
Mali™ GPU OpenGL ES
Application Development Guide
Copyright © 2007-2009 ARM. All rights reserved.
ARM DUI 0363D (ID121709)

Mali GPU OpenGL ES
Application Development Guide

Copyright © 2007-2009 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

06 December 2007 A Non-Confidential First Release

29 May 2008 B Non-Confidential Second Release

30 September 2008 C Non-Confidential Update for OpenGL ES extensions support

10 December 2009 D Non-Confidential Update for Mali Developer Portal
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. ii
ID121709 Non-Confidential, Unrestricted Access

ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. iii
ID121709 Non-Confidential, Unrestricted Access

Contents
Mali GPU OpenGL ES Application Development
Guide

Preface
About this book .. vii
Feedback .. ix

Chapter 1 Introduction
1.1 Mali system overview ... 1-2
1.2 Graphics standards .. 1-3
1.3 Mali GPU Developer Tools .. 1-4

Chapter 2 Developing OpenGL ES Applications
2.1 Developing applications ... 2-2
2.2 Mali rendering strategy .. 2-3
2.3 OpenGL ES limitations .. 2-4
2.4 Supported OpenGL ES extensions .. 2-8
2.5 Optimizing application speed ... 2-9
2.6 Recommendations and best practices ... 2-10
2.7 Identifying problems in applications ... 2-19

Appendix A OpenGL ES 2.0 Limit Values and Optional Language Features
A.1 Optional language features .. A-2
A.2 Limit values .. A-3

Glossary

ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. iv
ID121709 Non-Confidential, Unrestricted Access

List of Tables
Mali GPU OpenGL ES Application Development
Guide

Change history .. ii
Table 2-1 Relative costs of common shader program operations ... 2-15
Table 2-2 Application problems and suggested solutions ... 2-19
Table A-1 Mali GPU implementation values .. A-3

ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. v
ID121709 Non-Confidential, Unrestricted Access

List of Figures
Mali GPU OpenGL ES Application Development
Guide

Figure 2-1 C code and corresponding matrix ... 2-5
Figure 2-2 Graphics application and shader program communication ... 2-6
Figure 2-3 Rotated Grid algorithm .. 2-11

Preface

This preface introduces the Mali GPU OpenGL ES Application Development Guide. It contains the
following sections:
• About this book on page vii
• Feedback on page ix.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. vi
ID121709 Non-Confidential, Unrestricted Access

Preface
About this book
This is the OpenGL ES Application Development Guide for the Mali GPU. It provides
guidelines for using the OpenGL ES 1.1 and OpenGL ES 2.0 APIs to develop applications for
a Mali GPU.

This document applies to the Mali GPU range, that is Mali-55, Mali-200, and Mali-400 MP. Any
differences for particular GPUs are clearly indicated. The document describes how to achieve
optimal use of the hardware and software.

Use this guide in conjunction with the other Mali GPU documentation. See Additional reading
on page viii for a list of the other available documentation.

Intended audience

This guide is written for programmers who are programming a System-on-Chip (SoC) that uses
a Mali GPU. It assumes that you have experience in software development, and are familiar with
graphics software terminology.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the Mali GPU, the software architecture,
and the Mali GPU developer tools you can use to develop OpenGL ES
applications on the Mali GPU.

Chapter 2 Developing OpenGL ES Applications
Read this chapter for information about optimizing application performance and
identifying problems when developing OpenGL ES application software.

Appendix A OpenGL ES 2.0 Limit Values and Optional Language Features
Read this chapter for information about language features that you can use in
OpenGL ES 2.0 implementations, and also about the sizes of various shader
resources.

Glossary Read this for definitions of terms used in this book.

Conventions

The typographical conventions that this book can use are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. vii
ID121709 Non-Confidential, Unrestricted Access

Preface
monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• Mali GPU Developer Tools Technical Overview (ARM DUI 0501)
• Mali GPU Performance Analysis Tool User Guide (ARM DUI 0502)
• Mali GPU Texture Compression Tool User Guide (ARM DUI 0503)
• Mali GPU Shader Development Studio User Guide (ARM DUI 0504)
• Mali GPU Demo Engine User Guide (ARM DUI 0505)
• Mali GPU OpenGL ES 1.1 Emulator User Guide (ARM DUI 0506)
• Mali GPU Binary Asset Exporter User Guide (ARM DUI 0507)
• Mali GPU Shader Library User Guide (ARM DUI 0510)
• Mali GPU OpenGL ES 2.0 Emulator User Guide (ARM DUI 0511)
• Mali GPU Offline Shader Compiler User Guide (ARM DUI 0513).

Other publications

This section lists relevant documents published by third parties:

• OpenGL 2.1 Specification, http://www.opengl.org

• OpenGL ES Common/Common-Lite Profile Specification Version 1.1,
http://www.khronos.org

• OpenGL ES Common Profile Specification Version 2.0, http://www.khronos.org

• OpenGL ES Common Profile Specification Version 1.1, http://www.khronos.org

• OpenGL ES Shading Language (GLSL ES), http://www.khronos.org

• EGL 1.4 Specification, http://www.khronos.org

• OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 2 (5th
Edition, 2005), Addison-Wesley Professional. ISBN 0-321-33573-2

• OpenGL Shading Language (2nd Edition, 2006), Addison-Wesley Professional. ISBN
0-321-33489-2.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. viii
ID121709 Non-Confidential, Unrestricted Access

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product then contact
malidevelopers@arm.com and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0363D
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. ix
ID121709 Non-Confidential, Unrestricted Access

Chapter 1
Introduction

This chapter introduces the Mali GPU OpenGL ES Application Development Guide. It contains the
following sections:
• Mali system overview on page 1-2
• Graphics standards on page 1-3
• Mali GPU Developer Tools on page 1-4.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-1
ID121709 Non-Confidential, Unrestricted Access

Introduction
1.1 Mali system overview
The Mali Graphics Processing Unit (GPU) forms the basis of a high performance graphics
processing solution. When implemented as part of a System-on-Chip (SoC) device, the GPU
forms an integral part of the graphics solution.

Programmable hardware, such as the Mali-200 GPU or Mali-400 Multi Processor (MP) GPU,
consists of programmable processors, one or more pixel processors, and a geometry processor.
The geometry processor performs all geometric and vertex processing and passes this
information, as data structures, to the pixel processors. The pixel processors perform rendering
to produce the final image.

Entry-level, fixed-function hardware might not have a dedicated hardware geometry processor.
For example, the Mali-55 GPU consists of a pixel processor that performs rasterization
according to the OpenGL ES 1.1 standard. The geometric operations for the Mali-55 GPU are
performed by software running on the CPU.

Note
 • The Mali-200 and Mali-400 MP GPUs support both the OpenGL ES 1.1 and

OpenGL ES 2.0 graphics standards.

• Fixed-function hardware such as the Mali-55 GPU only supports OpenGL ES 1.1.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-2
ID121709 Non-Confidential, Unrestricted Access

Introduction
1.2 Graphics standards
The Mali GPUs support the OpenGL ES APIs, these are subsets of the full OpenGL APIs.
OpenGL ES contains 2D and 3D graphics functionality specifically for embedded system
applications on mobile handsets, Personal Digital Assistants (PDAs), and other handheld
devices. The Mali GPUs use OpenGL ES to provide a low-level interface between graphics
software and hardware graphics acceleration.

The Mali GPUs also support the OpenVG API. OpenVG contains 2D functionality for hardware
accelerated vector and raster graphics. See the Mali GPU OpenVG Application Development
Guide.

Specifically, fixed-function Mali GPUs, such as the Mali-55, support:

OpenGL ES 1.1
OpenGL ES 1.1 is a subset of the OpenGL 1.5 standard that implements a
fixed-function pipeline.

EGL 1.3
EGL 1.3 specifies how OpenGL ES drivers are integrated with a
platform-specific windowing system.

In addition to OpenGL ES 1.1, programmable hardware GPUs, such as the Mali-200 and
Mali-400 MP, also support:

OpenGL ES 2.0
OpenGL ES 2.0 is a subset of the OpenGL 2.0 standard that implements a
pipeline with application-programmable vertex and fragment processing. You use
the OpenGL ES Shading Language (ESSL) to specify vertex and fragment shader
programs.

EGL 1.4
EGL 1.4 specifies how OpenGL ES drivers are integrated with a
platform-specific windowing system.

The OpenGL ES drivers are implementations of these standards that control the graphics
hardware. The appropriate drivers are included with the Mali GPUs.

See http://www.khronos.org for more information about these graphics standards and the
OpenGL ES drivers.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-3
ID121709 Non-Confidential, Unrestricted Access

Introduction
1.3 Mali GPU Developer Tools
The Mali GPU Developer Tools consist of the following development tools to help you optimize
OpenGL ES application development:

OpenGL ES 1.1 Emulator
The OpenGL ES 1.1 Emulator is a library that maps OpenGL ES 1.1 API calls to
OpenGL 2.0 API calls to be executed on a graphics card in a standard PC. The
graphics card must support at least OpenGL 2.0 for the emulator to work. There
are emulators for Windows and Linux.

OpenGL ES 2.0 Emulator
The OpenGL ES 2.0 Emulator is a library that maps OpenGL ES 2.0 API calls to
OpenGL 2.0 API calls to be executed on a graphics card in a standard PC. The
graphics card must support OpenGL 2.0 for the emulator to work. There are
emulators for Windows and Linux.

Mali GPU Performance Analysis Tool
The Performance Analysis Tool helps you analyze graphics application
performance by studying hardware and software performance counters produced
by the Mali GPU and or the Instrumented Version of the OpenGL ES 2.0
Emulator under Windows.

Note
 The Linux version does not currently support this feature.

The Performance Analysis Tool can display any of a set of performance counter
values for each frame.

Mali GPU Texture Compression Tool
You can run the Mali GPU Texture Compression Tool on your computer to
encode texture images into formats that take less memory than the original. This
enables you to reduce the amount of memory bandwidth required to read texture
data. The reduced bandwidth results in superior performance and reduced power
consumption. The Mali GPU supports Ericsson Texture Compression (ETC).
ETC is the compression scheme recommended by the OpenGL ES Working
Group. The Texture Compression tool has both a graphical and command-line
interface.

Mali OpenGL ES Instrumented Drivers
The Mali OpenGL ES Instrumented drivers are a special build of the Mali
OpenGL ES drivers with added debug functionality. These drivers contain:
• functionality for sampling of hardware and software performance counters
• additional debug output
• dumping of driver state content
• dumping of framebuffer content.

Mali GPU Demo Engine
The Mali GPU Demo Engine is a library of C++ functions that aid building
OpenGL ES applications for an ARM platform with Mali GPU acceleration. You
can run the Mali GPU Demo Engine on a Microsoft Windows workstation, a
Linux workstation, and on an ARM platform with a Mali GPU. You can use the
Mali GPU Demo Engine to create new applications, deliver training, and explore
implementation possibilities.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-4
ID121709 Non-Confidential, Unrestricted Access

Introduction
Mali GPU Binary Asset Exporter
The Mali GPU Binary Asset Exporter is a program that runs on your desktop
computer and converts graphic assets from the COLLADA format to the Mali
Binary Asset format. These graphic assets include such elements as:
• geometry data
• textures
• lighting
• movements for animation.
The assets can be imported in COLLADA format that can be generated by
commercial 3D modelling tools such as Google SketchUpPro and Autodesk 3ds
Max.

Note
 The Mali GPU Demo Engine requires assets in Mali Binary Asset format so that

any COLLADA assets must be converted to Mali Binary Asset format before the
assets are used in the Demo Engine.

Mali GPU Shader Development Studio
The Mali GPU Shader Development Studio is an Eclipse plug-in that extends the
functionality of the Eclipse platform and enables editing of OpenGL ES shaders.
You can use it to start developing shaders, or to work on existing shaders and
shader effects.
You can preview shaders as they are being developed by rendering them on
remote OpenGL ES hardware or on local or remote emulations. You can modify
various shader variables and use the Mali GPU Shader Development Studio to
view the corresponding changes in the effects.

Note
 The following shader tools are not applicable to fixed-function hardware such as

the Mali-55 GPU:
• Mali GPU Shader Development Studio
• Mali GPU Shader Library
• Mali GPU Offline Shader Compiler.

Mali GPU Shader Library
The Mali GPU Shader Library is a collection of example shader programs. These
examples contain the ESSL vertex and fragment shader source files for shader
programs and other information to help you start developing shader programs for
the Mali GPU. You can use the shader programs as they are provided, modify
them to suit your requirements, or use them to learn and develop your own
programs.

Mali GPU Offline Shader Compiler
The Mali GPU Offline Shader Compiler translates vertex shaders and fragment
shaders written in the OpenGL ES Shading Language (ESSL) into binary vertex
and fragment shaders.
The OpenGL ES 2.0 Emulator and Mali GPU Shader Development Studio use the
Mali GPU Offline Shader Compiler to check the syntax of shaders before they are
sent for rendering. Each shader is compiled in the background and any warnings
or errors that are generated are collected.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-5
ID121709 Non-Confidential, Unrestricted Access

Introduction
See Mali GPU Developer Tools Overview for more information about the Mali GPU developer
tools.

You can use the Mali GPU developer tools together with standard ARM development tools such
as RealView® Developer Suite (RVDS). See http://www.arm.com for a complete list of ARM
software development tools. Many of these tools are semihosted, so that you can operate them
from your desktop computer, using a tool such as RealView ICE® for communication with the
development platform.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 1-6
ID121709 Non-Confidential, Unrestricted Access

Chapter 2
Developing OpenGL ES Applications

This chapter describes how to develop applications for the Mali GPU, using OpenGL ES. It
contains information about different development approaches, how to optimize your applications,
and how to locate problems in your applications.

This chapter contains the following sections:
• Developing applications on page 2-2
• Mali rendering strategy on page 2-3
• OpenGL ES limitations on page 2-4
• Supported OpenGL ES extensions on page 2-8
• Optimizing application speed on page 2-9
• Recommendations and best practices on page 2-10
• Identifying problems in applications on page 2-19.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-1
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.1 Developing applications
The different approaches involved in developing a graphics application for embedded devices
use various hardware and software tools, such as compilers, graphics drivers, debuggers, and
communications facilities. You can use any of the following approaches to develop OpenGL ES
applications:

• If you are targeting a specific device that contains a Mali GPU, obtain a development kit
for that device. Contact the device manufacturer for information about obtaining a
development kit.

• Obtain a hardware development platform for the Mali GPU from the Mali Development
Center to help you to evaluate the Mali GPU and design graphics software for different
operating systems. See http://www.malideveloper.com for more information.

• Obtain the OpenGL ES 1.1 or 2.0 Emulator from the Mali Developer Center
http://www.malideveloper.com to help you getting started developing your OpenGL ES
application on your desktop PC.

Note
 If you are developing OpenGL ES 2.0 content using the OpenGL ES 1.1 or 2.0 Emulator,

ensure that the GPU in your desktop PC supports programmable Fragment and Vertex
shaders with Shader Model 3.0 or higher.

If you are using programmable graphics hardware, ensure that your shaders are compatible with
both the OpenGL ES Shading Language (ESSL). Use the Offline Shader Compiler to check that
your shaders are valid ESSL and to establish the number of execution cycles that your shaders
require. See Shader programs on page 2-13 for more information.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-2
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.2 Mali rendering strategy
The Mali GPUs use tile-based immediate-mode rendering.

For this type of rendering, the framebuffer is divided into tiles of size 16 by 16 pixels. The
Polygon List Builder (PLB) organizes input data from the application into polygon lists. There
is a polygon list for each tile. When a primitive covers part of a tile, an entry, called a polygon
list command, is added to the polygon list for the tile.

The pixel processor takes the polygon list for one tile and computes values for all pixels in that
tile before starting work on the next tile. Because this tile-based approach uses a fast, on-chip
tile buffer, the GPU only writes the tile buffer contents to the framebuffer in main memory at
the end of each tile. Non-tiled-based, immediate-mode renderers generally require many more
framebuffer accesses. The tile-based method therefore consumes less memory bandwidth, and
supports operations such as depth testing, blending and anti-aliasing efficiently.

Note
 • The pixel processors in the Mali-200 and Mali-400 MP GPUs support early-Z rejection

of fragments when depth testing is enabled. If depth testing is set to less than or equal for
example, when a fragment is generated, the hardware tests whether the fragment depth is
greater than that of the same pixel in previously-generated fragments. If so, the new
fragment is discarded before it reaches the fragment shader.

• An important aspect of the tile based rendering strategy that Mali uses, is that the
tilebuffer is cleared each time you start processing a new tile. When the framebuffer
content has to be preserved, from the previous frame, that is, EGL_SWAP_BEHAVIOR set to
EGL_BUFFER_PRESERVED, this imposes a performance impact because the previous content
has to be loaded for each tile before new content can be processed for that tile.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-3
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.3 OpenGL ES limitations
This section describes:
• Differences between OpenGL and OpenGL ES
• Running code on OpenGL and OpenGL ES.
• Viewing transforms on page 2-5
• Shader programming on page 2-5.

2.3.1 Differences between OpenGL and OpenGL ES

OpenGL ES 1.1 and OpenGL ES 2.0 are subsets of the full OpenGL standard. When using the
OpenGL ES API, there are limitations that you must be aware of when developing your
applications.

For example, the following OpenGL functionality is not present in either OpenGL ES 1.1 or
OpenGL ES 2.0:

• There is no support for glBegin or glEnd. Use vertex arrays and vertex buffer objects
instead.

• The only supported rasterization primitives are points, lines and triangles. Quads are not
supported.

• There is no polynomial function evaluation stage.

• You cannot send blocks of fragments directly to individual fragment operations.

• There is no support for display lists.

In addition, the following OpenGL functionality is not present in OpenGL ES 2.0:

• There is no support for the fixed-function graphics pipeline. You must use your own
vertex and fragment shader programs.

• There is no support for viewing transforms such as glFrustumf. You must compute your
own transformation matrix, pass it to the vertex shader as a uniform variable, and perform
the matrix multiplication in the shader.

• There is no support for specialized functions such as glVertexPointer and
glNormalPointer. Use glVertexAttribPointer instead.

Note
 In OpenGL ES 2.0, perspective divide, frustum clipping and scissoring functionality are
handled by fixed-function steps.

See the OpenGL ES 1.1 Specification and OpenGL ES 2.0 Specification for more information
about the differences between OpenGL and OpenGL ES.

2.3.2 Running code on OpenGL and OpenGL ES

If you are writing code to run on both OpenGL 2.0 and OpenGL ES 2.0, be aware of slight
differences between the shader languages used in the two APIs. For example, OpenGL ES 2.0
requires a precision declaration in the fragment shader code, while OpenGL 2.0 does not support
this.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-4
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
To enable your code to run on both OpenGL 2.0 and OpenGL ES 2.0, start every fragment
shader with:

#ifdef GL_ES
 precision mediump float;
#endif

2.3.3 Viewing transforms

When computing your own viewing matrix, ensure you understand how OpenGL ES handles
matrices.

When you multiply the position vector with several matrices to achieve transformations such as
translation, rotation, scaling or projection, the effect when applying the resulting matrix on a
position vector is as if the individual matrix multiplication operations were performed from
right to left. This means that the usual sequence of matrices as defined by OpenGL is, from left
to right:
1. Projection matrix
2. View matrix
3. Any number of model transformation matrices, from most global to most local.

You must then multiply the resulting matrix by the vertex position with the matrix on the left.

OpenGL ES assumes matrices are stored in column major order, however arrays in the C
programming language are stored in row major order. This means that when you write matrices
as constants, they appear transposed. This applies to constants in your application program in
addition to shader programs. Figure 2-1 shows an example of a translation matrix.

Figure 2-1 C code and corresponding matrix

2.3.4 Shader programming

When using OpenGL ES 2.0, you must always provide a vertex shader and a fragment shader
program. The vertex shader program is executed once for each vertex that is passed to the API
calls. The fragment shader program is executed once for each resulting fragment.

Note
 Fixed-function hardware such as the Mali-55 GPU does not support shader programs.

The simple example application in Figure 2-2 on page 2-6 illustrates communication between
the application and shader programs.

float move_matrix[]={
 1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 x, y, z, 1.0f
};

1 0 0 X
0 1 0 Y
0 0 1 Z
0 0 0 1

=

ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-5
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Figure 2-2 Graphics application and shader program communication

The communication flow shown in Figure 2-2 is:

1. To specify vertex coordinates, your application calls glBindAttribLocation(). The coord
attribute specifies the vertex coordinates x, y, and z.

Note
 To have any effect, the application must call glBindAttribLocation() before the program

is linked.

The application then enables the array using glEnableVertexAttribArray.
The function glVertexAttribPointer() provides values for the vertex coordinates. In the
example, the value 3 indicates that there are three components for each vertex x, y, and z.
The array is the array of vertex coordinates. The vertex shader is run once for each vertex.
Each time the program runs, it starts with its set of such vertex attributes, as values of
attribute variables.

Application program

Enable array and provide values for all coordinates

Specify value of uniform variable for current program object
GLint loc = glGetUniformLocation(prog, “view”);
float transform[] = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1}
glUniformMatrix4fv(loc, 1, GL_FALSE, transform);

Specify value of uniform variable for current program object

glUniform3fv(glGetUniformLocation(prog,”clr”),3,one_color_array);

Vertex shader program

Fragment shader program

Vertex position

Color

#ifdef GL_ES
 precision mediump float;
#endif
uniform vec3 clr;
varying vec3 nrm;
void main () {
 float lig = 0.2886 * (nrm.x + nrm.y + nrm.z) + 0.5;
 lig = lig * lig;
 gl_FragColor=vec4(vec3(1.0)*lig+clr*(1.0–lig),1.0);
}

attribute vec3 coord;
attribute vec3 normal;
uniform mat4 view;
varying vec3 nrm;
void main () {
 nrm=normal;
 gl_Position=view * vec4(coord,1.0);
}

GLint loc = glGetAttribLocation(prog,"coord");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc,3,GL_FLOAT,GL_FALSE,0,array);

A

B

C

D

A

B

C

D

ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-6
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2. The application can similarly supply uniform values to the shader program. When calling
one of the glUniform functions, your application must already have called
glGetUniformLocation to find the location value to use. The call to the glUniform function
specifies the value that appears in that uniform variable in the shader programs. The
uniform variable value remains the same for all elements drawn, until your application
makes another call to glUniform, with the same location.

3. The homogenous coordinates of the vertex position are output from the vertex shader
program by assigning the values to the standard, built-in variable gl_Position.

4. Other values are output from the vertex shader by assigning them to varying variables. For
example nrm in the shader program in Figure 2-2. These are special variables that store
interpolated values. Varying values from the vertex shader program become the values of
the varying variables in the fragment shader program. More precisely, the varying
variables for the three corner vertices are interpolated to produce values for all the
fragments of each triangle.

5. Uniform variables specified by the application appear with values in the fragment shader
in the same way as in the vertex shader.

6. The fragment color result from the fragment shader is generated by assigning an RGBA
value to the standard variable gl_FragColor.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-7
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.4 Supported OpenGL ES extensions
OpenGL ES supports extensions that can provide additional functionality.

Note
 • The extensions supported depend on:

— the version of the Mali OpenGL ES drivers release
— the extensions exposed by the SoC manufacturer.

• See the Mali OpenGL ES drivers documentation which you can obtain from the SoC
manufacturer for information on the extensions supported in your target.

For general background on extensions, see the OpenGL ES 1.1 Specification and OpenGL ES
2.0 Specification at http://www.khronos.org.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-8
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.5 Optimizing application speed
The execution speed of an Open GL ES application is, in general, limited by a bottleneck
somewhere in the processing pipeline. The most common places for bottlenecks are:
• in the application code, for example, in collision detection
• during the transfer of data to and from the main memory
• during vertex processing on the geometry processor
• during fragment processing on the pixel processor.

You can locate bottlenecks using the Mali Performance Analysis Tool, or another performance
analysis tool. These tools enable you to observe the load on the different processing stages. See
the Mali GPU Performance Analysis Tool User Guide.

See the remaining sections of this chapter for information about how to produce efficient
OpenGL ES applications.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-9
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.6 Recommendations and best practices
This section contains recommendations for obtaining the best performance from your
applications, when running on a Mali GPU.

This section contains information about:
• Textures
• Anti-aliasing on page 2-11
• Draw mode on page 2-11
• Vertex buffer objects on page 2-12
• Data precision on page 2-12
• Volume of data processed on page 2-12
• Render targets on page 2-12
• Processing pipeline on page 2-13
• Shader programs on page 2-13
• Shader arithmetic on page 2-16
• Other recommendations on page 2-16
• Additional recommendations for OpenGL ES 1.1 on page 2-17.

2.6.1 Textures

High-resolution textures might use large amounts of memory, and represent a major load on the
Mali GPU. You can achieve more efficient texture cache utilization by observing the following
recommendations:

• Do not use larger textures than are necessary.

• Always enable mipmapping for textures that might sometimes be rendered scaled down.
This is usually the case for textures on 3D models.

• Where possible, order triangles so that triangles covering adjacent regions of the texture
are close to each other in the drawing order.

Texture compression

In general, use compressed textures in applications. This limits the amount of memory occupied,
and also the memory read and write bandwidth.

The Mali-55, Mali-200, and Mali-400 MP GPUs support the ETC texture compression format
that reduces the size of a texture to 4 bits-per-pixel (bpp).

Texture compression offers benefits such as improved performance, lower memory
requirements, and better cache utilization, but can result in reduced image quality. However, for
textures typically used in game applications, the quality of the compressed textures is usually
acceptable. Use uncompressed textures only when the quality of compressed textures is
unacceptable.

Note
 ETC does not support an alpha component for pixel colors.

ARM provides the tools required to create ETC format textures. See the Mali GPU Texture
Compression Tool User Guide.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-10
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
In general, use as low precision as possible, especially when compression cannot be used. See
Data precision on page 2-12 for more information about data precision. Also, use RGB rather
than RGBA, unless you require the alpha component. For OpenGL ES 2.0, if your texture is
monochrome, use an 8-bit gray scale texture and add color using a uniform variable.

2.6.2 Anti-aliasing

The GPU supports 4x Full Scene Anti-Aliasing (FSAA) using rotated grid multi sampling with
negligible performance loss. Figure 2-3 shows a 2x2 grid layout, with the sample pattern
rotated, to avoid any horizontal or vertical axis alignments.

Figure 2-3 Rotated Grid algorithm

When activated, anti-aliasing is performed by calculating a coverage factor. This is achieved by
checking how many of 4 sub-pixel locations within a pixel is covered by a polygon. The color
of the pixel is a function of the color of the polygon and the coverage factor.

You can enable 4x FSAA by selecting an EGL configuration with EGL_SAMPLES equal to 4 when
the graphics context and rendering surfaces are created.

In addition to 4x FSAA, the Mali GPU supports 16x FSAA with a performance cost for pixel
processing of approximately four-times that of 4x FSAA.

2.6.3 Draw mode

For large meshes, each vertex is typically included in several triangles. The number of times that
such a vertex is processed depends on the function that performs the draw operation.

Using the API function glDrawElements, the attributes of one vertex have to be processed only
once. The alternative function, glDrawArrays, causes each set of vertex data to be transferred and
processed each time it is used in a triangle. For this reason, the most efficient way to pass
geometry data when using typical meshes, is usually with indexed mode, using glDrawElements.

Alternatively, restructure the mesh into triangle fans or triangle strips, as this reduces the
number of times each vertex occurs in the vertex array. You can also use triangle fans or triangle
strips to reduce the number of indices transferred when glDrawElements is used.

Note
 By drawing a mesh with triangle fans or strips, it typically requires more draw calls, than when
compared to using individual triangles. Because each draw call has some amount of processing
overhead, splitting the mesh you could easily move the processing bottleneck from vertex
processing to draw call overhead, eliminating the advantage of performing less vertex
processing. See Identifying problems in applications on page 2-19 for more information about
bottlenecks.

Store vertex data tightly and in the order that it is to be used. This improves the effectiveness of
the vertex cache, by minimizing the amount of data transferred from RAM to the vertex cache.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-11
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.6.4 Vertex buffer objects

Use vertex buffer objects whenever possible, preferably with the usage parameter set to
GL_STATIC_DRAW. This limits memory bandwidth usage and permits extra optimizations in the
driver.

If there is more than one vertex attribute array with the same lifetime, it is particularly effective
to store these arrays interleaved in one buffer object. This improves the effect of prefetch and
caching in the vertex loader.

2.6.5 Data precision

You can save both memory space and bandwidth by minimizing the amount of data that is
passed through the OpenGL ES API. Use shorter, lower precision data when possible, and avoid
using floats and other 32-bit data types unless absolutely necessary. For example, where
possible:
• define vertex positions using GL_SHORT
• define surface normals using GL_BYTE
• define colors using GL_UNSIGNED_BYTE.

2.6.6 Volume of data processed

The volume of data that the Mali GPU processes is an important efficiency consideration. In
general, aim to minimize the amount of data processed by observing the following
recommendations:

Only draw geometry that is visible
Avoid defining geometry that is not visible in the current frame. You can achieve
this by using clipping or frustum culling in your application.

Use textures efficiently
See recommendations in Textures on page 2-10.

Sort your geometry according to depth
Maximize the effectiveness of the Mali-200 and Mali-400 GPU early-Z rejection
feature, by sorting the geometry in an approximate front-to-back order. Sorting
your draw calls according to depth is usually sufficient.

Note
 • In general, try to avoid defining geometry that is not visible in the current frame. You can

achieve this by using clipping or frustum culling in your application.

• Be aware however that extensive analysis to determine which features are visible might
take more time than rendering the invisible geometry. Concentrate on coarse-grain culling
and let the GPU do fine-grain culling.

2.6.7 Render targets

The following efficiency considerations relate to render targets:

Render all the textures in a cause-and-effect order
To achieve this:
• render to textures before the textures are used
• render the back buffer last.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-12
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Only render to one render target at a time
Ensure that you finish all calls for one render target before moving onto the next.

Plan your use of textures
Do not modify a texture after you have passed it as a parameter to an API
function, until that frame is rendered. Such modification generally forces the
driver to make copies of the texture. Instead, set up all the textures that you
require for a frame, before you start making API calls that reference any of them.

2.6.8 Processing pipeline

The following efficiency considerations relate to the graphics processing pipeline:

Use eglSwapBuffers
If your application displays animations, ensure your application terminates the
specification of a frame, and starts processing it, by calling eglSwapBuffers(). The
application then produces the next frame. This process ensures that a stable image
remains on the display while the next frame is being computed.

Avoid using glReadPixels
Avoid using glReadPixels. This greatly reduces performance, even if a small
number of pixels are read, because it stalls the processing pipeline.
When the GPU has started to process the current frame, the driver must stall until
the processing completes before the result can be returned to the application.

Limit number of vertices that glDrawElements processes
After a call to glDrawElements(), polygon list building cannot start until the
preceding step, vertex shading or transform and lighting, has been completed. To
enable these units to work in parallel, ensure that no single call to
glDrawElements() comprises more than approximately one fifth of the total
number of vertices in the frame. This is especially important for calls immediately
before or immediately after a call to glDrawArrays().

Note
 • On desktop OpenGL systems, using glDrawArrays instead of glDrawElements can

sometimes reduce the latency between the API calls and the final image appearing on the
display. However, the Mali GPU uses deferred rendering. This means that rendering does
not start until all geometry for a frame has been specified.

• Deferred processing and the pipeline nature of the Mali GPU implementation results in
some latency. Typically, three frames are in various stages of processing while a fourth is
displayed. At rates below 20 frames per second, you might notice a delay between a
button being pushed and observing a reaction in the image. So, if you want a very
fast-moving game, either simplify your scene, or optimize processing to get a higher
frame rate.

2.6.9 Shader programs

This section contains information about recommended practices for shader programs. It also
introduces the concept of costs within programs and how your program structure affects
execution speed.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-13
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Shader program general recommendations

For best performance when using shaders, observe the following recommendations:

Perform shading language compiler calls first
Ensure you make all calls to the shading language compiler during application
startup, before you start to supply geometry or texture data to the driver.
The compiler uses main memory for its internal data. This memory space can be
reused for data such as user application data, vertex attributes, textures, and
polygon lists, after the compiler has finished.

Use custom shader programs
In general, aim to use a large number of shader programs tailored to the
requirements of each surface, rather than fewer general purpose shader programs
with optional features that are controlled by uniform values. Specialized shaders
generally run faster.

Consider program size
You can use the stand-alone version of the Offline Shader Compiler to check the
size of programs. You can also use the compiler to experiment with programs and
to see how your changes affect the number of instructions.

Note
 The sizes reported by the compiler relate to the native size of instruction words in

the hardware. Each instruction word can contain a number of ESSL operations.

Looping and conditional branching
Do not unroll your loops manually. Instead, organize your data in arrays and
process these with a for statement where possible. Also, use if statements when
doing so is natural. If it is beneficial to do so, the compiler unfolds the if
statement to execute both branches and select between the results.

Avoid using too many varyings when using ESSL
When programming shaders in ESSL, economize on the number of varyings used
in the fragment shader program. Varyings consume memory bandwidth when
they are transferred between the geometry processor and memory, and between
memory and the pixel processor.

Avoid using too many matrix multiplications
Multiplying a 4x4 matrix with a 4x vector involves 16 multiplications and 12
additions. This is therefore expensive.
If you must multiply a vector with multiple matrices inside the shader, multiply
them onto the vector one at a time, rather than multiplying the matrices together
first.

Estimating program costs

The way you write your shader ultimately has some impact on the execution speed. Because
packing individual operations into the instruction words is a complex combinatorial job, it is not
possible to give simple numbers for the cost of any single programming construct. However, it
is possible to define a relative cost for program constructs, where the following terms are used:

Free Operation has little or no impact on program execution speed.

Low Simple and fast operations that have low impact on execution speed.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-14
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Medium These operations have an intermediate impact on execution speed, and are likely
to cost between 2-5 times the cost of a low-cost operation.

High These operations have the highest impact on execution speed, and are likely to
cost between 5-20 times the cost of a low-cost operation.

Table 2-1 defines the likely relative costs of various program constructs. Consider these costs
when developing your applications.

Note
 Although Table 2-1 indicates the relative costs of various programming constructs, use the
Offline Shader Compiler to obtain a more accurate idea of the likely cost of your programs.

Table 2-1 Relative costs of common shader program operations

Operation Example Geometry processor Pixel processor

swizzle .yx Freea

a. Operations that the corresponding processor can do on all four components of one vector in one
sub-instruction.

Freea

negative -x Free Freea

absolute abs Low Freea

clamp to [0,1] clamp(x,0.0,1.0) Low Freea

other clamps clamp(x,-1.0,1.0) Low Low

arithmetic operators +, -, * Low Lowa

minimum, maximum min, max Low Lowa

comparison Medium Lowa

access local variable Freea Freea

access uniform Lowa Lowa

access varying Lowa Mediuma

divide a/b Medium Medium

square root sqrt Medium Medium

reciprocal 1/x Medium Medium

exponential, logarithm exp, log Medium Medium

trigonometric cos, sin High Medium

power pow High Medium

array indexing Medium Mediuma

vector indexed with variable High Medium

conditional statements if, for Medium Low
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-15
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.6.10 Shader arithmetic

Internally, the geometry processor works on 32-bit floating point values that follow the IEEE
754 standard with the exception that de-normalized, small values are taken as 0.0. The vertex
shader represents integers using floating-point values.

You can transfer vertex data, from the geometry processor to the pixel processor, in several
different formats. Values are converted by hardware from and to the float forms used in the
shaders, at no extra cost.

The OpenGL ES 2.0 standard implies that, by default, data must be transferred as 32-bit floating
point values. However, this produces a lot of memory traffic, and the full 32-bit precision is
often not necessary. To avoid using 32-bit values, set the precision for the output varying values
from the vertex shader program to either mediump or lowp.

The fragment shader uses 16-bit floating point format, that consists of:
• Sign.
• 5-bit exponent, with offset 15.
• 10-bit mantissa, with an implied most significant 1-bit.

This format corresponds to approximately three decimal digits of precision.

The arithmetic for 16-bit floating point values deviates slightly from the IEEE 754 standard. For
example:

• The fragment shader treats Not A Number (NaN) values and de-normalized values as 0.0
when they are used as input to operations.

• Converting +INF and -INF to integers yields, respectively, the largest and smallest
representable values. This can occur on the output from the two shading units.

In many cases, this treatment of 16-bit floating point values results in reasonable pixel colors
rather than NaN values. For example, division by zero or taking a square root of a negative
argument always yields NaN. If the fragment shader uses these results as color components,
they are dark. When used as texture coordinates, it has the same effect as 0.0.

If you blend the resulting color with other contributions, the error might not be noticeable. In
other words, it might not be necessary to include if statements in your shader program to guard
against division by zero or bad arguments to built-in functions. Avoid taking such precautions
until you notice bad pixels on the display.

2.6.11 Other recommendations

Other recommendations for improving the efficiency of your applications are:

Use point sprites
The pixel processors in the Mali-55, Mali-200 and Mali-400 MP support point
sprites. Therefore, use point sprites rather than triangles or quads for entities such
as particles.

Use appropriate triangle dimensions
Avoid setting up long, thin triangles. The pixel processor always runs groups of
four nearest neighbor fragments. Therefore, a strip that is one pixel wide takes as
much time to process as a strip that is two pixels wide.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-16
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Using state changes
Avoid making redundant state changes, or changing state and then changing it
back between draw calls. It can also be beneficial to group geometry with similar
state together to reduce the number of state changes required.

Note
 Minimizing state changes must be balanced against the advantages of

front-to-back ordering, as recommended in Volume of data processed on
page 2-12.

Clear the entire framebuffer
Always clear the entire framebuffer by calling glClear. Because of the way tiling
works, using glClear is essentially a free operation. Clearing only a part of the
buffer is inefficient both in terms of time and power consumption.
For example, partial clearing of the framebuffer might occur if you use scissoring
to specify an area that does not cover the entire real framebuffer that was specified
in EGL calls.

Note
 If possible, clear all buffers, that is the color, depth, and stencil buffers, when you

clear the framebuffer.

Minimize the number of draw calls
When you call glDrawArrays or glDrawElements, the graphics driver collects all
current OpenGL ES states, textures and vertex attribute data. The driver processes
these to generate appropriate commands for the graphics hardware to perform the
specified draw operation. This process can take a significant amount of time, so
if you perform many draw calls, the overhead associated with these can be the
bottleneck of the rendering. This is particularly so on embedded systems, which
typically have much less CPU power available than traditional desktop systems.
Attempt to reduce the number of draw calls to as few as possible. For example, if
multiple objects are drawn with the same rendering parameters but using different
textures, merge the textures into one large texture and adjust the texture
coordinates accordingly.
The number of draw calls that can be performed depends on how the rendering
states are changed between the calls. This is typically in the order of a few
thousand calls per second.

Avoid using glFlush and glFinish
Do not call glFlush or glFinish unless you have no alternative. Use
eglSwapBuffers to signal the end of rendering for a frame.

2.6.12 Additional recommendations for OpenGL ES 1.1

Additional recommendations to promote efficiency when using a Mali GPU with OpenGL ES
1.1 are:

Avoid using too many texture stages
For maximum efficiency, use as few texture stages as possible. Consider
combining textures in a preprocessing or content generation step, when feasible.
The Mali-55 GPU supports superimposing up to two textures. The Mali-200 and
Mali-400 MP GPUs support up to eight textures.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-17
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Avoid using too many light sources
Vertex processing load increases with the number of enabled light sources.
Reduce the number of light sources if the load is too high.

Use matrix calculation functions
If possible, use the matrix calculation functions rather than calculating your own
matrices. In particular, and especially for texture matrices, set identity matrices
using glLoadIdentity rather than glLoadMatrixf.

Avoid user-defined clip planes
In general, avoid using user-defined clip planes, because they do not offer
performance improvements.

Note
 Edges caused by the intersection of a triangle with the clip plane are rendered

aliased, even when anti-aliasing is enabled.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-18
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
2.7 Identifying problems in applications
If you suspect that there is a performance bottleneck at a certain point in your application, you
can apply optimizations at that point. If throughput increases, then it is possible that you have
correctly identified the problem. However, identifying and correcting one bottleneck might
expose other bottlenecks elsewhere in the application.

In general, finding bottlenecks can be difficult. In addition to using profiling tools such as the
Performance Analysis Tool, the usual approach is to increase or decrease the load on individual
graphics pipeline stages, to observe the effect on performance.

Note
 With multi-pass rendering, bottlenecks can be different in each pass. Be aware of this when
identifying and reducing bottlenecks.

Table 2-2 contains suggested actions you can take to resolve problems in the various pipeline
stages. Use these techniques to identify and reduce bottlenecks.

Table 2-2 Application problems and suggested solutions

For problems with... Try the following approach:

Application code Reduce the amount of processing that is unrelated to OpenGL ES calls, such as
input processing, game logic, collision detection, and audio processing.

Driver overhead Group geometry with similar state together and eliminate unnecessary state
changes.

Vertex attribute transfer Use smaller data types for the values. Also, use a more economical triangle
scheme, and in general use glDrawElements rather than glDrawArrays.

Vertex shader processing, or Transform
and Lighting in OpenGL ES 1.1

Try the following options:
• Use glDrawElements rather than glDrawArrays.
• For OpenGL ES 1.1, reduce the number of lights.
• Minimize the transformations of texture coordinates. You can avoid

these transformations by setting the transformation matrix using
OpenGL ES 1.1 function glLoadIdentity.

• For OpenGL ES 2.0, simplify the vertex shader program.

Polygon list building Use fewer graphics primitives. Also, avoid drawing significant amounts of the
total geometry in any single call to glDrawElements.

Varying data transfer In OpenGL ES 1.1, use fewer texture coordinates. In OpenGL ES 2.0, use
fewer varyings, and specify lower precision on varying variables out of the
vertex shader.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-19
ID121709 Non-Confidential, Unrestricted Access

Developing OpenGL ES Applications
Fragment shader processing, texture,
color sum, and fog in OpenGL ES 1.1

Lower the resolution of the render target or reduce the size of the viewport.
For OpenGL ES 1.1, use fewer texture stages.
For OpenGL ES 2.0, simplify the fragment shader program.

Texture bandwidth Try the following options:
• use fewer texture stages
• lower the size of the textures, by using a smaller data format for each

pixel, lower resolution, or texture compression
• use a simpler texture filtering mode
• collapse texture coordinates so that they always read from the same

position in the texture.

Transfer to display framebuffer Try the following options:
• use a mode with lower pixel precision
• lower the resolution of the render target.

Table 2-2 Application problems and suggested solutions (continued)

For problems with... Try the following approach:
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. 2-20
ID121709 Non-Confidential, Unrestricted Access

Appendix A
OpenGL ES 2.0 Limit Values and Optional Language
Features

This appendix describes various language features that you can use in OpenGL ES 2.0
implementations. It also contains information about the sizes of various shader resources,
compared with the minimum size required by the OpenGL ES 2.0 Specification.

This chapter contains information about:
• Optional language features on page A-2
• Limit values on page A-3.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. A-1
ID121709 Non-Confidential, Unrestricted Access

OpenGL ES 2.0 Limit Values and Optional Language Features
A.1 Optional language features
The OpenGL ES 2.0 Specification mentions various language features that are optional in
OpenGL ES 2.0 implementations. When you develop OpenGL ES 2.0 applications on a Mali
GPU, you can use all of these optional language features, with the exception of vertex texturing.

The following loop statements are fully supported with no restrictions on the expressions
occurring in the header or the body of the loop:
• for

• while

• do while.

Indexing using non-constant index expressions is supported for the following data types and
variable types:
• arrays
• vectors
• matrices
• uniforms
• attributes
• varyings
• local variables
• global variables.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. A-2
ID121709 Non-Confidential, Unrestricted Access

OpenGL ES 2.0 Limit Values and Optional Language Features
A.2 Limit values
The OpenGL ES Shading Language specification defines minimum values for the sizes of
various shader resources. In Mali GPU implementations, some of these values are larger than
the minimum required by the specification. Specifically, the Mali GPU implementation values
are listed in Table A-1.

These values are accessible as built-in variables in shaders.

Table A-1 Mali GPU implementation values

Shader Resource Mali Implementation Value Minimum Value

gl_MaxVertexAttribs 16 8

gl_MaxVertexUniformVectors 256 128

gl_MaxVaryingVectors 12 8

gl_MaxVertexTextureImageUnits 0 0

gl_MaxCombinedTextureImageUnits 8 8

gl_MaxTextureImageUnits 8 8

gl_MaxFragmentUniformVectors 256 16

gl_MaxDrawBuffers 1 1
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. A-3
ID121709 Non-Confidential, Unrestricted Access

Glossary

This glossary describes some of the terms used in Mali GPU documents from ARM Limited.

Anti-aliasing The process of removing or reducing aliasing artefacts, primarily jagged polygon edges, from an
image. Anti-aliasing is particularly important for low-resolution displays. There exist several
techniques to perform anti-aliasing, see multi-sampling and super-sampling.

API See Application Programming Interface.

API driver A specialized driver that controls graphics hardware. Examples are OpenGL ES driver and
OpenVG driver.

Application Programming Interface
A specification for a set of procedures, functions, data structures, and constants that are used to
interface two or more software components together. For example, an API between an operating
system and the application programs that use it might specify exactly how to read data from a file.

Blending A process where two sets of color and alpha values are blended together to form a new set of color
and alpha values for a fragment.

Byte An 8-bit data item.

Clipping See scissoring.

Demo Engine See Mali Demo Engine.

Depth testing A process that pixel processors can use to reject fragments that are not visible because they are
behind other fragments. The early-Z testing process uses depth testing.

Device driver An operating system component that communicates with the graphics hardware.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. Glossary-1
ID121709 Non-Confidential, Unrestricted Access

Glossary
Draw mode The OpenGL ES APIs support several ways of specifying the primitives to draw, that is,
different draw modes. The primitives can be specified individually or as a connected strip or fan.
They can also be non-indexed, meaning that vertices are passed in a vertex array and processed
in order, or indexed, meaning that vertices are passed as indices into a vertex array.

Early-Z A Z-testing scheme that performs the actual Z-test before texturing or fragment shading when
it is safe to do so, increasing performance and reducing the required bandwidth.

EGL driver See Native platform graphics interface.

ESSL See OpenGL ES Shading Language.

Ericsson Texture Compression (ETC)
A 4 bit-per-pixel (bpp) texture compression algorithm.

Fixed-function pipeline
A process that uses standard functions to draw graphics on fixed-function graphics hardware.
For example, OpenGL ES 1.1 implements a fixed-function pipeline.

Fragment A fragment consists of all data, such as depth, stencil, texture, and color information, required
to generate a pixel in the framebuffer. A pixel is usually composed of several fragments. A
fragment can either be multi-sampled or super-sampled.

Fragment shader A program running on the pixel processor that calculates the color and other characteristics of
each fragment.

Framebuffer A memory buffer containing a complete frame of data.

Geometry processor A geometry processor executes vertex shaders that typically contain transform and lighting
calculations, and generates lists of primitives for a pixel processor to draw.

Graphic application A custom program that executes in the Mali graphics system and displays graphics content.

Graphics driver A software library implementing OpenGL ES or OpenVG, using graphics accelerator hardware.
See also OpenGL ES driver and OpenVG driver.

Graphics pipeline The series of functions, in logical order, that must be performed to compute and display
computer graphics.

Instrumented drivers Alternative graphics drivers that are used with the Mali GPU. The Instrumented drivers include
additional functionality such as error logging and recording performance data files for use by
the Performance Analysis Tool.

Mali Binary Asset Exporter
A converter tool for Windows that converts XML-based COLLADA documents to the Mali
Binary Asset format for use with the Mali Demo Engine. The Mali Binary Asset Exporter is a
component of the Mali Developer Tools.

Mali Demo Engine The Mali Demo Engine is a component of the Mali Developer Tools. The Mali Demo
Engine library enables you to develop 3D graphics applications more easily than using OpenGL
ES alone.

Mali Demo Engine Library
A C++ class framework for developing OpenGL ES 2.0 applications for the Mali GPU.

Mipmap A pre-calculated, optimized collection of bitmap images that accompanies a main texture,
intended to increase rendering speed and reduce artifacts.

Multi-ICE A JTAG-based tool for debugging embedded systems.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. Glossary-2
ID121709 Non-Confidential, Unrestricted Access

Glossary
Multi-sampling An anti-aliasing technique where each pixel in the framebuffer is split into multiple samples
corresponding to different positions within the area covered by the pixel. Each fragment
produced for the pixel is duplicated onto each sample, and operations such as alpha-blending
and depth testing is performed on a per-sample basis. In the final image, the color of each pixel
is the average between the colors of the samples for that pixel.

The Mali pixel processors support multi-sampling at four samples per pixel with negligible
performance impact.

Native platform graphics interface (EGL) driver
A standardized set of functions that communicate between graphics software, such as OpenGL
ES or OpenVG drivers, and the platform-specific window system that displays the image.

Offline Shader Compiler
A command line tool that translates vertex shaders and fragment shaders written in the ESSL
into binary vertex shaders and binary fragment shaders that you can link and run on the GPU.

OpenGL ES driver On graphics systems that use the OpenGL ES API, the OpenGL ES driver is a specialized driver
that controls the graphics hardware.

OpenGL ES Shading Language (ESSL)
A programming language used to create custom shader programs that can be used within a
programmable pipeline, on graphics hardware. You can also use pre-defined library shaders,
written in ESSL.

OpenVG driver On graphics systems that use the OpenVG API, the OpenVG driver is a specialized driver that
controls the graphics hardware.

Performance Analysis Tool
A fully-customizable GUI tool that displays and analyzes performance data files produced by
the Instrumented drivers, together with framebuffer information.

See also Instrumented drivers, Performance data file.

Performance counter Data produced by the Instrumented drivers and the GPU hardware, that can be displayed and
analyzed as statistical information in the Performance Analysis Tool.

Performance data file Files that contain a description of the performance counters, together with the performance
counter data in the form of a series of values and images. Performance data files are saved in
.ds2 format and can be loaded directly into the Performance Analysis Tool.

Pixel A pixel is a discrete element that forms part of an image on a display. The word pixel is derived
from the term Picture Element.

Pixel processor A pixel processor, such as the Mali-200 or Mali-400, performs rendering operations to produce
a final image for display.

Polygon list A list of triangles produced by the geometry processor, containing data that describes triangles
that have been transformed. The list is input to the PLB.

Polygon List Builder (PLB)
The PLB assembles transformed vertices into a data structure containing data that describes the
triangles. The data structure is ordered into tiles. A tile is an approximately square area, covering
a number of pixels on the display screen. The fragment processor processes the data structure.

Primitive A basic element that is used, with other primitives, to generate images. A primitive can be a
point, a line, or a triangle. Each primitive is divided into fragments so that there is one fragment
for each pixel covered by the primitive.

Programmable
pipeline

A process that uses custom programs to draw graphics on programmable graphics hardware. For
example, OpenGL ES 2.0 implements a programmable pipeline.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. Glossary-3
ID121709 Non-Confidential, Unrestricted Access

Glossary
Quad A rendering primitive with four vertices.

Rasterization The process of identifying the fragment of each triangle that is seen through each pixel on the
display screen. The pixel processor performs rasterization.

Sample A sample refers to a value or set of values at a point in space. The defining point of a sample is
that it is a chosen value out of a continuous signal. In the context of graphics, the sample point
is usually in the middle of a pixel, and what is sampled is the geometry descriptions of polygons.

Scissoring A process that prevents rendering in certain portions of a rendering surface.

Shader A program, usually an application program, running on the GPU, that calculates some aspect of
the graphical output. See fragment shader and vertex shader.

Shading language A programming language used to define custom shader programs to run on programmable
graphics hardware. Different graphics APIs support different shading languages.

SoC System-on-Chip.

Sub-pixel Full-color displays are made by combining red, green, and blue light in varying degrees to
produce different shades of colors. In a display with a fixed pixel structure, such as LCDs or
plasma panels, the red, green, and blue light comes from adjacent cells in the display's physical
structure. The light from these three subpixels, one for each color, combine to create a single
pixel. There are also pixel structures that do not rely on three subpixels.

Super-sampling An anti-aliasing technique where the image is rendered in a higher resolution than the
framebuffer and then scaled down before being written to the framebuffer.

Texture Compression tool
A component of the Mali Developer Tools that you can use to compress textures and images,
using the ETC algorithm.

Tile buffer A memory buffer inside the GPU that holds the framebuffer contents for the tile that is currently
being rendered. The tile buffer can be accessed without using the memory bus.

Vertex A set of data defining the properties of one point of a primitive. For example, a point primitive,
an endpoint of a line primitive, or a corner of a triangle primitive.

Vertex shader A program running on the geometry processor, that calculates the position and other
characteristics, such as color and texture coordinates, for each vertex.
ARM DUI 0363D Copyright © 2007-2009 ARM. All rights reserved. Glossary-4
ID121709 Non-Confidential, Unrestricted Access

	Mali GPU OpenGL ES Application Development Guide
	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Intended audience
	Using this book
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	Introduction
	1.1 Mali system overview
	1.2 Graphics standards
	1.3 Mali GPU Developer Tools

	Developing OpenGL ES Applications
	2.1 Developing applications
	2.2 Mali rendering strategy
	2.3 OpenGL ES limitations
	2.3.1 Differences between OpenGL and OpenGL ES
	2.3.2 Running code on OpenGL and OpenGL ES
	2.3.3 Viewing transforms
	2.3.4 Shader programming

	2.4 Supported OpenGL ES extensions
	2.5 Optimizing application speed
	2.6 Recommendations and best practices
	2.6.1 Textures
	2.6.2 Anti-aliasing
	2.6.3 Draw mode
	2.6.4 Vertex buffer objects
	2.6.5 Data precision
	2.6.6 Volume of data processed
	2.6.7 Render targets
	2.6.8 Processing pipeline
	2.6.9 Shader programs
	2.6.10 Shader arithmetic
	2.6.11 Other recommendations
	2.6.12 Additional recommendations for OpenGL ES 1.1

	2.7 Identifying problems in applications

	OpenGL ES 2.0 Limit Values and Optional Language Features
	A.1 Optional language features
	A.2 Limit values

	Glossary

