northbridge does not contain any slaves attached to the AXI M bus. The PB-A8 memory map assigns the top 1GB of address space (0xC0000000-0xFFFFFFFF) to this bus, so a RealView Logic Tile can contain user-supplied slaves that occupy any of this space. The RealView Logic Tile FPGA must give a response to all transfers that are generated

on the Mux AXI M bus, even those to addresses in the range 0x00000000-0xBFFFFFFF. The Northbridge never generates these addresses on the AXI M bus. A separate tile master might, however, generate accesses to this region.

In a system without a fully-decoded address map, there can be addresses at which there are no slaves to respond to a transaction. In such a system, the tile site must provide a suitable error response to flag the access as illegal and also to prevent the system from locking up by trying to access a nonexistent slave.

When the tile site cannot successfully decode a slave access, it must route the access to a default slave that returns the **DECERR** response.

An implementation option is to have the default slave also record the details of decode errors for later determination of how the errors occurred. In this way, the default slave can significantly simplify the debugging process.

The AXI protocol requires that all data transfers for a transaction are completed, even if an error condition occurs. Therefore any component giving a **DECERR** response must meet this requirement.

See AXI bus timings on page B-3 for details of the PB-A8 tile site multiplexed AXI bus timings.

D.2.5 Reset

A user design in a RealView Logic Tile can reset the baseboard by driving the **nSRST** signal LOW. This has the same effect as pressing the Soft Reset push-button and forces the reset controller to the level specified by the SYS_RESETCTRL register RESETCTRL field. See *Reset Control Register*, SYS_RESETCTL on page 4-22 for details.

nSRST is synchronized by the reset controller and can be driven from any clock source. It must, however, be driven active for a minimum of 84ns (two cycles of 24MHz) to ensure that it is sampled by the reset controller. In order to avoid a deadlock condition, the user design must stop driving the **nSRST** signal after **nSYSRST** is asserted.

nSRST is active low and open-drain. It is shared with the JTAG interface and must not be driven to HIGH state. A resistor on the baseboard pulls the signal HIGH.

The RealView Logic Tile also uses the **nPORESET** signal to generate a local **D_nTRST** pulse.

The **GLOBAL_DONE** signal is held LOW until the FPGA on the RealView Logic Tile has finished configuration. The system is held in reset until this signal goes HIGH.

Appendix E **Boot Monitor and platform library**

This appendix describes using the Boot Monitor and platform library provided with the PB-A8. It contains the following sections:

- About the Boot Monitor on page E-2
- About the platform library on page E-3
- *Using the baseboard Boot Monitor and platform library* on page E-4.

E.1 About the Boot Monitor

This is the standard ARM application that runs when the system is booted. It is bu with the ARM platform library.	111
Any application that is built using the ARM platform library (or handles its own initialization) can replace the Boot Monitor.	

The Boot Monitor supports the following functions:

- general file operations
- MMC, SD, and CompactFlash card utilities
- board configuration
- programming images into flash memory
- loading and running another application
- a semihosting server that handles standard ARM semihosting SVC calls.

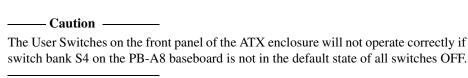
E.2 About the platform library

The ARM platform library handles the system initialization and re-targets the standard C library. To achieve this, it provides a basic I/O subsystem that supports simple device drivers.

Included with the platform library there is a simple terminal driver, UART, PS/2 keyboard and LCD drivers, and support for semihosting I/O.

E.3 Using the baseboard Boot Monitor and platform library

The baseboard Boot Monitor is a collection of tools and utilities designed as an aid to developing applications on the baseboard.


When the Boot Monitor starts on reset, the following actions are performed:

- the memory controllers are initialized
- a stack is set up in memory
- Boot Monitor code is copied into DRAM
- Boot memory remapping is reset
- C library I/O routines are remapped and redirected depending on the settings of User Switches 2 and 3
- if Boot Monitor configuration switch User Switch 1 is ON, the current boot script, if any, is run.

——— Caution ———
The firmware must match the system configuration or the results might be
unpredictable. Refer to the application note for your configuration for details of
software or firmware that is specific to the combination of baseboard and tiles that you
are using.

E.3.1 Boot Monitor configuration switches

The Boot Monitor application is typically loaded into the NOR flash memory and selected to run at power on. Follow the instructions in *Loading Boot Monitor into NOR flash* on page E-7 for details of loading the boot flash with the image from the Versatile CD.

The setting of User Switch 1 determines how the Boot Monitor starts after a reset:

User Switch 1 OFF A prompt is displayed enabling you to enter Boot Monitor commands.

User Switch 1 ON The Boot Monitor executes a boot script that has been loaded into a Multimedia (MMC) or Secure Digital (SD) card. If a boot script is not present, the Boot Monitor prompt is displayed.

The boot script can execute any Boot Monitor commands. It typically selects and runs an application image that has been stored in either NOR flash memory or on the MMC or SD card. You can store one or more code images in flash memory and use the boot script to start an image at reset. Use the SET BOOTSCRIPT command to set the boot script file name from the Boot Monitor (see *Boot Monitor command set* on page F-3).

Output and input of text from STDIO for both applications and Boot Monitor I/O depends on the setting of User Switches 2 and 3 as listed in Table E-1.

Table E-1 STDIO redirection

User Switch 2	User Switch 3	Output	Input	Description
OFF	OFF	UART0 or console	UART0 or console	STDIO autodetects whether to use semihosting I/O or a UART. If a debugger is connected and semihosting is enabled, STDIO is redirected to the debugger console window. Otherwise, STDIO goes to UARTO.
OFF	ON	UART0	UART0	STDIO is redirected to UART0. This occurs even under semihosting.
ON	OFF	LCD	Keyboard	STDIO is redirected to the LCD and keyboard. This occurs even under semihosting.
ON	ON	LCD	UART0	STDIO output is redirected to the LCD and input is redirected to UART0. This occurs even under semihosting.

User Switches 2 and 3 do not affect file I/O operations performed under semihosting.
Semihosting operation requires a debugger and a JTAG interface device. See
Redirecting character output to hardware devices on page E-8 for more details on I/O

User Switches 4 to 8 are not used by the Boot Monitor and are always available for user applications.

If a different loader program is present at the boot location, the function of the entire User Switch bank is implementation dependent.

E.3.2 Running the Boot Monitor

To run the Boot Monitor and have it display a prompt to a terminal connected to UARTO, set User Switches 1, 2, and 3 to OFF and reset the system. Standard input and output functions use UARTO by default. The default setting for UARTO is 38400 baud, 8 data bits, no parity, 1 stop bit. There is no hardware or software flow control. Use these values to configure a terminal application on your PC to communicate with the Boot Monitor.

——Note	

If the Boot Monitor has been accidently deleted from flash memory, see *Rebuilding the Boot Monitor or platform library* on page E-10 for information on loading the monitor.

Boot Monitor commands

See Appendix F *Boot Monitor Commands* for details of the available commands in Version 4 of the Boot Monitor.

Commands are accepted in uppercase or lowercase. The Boot Monitor accepts abbreviations of commands if the meaning is not ambiguous. For example, for QUIT, you can type QUIT, QUI, QU, Q, quit, qui, qu, or q.

Optional parameters for commands are indicated by []. For example DIRECTORY [directory] indicates that the DIRECTORY command can take an optional parameter to specify which directory to list the contents of. If no parameter is supplied, the default is used (in this case, the current directory).

Type HELP at the Boot Monitor prompt to display a full list of the available commands.

E.3.3 Loading Boot Monitor into NOR flash

If the flash becomes corrupt and the board no longer runs the Boot Monitor, the Boot Monitor must be reprogrammed into flash.

Because the debugger does not initialize DRAM, the Boot Monitor image cannot be loaded and run directly. Use the *.brd files and the prograds utility to setup the board:

- 1. Power off the board.
- 2. Set all User Switches to OFF.
- 3. Connect a cable from the JTAG device (RealView ICE for example) to the JTAG connector on the rear panel.
- 4. Power on the board.
- 5. Connect to the target:
 - For RVD, select Tools → Include Commands From File Select platform_DDR_Init_rvd_DLL.inc where platform is the name of the target system.
- 6. DRAM is now initialized and the memory is remapped. To load Boot Monitor into flash:
 - a. From the debugger, load and execute the file Boot_Monitor.axf
 - b. at the Boot Monitor prompt enter:

>FLASH

Flash> WRITE IMAGE path\Boot_Monitor_platform.axf where path is the path to the version of the Boot Monitor that is being loaded and platform is the name of the target system.

- 7. Loading the image into flash takes a few minutes to complete. Wait until the prompt is displayed again before proceeding.
- 8. Turn the board off and then on.

Boot Monitor starts automatically.

E.3.4 Redirecting character output to hardware devices

The redirection of character I/O is carried out within the Boot Monitor platform library routines in retarget.c and boot.s. During startup, the platform library executes a *Software Interrupt* instruction (SWI). If the image is being executed without a debugger (or the debugger is not capturing semihosting calls) the value returned by this SWI is -1, otherwise the value returned is positive. The platform library uses the return value to determine the hardware device used for outputting from the C library I/O functions (Redirection is through a SWI to the debugger console or directly to a hardware device).

Supported devices for character output are:

- :UART-0 (default destination if debugger is not capturing semihosting calls)
- :UART-1
- :UART-2
- :UART-3.

The STDIO calls are redirected within retarget.c. Redirection depends on the setting of User Switches 2 and 3, see *Boot Monitor configuration switches* on page E-4 for details.

E.3.5 Using a boot script to run an image automatically

Use a boot script to run an image automatically after power-on:

- 1. Create a boot script from the Boot Monitor by typing:
 - if your image is in MMC or SD Card:

M:\> CREATE myscript.txt

- ; put any startup code here RUN path\file_name
- if your image is in CompactFlash:

K:\> CREATE myscript.txt

- ; put any startup code here RUN path\file_name
- if your image is in NOR flash:

M:\> CREATE myscript.txt

- ; put any startup code here FLASH RUN file_name.
- Press Ctrl-Z to indicate the end of the boot script and return to the Boot Monitor prompt.

Note	
------	--

RVD does not support **Ctrl-Z** when creating a boot script using the debugger. You must instead type +++ on a new line to indicate the end of a boot script.

3. Verify the file was entered correctly by typing:

M:\>TYPE myscript.txt

The contents of the file is displayed to the currently selected output device.

- Specify the boot script to use at reset from the Boot Monitor by typing:M:\>SET BOOTSCRIPT myscript.txt
- Set User Switch 1 ON to instruct the Boot Monitor to run the boot script at power on.
- 6. Reset the platform. The Boot Monitor runs and executes the boot script myscript.txt. In this case, it relocates the image file_name and executes it.

E.3.6 Rebuilding the Boot Monitor or platform library

All firmware components are built using either RVDS running under either Windows or Unix/Linux:

- For Windows, ARM RVDS can be used to rebuild the library.
 Use a CodeWarrior project file to rebuild the library. The RVDS make utility is not supported.
- GNUmake is available for UNIX and Linux.

If you are using GNUmake to rebuild the Boot Monitor, set your default directory to <code>install_directory/Firmware/Boot_Monitor</code> and type make from a command shell.

To rebuild the platform library component, set your default directory to <code>install_directory/Firmware/platform</code> and type make from a command shell.

After rebuilding the Boot Monitor, load it into NOR flash, see *Loading Boot Monitor* into NOR flash on page E-7.

After rebuilding the platform library, you can link platform.a from the target build subdirectories with your application (see *Building an application with the platform library* on page E-11).

Build options

You can specify the following build options after the make command:

- BIG_ENDIAN=1/0, defining image endianness (Default 0, little endian)
- THUMB=1/0, defining image state (Default 0, ARM)
- DEBUG=1/0, defining optimization level (Default 0, optimized code)
- VFP=1/0, defines VFP support (Default 0, no VFP support).

— Note —	
The Boot Monitor must be b	uilt as a simple image. Scatter loading is not supported.

The build options define the subdirectory in the Builds directory that contains the compile and link output:

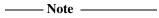
 $<\!\!Debug\!\!>_<\!\!State\!\!>_<\!\!Endianness\!\!>_Endian + further component specific options$

For example, Release_ARM_Little_Endian or Debug_Thumb_Big_Endian.

The makefile creates a directory called Builds if it is not already present. The Builds directory contains subdirectories for the specified make options (for example, Debug_ARM_Little_Endian). To delete the objects and images for all targets and delete the Builds directory, type make clean all.

E.3.7 Building an application with the platform library

The platform library on the CD provides all required initialization code to bring the baseboard up from reset. The library is used by the Boot Monitor, but it can be used by an application independently of the other code in the Boot Monitor.


It is not necessary to build your application with the platform library. You can instead let the Boot Monitor run at power on and remap the memory. After the remap has finished, you can load a typical application built with RVDS that is linked at address 0x8000 and uses semihosting.

The platform library supports:

- remapping of boot memory
- DRAM initialization
- UARTs
- Time-of-Year clock
- output to the character LCD display
- C library system calls.

To build an image that uses the I/O and memory control features present in the platform library:

1. Write the application as normal. There must be a main() routine in the application.

Linking an application with the platform requires that the application is built using RVCT V2.1 or greater. If you are using RVCT V2.0 or ADS it is not possible to link the application with the platform library, however an application can still utilize the hardware on the board through semihosting.

2. Link the application against the Boot Monitor platform library file platform.a. The file platform.a is in one of the target build subdirectories (install_dir\software\firmware\Platform\Builds\target_build).

Choose the Builds subdirectory that matches your application. For example, Release_ARM_Little_Endian for ARM code. If the subdirectory does not exist, see *Rebuilding the Boot Monitor or platform library* on page E-10 for details on rebuilding platform.a.

If you are not using the platform. a library, you must provide your own initialization and I/O routines.

You can also build the platform library functionality directly into your application without building the platform code as a separate library. This might be useful, for example, if you are using an IDE to develop your application.

See the filelist.txt file in the software directory for more details on software included on the CD. The selftest directory, for example, contains source files that can be used as a starting point for your own application.

3. If required, select the link time platform library options.

Platform selection uses special symbols in your application:

The platform options are listed in Table E-2.

Table E-2 platform library options

Option	Description
_platform_option_no_cache	Stops the cache from being enabled by default
_platform_option_no_lcd_kbd	Disables LCD & Keyboard support and stops the driver code from being loaded
_platform_option_no_mmu	Stops the MMU from being initialized by default.

4. Scatter loading is supported for applications using the platform library, however the scatter file must follow Example E-1 on page E-13. The execution regions INIT and SDRAM must be present, the execution regions ITCM and DTCM are optional, if they are present, the relevant *Tightly Coupled Memory* (TCM) is enabled and the base address must be set to the address supplied in the scatter file. The sys_vectors.o object must be located at address zero. Additional execution regions, such as one for the SSRAM, can be added. An example scatter loading application can be found in the examples directory.

Example E-1 Scatter loading

5. To run the image from RAM, load the image with a debugger and execute as normal. The image uses the procedure described in *Redirecting character output to hardware devices* on page E-8 to redirect standard I/O either to the debugger or to be handled by the application itself.

See *Loading and running an application from NOR flash* on page E-14 for more information on running from flash.

_____Note _____

If the platform library encounters a fatal error, all the user LEDs flash at a one-second interval and an error message is output on UART-0.

E.3.8 Building an application that uses semihosting

The boot monitor handles semihosting SWIs the same as a debugger handles SWIs. This enables an image that is not linked against the platform library to be loaded into flash memory and have the boot monitor manage the I/O.

All I/O using stdio(), for example printf(), uses the same devices as the boot monitor console (either UART-0 or the Keyboard/LCD depending on the Boot Monitor configuration switch settings). File functions access the flash and character I/O devices using the mechanisms described in *Redirecting character output to hardware devices* on page E-8.

There are no specific tools requirements. Images built with RealView tools should run, if they are built to use semihosting. This means that an image built using the tool kit defaults can be loaded onto the baseboard and run.

E.3.9 Loading and running an application from NOR flash

To run an image from NOR flash:

1. Build the application as described in *Building an application with the platform library* on page E-11 and specify a link address suitable for flash. There are the following options for selecting the address:

Load region in flash

The image is linked such that its load region, though not necessarily its execution region, is in flash. The load region specified when the image was linked is used as the location in flash and the FLASH_ADDRESS option is ignored. If the blocks in flash are not free, the command fails. Use the FLASH_RUN command to run the image.

Load region not in flash and image location not specified

The image is programmed into the first available contiguous set of blocks in flash that is large enough to hold the image. Use the FLASH LOAD and then the FLASH RUN commands to load and run the image.

Load region not in flash, but image stored at a specified flash address

Use the FLASH_ADDRESS option to specify the location of the image in flash. If the option is not used, the image is programmed into the first available contiguous set of blocks in flash that is large enough to hold the image. Use the FLASH_LOAD or FLASH_RUN commands to load and run the image.

Imag	ges with multiple load regions are not supported.
DRA	e image is loaded into flash, but the FLASH RUN command relocates code to AM for execution, the execution address must not be in the top 4MBytes of AM since this is used by the Boot Monitor.
	image must be programmed into flash using the Boot Monitor. Flash suppor aplemented in the Boot Monitor image.
The	command used to program the image depends on the type of image:
•	The entry point and load address for ELF images are taken from the image itself. To program the ELF image into flash, use the following command line: flash> WRITE IMAGE elf_file_name NAME name FLASH_ADDRESS address
•	The entry point and load address for ELF images are taken from the command line options. To program a binary image into flash, use the following command line: flash> WRITE BINARY image_file_name NAME name FLASH_ADDRESS address1 LOAD_ADDRESS address2 ENTRY_POINT address3
	— Note ———
	is a short name for the image. If the NAME option is not used at the commandant, <i>name</i> will be derived from the file name.
The type	image is now in flash and can be run by the Boot Monitor. At the prompt,

— Note ———

E.3.10 Running an image from MMC or SD card or CompactFlash

To run an image from the MMC or SD card or CompactFlash:

1.	Build and link the application as described in <i>Loading and running an application</i> from NOR flash on page E-14.
	——Note ———
	Images with multiple load regions are not supported.
	The image must have an execution region in RAM or DRAM.
	The execution address must not be in the top 4MBytes of DRAM because this area is used by the Boot Monitor.
2.	The image can be programmed into MMC or SD card or CompactFlash using the Boot Monitor.
	Connect a debugger and use semihosting to load the file:
	For MMC or SD card:
	<pre>M:\>COPY C:\software\elf_file_name file_name</pre>
	For CompactFlash:
	<pre>K:\>COPY C:\software\elf_file_name file_name</pre>
3.	To run the image manually, from the debugger, or terminal connected to UARTO type:
	For MMC or SD card:
	M:\>RUN file_name
	For CompactFlash:
	K:\>RUN file_name

E.3.11 Using the Network Flash Utility

1.

The *Network Flash Utility* (NFU) uses the TFTP protocol to access files over the Ethernet network. You can use this utility to program files into flash.

To connect to a server and program a file to flash:

Start the NFU utility from the debugger console:

a.	Set the Boot Monitor configuration switches to force the console to use either UART-0 or the LCD and keyboard. (See <i>Boot Monitor configuration switches</i> on page E-4 for details.)
	Note
	The debugger console cannot be used because the semihosted console I/O is blocking.
b.	Start the NFU utility.

It typically takes several seconds for the NFU to start. Do not enter any commands until the prompt is displayed.

Use the DHCP protocol to get an IP address by entering: manage dhcpc start

3. Use the map command to map a drive letter to the TFTP server. For example to access a file on a TFTP server with the IP address 192.168.0.1, use:

```
manage map n: 192.168.0.1
```

4. After the drive letter has been mapped, use the normal Boot Monitor command on the remote file by specifying the drive letter. For example, to write a file to NOR flash, enter:

flash write image n:/hello.axf

NFU commands

The NFU supports a subset of the standard Boot Monitor commands and adds a new MANAGE sub-menu.

The NFU commands are listed in Table E-3.

Table E-3 NFU commands

Command	Action
CD directory path	Change directory
CONVERT BINARY binary_file LOAD_ADDRESS address [ENTRY_POINT address]	Provides information to the system that is required by the RUN command in order to execute a binary file. A new file with name <code>binary_file</code> is produced, but with an .exe file extension.
COPY file1 file2	Copy file1 to file2. For example, to copy the leds code from the PC to the flash enter: COPY C:\software\projects\examples\rvds2.0\leds.axf leds.axf
	——Note ———
	Remote file access requires semihosting. Use a debugger connection to provide semihosting.
CREATE filename	Create a new file in the flash by inputting text. Press Ctrl-Z to end the file.
DELETE filename	Delete file from flash.
DIRECTORY [directory]	List the files in a directory. Files that only accessible from semihosting cannot be listed.
EXIT	Exit the NFU. The processor is held in a tight loop until it is interrupted by a JTAG debugger.
FLASH	Enter the flash file system for the NOR flash on the baseboard. See Table F-5 on page F-8 for NOR flash commands.
HELP	Lists the NFU commands.
M:	Change drive (allocated to MMC or SD card).
K:	Change drive (allocated to CompactFlash card).
MANAGE	Enter the network management sub-menu. See Table E-4 on page E-19 for MANAGE commands.
MKDIR directory path	Create a new directory.
QUIT	Alias for EXIT. Exit the Boot Monitor.
RENAME old_name new_name	Rename flash file named old_name to new_name.

Table E-3 NFU commands (continued)

Command	Action
RMDIR directory path	Remove a directory.
SDCARD	Enter the SD card subsystem.
TYPE filename	Display the flash file filename.

The MANAGE sub-menu listed in Table E-4 contains the network management commands.

Entering MANAGE on the command line means that all future commands (until EXIT is entered) will be commands from the MANAGE sub-menu.

A single command can be executed by entering MANAGE followed by the command. For example, MANAGE DHCPC START gets an IP address from the DHCP server. The next command entered must be from an NFU command.

Table E-4 NFU MANAGE commands

Command	Action
ARP [-a]	Display Address Resolution Protocol host table.
ARP -s hostname	Add static entry to ARP table.
ARP -d hostname	Delete static entry from ARP table.
DHCPC START ifname	Use <i>Dynamic Host Configuration Protocol</i> (DHCP) to start a connection with the network interface <i>ifname</i> .
DHCPC RELEASE ifname	Use DHCP to release the connection with the network interface ifname.
DHCPC SIZEOF	Returns information on the size of the DHCP packet.
DHCPC INFORM ifname ip_address	Uses the DHCP protocol send information to the server located at <i>ip_address</i> with the network interface <i>ifname</i> .
EXIT	Exit the MANAGE sub-menu. The commands listed in Table E-3 on page E-18 can be entered at the NFU prompt.
HELP	Lists the NFU MANAGE commands.
IFCONFIG	Displays the IP settings that are used for communications with the server.

Table E-4 NFU MANAGE commands (continued)

Command	Action	
IFCONFIG [<i>ifname</i> [<i>ip_address</i>]]	Displays the current IP address if <i>ip_address</i> is not suppled. Otherwise, the current IP address for the interface <i>ifname</i> is set to <i>ip_address</i> .	
IFCONFIG [ifname [option]]	Configures the IP in be:	terface ifname. The value for option can
	netmask <i>maskvalue</i>	set the netmask
	dstaddr <i>address</i>	set the destination IP address
	mtu <i>n</i>	set the maximum transfer unit
	up	activate the interface
	down	shutdown the interface
MAP drive address	Maps the IP address specified in address to drive.	
NETSTAT [-option]	Displays active network connections. The value f	
	a disp	lay all connections
	m disp	lay all multicast connections
	i disp	lay interface information
	im disp	ay interface information for multicast
	r disp	lay routing table
	s disp	ay statistics
	b disp	lay buffer usage
PING ip_address	Send ICMP ECHO_REQUEST packets to the network host. The data in the packet is returned by the host. Reception of the return packet indicates that the TCP/IP connection is functioning.	
QUIT	Alias for EXIT. Exit the MANAGE sub-menu.	
ROUTE ADD type target [NETMASK mask] gateway	Adds a static route to the network address specified by target. The gateway address is specified by gateway. type can be either -net or -host. If NETMASK is used, mask is the netmask for the target network address.	
ROUTE DEL target	Deletes the static route to the network address specified by target.	
SHOW DNS	Displays <i>Domain Name System</i> (DNS) configuration details received from DHCP.	

Using a script file with NFU

When NFU starts, it attempts to run the NETSTART.BAT file in the flash. If the script does not exist, a prompt is displayed on the console. For example, to map a drive and write a file to flash, create the following script file:

```
manage dhcpc start
manage map n: 192.168.0.1
flash write image n:/hello.axf
```

After the file is executed, you can enter additional NFU commands. To run the file, reset the board and use the RUN command from Boot Monitor.

Boot Monitor and platform library

Appendix F **Boot Monitor Commands**

This appendix describes Version 4 of the Boot Monitor command set. It contains the following sections:

- About Boot Monitor commands on page F-2
- Boot Monitor command set on page F-3.

F.1 About Boot Monitor commands

The Boot Monitor is the standard ARM application that runs when the system is booted.

The Boot Monitor accepts user commands from the debugger console window or an attached terminal. A command interpreter carries out the necessary actions to complete the user commands.

Commands are accepted in uppercase or lowercase. The Boot Monitor accepts abbreviations of commands if the meaning is not ambiguous. For example, for QUIT, you can type QUIT, QUI, QU, Q, quit, qui, qu, or q.

Optional parameters for commands are indicated by [param]. For example DIRECTORY [directory] indicates that the DIRECTORY command can take an optional parameter to specify which directory to list the contents of. If no parameter is supplied, the default is used (in this case, the current directory).

Type HELP at the Boot Monitor prompt to display a full list of the available commands.

F.2 Boot Monitor command set

Table F-1 Standard Boot Monitor command set

Command	Action
@ script_file	Runs a script file.
ALIAS alias commands	Create an alias command alias for the string of commands contained in commands.
CD directory path	Change directory.
CLEAR BOOTSCRIPT	Clear the current boot script. The Boot Monitor will prompt for input on reset even if the run boot script switch is ON
CONFIGURE	Enter Configure subsystem. Commands listed in Table F-3 on page F-6 can now be executed.
CONVERT BINARY binary_file LOAD_ADDRESS address [ENTRY_POINT address]	Provides information to the system that is required by the RUN command in order to execute a binary file. A new file with name <code>binary_file</code> is produced, but with an .exe file extension.
COPY file1 file2	Copy file1 to file2. For example, to copy the leds code from the PC to the MMC or SD card enter: COPY C:\software\projects\examples\rvds2.0\leds.axf leds.axf
	Note
	Remote file access requires semihosting. Use a debugger connection to provide semihosting.
CREATE filename	Create a new file by inputting text. Press Ctrl-Z to end the file.
DEBUG	Enter the debug subsystem. Commands listed in Table F-4 on page F-7 can now be executed.
DELETE filename	Delete filename from MMC, SD or CompactFlash card
DIRECTORY [directory]	List the files in a MMC, SD or CompactFlash card directory. Files only accessible from semihosting cannot be listed.
DISPLAY BOOTSCRIPT	Display the current boot script.
ECHO text	Echo text to the current output device.
EXIT	Exit the Boot Monitor. The processor is held in a tight loop until it is interrupted by a JTAG debugger.
FLASH	Enter the flash file system for the NOR flash on the baseboard. See Table F-5 on page F-8 for flash commands.

Table F-1 Standard Boot Monitor command set (continued)

Command	Action
HELP [command]	List the Boot Monitor commands. Entering HELP followed by a command displays help for that command.
LOAD name	Load the image name into memory and run it.
M:	Change drive (allocated to MMC or SD card).
K:	Change drive (allocated to CompactFlash card).
MKDIR directory path	Create a new directory.
QUIT	Alias for EXIT. Exit the Boot Monitor.
RENAME old_name new_name	Rename file named old_name to new_name.
RMDIR directory path	Remove a directory.
RUN image_name	Load the image image_name into memory and run it.
SDCARD	Enter the SD, MMC and CompactFlash card subsystem.
SET BOOTSCRIPT script_file	Specify <i>script_file</i> as the boot script. If the run boot script switch is ON, <i>script_file</i> will be run at system reset.
TYPE filename	Display the file filename.

The Boot Monitor (version 4 onwards) includes a set of MMC or SD card and CompactFlash commands (SDCARD command). The commands are provided in a separate sub-menu.

Table F-2 lists the commands for the SDCARD sub-menu.

Table F-2 MMC, SD, and CompactFlash card sub-menu commands

Command	Action
EXIT	Exit the SDCARD commands and return to executing standard Boot Monitor commands.
FORMAT [QUICK] [VOLUME 1abe1]	Formats MMC or SD card for use (does not apply to CompactFlash card). QUICK – Performs a quick format by just overwriting the FAT. VOLUME 1abe1 – Sets the disk label.
HELP [command]	List the SDCARD sub-menu commands. Entering HELP followed by a command displays help for that command.
IDENTIFY	Displays CompactFlash card information.
INFORM <i>drive</i> [CSD CID SCR SDS]	Displays Card Information. drive – Specify drive letter (required for PB926EJ-S only) CSD – Returns information from CSD register CID – Returns information from CID register SCR – Returns information from SCR register SDS – Issues SD_STATUS command and returns results
INITIALISE [socket]	If the card has been changed, call INITIALISE to intialize the card and the file system before using any commands (otherwise the behavior is unpredictable and the card can be corrupted). Option [socket] selects different socket: M – selects MCI 0 K – selects CompactFlash
QUIT	Alias for EXIT. Exit the SDCARD commands and return to executing standard Boot Monitor commands.

Table F-3 lists the commands for the Configure sub-menu.

Table F-3 Boot Monitor Configure commands

Command	Action
DISABLE DATA CACHE	Disables the D cache.
DISABLE I CACHE	Disables the I cache.
DISABLE MMU	Disables the MMU.
DISPLAY CLOCKS	Display system clocks.
DISPLAY DATE	Display date.
DISPLAY HARDWARE	Display hardware information (for example, the FPGA revisions).
DISPLAY TIME	Display time.
ENABLE DATA CACHE	Enables the D cache.
ENABLE I CACHE	Enable the I cache.
ENABLE MMU	Enable the MMU.
EXIT	Exit the configure commands and return to executing standard Boot Monitor commands.
HELP [command]	List the configure commands. Entering HELP followed by a command displays help for that command.
QUIT	Alias for EXIT. Exit the Configure commands and return to standard Boot Monitor commands.
SET BAUD port rate	Set the baud <i>rate</i> for the UART <i>port</i> specified. Valid port numbers are 0, 1, 2, 3.
SET CLOCK n FREQUENCY frequency	Set the <i>frequency</i> in MHz of the requested CLOCK n. Caution Recommended clock switching procedures must be used to ensure system integrity when
	changing the system clock frequency. Note The Boot Monitor does not set any of the clocks on startup. The clock values are determined
SET DATE dd/mm/yy	by the default values in the FPGA image. Set date. The date can also be entered as dd-mm-yy.
SET TIME hh:mm:ss	Set time. The time can also be entered as <i>hh-mm-ss</i> .

Table F-4 lists the commands for the Debug sub-menu.

Table F-4 Boot Monitor Debug commands

Command	Action
DEPOSIT address value [size]	Load memory specified by <i>address</i> with <i>value</i> . The <i>size</i> parameter is optional. If used, it can be BYTE, HALFWORD, or WORD. The default is WORD.
DISABLE MESSAGES	Disable debug messages.
ENABLE MESSAGES	Enable debug messages.
EXAMINE address	Examine memory at address.
EXIT	Exit the debug commands and return to executing standard Boot Monitor commands.
GO address	Run the code starting at address.
HELP [command]	List the debug commands. Entering HELP followed by a command displays help for that command.
QUIT	Alias for EXIT. Exit the Debug commands and return to standard Boot Monitor commands.
MODIFY address value mask [size]	Performs read-modify-write at memory specified by <i>address</i> . The current value at the location is ORed with the result of ANDing <i>value</i> and <i>mask</i> . The <i>size</i> parameter is optional. If used, it can be BYTE, HALFWORD, or WORD. The default is WORD.
START TIMER	Start a timer.
STOP TIMER	Stop the timer started with the START TIMER command and display the elapsed time.

Table F-5 lists the commands for the NOR Flash subsystem.

Table F-5 Boot Monitor NOR flash commands

Command	Action
CREATE BOOTSCRIPT [NAME name] [FLASH_ADDRESS address]	Creates a boot script that is stored in flash. The image will be identified in flash by the default name BOOTSCRIPT. This can be overridden by using the optional NAME argument. You can specify where in flash the bootscript is written by using the optional FLASH_ADDRESS argument.
DISPLAY BOOTSCRIPT [name]	Displays bootscript that is stored in flash. If the optional <i>name</i> is not specified then the default name BOOTSCRIPT is used.
DISPLAY IMAGE name	Displays details of image name.
ERASE IMAGE name	Erase an image or binary file from flash.
ERASE RANGE start [end]	Erase an area of NOR flash from the <i>start</i> address to the <i>end</i> address. Note
	It is only possible to erase entire blocks of flash. Therefore the entire block of flash that contains <i>start</i> , the block that contains <i>end</i> and all intervening blocks are erased. This migh mean that data before <i>start</i> or after <i>end</i> will be erased if they are not on block boundaries If the optional <i>end</i> parameter is not specified, only the single block of flash that contains <i>start</i> is erased.
	—— Caution —— This command can erase the Boot Monitor image. See <i>Loading Boot Monitor into NOR flash</i> on page E-7 in the case of accidental erasure.
EXIT	Exit the NOR flash commands and return to executing standard Boot Monitor commands
HELP [command]	List the flash commands. Entering HELP followed by a command displays help for that command.
LIST AREAS	List areas in flash. An area is one or more contiguous blocks that have the same size and use the same programming algorithm.
LIST IMAGES	List images in flash.
LOAD name	Load the image image_name into memory.
QUIT	Alias for EXIT. Exit the NOR flash commands and return to standard Boot Monitor commands.
RESERVE SPACE address size	Reserve space in NOR flash. This space will not be used by the Boot Monitor. <i>address</i> is the start of the area and <i>size</i> is the size of the reserved area.

Table F-5 Boot Monitor NOR flash commands (continued)

Command	Action
RUN name	Load the image name from flash and run it.
UNRESERVE SPACE address	Free the space starting at <i>address</i> in NOR flash. This space can be used by the Boot Monitor.
WRITE BINARY file [NAME new_name] [FLASH_ADDRESS address] [LOAD_ADDRESS address] [ENTRY_POINT address]	Write a binary file to flash. By default, the image is identified by its file name. Use NAME <i>new_name</i> to specify a name instead of using the default name. Use FLASH_ADDRESS <i>address</i> to specify where in flash the image is to be located. The optional LOAD_ADDRESS and ENTRY_POINT arguments enable you to specify the load address and the entry point. If an entry point is not specified, the load address is used as the entry point.
	Note ————————————————————————————————————
WRITE IMAGE file [NAME new_name] [FLASH_ADDRESS address]	Write an ELF image file to flash. By default, the image is identified by its file name. For example, t:\images\boot_monitor.axf is identified as boot_monitor. Use NAME new_name to specify a name instead of using the default name. Use FLASH_ADDRESS address to specify where in flash the image is to be located. If the image is linked to run from flash, the link address is used and address is ignored.
	Remote file access requires semihosting. Use a debugger connection to provide semihosting.

Boot Monitor Commands

Appendix G **Loading FPGA Images**

This section describes the format of the board files and how to use the progcards utilities to load images from the supplied CD into the baseboard and Logic Tile FPGAs and PLDs. It contains the following sections:

- General procedure on page G-2
- Board files on page G-3
- The progcards utilities on page G-5
- *Upgrading your hardware* on page G-7.

G.1 General procedure

The general procedure to load an image is:

- 1. Follow the instructions in the *Versatile Family CD Installation Guide* to install the software and data files on your hard disk.
- 2. Set up the baseboard and Logic Tile as described in *Setting up the baseboard* on page 2-2.
- 3. Connect a JTAG debugger (such as RealView ICE) to the JTAG connector or use a USB cable to connect a PC to the USB config port. See *JTAG debugger and USB config support* on page 2-5.
- 4. Place the baseboard in configuration mode (Config switch ON) and power on the development system.
- 5. Locate the board file (.brd) that matches your configuration. See *Board files* on page G-3.

—— Caution	
——— Caution	

The baseboard is shipped with multiplexed AXI connectivity in place for the tile site but without an image for any specific Logic Tile loaded into the configuration flash. You must load a Logic Tile FPGA image into the configuration flash before you can use the baseboard with a Logic Tile. Refer to the *Application Note* for your system configuration for specific instructions. If you change the type of Logic Tile, you must also load a new specific image.

The image file for your configuration also includes a Boot Monitor image for NOR flash. You can also load the Boot Monitor code separately without reloading the FPGA and PLD images, see *Loading Boot Monitor into NOR flash* on page E-7.

Run the prograds utility and load the image files into the FPGAs.See *Upgrading your hardware* on page G-7.The board file selects the image files to load. Board files have a .brd extension.

G.2 Board files

The CD includes both the programs programming utilities and the images to load into the FPGAs and PLDs. See the *Application Notes* on the CD for the combination of baseboard and Logic Tile that you are using. The structure of a typical board file is shown in Example G-1 on page G-5.

G.2.1 Naming conventions for board files

The file name of a board file identifies the PCB, Logic Tile, all programmable devices, and revision. Using the board file eliminates the need to load several individual image files. All file names are in lower case with an underscore character separating the fields:

appnote_boardname_number_core_endian_buildn_devicelist.brd

where:	
appnote	The Application Note related to this board file.
boardname_number	The name and number identify a specific development board. For example, eb_140c is for the Emulation Baseboard that uses PCB board HBI-140C.
	Note
	The full board number is HBI-XXXXR, this is abbreviated to just the significant digits and revision, for example, HBI-0140C becomes 140C.
core	The name of the core that is used with this configuration. For example, cortex-a8 identifies the Cortex-A8 processor.
	——— Caution ————
	Ensure that you use the board file that matches your system configuration.
build <i>n</i>	The build number. The number n increments from 0
devicelist	The name of the programmable devices that are specified in this file.

G.2.2 Naming conventions for image files

The image files contain the image for a single FPGA, PLD, or programmable memory device. The file name of an FPGA or PLD image file identifies the PCB, device and revision. All file names are in lower case with an underscore character separating the fields:

boardname_number_devicename_device_buildn.extension

where:

boardname_number The name and number identify a specific development board.

For example, eb_140c is for the baseboard that uses PCB board

HBI-140C.

devicename_device

The name of the programmable devices that match this file. For

example, cfg_xc2c128 identifies the Xilinx XC2C128

configuration PLD.

build n The build number. The number n increments from 0

extension The type of device used by this file. For example .svf is used for

PLD programming and .bit is used for FPGA programming.

—— Caution ———

The baseboard is supplied with the PLD images already programmed. The information in this section is provided only in case of accidental erasure of the PLDs. You are advised not to reprogram the PLDs with any images other than those provided by ARM Limited.

Using the board file to control image file loading minimizes the risk of incorrectly programming the board. The board files contains a list of correct image files and eliminates the requirement to select individual image files for the programmable devices on the baseboard or attached Logic Tile.

G.3 The progcards utilities

The programs utilities are the primary method for programming FPGAs, configuration flash memory, and non-volatile PLDs. These utilities are used during board manufacture and to carry out field upgrades.

prograds reads a description of the board JTAG scan chain and a list of operations from a board description (*.brd) file. The file describes which bitstream and configuration files (*.bit, *.svf) must be downloaded to devices on the board.

The upgrade package for a board contains the new files and all previously released versions. This enables you to return to the original configuration.

Example G-1 Board file

```
[General]
Name = PB-A8 (HBI-0178C)
Priority = 1
Board = 178c
[ScanChain]
TAPs = 6
TAP0 = XC4VLX40
TAP1 = XC5VLX50T
TAP2 = ISSP
TAP3 = ispClock5620
TAP4 = XC2C128
TAP5 = XC2C32A
[Program]
SequenceLength
                 = 8
Step1Method
                 = PLD
Step1TAP
                 = 3
Step1File
                 = PBA8\ispclock5620_axi.svf
Step2Method
                 = PLD
                 = 5
Step2TCKSpd
Step2TAP
                 = 4
                 = PBA8\hbi178bc_xc2c128_streamer_via.svf
Step2File
Step3Method
                 = PLD
Step3TCKSpd
                 = 5
Step3TAP
                 = 5
Step3File
                 = PBA8\cspld.svf
Step3DisplayText = Please power cycle the board by pressing the power button twice.
Step3Pause
                 = 1
                 = Virtex4
Step4Method
Step4TAP
                 = 0
Step4TCKSpd
                 = 5
```

Loading FPGA Images

Step4File = via\fpgavia178bc.bit

Step5Method = IntelFlash

Step5TAP = 0

Step5File = PBA8\PBA8SB.fix

Step5Address = 000000 Step5Bitfix = 0

Step6Method = IntelFlashVerify

Step6TAP = 0

Step6File = PBA8\PBA8SB.fix

Step6Address = 000000Step6Bitfix = 0

Step7Method = IntelFlash

Step7TAP = 0

Step7File = PBA8\PBA8DB.fix

Step7Address = 800000Step7Bitfix = 0

Step8Method = IntelFlashVerify

Step8TAP = 0

Step8File = PBA8\PBA8DB.fix

Step8Address = 800000 Step8Bitfix = 0

G.4 Upgrading your hardware

Use one of the progrards utilities and the board description (*.brd) files to load configuration images to the FPGA:

progcards_rvi.exe

prograds_rvi.exe uses RealView ICE and the JTAG interface. It runs on a PC host in a DOS window and communicates with the RealView ICE interface box.

See *Procedure for progcards_rvi.exe* for detailed instructions.

progcards_usb.exe

progcards_usb.exe uses the built-in USB Config port (USB to JTAG interface logic) on the baseboard. A standard USB cable connects the baseboard to the PC running progcards_usb.exe.

See *Procedure for progcards_usb.exe* on page G-9 for detailed instructions.

Note -	
--------	--

The latest version of the RVI firmware can be downloaded from the Technical Support area of the ARM web site.

G.4.1 Procedure for progcards_rvi.exe

- 1. Ensure that the RealView ICE firmware is version 1.4.1 (or later) and has the additional patch required for running progcards_rvi. The patch can be downloaded from the downloads page on the Technical Support section of the ARM web site. See the readme file supplied with progcards_rvi for information on updating the firmware.
- 2. Connect the 20-way JTAG cable from the RealView ICE JTAG interface to the JTAG connector on the rear panel of the ATX enclosure. See *Rear panel layout* on page 3-6 to locate the connector.
- 3. Move the Config switch on the front panel of the ATX enclosure to the ON position. See *Front panel layout* on page 3-5 to locate the Config switch and indicator.
- 4. Turn on the power, the Config indicator on the front panel of the ATX enclosure lights.
- 5. Start a command window by selecting **Run** from the **Start** menu and entering command in the text box.

- 6. Change directory to the directory that contains board description (*.brd) files for the design to be programmed.
- 7. Start the programming utility by entering programs_rvi at the command prompt.
- 8. A menu is displayed asking which interface box you want to connect to. Select the interface that is connected to the baseboard.

Note
See the documentation supplied with progcards_rvi for information on
connecting directly to a specified interface that is connected to either the network
or the local USB connection on the PC.

- 9. RVI attempts to auto-configure. If auto-configuration fails, see the documentation supplied with procards_rvi.
- 10. progcards_rvi searches for board description files that match the JTAG scan chain. All board descriptions matching the first part of the chain are presented as a menu and you can select the file to use.
 - progcards_rvi runs through the steps required to completely reprogram the boards.
- 11. To bypass programming a Logic Tile or the baseboard select the Skip option from the menu. progrards_rvi then looks for board description files that match the next segment of scan chain and so on.

Typically one menu is displayed for the Logic Tile and one menu is displayed for the baseboard. If only one board description matches your hardware, it is automatically selected and no menu is displayed.

——— Caution ———
Ensure that the image file you are loading matches your system configuration. In
the incorrect files are loaded, the baseboard and tiles might not function, might be

unreliable, or might be damaged.

- 12. After downloading of the image completes, turn the power off and move the Config switch on the front panel of the ATX enclosure to the OFF position.
- 13. Set the configuration switches to match the boot option you are using. See *Boot Monitor configuration* on page 2-3).
- 14. Power on and use the Boot Monitor to load your application. See Appendix E *Boot Monitor and platform library*.

If you are not using the Boot Monitor, use a JTAG debugger to load and run an application. See the documentation supplied with your debugger for details.

G.4.2 Procedure for progcards_usb.exe

1.	If it is not already installed, install the <i>USB Config Direct Control</i> software.
	Note
	Windows USB Config drivers must be installed before using the progcards_usb utility. Information on installing the USB drivers can be found in \boardfiles\USB_Config_driver\readme.txt.
2.	Connect the USB cable from the host PC to the USB Config port on the front panel of the ATX enclosure. See <i>Front panel layout</i> on page 3-5.
3.	Move the Config switch on the front panel of the ATX enclosure to the ON position. See <i>Front panel layout</i> on page 3-5 to locate the Config switch and indicator.
4.	Turn on the power, the Config indicator on the front panel of the ATX enclosure lights.
5.	Start a command window by selecting Run from the start menu and entering command in the text box.
6.	Change directory to the directory that contains board description $(*.brd)$ files for the design to be programmed.
7.	Start the programming utility by entering progcards_usb at the command prompt.
	Note
	If progcards_usb.exe is not in the current working directory, set your PATH environment variable to point to the directory that contains progcards_usb.exe.
8.	Progcards_usb searches for board description files that match the scan chain. All board descriptions matching the first part of the chain are presented as a menu and you can select the file to use.
	progcards_usb runs through the steps required to completely reprogram the boards.
9.	To bypass programming a Logic Tile or the baseboard select the Skip option from the menu. progcards_usb then looks for board description files that match the next segment of scan chain and so on.
	Typically one menu is displayed for the Logic Tile and one menu is displayed for the baseboard. If only one board description matches your hardware, it is

automatically selected and no menu is displayed.

- 10. After downloading the image completes, turn the power off and move the Config switch to the OFF position.
- 11. Set the configuration switches to match the boot option you are using. See *Baseboard configuration switches* on page 2-7.
- 12. Power on the board and use the Boot Monitor to load your application. See Appendix E *Boot Monitor and platform library*.

If you are not using the Boot Monitor, use a JTAG debugger to load and run an application. See the documentation supplied with your debugger for details.

G.4.3 Troubleshooting

If the upgrade process fails at any time, or the progcards utility reports an error, then check the following:

- 1. The Config switch is ON and the Config indicator on the front panel is lite.
- 2. If you are using progrards_rvi.exe, see the documentation supplied with progrards_rvi.
- 3. If you are using progcards_usb.exe ensure that:
 - a. the USB cable is plugged into the USB Config port on the front panel of the ATX enclosure and not one of the USB user ports on the rear panel
 - b. the USB Config drivers are installed on your machine.
- 4. Ensure that any Logic Tiles are correctly stacked on the baseboard. If necessary, push them firmly to ensure a proper connection.
- 5. Look for any readme.txt files that might be present in the directory that contains the board description (*.brd) files. Follow the instructions provided for new or updated software or engineering changes.

Glossary

This glossary lists abbreviations used in the User Guide.

ASIC Application Specific Integrated Circuit.

ADC Analog to Digital Converter. A device that converts an analog signal into digital data.

AHB Advanced High-performance Bus. An ARM open standard bus protocol.

AMBA 3 Advanced Microcontroller Bus Architecture version 3.

AXI AMBA 3 Advanced eXtensible Interface. An ARM open standard bus protocol.

BIST Built In Self Test

DAC Digital to Analog Converter. A device that converts digital data into analog level signals.

PB RealView Platform Baseboard. A hardware platform that includes an ARM processor

used for system prototyping and debugging of ARM processors.

FPGA Field Programmable Gate Array.

ICE In Circuit Emulator. A interface device for configuring and debugging processor cores.

I/O Input/Output.

JTAG Joint Test Action Group. The committee which defined the IEEE test access port and

boundary-scan standard.

LED Light Emitting Diode.

Multi-ICE Equipment for running and controlling a JTAG interface for system debug.

This is legacy JTAG equipment. Does not support the Cortex-A8 processor.

PCI Peripheral Component Interconnect. A circuit board level bus interconnect.

PISMO Memory specification for plug in memory modules.

PLD Programmable Logic Device.

PLL Phase-Locked Loop. A type of programmable oscillator that tracks the input frequency

and can generate arbitrary multiples or divisions of the input frequency.

RAM Random Access Memory.

RVI RealView ICE. Equipment for running and controlling a JTAG interface for system

debug. This is current JTAG equipment. Supports the Cortex-A8 processor.

TCM Tightly Coupled Memory, a fast memory block that connects directly to a dedicated I/O

port on the processor.

USB Universal Serial Bus. Hardware interface for connecting peripheral devices.