
ARM® RealView® ESL API v2.0
Developer’s Guide
Copyright © 2007 ARM Limited. All rights reserved.
ARM DUI 0359B

ARM RealView ESL API v2.0
Developer’s Guide

Copyright © 2007 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Description Issue Confidentiality Change

January 2007 A Non-confidential New document based on ARM RealView SoC
Designer 6.1 Developer’s Guide and updated to
reflect version 1.1 of the RealView ESL API.

June 2007 B Non-confidential Updated for ESL API version 2.0. Mx_ naming
conventions replaced with CASI, CADI, and
CAPI.
ii Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Contents
ARM RealView ESL API v2.0 Developer’s Guide

Preface
About this document .. x
Feedback ... xiii

Chapter 1 Introduction
1.1 Overview ... 1-2
1.2 ESL API interface layers ... 1-3
1.3 Theory of operation ... 1-5
1.4 Components .. 1-6
1.5 Connections .. 1-7
1.6 Cycle based scheduling .. 1-17
1.7 Simulation stages .. 1-21
1.8 Organizing source files for components and systems 1-24
1.9 Overview of component creation ... 1-26
1.10 Working with component ports .. 1-28
1.11 Checklist for components .. 1-36
1.12 CAInterface extensions ... 1-41

Chapter 2 The Cycle Accurate Simulation Interface
2.1 Class overview .. 2-2
2.2 The CASIModule class ... 2-10
2.3 The CASIPortIF class ... 2-38
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. iii

Contents
2.4 The clock interface classes .. 2-41
2.5 The transaction interface classes ... 2-52
2.6 The signal interface classes ... 2-91
2.7 The component factory class CASIFactory .. 2-100
2.8 The save/restore interface CASISaveRestore .. 2-102
2.9 Integrating CASI models into OSCI SystemC .. 2-110

Chapter 3 The Cycle Accurate Debug Interface
3.1 Introduction ... 3-2
3.2 Defining a CADI interface ... 3-12
3.3 The CADIDisassembler class ... 3-45
3.4 The CADIProfiling class .. 3-51
3.5 The CADICallback class ... 3-62
3.6 CADIBroker .. 3-68
3.7 The CADISimulationFactory class .. 3-73
3.8 CADI data structures .. 3-78
3.9 Accessing the debug interface from sc_main() .. 3-99

Chapter 4 The Cycle Accurate Profiling Interface
4.1 Introduction to CAPI ... 4-2
4.2 The CAPI classes ... 4-4
4.3 The CAPIRegistry class .. 4-13
4.4 The CAPICallback class ... 4-17
4.5 CAPI data structures .. 4-19
4.6 Accessing CAPI .. 4-25
4.7 Example CAPI implementation ... 4-28

Chapter 5 The CASI Memory Map Interface
5.1 CASIMMI interfaces .. 5-2
5.2 Sample implementation .. 5-8

Appendix A Static Scheduling of Communication Functions
A.1 Introduction to combinatorial path scheduling .. A-2
A.2 Specifying the combinatorial path ... A-5
A.3 Error checking .. A-6
A.4 Example implementation .. A-7

Appendix B AMBA™ AHB TLM Specification for CASI
B.1 Introduction ... B-2
B.2 AHB control signals .. B-3
B.3 Implementation details for AHB interfaces ... B-6

Appendix C AMBA® AXI TLM Specification for CASI
C.1 Introduction to AXI .. C-2
C.2 Introduction to the CASI TLM for AXI ... C-9
C.3 ESL API implementation of the AXI TLM .. C-44
iv Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

List of Tables
ARM RealView ESL API v2.0 Developer’s Guide

Change history .. ii
 xii

Table 1-1 Example AHB to CASI mapping .. 1-16
Table 1-2 Example AHB implementation .. 1-16
Table 1-3 sc_port classes ... 1-29
Table 2-1 Interface classes ... 2-3
Table 2-2 Predefined classes .. 2-5
Table 2-3 Interface classes ... 2-6
Table C-1 Signals on the write address channel (AW) ... C-3
Table C-2 Signals on the write data channel (W) ... C-5
Table C-3 Signals in the write response channel (B) .. C-5
Table C-4 Signals on the read address channel (AR) .. C-6
Table C-5 Signals in the read data channel (R) .. C-7
Table C-6 Handshake signals and status ... C-20
Table C-7 Current transaction and channels for reads ... C-21
Table C-8 Current transaction and channels for writes ... C-21
Table C-9 Cycle by cycle activity for a write transaction ... C-22
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. v

List of Tables
vi Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

List of Figures
ARM RealView ESL API v2.0 Developer’s Guide

Figure 1-1 Interface layers .. 1-4
Figure 1-2 A sample component with properties, parameters, and ports 1-6
Figure 1-3 Signal-based communication .. 1-7
Figure 1-4 Transaction-based communication ... 1-7
Figure 1-5 Dual ported memory component with two transaction slave ports 1-8
Figure 1-6 CPU component with separate transaction ports for data and program memory 1-9
Figure 1-7 Bus component with a transaction slave and two transaction master ports 1-10
Figure 1-8 CPU component connected to memories through bus components 1-11
Figure 1-9 Single transaction master with multiple slave ports ... 1-12
Figure 1-10 Synchronous communication example ... 1-13
Figure 1-11 Asynchronous communication with callback example .. 1-14
Figure 1-12 Asynchronous communication with shared memory example 1-15
Figure 1-13 Communicate and update phases .. 1-17
Figure 1-14 CASI schedule example for multiple clocks .. 1-20
Figure 1-15 Mixed synchronous and asynchronous updates ... 1-20
Figure 1-16 Stages of simulation .. 1-21
Figure 1-17 Block diagram of a system simulation ... 1-24
Figure 1-18 Files used for the top example .. 1-25
Figure 1-19 Class hierarchy showing user defined slave ports .. 1-31
Figure 2-1 Class hierarchy of the interface classes .. 2-4
Figure 2-2 Class hierarchy for the component and clock classes .. 2-8
Figure 2-3 Asynchronous transactions using callbacks .. 2-74
Figure 3-1 CADI class overview ... 3-3
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. vii

List of Figures
Figure 3-2 CADI and CASI interaction ... 3-5
Figure 4-1 CAPI data structures and the profiling stream .. 4-4
Figure 4-2 CAPI class hierarchy .. 4-5
Figure A-1 Standard communicate and update phases ... A-2
Figure A-2 System requiring ordered component communication ... A-3
Figure A-3 Statically scheduled communicate and update phases .. A-4
Figure A-4 Component connections ... A-7
Figure A-5 Component function dependency graph ... A-7
Figure B-1 AHB write .. B-5
Figure C-1 Block diagram of master and slave components connected over an AXI bus C-3
Figure C-2 READY and VALID handshake signals .. C-8
Figure C-3 Simplified AXI TLM block diagram .. C-9
Figure C-4 AXI classes ... C-10
Figure C-5 Write with no wait states ... C-30
Figure C-6 Write with wait state in address channel ... C-31
Figure C-7 Write with simultaneous AW and W, no wait states .. C-32
Figure C-8 Write with consecutive AW and W, no wait states .. C-33
Figure C-9 Write with simultaneous AW and W and wait states ... C-34
Figure C-10 Read with no wait states ... C-36
Figure C-11 Read with single wait state on address step ... C-38
Figure C-12 Read with wait states on both address and data steps .. C-40
Figure C-13 Bus write with ACI ... C-43
viii Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Preface

This preface introduces the ARM RealView ESL API v2.0 Developer’s Guide. It
contains the following sections:

• About this document on page x

• Feedback on page xiii.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. ix

Preface
About this document

This document describes the class hierarchy and programming interfaces for version 1.1
of the RealView ESL APIs. It is intended for users writing components that comply
with the SystemC and ESL API system interfaces.

Intended audience

This document has been written for experienced hardware and software developers to
design systems or components.

Users must, however, be familiar with the basic concepts of SystemC (such as sc_module
and sc_port) and basic concepts of C++ (such as classes and inheritance).

Organization

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to designing components.

Chapter 2 The Cycle Accurate Simulation Interface

This chapter describes the SystemC-based and ESL API simulation
interfaces.

Chapter 3 The Cycle Accurate Debug Interface

This chapter describes the debug interfaces that enables access to
memory values, register values, and code disassembly for each
simulation cycle.

Chapter 4 The Cycle Accurate Profiling Interface

This chapter describes the profiling interfaces that enable collection of
historical data about the memory, register, or port activity.

Chapter 5 The CASI Memory Map Interface

This chapter describes the memory map interfaces that enable the
memory maps of the components in a system to be configured.

Appendix A Static Scheduling of Communication Functions

This appendix describes the static scheduling mechanism that is used to
enable combinatorial support for communication functions.
x Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Preface
Appendix B AMBA AHB TLM Specification for CASI

This appendix describes differences between the AHB transaction
interface and the generic CASI TLM.

Appendix C AMBA AXI TLM Specification for CASI

This appendix describes differences between the AXI transaction
interface and the generic CASI TLM.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
processor signal names. Also used for terms in descriptive lists,
where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. xi

Preface
Terminology

The following table lists the SystemC terms that are replaced in this document by their
corresponding ESL API terms:

Further reading

This section lists related publications by ARM and other companies.

ARM publications

The following publications provide reference information about the ARM architecture:

• AMBA™ Specification (ARM IHI 0011)

• ARM Architecture Reference Manual (ARM DDI 0100).

The following publications provide information about related ARM products:

• RealView® SoC Designer Developer’s Guide (ARM DUI 0315)

• RealView® SoC Designer User Guide (ARM DUI 0316)

• RealView® SoC Designer SystemC Linking Guide (DUI0360)

• ARM RealView® Model Debugger User Guide (DUI0314)

External publications

The following publications provide additional information on simulation:

• IEEE 1666™ SystemC Language Reference Manual, (IEEE Standards
Association)

• SPIRIT User Guide, Revision 1.2, SPIRIT Consortium.

SystemC term ESL API term Description

module component The models for individual devices, for example, CPU core,
memory, bus interface, and I/O.

port master port This is a port that generates transactions or signals.

channel slave port This responds to transactions or signals generated by a master port.
SystemC channels are also know as sc_export.
xii Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Preface
Feedback

ARM welcomes feedback both on the ESL API and on the documentation.

Feedback on this document

If you have any comments about this document, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. xiii

Preface
xiv Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Chapter 1
Introduction

This chapter describes the main features of SystemC simulation with the classes defined
by the ESL Cycle Accurate Simulation Interfaces (CASI), the related Cycle Accurate
Debug Interface (CADI), and Cycle Accurate Profiling Interface (CAPI). It contains
the following sections:

• Overview on page 1-2

• ESL API interface layers on page 1-3

• Theory of operation on page 1-5

• Components on page 1-6

• Connections on page 1-7

• Cycle based scheduling on page 1-17

• Simulation stages on page 1-21

• Organizing source files for components and systems on page 1-24

• Overview of component creation on page 1-26

• Working with component ports on page 1-28

• Checklist for components on page 1-36

• CAInterface extensions on page 1-41.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 Overview

The RealView ESL API is a SystemC simulation interface for easy modeling and fast
simulation of integrated systems-on-chip with multiple cores, peripherals, and
memories. The ESL API consists of the following parts:

• The Cycle Accurate Simulation Interface (CASI)

• The Cycle Accurate Debug Interface (CADI)

• The Cycle Accurate Profiling Interface (CAPI)

CASI consists of a set of communication interfaces based on the SystemC language and
supports both transaction level communication and cycle-based simulation modeling.

Note
 The CASI scheduler uses a cycle-based approach where the cycle is the finest
granularity scheduling element. On each cycle the communicate() and update()
functions are called for every clocked model.

Developing all components using the cycle-based interfaces improves the performance
of the system.

The ESL API is a SystemC interface and therefore supports event-driven simulation.
This document, however, focuses on using the CASI library with the faster cycle-based
simulation.
1-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.2 ESL API interface layers

The ESL API provides three layers of interfaces (as shown in Figure 1-1 on page 1-4)
and enable:

CASI Cycle Accurate Simulation Interface based on SystemC communication
library.

The main features of the CASI API are:

• cycle based scheduling for high simulation speed

• direct communication

• optimized transaction based communication

• port-based interconnection

• hierarchical system structures

• event-driven simulation support for full SystemC compatibility

• maximum simulation performance while enabling a high level of
accuracy (up to the level of full pin-accuracy) on a cycle-by-cycle
basis.

Note
 The CASIMMI (Cycle Accurate Simulation Interface - Memory Map

Interface) is used to define and use memory maps for bus master
components. See Chapter 5 The CASI Memory Map Interface for details
on using memory maps.

CADI Cycle Accurate Debug Interface enables reading and writing memory
and register values and also provides the interface to external debuggers.

CAPI Cycle Accurate Profiling Interface enables collecting historical data from
a component and displaying the results in various formats.

CADI and CAPI are additional interfaces not covered by SystemC. Implementing the
CADI and CAPI interfaces is optional, but it is recommended for all user-defined
components.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-3

Introduction
Figure 1-1 Interface layers

Note
 The ESL API supports extending the interfaces while maintaining binary compatibility.
See CAInterface extensions on page 1-41.
1-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.3 Theory of operation

A system consists of components and connections between components. A component
might consist of sub-components connected together in a hierarchy.

A simulation of a CASI-compatible system is performed by:

• loading dynamic libraries of components (either standard library components or
components that you have created yourself)

• creating instances of the components (for example by using factory function
calls)

• connecting the components through standard port interfaces

• connecting the resulting model to a simulation controller that contains the timing
and scheduler functionality

• the simulation scheduler clocks the cycle-based models in a lock-step fashion.

For every scheduler clock triggered by the simulation controller, the controller calls the
clock interface function of each connected component. All clocked components are
completely synchronized with each other.

The clock function of a component can call functions in other interfaces (such as
memory interfaces or signal interfaces) to implement communications.

The cycle-based clock generators rely on the OSCI scheduler (which is itself event
driven) to generate a cycle-based clock to drive all of the cycle-based components.

The internal behavior of a component is not constrained by the ESL API. It can be
anything the designer wishes as long as the interface functions behave as expected by
the other components. Correctly implemented system interfaces do not guarantee that
the component behaves correctly in a system model. The system interfaces only
standardize the way that components communicate with each other.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-5

Introduction
1.4 Components

The software duplicates the behavior of the hardware elements and provide ports that
can be used for connection to other components.

Each component has properties that determine:

• which connections are allowed

• which type of object files are expected for loading

• whether debug front ends are supported.

Component parameters can be set either at system design time or at simulation time
(depending on the type of parameter).

Note
 Because parameters are set before the components are connected, components can
have:

• configurable size for generic memories

• configurable behavior for peripherals.

Figure 1-2 A sample component with properties, parameters, and ports
1-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.5 Connections

Components provide ports that enable them to be connected together.

Unlike many other system simulation solutions, the ESL API uses direct
communication. One component accesses the shared resources of another component
by directly calling a method provided by the owner of the shared resource.

CASI provides two different types of connection:

Signal based

The signal-based interface is very close to hardware simulators in that it
simulates every signal independently.

Figure 1-3 Signal-based communication

Transaction based

The transaction-based interface encapsulates a group of signals into one
data structure that is manipulated read or write transactions.

Figure 1-4 Transaction-based communication

Rather than distinguishing input and output ports, the CASI API distinguishes master
and slave ports. A master port initiates the transfer and a slave-port responds to the
transfer.

In Figure 1-3:

• The DSP component is the signal master for the addr and req signal ports.

• The Memory component is the signal slave for the addr and req signal ports.

• The DSP component is the signal slave for the data and ack signal ports.

• The Memory component is the signal master for the data and ack signal ports.

• Each signal has its own interface function that transmits the signal state.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-7

Introduction
In Figure 1-4 on page 1-7:

• The component DSP is the transaction master.

• The component Memory is the transaction slave.

• There is only one interface function, read(), that uses data structures to combine
all signals into a parameter that can be passed with the single function call.

The data is returned by read() in either:

— the return value of the function

— modified shared memory

— modified memory that was indicated by a passed pointer.

1.5.1 Components with slave ports

A component with one or more slave ports enables other components to access its
shared resources. This is, for example, used in memories that provide a transaction slave
interface with read() and write() access methods.

Figure 1-5 Dual ported memory component with two transaction slave ports

Figure 1-5 shows that the transaction slave ports provide access methods for the internal
memory implementation of the component.
1-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.5.2 Components with master ports

Components with master ports can access connected slaves through well-defined access
methods:

• the transaction master interface uses read() and write() methods

• the signal master interface uses driveSignal() and readSignal().

Figure 1-6 CPU component with separate transaction ports for data and program memory

Figure 1-6 shows a clocked CPU component with a Harvard architecture that has
separate ports for data and program memory. In every clock cycle the component can
read or write from memory by calling the appropriate access functions in the master
ports. The master port then redirects these calls to the connected components.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-9

Introduction
1.5.3 Components with master and slave ports

Components can have an unlimited numbers of ports.

It is possible to pass through access calls from slave to master ports as shown in
Figure 1-7. This might be required for the implementation of bus type components.

Figure 1-7 Bus component with a transaction slave and two transaction master ports

The bus component shown in Figure 1-7 redirects read() and write() calls to different
master ports. Redirection might be used, for example, for sub-range decoding.
1-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Figure 1-8 shows a system consisting of multiple components.

Figure 1-8 CPU component connected to memories through bus components

The ESL API interfaces enable the user to hide the implementation from the
communication. When the CPU components call the read methods in its master ports,
it does not know whether it is talking to a bus component or to a memory component
directly. This simplifies reconfiguration and architecture exploration.

A single transaction master can drive multiple slaves as shown in Figure 1-9 on
page 1-12. The master port, however, must include address decoding code to direct the
transaction to the correct slave port.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-11

Introduction
Figure 1-9 Single transaction master with multiple slave ports

1.5.4 Synchronous and asynchronous communication

The CASI signal interfaces always use synchronous communication that is
accomplished by a single call to driveSignal(). The signal value is passed as a
parameter. If a complex interconnection such as a bus is implemented with signals,
there must be multiple distinct calls by the components to the driveSignal() functions
of each individual signal.

The CASI transaction interface can perform a read or write in a single transaction call.
Also, the CASI transaction interfaces are not restricted to single reads and writes. The
interface supports protocols that perform burst or block reads of multiple memory
locations through a single transaction. For a given communication protocol, AHB or
AXI for example, the details are user-defined and must be documented as part of the
protocol.
1-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
The communication schemes that can be used for a transaction model are user defined:

• synchronous

• asynchronous

• asynchronous with shared memory.

Synchronous transaction communication

The read() and write() functions enable synchronous access between different models
by specifying the control information in the fields:

addr is the address for the read or write

value is the value read or to be written

control is control field for the read or write.

The read() and write() functions are expected to return in the same cycle that they were
initiated. The return value indicates the status of the transaction. If they return
CASI_STATUS_OK, the transaction has finished successfully.

The read() and write() functions can implement multi-cycled transactions. If in the
first cycle they return, for example, CASI_STATUS_WAIT, then the initiating model calls the
read() and write() function again in subsequent cycles, until it receives the
CASI_STATUS_OK representing the end of this transaction.

The readDbg() and writeDbg() functions provide debug accesses and enable debuggers
to read the desired information without advancing the simulation.

Figure 1-10 Synchronous communication example
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-13

Introduction
Asynchronous transaction communication with callback

The asynchronous readReq() and writeReq() functions enable a communication model
where the initiator master model provides a callback function pointer to the slave
model. When the slave model is ready to serve the transaction, it calls the callback
function and notifies the master that the data is ready.

Figure 1-11 Asynchronous communication with callback example

Asynchronous transaction communication with shared memory

The shared-memory asynchronous functions provide a communication model where
the initiating master model calls driveTransaction() providing to the slave a
shared-memory data structure. This data structure is used throughout the life of the
transaction to communicate the information between the master and the slave models.
After the first driveTransaction() function call, no other function calls are required
through the transaction, unless a cancelTransaction() is called to cancel the respective
transaction. The shared data structure is stored in CASITransactionInfo.

An optional notification callback from a slave to the connected master can be
implemented through a CASINotifyHandlerIF object. The notifyEvent() function can be
called by the slave to inform the master that the contents of the transaction info data
structure has changed. This enables the master to react to the changes in the same cycle.
1-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Figure 1-12 Asynchronous communication with shared memory example

The CASI implementation of the AHB protocol

CASI provides a general framework for model inter-communication, but the details of
the communication protocol must be customized to match the actual protocol used. This
is done by mapping the protocol fields to the CASI access functions parameters.

For instance, an AHB protocol implemented using the CASI synchronous model
assigns AHB-related semantics to the parameters of the read/write functions of the
casi_transaction_if interface. A example mapping is given in Example AHB to CASI
mapping on page 1-16.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-15

Introduction
For details of the AHB protocol implementation for CASI, see the AHB CASI model
documentation. Table 1-1 provides some guidance but must not be used as a reference
for the AHB transactions description.

A typical communication sequence is listed in Table 1-2.

Table 1-1 Example AHB to CASI mapping

Parameter Use Example values

Addr Address 0x1A00000000000000 (64-bit unsigned)

Value Data 0xFFFF0001 (32-bit unsigned)

ctrl[0] Transfer type BYTE, HWORD, DWORD

ctrl[1] Phase ADDR, DATA

ctrl[2] ACC HBURST, HSIZE, HTRANS

ctrl[3] Acknowledge DONE, WAIT, ABORT

Table 1-2 Example AHB implementation

Cycle Phase Bus Peripheral

0 ADDR port->read(...) AHB_ch::read(addr,val,ctrl)
…
if(ctrl[1] == ADDR_PHASE)
{
 //decode read/write type (burst/…)
 return OK;
}

1 to N DATA port->read(...) AHB_ch::read(addr,val,ctrl)
…
if(ctrl[1] == DATA_PHASE)
 {
 if(waitCount < DELAY)
 {
 ctrl[3] = WAIT;
 }
 else
 {
 val = getData(addr,ctrl);
 ctrl[3] = DONE;
 }
 return OK;
}
1-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.6 Cycle based scheduling

Both cycle-based and event-driven simulations are supported:

• cycle-based components are executed on the edges of the clock

• event-driven components are executed based on their sensitivity lists and the
events present in the system.

The execution of all cycle-based models happens in a synchronous cycle-based manner.
In most cases, a simulation cycle is equivalent to a hardware clock cycle. Each
simulation cycle is divided into communicate and update phases. Each clocked
component is therefore called twice per cycle as shown in Figure 1-13.

Figure 1-13 Communicate and update phases

Note
 The order in which the component communicate() functions are called cannot be
specified by the standard registerClockSlave() function. Some systems, however,
require that communication functions are called in a specific order to, for example,
control a bus request and acknowledge sequence within the same cycle. For more
information on specifying the order of communication functions, see Appendix A Static
Scheduling of Communication Functions.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-17

Introduction
During the communicate phase the components interact and during the update phase
shared resources are modified:

Communicate phase
• perform all inter-component communication

• do not modify shared resources.

Update phase
• no communication between components

• update shared resources

• perform writes that were requested to internal components.

The simulation framework can enforce that the interface functions for communication
are only called during the communicate stage. The simulation framework cannot,
however, guarantee that the writes to shared resources are actually deferred to the
update phase.

Note
 The communicate and update model is typically used as described in this section and is
the recommended way of implementing new components. There are, however, some
special cases that do not follow the general model. The communicate phase is called
only for the components that are clocked and register themselves to use communicate.
It is possible, though not typical, for a component to register itself as a clocked
component, but:

• only use update

• only use communicate

• ignore most phases and react, for example, to every fifth clock cycle.

1.6.1 Clocking the simulation

The CASI scheduler supports multiple clocks operating with different frequency. There
exists a master clock that defines the fastest clocking granularity. All other clocks are
created by dividing the master clock frequency with an integer number. If integer clocks
are used, the frequency of the master clock must be the least common multiplier of the
frequencies of the actual design clocks.

A single CASI model can have different parts clocked by different clocks. For example,
a bus can receive data at one clock frequency and deliver it at a different clock
frequency. Each differently clocked part must implement the
casi_clock_slave_port_base interface and provide an appropriate implementation for
the communicate() and update() member functions. At the implementation level, the
1-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
casi_model_base interface does not explicitly specify any communicate/update
mechanism. Rather clocked models must create, or inherit from, one or more clock
slaves that receive the necessary communicate/update calls.

As a general simulation strategy, the update calls must update the model state based on
the most recently communicated data:

• For systems with single clocks, this strategy easily ensured by imposing a
temporal ordering between the executions of communicate calls and update calls.

• If multiple clocks are present, ensure the ordering of communicate and update
calls by executing the communicate calls at the beginning of a given cycle and the
update calls in the last moment before the next cycle begins. This rule is applied
for all clocks.

Clocking implementation

A master clock routine sits at the core of a CASI scheduler implementation and drives
the simulation by executing a loop. In each iteration:

• for clocks running at full speed, a communicate phase is executed and that is
followed by an update phase.

• For a clock with a frequency n times slower than the master clock:

1. The communicate phase is executed during the master clock
communication phase in a master clock iteration for which (i mod n) = 0.

2. The update phase is executed during the master clock update phase in a
master clock iteration for which (i mod n) = (n – 1).

A 4 cycle window into the schedule is shown in Figure 1-14 on page 1-20 for a system
has the following clocks:

• CLK1 is the master clock

• CLK2 is a clock with half the frequency of the master clock

• CLK4 is a clock with a quarter of the frequency of the master clock.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-19

Introduction
Figure 1-14 CASI schedule example for multiple clocks

If a CASI scheduler is operated together with a SystemC scheduler, it is important to
preserve the communicate/update ordering with respect to SystemC events. Usually this
means that the SystemC events relevant for one CASI simulation cycle must occur
between the communicate and update phases of the CASI scheduler. The CASI main
clock must be appropriately setup to ensure this requirement. This is typically done as
shown in Figure 1-15 by:

1. the master clock communicate phase occurring on the positive clock edge of an
equivalent SystemC clock

2. the master clock update phase occurring just before the positive edge of the next
cycle.

Figure 1-15 Mixed synchronous and asynchronous updates
1-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.7 Simulation stages

The simulation of a system is divided into multiple stages that are grouped as
initialization, execution, and termination. Figure 1-16 shows the simulation stages and
order of execution.

Figure 1-16 Stages of simulation

The simulation engine is the only instance that calls the functions that represent these
stages. The components can request a reset or a terminate, but it is always the simulation
engine that actually makes the call to the top-level component. The different stages are:

The create stage

This stage is used to load and instantiate the components. In the C++
implementation this functionality is contained in the constructor of the
components:

• If a model causes a segmentation fault in its constructor, the
simulation fails on startup.

• If a model allocates large amounts of memory in its constructor,
this memory is allocated while creating the design as well. ARM
recommends allocating any large amounts of data only in the
init() stage of the simulation.

The configure stage

This stage is used to configure the components by setting parameters.
This stage is implemented by the default behavior of the components and
is normally not overridden by the individual models.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-21

Introduction
The init stage

This stage is used to initialize the model and allocate memory for its data
members if necessary. Because the init stage is positioned after the
configure stage, it is possible to initialize components conditionally, the
size of a memory for example, based on a parameter.

ARM recommends that model initialization is done in this stage to
simplify code in the model constructor. Whatever is allocated in init()
must be deleted in terminate().

The interconnect stage

In this stage the connections between the components are established.
The connections are established once at initialization time only. During
execution time, the interconnections cannot be modified. This stage is
implemented by the default behavior of the components and is normally
not overridden by the individual models.

The reset stage

The main purpose of the reset stage is to bring the components into a
well-defined state before the actual simulation is started:

• During a soft reset, the models are expected to reset their state. This
can be done repeatedly.

• A hard reset is only executed on startup.

During a hard reset the components can, if applicable, load their
object files. A core model would, for example, reload an axf image.

The communicate and update stages

These two stages represent the cycle-by-cycle behavior of the system.
These stages are repeatedly executed until a reset or termination is
requested by one of the components or by the user.

The terminate stage

This stage can be used for cleanup purposes. It is the counterpart to init.
Terminate is called before the component instance is deleted. This stage
is reached if:

• one of the components requests termination

• the specified simulation cycle count has been reached

• the simulation is terminated by an external signal.
1-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
The destructor stage

The destructor is called when the component is deleted after termination.

Note
 An object that was created in the init stage must be deleted in the

destructor instead of in the terminate stage.

The following virtual functions are defined in CASIModule.h for use by the individual
system components to support the simulation phases:

• CASIModule()

• configure()

• init()

• interconnect()

• reset()

• communicate()

• update()

• terminate()

• ~CASImodule().

Each component must re-implement (overload) each of these functions (except for
interconnect() where the base implementation might be sufficient).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-23

Introduction
1.8 Organizing source files for components and systems

A SystemC example typically has almost all of the code (except for the standard library
include files) in a single source file. For ESL API systems, however, there are typically
multiple source files where each file provides a specific functionality.

Figure 1-17 Block diagram of a system simulation
1-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Figure 1-18 Files used for the top example
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-25

Introduction
1.9 Overview of component creation

This section describes how to manually create your own components and make them
available in a simulation system. The main steps are:

• creating the code with a text editor

• creating a project file for the component

• compiling and linking the code in the project

• editing any configuration options that are necessary to use your project in your
simulation environment.

To create a component, implement the CASIModule interface and behavior and define the
component resources. Components must define any ports that are required for
communication with other components in the system.

Systems are hierarchical representations of hardware systems. A system can be a single
component or consist of a hierarchical structure of subsystems and components.

1.9.1 Defining the component class

The component class must inherit from CASIModule. This module provides the necessary
base functionality for components. Example 1-1 shows how the component class is
entered explicitly:

Example 1-1 MyModel class

class MyModel : public CASIModule
{
public:

MyModel(CASIModuleIF* parent, const std::string &name);
 string getName() { return "MyModel"; }
 virtual void interconnect();
 virtual void init();
 virtual void terminate();

 // Interface functions for clocked components
 virtual void communicate();
 virtual void update();
};
1-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Alternatively, the component class can be declared using the CASIModule macro as
shown in Example 1-2:

Example 1-2 Using the CASIModule macro to declare a class

CASIModule(MyModel)
{
 //class members
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-27

Introduction
1.10 Working with component ports

The CASI API distinguishes between master and slave ports:

• master ports are used to access connected slaves

• slave ports provide functions that access shared resources inside the component.

Ports can be created by instantiating the appropriate port classes.

• Master ports are instances of the sc_port class in SystemC using the transaction
or slave interfaces.

• Slave ports are channels implementing the transaction or slave interfaces.

Example 1-3 shows the creation of master and slave ports:

Example 1-3 Creating two ports

sc_port<eslapi::casi_transaction_if, 1>* dram_port =
 new sc_port<eslapi::casi_transaction_if> (this, "dram");
registerPort(dram_port, "dram_port");

isrc_SSlave = new isrc_SS(this);
registerPort(isrc_SSlave, "irq_port");

Note
 The code in Example 1-3 creates one transaction master port and a signal slave port for
IRQ:

• The transaction master port class is a generic one that is predefined in the ESL
API and uses the casi_transaction_if interface.

• The signal slave port is a custom class derived from casi_signal_slave
specifically for the purpose of controlling the IRQ signal. For Example 1-3, a
separate file (for this example, isrc_SS.cpp) contains the code that implements a
slave port and the casi_signal_if interface.
1-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.10.1 Using master ports

The following master ports can be created using the sc_port SystemC class:

Each created master port can communicate with the slave port that is connected to it.

A pointer to any created master port can be obtained by using the findPort() function.
For performance reasons, however, it is recommended that you store a pointer for each
master point immediately upon creation.

Example 1-4 shows the accessing of memory through a transaction master port.

Example 1-4 Reading from a port

uint64_t addr = 0xFF00;
uint32_t value[1];
uint32_t ctrl = 0;
dram_port->read(addr, value, &ctrl);
cout << "Value " << value << " has been read from address " << addr << endl;

For performance reasons, the read function of the master port does not check whether a
slave port has been connected. This must be done once in the interconnect stage only.
Therefore master ports provide the getSlaves() function as shown in Example 1-5:

Example 1-5 getSlaves function

if (dram_port->getSlaves() == NULL)
 cout << "Port not connected !" << endl;

The list of connected slave ports returned by the function getSlaves() must be non-NULL.
If NULL is returned, the port has not been successfully connected.

Table 1-3 sc_port classes

Port type sc_port definition

Signal master ports sc_port<CASISignalIF, 1>

Transaction master ports sc_port<CASITransactionIF, 1>

Bus master ports sc_port<CASITransactionIF, 0>
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-29

Introduction
AHB master ports

AHB transaction master ports use the dedicated CASIAHBMasterPort class to manage the
AMBA protocol. See Appendix B AMBA AHB TLM Specification for CASI. the AHB
documentation, and the example master and slave ports.

AXI master ports

AXI transaction master ports use the dedicated CASIAXIMasterPort class to manage the
AMBA 3 AXI protocol. See Appendix C AMBA AXI TLM Specification for CASI, the
AXI package documentation for details of the AXI protocol, and the example master
and slave ports.

1.10.2 Using slave ports

Slave ports define access methods to shared resources in a component. Because these
shared resources differ from case to case, there are no predefined port classes available
for slave ports. Therefore, users must implement their own custom slave classes,
derived from either CASISignalSlave or CASITransactionSlave.

Note
 AMBA AXI, AHB, and APB transaction slave ports derive from intermediate classes
that are themselves derived from CASITransactionIF.

Slave ports correspond to SystemC channels and implement the transaction or signal
interfaces.
1-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Figure 1-19 Class hierarchy showing user defined slave ports

The shared resources are typically encapsulated in the component class, but the access
methods are defined in the port class (see Example 1-6). There are various ways that the
port class can be given access to the resources. The most efficient way is to use friend
class declarations This enables the port classes to access shared resources in the
component without the overhead of function calls and is, therefore, the recommended
way of shared resource access.

Example 1-6 MyMemSlavePort class

class MyMemSlavePort : public CASITransactionSlave
{
 MyModel* owner;
public:
 MyMemSlavePort(MyModel* _owner) : CASITransactionSlave(“MyMemSlavePort”)
 { owner = _owner; }
 CASIStatus read(uint64_t addr, uint32_t *dataP, uint32_t* ctrl=0);
 CASIStatus write(uint64_t addr, uint32_t *dataP, uint32_t* ctrl=0);
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-31

Introduction
class MyModel : public CASIModule
{
 friend class MyMemSlavePort;
 friend class IRQ_Port;
 friend class EXTSTALL_Port;
public:
 …
};

Slave ports provide functions that can be accessed from master ports. These functions
(typically virtual functions) must be overridden so that the appropriate function in the
slave is executed when a master initiates a transaction.

Transaction Slave Ports

For transaction slave ports, the read and write functions must be overridden as shown
in Example 1-7:

Example 1-7 Overriding read and write

CASIStatus MyMemSlavePort::read(uint64_t addr, uint32_t *value, uint32_t* ctrl)
{
 value[0] = owner->getMyMem(addr);
 return CASI_STATUS_OK;
}
CASIStatus MyMemSlavePort::write(uint64_t addr, uint32_t *value, uint32_t* ctrl)
{
 if (addr <= 0x3FF) {/* restricted access */
 owner->setMyMem(addr, value[0]);
 return CASI_STATUS_OK;
 }
 else { /* no access above 1k */
 return CASI_STATUS_NOACCESS;
 }
}

Example 1-7 shows the definition of the transaction slave port read and write behavior.
In this example, write access is restricted to the lower 1024 words.
1-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
Signal Slave Ports

The handling of signal slave ports is equivalent to the transaction slave ports, except that
here the access functions driveSignal() and readSignal() must be implemented as
shown in Example 1-8.

Example 1-8 Implementing driveSignal and readSignal

class IRQ_Port : public CASISignalSlave
{
 MyModel* owner;
public:
 IRQ_Port(MyModel* _owner) { owner = _owner };
 void driveSignal(uint32_t value, uint32_t* extValue);
 uint32_t readSignal();
};
IRQ_Port::driveSignal(uint32_t value, uint32_t*) {
 owner->interrupt = value;
};
uint32_t IRQ_Port::readSignal() {
 return owner->interrupt;
};

1.10.3 Defining the behavior of clocked components

Non-clocked components are passive and are only triggered by transactions from the
outside.

Clocked components, however, can also have behavior that is independent of their
interaction with other components. This behavior is defined in the communicate and
update phases as shown in Example 1-9:

Example 1-9 Communicate and update phases of component

MyModel::communicate(){
 if (myModel.readDRAM == true)
 dram_port->read(addr, value, ctrl);
}

MyModel::update() {
 if (interrupt == true) myCore.injectInterrupt();
 myModel.execute();
}
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-33

Introduction
Example 1-9 on page 1-33 shows the implementation of communicate and update
behavior and assumes that MyModel represents a core model that has a private data
member called myCore that implements the behavior for the model.

The communicate behavior shows a read access from the dram port that is used if the
readDRAM flag has been set in the model.

The update behavior injects an interrupt if the interrupt flag has been set externally
(over the irq port) and then executes one cycle in the model.

1.10.4 Registering the clock port

A component that implements a clock slave interface must register this interface as the
clk-in port in the constructor to be recognized as a clocked component.

registerPort(dynamic_cast<CASIClockSlaveIF*>(this), "clk-in");

If the clock is not registered, it might not be visible in the simulation environment.

1.10.5 Connecting a component to the clock

To connect a component to the clock, call the casi_clocked() function in the component
constructor:

casi_clocked();

Alternatively, the CASI_CLOCKED macro can be used in the constructor:

CASI_CLOCKED();

Note
 Instead of calling casi_clocked() in the constructor, you can call registerClockSlave()
in the interconnect phase. See The interconnect() function on page 1-38.

1.10.6 Defining a factory class for the system

Note
 This class is not required if you are simulating a standalone system using the standard
SystemC and ESL API environment. It might be useful, however, in simulation
environments that permit dynamic component creation and connection.

In addition to the component itself, a factory class is available that can be used by the
third-party simulation systems to access the model.
1-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
The factory class must inherit from CASIFactory. The only functions that must be
defined are:

• the constructor, this is named MyModelFactory() for the class in Example 1-10

• the createInstance() function.

Example 1-10 Factory class

class MyModelFactory : public CASIFactory
{
public:
 MyModelFactory(const std::string &name);
 ~MyModelFactory();
 CASIModuleIF * createInstance(CASIModuleIF * parent, const std::string &id);
};

The constructor simply calls the default constructor, passing the name of the component
as a parameter. It is important that this name is equivalent to the name that is returned
by the getName() function of the corresponding component. ARM recommends
declaring the constant that contains the name of the model as a string:

#define MODEL_NAME "My_Model";
MyModelFactory::MyModelFactory() : CASIFactory (MODEL_NAME) {}

1.10.7 The factory member functions

The constructor implementing the system must call the parent’s constructor and pass the
name of the system as a parameter:

MyModelFactory::MyModelFactory() : CASIFactory("MyModel") {}

Use the createInstance() function to create an instance of the component by passing a
pointer to the parent component as shown in Example 1-11:

Example 1-11 Creating an instance of a component

CASIModuleIF * MyModelFactory::createInstance(CASIModuleIF *parent,
 const std::string & instance_name)
{
 return new MyModel(parent, instance_name);
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-35

Introduction
1.11 Checklist for components

The implementation of any component must follow the rules listed in this section.

Use this list as a guideline to develop a new components and verify the correctness of
the implementation.

1.11.1 The component class

This section contains the check list for the component class.

Defining your component class

1. Derive your component class from CASIModule:

class MyModel : public CASIModule

Note
 CASIModule has the public virtual function ObtainInterface(). All components

deriving from CASIModule implement the CAInterface class. with at least revision
0 for the interface named CAInterface. The CAInterface class enables extending
the ESL API interfaces with custom interfaces. The default implementation is
sufficient if your component only uses the standard ESL API interfaces.

2. Declare all slave ports as friend:

friend class MySlavePort;

3. Define a constant for the component name. This constant is used in the getName()
function and in the component factory:

#define MODEL_NAME "DLX_Core"

The component constructor

1. Create all ports in the component constructor:

a. if you are creating a slave port, register it in the port list:
registerPort(new MySlavePort(…), "irq");

b. if you are creating a master port, keep a pointer to it for fast access:
ext_mem = createPort(CASI_TRANSACTION_MASTER, "ext_mem");

then register it in the port list:
registerPort(ext_mem, "ext_mem");

c. register the clock slave port if the component is clocked:
registerPort(dynamic_cast<CASIClockSlaveIF*>(this), "clk_in");
1-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
2. If the component class is clocked, call casi_clocked() function:

casi_clocked();

Note
 You can register the clock in the interconnect stage instead of in the constructor.

See The interconnect() function on page 1-38.

3. Define all parameters in the component constructor.

The component destructor

1. Delete only what has been created in the constructor. This includes the created
ports.

The getName() function

1. Return the model-name defined in the component header file.

2. Ensure that this name is equivalent to the name used in the component factory’s
constructor.

The getProperty() function

Note
 This function must be implemented for all models.

1. For CASI_PROP_COMPONENT_TYPE, use the CASIComponentTypes array to return the type
of your component.

2. For CASI_PROP_COMPONENT_VERSION, return the version number of your component.

3. For CASI_PROP_DESCRIPTION, return a brief description of your component and its
key features.

4. If your component has its own loader, use CASI_PROP_LOADFILE_EXTENSION identify
the types of files to look for.

The setParameter() function

1. Implement this function if your component is configurable.

2. Distinguish initialization time parameters and runtime parameters.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-37

Introduction
3. If possible, do not access resources directly but instead set flags to control
resource allocation.

4. Do not access resources that are allocated during init().

Note
 setParameter() is called before the init() function.

5. For initialization time parameters, defer the parameter evaluation to the init stage.

6. Call CASIModule::setParameter() to ensure that the parameter changes are
registered in the parameter list.

The configure() function

1. Implement this function only if your component has subcomponents.

2. Do not define this function with an empty behavior, call CASIModule::configure()
instead.

3. After calling CASIModule::configure(), set the parameters of all of your
subcomponents here if necessary.

The init() function
1. Allocate all resources necessary for simulation here.

2. Call CASIModule::init().

3. Allow for parameters that might have been set during the configure stage.

The interconnect() function

1. If your component has subcomponents, connect your subcomponents here.

2. If your component is clocked, register it with the clockMaster.

getClockMaster()->registerClockSlave(this);

Note
 Use this function if the clocks were not registered by calling casi_clocked() in the

constructor stage. See The component constructor on page 1-36.

3. Call CASIModule::interconnect().
1-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
The reset() function

1. Implement your reset behavior here.

2. Check the reset level to distinguish hard and soft reset if applicable.

3. If your model supports loading of object code, retrieve the filename for your
model from the file list only during a hard reset.

4. Call CASIModule::reset().

The terminate() function
1. You must implement this function if you allocate memory in the init() function.

2. Delete all objects created in init().

The communicate() and update() functions

1. If your component is clocked these functions must be defined.

2. All communication with other components must be done in the communicate()
function.

3. Updating of resources must be done in the update() function.

Note
 It is technically possible to perform updating during the communicate phase, but

this is not recommended because it can cause side effects or difficult to diagnose
errors.

1.11.2 The port classes

1. It is typically only necessary to create your own slave port classes.

It is recommended to use the master port classes that are provided by the ESL
API.

2. In the constructor of each slave port, pass a pointer to the component class that
the slave port belongs to.

3. Access the resources of the component class directly and avoid unnecessary
function calls.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-39

Introduction
1.11.3 The factory class

1. You must have a factory class for every component you define if your simulation
environment dynamically creates and configures components.

2. Pass the name of the component to the constructor of CASIFactory.

3. Ensure that the name is equivalent to the name used in the component factory
constructor by using the name defined in the header file of the component.
1-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Introduction
1.12 CAInterface extensions

The ESL API interfaces support the CAInterface class to enable adding extensions to
the APIs without breaking binary compatibility for already compiled models.

CAInterface is the base class for extendable component interfaces and uses the
following software model:

components A component is a black-box entity that has a unique identity. A
component provides concrete implementations of one or more
interfaces. Each of these interfaces may expose different facets of the
component's behavior. These interfaces are the only way to interact with
the component.

interfaces An interface is an abstract class (consisting entirely of pure virtual
methods), which derives from CAInterface, and which provides a number
of methods for interacting with a component.

Because there is no way for a client to enumerate the set of interfaces that a component
implements, the client must ask for specific interfaces by name. If the component does
not implement the requested interface, it returns a NULL pointer.

(The implementation of a component's interfaces can be provided by one or several
interacting C++ objects. The implementation is transparent to the client).

Interfaces are identified by a string name (of type if_name_t), and an integer revision (of
type if_rev_t). A higher revision number indicates a newer revision of the same
interface.

The CAInterface::ObtainInterface() method enables a client to obtain a reference to
any of the interfaces that the component implements.

The client specifies the id and revision of the interface that it wants to request. The
component returns NULL if it does not implement that interface or only implements a
lower revision.

Each interface derives from CAInterface and a client can call ObtainInterface() on any
interface pointer to obtain a pointer to any other interface implemented by the same
component.

The following rules govern the use of components and interfaces:

• Each component is distinct. No two components can return the same pointer for
a given interface. An ObtainInterface() call on one component must not return
an interface on a different component.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 1-41

Introduction
• Each interface consists of a name, a revision number, and a C++ abstract class
definition. The return value of ObtainInterface() is either NULL, or is a pointer
that can be cast to the class type.

• Where two interfaces have the same if_name_t, the newer revision of the interface
must be backwards-compatible with the old revision. (This includes the binary
layout of any data-structures that it uses, and the semantics of any methods).

• During the lifetime of a component, any calls to ObtainInterface() for a given
interface name and revision must always return the same pointer value. It must
not matter which of the component's interfaces is used to invoke
ObtainInterface().

• All components must implement revision 0 of eslapi::CAInterface. This
interface implements eslapi::CAInterface class.
1-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Chapter 2
The Cycle Accurate Simulation Interface

This chapter describes the classes and member functions of the Cycle Accurate
Simulation Interface (CASI) that are used in the creation and simulation of components.
This chapter has the following sections:

• Class overview on page 2-2

• The CASIModule class on page 2-10

• The CASIPortIF class on page 2-38

• The clock interface classes on page 2-41

• The transaction interface classes on page 2-52

• The signal interface classes on page 2-91

• The component factory class CASIFactory on page 2-100

• The save/restore interface CASISaveRestore on page 2-102

• Integrating CASI models into OSCI SystemC on page 2-110.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-1

The Cycle Accurate Simulation Interface
2.1 Class overview

The Cycle Accurate Simulation Interface (CASI) defines how components are called by
the scheduler and how they communicate with each other. Essentially CASI provides a
communication library for SystemC that provides clock, transaction, and signal classes
to enable transaction-level communication and cycle-based simulation modeling.

CASI provides the following types of class:

Component classes

The CASIModule class is the base class for any component. It provides the
functionality for instantiating and configuring the model and
sub-components. It also provides the API required for connecting other
components. Unlike the interface classes, CASIModule is derived from
CASIModuleIF.

Interface classes

The interface classes manage communication between components.

Clock classes

The clock classes manage connection to the simulation clocks.

Port classes

These classes inherit from other basic classes and simplify creating
commonly used objects.

Support classes

These classes provide functionality for creating, saving, and restoring
components. These classes are typically used by the simulator to enable
additional functionality during simulation. The CASIMMI class, for
example, enables describing and configuring the memory maps for a bus
master.

Note
 See the CASITypes.h file for definitions of enumerations and data structures that are used
with the CASI interface.
2-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.1.1 Interface classes

The interface classes listed in Table 2-1 have a common base class, CASIPortIF that
defines common functionality.

Table 2-1 Interface classes

Class Name Class Description

CASIPortIF This class is the base class for all interface classes. Both master and slave ports
(including master and slave clock ports) derive from this class. It defines the
basic port functionality.

CASITransactionIF This class defines the interface for transaction slave ports (for example,
memories). This can be used by any component that can be accessed like a
memory (for example, DMA, Cache, and Bus). See The CASITransactionIF
interface on page 2-56.

CASISignalIF This class defines the interface for signal slave ports. This can be used for any
model that has input signal pins (IRQ or Stall for example). See The
CASISignalIF Interface on page 2-92.

CASITransactionMasterIF This class defines the interface for transaction master ports. See The
CASITransactionMasterIF class on page 2-72.

CASISignalMasterIF This class defines the interface for signal master ports. See The
CASISignalMasterIF class on page 2-96.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-3

The Cycle Accurate Simulation Interface
Figure 2-1 Class hierarchy of the interface classes
2-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.1.2 Port classes

The classes in Table 2-2 are convenience classes that are used to create the ports for a
component.

Table 2-2 Predefined classes

Class Name Class Description

CASISignalSlave This is the base class for signal slave ports. It is
derived from the CASISignalIF class. This type of port
is used for any component that has input signal pins
(IRQ or Stall for example).

See The CASISignalSlave class on page 2-94.

CASITransactionSlave This is the base class for transaction slave ports. It is
derived from the CASITransactionIF class. This type
of port is used for any component that can be
accessed like memory (for example, DMA, Cache,
and Bus).

See The CASITransactionSlave class on page 2-66.

sc_port<CASISignalIF, 1> This is the base class for signal master ports. The
basic sc_port class is templated. Using CASISignalIF
creates a signal master. Multiple signal slaves can be
connected to a signal master.

See The signal interface classes on page 2-91.

sc_port<CASITransactionIF, 0> This is the base class for bus master ports. The basic
sc_port class is templated. Using CASITransactionIF
creates a transaction master. The use of 0 as the
second parameter in the template indicates that the
master can access multiple transaction slaves. That is,
the class contains the address decoder logic that are
required if using multiple transaction slaves.

See The predefined sc_port< CASITransactionIF, 0>
class on page 2-87.

sc_port<CASITransactionIF, 1> This is the base class for transaction master ports.
The basic sc_port class is templated. Using
CASITransactionIF creates a transaction master. The
use of 1 as the second parameter in the template
indicates that the master can only access a single
transaction slave.

See The predefined sc_port<CASITransactionIF, 1>
class on page 2-83.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-5

The Cycle Accurate Simulation Interface
2.1.3 Component and clock classes

The classes in Figure 2-2 on page 2-8 provide the clocking functionality for the ESL
API and the system components.

Table 2-3 Interface classes

Class Name Class Description

CASIModule This is the base class for all CASI-compliant modules. The functions in this
class provide the code for the different simulation stages and manage the
component hierarchy and component interconnection. See The CASIModule
class on page 2-10. The communicate() and update() functions (inherited from
CASIClockSlaveIF) are used by the simulation engine to provide the cycle-based
behavior for the models.

CASIClockMasterIF This class defines the basic cycle-accurate simulation driver. The master clock
calls communicate() and update() for all registered slave clocks based on the
stimuli generated by the simulation kernel. This interface can be used to
generate clock dividers or other types of custom clock driving components.

CASIClockSlaveIF This class defines the basic cycle-accurate simulation execution unit for a
module. A CASI module can define zero, one or several clock slaves. Each
clock slave represent the cycle-based behavior of the appropriate model part.
Communicate implements the cycle-based communication with other
components, while update implements the cycle-based updating of the internal
resources of the component.

A CASIClockSlaveIF object must be connected to an appropriate
CASIClockMasterIF object to receive the communicate() and update() calls.

CASIClockDriver This class defines the interface for registering a slave port clock to a clock
driver.

The profiling interface uses the clock driver to control updating profiling
information with the current cycle information.

Note
 CASIClockDriver and CASIClockDriverRoot are used to setup a top-level clock
for pure CASI systems. These classes are provided as reference
implementations of the system clock and are not required for developing CASI
components.

Normally you are not required to derive your classes from this unless you
implement a complex clock that does not have a simple ratio to the original
clock or you implement a custom clock source.
2-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
Typically, these classes are not used directly, but methods in the classes are called by
the component. An example of a slave clock registering itself with the master clock is
shown in Example 2-1:

Example 2-1 Registering a clock

getMaster()->registerClockSlave(this);

CASIClockDriverRoot The CASIClockDriverRoot class is used by the CAPI profiling interface (see
Chapter 4 The Cycle Accurate Profiling Interface).

CASIClockMaster This class provides a basic implementation of the clock master components.
You do not have to derive your classes from this unless you implement a
complex clock that does not have a simple ratio to the original clock. See The
CASIClockMaster class on page 2-41.

CASIClockSlave This class provides a basic implementation of the clock slave port. The virtual
communicate() and update() functions are implemented in the port instance. See
The CASIClockSlave class on page 2-50.

Table 2-3 Interface classes (continued)

Class Name Class Description
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-7

The Cycle Accurate Simulation Interface
Figure 2-2 Class hierarchy for the component and clock classes
2-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.1.4 Support classes

In addition to the core simulation classes, the CASI library provides additional support
interfaces.

Factory class

To facilitate dynamic loading of models, a CASIFactory interface is defined. Models
implementing this interface can be loaded in a simulation environment dynamically,
without requiring recompilation of the model and/or simulation environment. See The
component factory class CASIFactory on page 2-100 for more information on the
factory classes

Note
 The factory classes are not required for simulation in a pure SystemC environment that
does not dynamically load models.

Save and restore

The CASISaveRestoreIF interface is provided, to facilitate saving simulation state and
resuming at a later time. Models implementing this interface can be saved on disk and
restored at a later time with the same cycle count as when they were stopped. This is
especially important if you are debugging long simulations and only the final part of the
simulation requires replaying.

The data stream is defined in the CASISaveRestore.h file. See The save/restore interface
CASISaveRestore on page 2-102 for more information on the save and restore classes.

Memory map interface

The CASIMMI interface enables configuration of memory maps for bus masters. See
Chapter 5 The CASI Memory Map Interface.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-9

The Cycle Accurate Simulation Interface
2.2 The CASIModule class

The CASIModule class is the fundamental simulation class. Its primary function is to
facilitate the instantiation and connection of the component models.

This section contains the following subsections:

• CASIModule definition

• Functions to implement on page 2-14

• Functions for the simulation stages on page 2-16

• Functions for identification of a component on page 2-22

• Functions for the configuration of components on page 2-25

• Functions for port administration on page 2-28

• Functions for connecting components on page 2-30

• Functions to administer the component hierarchy on page 2-32

• Miscellaneous functions on page 2-35.

2.2.1 CASIModule definition

The CASIModule class is defined by the class header listed in Example 2-2:

Example 2-2 CASIModule class

class CASIModule : public CASIClockSlaveIF, public CASIModuleIF,
 public sc_module
{
public:
 /* Constructor / Destructor */
 CASIModule(const sc_module_name & name, CASIModuleIF *_parent);
 CASIModule(CASIModuleIF *_parent, const sc_module_name & name);
 CASIModule();
 virtual ~CASIModule();

 // Functions called each cycle during the cycle-accurate simulation.
 // Ensure that the communicate and update functions of clocked
 // components are implemented in the component
 virtual void communicate (){
 message(CASI_MSG_ERROR, "Default communicate called.");
 }
 virtual void update (){
 message(CASI_MSG_ERROR, "Default update called.");
 }

 /* Functions for the different stages of simulation */
 virtual void configure();
2-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 virtual void init();
 virtual void interconnect();
 virtual void reset(CASIResetLevel level,
 const CASIFileMapIF *filelist =NULL);
 virtual void terminate();

 /* Functions for identification */
 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType();
 virtual std::string getInstanceName();
 virtual std::string getInstanceID();

 // Functions for model parameters
 virtual std::string getProperty (CASIPropertyType property);
 virtual void setParameter(const std::string & key,
 const std::string & value);
 virtual std::string getParameter(const std::string & key);

 // Interface with CADI/CAPI
 virtual CADI * getCADI();
 virtual CAPI * getCAPI();

 virtual int getNumCAMMIs ();
 virtual CAMMI * getCAMMI (int index = 0);

 // Helper functions
 virtual void casi_clocked(void);
 virtual void casi_clocked(CASIPhase _phases);

 // Retrieves the parameter list.
 const CASIParameterMapIF* getParameterList();
 // Checks to see if a parameter is valid.
 virtual bool testParameter(const std::string& key,
 const std::string& value, std::string& error_message)
 { return true; }
 // Registers a port.
 void registerPort(CASIPortIF* port, const std::string& name);
 void registerPortArray(CASIPortIF** port, const std::string& name);
 void exportPort(CASIPortIF *c, const std::string& portName,
 const std::string& extPortName);
 CASIPortIF* createPort(CASIInterfaceType type,
 const std::string& name, int ID = 0);
 CASIPortIF* findPort(const std::string& name);
 const CASIPortMapIF* getPortList();

 // Creates a subcomponent based on dynamic component creation.
 // Currently dynamic component creation is not fully supported.
 CASIModuleIF * createSubcomponent(const std::string& type,
 const std::string& name);
 // Creates a subcomponent based on dynamic component creation.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-11

The Cycle Accurate Simulation Interface
 // Currently dynamic component creation is not fully supported.
 // Unix/ELF specific function.
 CASIModuleIF * createSubcomponent(bool bDlopenGlobal,
 const std::string& type, const std::string& name);
 // Adds a child subcomponent.
 void addSubcomponent(CASIModuleIF *c);
 CASIModuleIF *getSubcomponent(const std::string &name);
 const std::vector<CASIModuleIF*>& getSubcomponentList();

 // Sets a parameter for a subcomponent.
 void setSubcomponentParameter(const std::string& name,
 const std::string& key, const std::string& value);
 // Connects subcomponent ports.
 void connect_ports(const std::string& comp1, const std::string& port1,
 const std::string& comp2, const std::string& port2);
 void setClockMaster(CASIClockMasterIF *clockFromParent);
 CASIClockMasterIF *getClockMaster();
 virtual CASIModuleIF * getParent() { return parent; }

 // Prints a message.
 virtual void message(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 // Prints a message, vararg variant.
 virtual void message(CASIMessageType type, const char *fmt, ...);
 virtual CASIComponentLayout* getComponentLayout() { return NULL; }
 virtual CASIObjectLoader* getObjectLoader() { return NULL; }
 virtual CASIStatus launchDebugger(char * appli)
 { return CASI_STATUS_NOTSUPPORTED; }

 // Returns the external port map.
 // Currently port export is not fully supported.
 CASIExtPortMap * getExtPortMap(void) { return & extPortMaps; }

 // Define a parameter.
 void defineParameter(const std::string &key, const std::string &value,
 const CASIParameterProperties *prop = NULL);

protected:
 // Defines a special parameter.
 void defineParameter(const std::string &key, const std::string &value,
 CASIParameterType type, bool is_runtime = true,
 bool is_private = false, bool is_readonly = false,
 const std::string &description="");
public:
 // slaves now know their master
 virtual void connect(CASIClockMasterIF * master);
 virtual void disconnect(CASIClockMasterIF * master);
 virtual CASIClockMasterIF * getMaster() { return clock; }

 // instance names remembered by ports
2-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 virtual void setPortInstanceName(const std::string& name)
 { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName()
 { return casiPortInstanceName; }

 // every interface/port has an owner
 virtual void setCASIOwner(CASIModuleIF * owner)
 { casiOwner = owner; }
 virtual CASIModuleIF * getCASIOwner() { return casiOwner; }

 // ports can be enabled/disabled
 virtual void enablePort(bool enable);
 virtual const bool isPortEnabled();

 // message functions now also available in ports
 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);

 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CASIModule2") == 0) && (minRev <= 0))
 {
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

protected:
 CASIClockMasterIF * clock; // component default master clock
 std::vector<CASIModuleIF*> subcomponents; // List of children
 CASIParameterMap parameters; // List of component's parameters
 std::string instanceName; // Name of the instance given at creation time

private:
 CASIModuleIF *parent; // Direct parent of the component
 std::string instanceID; // Name of the instance + parents
 // ("parent1.parent2.name")
 CASIPortMap ports; // List of component's port objects
 CASIPortMap thisPorts; // List of all ports that are this object
 CASIExtPortMap extPortMaps; // Map between the external ports and the
 // ports of this component
 std::vector<CASIPortArrayIF *> portArrays; // Registered arrays of ports
 bool m_bRegisterClockSlave; // This component will be registered as a
 //clock slave during interconnect
 // port name & internal port
 bool m_bOptimizedClockSlave;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-13

The Cycle Accurate Simulation Interface
 CASIPhase phases;
 uint32_t numOfTimes;
 uint32_t ratio;
 uint32_t offset;

 std::string casiPortInstanceName; // every port knows its instance name
 CASIModuleIF* casiOwner; // every port knows its owner
 bool casiIsEnabled; // ports can be disabled
 bool casiIsConnected; // whether port is connected to a real
 // (architectural) port, or left unconnected.
};

Note
 All component models must implement the interfaces present in CASIModule.

The CASIModule class provides methods to create a hierarchical model structure, search
for child objects and ports, get and set parameters in a component, and to make
connections between components.

The configure(), init(), interconnect(), reset(), communicate(), update() and
terminate() functions represent the simulation stages in CASI. After constructing a
module:

• configure() configures the parameters of the model

• init() initializes the model and allocates any internal data structures required

• interconnect() performs any internal interconnections required in the modules

• reset() resets the module (but typically does not reallocate memory)

• communicate() and update() manage the cycle-based behavior of the model

• terminate() performs any model clean-up and data de-allocation required.

2.2.2 Functions to implement

Some of the member functions present in the class definition in Example 2-2 on
page 2-10 must be implemented by the user. See the following sections for the function
definitions:

• CASIModule::CASIModule() on page 2-17

• CASIModule::configure() on page 2-17

• CASIModule::init() on page 2-17

• CASIModule::interconnect() on page 2-18

• CASIModule::reset() on page 2-18

• CASIModule::communicate() on page 2-19 (if cycle-based)

• CASIModule::update() on page 2-20 (if cycle-based)
2-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
• CASIModule::terminate() on page 2-20

• CASIModule::getName() on page 2-22

• CASIModule::getProperty () on page 2-23

• CASIModule::setParameter() on page 2-25

• CASIModule::testParameter() on page 2-27

• CASIModule::getCADI() on page 2-36 (if CADI is used)

• CASIModule::getCAPI() on page 2-37 (if CAPI is used)

• CASIModule::registerPort() on page 2-28

• CASIModule::registerPortArray() on page 2-29 (if port arrays are used).

The following sections describe functions in the CASIModule class that have been added
for convenience:

• CASIModule::defineParameter() on page 2-26

• CASIModule::createPort() on page 2-28

• CASIModule::connect_ports() on page 2-31.

The following sections describe functions that are primarily intended for the use only
by the front end and are not typically used from within a component implementation
and do not require reimplementation:

• CASIModule::getType() on page 2-22

• CASIModule::getInstanceName() on page 2-22

• CASIModule::getInstanceID() on page 2-22

• CASIModule::getParameter() on page 2-26

• CASIModule::exportPort() on page 2-29 (reserved for future use)

• CASIModule::findPort() on page 2-30

• CASIModule::connect() on page 2-31

• CASIModule::disconnect() on page 2-32

• CASIModule::createSubcomponent() on page 2-32

• CASIModule::setSubcomponentParameter() on page 2-34.

• CASIModule::addSubcomponent() on page 2-33.

• CASIModule::getSubcomponent() on page 2-33.

• CASIModule::setClockMaster() on page 2-34.

• CASIModule::getClockMaster() on page 2-35

• CASIModule::getComponentLayout() on page 2-34

• CASIModule::getObjectLoader() on page 2-34

• CASIModule::launchDebugger() on page 2-34

• CASIPortIF::setPortInstanceName() on page 2-39

• CASIPortIF::getPortInstanceName() on page 2-39

• CASIPortIF::setCASIOwner() on page 2-39
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-15

The Cycle Accurate Simulation Interface
• CASIPortIF::getCASIOwner() on page 2-39

• CASIPortIF::enablePort() on page 2-39

• CASIPortIF::isPortEnabled() on page 2-39

• CASIClockMaster::pmessage() on page 2-48.

All functions that must be implemented in the derived class are declared as virtual.
Overwriting the other functions has no effect.

The following sections group the functions by category:

• Functions for the simulation stages

• Functions for identification of a component on page 2-22

• Functions for the configuration of components on page 2-25

• Functions for port administration on page 2-28

• Functions for connecting components on page 2-30

• Functions to administer the component hierarchy on page 2-32

• Miscellaneous functions on page 2-35.

2.2.3 Functions for the simulation stages

The functions for the stages of simulation are usually called in a hierarchical way. The
top-level component is called which in turn calls the same function in its
subcomponents and so on until all components in the hierarchy have been called.

See the following sections for details of the constructors and member functions for the
simulation stages:

• CASIModule::CASIModule() on page 2-17

• CASIModule::configure() on page 2-17

• CASIModule::init() on page 2-17

• CASIModule::interconnect() on page 2-18

• CASIModule::reset() on page 2-18

• CASIModule::communicate() on page 2-19

• CASIModule::update() on page 2-20

• CASIModule::terminate() on page 2-20

• CASIModule::casi_clocked() on page 2-20.
2-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.2.4 CASIModule::CASIModule()

The constructor for the component class is used to load and instantiate all of its
sub-components.

CASIModule(const sc_module_name & name, CASIModuleIF *_parent)

CASIModule(CASIModuleIF *_parent, const std::string & name)

CASIModule()

The constructor expects a pointer to another Component object (that is the parent or
owner) and a string (the ID), assigned to the new component. The pointer might be NULL,
but if a parent is given then the ID name is formed from the name of the parent and the
assigned ID separated by a period. This dotted notation is used extensively to uniquely
identify a component in a system. Component models that instantiate other components
directly must always pass a pointer to the owner.

2.2.5 CASIModule::configure()

The configure() function of a component is used to configure its sub-components by
calling the appropriate setParameter() functions.

virtual void configure()

It is assumed that all of the sub-components have already been instantiated in the
constructor. Implementing this function is only required if the component is a
hierarchical component (that is, if it contains subcomponents).

The function is called after all models are constructed.

2.2.6 CASIModule::init()

This function is used to initialize the component.

virtual void init()

Every model that contains resources must implement this function if it is necessary to
initialize private data members and allocate memory. This function is called after the
configure function, therefore it is possible to initialize the model dependant on the
parameters set.

The function is called after setting the model parameters.

Note
 Objects created with new in the init() phase must be destroyed in the terminate() phase
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-17

The Cycle Accurate Simulation Interface
2.2.7 CASIModule::interconnect()

This function is used to connect the components in a hierarchical manner.

virtual void interconnect()

Each component is responsible for connecting its sub-components. Implementing this
function, therefore, is only required if the component is a hierarchical component (that
is, if it contains subcomponents).

The function is called after ports are connected.

If using casi_clocked and the function is overridden, ensure that the base function is
called.

2.2.8 CASIModule::reset()

The reset() function is used for resetting the state of the component and load object
files.

virtual void reset(CASIResetLevel level, const CASIFileMapIF *filelist=NULL)

where:

level determines the reset level and can currently be one of the following
values:

CASI_RESET_HARD
This reset reloads the object files. This reset level is called
once after the system has been created and when the
simulation is restarted. Components that can load object files
(for example Cores) are expected to load their object files.

CASI_RESET_SOFT
This is a regular reset. The parameter filelist is empty.

filelist is used as shown in Example 2-3 on page 2-19 if new object files are to
be loaded. The file list is a pointer to an CASIFileMapIF object containing
the files to be loaded by the components. The components can pass their
component ID and obtain a string containing the name of the file to be
loaded.

Note
 The filelist parameter will be obsoleted in a future version.

CADIExecLoadApplication() will be used instead.
2-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
This function can be called more than once:

• It is first called after the interconnection is completed as a hard reset.

• It can also be called during the execution to restart a simulation and, optionally,
reload new object files.

Caution
 Because the return value of getFile() might not persist, you must immediately copy the
return value to a new string.

Example 2-3 Using the filelist parameter

if (filelist->fileExists(getInstanceID())){
 // hard reset only: user has selected an input file
 string basename = filelist->getFile(getInstanceID());
 string inputFileName = basename + ".lod";
 myModel->loadFile(inputFileName);
}
else {
 // no file selected by user => e.g. load default file
 myModel->loadFile(default_filename);
}
// Now call the base classes
CASIModule::reset(level, filelist);

A convenience version of the function exists as:

void _reset(CASIResetLevel level, const char * name)

2.2.9 CASIModule::communicate()

This function is called each cycle during cycle-based simulation.

virtual void communicate() {
 message(CASI_MSG_ERROR, "Default communicate called.");
 }

During the communicate phase, the cycle-based components interact and exchange
data. You must implement this function in your component if it uses the cycle-based
simulation clock.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-19

The Cycle Accurate Simulation Interface
2.2.10 CASIModule::update()

This function is called each cycle during cycle-based simulation.

virtual void update() {
 message(CASI_MSG_ERROR, "Default update called.");
 }

During the update phase, the cycle-based components process their internal data. You
must implement this function in your component if it uses the cycle-based simulation
clock.

2.2.11 CASIModule::terminate()

This function is provided to do any clean up when the simulation is about be ended.
Termination of the simulation happens when either:

• the Close simulation command is run in the front end

• one of the component requests termination due to a HALT instruction or an illegal
state.

virtual void terminate()

The difference between terminate() and the destructor is that the terminate function
allows the user to perform some cleanup actions without destroying the object itself.
This function can be seen as the counterpart to the init function. Any memory allocated
in the init() function must be freed in the terminate function.

Note
 The functions configure(), init(), reset(), and terminate() are usually overridden
because most models have special tasks to perform in these stages. The default behavior
is to call the corresponding functions of any child objects (sub-components). Because
of the hierarchical structure, each component is responsible for calling the appropriate
function in their sub-components.

2.2.12 CASIModule::casi_clocked()

This function is provided for clocking the component to the default clock master.

By default, calling this function ensures that the model clock slave is registered with the
default clock master of the model during the interconnect stage. Using this function
requires that the function CASIModule::interconnect() is called for the model.

The longer version of the casi_clocked() function is provided for conditionally
clocking the component.
2-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
virtual void casi_clocked(void)

virtual void casi_clocked(CASIPhase _phases, uint32_t _numOfTimes=0,
 uint32_t _ratio=1, uint32_t _offset=0)

where:

phases specifies the phase to register the slave for:

• CASI_PHASE_BOTH

• CASI_PHASE_COMMUNICATE

• CASI_PHASE_UPDATE

numOfTimes specifies the number of times the component is to be called. 0 means the
component will be called indefinitely.

Note
 This parameter has been deprecated and must not be used in new code.

ratio specifies the clock ratio between the master clock and the local clock to
be used. A ratio of n means that the component will be called once every
n cycles. It must be greater than 0.

Note
 This parameter has been deprecated and must not be used in new code.

offset denotes the number of master clock cycles to elapse before the
component is called for the first time. Default is 0.

Note
 This parameter has been deprecated and must not be used in new code.

Note
 Conditional registration requires a more complex scheduling mechanism that can
impact performance.

Conditional registration is only recommended for components that are only called
occasionally. In this case, the simulation performance benefits.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-21

The Cycle Accurate Simulation Interface
2.2.13 Functions for identification of a component

This section describes functions that return information about a component:

• CASIModule::getName()

• CASIModule::getType()

• CASIModule::getInstanceName()

• CASIModule::getInstanceID()

• CASIModule::getParent() on page 2-23

• CASIModule::getProperty () on page 2-23.

2.2.14 CASIModule::getName()

This is a pure virtual and must be implemented by an object that implements the
CASIModule interface.

virtual std::string getName() = 0

It is required to return a string that is the name of the component model. The name of
the model is used to identify it in the ESL API installation and it is typically mapped to
a library name.

2.2.15 CASIModule::getType()

This function returns the component type. The component type defines whether a
component is a core, memory, or other type of model. This function is used for grouping
and display purposes only.

virtual CASIInterfaceType getType()

2.2.16 CASIModule::getInstanceName()

This function returns a string that is the name assigned to the component object when it
was created by its parent. It must not be overloaded. The default behavior implemented
in the CASIModule class is sufficient.

virtual std::string getInstanceName()

2.2.17 CASIModule::getInstanceID()

This function returns a string that is the ID name assigned to the component object when
the constructor is invoked. The ID name usually consists of its name and the names of
all the parents. It must not be overloaded. The default behavior is sufficient.

virtual std::string getInstanceID()
2-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.2.18 CASIModule::getParent()

This function returns a pointer to the parent component as assigned during construction.
There is no requirement to overload this function.

virtual CASIModuleIF* getParent()

2.2.19 CASIModule::getProperty()

This function enables retrieving certain component properties.

virtual std::string getProperty(CASIPropertyType property)

where:

property specifies the desired property. The valid values for this enumeration are:

CASI_PROP_LOADFILE_EXTENSION
This property defines the file extension for the files that can be
loaded by the component. If this property is defined, the user
can select an input file to be loaded by the component on
startup.

CASI_PROP_COMPONENT_TYPE
The component type defines whether a component is a core,
memory, or other type of model. This function is used for
grouping and display purposes only.

The following types are defined in the CASIComponentType
enumerator:
• CASI_TYPE_CLOCKDIVIDER

• CASI_TYPE_CORE

• CASI_TYPE_CORE_DSP

• CASI_TYPE_CORE_MC

• CASI_TYPE_COPROCESSOR

• CASI_TYPE_MEMORY

• CASI_TYPE_BUS

• CASI_TYPE_PERIPHERAL

• CASI_TYPE_ARBITER

• CASI_TYPE_CACHE

• CASI_TYPE_FIFO

• CASI_TYPE_OTHER

By accessing the string array CASIComponentTypes with the
component type, you can retrieve the correct type string. For
example,
 return CASIComponentTypes[CASI_TYPE_CORE];
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-23

The Cycle Accurate Simulation Interface
CASI_PROP_COMPONENT_VERSION
This property defines the version number of the model or
system. This feature is useful for revision control and bug
tracking in the models.

CASI_PROP_CADI_SUPPORT
If the component provides a CADI interface, the function must
return yes for this property. Default is no.

CASI_PROP_MULTI_INSTANCE_CAPABLE
Components that are not multi-instance capable can indicate
this by returning no. This tells the simulation environment to
forbid multiple instances of such a component in a design.
Default is yes.

CASI_PROP_SAVE_RESTORE
Default is no. If a component supports save/restore, it must
indicate this by returning yes for this property.

CASI_PROP_CADI_DEBUGGER
This entry contains the name of the external debugger. If this
property returns a non-empty string, The simulation
environment allows launching an external debugger script.

The script-name is startdebug_nameDebugger with a .bat
extension on Windows, where debug_name is the name of the
debugger that was specified.

CASI_PROP_DBG_START_COMMAND
If this property is specified together with the DEBUGGER
property, the command returned here is executed from the
current directory. No script is called.

CASI_PROP_DOCUMENTATION
This property can be used to provide the path and filename of
the documentation, relative to the location of the model library
(.dll or .so).

CASI_PROP_IP_PROVIDER
Name of the IP Provider.

CASI_PROP_COMPONENT_VARIANT
Variant information.
2-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASI_PROP_MSG_PREPEND_NAME
If this property returns yes, all messages for this component
are prepended with the component instance name, and
messages from ports are prepended with the instance name
and port name.

CASI_PROP_REPORT_FILE_EXT
If set, the model expects the application file extension to be
present when reset is invoked.

CASI_PROP_WINDOW_COLOR
If this property is a window color hint.

CASI_PROP_LOADS_APPLICATION_CODE
Returns yes if this component can load application code (such
as, for example, a top level component for a multicore
processor like MPCore).

CASI_PROP_EXECUTES_SOFTWARE
Returns yes if this component can execute software (it is, for
example a core) and allows debuggers to connect to it (for
example the leaf components for a multicore processor, such
as MPCore).

2.2.20 Functions for the configuration of components

This section describes functions that configure component parameters:

• CASIModule::setParameter()

• CASIModule::getParameter() on page 2-26

• CASIModule::getParameterList() on page 2-26

• CASIModule::defineParameter() on page 2-26

• CASIModule::testParameter() on page 2-27.

2.2.21 CASIModule::setParameter()

This function sets variables in the model.

virtual void setParameter(const std::string& key, const std::string& val)

where:

key is the key for the parameter to set.

val is the value to be set.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-25

The Cycle Accurate Simulation Interface
An example might be the base address of a memory component. Parameter values are
always passed as strings but they can represent any type of data. This function is
typically overloaded. The default behavior is to maintain the list of parameters and
values and the parent function CASIModule::setParameter() must always be called.

Note
 This function might get called before all resources have been allocated.

2.2.22 CASIModule::getParameter()

This function returns the string that represents the value of a parameter.

virtual std::string getParameter(const std::string& key)

where:

key is a string that is the name of the desired parameter.

This function must not be overloaded. The default behavior is to search the parameter
list and return the value string if found.

2.2.23 CASIModule::getParameterList()

This function returns a list of parameters.

const CASIParameterMapIF* getParameterList()

This function is fully defined in the CASIModule class and is typically used only by the
front ends and there must not be any requirement to modify or call this function from
the user side. See CASIAuxIF.h for details on the parameter list format.

2.2.24 CASIModule::defineParameter()

This function is called from the constructor of a component to define the admissible
parameters and initialize them with default values.

void defineParameter(const std::string &key, const std::string &value,
 CASIParameterType type, bool is_runtime = true,
 bool is_private = false, bool is_readonly = false,
 const std::string &description="")

void defineParameter(const std::string &key, const std::string &value,
 const CASIParameterProperties *prop = NULL)
2-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
where:

type can be string, bool, value, or undefined.

range is used when the type is value, it defines admissible value ranges.

is_runtime is set to true to indicate that a parameter can be changed at runtime.

is_private is set to true to indicate that a parameter is only available in design-mode.

is_readonly is set to true to make the parameter read only.

description is an optional text string that describes the parameter.

prop provides the parameter values as a passed structure:
struct CASIParameterProperties
{
 CASIParameterType type;
 CASINumberRange* range;
 bool is_runtime;
 bool is_private;
 bool is_readonly;
 CASIParamSymbols *symbols;
 char description[CASI_DESCRIPTION_SIZE];
};

See the CASITypes.h file for definitions of CASIParameterType,
CASINumberRange, and CASIParamSymbols.

The function calls setParameter() to set the parameter to its initial value. This function
must not be overloaded.

2.2.25 CASIModule::testParameter()

Plugins can call testParameter() to check whether a parameter is admissible.

virtual bool testParameter(const std::string& /* key */,
 const std::string& /* value*/,
 std::string& /* error_message */)

where:

key is the key for the parameter to set.

val is the value to be set.

error_message

is an error string that can report error details to the user if the function
returns false.

This function must be implemented when the parameter properties do not contain
sufficient information for identifying valid parameter entries (if only a specific set of
strings is accepted, for example).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-27

The Cycle Accurate Simulation Interface
2.2.26 Functions for port administration

This section describes functions that create and administer ports:

• CASIModule::createPort()

• CASIModule::registerPort()

• CASIModule::exportPort() on page 2-29

• CASIModule::findPort() on page 2-30

• CASIModule::getPortList() on page 2-30.

2.2.27 CASIModule::createPort()

This function is used to create master ports because these ports do not require
customization.

CASIPortIF * createPort(CASIInterfaceType type, const std::string& name,
 int ID=0)

where:

type is the type of port to create.

The definition of CASIInterfaceType is:
enum CASIInterfaceType{CASI_COMPONENT = 0,CASI_CLOCK_SLAVE = 1,
CASI_CLOCK_MASTER = 2, CASI_TRANSACTION_SLAVE = 3,
CASI_TRANSACTION_MASTER = 4, CASI_SIGNAL_SLAVE = 5,
CASI_SIGNAL_MASTER = 6, CASI_TRANSACTION_CALLBACK = 7
}

name is the port name.

ID is an optional numeric identifier for the port.

All master ports have the same simple functionality, they can be connected to a slave
port and they pass on the function call to the connected slave port.

2.2.28 CASIModule::registerPort()

If ports are created by using the new operator, the port objects must be registered so that
the port information can be queried by the scheduler.

virtual void registerPort(CASIPortIF * port, const std::string& name)

where:

port is a pointer to an interface.

name is the port name.

registerPort() allows registering all types of ports and expects a pointer to an
CASIPortIF class. Both user defined as well as predefined port classes can be registered
using this method.
2-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASIPortIF is the base class for all ports and is inherited by the CASIClockMaster,
CASIClockSlave, CASISignalSlave and the sc_port<> classes.

2.2.29 CASIModule::registerPortArray()

Components can have an array of similar ports (for example interrupt input ports). The
port objects must be registered so that the port information can be queried by the
scheduler.

void registerPortArray(CASIPortIF ** portArray, const uint32_t arraySize,
 const std::string& name)

where:

portArray is a pointer to an array of interfaces.

arraySize is number of elements in portArray.

name is the port name.

registerPortArray() allows registering all types of ports and expects a pointer to an
array of pointers to CASIPortIF class. Both user defined as well as predefined port
classes can be registered using this method.

CASIPortIF is the base class for all ports and is inherited by the CASIClockMaster,
CASIClockSlave, CASISignalSlave and the sc_port<> classes.

2.2.30 CASIModule::exportPort()

This function is reserved for future use. It can be used to create ports by passing on a
subcomponent port. This allows creating ports that do not require an additional level of
function calls in the model.

void exportPort(CASIModuleIF *c, const std::string& portName,
 const std::string& extPortName)

where:

c is a pointer to a module.

CASIModuleIF defines the basic interfaces for integrating the CASI module
in the simulation environment. The configure(), init(), interconnect(),
reset(), communicate(), update(), and terminate() functions in the class
represent the simulation stages in CASI.

portName is the port name in the module.

extPortName is the name of the exported port.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-29

The Cycle Accurate Simulation Interface
2.2.31 CASIModule::findPort()

This function takes a port name as a parameter and returns a pointer to the port object
if it is found. It returns NULL if a port of this name could not be found.

CASIPortIF * findPort(const std::string& name)

Note
 Ports must be explicitly deleted in the destructor of the component. Registered ports are
not automatically deleted.

By default, calling this function ensures that the model clock slave is registered with the
default clock master of the model during the interconnect stage. This also requires that
CASIModule::interconnect() is called for the model.

2.2.32 CASIModule::getPortList()

This function returns a list of ports.

const CASIPortMapIF* getPortList()

This function is fully defined in the CASIModule class and is typically used only by the
front ends and there is no requirement for the user to modify or call this function.

See the CASIAuxIF.h file for a description of CASIPortMapIF.

2.2.33 Functions for connecting components

This section describes functions that are used to connect ports:

• CASIModule::connect_ports() on page 2-31

• CASIModule::connect() on page 2-31

• CASIModule::disconnect() on page 2-32.
2-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.2.34 CASIModule::connect_ports()

The connect_port() function is used to connect two subcomponents. The components
are connected through their ports (which must also be passed as parameters).

void connect_ports(const std::string& comp1, const std::string& port1,
 const std::string& comp2, const std::string& port2)

where:

comp1 is the name of a module.

port1 is the name of the port in module comp1.

comp2 is the name of a module.

port2 is the name of the port in module comp2.

Note
 Transaction slave ports can only be connected to transaction master ports and signal
slave ports can only be connected to signal master ports.

It is not possible to connect:

• transaction ports to signal ports

• two slave ports to each other

• two master ports to each other.

2.2.35 CASIModule::connect()

virtual void connect(CASIPortIF * master)

The connect() function is used during the interconnect stage by the simulation engine
to pass the pointer of the master to the slave port. Use the getMaster() function to
determine the master this slave is connected to.

The components are connected through their ports (which must also be passed as a
parameter).

Note
 Transaction slave ports can only be connected to transaction master ports and signal
slave ports can only be connected to signal master ports.

It is not possible to connect:

• transaction ports to signal ports

• two slave ports to each other

• two master ports to each other.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-31

The Cycle Accurate Simulation Interface
2.2.36 CASIModule::disconnect()

The disconnect() function is used to remove the interface specified as the parameter
from the list of connections.

virtual void disconnect(CASIPortIF * master)

Note
 It is important to properly implement the disconnect() function because it is used by
probes that are dynamically connected and disconnected at runtime.

It is not possible to connect transaction ports to signal ports or to connect two slave ports
or two master ports to each other.

2.2.37 Functions to administer the component hierarchy

These functions are already fully defined in the module class. There is no requirement
to define any additional behavior for the following:

• CASIModule::createSubcomponent()

• CASIModule::addSubcomponent() on page 2-33

• CASIModule::getSubcomponent() on page 2-33

• CASIModule::getSubcomponentList() on page 2-34

• CASIModule::setSubcomponentParameter() on page 2-34

• CASIModule::getComponentLayout() on page 2-34

• CASIModule::getObjectLoader() on page 2-34

• CASIModule::launchDebugger() on page 2-34

• CASIModule::setClockMaster() on page 2-34

• CASIModule::getClockMaster() on page 2-35.

2.2.38 CASIModule::createSubcomponent()

The createSubcomponent() function is used to instantiate a sub-component by calling the
component factory. It automatically calls registerComponent() for the created
component if the component factory finds the component.

CASIModuleIF *createSubcomponent(const std::string& type,
 const std::string& name)

where:

type is a string that indicates the module type.

name is the name of the module.
2-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The function is already fully defined in the Component class. There is no requirement to
define any additional behavior.

The function declaration below is reserved for future use and will create a
subcomponent based on dynamic component creation:

CASIModuleIF* createSubcomponent(bool bDlopenGlobal,
 const std::string& type, const std::string& name)

2.2.39 CASIModule::addSubcomponent()

The addSubcomponent() function is used to place a pointer to the component interface of
a child object in the list of children of the parent.

void addSubcomponent(CASIModuleIF *c)

where:

c is a pointer to a module.

CASIModuleIF defines the basic interfaces for integrating the CASI module
in the simulation environment.

Any model that creates child components must call this function passing a pointer to the
interface of the child component.

2.2.40 CASIModule::getSubcomponent()

CASIModuleIF *getSubcomponent(const std::string& name)

The getSubcomponent() function is used to search through the list of child objects.

where:

name is a string that is the instance ID of the desired object.

It checks its own ID first and then searches through the list of any child objects. If the
ID matches any object, that object’s pointer to the Component interface is returned. If
nothing matches, a null is returned. The search method is recursive so the children of
children are searched. The comparison method at the level of a discrete component is
designed to also match on the last discrete ID in a dotted-notation instance ID (for
example compxID.compyID would match compyID) so component models can still be
found in a hierarchical system design.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-33

The Cycle Accurate Simulation Interface
2.2.41 CASIModule::getSubcomponentList()

The getSubcomponentList() function returns a pointer to a copy of a list of the
component and any children it might have.

const std::vector<CASIModuleIF*>& getSubcomponentList()

This function is to be used by the front end only and there is no requirement to call it
from within a component model.

2.2.42 CASIModule::setSubcomponentParameter()

The setSubcomponentParameter() function is used to set values of a parameter name in a
model. Parameter values are always passed as strings but they can represent any type of
data.

void setSubcomponentParameter(const std::string& name, const std::string& key,
 const std::string& value)

This function is usually overloaded. The default behavior is to maintain the list of
parameters and values.

2.2.43 CASIModule::getComponentLayout()

This function is used to return display details for the component.

virtual CASIComponentLayout* CASIModule::getComponentLayout()

2.2.44 CASIModule::getObjectLoader()

This function is used by the environment to get the loader for a module.

virtual CASIObjectLoader* CASIModule::getObjectLoader()

2.2.45 CASIModule::launchDebugger()

This function is used by the environment to launch the debugger for the target and load
the specified application.

virtual CASIStatus CASIModule::launchDebugger (char * appli)

2.2.46 CASIModule::setClockMaster()

The setClockMaster() function is used to assign the component to the master clock.

void setClockMaster(CASIClockMasterIF *clockFromParent)
2-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.2.47 CASIModule::getClockMaster()

The getClockMaster() function is used to get the handle to the master clock

CASIClockMasterIF *getClockMaster()

2.2.48 Miscellaneous functions

See the following sections for details on miscellaneous functions:

• CASIModule::message()

• CASIModule::getCADI() on page 2-36

• CASIModule::getCAPI() on page 2-37

• CASIModule::getNumCAMMIs() on page 2-37

• CASIModule::getCAMMI() on page 2-37.

2.2.49 CASIModule::message()

Use the message() functions to display messages in the output window of the simulator.
All output from a component must be created in this way. There are two forms of the
message function:

• one takes a simple string and an optional message type as a parameter

• the other has a similar form to printf().

void message(const std::string& msg, CASIMessageType type = CASI_MSG_INFO)

void message(CASIMessageType type, const char *fmt, ...)

In addition to displaying messages in the output window, the message function can also
be used to inform the simulation front-end about errors and exceptions.

The message-type parameter provides information about the type of message. The
supported message types are:

CASI_MSG_FATAL_ERROR

This message type signals a fatal error. In this case, the error message is
displayed in a separate message box and also printed in the output
window preceded with the text FATAL ERROR:

The only way to recover from a fatal error is to load the system again.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-35

The Cycle Accurate Simulation Interface
CASI_MSG_ERROR

This message type indicates an error in the simulation. The simulation
can be continued from this point. The message is displayed in a separate
message box window, and is also printed in the output window preceded
with the text ERROR:.

The user can now choose whether to abort the simulation or ignore the
error.

CASI_MSG_WARNING

This type classifies the message to be a warning. In this case the message
string is printed in the output window preceded by the text WARNING: .

Note
 It is also possible to make the simulation stop the execution on warnings.

CASI_MSG_INFO

This is the default message type. The message string is simply printed in
the output window.

CASI_MSG_DEBUG

If a message is classified as being a debug message, it is only printed if
the debug version of build is used. The message is preceded with the text
DEBUG:

ARM recommends using the message() function to create user output.

2.2.50 CASIModule::getCADI()

The function getCADI() must be implemented if an CADI interface exists for the
component.

virtual CADI *getCADI()

This function simply returns a pointer to the CADI interface. See Chapter 3 The Cycle
Accurate Debug Interface for details about defining an CADI interface for your
component.
2-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.2.51 CASIModule::getCAPI()

The function getCAPI() must be implemented if an CAPI interface exists for the
component.

virtual CAPI *getCAPI()

This function simply returns a pointer to the CAPI interface. See Chapter 4 The Cycle
Accurate Profiling Interface for details about defining an CAPI interface for your
component.

2.2.52 CASIModule::getNumCAMMIs()

The function getNumCAMMIs() returns the number of Memory Map Interfaces for the
component.

virtual int *NumCAMMIs()

2.2.53 CASIModule::getCAMMI()

The function getCAMMI() returns a pointer to the specified Memory Map Interface.

virtual CAPI *getCAMMI(int index=0)
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-37

The Cycle Accurate Simulation Interface
2.3 The CASIPortIF class

This is the base class for all master and slave CASI interfaces. The class definition is
shown in Example 2-4.

Example 2-4 CASIPortIF

class CASIPortIF
{
public:
 virtual ~CASIPortIF() {};
 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType() = 0;
 virtual std::string getPortInstanceName() = 0;
 virtual void setPortInstanceName(const std::string& name) = 0;
 virtual void setCASIOwner(CASIModuleIF *) = 0;
 virtual CASIModuleIF *getCASIOwner() = 0;
 virtual void enablePort(bool enable) = 0;
 virtual const bool isPortEnabled() = 0;
 virtual void setConnected(bool connected) = 0;
 virtual const bool isConnected() = 0;
 static if_name_t IFNAME() {return "eslapi.CASIPortIF2";}
 static if_rev_t IFREVISION() {return 0;}
};

The following functions are present in all classes that inherit from CASIPortIF:

• CASIPortIF::getName()

• CASIPortIF::getType() on page 2-39

• CASIPortIF::getPortInstanceName() on page 2-39

• CASIPortIF::setPortInstanceName() on page 2-39

• CASIPortIF::setCASIOwner() on page 2-39

• CASIPortIF::getCASIOwner() on page 2-39

• CASIPortIF::enablePort() on page 2-39

• CASIPortIF::isPortEnabled() on page 2-39

• CASIPortIF::setConnected() on page 2-40

• CASIPortIF::setConnected() on page 2-40.

2.3.1 CASIPortIF::getName()

This function can be overridden to return the name of the port.

std::string getName() =0
2-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.3.2 CASIPortIF::getType()

This function returns the port type.

CASIInterfaceType getType() =0

2.3.3 CASIPortIF::getPortInstanceName()

This function can be overridden to get the port instance name.

virtual std::string getPortInstanceName() =0

2.3.4 CASIPortIF::setPortInstanceName()

This function can be overridden to set the port instance name.

virtual void setPortInstanceName(const std::string & name) =0

2.3.5 CASIPortIF::setCASIOwner()

This function sets the module that owns the port.

virtual void setCASIOwner(CASIModuleIF* owner)=0

2.3.6 CASIPortIF::getCASIOwner()

This function gets the module that owns the port.

virtual CASIModuleIF *setCASIOwner()=0

2.3.7 CASIPortIF::enablePort()

This function enables the port.

virtual void enablePort(bool enable) =0

2.3.8 CASIPortIF::isPortEnabled()

This function returns the enable state. Default implementation is always enabled.

virtual const bool isPortEnabled() =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-39

The Cycle Accurate Simulation Interface
2.3.9 CASIPortIF::setConnected()

This function sets a flag weather this port has been connected to a real (architectural)
port or not. Ports that are left unconnected are connected by default by the tool to default
sinks or sources.

virtual void setConnected(bool connected) =0

2.3.10 CASIPortIF::isConnected()

This function returns the connection status for the port.

virtual const bool isConnected() =0

2.3.11 CASIExtPortMapIF

This class is used to find external ports by name.

Example 2-5 CASIExtPortMapIF

class WEXP CASIExtPortMapIF
{
 public:
 virtual ~CASIExtPortMapIF() {};
 virtual bool find(const std::string &extName) const = 0;
 virtual bool add(const std::string &extName, const CASIModuleIF *comp,

 const CASIPortIF *port) = 0;

 virtual bool remove(const std::string &extName) const = 0;
 virtual bool getFirst(std::string &extName, CASIModuleIF **comp,

 CASIPortIF **port) const = 0;

 virtual bool getNext(const std::string ¤tKey,
 std::string &extName, CASIModuleIF **comp,

 CASIPortIF **port) const = 0;
 virtual bool getNext(std::string &extName, CASIModuleIF **comp,

 CASIPortIF **ptr) const = 0;
 virtual bool clear() = 0;
 virtual int count() const = 0;
};
2-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.4 The clock interface classes

The ESL API provides interfaces for clocked components and for components that act
as clock drivers. The simulation engine has one central clock that is the base to every
other clock in a system.

2.4.1 The CASIClockMaster class

The class CASIClockMaster provides the interface for components that can act as clock
drivers for other components.

This class can be used to generate clock dividers or other types of custom clock driving
components (for example clock dividers).

Example 2-6 CASIClockMaster class

class CASIClockMaster : public CASIClockMasterIF
{
public:
 virtual CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev);
 CASIClockMaster();
 CASIClockMaster(CASIModuleIF * owner);
 virtual ~CASIClockMaster() ;

 // Functions to be implemented.
 virtual void registerClockSlave(CASIClockSlaveIF *) = 0;
 virtual void unregisterClockSlave(CASIClockSlaveIF *) = 0;
 virtual void registerClockSlave(CASIClockSlaveIF *slave,
 CASIPhase phase, uint32_t repetitions = 0,
 uint32_t ratio = 1, uint32_t offset = 0);
 // Disable a clock slave temporarily from the master
 virtual void disableClockSlave (CASIClockSlaveIF * slave);
 // Enable a clock slave on the master
 // (after it has been disabled with disableClockSlave)
 virtual void enableClockSlave (CASIClockSlaveIF * slave);

 // Functions with default implementations
 std::string getName() { return ""; }
 CASIInterfaceType getType() { return CASI_CLOCK_MASTER; }

 virtual void replaceClockSlave(CASIClockSlaveIF * toremove,
 CASIClockSlaveIF *toadd) = 0;
 virtual void setPortInstanceName(const std::string& name) {
 casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-41

The Cycle Accurate Simulation Interface
 virtual void setCASIOwner(CASIModuleIF * owner);
 virtual CASIModuleIF* getCASIOwner();
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }

 virtual void setConnected(bool connected) {casiIsConnected = connected;}
 virtual const bool isConnected() {return casiIsConnected; }

 // Type definition for the communicate()/update() static scheduling
 typedef void (CASIClockSlaveIF::*CASIClockFuncType)();

 // Register the combinatorial communicate.
 template <class X> inline void registerCommunicate(
 CASIClockSlaveIF* component, void (X::*func)(),
 const std::string &name = "communicate")
 {
 registerRealCommunicate(component,
 static_cast<CASIClockFuncType>(func), name);
 }
 // Register the update
 template <class X> inline void registerUpdate(CASIClockSlaveIF* component,
 void (X::*func)(), const std::string &name = "update")
 {
 registerRealUpdate(component,
 static_cast<CASIClockFuncType>(func),name);
 }

 // add a edge from the source to the sink to represent dependency.
 // port -> func, func -> port, func -> func
 virtual void addDependency(CASIClockSlaveIF * component,
 const std::string& func, const CASIPortIF * port);
 virtual void addDependency(CASIClockSlaveIF * component,
 const CASIPortIF * port, const std::string& func);
 virtual void addDependency(CASIClockSlaveIF * component,
 const std::string& func1, const std::string & func2);
 virtual void schedule();

 // Prints a message to the standard output.
 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);

protected:
 void registerRealCommunicate(CASIClockSlaveIF* component,
 CASIClockFuncType func, const std::string &name);
 void registerRealUpdate(CASIClockSlaveIF* component,
 CASIClockFuncType func, const std::string &name);

 CASIClockSlaveIF *slave;
 std::vector<CASIClockSlaveIF*> slaves;
2-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 CASIDependencyScheduler *pCommunicateScheduler;
 CASIDependencyScheduler *pUpdateScheduler;

 // casi function delegate component
 CASIDelegate *pClockedComponentsCommunicate;
 CASIDelegate *pClockedComponentsUpdate;
 // backup delegate
 CASIDelegate *pBackupClockedComponentsCommunicate;
 CASIDelegate *pBackupClockedComponentsUpdate;

private:
 std::string casiPortInstanceName;
 CASIModuleIF* casiOwner;
 bool casiIsEnabled;
 bool casiIsConnected;
};

This class can be used to generate clock dividers or other types of custom clock driving
components.

The member functions are described in the following sections (some functions are
described in the parent class, see the .h file for more detail):

• CASIClockMaster::registerClockSlave() on page 2-44

• CASIClockMaster::unregisterClockSlave() on page 2-45

• CASIClockMaster::replaceClockSlave() on page 2-46.

• CASIClockMaster::pmessage() on page 2-48

• CASIClockMaster::disableClockSlave() on page 2-46

• CASIClockMaster::enableClockSlave() on page 2-46

• CASIClockMaster::registerRealCommunicate() on page 2-46

• CASIClockMaster::addDependency() on page 2-48

• CASIClockMaster::schedule() on page 2-48

• CASIPortIF::getName() on page 2-38

• CASIPortIF::getType() on page 2-39

• CASIPortIF::setCASIOwner() on page 2-39

• CASIPortIF::getCASIOwner() on page 2-39

• CASIPortIF::enablePort() on page 2-39

• CASIPortIF::isPortEnabled() on page 2-39

• CASIPortIF::enablePort() on page 2-39

• CASIPortIF::setConnected() on page 2-40

• CASIPortIF::isConnected() on page 2-40.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-43

The Cycle Accurate Simulation Interface
2.4.2 CASIClockMaster::registerClockSlave()

When a clock slave is connected to its master, it can register itself using
registerClockSlave() function for unconditional or conditional registration.

virtual void registerClockSlave(CASIClockSlaveIF *slave)=0

virtual void registerClockSlave(CASIClockSlaveIF *slave,
 CASIPhase phase, uint32_t repetitions = 0,
 uint32_t ratio = 1, uint32_t offset = 0) = 0

where:

slave is an instance of an object that implements the CASIClockSlaveIF interface
(the base class for the CASIClockSlave class) and defines the basic
cycle-accurate simulation execution unit. A CASI module can define
zero, one or several clock slaves. Each clock slave represent the
cycle-based behavior of the appropriate model part. The communicate()
function implements the cycle-based communication with other
components and update() implements the cycle-based updating of the
internal resources of the component. A CASIClockSlave must be
connected to an appropriate CASIClockMaster to receive the communicate
or update calls.

phase specifies the phase to register the slave for:

• CASI_PHASE_BOTH

• CASI_PHASE_COMMUNICATE

• CASI_PHASE_UPDATE.

repetitions specifies the number of times the component is to be called. 0 means the
component will be called indefinitely.

Note
 This parameter has been deprecated and must not be used in new code. It

has only been retained to support legacy code.

ratio specifies the clock ratio between the master clock and the local clock to
be used. A ratio of n means that the component is be called once every n
cycles. It must be greater than 0.

Note
 This parameter has been deprecated and must not be used in new code. It

has only been retained to support legacy code.
2-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
offset denotes the number of master clock cycles to elapse before the
component is called for the first time. Default is 0.

Note
 This parameter has been deprecated and must not be used in new code. It

has only been retained to support legacy code.

Note
 Conditional registration requires a more complex scheduling mechanism that can
impact performance.

Conditional registration is only recommended for components that get called
occasionally. In this case, the simulation performance is improved.

Note
 The order in which the component communicate() functions are called cannot be
specified by the standard registerClockSlave() function. Some systems, however,
require that communication functions are called in a specific order to, for example,
control a bus request and acknowledge sequence within the same cycle. For more
information on specifying the order of communicate() functions, see Appendix A Static
Scheduling of Communication Functions.

2.4.3 CASIClockMaster::unregisterClockSlave()

The unregisterClockSlave() function is used to remove the clock slave.

virtual void unregisterClockSlave(CASIClockSlaveIF *) =0

The unregistered clock slave no longer receive communicate() and update() calls in each
cycle of this clock master.

This function is useful to optimize the simulation behavior by temporarily removing
idle components from the simulation.

Note
 This function cannot be used with static scheduling. See Appendix A Static Scheduling
of Communication Functions for details on controlling clock functions.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-45

The Cycle Accurate Simulation Interface
2.4.4 CASIClockMaster::replaceClockSlave()

This function replaces the slave but keeps the conditional registration information.

virtual void replaceClockSlave(CASIClockSlaveIF *toremove,
 CASIClockSlaveIF *toadd) =0

The replaceClockSlave() function must be implemented for each clock master port to
allow the replacement of clock slaves without the loss of conditional registration
information.

2.4.5 CASIClockMaster::disableClockSlave()

This function disables a clock slave temporarily from the master. Use
enableClockSlave() to re-enable the clock connection.

virtual void disableClockSlave (CASIClockSlaveIF * slave)

2.4.6 CASIClockMaster::enableClockSlave()

This function enables a clock slave on the master. It is used after the clock has been
disabled with disableClockSlave().

virtual void enableClockSlave (CASIClockSlaveIF * slave)

Note
 This function is used with static scheduling instead of unregisterClockSlave(). See
Appendix A Static Scheduling of Communication Functions for details on controlling
clock functions.

2.4.7 CASIClockMaster::registerRealCommunicate()

Functions based on this template are used for static scheduling and to support
combinatorial paths within the cycle-based simulation. communicate is used as the
default name for the update function to enable use with legacy components.
2-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The actual calling order for the specified communication function can be specified by
using the addDependency() function (see CASIClockMaster::addDependency() on
page 2-48).

template <class X> inline void registerCommunicate(CASIClockSlaveIF* component,
 void (X::*func)(), const std::string &name = "communicate")
{
 registerRealCommunicate(component,static_cast<CASIClockFuncType>(func),name);
}

template <class X> inline void registerCommunicate(CASIClockSlaveIF* component,
 void (X::*func)(), const std::string &name = "update")
{
 registerRealCommunicate(component,static_cast<CASIClockFuncType>(func),name);
}

Note
 The order in which the component communicate() functions are called cannot be
specified by the standard registerClockSlave() function. For more information on
specifying the order of communication functions, see Appendix A Static Scheduling of
Communication Functions.

2.4.8 CASIClockMaster::registerRealUpdate()

Functions based on this template are used for static scheduling and to support
combinatorial paths within the cycle-based simulation. update is used as the default
name for the update function to enable use with legacy components.

The actual calling order for the specified update function can be specified by using the
addDependency() function (see CASIClockMaster::addDependency() on page 2-48).

template <class X> inline void registerUpdate(CASIClockSlaveIF* component,
 void (X::*func)(), const std::string &name = "update")
 {
 registerRealUpdate(component,
 static_cast<CASIClockFuncType>(func),name);
 }

Note
 The order in which the component update() functions are called cannot be specified by
the standard registerClockSlave() function. For more information on specifying the
order of functions, see Appendix A Static Scheduling of Communication Functions.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-47

The Cycle Accurate Simulation Interface
2.4.9 CASIClockMaster::addDependency()

These functions add an edge from the source to the sink to represent dependency. For
example:

• To create a dependence edge between the communicate function func() and the
port port, use the function:

virtual void addDependency(CASIClockSlaveIF * component,
 const std::string& func, const CASIPortIF * port)

The communication functions in the component connected to port will be called
after the call to func().

• To create a dependence edge between port and the communicate function func(),
use the function:

virtual void addDependency(CASIClockSlaveIF * component,
 const CASIPortIF * port, const std::string& func)

The function func() will be called after the call to the communication functions
in the component connected to port.

• To create a dependence edge between func1() and func2(), use the function:

virtual void addDependency(CASIClockSlaveIF * component,
 const std::string& func1, const std::string & func2)

The component communication function func2() will be called after func1().

Note
 If a port is used as a parameter in the call to addDependency(), the final dependency graph
will be based on specified dependence edges in both the communication functions of
the port owner and the dependence edges in the communication functions in the
component that the port connects to. The communication functions in the connected
component might also have dependencies on other functions in that component.

For more information on specifying the order of communication functions, see
Appendix A Static Scheduling of Communication Functions.

2.4.10 CASIClockMaster::schedule()

This function schedules the calls to the attached clock ports.

virtual void schedule()

2.4.11 CASIClockMaster::pmessage()

This function prints a message to the standard output.
2-48 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO)

virtual void pmessage(CASIMessageType type, const char *fmt, ...)
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-49

The Cycle Accurate Simulation Interface
2.4.12 The CASIClockSlave class

This class provides a basic slave clock implementations. The slave clock interface is
defined in CASIClockSlaveIF.

Note
 CASIModule inherits from CASIClockSlaveIF, CASIPortIF, and CASIModuleIF.

The communicate() and update() functions must be implemented in the component class
that inherits from CASIClockSlaveIF. The functions can, however, be implemented as a
non-pure virtual function.

Example 2-7 CASIClockSlave definition

class CASIClockSlave : public CASIClockSlaveIF
{
public:
 virtual CAInterface * ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t * actualRev);
 CASIClockSlave() : casiOwner(NULL), casiMaster(NULL), casiIsEnabled(true),
 casiIsConnected(false) {}
 CASIClockSlave(CASIModuleIF* owner) : casiOwner(owner), casiMaster(NULL),
 casiIsEnabled(true), casiIsConnected(false) {}
 virtual ~casi_clock_slave() {};

 // communicate and update must be implemented
 virtual void communicate() = 0;
 virtual void update() = 0;

 // Functions with default implementations.
 void casi_clocked(void) {};
 void casi_clocked (CASIPhase /* _phases */, uint32_t /* _numOfTimes */,
 uint32_t /* _ratio */, uint32_t /* _offset */) {}

 std::string getName() { return ""; }
 CASIInterfaceType getType() { return CASI_CLOCK_SLAVE; }

 virtual void connect(CASIClockMasterIF* master);
 virtual void disconnect(CASIClockMasterIF* master);
 virtual CASIClockMasterIF* getMaster() { return casiMaster; }

 virtual void setPortInstanceName(const std::string& name)
 { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }

 virtual void setCASIOwner(CASIModuleIF* owner) { casiOwner = owner; }
2-50 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 virtual CASIModuleIF* getCASIOwner() { return casiOwner; }

 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }

 virtual void setConnected(bool connected) {casiIsConnected = connected;}
 virtual const bool isConnected() {return casiIsConnected; }

 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);
private:
 std::string casiPortInstanceName;
 CASIModuleIF* casiOwner;
 CASIClockMasterIF* casiMaster;
 bool casiIsEnabled;
 bool casiIsConnected;
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-51

The Cycle Accurate Simulation Interface
2.5 The transaction interface classes

This section describes the classes that are used to implement the transaction master and
transaction slave ports. This section has the following subsections:

• Introduction to the transaction interface

• The CASITransactionProperties structure on page 2-53

• CASITransactionProperties.validTimingTable on page 2-54

• The CASITransactionIF interface on page 2-56

• The CASITransactionSlave class on page 2-66

• The CASITransactionMasterIF class on page 2-72

• The CASITransactionCallbackIF interface class on page 2-73

• The multi-cycle transaction Interface on page 2-75

• The CASITransactionInfo structure on page 2-76

• The predefined sc_port<CASITransactionIF, 1> class on page 2-83

• The predefined sc_port< CASITransactionIF, 0> class on page 2-87.

• AXI and AHB transactions on page 2-90.

2.5.1 Introduction to the transaction interface

The transaction interfaces are used for connections between components that consist of
more than just a single signal. Memory transactions, for example, typically consist of
the arbitration signals, the address and the data. Transactions usually involve
bidirectional data transfer. That is, a read operation that passes an address from the
master to the slave and returns the data value from the slave back to the master.

The transaction interfaces are used in pairs. A transaction-slave interface in one
component can only be connected to a transaction-master interface in the other
component. Multiple slaves can be connected to a single master. The master must
decode the address to select the correct slave.

Transaction interfaces are not restricted to single reads and writes. Protocols can be
implemented that allow burst, or block reads of multiple memory locations through a
single transaction.

Transaction master ports are SystemC sc_port objects and use the corresponding
transaction interface.

Master ports encapsulate the connection of a component to another component’s slave
port. The master ports provide standardized ways of accessing connected slave ports
without having to know about the slave ports that are actually connected to them.
2-52 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The slave ports behavior depends on the meaning and requirements of the resources
corresponding to those slaves. The slave read() and write() functions must be
customized to implement the behavior associated with the resource. However, because
master ports only forward the requests to the connected slaves, master ports can have a
generic implementation that can be directly used to instantiate master ports in the
components. The CASITransactionMaster represents such a generic implementation.

2.5.2 The CASITransactionProperties structure

It is possible to define transaction properties for a more explicit definition of the
semantics of a transaction. This simplifies implementing system level debugging
features.

Example 2-8 CASITransactionProperties structure

struct CASITransactionProperties
{
 CASIVersion casiVersion; // CASI_VERSION_2 or CASI_VERSION_3

 bool useMultiCycleInterface; // use new drive/cancelTransaction functions ?
 uint8_t addressBitwidth; // address bitwidth for addressing of resources
 uint32_t mauBitwidth; // minimal addressable unit
 uint32_t dataBitwidth; // maximum bitwidth transferred in one cycle
 uint32_t dataBeats; // Maximum data beats in a burst transaction (used only if
 // casiVersion >= 3.1).
 bool isLittleEndian; // alignment of MAUs
 bool isOptional; // if true this port can be disabled
 bool supportsAddressRegions; // M/S can negotiate address mapping

 uint32_t numCtrlFields; // # of ctrl elements used

 uint32_t numSlaveFlags; // # of slave flag elements being used
 uint32_t numMasterFlags; // # of master flag elements being used
 uint32_t numTransactionSteps; // # of transaction steps (maximum)
 uint32_t* validTimingTable; // table providing transaction step of validity
 uint32_t protocolID; // magic number of the protocol ID
 // The upper 16 bits = protocol implementation version

 // The lower 16 bits = actual protocol ID
 char protocolName[CASI_NAME_SIZE] // The name of the protocol being used

 bool supportsNotify; // event based execution upon notify request
 bool supportsBurst; // burst transfer capability (true/false)
 bool supportsSplit; // split transfer capability (true/false)

 bool isAddrRegionForwarded // true if addr region for this system port is actually
 // forwarded to a master port, false otherwise
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-53

The Cycle Accurate Simulation Interface
 CASITransactionMasterIF * forwardAddrRegionToMasterPort;
 // master port of the same component to which
 // this salve port’s addr region is forwarded

 CASITransactionDetails * details; // Protocol extension, reserved for future functionality
};

The CASITransactionProperties structure can be used for both synchronous transactions
(for example, using the read() and write() transaction member functions), as well as
asynchronous transactions spanning over multiple clock cycles (for example, using the
driveTransaction and cancelTransaction member functions).

The properties must be set from the constructor of the component, directly after creation
of the port. The following functions are available in the transaction master and slave
classes to access and modify the transaction properties information:

/* CASI 1.1: port properties */
virtual const CASITransactionProperties * getProperties();
virtual void setProperties(const CASITransactionProperties * prop);

The user calls these functions to set the properties of the transaction port and get the
current properties. Port properties must not change after the reset stage.

2.5.3 CASITransactionProperties.validTimingTable

The valid timing table provides hints to, for example, a generic probe listening on a
connection that uses the CASITransactionInfo multicycle interface.

Note
 The sole purpose of the validTimingTable is for visualization tools. It is not intended to
be used by the communicating parties (transaction master, transaction slave).

The valid timing table is a linear array of uint32_t. The information is recorded during
the transaction step where certain items of the data structure become valid. Typically all
items of the CASITransactionInfo data structure that characterize a transaction become
valid at one point and stay valid from that point on (that might not always be the case).
2-54 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
There is also an assumption about which items are controlled by the master and which
items are controlled by the transaction slave:

• For master controlled items the valid condition is:

if ((validTimingTable[x] >= info.cts) && (info.status[info.cts] >=
CASI_MASTER_READY)

• For slave controlled items the valid condition is:

if ((validTimingTable[x] >= info.cts) && (info.status[info.cts] >=
CASI_SLAVE_READY)

Usually it is only useful for a monitor to display valid information from
CASITransactionInfo.

The index of the valid timing table corresponds to the items in the CASITransactionInfo
data structure which again depends on the max number of beats, max number of
transaction steps, max number of slave and master flags.

Example 2-9 Example of validTimingTable entries for an AXI port

validTimingTable[0] = AXI_STEP_ADDRESS; /* access */
validTimingTable[1] = AXI_STEP_ADDRESS; /* addr */
validTimingTable[2] = AXI_STEP_ADDRESS; /* dataSize */
validTimingTable[3] = AXI_STEP_ADDRESS; /* dataBeats */
validTimingTable[4] = AXI_STEP_DATA0; /* dataWr[0] */
validTimingTable[5] = AXI_STEP_DATA1; /* dataWr[1] */
...
validTimingTable[19] = AXI_STEP_DATA15; /* dataWr[15] */
validTimingTable[20] = AXI_STEP_DATA0; /* dataRd[0] */
...
validTimingTable[35] = AXI_STEP_DATA15; /* dataRd[15] */
validTimingTable[36] = AXI_STEP_ADDRESS; /* masterFlag[0]*/
...
validTimingTable[36 + n - 1] = AXI_STEP_ADDRESS; /* masterFlag[n] */
validTimingTable[36 + n - 1] = AXI_STEP_ADDRESS; /* slaveFlag[0] */
...
validTimingTable[36 + n + m - 1] = AXI_STEP_ADDRESS; /* slaveFlag[m] */
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-55

The Cycle Accurate Simulation Interface
2.5.4 The CASITransactionIF interface

This class provides the interface for transaction-based communication. (See also The
CASITransactionSlave class on page 2-66).

There are three access methods supported by the transaction interfaces:

Synchronous access functions

The read() and write() functions enable synchronous access between
different components, where the addr, value and ctrl fields represent the
address for the read or write, the value read or written and the control
field for the read or write.

The read() and write() functions are expected to return immediately (in
the same cycle where they were initiated), and return the status of the
transaction. If they return CASI_STATUS_OK, the transaction finished
successfully.

The read/write functions can implement also multi-cycled transactions.
If, for example, in the first cycle they return CASI_STATUS_WAIT, then the
initiating component calls the read/write function again in subsequent
cycles, until it receives the CASI_STATUS_OK representing the end of this
transaction.

The readDbg() and writeDbg() provide debug accesses and enable
debuggers to, for example, read the desired information without
advancing the simulation.

Asynchronous access functions

The asynchronous readReq() and writeReq() functions enable a
communication model where the initiator master component provides a
callback function pointer to the slave component.

When the slave component is ready to serve the transaction, it calls the
callback function notifying the master that, for example, the data is ready.

Shared-memory asynchronous access functions

The shared-memory asynchronous functions provide a communication
model where the initiating master component calls driveTransaction()
providing to the slave a shared-memory data structure. This data structure
is used throughout the transaction’s life to communicate the information
between the master and the slave components. After the first
driveTransaction() function call, no other function calls are required
through the transaction (unless a cancelTransaction() is called to cancel
the respective transaction). The shared data structure is stored in
CASITransactionInfo.
2-56 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
An optional notification callback from a slave to the connected master
can be implemented through a CASINotifyHandlerIF object. The
notifyEvent() function can be called by the slave to inform the master
that the contents of the transaction info data structure has changed. This
enables the master to react to the changes in the same cycle.

Note
 For all of the three communication modes, the actual protocol define specific
transaction parameters (such as the size of the data being transmitted and the meaning
and size of the control field information) are defined by the specific protocol that the
components use (for example AMBA AHB or AXI).

Note
 Most of the functions in this class are pure virtual and must be implemented in either
the CASITransactionIF class or the component slave port.

Example 2-10 CASITransactionIF class

class CASITransactionIF : public CASIPortIF, public sc_interface
{
public:
 CASITransactionIF() {}
 CASITransactionIF(std::string & name) {}
 virtual ~CASITransactionIF() {}
 virtual CASIStatus read(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;

 virtual CASIStatus write(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;
 virtual CASIStatus readDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;
 virtual CASIStatus writeDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;
 virtual CASIStatus readReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 CASITransactionCallbackIF* callback) = 0;
 virtual CASIStatus writeReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 CASITransactionCallbackIF* callback) = 0;

 // arbitration functions
 virtual CASIGrant requestAccess(uint64_t addr) = 0;
 virtual CASIGrant checkForGrant(uint64_t addr) = 0;

 // memory map functions
 virtual int getNumRegions() = 0;
 virtual void getAddressRegions(uint64_t* start, uint64_t* size, std::string * name) = 0;
 virtual void setAddressRegions(uint64_t* start, uint64_t* size, std::string * name) = 0;
 virtual CASIMemoryMapConstraints * getMappingConstraints() = 0;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-57

The Cycle Accurate Simulation Interface
 // shared memory transaction functions
 virtual void driveTransaction(CASITransactionInfo* info) = 0;
 virtual void cancelTransaction(CASITransactionInfo* info) = 0;
 virtual CASIStatus debugTransaction(CASITransactionInfo* info) = 0;

 // connection functions
 virtual void connect(CASITransactionMasterIF* iface) = 0;
 virtual void disconnect(CASITransactionMasterIF* iface) = 0;
 virtual CASITransactionMasterIF* getMaster() = 0;

 // Inspect transaction interface
 virtual const CASITransactionProperties * getProperties() = 0;
 virtual void setProperties(const CASITransactionProperties * prop) = 0;

 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType() = 0;
 virtual std::string getPortInstanceName() = 0;
 virtual void setPortInstanceName(const std::string & name) = 0;
 virtual void setCASIOwner(CASIModuleIF * owner) = 0;
 virtual CASIModuleIF *getCASIOwner() = 0;
 virtual void enablePort(bool enable) = 0;
 virtual const bool isPortEnabled() = 0;
 virtual CASIStatus bypass(uint32_t msgSize, uint32_t* message, uint32_t rspSize,
 uint32_t* response) = 0;
};

The following subsections describe the functions:

• CASITransactionIF::CASITransactionIF() on page 2-59

• CASITransactionIF::read() on page 2-59

• CASITransactionIF::write() on page 2-60

• CASITransactionIF::readDbg() on page 2-60

• CASITransactionIF::writeDbg() on page 2-60

• CASITransactionIF::readReq() on page 2-60

• CASITransactionIF::writeReq() on page 2-61

• CASITransactionIF::requestAccess() on page 2-61

• CASITransactionIF::checkForGrant() on page 2-62

• CASITransactionIF::getNumRegions() on page 2-62

• CASITransactionIF::getAddressRegions() on page 2-63

• CASITransactionIF::setAddressRegions() on page 2-63

• CASITransactionIF::getMappingConstraints() on page 2-64

• CASITransactionIF::driveTransaction() on page 2-64

• CASITransactionIF::cancelTransaction() on page 2-64

• CASITransactionIF::debugTransaction() on page 2-64
2-58 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
• CASITransactionIF::connect() on page 2-65

• CASITransactionIF::disconnect() on page 2-65

• CASITransactionIF::getMaster() on page 2-65

• CASITransactionIF::getProperties() on page 2-65

• CASITransactionIF::setProperties() on page 2-65.

• CASITransactionIF::bypass() on page 2-65.

The following functions are inherited from CASIPortIF:

• CASIPortIF::getName() on page 2-38

• CASIPortIF::getType() on page 2-39

• CASIPortIF::getPortInstanceName() on page 2-39

• CASIPortIF::setPortInstanceName() on page 2-39

• CASIPortIF::setCASIOwner() on page 2-39

• CASIPortIF::getCASIOwner() on page 2-39

• CASIPortIF::enablePort() on page 2-39

• CASIPortIF::isPortEnabled() on page 2-39

CASITransactionIF::CASITransactionIF()

This function is the constructor for the interface.

CASITransactionIF() {}
CASITransactionIF(std::string & name) {}

CASITransactionIF::read()

This function performs synchronous read transaction operations.

virtual CASIStatus read(uint64_t addr, uint32_t* value, uint32_t* ctrl) =0

where:

addr is the transaction address.

value is an array of uint32_t for the value being read.

ctrl is an array of uint32_t, representing the control fields for the transaction.
The actual meaning of the ctrl fields is protocol-dependent and is
documented in the respective model or protocol documentation.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-59

The Cycle Accurate Simulation Interface
CASITransactionIF::write()

This function performs synchronous write transaction operations.

virtual CASIStatus write(uint64_t addr, uint32_t* value, uint32_t* ctrl) =0

where:

addr is the transaction address.

value is an array of uint32_t, representing the value being written.

ctrl is an array of uint32_t, representing the control fields for the transaction.
The actual meaning of the ctrl fields is protocol-dependent and is
documented in the respective model or protocol documentation.

CASITransactionIF::readDbg()

This function performs synchronous debug read transaction operations.

Similar to read(), except that the slave state must not change.

virtual CASIStatus readDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl) =0

CASITransactionIF::writeDbg()

This function performs synchronous debug write transaction operations.

Similar to write(), except that the slave must not change state.

virtual CASIStatus writeDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl) =0

CASITransactionIF::readReq()

This function performs asynchronous read transaction operations.

virtual CASIStatus readReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 CASITransactionCallbackIF* callback) =0

where:

addr is the transaction address.

value is an array of uint32_t, representing the value being read.

ctrl is an array of uint32_t, representing the control fields for the transaction.
The actual meaning of the ctrl fields is protocol-dependent and is
documented in the respective model or protocol documentation.

callback is the callback object used by the slave to communicate the transaction
progress to the master.
2-60 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The definition of the callback function is:

virtual void CASITransactionCallbackIF::readAck (uint64_t address,
 CASIStatus status) =0

CASITransactionIF::writeReq()

This function performs asynchronous write transaction operations.

virtual CASIStatus writeReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 CASITransactionCallbackIF* callback) =0

where:

addr is the transaction address.

value is an array of uint32_t, representing the value being written.

ctrl is an array of uint32_t, representing the control fields for the transaction.
The actual meaning of the ctrl fields is protocol-dependent and is
documented in the respective model or protocol documentation.

callback is the callback object used by the slave to communicate the transaction
progress to the master.

The definition of the callback function is:

virtual void CASITransactionCallbackIF::writeAck (uint64_t address,
 CASIStatus status) =0

CASITransactionIF::requestAccess()

The arbitration functions offer support for one memory access per cycle with only a
single cycle delay between the request and the actual transaction. For arbitrated bus
accesses with one or more cycle delay:

1. Call requestAccess() for the desired location (address) in the first cycle

2. Call checkForGrant() to determine if the access was granted in the second cycle

3. In either the second or a following cycle, do the transaction if access was granted

Because there is no way to tell beforehand whether a transaction port will be connected
to a simple transaction interface or a bus transaction interfaces, all transaction interfaces
must implement requestAccess() and checkForGrant().
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-61

The Cycle Accurate Simulation Interface
The implementation for simple transaction interfaces, memory for example, can simply
return CASI_GRANT_OK.

virtual CASIGrant requestAccess(uint64_t addr) =0

where:

addr is the request address.

The return value indicates the grant status:

CASI_GRANT_OK

Bus was granted.

CASI_GRANT_DENIED

Bus control was denied.

CASI_GRANT_ERROR

An error occurred during bus arbitration.

CASI_GRANT_NOTSUPPORTED

Bus operation not supported.

CASITransactionIF::checkForGrant()

This function checks whether access is still granted (see requestAccess()).

virtual CASIGrant checkForGrant(uint64_t addr) =0

where:

addr is the request address.

CASITransactionIF::getNumRegions()

This function returns the number of memory address regions supported by this
interface.

The default behavior is to return 0 to indicate that the port covers the entire address
space and indicate that no other connections can be made to the same master port.

virtual int getNumRegions() =0
2-62 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASITransactionIF::getAddressRegions()

This function returns the structure of the memory address regions supported by this
interface. The address regions are returned as start value and block size in addition to a
region name.

Note
 More than one range can be specified. The number of expected regions is given by the
function getNumRegions() and you must allocate the required memory for the
parameters.

This function returns the default address mapping.

virtual void getAddressRegions(uint64_t* start, uint64_t* size,
 std::string * name) =0

where:

start is the memory address region start addresses array.

size is the memory address region sizes array.

start is the memory address region names array.

Note
 Each parameter is an array. The size of the arrays is the value returned by the call to
getNumRegions().

CASITransactionIF::setAddressRegions()

This function sets the structure of the memory address regions for this interface.

virtual void setAddressRegions(uint64_t* start, uint64_t* size,
 std::string * name) =0

where:

start is the memory address region start addresses array.

size is the memory address region sizes array.

start is the memory address region names array.

Note
 Each parameter is an array. The size of the arrays is the value returned by the call to
getNumRegions().
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-63

The Cycle Accurate Simulation Interface
CASITransactionIF::getMappingConstraints()

This function returns the memory address regions constraints for this interface.

virtual CASIMemoryMapConstraints * getMappingConstraints() =0

CASITransactionIF::driveTransaction()

This function initiates a shared memory transaction.

The driveTransaction(), cancelTransaction(), and debugTransaction() functions are
used for shared memory transactions. The interaction between the master and the slave
is controlled through the shared CASITransactionInfo, therefore the transaction progress
can only be observed by inspecting this shared data structure.

virtual void driveTransaction(CASITransactionInfo* info) =0

where:

info is the shared memory structure used to pass transaction status between
master and slave.

CASITransactionIF::cancelTransaction()

This function cancels a shared memory transaction.

virtual void cancelTransaction(CASITransactionInfo* info) =0

where:

info is the shared memory structure used to pass transaction status between
master and slave.

CASITransactionIF::debugTransaction()

This function initiates a shared memory transaction, but the slave state must not change.

virtual CASIStatus debugTransaction(CASITransactionInfo* info) =0

where:

info is the shared memory structure used to pass transaction status between
master and slave.
2-64 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASITransactionIF::connect()

This function connects to a slave port.

The connect(), disconnect(), and getMaster() functions are used to specify the port
connectivity. A slave port must notify its master if a relevant transaction event has
happened through the CASINotifyHandlerIF object returned by the master's
getNotifyHandler(). Thus the slave port must be able to identify its master.

virtual void connect(CASITransactionMasterIF* iface) =0

CASITransactionIF::disconnect()

This function disconnects a slave port.

virtual void disconnect(CASITransactionMasterIF* iface) =0

CASITransactionIF::getMaster()

This function retrieves the master connected to this port.

virtual CASITransactionMasterIF* getMaster() =0

CASITransactionIF::getProperties()

This function dynamically inspects the transaction interface custom properties and
returns a description of the transaction properties of the port.

virtual const CASITransactionProperties * getProperties() =0

CASITransactionIF::setProperties()

This function dynamically sets the transaction interface custom properties.

virtual void setProperties(const CASITransactionProperties * prop) =0

where:

prop is a pointer to the new properties struct.

CASITransactionIF::bypass()

This function is used for debugging.

virtual CASIStatus bypass(uint32_t msgSize, uint32_t* message,
 uint32_t rspSize, uint32_t* response) = 0;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-65

The Cycle Accurate Simulation Interface
CASITransactionIF::notifyEvent()

This function is the response to a call to driveTransaction().

This function is called by the slave to inform the master that the transaction info
structure has changed. This enables the master to process the changes in the same
simulation cycle. The notify handler is typically set up in the reset phase to maximize
efficiency.

Multiple calls to this function might occur while processing a single transaction.

virtual void notifyEvent(CASITransactionInfo* info) =0

where:

info is the shared memory structure used to pass transaction status between
master and slave.

2.5.5 The CASITransactionSlave class

The CASITransactionSlave inherits the CASITransactionIF interface and can be used for
any type of component that provides read and write functions to access its shared
resources.

Note
 Most of the functions in this class are pure virtual and must be implemented in the
component slave port. Other functions however have a default behavior to simplify
creations of components in common cases. See The CASITransactionIF interface on
page 2-56 for the declaration of functions that are present in the parent class.

Example 2-11 CASITransactionSlave class

class CASITransactionSlave : public eslapi::CASITransactionIF
{
public:
 CASITransactionSlave(const std::string& name)
 : portName(name), casiPortInstanceName(""), casiOwner(NULL),
 casiIsEnabled(true), casiMaster(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties)); }
 CASITransactionSlave(eslapi::CASIModuleIF * owner, const std::string& name)
 : portName(name), casiPortInstanceName(""), casiOwner(owner),
 casiIsEnabled(true), casiMaster(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties)); }
 virtual ~CASITransactionSlave() {}
2-66 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 // Functions to be implemented.
 // Synchronous access functions
 virtual CASIStatus read(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;
 virtual CASIStatus write(uint64_t addr, uint32_t* value, uint32_t* ctrl) = 0;
 virtual CASIStatus readDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl);
 virtual CASIStatus writeDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl);

 // Asynchronous access functions
 virtual CASIStatus readReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 eslapi::CASITransactionCallbackIF* callback);
 virtual CASIStatus writeReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 eslapi::CASITransactionCallbackIF* callback);

 // Arbitration functions
 virtual CASIGrant requestAccess(uint64_t addr);
 virtual CASIGrant checkForGrant(uint64_t addr);

 // Memory map functions
 virtual int getNumRegions();
 virtual void getAddressRegions(uint64_t* start, uint64_t* size,
 std::string* name);
 // the address regions can be set from the outside
 virtual void setAddressRegions(uint64_t* start, uint64_t* size,
 std::string* name);
 virtual CASIMemoryMapConstraints* getMappingConstraints();
 // Shared-memory based asynchronous transaction functions
 virtual void driveTransaction(eslapi::CASITransactionInfo* info);
 virtual void cancelTransaction(eslapi::CASITransactionInfo* info);
 virtual CASIStatus debugTransaction(eslapi::CASITransactionInfo* info);

 // Functions with default implementations.
 // CASIPortIF functions
 std::string getName() { return portName; }
 CASIInterfaceType getType() { return CASI_TRANSACTION_SLAVE; }

 // slaves now know their master
 virtual void connect(CASITransactionMasterIF* master);
 virtual void disconnect(CASITransactionMasterIF* master);
 virtual eslapi::CASITransactionMasterIF* getMaster() { return casiMaster; }

 // instance names remembered by ports
 virtual void setPortInstanceName(const std::string& name) {
 casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
 // every interface/port has an owner
 virtual void setCASIOwner(eslapi::CASIModuleIF* owner) { casiOwner = owner; }
 virtual eslapi::CASIModuleIF* getCASIOwner() { return casiOwner; }
 // ports can be enabled/disabled
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-67

The Cycle Accurate Simulation Interface
 // message functions now also available in ports
 // Prints a message
 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);

 // port properties
 virtual const eslapi::CASITransactionProperties * getProperties()
 { return &casiProperties; }
 virtual void setProperties(const eslapi::CASITransactionProperties * prop)
 { casiProperties = *prop; }

 // auxiliary functions
 virtual CASIStatus bypass(uint32_t msgSize, uint32_t* message,
 uint32_t rspSize, uint32_t* response);

 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CASITransactionSlave2") == 0)
 && (minRev <= 0)){
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

private:
 std::string portName;
 std::string casiPortInstanceName; // every port knows its instance name
 eslapi::CASIModuleIF * casiOwner; // every port knows its owner
 bool casiIsEnabled; // ports can be disabled
 eslapi::CASITransactionMasterIF* casiMaster; // slaves know their master

protected:
 eslapi::CASITransactionProperties casiProperties;
};
2-68 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The read/write access functions are used for the actual transactions. There are three
versions of these functions:

• The functions read() and write() are the standard methods for synchronous
transactions.

• The Dbg versions of these functions are for debugger access only and no error
checking is expected. It is, for example, possible to write to a ROM when doing
so through the debugger.

• For asynchronous communication, the transaction slave interface provides the
readReq() and writeReq() methods that have a callback interface as an additional
parameter (see The CASITransactionCallbackIF interface class on page 2-73).

The function getSlaves() can be used to obtain a list of slaves connected in the form of
an STL vector. The list is a read-only reference and therefore the return type is declared
as const. See the transaction callback interface class for more details on asynchronous
communication.

The parameters of the access functions are:

address is an unsigned 64bit value allowing large address sizes with only little
computation overhead.

parameter is a pointer to a 32bit value that can be used for either a single 32bit value
or an array of 32bit values. This allows for any size of data busses and is
important for architectures with VLIW character.

ctrl can be used to qualify accesses. The data type (for example 8bit, 16bit, or
32bit access) can be passed here or any other value that provides
additional information about the transaction.

Return values are:

CASI_STATUS_OK The memory access was successful.

CASI_STATUS_WAIT

The accessed memory is not available yet. The access must be retried in
the following cycle.

CASI_STATUS_NOACCESS

The memory access is not permitted. For example, an attempt was made
to write to a read-only memory.

CASI_STATUS_NOMEMORY

The memory accessed is not mapped to any component.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-69

The Cycle Accurate Simulation Interface
CASI_STATUS_NOTSUPPORTED

The connected slave did not implement the particular interface function

CASI_STATUS_ERROR

An undefined error has occurred during the memory access.

For arbitration purposes the TransactionSlave interface provides a requestAccess() and
a checkForGrant() function. This makes it possible to have one memory access per
cycle, with only a single cycle delay between the request and the actual transaction.

For arbitrated bus accesses with one or more cycle delay, the procedure would be:

• in the first cycle call requestAccess() for the desired location (address)

• in the second cycle call checkForGrant() to see if the access was granted

• in either the same or in the following cycle do the transaction if the access was
granted

The function getNumRegions() returns the number of address regions that the slave port
serves. The default behavior is to return 0. This return value indicates that the port
covers the entire address space and does not allow any other connection to be made to
the same master port. The user must overwrite the function if one or more address
regions are specified.

The function getAddressRegions() can be overridden to return the appropriate address
regions that the port wants to serve. The address regions are returned as start value and
block size in addition to a region name.

Note
 More than one range can be specified. The number of expected regions is given by the
function getNumRegions() and it is expected that the user allocate the required memory
for the parameters accordingly. This function simply returns the default address
mapping. However the user can override those settings, unless the mapping constraints
explicitly inhibit this.

From CASI version 1.1 and later, it is possible to set the memory map explicitly from
outside. This enables centralized memory map management. The function
setAddressRegions() is called to tell the slave port what address region it is mapped to.
2-70 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The function getMappingConstraints() can be implemented to inform the simulation
environment about supported memory regions:

• Some components can be used at any address.

• Others components might, however, be hard-coded for a specific address. The
mapping constraints can reflect that to prevent the user from moving this
component to another (not supported) memory region.

The CASIMemoryMapConstraints structure is defined as listed in Example 2-12:

Example 2-12 CASIMemoryMapConstraints structure

// CASI 1.1: new memory map info
struct CASIMemRegion
{
 uint64_t start;
 uint64_t size;
 std::string name;
};

class CASIMemoryMapConstraintsDetails;

struct CASIMemoryMapConstraints
{
 uint64_t minRegionSize;
 uint64_t minAddress;
 uint64_t maxAddress;
 uint32_t numSupportedRegions // min number of supported regions by this
 // slave at any given instant
 uint32_t maxNumSupportedRegions; // max number of supported regions by this

 // slave at any given point in time
 uint64_t alignmentBlockSize; // Alignment requirement, the min block size
 // size where this slave's regions can be
 // mapped to (e.g., 1k for AHB)
 CASIMemoryMapConstraintsDetails *details; // Reserved

 //if this slave requires a FIXED set of regions, that CANNOT BE MOVED
 uint32_t numFixedRegions; // if different then 0, this slave requires
 //a fixed set of regions that CANNOT BE MOVED
 CASIMemRegion *fixedRegionList; // only if numFixedRegions > 0
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-71

The Cycle Accurate Simulation Interface
2.5.6 The CASITransactionMasterIF class

This interface facilitates master transaction port customization and communication:

• connect slaves to the master

• access the slaves using an address decoder in the master.

The predefined transaction master ports sc_port<CASITransactionIF,0> and
sc_port<CASITransactionIF,1> inherit from this class and implement the functions
defined in CASITransactionIF (see The predefined sc_port< CASITransactionIF, 0>
class on page 2-87 and The predefined sc_port<CASITransactionIF, 1> class on
page 2-83).

Example 2-13 CASITransactionMasterIF class

class CASITransactionMasterIF : public CASIPortIF
{
public:
 virtual ~CASITransactionMasterIF () {};

 // connection functions
 virtual void connect(CASITransactionIF* iface) = 0;
 virtual void disconnect(CASITransactionIF* iface) = 0;
 virtual const vector<CASITransactionIF*>& getSlaves() = 0;

 // customization functions
 virtual const CASITransactionProperties * getProperties() =0;
 virtual void setProperties (const CASITransactionProperties * prop) = 0;

 // notify handler support
 virtual void setNotifyHandler (CASINotifyHandlerIF * handler) = 0;
 virtual CASINotifyHandlerIF * getNotifyHandler (void) = 0;

 /// Common port functions
 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType() = 0;
 virtual std::string getPortInstanceName() = 0;
 virtual void setPortInstanceName(const std::string & name) = 0;
 virtual void setCASIOwner(CASIModuleIF * owner) = 0;
 virtual CASIModuleIF * getCASIOwner() = 0;
 virtual void enablePort(bool enable) = 0;
 virtual const bool isPortEnabled() = 0;
};
2-72 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
The connect() function takes a CASITransactionIF pointer as a parameter and must
register this pointer internally. It must check for the address regions the slave wants to
occupy. This makes it possible to connect more than one slave to a master interface if
the slaves do not occupy overlapping address regions.

The disconnect() function is used to remove the interface specified as the parameter
from the list of connections.

Note
 It is important to properly implement the disconnect() function as it is a requirement
for debug probes that are dynamically connected and disconnected at runtime.

The function getSlaves() can be used to obtain a list of slaves connected in the form of
an STL vector. The list is a read-only reference and therefore the return type is declared
as const.

Note
 A new notify handler that does not know the model internals might break proper
transaction behavior. Wrap the original notify handler into the new handler and forward
notifyEvent() calls to the original handler to preserve proper transaction behavior.

2.5.7 The CASITransactionCallbackIF interface class

A callback interface is provided for acknowledging read and write transactions and
support asynchronous communication.

Example 2-14 CASITranactionCallbackIF class

class CASITransactionCallbackIF
{
public:
 virtual ~CASITransactionCallbackIF () {};
 /* Transaction Acknowledge functions */
 virtual void readAck(uint64_t address, CASIStatus status) = 0;
 virtual void writeAck(uint64_t address, CASIStatus status) = 0;
};

The functions readAck() and writeAck() are used to indicate the completion of a
transaction. The transaction is identified by the address that has been requested. The
status parameter contains the information whether the transaction has been completed
successfully.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-73

The Cycle Accurate Simulation Interface
Figure 2-3 shows how asynchronous transactions are modeled:

• The master calls the readReq() function in the slave and passes all data necessary
for the transaction and a callback interface pointer to the slave.

• The slave processes the transaction within one or more simulation cycles.

• Upon completion it calls the callback interface of the master to notify it of the
transaction completion.

• The data is not passed again. The data containers initially passed by the master
are used for storing the results.

Figure 2-3 Asynchronous transactions using callbacks

CASITransactionCallbackIF::readAck()

This function is the answer for a readReq() call.

virtual void readAck(uint64_t address, CASIStatus status) =0

where:

address is the address of the readReq transaction call.

status is the status of the readReq transaction.

CASITransactionCallbackIF::writeAck()

This function is the answer for a writeReq() call.

virtual void writeAck(uint64_t address, CASIStatus status) =0

where:

address is the address of the writeReq transaction call.

status is the status of the writeReq transaction.
2-74 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.5.8 The multi-cycle transaction Interface

The CASI Transaction API supports transactions that have a life span of multiple
cycles. The driveTransaction() method starts a transaction and cancelTransaction()
aborts a single transaction. The communication between the master and the slave is
based on shared resources during the course of a transaction. These shared resources are
encapsulated in the structure CASITransactionInfo. Each transaction has a private
instance of CASITransactionInfo that is instantiated by the initiating master port. The
master port that calls the driveTransaction() function to initiate the transaction.

The following rules that ensure proper behavior while using the transaction shared
variables from CASITransactionInfo for communication between a master and a slave
port:

1. The transaction shared resources must only be owned exclusively by either the
master or the slave port. The exception is the presence of a defined handover
certificate where:

• The current value of the shared resource indicates whether master or slave
is allowed to do the next modification.

• The ownership is controlled by another shared resource of the transaction
that is exclusively owned by either a master or a slave port.

2. The transaction shared resources owned by a master are always modified during
the communicate phase. Shared resources, however, that owned by a slave are
always modified during the update phase.

The new transaction interface provides functions for initiating a transaction, canceling
a transaction and performing a debug transaction. Each of these functions has a pointer
to a data container of type CASITransactionInfo as a parameter:

virtual void driveTransaction(CASITransactionInfo* info) = 0
virtual void cancelTransaction(CASITransactionInfo* info) = 0
virtual CASIStatus debugTransaction(CASITransactionInfo* info) = 0

The functions must be defined in the slave and can be called by the master. The
definition of the transaction info structure is described in detail in The
CASITransactionInfo structure on page 2-76.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-75

The Cycle Accurate Simulation Interface
CASINotifyHandlerIF class

In addition to the driveTransaction(), cancelTransaction(), and debugTransaction()
functions, an optional notification callback from a slave to the connected master was
introduced in the CASI 1.1 API. The notify handler class is defined as shown in
Example 2-15:

Example 2-15 CASINotifyHandlerIF class

class CASINotifyHandlerIF
{
 virtual ~CASINotifyHandlerIF () {};
 virtual void notifyEvent(CASITransactionInfo * info) = 0;
};

The notifyEvent() function can be called by the slave to inform the master that the
contents of the transaction info data structure has changed. This gives the master the
opportunity to react to the changes in the same cycle. ARM recommends setting the
notify handler only once per simulation session to keep the simulation efficient. This
can be done for example during the reset stage.

The info parameter is a pointer to the shared memory area used for communication.

2.5.9 The CASITransactionInfo structure

This structure (listed in Example 2-16) represents the data container throughout one
transaction. It must be created by the master and passed to the slave.

For performance reasons, it is recommended to not allocate and delete the transaction
info structure for each new transaction but instead reuse the existing structures for
multiple transactions. If only one transaction can be processed at a time, only one single
container is required for this interface for the entire simulation.

Example 2-16 CASITransactionInfo structure

struct CASITransactionInfo{
 /* Transaction Control */
 CASITransactionMasterIF* initiator; // initiator of the transaction
 uint32_t nts; // # of transaction steps to do
 uint32_t cts; // current transaction step
 CASITransactionStatus* status; // status for each ctrl step
 CASINotify notify; // notify requested ? (CASI_NOTIFY_YES/NO)

 /* Pre-defined Transaction Elements */
2-76 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 CASITransactionAccess access; // data direction (read/write/rmw/…)
 uint64_t addr; // address of shared resource
 uint32_t dataSize; // dataSize in MAUs of shared resource
 uint32_t dataBeats; // # of data items for burst
 uint32_t* dataWr; // write data
 uint32_t* dataRd; // read data

 /* User-defined Transaction Elements */
 uint32_t* masterFlags; // flags controlled by master port
 uint32_t* slaveFlags; // flags controlled by slave port

public:
 // default constructor, no arguments
 CASITransactionInfo()
 // constructor with port as argument
 // => use this one to initialize the structure upon creation
 CASITransactionInfo(CASITransactionMasterIF *port)
 // Destructor always calls destruct function
 // only deletes private data, which was allocated in "initialize"
 ~CASITransactionInfo()
 // initialization function with port as argument
 // => use this one to initialize the structure e.g. from init function
 // or at runtime
 void initialize(CASITransactionMasterIF *port);
 void initialize(const CASITransactionProperties *props);

 // The destruct function should not normally be called directly
 // delete should be called instead
 void destruct();

 // Use this to reset the structure before using it for a new transaction
 void reset();
 void setInitiator(CASITransactionMasterIF *port) { initiator = port};
 void clear(uint32_t undefVal = 0);
 bool saveData(CASIODataStream & data);
 bool restoreData(CASIIDataStream & data);

private:
 // Memory Management
 CASITransactionStatus * statusBuffer;
 uint32_t * dataWrBuffer;
 uint32_t * dataRdBuffer;
 uint32_t * masterFlagsBuffer;
 uint32_t * slaveFlagsBuffer;
 uint32_t numSteps, numData, numSFlags, numMFlags;

};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-77

The Cycle Accurate Simulation Interface
The CASITransactionInfo structure includes utility functions for allocation,
initialization, and destruction. It also provides a reset function to be used when reusing
a single container for multiple consecutive, but non-overlapping, transactions. By
invalidating the master flags, all other data becomes invalid (this saves time compared
to clearing the entire contents of the container).

If you are using the CASITransactionInfo(), driveTransaction(), cancelTransaction(),
and debugTransaction() functions, the field casiVersion in CASITransactionProperties
must be set to CASI_VERSION_3 and the field useMultiCycleInterface in
CASITransactionProperties has to be set to true.

The following sections describe the contents of the CASITransactionInfo structure:

• CASITransactionInfo.initiatingMaster

• CASITransactionInfo.nts

• CASITransactionInfo.cts on page 2-79

• CASITransactionInfo.status on page 2-79

• CASITransactionInfo.notify on page 2-81

• CASITransactionInfo.access on page 2-81

• CASITransactionInfo.addr on page 2-81

• CASITransactionInfo.dataSize on page 2-82

• CASITransactionInfo.dataBeats on page 2-82

• CASITransactionInfo.dataWr on page 2-82

• CASITransactionInfo.dataRd on page 2-82

• CASITransactionInfo.masterFlags on page 2-83

• CASITransactionInfo.slaveFlags on page 2-83.

CASITransactionInfo.initiatingMaster

The pointer to the initiating master is providing access to the master port that is the
controlling master that instantiated the transaction info data structure and initiated the
transaction using the driveTransaction() function.

CASITransactionInfo.nts

The total Number of Transaction Steps (nts) indicates how many control steps are
required for this overall transaction. This entry is controlled by the master port.

A transaction is considered completed if the simulation is in the last transaction step,
and the status array contains CASI_SLAVE_READY for the last transaction step. This can be
represented by the equation:

((cts == (nts – 1) && (status[cts] >= CASI_SLAVE_READY)).
2-78 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASITransactionInfo.cts

The Current Transaction Step (cts) is a positive integer value that indicates the
transaction step that the described transaction is currently in. This data element is
owned by the master port and is always initialized to 0 (0 indicates the first transaction
step).

CASITransactionInfo.status

The status array describes the status of each transaction step. The maximum number of
transaction steps is defined as part of the Transaction Port Properties. The status is a
predefined enumeration type:

Example 2-17 CASITransactionStatus enumeration

enum CASITransactionStatus
{
 //status reported by the master
 CASI_MASTER_WAIT = 0, // transaction step does not contain valid information
 CASI_MASTER_READY, // transaction step contains valid info by master
 //status reported by the slave
 CASI_SLAVE_WAIT, // transaction step does not contain valid response
 CASI_SLAVE_READY, // transaction step contains valid response by slave
 CASI_SLAVE_READY_CANCEL, // slave acknowledges "cancelTransaction(…)"
 CASI_SLAVE_READY_SPLIT, // slave breaks transaction, can be cont’d by master
 CASI_SLAVE_READY_RETRY, // slave asks for restart of same transaction
 CASI_SLAVE_READY_ERROR // slave reports transaction error
}

The status fields are under the control of both the connected master and slave. However,
there is a defined hand-over from master to slave after CASI_MASTER_READY has been set
by the master for the current transaction step:

• Initially, the transaction step status is initialized to CASI_MASTER_WAIT, indicating
that the master has not provided any transaction specific information for this
transaction step. This is a clear indication that the slave is not allowed to proceed
in the current transaction step (master controlled wait).

• After the master has incremented the status to CASI_MASTER_READY, the master is
responsible that all the information passed from master to slave in this transaction
step is correctly set. From now on, the status for the current transaction step is
under the sole control of the transaction slave.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-79

The Cycle Accurate Simulation Interface
The CASI_SLAVE_WAIT indicates to the master that it is not allowed to proceed with this
transaction step (slave controlled wait) and that the information to be passed from the
slave to the master is not available yet. Once the slave has incremented the status to
CASI_SLAVE_READY or above the slave is responsible that all the information it has to pass
back to the master is set.

This transaction control framework requires that the transaction’s shared variables
(used during a certain transaction step and owned by the master) must be valid on
CASI_MASTER_READY. The shared variables owned by the slave, however, have to be valid
on CASI_SLAVE_READY or above. This means that there is only a single point in time during
a transaction step where data becomes valid. For instance, if a slave communicates two
signals to the master and these become valid in two different cycles, they must be
transferred in two separate transaction steps.

The transaction slave has the option to further qualify the CASI_SLAVE_READY to inform
the master of further transaction control.

CASI_SLAVE_READY

Terminate current transaction step

CASI_SLAVE_READY_CANCEL

Terminate current transaction step and terminate the whole transaction
(cancel has been accepted by slave)

CASI_SLAVE_READY_SPLIT

Terminate current transaction step and stop the transaction (close
connection), however continue the transaction at a later point in time.

CASI_SLAVE_READY_RETRY

Terminate current transaction step and stop the transaction (close
connection), however restart the transaction from scratch at a later point
in time.

CASI_SLAVE_READY_ERROR

A transaction level control error occurred. Terminate current transaction
step and the whole transaction (failure)
2-80 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASITransactionInfo.notify

A slave that modifies any shared resource, while this flag is set is required to call the
notifyEvent() method implemented by the master port NotifyEventHandler. The
notification request flag is a Boolean variable that is owned by the master port of a
forwarding slave. This is an advanced option to allow synchronization between multiple
slaves that have chained or dependant responses even though their order of execution is
not defined.

CASITransactionInfo.access

The access data element of the CASITransactionInfo structure is an enumeration type
value that defines the different possible accesses. This entry is owned by the master.
The master determines the access encapsulated in this data structure. One of the main
side effects of this parameter is deciding whether the data is passed by dataRd or dataWr.

Example 2-18 CASITransaction Access enumeration

enum CASITransactionAccess
{
 CASI_ACCESS_IDLE = 0 // dummy access
 CASI_ACCESS_READ = 1, // read access (data is provided by Slave)
 CASI_ACCESS_WRITE, // write access (data is provided by Master)
 CASI_ACCESS_RMW, // atomic sequence of read followed by write
 CASI_ACCESS_SPLIT, // transaction will be stopped and continued
 // as another transaction
 CASI_ACCESS_USER // protocol specific access type; see resp. masterFlag
}

The value CASI_ACCESS_USER can be used if other protocol-specific access codes are
required. In this case more specific information has to be provided by a masterFlags
entry.

CASITransactionInfo.addr

The address data element of the CASITransactionInfo structure is an unsigned 64 bit
value that specifies the address of the resource (resource identification) to be accessed
during this transaction. The number of least significant bytes being used for the
transaction is limited by the API to 64 and is specified by the transaction property
named address_bitwidth. It is the responsibility of the master to pad all unused MSBs
with 0. The mau_size transaction property defines, the minimal addressable unit,
dictating the number of bits that are specified between address increments.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-81

The Cycle Accurate Simulation Interface
CASITransactionInfo.dataSize

The size of data element of the CASITransactionInfo structure is an unsigned eight-bit
value that specifies the size of a single data element to be transferred based on the unit
mau_size defined in the transaction properties.

For example, if mau_size is 4 and dataSize is 3, the number of bits valid in data is 12.

This element of the structure is owned by the master.

CASITransactionInfo.dataBeats

The number of data beats is an unsigned eight-bit value that specifies the number of data
transfers to be executed during this transaction. This capability is also referred to as
burst transaction. In case the transaction property indicates that supportsBurst is false,
this entry is irrelevant and the total number of MAUs is solely defined by dataSize.

Every data beat uses its own transaction step because the data becomes valid during
different cycles and might have an arbitrary number of wait-states in between.

Note
 dataRd and dataWr are reused during each beat. The data for the previous beat is lost. Of
course this data can be stored and traced outside of the TransactionInfo structure if
necessary. This element of the structure is owned by the master.

CASITransactionInfo.dataWr

The data write element of the CASITransactionInfo structure is a pointer to an array of
32-bit unsigned values that are set by the master during write accesses (or during the
write of a read modify write sequence). This data is transferred to the slave to modify a
resource identified by the address given in addr.

CASITransactionInfo.dataRd

The data read element of the CASITransactionInfo structure is a pointer to an array of
32-bit unsigned values that are set by the slave during read accesses (or during the read
of a read modify write sequence). This data is transferred to the master that has
requested to read the resource identified by the address given in addr.
2-82 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASITransactionInfo.masterFlags

The masterFlags element is a pointer to an array of user defined unsigned 32-bit data
elements that are owned by the master. The number of entries in this array is defined as
part of the transaction properties numMasterFlags. The content of this array is
user-defined and therefore only the raw numbers can be displayed by generic monitors.

CASITransactionInfo.slaveFlags

The slaveFlags element is a pointer to an array of user defined unsigned 32-bit data
elements that are owned by the slave. The number of entries in this array is defined as
part of the transaction properties numSlaveFlags. The content of this array is
user-defined and therefore only the raw numbers can be displayed by generic monitors.

2.5.10 The predefined sc_port<CASITransactionIF, 1> class

This class is a predefined port class that is used for all transaction master ports that
connect to a single slave. The templated constructors are listed in Example 2-19:

Example 2-19 sc_port<CASITransactionIF, 1> class

class sc_port<eslapi::CASITransactionIF, 1> : public eslapi::CASITransactionMasterIF
{
public:
 sc_port<eslapi::CASITransactionIF,1> (eslapi::CASIModuleIF * _owner, const std::string& name,
 eslapi::CASITransactionProperties *prop=NULL)
 : slave(NULL), portName(name), casiPortInstanceName(""),casiOwner(_owner), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties)); if(prop!=NULL) casiProperties = *prop; }

 sc_port<eslapi::CASITransactionIF,1>(const std::string& name,
 eslapi::CASITransactionProperties *prop=NULL)
 : slave(NULL), portName(name), casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties)); if(prop!=NULL) casiProperties = *prop; }

 sc_port<eslapi::CASITransactionIF,1>() : slave(NULL), portName("default name 0"),
 casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true)
 {memset(&casiProperties,0,sizeof(casiProperties));}

 explicit sc_port<eslapi::CASITransactionIF,1>(const char *name)
 : slave(NULL), portName(name), casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties)); }

 explicit sc_port<eslapi::CASITransactionIF,1>(eslapi::CASITransactionIF& interface_)
 : slave(NULL), portName("default name 0"), casiPortInstanceName(""),
 casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties));}
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-83

The Cycle Accurate Simulation Interface
 sc_port<eslapi::CASITransactionIF,1>(const char* name_, eslapi::CASITransactionIF& interface_)
 : slave(NULL), portName(name_), casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties));}

 sc_port<eslapi::CASITransactionIF,1>(sc_port<eslapi::CASITransactionIF,1>& parent_)
 : CASITransactionMasterIF(), slave(NULL), portName("default name 0"), casiPortInstanceName(""),
 casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties));}
 sc_port<eslapi::CASITransactionIF,1>(const char* name_,
 sc_port<eslapi::CASITransactionIF,1>& parent_)
 : slave(NULL), portName(name_), casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true)
 { memset(&casiProperties,0,sizeof(casiProperties));}

 virtual ~sc_port<CASIGenericTransactionIFCASITransactionIF,1>() {}

 // Configuration functions
 std::string getName() { return portName; }
 eslapi::CASIInterfaceType getType() { return eslapi::CASI_TRANSACTION_MASTER; }
 virtual const eslapi::CASITransactionProperties * getProperties()
 { return &eslapi::casiProperties; }
 virtual void setProperties(const eslapi::CASITransactionProperties * prop)
 { eslapi::casiProperties = *prop; }
 bool supportsAddressRegions() {return eslapi::casiProperties.supportsAddressRegions; }
 virtual void setPortInstanceName(const std::string& name) { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
 virtual void setCASIOwner(eslapi::CASIModuleIF* owner) { casiOwner = owner; }
 virtual eslapi::CASIModuleIF* getCASIOwner() { return casiOwner; }
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }
 virtual void setNotifyHandler(CASINotifyHandlerIF *handler) { notifyHandler=handler; }
 virtual eslapi::CASINotifyHandlerIF * getNotifyHandler(void) { return notifyHandler; }
 // Prints a message
 virtual void pmessage(const std::string& msg,
 eslapi::CASIMessageType type = eslapi::CASI_MSG_INFO);
 virtual void pmessage(eslapi::CASIMessageType type, const char *fmt, ...);

 // Connectivity functions
 virtual void connect(eslapi::CASITransactionIF* iface);
 virtual void disconnect(eslapi::CASITransactionIF* iface);
 virtual void replace(eslapi::CASITransactionIF* old_iface, eslapi::CASITransactionIF* new_iface);
 virtual const std::vector<eslapi::CASITransactionIF*>& getSlaves();

 // Behavioral functions
 // These are convenience functions which will operate on the unique slave.
 // Synchronous read transaction operation.
 eslapi::CASIStatus read(uint64_t addr, uint32_t* value, uint32_t* ctrl)
 { return slave->read(addr, value, ctrl); }
 // Synchronous write transaction operation.
 eslapi::CASIStatus write(uint64_t addr, uint32_t* value, uint32_t* ctrl)
2-84 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 { return slave->write(addr, value, ctrl); }
 // Synchronous debug read transaction operation.
 eslapi::CASIStatus readDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl)
 { return slave->readDbg(addr, value, ctrl); }
 // Synchronous debug write transaction operation.
 eslapi::CASIStatus writeDbg(uint64_t addr, uint32_t* value, uint32_t* ctrl)
 { return slave->writeDbg(addr, value, ctrl); }
 // Aynchronous read transaction operation.
 eslapi::CASIStatus readReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 eslapi::CASITransactionCallbackIF* callback)
 { return slave->readReq(addr, value, ctrl, callback); }
 // Asynchronous write transaction operation.
 eslapi::CASIStatus writeReq(uint64_t addr, uint32_t* value, uint32_t* ctrl,
 eslapi::CASITransactionCallbackIF* callback)
 { return slave->writeReq(addr, value, ctrl, callback); }

 // Requests bus access
 eslapi::CASIGrant requestAccess(uint64_t addr) { return slave->requestAccess(addr); }
 // Checks whether access is still granted.
 eslapi::CASIGrant checkForGrant(uint64_t addr) {return slave->checkForGrant(addr); }

 // Returns the number of memory address regions supported.
 int getNumRegions()
 {
 if(slave != NULL) return slave->getNumRegions();
 return 0;
 }
 // Returns the structure of the memory address regions supported.
 void getAddressRegions(uint64_t* start, uint64_t* size, std::string* name)
 { slave->getAddressRegions(start, size, name); }
 void setAddressRegions(uint64_t* start, uint64_t* size, std::string* name)
 { slave->setAddressRegions(start, size, name); }

// Initiate a shared memory transaction

 virtual eslapi::CASIMemoryMapConstraints* getMappingConstraints()
 { return slave->getMappingConstraints(); }

 virtual void driveTransaction(eslapi::CASITransactionInfo* info)
 { slave->driveTransaction(info); }
 // Cancels a shared memory transaction
 virtual void cancelTransaction(eslapi::CASITransactionInfo* info)
 { slave->cancelTransaction(info); }
 // Initiate a shared memory transaction
 virtual eslapi::CASIStatus debugTransaction(eslapi::CASITransactionInfo* info)
 { return slave->debugTransaction(info); }
 // convenience connection operator
 void operator () (eslapi::CASITransactionIF& interface_);
 virtual const char* kind() const { return kind_string; }

 // Return interface if requested
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-85

The Cycle Accurate Simulation Interface
 virtual eslapi::CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.sc_port<CASITransactionIF,1>2") == 0) && (minRev <= 0))
 {
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

 typedef sc_port_base base_type;
 typedef sc_port_b<eslapi::CASITransactionIF> this_type;

private:
 void bind(eslapi::CASITransactionIF& interface_);
 //void operator() (eslapi::CASITransactionIF& interface_);
 void bind(this_type& parent_);
 void operator() (this_type& parent_);
 virtual sc_interface* get_interface() {return NULL;};
 virtual const sc_interface* get_interface() const {return NULL;};
 static const char* const kind_string;

protected:
 eslapi::CASITransactionIF *slave;
 std::string portName;
 std::string casiPortInstanceName; // every port knows its instance name
 eslapi::CASIModuleIF * casiOwner; // every port knows its owner
 bool casiIsEnabled; // ports can be disabled
 eslapi::CASINotifyHandlerIF *notifyHandler; // the notify handler of this master transaction port
 std::vector<eslapi::CASITransactionIF*> slaves;
 eslapi::CASITransactionProperties casiProperties;
};

Only one transaction slave can be connected to the transaction master port. To connect
multiple transaction slaves to a master port use:

sc_port<eslapi::CASITransactionIF,0>

The read(), write(), readDbg(), writeDbg(), and related functions forward the requests
to the slave connected to this master.

See The CASITransactionIF interface on page 2-56 for a description of the member
functions.
2-86 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.5.11 The predefined sc_port< CASITransactionIF, 0> class

This class is a predefined port class that is used for transaction master ports that behave
like buses and support connection to more than one slave. The second argument of the
template (that is, the value of 0 here) specifies that an unlimited number of slave ports
can be connected to this master port.

Example 2-20 sc_port<CASITransactionIF,0> class

class sc_port<eslapi::CASITransactionIF,0> : public eslapi::CASITransactionMasterIF
{
public:
 sc_port<eslapi::CASITransactionIF,0>(eslapi::CASIModuleIF * owner, const std::string& name,
 uint64_t blocksize, uint64_t memsize,
 eslapi::CASITransactionProperties *prop=NULL);
 sc_port<eslapi::CASITransactionIF,0>(const std::string& name, uint64_t blocksize,
 uint64_t memsize, eslapi::CASITransactionProperties *prop=NULL);
 sc_port<eslapi::CASITransactionIF,0>(const std::string& name) : portName(name),
 casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties)); }
 sc_port<eslapi::CASITransactionIF,0>() : portName("default name 0"),
 casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true), slave(NULL)
 {memset(&casiProperties,0,sizeof(casiProperties));}

 explicit sc_port<eslapi::CASITransactionIF,0>(const char *name): portName(name),
 casiPortInstanceName(""), casiOwner(NULL), casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties)); }

 explicit sc_port<eslapi::CASITransactionIF,0>(eslapi::CASITransactionIF& interface_)
 : portName("default name 0"), casiPortInstanceName(""), casiOwner(NULL),
 casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties));}

 sc_port<eslapi::CASITransactionIF,0>(const char* name_,
 eslapi::CASITransactionIF& interface_) : portName(name_), casiPortInstanceName(""),
 casiOwner(NULL), casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties));}
 sc_port<eslapi::CASITransactionIF,0>(sc_port<eslapi::CASITransactionIF,0>& parent_)
 : CASITransactionMasterIF(), portName("default name 0"), casiPortInstanceName(""),
 casiOwner(NULL), casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties));}
 sc_port<eslapi::CASITransactionIF,0>(const char* name_,
 sc_port<eslapi::CASITransactionIF,0>& parent_)
 : portName(name_), casiPortInstanceName(""), casiOwner(NULL),
 casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties));}
 virtual ~sc_port<CASITransactionIF,0>();
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-87

The Cycle Accurate Simulation Interface
 // Configuration functions
 std::string getName() { return portName; }
 eslapi::CASIInterfaceType getType() { return eslapi::CASI_TRANSACTION_MASTER; }
 virtual const eslapi::CASITransactionProperties * getProperties() { return &casiProperties; }
 virtual void setProperties(const eslapi::CASITransactionProperties * prop)
 { casiProperties = *prop; }
 bool supportsAddressRegions() { return casiProperties.supportsAddressRegions; }
 virtual void setPortInstanceName(const std::string& name) { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
 virtual void setCASIOwner(eslapi::CASIModuleIF* owner) { casiOwner = owner; }
 virtual eslapi::CASIModuleIF* getCASIOwner() { return casiOwner; }
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }
 virtual void setNotifyHandler(eslapi::CASINotifyHandlerIF *handler) { notifyHandler=handler; }
 virtual eslapi::CASINotifyHandlerIF * getNotifyHandler(void) { return notifyHandler; }

 // Prints a message
 virtual void pmessage(const std::string& msg,
 eslapi::CASIMessageType type = eslapi::CASI_MSG_INFO);
 virtual void pmessage(eslapi::CASIMessageType type, const char *fmt, ...);

 // Connectivity functions
 virtual void connect(eslapi::CASITransactionIF* iface);
 virtual void disconnect(eslapi::CASITransactionIF* iface);
 virtual void replace(eslapi::CASITransactionIF* old_iface, eslapi::CASITransactionIF* new_iface);
 virtual const std::vector<eslapi::CASITransactionIF*>& getSlaves();
 eslapi::CASITransactionIF *getSlave() { return slave; }

 // Behavioral functions
 // These will be redirected to the appropriate slave based on the address decoding algorithm.
 // Synchronous read transaction operation.
 virtual eslapi::CASIStatus read(uint64_t addr, uint32_t* value,
 uint32_t* ctrl);
 // Synchronous write transaction operation.
 virtual eslapi::CASIStatus write(uint64_t addr, uint32_t* value,
 uint32_t* ctrl);
 // Synchronous debug read transaction operation.
 virtual eslapi::CASIStatus readDbg(uint64_t addr, uint32_t* value,
 uint32_t* ctrl);
 // Synchronous debug write transaction operation.
 virtual eslapi::CASIStatus writeDbg(uint64_t addr, uint32_t* value,
 uint32_t* ctrl);
 // Aynchronous read transaction operation.
 virtual eslapi::CASIStatus readReq(uint64_t addr, uint32_t * value,
 uint32_t* ctrl, eslapi::CASITransactionCallbackIF * callback)
 { return eslapi::CASI_STATUS_NOTSUPPORTED; }
 // Asynchronous write transaction operation.
 virtual eslapi::CASIStatus writeReq(uint64_t addr, uint32_t * value,
 uint32_t* ctrl, eslapi::CASITransactionCallbackIF * callback)
 { return eslapi::CASI_STATUS_NOTSUPPORTED; }
2-88 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 // Requests bus access
 virtual eslapi::CASIGrant requestAccess(uint64_t addr);
 // Checks whether access is still granted.
 virtual eslapi::CASIGrant checkForGrant(uint64_t addr);
 // Initiate a shared memory transaction
 virtual void driveTransaction(eslapi::CASITransactionInfo* info);
 // Cancels a shared memory transaction
 virtual void cancelTransaction(eslapi::CASITransactionInfo* info);
 // Initiate a shared memory transaction
 virtual eslapi::CASIStatus debugTransaction(eslapi::CASITransactionInfo* info);

 // convenience connection operator
 void operator () (CASITransactionIF& interface_);
 int size() const;
 eslapi::CASITransactionIF* operator -> ();
 const eslapi::CASITransactionIF* operator -> () const;
 eslapi::CASITransactionIF* operator [] (int index_);
 const eslapi::CASITransactionIF* operator [] (int index_) const;

 virtual const char* kind() const { return kind_string; }

 // SC typedefs
 typedef sc_port_base base_type;
 typedef sc_port_b<eslapi::CASITransactionIF> this_type;

private:
 bool modifyMemoryMaps(eslapi::CASIMMI *cammi, eslapi::CASITransactionIF* slaveIface,
 bool addNotRemoveMapping);
 void bind(eslapi::CASITransactionIF& interface_);
 void bind(this_type& parent_);
 void operator () (this_type& parent_);
 virtual sc_interface* get_interface() {return NULL;};
 virtual const sc_interface* get_interface() const {return NULL;};
 static const char* const kind_string;

protected:
 uint64_t minBlockSize;
 std::string portName;
 std::string casiPortInstanceName; // every port knows its instance name
 eslapi::CASIModuleIF* casiOwner; // every port knows its owner
 bool casiIsEnabled; // ports can be disabled

 // the notify handler of this master transaction port
 eslapi::CASINotifyHandlerIF *notifyHandler;

 std::vector<eslapi::CASITransactionIF*> slaves;
 eslapi::CASITransactionProperties casiProperties;
 // Should keep a list of TSlaves
 eslapi::CASITransactionIF ** memTable;
 eslapi::CASITransactionIF * defaultSlavePointer;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-89

The Cycle Accurate Simulation Interface
 uint64_t shiftVal;
 uint64_t numBlocks;
 eslapi::CASITransactionIF *slave;
};

More than one transaction slave can be connected to a bus master port, provided that
their address regions do not overlap. The bus master port is configurable to support
different types of memory organizations and sizes.

The constructor takes two parameters in addition to the port-name:

• block denotes the size of one memory block

Note
 The block size must not be zero.

• space specifies the size of the entire supported memory range. The number of
admissible memory blocks is therefore given by the ratio of space and block.

See The CASITransactionIF interface on page 2-56 for a description of the member
functions.

2.5.12 AXI and AHB transactions

The AXITransactionInfo and AHBTransactionInfo classes extend the
CASITransactionInfo class with additional functionality specific to the AXI and AHB
buses. See the AXI_Transaction.h and AHB_Transaction.h files for more details of these
classes.
2-90 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.6 The signal interface classes

The signal interfaces are used for connections between components that are similar to
hardware signal connections. Multiple signal-slaves can be connected to a
signal-master that drives the signal in all connected slaves (fan-out).

This section contains the following subsections:

• The CASISignalProperties structure

• The CASISignalIF Interface on page 2-92

• CASISignalIF::driveSignal() on page 2-93

• CASISignalIF::readSignal() on page 2-93

• The CASISignalSlave class on page 2-94

• The CASISignalMasterIF class on page 2-96

• The predefined sc_port<CASISignalIF, 1> class on page 2-97.

2.6.1 The CASISignalProperties structure

It is possible to define signal properties, the bit width of the signal, and whether the
signal port is optional.

Example 2-21 Defining port properties

struct CASISignalProperties
{
 bool isOptional;
 uint32_t bitwidth;
};

The following functions are offered by all the signal interfaces:
• virtual const CASISignalProperties getProperties();

• virtual void setProperties(const CASISignalProperties prop);

The properties must be set in the constructor, directly after creation of the port.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-91

The Cycle Accurate Simulation Interface
2.6.2 The CASISignalIF Interface

The CASISignalIF class is the interface that is used for signal-based communication:

• CASISignalSlave inherits from CASISignalIF and provides the base for signal slave
ports (see The CASISignalSlave class on page 2-94).

The CASISignalSlave class provides a default implementation for most of the
interface functions.

• sc_port<CASISignalIF, 1> uses the templated sc_port class to provide the
interface in a signal master port (see The predefined sc_port<CASISignalIF, 1>
class on page 2-97).

The signal interface enables the implementation of signal-level communication by
providing the driveSignal() function to allow driving a signal. The value parameter
represents the value being transmitted and the extValue allows for extra value fields if
more then 32 bits are required to be transmitted.

Note
 The readSignal() functions are provided for convenience only. Signal communication
is single-directional from the master to the slave and done through driveSignal().

Example 2-22 CASISignalIF interface

class CASISignalIF : public CASIPortIF, public sc_interface
{
public:
 CASISignalIF () {}
 CASISignalIF (std::string & name) {}
 virtual ~CASISignalIF() {};

 virtual void driveSignal(uint32_t value, uint32_t* extValue) = 0;
 virtual uint32_t readSignal() = 0;
 virtual void readSignal(uint32_t* value, uint32_t* extValue) = 0;
 virtual void connect(CASISignalMasterIF* iface) = 0;
 virtual void disconnect(CASISignalMasterIF* iface) = 0;

 virtual CASISignalMasterIF* getMaster() = 0;
 virtual const CASISignalProperties * getProperties() = 0;
 virtual void setProperties (const CASISignalProperties * prop) = 0;
 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType() = 0;
 virtual std::string getPortInstanceName() = 0;
 virtual void setPortInstanceName (const std::string & name) = 0;
 virtual void setCASIOwner(CASIModuleIF * owner) = 0;
2-92 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 virtual CASIModuleIF * getCASIOwner() = 0;
 virtual void enablePort(bool enable) = 0;
 virtual const bool isPortEnabled() = 0;
 virtual CASIStatus bypass(uint32_t msgSize, uint32_t* message,
 uint32_t rspSize, uint32_t* response) = 0;
};

The signal interface can be used for simple signals (0 or 1), but it can also be used for
up to signals of larger bit widths, because the value is passed as a 32-bit unsigned
integer and a pointer to bits beyond 32.

2.6.3 CASISignalIF::driveSignal()

This function enables master-to-slave signal communication.

virtual void driveSignal(uint32_t value, uint32_t* extValue) = 0

where:

value is the 32 bit signal value.

extValue is a pointer to an array of 32 bit values. The size and meaning of the array
are dependent on the model.

Note
 The driveSignal() function is provided for convenience only in the signal slave port.
The signal communication is meant to be single-directional, from the master to the
slave.

2.6.4 CASISignalIF::readSignal()

This function enables slave-to-master signal communication.

virtual void readSignal(uint32_t* value, uint32_t* extValue) = 0

where:

value is the 32 bit signal value.

extValue is a pointer to an array of 32 bit values. The size and meaning of the array
are dependent on the model.

The shorter form returns a 32-bit value from the slave:

virtual uint32_t readSignal() = 0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-93

The Cycle Accurate Simulation Interface
Note
 The readSignal() functions are provided for convenience only in the signal master port.
The signal communication is meant to be single-directional, from the master to the
slave, through driveSignal().

2.6.5 The CASISignalSlave class

The CASISignalSlave class inherits from CASISignalIF and provides the basic signal
slave implementation. The class that implements the actual signal slave port must
inherit from this class and implement at least the driveSignal() and readSignal()
functions.

Example 2-23 CASISignalSlave class

class CASISignalSlave : public CASISignalIF
{
public:
 CASISignalSlave(CASIModule * owner, const std::string& name)
 : portName(name), casiPortInstanceName(""), casiOwner(owner),
 casiIsEnabled(true), casiMaster(NULL)
 {memset(&casiProperties,0,sizeof(casiProperties));}
 CASISignalSlave(const std::string& name)
 : portName(name), casiPortInstanceName(""), casiIsEnabled(true),
 casiMaster(NULL), casiOwner(NULL)
 {memset(&casiProperties,0,sizeof(casiProperties));}
 virtual ~CASISignalSlave() {}

 // Functions to be implemented.
 virtual void driveSignal(uint32_t value, uint32_t* extValue) = 0;
 virtual uint32_t readSignal() = 0;
 virtual void readSignal(uint32_t* value, uint32_t* extValue) {};

 // Functions with default implementations.
 std::string getName() { return portName; }
 CASIInterfaceType getType() { return CASI_SIGNAL_SLAVE; }
 virtual void connect(CASISignalMasterIF*);
 virtual void disconnect(CASISignalMasterIF*);
 virtual CASISignalMasterIF* getMaster() { return casiMaster; }
 virtual void setPortInstanceName(const std::string& name)
 { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
 virtual void setCASIOwner(CASIModuleIF* owner) { casiOwner = owner; }
 virtual CASIModuleIF* getCASIOwner() { return casiOwner; }
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }
2-94 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);
 virtual const CASISignalProperties * getProperties()
 { return &casiProperties; }
 virtual void setProperties(const CASISignalProperties * prop)
 { casiProperties = *prop; }
 virtual CASIStatus bypass(uint32_t msgSize, uint32_t* message,
 uint32_t rspSize, uint32_t* response);

 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CASISignalSlave2") == 0) && (minRev <= 0))
 {
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

private:
 std::string portName;
 std::string casiPortInstanceName;
 bool casiIsEnabled;

protected:
 CASISignalProperties casiProperties;
 CASISignalMasterIF* casiMaster;
 CASIModuleIF * casiOwner;
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-95

The Cycle Accurate Simulation Interface
2.6.6 The CASISignalMasterIF class

This interface enables master signal port customization. The predefined
sc_port<CASISignalIF,1> and sc_port<CASISignalIF,1> ports descend from this class.

Example 2-24 CASISignalMasterIF class

class CASISignalMasterIF : public CASIPortIF
{
public:
 virtual ~CASISignalMasterIF() {}
 // These functions are used to specify the port connectivity.
 virtual void connect(CASISignalIF* iface) = 0;
 virtual void disconnect(CASISignalIF* iface) = 0;
 virtual const std::vector<CASISignalIF*>& getSlaves() = 0;

 // Customize interface functions.
 virtual const CASISignalProperties * getProperties() = 0;
 virtual void setProperties(const CASISignalProperties * prop) = 0;

 // Common port functions
 virtual std::string getName() = 0;
 virtual CASIInterfaceType getType() = 0;
 virtual std::string getPortInstanceName() = 0;
 virtual void setPortInstanceName(const std::string & name) = 0;
 virtual void setCASIOwner(CASIModuleIF * owner) = 0;
 virtual CASIModuleIF * getCASIOwner() = 0;
 virtual void enablePort(bool enable) = 0;
 virtual const bool isPortEnabled() = 0;
};

The connect() function takes an CASISignalIF pointer as a parameter and must register
this pointer internally. In fan-out is allowed, multiple slaves can be connected to a
master, otherwise only a single slave is connected to each master.

The disconnect() function is used to remove the interface specified as the parameter
from the list of connections.
2-96 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.6.7 The predefined sc_port<CASISignalIF, 1> class

sc_port<CASISignalIF, 1> inherits from CASIPortIF and implements the functions in
CASISignalIF to provide a signal master port.

Caution
 The sc_port<CASISignalIF, 1> class is deprecated.

Use sc_port<CASISignalIF, 0> instead. It supports multiple masters.

Master ports encapsulate the connection of a component to another component’s slave
port. The master ports provide standardized ways of accessing connected slave ports
without the requirement to know about the slave ports that are actually connected to
them.

The slave ports behavior depends on the meaning and requirements of the resources
corresponding to those slaves. For this reason, the user must implement this behavior in
the slave read/write functions. However, because master ports only forward the requests
to the connected slaves, master ports can have a generic implementation that can be
directly used to instantiate master ports in the components. The CASITransactionMaster
represents such a generic implementation.

This class is a predefined port class that is used for all signal master ports.

Example 2-25 sc_port<CASISignalIF, 1> class

template <> class sc_port<CASISignalIF, 1> : public CASIPortIF
{
public:
 sc_port<CASISignalIF,1>(CASIModule * owner, const std::string& name)
 : portName(name), casiPortInstanceName(""), casiOwner(owner),
 casiIsEnabled(true), slave(NULL)
 { memset(&casiProperties,0,sizeof(casiProperties)); }
 virtual ~sc_port<CASISignalIF,1>() {}

 // Configuration functions
 std::string getName() { return portName; }
 CASIInterfaceType getType() { return CASI_SIGNAL_MASTER; }
 virtual void setPortInstanceName(const std::string& name)
 { casiPortInstanceName = name; }
 virtual std::string getPortInstanceName() { return casiPortInstanceName; }
 virtual void setCASIOwner(CASIModuleIF* owner) { casiOwner = owner; }
 virtual CASIModuleIF* getCASIOwner() { return casiOwner; }
 virtual void enablePort(bool enable) { casiIsEnabled = enable; }
 virtual const bool isPortEnabled() { return casiIsEnabled; }
 // Prints a message
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-97

The Cycle Accurate Simulation Interface
 virtual void pmessage(const std::string& msg,
 CASIMessageType type = CASI_MSG_INFO);
 virtual void pmessage(CASIMessageType type, const char *fmt, ...);
 virtual const CASISignalProperties * getProperties()
 { return &casiProperties; }
 virtual void setProperties(const CASISignalProperties * prop)
 { casiProperties = *prop; }
 // Connectivity functions
 virtual void connect(CASISignalIF* iface);
 virtual void disconnect(CASISignalIF* iface);
 virtual void replace(CASISignalIF* old_iface, CASISignalIF* new_iface);
 virtual const std::vector<CASISignalIF*>& getSlaves();

 // Behavioral functions
 // These will be forwarded to all connected slaves
 // Master-to-slave signal communication.
 virtual void driveSignal(uint32_t value, uint32_t* extValue);
 // Slave-to-master signal communication.
 virtual uint32_t readSignal();
 // Slave-to-master signal communication.
 virtual void readSignal(uint32_t *value, uint32_t *extValue);

 // convenience connection operator
 void operator()(CASISignalIF& interface_);
 virtual const char* kind() const
 { return kind_string; }
 typedef sc_port_base base_type;
 typedef sc_port_b<CASISignalIF> this_type;

private:
 void bind(CASISignalIF& interface_);
 //void operator() (CASISignalIF& interface_);
 void bind(this_type& parent_);
 void operator() (this_type& parent_);
 int size() const;
 CASISignalIF* operator -> ();
 const CASISignalIF* operator -> () const;
 CASISignalIF* operator [] (int index_);
 const CASISignalIF* operator [] (int index_) const;
 virtual sc_interface* get_interface() {return NULL;};
 virtual const sc_interface* get_interface() const {return NULL;};

private:
 // Data Section
 static const char* const kind_string;
 std::string portName;
 std::string casiPortInstanceName;
 CASIModuleIF* casiOwner;
 bool casiIsEnabled;
 casi_signal_if *slave;
2-98 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 std::vector<CASISignalIF*> slaves;
 CASISignalProperties casiProperties;
};

The signal master port supports fan-out, meaning that any number of signal slaves can
be connected to this port. If the signal changes, all signal slaves are notified by calling
their driveSignal() function.

When the user calls the driveSignal/readSignal functions, the drive/read action is
forwarded to the signal slave ports connected to this master port.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-99

The Cycle Accurate Simulation Interface
2.7 The component factory class CASIFactory

The factory class in the ESL API provides a standardized mechanism for dynamic
component creation and enables instantiating and creating a component without the
need for access to its constructor.

Example 2-26 CASIFactory class

class CASIFactory
{
public:
 CASIFactory(const std::string& name);
 virtual ~CASIFactory() {};
 virtual CASIModuleIF *createInstance(CASIModuleIF *parent,
 const std::string& instance_name) = 0;
};

Note
 Typically the component factory not does require any changes. The factory class is not
required if you are using the models in a pure SystemC environment.

Only two functions must be implemented in the CASIFactory class:

• CASIFactory::CASIFactory()

• CASIFactory::createInstance() on page 2-101.

2.7.1 CASIFactory::CASIFactory()

The constructor simply calls the default constructor, passing the name of the component
as a parameter. It is important that this name is equivalent to the name that is returned
by the getName() function of the corresponding component. ARM recommends the
declaration of the constant that contains the name of the model as a string:

#define MODEL_NAME "My_Model";
MyModelFactory::MyModelFactory() : CASIFactory(MODEL_NAME) {}
2-100 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
2.7.2 CASIFactory::createInstance()

The createInstance() function is called by the simulation backend to instantiate the
component. It must simply call the new operator of the component class and return the
pointer to this created instance. A pointer to the parent component is provided as a
parameter and this must be passed on to the component’s constructor:

CASIModuleIF * MyModelFactory::createInstance(CASIModuleIF *parent,
 const std::string& instance)
{
 return new MyModel(parent, instance);
}

The constructor must be implemented calling the parent’s constructor and must pass the
name of the system as a parameter:

MyModelFactory::MyModelFactory() : CASIFactory("MyModel") {}

Use the createInstance() function to create an instance of the component by passing a
pointer to the parent component as shown in Example 2-27:

Example 2-27 Creating an instance of a component

CASIModule * MyModelFactory::createInstance(CASIModuleIF *parent,
 const std::string& instance_name)
{
 return new MyModel(parent, const std::string& instance_name);
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-101

The Cycle Accurate Simulation Interface
2.8 The save/restore interface CASISaveRestore

The ESL API supports saving of state information to allow resuming the simulation
from a given point. The state information is stored to an CASIODataStream.

The data in file that is the destination of the CASIODataStream is stored as a binary stream
of encoded information that is not dependent on the operation system, CPU, or byte
order of the host computer. A stream that is written by a PC under Windows can
therefore be read by a Sun SPARC running Solaris (assuming the models are also
available on both platforms). Every component in that system must support this
interface to enable saving of state for an entire system.

2.8.1 Enabling save/restore support

For a component to support the advanced save and restore feature:

1. The component must be derived from CASISaveRestore:

class MyModel : public CASIModule, public CASISaveRestore {

2. The getProperty() function must return yes for the CASI_PROP_SAVE_RESTORE
property. This informs the simulation environment about the save/restore
capability of the component.

3. The Save/Restore functionality of the component now exists but has not been
initialized. If the initialization method is not called, it is not possible to save the
component’s state. To initialize the Save/Restore functionality, call
initStream(this) from the component’s constructor.

Example 2-28 Initialization of save/restore functionality

// Constructor for MyModel
MyModel::MyModel(…)
{
 // Create Component
 ...

 // Call method inherited from CASISaveRestore
 // required to enable saving and restoring state information
 initStream(this);}

4. Two pure virtual methods inherited from CASISaveRestore must be implemented.
These methods must implement the details of saving and restoring of the
component’s state information.
2-102 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
Example 2-29 saveData and restoreData

// Implementation of CASISaveRestore interface to save state
bool MyModel::saveData(CASIODataStream &data)
{
 // return save was successful
 return true;
}

// Implementation of CASISaveRestore interface to restore state
bool MyModel::restoreData(CASIODataStream &data)
{
 // return restore was successful
 return true;
}

The above two methods are valid for a component that has no state information
to save, but is required to support this feature so more complex systems that
include the model can use Save/Restore.

It is not unusual for components to not have any state to save. For example, a Fan
Out component (FOUT) that distributes a signal to several components,
completes its task in one cycle and has no state that must be saved. But for more
complex components, there might be a lot of information that must be
remembered.

2.8.2 MyComponent::saveData

Saving your components state is straightforward. An CASIODataStream is passed into the
method. The stream can be written to in a similar fashion to regular streams (inside of
this method you can only write to the stream).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-103

The Cycle Accurate Simulation Interface
Example 2-30 depicts a simple example that saves several values and some character
strings. See CASISaveRestore.h for details of the CASIODataStream class.

Example 2-30 Passing the CASIODataStream parameter

bool MyComponent::saveData(CASIODataStream &data)
{
 float version = 1.29;
 data << version; // store version number
 data << internalCycleCount; // store 64bit cycle count
 for(int i = 0; i < NUM_REGISTERS; i++) // loop through all
 data << registerValues[i]; // registers saving all
 data << stringData; // store char* array
 // no errors
 return true;
}

Note
 The order that items are written to the stream is the same as the order they must be read
back. When writing to the stream, CASIODataStream manages the overhead of ensuring
endian order.

Byte order

int byteOrder() const;

The byteOrder() function returns the current byte order setting and is
defined from:

enum ByteOrder { BigEndian, LittleEndian };

This is the order that all data is written out as and is independent of the
order used natively by the host platform.

SetByteOrder(int byteOrder)

Sets the byte order to byteOrder. This is the order that all data is written
out as.

The byteOrder parameter can be either:
• CASIODataStream::BigEndian

• CASIODataStream::LittleEndian.

By default this is set to big endian. Changing this is not recommended, as
the reader must also then be changed.
2-104 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
Operators

CASIODataStream &operator<<(int8_t i)

Writes a signed 8-bit integer to the CASIODataStream object and returns a
reference to the object.

CASIODataStream &operator<<(uint8_t i)

Writes an unsigned 8-bit integer to the CASIODataStream object and returns
a reference to the object.

CASIODataStream &operator<<(int16_t i)

Writes a signed 16-bit integer to the CASIODataStream object and returns a
reference to the object.

CASIODataStream &operator<<(uint16_t i)

Writes an unsigned 16-bit integer to the CASIODataStream object and
returns a reference to the object.

CASIODataStream &operator<<(int32_t i)

Writes a signed 32-bit integer to the CASIODataStream object and returns a
reference to the object.

CASIODataStream &operator<<(uint32_t i)

Write an unsigned 32-bit integer to the CASIODataStream object and
returns a reference to the object.

CASIODataStream &operator<<(int64_t i)

Writes a signed 64-bit integer to the CASIODataStream object and returns a
reference to the object.

CASIODataStream &operator<<(uint64_t i)

Writes an unsigned 64-bit integer to the CASIODataStream object and
returns a reference to the object.

CASIODataStream &operator<<(float f)

Writes a 32-bit floating-point number to the CASIODataStream object
(using the standard IEEE754 format) and returns a reference to the object.

CASIODataStream &operator<<(double f)

Writes a 64-bit floating-point number to the CASIODataStream object
(using the standard IEEE754 format) and returns a reference to the object.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-105

The Cycle Accurate Simulation Interface
CASIODataStream &operator<<(const char *std::string)

Writes a NULL terminated string to the CASIODataStream object and returns
a reference to the object.

MyComponent::writeBytes()

CASIODataStream &writeBytes(const char *buffer, unsigned int length)

Writes length number of characters from the buffer to the
CASIODataStream object and returns a reference to the object.

CASIODataStream &writeRawBytes(const char *buffer, unsigned int length)

As above except this method does not serialize the data forcing the reader
to know the exact length of the data being written. It is advised that you
do not use this method except for exceptional circumstances.

2.8.3 MyComponent::restoreData

Restoring the state of your component is almost as straightforward as writing it out. An
CASIIDataStream is passed into the method and this can be read from in a similar fashion
to regular streams.

Inside of this method you can only read from the stream. But, you now have the added
requirement that you read in the data exactly how it was written. The following depicts
the same as Example 2-30 on page 2-104, but adds restoring the several values and
character strings.

Example 2-31 Restoring state

bool MyComponent::restoreData(CASIIDataStream &data)
{
 float currentVersion = 1.29;
 float version;
 // if version numbers don’t match then return an error
 // this will abort the restoring of state in the whole system.
 data >> version; // Read in version of state data
 if (version != currentVersion)
 return false;

 data >> internalCycleCount; // restore 64bit cycle count
 for(int i = 0; i < NUM_REGISTERS; i++)// loop through all
 data >> registerValues[i]; // registers restoring all

 // The stream will allocate memory for stringData using new
 // we must delete[] it
2-106 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
 char *stringData;
 data >> stringData; // restore char* array
 setData(stringData); // do something with data
 delete[] stringData; // finished with stringData

 // no errors
 return true;
}

The CASIIDataStream object manage the byte order for the written data and no user
involvement is required. The reading order, however, must match the order it was
written out. See CASISaveRestore.h for a description of the data stream object.

The code in Example 2-31 on page 2-106 also returns an error if the saved state returns
a wrong version. Implementing the version number in the model is desirable because as
the model develops, the state information might:

• stay the same or change

• be ordered differently

• be represented in a different way.

This allows the model version reading the state data to reject an older or newer version
of the state information or possibly import state information from an older model.

MyComponent::byteOrder()

CASIIDataStream APIint byteOrder() const

Returns the current byte order setting either BigEndian or LittleEndian
defined as:

enum ByteOrder { BigEndian, LittleEndian }

This is the order that all data is read in as independent to the host
platform.

SetByteOrder(int byteOrder)

Sets the byte order to byteOrder. This is the order that all data s read in as.

The byteOrder parameter can be either:
• CASIODataStream::BigEndian

• CASIODataStream::LittleEndian.

By default this is set to big endian. Changing this is not recommended, as
the writer must also then be changed.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-107

The Cycle Accurate Simulation Interface
MyComponent::&operator

CASIIDataStream &operator>>(int8_t i)

Reads a signed 8-bit integer from the CASIIDataStream object and returns
a reference to the object.

CASIIDataStream &operator>>(uint8_t i)

Reads an unsigned 8-bit integer from the CASIIDataStream object and
returns a reference to the object.

CASIIDataStream &operator>>(int16_t i)

Reads a signed 16-bit integer from the CASIIDataStream and returns a
reference to the object.

CASIIDataStream &operator>>(uint16_t i)

Reads an unsigned 16-bit integer from the CASIIDataStream object and
returns a reference to the object.

CASIIDataStream &operator>>(int32_t i)

Reads a signed 32-bit integer from the CASIIDataStream object and returns
a reference to the object.

CASIIDataStream &operator>>(uint32_t i)

Reads an unsigned 32-bit integer from the CASIIDataStream object and
returns a reference to the object.

CASIIDataStream &operator>>(int64_t i)

Reads a signed 64-bit integer from the CASIIDataStream object and returns
a reference to the object.

CASIIDataStream &operator>>(uint64_t i)

Reads an unsigned 64-bit integer from the CASIIDataStream object and
returns a reference to the object.

CASIIDataStream &operator>>(float f)

Reads a 32-bit floating-point number from the CASIIDataStream object
(using the standard IEEE754 format) and returns a reference to the object.

CASIIDataStream &operator>>(double f)

Reads a 64-bit floating-point number from the CASIIDataStream object
(using the standard IEEE754 format) and returns a reference to the object.
2-108 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
CASIIDataStream &operator>>(const char *std::string)

Reads a NULL terminated string from the CASIIDataStream object and
returns a reference to the object.

MyComponent::readBytes()

CASIIDataStream &readBytes(char *&buffer, unsigned int &length)

Reads into buffer from the CASIIDataStream object and returns a
reference to the object.

The buffer is allocated using new. Use the delete[] operator to destroy it.
If the length of the stored data is zero or buffer cannot be allocated, then
buffer is set to NULL.

The length parameter is set to the number of bytes actually read into
buffer.

CASIIDataStream &readRawBytes(char *buffer, unsigned int length)

Use this method to read in data that was written with writeRawBytes(…).
This method reads in data that has not been serialized. This means that
the caller must know the exact length of the data they wish to read and
the buffer must be pre-allocated. Reading more data than was actually
written with writeRawBytes(…) can cause subsequent reads to be
erroneous. The raw methods are not therefore recommended for general
use.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-109

The Cycle Accurate Simulation Interface
2.9 Integrating CASI models into OSCI SystemC

This section describes the steps required to setup the simulation in the sc_main()
function for the OSCI SystemC environment.

1. Example 2-32 shows an example of instantiating the master and slave modules in
the OSCI SystemC sc_main() function:

Example 2-32 Instantiating the CASI models in OSCI SystemC

int sc_main (int argc , char *argv[])
{
 …

 //Instantiate the modules
 Master_casi *MasterComp = new Master_casi (“Master”);
 Slave_casi *SlaveComp = new Slave_casi (“Slave”);

 …

2. Add the code in Example 2-33 to connect the models to the CASI scheduler:

Example 2-33 Connecting the models to the scheduler

 // create master clock
 CASIClockDriverRoot master_clk ("master_clk", 1, SC_NS);
 MasterComp->connect (& master_clk);
 SlaveComp->connect (& master_clk);

3. Add the code in Example 2-34 to connect the models to each other:

Example 2-34 Interconnecting the models

 //Connect the ports
 (* MasterComp->p_TM_TMaster) (* SlaveComp->p_TS_TSlave);
 (* SlaveComp->p_SM_SMaster) (* MasterComp->p_SS_SSlave);

 //Call all interconnect functions
 MasterComp->interconnect();
 SlaveComp->interconnect();
2-110 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Simulation Interface
Note
 The interconnect() functions of the models must be called after connecting the

CASI ports of the respective models. The interconnect() functions rely on the
connections being already established.

4. Example 2-35 shows how to initialize the component parameters and call the
CASI simulation stages:

Example 2-35 Calling the CASI simulation stages

 //Setting the parameters
 MasterComp->setParameter("No of Transaction","10");
 MasterComp->setParameter("Data Value","0xff");
 SlaveComp->setParameter("Enable Debug Messages", "true");

 //Call all init functions
 MasterComp->init();
 SlaveComp->init();
 //Interconnecting the models

 …

 //Call resets
 MasterComp->reset(CASI_RESET_HARD,NULL);
 SlaveComp->reset(CASI_RESET_HARD,NULL);

5. Example 2-36 shows the code that starts the simulation:

Example 2-36 Running the simulation

 …

 //Start the simulation
 sc_start(100);
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 2-111

The Cycle Accurate Simulation Interface
6. Example 2-37 shows the code that terminates the simulation:

Example 2-37 Terminating the simulation

 …

 //Terminate the simulation
 MasterComp->terminate();
 SlaveComp->terminate();

7. Example 2-38 shows flushing the output buffers and exiting sc_main():

Example 2-38 Exiting sc_main()

 fflush (stdout);
 fflush (stderr);

 return 0;
}

2-112 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Chapter 3
The Cycle Accurate Debug Interface

This chapter describes the Cycle Accurate Debug Interface (CADI) that provides debug
access to memory values, registers values, or disassembly of code in a component. It
contains the following sections:

• Introduction on page 3-2

• Defining a CADI interface on page 3-12

• The CADIDisassembler class on page 3-45

• The CADIProfiling class on page 3-51

• The CADICallback class on page 3-62

• CADIBroker on page 3-68

• The CADISimulationFactory class on page 3-73

• CADI data structures on page 3-78

• Accessing the debug interface from sc_main() on page 3-99.

Note
 The examples and descriptions in this chapter are specific to components that are
running in a CASI environment only. The usage of CADI in non-CASI environments
might be different.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-1

The Cycle Accurate Debug Interface
3.1 Introduction

The Cycle Accurate Debug Interface can be used to:

• Display the contents of registers and memory within the simulation environment
for any type of component.

• Enable interaction with an existing debugger. This simplifies integrating a core
model with established user base for an existing debugger or where there is a
limited range of debuggers available for the architecture.

Figure 3-1 on page 3-3 shows the CADI class hierarchy.

The CADI functionality is exposed through the CADI and CADICallBackObj interfaces:

• CADI handles the requests from the outside world into the target. CADI objects are
implemented by the models and can be obtained through the getCADI() method of
the CASIModule interface.

• The CADICallBackObj handles the requests made by the target towards the outside
world. CADICallBackObj objects must be implemented by the system builder and
registered with the target.

The CADICallbackObj interfaces are the mechanism through which the low-level
simulation commands are issued by the CADI target.

The CADICallbackObj is also used for semihosting requests. A program running on a
target can issue console operations. Instead of requiring the simulation of a full
operating system, CADI offers the option to forward the console operations to the host
operating system through a semihosting mechanism.

Most of the functionality available through CADICallbackObj can be obtained by polling
the state of the target model each cycle through the regular CADI interface. However,
it is more efficient to have target make the semihosting calls as required rather than
having the overhead of a large number of polling calls.

The callback methods can be called asynchronously at any time during simulation. It is
recommended that the callback handlers do as little processing as possible and, for
example, only set flags for later processing. All of the callback processing must be
completed synchronously.
3-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
Figure 3-1 CADI class overview

Note
 The top-level functions are pure virtual and the lowest level functions implement the
component-specific behavior.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-3

The Cycle Accurate Debug Interface
There are several conceptually distinct parts of the CADI interface:

CADI • Setup

• Execution

• Breakpoints

• Extension

• Register

• Memory

• Cache

• Disassembly

• Profiling

• Reverse semihosting.

CADICallbackObj
• Semihosting

• Execution

• Extension.

A given CADI target might only implement a subset of the CADI interface methods,
according to the associated CASI model semantics. For instance, a target for a memory
model only implements the Memory API and does not implement the Register API or
the Disassembly API. For API implementation details for the CADI targets of a specific
model, see the model documentation.

The Breakpoint and Execution APIs might not be implemented by all the core models.
If not, these parts of the CADI interface must be overridden by the user with appropriate
functionality. This is the only case where user extensions of the CADI interface are
required and useful.

Note
 See the CADITypes.h file for definitions of enumerations and data structures that are used
with the CADI interface.
3-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.1.1 Simulation control and the CADI interface

The CADI is intended for use in conjunction with the Cycle-Accurate Simulation
Interface (CASI) to allow inspection and modification of the internal state of SystemC
models through an externally attached debugger. The models run under the supervision
of a simulation host that is in charge of managing the SystemC cycle-based simulation
loop, calling the communicate/update methods of the loop in each cycle.Each
debuggable CASI model in a system exposes a CADI interface (target) that can be
accessed using the getCADI() method of the CASIModule interface. A CASI model and the
associated CADI target are considered fully constructed and initialized after the call to
the init() function of the CASIModule interface. For more information on simulation
control and startup, see Accessing the debug interface from sc_main() on page 3-99.

An example CADI interaction architecture is shown in Figure 3-2. Typical CADI
interaction architectures might be more complex, depending on the actual requirements
of the models, simulation host and debugger.

Figure 3-2 CADI and CASI interaction
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-5

The Cycle Accurate Debug Interface
In Figure 3-2 on page 3-5, a CADI enabled CASI model is integrated in a system
containing a SystemC simulation host and an external debugger. The simulation and
debug sequence is:

1. The debugger issues an execution request run().

2. The CADI dispatcher translates this into a start simulation request made to the
simulation host

3. The simulation host starts running the simulation loop and makes a call to
communicate() and update() of the model for each cycle. It also signals the
debugger that the simulation has started.

4. The simulation proceeds until the CADI target detects that a breakpoint was hit
and issues a mode change callback to the CADI Dispatcher.

5. When the current simulation cycle is finished, the CADI dispatcher requests the
simulation host to stop the simulation loop.

6. The simulation host pauses the simulation and it signals the debugger that the
simulation has stopped.

3.1.2 Registering the CADI interface with the component

To make the CADI interface available, the following changes must be made in the
component:

1. declare a pointer to your CADI interface as a private member in your component

2. instantiate the CADI interface from the init() function of the component

3. implement the function getCADI(), returning a pointer to the CASI interface
3-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
4. add the property CASI_PROP_CADI_SUPPORT to the getProperty() function. The
function must return yes for this option.

Example 3-1 CADISlave example

class CADISlave : public CADI
{
public:
 CADISlave(Slave_casi* c);
 virtual ~CADISlave();

public:
 // Register access functions
 . . .
 // Memory access functions
 . . .

private:
 Slave_casi* target;

 // Register related info
 CADIRegInfo_t* regInfo;
 CADIRegGroup_t* regGroup;

 // Memory related info
 CADIMemSpaceInfo_t* memSpaceInfo;
 CADIMemBlockInfo_t* memBlockInfo;
};

3.1.3 CADI API overview

This section describes the interfaces in the CADI class. It contains the following sections:

• Setup API on page 3-8

• Breakpoint API on page 3-8

• Execution API on page 3-8

• Register API on page 3-8

• Memory API on page 3-9

• Cache API on page 3-10

• Profiling API on page 3-10

• Disassembly API on page 3-10.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-7

The Cycle Accurate Debug Interface
Note
 For details of the structures, enumerations, and defines used with the CADI interface,
see the CADITypes.h file.

Note
 Unsupported functions must return CADI_STATUS_CmdNotSupported if called.

Setup API

The interface API controls the interaction between the host, the debugger, and the CADI
target. Use this API to:

• control the CADI related memory management

• inspect the actual properties of a given CADI object

• if necessary, register any CADICallbackObj callbacks.

Breakpoint API

The breakpoint API enables defining breakpoints in the target model that refer to:

• the address, or range of addresses, of an instruction

• the content of a memory location

• the content of a register

• temporary breakpoints for run to debugger behavior.

Execution API

The execution API enables a debugger to:

• control the execution using various asynchronous execution commands

• control the executed program.

It can, for example, manage the asynchronous commands of loading or resetting a
program.

Register API

The register API exposes the internal state of the registers of a model for inspection and
modification.

If a model has a large number of registers, the registers can be grouped to simplify
navigating through the registers.
3-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
Models must expose their internal performance counters (for example, Instr Cache
Reads, Instr Cache Misses) as registers to be accessible through this interface.

Memory API

The memory API exposes the internal state of the memory of a model for inspection and
modification. Memory is exposed through address spaces (memory spaces) that
represent separately addressable units.

For core models, the memory exposed through the API is not memory contained in the
model, but rather memory accessed by the model. The actual reading and writing into
such memory is done through the readDbg() and writeDbg() methods of the respective
transaction master ports.

Some core models, however, do contain their own physical memory and expose this
memory as a separate address space.

The requirement for multiple address spaces is because of different processor models:

• Harvard architectures can require two separate address spaces

• DSP cores might require up to three address spaces.

• There also exist cores that access different address spaces depending on internal
execution flags, for instance distinguishing between secure memory and
non-secure memory.

In these cases, each memory transaction master port is usually associated with a
separate address space.

A core can have multiple memory transaction master ports. but still define a single
unified memory space.

Memory models typically expose a single address space corresponding to their physical
memory and other models typically do not expose any memory.

For an address space corresponding to the memory accessed by a (core) model there is
currently no relation with the actual structure of the physical memory mapped to the
transaction master ports of that core.

Data stored in an address space is organized according to the endianness specified by
the flags of that particular memory space. This can be little endian or big endian, with
the invariance defining the number of bytes in a unit.

Data can also be organized using a model-specific endianness. In these cases,
documentation accompanying the model must provide specific details.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-9

The Cycle Accurate Debug Interface
The total numbers of bytes in a memory word is defined by bitsPerMau / 8. The bytes
are divided in groups of invariance bytes. These groups are then arranged in little endian
or big endian order. For instance, for invariance of 2 and bitsPerMau of 64, a little
endian word is represented as b0 b1 b2 b3 b4 b5 b6 b7, whereas a big endian word is
represented as b6 b7 b4 b5 b2 b3 b0 b1.

Each address space can be further subdivided in memory blocks. Memory blocks
contain additional information pertaining to the intended usage of the memory. This
information can be used as hints for memory data presentation dedicated for human
consumption, but it has no effect on the actual simulation.

Cache API

These functions enable access to cache memories in the target. Use the
CADIGetCacheInfo() function to return the cache information for the target. The
CADICacheRead() and CADICacheWrite() functions are used to directly access the cache
memory contents.

Profiling API

CADIProfileSetup() enables processor execution and memory profiling for a processor.
The API includes functions to record or process profile data for executable code, PC
values executed, and register or memory accesses.

Disassembly API

The disassembly API enables interpreting the binary instruction codes of a program
loaded on a core model into human-readable assembly instructions. The host requests
the disassembly string corresponding to the instruction loaded at a specific address. As
a convenience, the functionality might also access in history (batch) mode. For
programs containing debug information, the relation between a specific instruction and
the source code can be reestablished.
3-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.1.4 CADI Callback API overview

This section describes the interfaces in the CADICallback API. It contains the
following sections:

• Semihosting API

• Execution API

• Extension API.

The CADICallback class provide an abstract interface that must be defined by the user.
For more details, see the documentation in the header files for the actual function calls
and structures.

Semihosting API

Programs running on a core model might have to perform file I/O. As an alternative to
simulating a full fledged OS, models using the CADI interface can perform the file I/O
using the host operating system.

The low level C file I/O calls of the simulated program are forwarded to the host
through the registered CADICallbackObj. A simple host implementation can simply
forward these calls to its own low-level C file I/O interface. However, the host has full
freedom to redirect these calls as it sees fit, for instance to redirect writes to the
descriptor 2 (stderr) to a special log file.

The stream ids used by this API correspond to the low level C file descriptors and obey
the same conventions. 0, 1, 2 are used for stdin, stdout and stderr, while ids greater 2 are
used to identify explicitly opened streams.

There is no semihosting support for other types of I/O.

Execution API

The Execution API:

• drives low level simulation signals (simulation mode change)

• informs an external debugger about other important simulation events.

Extension API

This functionality is reserved for future use.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-11

The Cycle Accurate Debug Interface
3.2 Defining a CADI interface

A CADI interface can be easily created manually with the following steps:

1. Define a new class derived from CADI.

2. If your component is a processor, see the description of the disassembler classes
in the header files. Disassembler support is typically not required for user
components that are not processors.

3. For register support:

• customize the register parameters

• implement the register access functions.

4. For memory support:

• customize the memory parameters

• implement the memory access functions.

5. Instantiate this class from within your component class

Note
 You are not required to implement functions that are not required by your component.
For example, if your component does not have cache or other memory, you do not have
to use the cache or memory functions.
3-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
See the following subsections for more detail on the CADI classes and methods:

Starting a simulation
• The CADISimulationFactory class on page 3-73

• CADIBroker on page 3-68

Setting up the CADI interface

These functions enable configuring the CADI interface and connection to
the debugger:

• The component CADI class declaration on page 3-17

• The CADI class constructor on page 3-18

• CADI::CADIXfaceGetFeatures() on page 3-19

• CADI::CADIXfaceGetError() on page 3-19

• CADI::CADIXfaceAddCallback() on page 3-20

• CADI::CADIXfaceRemoveCallback() on page 3-21

• CADI::CADIXfaceBypass() on page 3-21

• CADI::CADIGetTargetInfo() on page 3-22

• CADI::CADIGetParameters() on page 3-23

• CADI::CADISetParameters() on page 3-23

• CADI::CADIGetParameterValues() on page 3-22

• CADI::CADIGetTargetInfo() on page 3-22

• CADI::CADIGetTargetInfo() on page 3-22.

Defining registers

To define the registers, fill in the reg_info and group_info structures that
are in the top part of the CADITemplate.cpp file and define the read/write
access functions:

• CADI::CADIRegGetGroups() on page 3-23

• CADI::CADIRegGetMap() on page 3-24

• CADI::CADIRegGetCompound() on page 3-25

• CADI::CADIRegWrite() on page 3-26

• CADI::CADIRegRead() on page 3-26.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-13

The Cycle Accurate Debug Interface
Defining memory spaces

To define memory spaces, fill in the mem_info structure in the
CADITemplate.cpp file and define the read/write access functions.

• CADI::CADIMemGetSpaces() on page 3-28

• CADI::CADIMemGetBlocks() on page 3-28

• CADI::CADIMemRead() on page 3-29

• CADI::CADIMemWrite() on page 3-30

• CADI::CADIMemGetOverlays() on page 3-31

• CADI::VirtualToPhysical() on page 3-31

• CADI::PhysicalToVirtual() on page 3-32.

Adding cache support

This following debug functions relate to caches.

• CADI::CADIGetCacheInfo() on page 3-32

• CADI::CADICacheRead() on page 3-32

• CADI::CADICacheWrite () on page 3-33.

Controlling application execution

The Execution APIs modify the execution state of the target:

• CADIExecMode_t structure on page 3-91

• CADI::CADIExecGetModes() on page 3-34

• CADI::CADIExecGetResetLevels() on page 3-34

• CADI::CADIExecSetMode() on page 3-35

• CADI::CADIExecGetMode() on page 3-35

• CADI::CADIExecSingleStep() on page 3-35

• CADI::CADIExecReset() on page 3-37

• CADI::CADIExecContinue() on page 3-37

• CADI::CADIExecStop() on page 3-37

• CADI::CADIExecGetExceptions() on page 3-38

• CADI::CADIExecAssertException() on page 3-38

• CADI::CADIExecGetPipeStages() on page 3-39

• CADI::CADIExecGetPipeStageFields() on page 3-39

• CADI::CADIExecLoadApplication() on page 3-40

• CADI::CADIExecUnLoadApplication() on page 3-40

• CADI::CADIExecGetLoadedApplication() on page 3-40

• CADI::CADIExecSetApplication() on page 3-41

• CADI::CADIGetInstructionCount() on page 3-42

• CADI::CADIGetCycleCount() on page 3-42.
3-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
Setting breakpoints

Use the breakpoint API to enable the debugger to set and respond to
breakpoints:

• CADI::CADIBptGetList() on page 3-43

• CADI::CADIBptRead() on page 3-43

• CADI::CADIBptSet() on page 3-44

• CADI::CADIBptClear() on page 3-44

• CADI::CADIBptConfigure() on page 3-44.

Adding disassembly support

If the component supports disassembly, the disassembly API can be used
to display the disassembly during a simulation:

• The CADIDisassembler class on page 3-45

• CADI::CADIgetDisassembler() on page 3-20

• CADIDisassembler::getType() on page 3-46

• CADIDisassembler::getModeCount() on page 3-46

• CADIDisassembler::getModeNames() on page 3-46

• CADIDisassembler::getCurrentMode() on page 3-47.

• CADIDisassembler::getSourceReferenceForAddress() on
page 3-47.

• CADIDisassembler::getSourceReferenceForAddress() on
page 3-47.

• CADIDisassembler::getAddressForSourceReference() on
page 3-47.

• CADIDisassembler::getDisassembly() on page 3-48

• CADIDisassembler::GetInstructionType() on page 3-48

• CADIDisassembler::ObtainInterface() on page 3-49 (provided for
legacy code).

Adding debug profiling support

These APIs are used to access execution and memory profiling for a
processor.

• CADIProfiling::CADIProfileSetup() on page 3-51

• CADIProfiling::CADIProfileControl () on page 3-52

• CADIProfiling::CADIProfileTraceControl () on page 3-52

• CADIProfiling::CADIProfileGetExecution() on page 3-53

• CADIProfiling::CADIProfileGetMemory() on page 3-53

• CADIProfiling::CADIProfileGetTrace() on page 3-54
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-15

The Cycle Accurate Debug Interface
• CADIProfiling::CADIProfileGetRegAccesses() on page 3-55

• CADIProfiling::CADIProfileSetRegAccesses() on page 3-56

• CADIProfiling::CADIProfileGetMemAccesses() on page 3-56

• CADIProfiling::CADIProfileSetMemAccesses() on page 3-57

• CADIProfiling::CADIProfileGetAddrExecutionFrequency() on
page 3-57

• CADIProfiling::CADIProfileSetAddrExecutionFrequency() on
page 3-58

• CADIProfiling::CADIGetNumberOfInstructions() on page 3-58

• CADIProfiling::CADIProfileInitInstructionResultArray () on
page 3-58

• CADIProfiling::CADIProfileSetInstructionExecutionFrequency()
on page 3-60

• CADIProfiling::CADIProfileRegisterResourceAccessCallBack()
on page 3-60

• CADIProfiling::CADIProfileUnregisterResourceAccessCallBack() on
page 3-60

• CADIProfiling::CADIProfileRegisterCallBack() on page 3-60

• CADIProfiling::CADIProfileUnregisterCallBack() on page 3-61

• CADIProfilingCallbacks::profileResourceAccess() on page 3-61

• CADIProfilingCallbacks::profileRegisterHazard() on page 3-61.

Note
 This API is for debug profiling (tracing program execution for example).

It is not related to the Cycle Accurate Profiling Interface (CAPI).

Using the semihosting API

These functions enable the debugger to access files located on the host:

• CADICallbackObj::appliOpen() on page 3-62

• CADICallbackObj::appliInput () on page 3-62

• CADICallbackObj::appliOutput () on page 3-63

• CADICallbackObj::appliClose() on page 3-63

• CADICallbackObj::doString() on page 3-63

• CADI::CADICaptureSemihosting() on page 3-63

• CADI::CADIConsoleGetChannels() on page 3-64
3-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
• CADI::CADIConsoleNotifyInput() on page 3-64

• CADI::CADISemiHostingGetInputChannels() on page 3-64

• CADI::CADISemiHostingSendInput() on page 3-65.

Controlling execution

These functions enable execution control from the callback object:

• CADICallbackObj::modeChange() on page 3-65

• CADICallbackObj::reset() on page 3-65

• CADICallbackObj::cycleTick() on page 3-65 (deprecated)

• CADICallbackObj::killInterface() on page 3-66 (deprecated).

Extension functions

This API is reserved for future use. It is intended to provide a mechanism
for extending the existing callback functionality:

• CADICallbackObj::bypass() on page 3-66

• CADICallbackObj::lookupSymbol() on page 3-66

• CADICallbackObj::refresh() on page 3-66.

3.2.1 The component CADI class declaration

The class declaration can typically be left as is in the template with the exception of:

• adding any private data members

• changing the parameter in the constructor to the class name of the component.

Figure 3-1 on page 3-3 shows the contents of the header file for a typical generated class
(the example has the name CASITemplate, the actual name depends on the name of your
component).

Note
 If your component is a processor, see also the functions that are available in
CADIDisassembler for controlling and monitoring program execution.

Example 3-2 Header file for a typical CADI component class

class CADIMyComponent : public CADI
{
public:
 CADIMyComponent(MyComponentClass* c); // Change names accordingly
 virtual ~CADIMyComponent();
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-17

The Cycle Accurate Debug Interface
public:
 // Register access functions
 CADIReturn_t CADIRegGetGroups(uint32_t groupIndex
 , uint32_t desiredNumOfRegGroups, uint32_t* actualNumOfRegGroups
 , CADIRegGroup_t* reg);
 CADIReturn_t CADIRegGetMap(uint32_t groupID, uint32_t regIndex
 , uint32_t registerSlots, uint32_t* registerCount, CADIRegInfo_t* reg);
 CADIReturn_t CADIRegWrite(uint32_t regCount, CADIReg_t* reg
 , uint32_t* numRegsWritten, uint8_t doSideEffects);
 CADIReturn_t CADIRegRead(uint32_t regCount, CADIReg_t* reg
 , uint32_t* numRegsRead, uint8_t doSideEffects);
 // Memory access functions
 CADIReturn_t CADIMemGetSpaces(uint32_t spaceIndex, uint32_t memSpaceSlots
 , uint32_t* memSpaceCount, CADIMemSpaceInfo_t* memSpace);
 CADIReturn_t CADIMemGetBlocks(uint32_t memorySpace, uint32_t blockIndex
 , uint32_t memBlockSlots, uint32_t* memBlockCount
 , CADIMemBlockInfo_t* memBlock);
 CADIReturn_t CADIMemWrite(CADIAddrComplete_t startAddress
 , uint32_t unitsToWrite, uint32_t unitSizeInBytes, const uint8_t *data
 , uint32_t *actualNumOfUnitsWritten, uint8_t doSideEffects);
 CADIReturn_t CADIMemRead(CADIAddrComplete_t startAddress
 , uint32_t unitsToRead, uint32_t unitSizeInBytes, uint8_t *data
 , uint32_t *actualNumOfUnitsRead, uint8_t doSideEffects);

 // Access to disassembly class (if available)
 CADIDisassembler* CADIGetDisassembler(void);

private:
 // Pointer to your own component class, change name to match component
 MyComponent_casi * target;

 // Register related info
 CADIRegInfo_t* regInfo;
 CADIRegGroup_t* regGroup;

 // Memory related info
 CADIMemSpaceInfo_t* memSpaceInfo;
 CADIMemBlockInfo_t* memBlockInfo;
};

3.2.2 The CADI class constructor

You can define in the constructor the number of registers you have and the property of
your memory spaces.
3-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
One change that must be made for every CADI interface is to use the proper component
class in the constructor’s parameter list to store a local pointer to the component class.
This enables accessing the resources of this component when the read/write functions
for registers or memory are called.

3.2.3 CADI::CADIXfaceGetFeatures()

The debugger for a target must call this function when it attaches to a target. This
function is typically called once per target. The debugger can, however, call it more
often if required. This call determines the features supported by the target by updating
the passed features parameter.

virtual CADIReturn_t CADI::CADIXfaceGetFeatures (
 CADITargetFeatures_t * features) =0

The caller allocates and de-allocates memory for the features parameter. For details on
the CADITargetFeatures_t structure, see CADITargetFeatures_t structure on page 3-78.

3.2.4 CADI::CADIXfaceGetError()

If an error is detected, this routine is called to get the error message.

virtual CADIReturn_t CADI::CADIXfaceGetError (uint32_t maxMessageLength,
 uint32_t * actualMessageLength, char * errorMessage) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-19

The Cycle Accurate Debug Interface
where:

maxMessageLength

is the max length of errorMessage array. The target must not fill more than
this number of characters in the array.

actualMessageLength

is the max length of errorMessage array. The target must set this to the
actual number of chars written into the errorMessage buffer.

errorMessage is the actual error message text. The target writes the text into this
character buffer. The length of this buffer is exactly maxMessageLength.

3.2.5 CADI::CADIgetDisassembler()

The returns the disassembler for a target.

virtual CADIDisassembler * CADI::CADIgetDisassembler (void) =0

3.2.6 CADI::CADIXfaceAddCallback()

A debugger connected to the target must call this to establish a callback object that
handles asynchronous information from the target. The callback routines must not make
calls to the target. It is possible for a debugger to receive a callback while in the middle
of a call (for example, receiving a modeChange callback from within a CADIExecStop call).

Callbacks from a target into the debugger typically come from a different thread (called
the simulation thread) than the calls from the debugger into the target (called the GUI
thread or debugger thread).

This is the debugger interface that is exposed to a CADI object.

virtual CADIReturn_t CADI::CADIXfaceAddCallback (CADICallbackObj * callbackObj,
 char enable[CADI_CB_Count]) =0

where:

callbackObj is a pointer to the object whose member functions are called as callbacks.

enable the elements of this array enable or disable specific callbacks. The caller
must always check if the callbacks are enabled. The callbacks must not
be called if they are disabled.

The indexes in the array must be based on the list in CADICallbackType_t.
The length of the array is CADI_CB_Count.
3-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.7 CADI::CADIXfaceRemoveCallback()

A debugger must call this to remove any callback objects it has added.

virtual CADIReturn_t CADI::CADIXfaceRemoveCallback (
 CADICallbackObj * callbackObj) =0

where:

callbackObj is a pointer to the callback object. The target must not use this object after
this call.

3.2.8 CADI::CADIXfaceBypass()

Targets can have specialized commands that can be requested by the debugger. This
command enables the debugger to pass a string containing one of these commands to a
target. The target must silently ignore all commands issued through this mechanism and
on return set response to an empty string and use CADI_STATUS_UnknownCommand as the
return value.

virtual CADIReturn_t CADI::CADIXfaceBypass (uint32_t commandLength,
 const char * command, uint32_t maxResponseLength, char * response) =0

where:

commandLength

is the length of (including the terminating NULL) command. This helps
networked versions of the interface know how much space to allocate for
command.

command is the entire command with all arguments.

maxResponseLength

is the length of the response array. The target must truncate the response
to fit it into the array.

response is the response from the target. This string might or might not be zero
terminated. It might also contain binary data for certain commands.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-21

The Cycle Accurate Debug Interface
3.2.9 CADI::CADIGetParameterInfo()

Get parameter info class for a specific parameter name.

virtual CADIReturn_t CADIGetParameterInfo(const char *parameterName,
 CADIParameterInfo_t *param) =0

where:

parameterName

is the name of the parameter to be retrieved. This is the local name in the
model, not the global hierarchical name.

param points to a single CADIParameterInfo_t buffer that must be pre-initialized
by the caller and filled with data by the callee.

3.2.10 CADI::CADIGetTargetInfo()

Return target information for this model. The values for the return parameters are set by
the model.

virtual CADIReturn_t CADI::CADIGetTargetInfo (CADITargetInfo_t targetInfo) =0

where:

targetInfo is set to point to the CADITargetInfo_t structure.

3.2.11 CADI::CADIGetParameterValues()

Return the current parameter values.

virtual CADIReturn_t CADI::CADIGetParameterValues(uint32_t parameterCount,
 uint32_t *actualNumOfParamsRead,
 CADIParameterValue_t *paramValuesOut) =0

where:

parameterCount

is the length of array paramValuesOut.

actualNumOfParamsRead

is the number of valid entries in paramValuesOut. This must be initialized
to 0 by the caller.

If an error code is returned and actualNumOfParamsRead is greater than 0,
the first actualNumOfParams entries are valid and caused no error. The
entry paramValuesOut[actualNumOfParamsRead] caused the error.
3-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
paramValuesOut

is an output buffer that will hold the parameter values.

3.2.12 CADI::CADIGetParameters()

Get list of supported parameters and parameter details.

virtual CADIReturn_t CADI::CADIGetParameters (uint32_t startIndex,
 uint32_t desiredNumOfParams, uint32_t * actualNumOfParams,
 CADIParameterInfo_t * params) =0

3.2.13 CADI::CADISetParameters()

Set parameter values.

virtual CADIReturn_t CADI::CADISetParameters (uint32_t parameterCount,
 CADIParameterValue_t * parameters,
 CADIFactoryErrorMessage_t * error) =0

3.2.14 CADI::CADIRegGetGroups()

This call is used to retrieve register groups from the target.

virtual CADIReturn_t CADI::CADIRegGetGroups (uint32_t groupIndex,
 uint32_t desiredNumOfRegGroups, uint32_t * actualNumOfRegGroups,
 CADIRegGroup_t * reg) =0

where:

groupIndex is the index into the target’s list of register groups. It is not the group ID’s.

desiredNumOfRegGroups

is the size of the reg[] buffer provided by the caller.

actualNumOfRegGroups

on return, is the number of groups returned by the target. If this is less
than the number requested, the debugger calls this function again with a
different groupIndex. Any value set on input is ignored.

reg is the register group information. The array is allocated (and deallocated,
if applicable) by the caller and filled by the target. The amount of space
allocated must be enough to hold the number of groups desired. If the
desired count is greater than the targets total number of register groups,
the target must return all groups.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-23

The Cycle Accurate Debug Interface
3.2.15 CADI::CADIRegGetMap()

The debugger for the target must call this once after connecting to the target. All
registers must be reported even if they are part of a compound register. All register
numbers must be unique both for registers in the same group and register numbers in
other groups.

virtual CADIReturn_t CADI::CADIRegGetMap (uint32_t groupID,
 uint32_t startRegisterIndex, uint32_t desiredNumOfRegisters,
 uint32_t * actualNumOfRegisters, CADIRegInfo_t * reg) =0

where:

groupID identifies the ID of the group whose map is requested. If the value is
CADI_REG_ALLGROUPS, all registers are returned.

startRegisterIndex

is the index into the target’s list of registers. It is not register numbers.

desiredNumOfRegisters

is the total number of registers desired by the caller. The caller must
allocate a buffer size that is enough to hold the requested number of
registers.

actualNumOfRegisters

on return, is the number of registers returned by the target. Any value set
on input is ignored.

reg is the register information. The array is allocated (and deallocated, if
applicable) by the caller to be filled by the target. The amount of space
allocated must be enough to hold the number of registers requested. If the
count is greater than the targets number of registers, the target must return
all the registers.

CADIRegInfo_t

The CADIRegInfo_t structure is defined as:

struct CADIRegInfo_t
{
 char name[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION];
 uint32_t regNumber;
 uint32_t bitsWide;
 int32_t hasSideEffects;
 CADIRegDetails_t details;
 CADIRegDisplay_t display; //Default is "HEX".
3-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 CADIRegSymbols_t symbols; // For type "symbolic" only.
 CADIRegFloatFormat_t fpFormat; // For type "float" only.
 uint32_t lsbOffset; // Offset of the least significant bit
 // relative to bit 0 in the parent
 // register (or 0 if there is no parent).
 enum { CADI_REGINFO_NO_DWARF_INDEX = 0xffffffff };
 uint32_t dwarfIndex; // DWARF register index
 // (CADI_REGINFO_NO_DWARF_INDEX if
 // register has no DWARF index).
 bool isProfiled; // Profiling info is available for reg
 bool isPipeStageField; // Is pipe stage field, also true
 // for pc and contentInfoRegisterId in
 // CADIPipeStage_t.
 uint32_t threadID; // Thread identifiers. If zero, then not
 // assigned to a thread.
 CADIRegAccessAttribute_t attribute; // Register access
 // attributes.
};

3.2.16 CADI::CADIRegGetCompound()

This call gets the information about a compound register (as reported by a call to
CADIRegGetMap().

virtual CADIReturn_t CADI::CADIRegGetCompound (uint32_t reg,
 uint32_t componentIndex, uint32_t desiredNumOfComponents,
 uint32_t * actualNumOfcomponents, uint32_t * components) =0

where:

reg is the register number.

componentIndex

is the index into the this register’s (reg) component array.

desiredNumOfComponents

is the total number of child registers desired by the caller, starting at
componentRegIndex.

actualNumOfcomponents

on return, is the number of components returned by the target. Any value
set on input is ignored.

components on return, is the list of component registers. The array is allocated (and
deallocated, if applicable) by the caller to be filled by the target. The
amount of space allocated must be big enough to hold the number
requested. If a target has written less than regCount registers it returns the
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-25

The Cycle Accurate Debug Interface
number of registers successfully written in this field and returns an error
code that applies to the register that caused the error
(reg[numOfRegsWritten]). Any value set on input is ignored.

3.2.17 CADI::CADIRegWrite()

Implementing this function to enable writing registers from debug windows. The
implementation of this function is optional.

virtual CADIReturn_t CADI::CADIRegWrite (uint32_t regCount, CADIReg_t * reg,
 uint32_t * numOfRegsWritten, uint8_t doSideEffects) =0

where:

regCount is the number of registers in the reg array.

reg is an array of structures each holding the number (as gathered from the
CADIRegGetMap call) and value of an individual register. The number of
bytes allocated for each register is available from the CADIRegGetMap call.

numOfRegsWritten

on return, is the number of registers that are actually written. Any value
set on input is ignored.

doSideEffects

indicates whether operation incurs side-effects.

3.2.18 CADI::CADIRegRead()

This function reads register values from the component. This function must be
implemented.

virtual CADIReturn_t CADI::CADIRegRead (uint32_t regCount, CADIReg_t * reg,
 uint32_t * numRegsRead, uint8_t doSideEffects) =0

where:

regCount is the number of registers in the reg array.

reg is an array of structures each holding the number (as gathered from the
CADIRegGetMap call) and value of an individual register. The number of
bytes allocated for each register is available from the CADIRegGetMap call.

numRegsRead on return, is the number of registers actually read. It can be less than the
number of registers in reg. If the value is less than regCount, the value
specifies the number of registers successfully read and the function
returns an error code. Any value set on input is ignored.
3-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
doSideEffects

indicates whether side effects occur as a result of the operation.

The code in Example 3-3 shows how to set up the CADI access functions in sc_main()
and test reading a register value:

Example 3-3 CADI register access

CADI * cadi1 = s1->getCADI ();
uint32_t actual =0;
CADIRegGroup_t regGroups [2];
cadi1->CADIRegGetGroups (0, 2, & actual, regGroups);
CADIRegInfo_t regs [2];
actual =0;
cadi1->CADIRegGetMap (regGroups [0].groupID, 0, 2, & actual, regs);
CADIReg_t reg;
memset (& reg, 0, sizeof (CADIReg_t));
reg.regNumber = regs [1].regNumber;
actual =0;
cadi1->CADIRegRead (1, & reg, & actual, 0);
printf ("CADI reg 0x%x\n", reg.bytes [0]);

3.2.19 CADI::CADIGetPC ()

Returns the PC of the instruction that will be executed next from an ISA perspective.

Reserved for future use.

virtual uint64_t CADI::CADIGetPC () =0
virtual uint64_t CADI::CADIGetPC (bool * is_virtual) =0

3.2.20 CADI::CADIGetCommittedPCs()

The function returns the number of program counters in the current cycle. This can be
used with multi-issue processors.

virtual CADIReturn_t CADIGetCommitedPCs (int startIndex, int desiredCount,
 int * actualCount, uint64_t * pcs =0

where:

startIndex is the index into the buffer of PCs present in the target.

desiredCount is the desired number of PCs.

actualCount is the total number of PCs returned by the target.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-27

The Cycle Accurate Debug Interface
pcs is a list of PCs. The array is allocated (and deallocated, if applicable) by
the caller to be filled by the target. This space must be big enough to hold
the desired number of spaces.

3.2.21 CADI::CADIMemGetSpaces()

The debugger for the target must call this once after connecting to the target but before
accessing any memory. The function identifies the number of independent address
spaces available on the target. Use different memory spaces to separate distinct memory
areas with overlapping address values (like program and data memory in a Harvard
architecture).

virtual CADIReturn_t CADI::CADIMemGetSpaces (uint32_t startMemSpaceIndex,
 uint32_t desiredNumOfMemSpaces, uint32_t * actualNumOfMemSpaces,
 CADIMemSpaceInfo_t * memSpaces) =0

where:

startMemSpaceIndex

is the index into the buffer of memory spaces present in the target.

desiredNumOfMemSpaces

is the desired number of memory spaces.

actualNumOfMemSpaces

is the total number of memory spaces returned by the target.

memSpaces is a list of memory spaces. The array is allocated (and deallocated, if
applicable) by the caller to be filled by the target. This space must be big
enough to hold the desired number of spaces.

3.2.22 CADI::CADIMemGetBlocks()

The debugger for the target must call this once for each memory space (as indicated by
calling the CADIMemGetSpaces() function) before accessing memory in that space. This
must return the layout of the memory in a single address space. No two blocks with the
same parent can overlap. This call returns existing memory blocks only. The caller can
assume that any memory that is not in a block is a gap or invalid memory.

virtual CADIReturn_t CADI::CADIMemGetBlocks (uint32_t memorySpace,
 uint32_t memBlockIndex, uint32_t desiredNumOfMemBlocks,
 uint32_t * actualNumOfMemBlocks, CADIMemBlockInfo_t * memBlocks) =0
3-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
where:

memorySpace is the memory space for which the caller wants a block list.

memBlockIndex

is the index into the target’s buffer of memory blocks for the specified
memory space.

desiredNumOfMemBlocks

is the desired number of memory blocks.

actualNumOfMemBlocks

is the is the total number of blocks returned by the target. It might be less
than the number requested.

memBlocks is a buffer that must be big enough to hold the desired number of
CADIMemBlockInfo_t structures. Space is allocated (and deallocated, if
applicable) by the caller.

3.2.23 CADI::CADIMemRead()

The function reads memory values from the component. This function must be
implemented to support the display of memory contents.

virtual CADIReturn_t CADI::CADIMemRead (CADIAddrComplete_t startAddress,
 uint32_t unitsToRead, uint32_t unitSizeInBytes, uint8_t * data,
 uint32_t * actualNumOfUnitsRead, uint8_t doSideEffects) =0

where:

startAddress is the starting address to begin reading from. If startAddress.overlay is
CADI_NO_OVERLAY, it refers to the current overlay.

unitsToRead This is the number of units of size unitSizeInBytes to read.

unitSizeInBytes

is the unit size of the addresses specified in bytes.

data is the data buffer that was allocated by the caller and must be big enough
to hold the requested number of addresses. The target data is encoded in
little endian format.

actualNumOfUnitsRead

is the number of units actually read. It can be less than the number of units
requested.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-29

The Cycle Accurate Debug Interface
doSideEffects

indicates that any side effects are associated with accessing this memory.

Note
 If an error occurs, CADIMemRead() must return the error position in actualNumOfUnits*.
Data is assumed valid up to this position.

3.2.24 CADI::CADIMemWrite()

This function writes values to the memory in the target. If support is required for writing
to memory from debug windows, CADIMemWrite() must be implemented.

virtual CADIReturn_t CADI::CADIMemWrite (CADIAddrComplete_t startAddress,
 uint32_t unitsToWrite, uint32_t unitSizeInBytes, const uint8_t * data,
 uint32_t * actualNumOfUnitsWritten, uint8_t doSideEffects) =0

where:

startAddress is the starting address to begin writing from. If startAddress.overlay is
CADI_NO_OVERLAY, it refers to the current overlay.

unitsToWrite

is the number of units of size unitSizeInBytes to write.

unitSizeInBytes

is the unit size of the addresses specified in bytes.

data is the data buffer holding the values to be written. This contains target
data, encoded in little endian format.

actualNumOfUnitsWritten

is the number of units actually written to target.

doSideEffects

indicates whether operation incurs any side effects associated with
accessing this memory.

Note
 On error, CADIMemWrite() must return the error position in actualNumOfUnits*. Data is
assumed valid up to this position.

If the write spans a gap in the memory space, the target must stop writing a the
beginning of the gap and return the number of successful writes in numUnitsWritten.
3-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.25 CADI::CADIMemGetOverlays()

The debugger calls this function to get the list of active overlays. This would typically
be done when a breakpoint is hit. When overlays are implemented, an overlay ID must
be stored in the symbol table and in the target software. The symbol table must store the
starting address, memory space, and byte count for each overlay. This enables the ID to
be sent to the host when an overlay occurs.

virtual CADIReturn_t CADI::CADIMemGetOverlays (uint32_t activeOverlayIndex,
 uint32_t desiredNumOfActiveOverlays, uint32_t* actualNumOfActiveOverlays,
 CADIOverlayId_t * overlays) =0

where:

activeOverlayIndex

is the start index into the target’s buffer of overlays.

desiredNumOfActiveOverlays

is the desired number of overlays.

actualNumOfActiveOverlays

is the number of overlay structures returned by the target.

overlays is the list of overlays that are currently memory resident (that is,
swapped-in). The array is allocated (and deallocated, if applicable) by the
caller and filled by the target.

3.2.26 CADI::VirtualToPhysical()

This function translates the virtual address passed as a parameter to a physical address
that is the return value.

virtual CADIAddrComplete_t CADI::VirtualToPhysical (CADIAddrComplete_t vaddr) =0

where:

vaddr is the virtual address that is to be converted.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-31

The Cycle Accurate Debug Interface
3.2.27 CADI::PhysicalToVirtual()

This function translates the physical address passed as a parameter to a virtual address
that is the return value.

virtual CADIAddrComplete_t CADI::PhysicalToVirtual (CADIAddrComplete_t paddr) =0

where:

paddr is the physical address that is to be converted.

3.2.28 CADI::CADIGetCacheInfo()

This call gets the cache information for a memory space.

virtual CADIReturn_t CADI::CADIGetCacheInfo (uint32_t memSpaceID,
 CADICacheInfo_t * cacheInfo) =0

where:

memSpaceID is the memory space.

cacheInfo is the cache information.

3.2.29 CADI::CADICacheRead()

This function performs a cache read.

virtual CADIReturn_t CADI::CADICacheRead (CADIAddr_t addr, uint32_t linesToRead,
 uint8_t * data, uint8_t * tags, bool * is_dirty, bool * is_valid,
 uint32_t * numLinesRead, bool doSideEffects) =0

where:

addr is the address to be read, including memspace-id.

linesToRead

is the number of cache lines to read.

data is a byte array of size (cache_lines * line_size). The array is encoded
in little endian format.

tags is a byte array of size (cache_lines * tagsbits/8).

is_dirty is the status (one per line).

is_valid is the status (one per line).

numLinesRead

is the number of cache lines actually read.
3-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.30 CADI::CADICacheWrite ()

This function performs a cache write.

virtual CADIReturn_t CADI::CADICacheWrite (CADIAddr_t addr,
 uint32_t linesToWrite, const uint8_t * data, const uint8_t * tags,
 const bool * is_dirty, const bool * is_valid, uint32_t * numLinesWritten,
 bool doSideEffects) =0

where:

addr is the address to be written, including memspace-id.

linesToWrite

is the number of cache lines to write.

data is a byte array of size (cache_lines * line_size). The array is encoded
in little endian format.

tags is a byte array of size (cache_lines * tagsbits/8).

is_dirty is status (one per line).

is_valid is status (one per line).

numLinesWritten

is the number of cache lines actually written.

doSideEffects

selects write through if true.

3.2.31 CADI execution modes

The execution APIs modify the execution state of the target.

These functions typically return before the target completes the requested action. For
example, a run or even a single step returns before the target stops. The debugger is
notified by the callback about the completion of the request.

The exec mode calls enable extensions to the typical execution modes of run and
breakpoint. If a target does not have other modes, these calls are redundant and are
typically not used.

The execution mode array requires that certain modes have specific positions in the
array (see CADI_EXECMODE_t enumeration on page 3-90).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-33

The Cycle Accurate Debug Interface
3.2.32 CADI::CADIExecGetModes()

Many processors have more than just a run state and a breakpoint state. This call allows
the debugger to determine what these states are.

virtual CADIReturn_t CADI::CADIExecGetModes (uint32_t startModeIndex,
 uint32_t desiredNumOfModes, uint32_t * actualNumOfModes,
 CADIExecMode_t * execModes) =0

where:

startModeIndex

is the index into the target’s buffer of execution modes.

desiredNumOfModes

is the requested number of modes This call can be repeated with index +
count as the index.

actualNumOfModes

is the number of modes returned by the target.

execModes is the space. The caller allocates (and, if applicable, deallocates) space.
The number of elements must be the same as actualNumOfModes. The
mode values are listed in CADI_EXECMODE_t enumeration on
page 3-90.

3.2.33 CADI::CADIExecGetResetLevels()

Many targets have more than just one reset level. This call allows the debugger to
determine what these levels are.

virtual CADIReturn_t CADI::CADIExecGetResetLevels (uint32_t
startResetLevelIndex,
 uint32_t desiredNumOfResetLevels, uint32_t * actualNumOfResetLevels,
 CADIResetLevel_t * resetLevels) =0

where:

startResetLevelIndex

is the index into the target’s buffer of reset levels.

desiredNumOfResetLevels

is the number of levels desired by the caller. It is the number of reset
levels desired by the caller.
3-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
actualNumOfResetLevels

is the total number returned.

resetLevels is the caller allocated space. The number of elements must be the same as
the actualNumOfResetLevels. These must be in the order of most severe (at
reset level zero) to least severe.

3.2.34 CADI::CADIExecSetMode()

This sets the execution modes for the target. This call returns immediately, possibly
before the target execution mode has been reached. The mode values are listed in
CADI_EXECMODE_t enumeration on page 3-90

virtual CADIReturn_t CADI::CADIExecSetMode (uint32_t execMode) =0

This call is, for a subset of the execution modes, redundant with other APIs:

• A call to CADIExecSetMode(CADI_EXECMODE_Run) is equivalent to a call to
CADIExecContinue().

• A call to CADIExecSetMode(CADI_EXECMODE_Stop) is equivalent to a call to
CADIExecStop().

Note
 execMode must be less than the value nrExecModes received by CADIXfaceGetFeatures().

3.2.35 CADI::CADIExecGetMode()

This call enables the debugger to determine the execution state of the target.

virtual CADIReturn_t CADI::CADIExecGetMode (uint32_t * execMode) =0

Note
 execMode corresponds to the value nrExecModes received by CADIXfaceGetFeatures().

3.2.36 CADI::CADIExecSingleStep()

This function returns immediately and a separate notification informs the debugger that
the execution state has changed. Typically this call results in the modeChange() callback
(if enabled) for CADI_EXECMODE_Run followed by CADI_EXECMODE_Stop.

virtual CADIReturn_t CADI::CADIExecSingleStep (uint32_t instructionCount,
 int8_t stepCycle, int8_t stepOver) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-35

The Cycle Accurate Debug Interface
where:

instructionCount

is the number of instructions requested. Some targets can not step a
specific number of instructions safely (into a delay slot, for example).
The target can step more instructions so that it stops at a safe place.

stepCycle specifies (for targets that have exposed multiple pipe stages) whether the
step merely clocks the device (stepCycle == yes) or flushes the pipe
(stepCycle == no).

For other kinds of targets, this argument is ignored (stepCycle = no is
assumed).

stepOver allows the target to handle stepping over a call. It is especially useful on
an emulator with no available breakpoints and the target must step until
the call returns or a breakpoint is hit.

Note
 Because this call returns immediately, the return value indicates whether the target
believes that it can perform the operation and not whether the operation was completed
successfully.
3-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.37 CADI::CADIExecReset()

Upon receipt of this call, the target:

• resets its execution related internal state

• resets its registers to their initial state

• does not change breakpoints or callbacks.

This call provides a simulation level reset.

virtual CADIReturn_t CADI::CADIExecReset (uint32_t resetLevel) =0

Note
 resetLevel must be one of the numbers provided in the resetLevels array received by
CADIExecGetResetLevels().

3.2.38 CADI::CADIExecContinue()

This function returns immediately and a separate notification from the modeChange(RUN)
callback informs the debugger when the execution state changes. The simulation runs
asynchronously in a separate thread

virtual CADIReturn_t CADI::CADIExecContinue (void) =0

Note
 Because this call returns immediately, the return value indicates whether the target
believes that it can perform the operation and not whether the operation was completed
successfully.

3.2.39 CADI::CADIExecStop()

This causes the target’s execution to stop. The function returns immediately and the
target might still running when the function returns. A debugger must wait for a
modeChange(STOP) callback to ensure that the simulation has ended.

virtual CADIReturn_t CADI::CADIExecStop (void) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-37

The Cycle Accurate Debug Interface
3.2.40 CADI::CADIExecGetExceptions()

This gets the list of the target’s exception vectors.

virtual CADIReturn_t CADI::CADIExecGetExceptions (uint32_t startExceptionIndex,
 uint32_t desiredNumOfExceptions, uint32_t * actualNumOfExceptions,
 CADIException_t * exceptions) =0

where:

startExceptionIndex

is the index into the targets list of exceptions.

desiredNumOfExceptions

is the number of slots in the exception array. The target must not fill more
than this number of characters in the array.

actualNumOfExceptions

is the total number of returned exceptions. If this is less than desired
count, the call can be repeated with a different set of parameters.

exceptions is list of exceptions. The array is allocated (and deallocated, if applicable)
by the caller to be filled by the target. This buffer must be big enough to
hold the desired count of exceptions.

3.2.41 CADI::CADIExecAssertException()

Raise an exception.

virtual CADIReturn_t CADI::CADIExecAssertException (uint32_t exception,
 CADIExceptionAction_t action) =0

The definition of CADIExceptionAction_t is:

typedef enum CADIExceptionAction_t
{
 CADI_EXCEPTION_Raise, // For targets that can raise an exception ...
 CADI_EXCEPTION_Lower, // ... and leave it raised
 CADI_EXCEPTION_Pulse,
 CADI_EXCEPTION_ENUM_MAX,
} CADIExceptionAction_t;
3-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.42 CADI::CADIExecGetPipeStages()

This is used to expose the pipe simulated inside of a cycle-accurate simulation.

virtual CADIReturn_t CADI::CADIExecGetPipeStages (uint32_t startPipeStageIndex,
 uint32_t desiredNumOfPipeStages, uint32_t * actualNumOfPipeStages,
 CADIPipeStage_t * pipeStages) =0

where:

startPipeStageIndex

is the index into the target’s list of pipe stages.

actualNumOfPipeStages

is the number of stages actually returned to the caller.

pipeStages is the list of pipestages in order of execution for a single instruction.
pipestage[0] must contain the first stage executed for any single
instruction. The array is allocated (and deallocated, if applicable) by the
caller to be filled by the target.

desiredNumOfPipeStages

is the number of spaces available to fill. The target must not fill more than
this number of elements in the pipestage array.

3.2.43 CADI::CADIExecGetPipeStageFields()

Reserved for future use.

virtual CADIReturn_t CADI::CADIExecGetPipeStageFields (
 uint32_t startPipeStageFieldIndex, uint32_t desiredNumOfPipeStageFields,
 uint32_t * actualNumOfPipeStageFields,
 CADIPipeStageField_t * pipeStageFields) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-39

The Cycle Accurate Debug Interface
3.2.44 CADI::CADIExecLoadApplication()

This is used to load an application file to a processor in the simulation.

virtual CADIReturn_t CADI::CADIExecLoadApplication(const char *filename,
 bool loadData, bool verbose, const char *parameters) =0

where:

filename

is the name of the application file.

loadData

loads data and symbols if true, if false only load symbols. The target
decides whether or not it can load symbols.

verbose prints verbose messages while loading a file if true. The target decides
whether or not it output messages.

parameters

if not NULL, this is the command line parameters to be passed to the
loaded application.

3.2.45 CADI::CADIExecUnLoadApplication()

This is used to symbol information of a specific image that was loaded previously.

virtual CADIReturn_t CADI::CADIExecUnloadApplication(const char *filename) =0

where:

filename

is the same as was specified for CADIExecLoadImage().

3.2.46 CADI::CADIExecGetLoadedApplication()

This gets a list of image filenames that are currently loaded in the target.

virtual CADIReturn_t CADI::CADIExecGetLoadedApplications(uint32_t startIndex,
 uint32_t desiredNumberOfApplications,
 uint32_t *actualNumberOfApplicatiosReturnedOut,
 char *filenamesOut, uint32_t filenameLength,
 char *parametersOut, uint32_t parametersLength) =0
3-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
where:

startIndex

is the starting index in the list of filenames.

desiredNumberOfApplications

is the desired number of applications (filename + parameters).

actualNumberOfApplicatiosReturnedOut

is the number of applications (filenames + parameters) that are valid in
filenamesOut and parametersOut.

filenamesOut

is a buffer of length [desiredNumberOfFilenames * filenamLength], the Nth
filename returned starts at offset N*filenameLength.

filenameLength

is the maximum length of a single filename including terminating 0,
filenames which are longer are truncated. All returned filenames must
always be 0 terminated. If one of the returned filenames has the length
filenameLength-1 then filenameLength was too short and must be redone.
The target decides whether or not it can keep information of more than
one file.

parametersOut

is a buffer of length [desiredNumberOfApplications * parametersLength],
the Nth parameter returned starts at offset N*parametersLength. The target
decides whether or not it can keep information of more than one file.

parametersLength

is the maximum length of a single parameters string including
terminating 0, parameters which are longer are truncated. All returned
parameters must always be 0 terminated. If one of the returned
parameters has the length parametersLength-1 then parametersLength was
too short and must be redone. The target decides whether or not it can
keep information of more than one file.

3.2.47 CADI::CADIExecSetApplication()

Reserved for future use.

virtual CADIReturn_t CADI::CADIExecSetApplication (
 const std::string & fileName) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-41

The Cycle Accurate Debug Interface
3.2.48 CADI::CADIGetInstructionCount()

This method gets the current instruction count of the specific target that this interface is
connected to.

virtual CADIReturn_t CADI::CADIGetInstructionCount (
 uint64_t & instructionCount) =0

where:

instructionCount

is the returned instruction count.

3.2.49 CADI::CADIGetCycleCount()

Gets the current cycle count.

virtual CADIReturn_t CADI::CADIGetCycleCount (uint64_t & cycleCount,
 bool systemCycles) =0

where:

cycleCount

is the returned cycle count. This must be pre-initialized by the caller and
assigned by the callee.

systemCycles

if true, the method returns the system cycle count. If false, the method
returns return the target specific cycle count.
3-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.2.50 CADI::CADIBptGetList()

If the debugger attaches to a target that already has breakpoints set, this enables the
debugger to identify the breakpoints.

virtual CADIReturn_t CADI::CADIBptGetList (uint32_t startIndex,
 uint32_t desiredNumOfBpts, uint32_t * actualNumOfBpts,
 CADIBptDescription_t * breakpoints) =0

where:

startIndex is the index into the target’s buffer of breakpoints.

desiredNumOfBpts

is the desired number of breakpoints.

actualNumOfBpts

is the number of breakpoints that are returned in the buffer.

breakpoints

is the array of breakpoints that are returned in the buffer that was
allocated by the caller.

The elements are of type CADIBptDescription_t and defined as:

typedef struct CADIBptDescription_t
{
 CADIBptNumber_t bptNumber; // The breakpoint number.
 CADIBptRequest_t bptInfo; // The breakpoint information
 // (address, condition, etc.).
} CADIBptDescription_t;

3.2.51 CADI::CADIBptRead()

Read a breakpoint for a specific breakpoint ID. This can be used to retrieve the current
ignoreCount of a specific breakpoint.

virtual CADIReturn_t CADIBptRead(CADIBptNumber_t breakpointId,
 CADIBptRequest_t *requestOut) = 0;

where:

brealpointId is the breakpoint ID of the breakpoint to be read.

requestOut is the buffer for a single breakpoint.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-43

The Cycle Accurate Debug Interface
3.2.52 CADI::CADIBptSet()

This sets a, possibly complex, code breakpoint in the target.

virtual CADIReturn_t CADI::CADIBptSet (CADIBptRequest_t * request,
 CADIBptNumber_t * breakpoint) =0

where:

request is the requested breakpoint.

breakpoint is the resulting breakpoint (zero if the breakpoint was not set).

The CADIBptNumber_t is defined as uint32_t.

3.2.53 CADI::CADIBptClear()

This function removes a breakpoint from the target.

virtual CADIReturn_t CADI::CADIBptClear (CADIBptNumber_t breakpointId) =0

where:

breakpointId

is the requested breakpoint.

3.2.54 CADI::CADIBptConfigure()

This function enables or disables a breakpoint on the target. This only applies if the
target supports enabling and disabling of hardware breakpoints. Otherwise, this type of
breakpoint management must be done in the host.

virtual CADIReturn_t CADI::CADIBptConfigure (CADIBptNumber_t breakpointId,
 CADIBptConfigure_t configuration) =0

where:

breakpointId

is the requested breakpoint.

configuration

is the requested configuration.
3-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.3 The CADIDisassembler class

If the component supports disassembly, the disassembly API can be used to display the
disassembly during a simulation.

The CADI class provides the function CADIGetDisassembler(). It is called by the
simulation environment to obtain a pointer to the disassembly API.

Note
 A program memory space must exist to use the disassembly feature.

Example 3-4 CADIDisassembler class

class CADIDisassembler : public CAInterface
{
public:
 static if_name_t IFNAME() { return "eslapi.CADIDisassembler2"; }
 static if_rev_t IFREVISION() { return 0; }

 // Two types: distinguish standard and history type
 virtual CADIDisassemblerType getType() const =0;

 // mode handling functions
 virtual uint32_t getModeCount() const =0;
 virtual void getModeNames(CADIDisassemblerCB *callback) =0;
 virtual uint32_t getCurrentMode() =0;

 // set disassembly callback for this object
 virtual void registerModeChangeCB(CADIDisasmModeChangeCB* cb);

 virtual CADIDisassemblerStatus GetSourceReferenceForAddress(
 CADIDisassemblerCB *callback, const CADIAddr_t &address) =0;

 virtual CADIDisassemblerStatus getAddressForSourceReference(
 const char *sourceFile, uint32_t sourceLine, CADIAddr_t &address) =0

 // function for standard type disassembly
 virtual CADIDisassemblerStatus getDisassembly(CADIDisassemblerCB *callback,
 const CADIAddr_t &address, CADIAddr_t &nextAddr, const uint32_t mode,
 uint32_t desiredCount = 1) =0;

 // Query if an instruction is a call instruction
 virtual CADIDisassemblerStatus GetInstructionType(const CADIAddr_t &address,
 CADIDisassemblerInstructionType &insn_type) =0;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-45

The Cycle Accurate Debug Interface
 // A default minimum implementation, to provide backwards-compatibility.
 virtual CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev)
 {
 if((strcmp(ifName,IFNAME()) == 0) && (minRev <= IFREVISION()))
 {
 if (actualRev) // make sure this is not a NULL pointer
 {
 *actualRev = IFREVISION();
 }
 return this;
 }
 if((strcmp(ifName, CAInterface::IFNAME()) == 0) &&
 minRev <= CAInterface::IFREVISION())
 {
 if (actualRev != NULL)
 {
 *actualRev = CAInterface::IFREVISION();
 }
 return this;
 }
 return NULL;
 }

};

3.3.1 CADIDisassembler::getType()

The return value indicates whether the type is standard or historical.

virtual CADIDisassemblerType CADIDisassembler::getType () const =0

3.3.2 CADIDisassembler::getModeCount()

The return value from this function indicates support for multiple modes (for example
32bit or 16bit mode). Valid modes start at 1. Mode 0 indicates no modes or don't care.

virtual uint32_t CADIDisassembler::getModeCount () =0

3.3.3 CADIDisassembler::getModeNames()

This function returns the name of all modes. A call is triggered to
CADIDisassemblerCB::ReceiveModeName() once for every mode.

virtual std::string CADIDisassembler::getModeNames (
 CADIDisassemblerCB *callback) =0
3-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.3.4 CADIDisassembler::getCurrentMode()

The return value indicates the current execution mode. If modes are not supported by
this target, the return value is 0. If modes are supported, the return value is between 0
and the value returned by GetModeCount().

virtual uint32_t CADIDisassembler::getCurrentMode() = 0

3.3.5 CADIDisassembler::getSourceReferenceForAddress()

The return value indicates source-level information. It triggers a call to
CADIDisassemblerCB::ReceiveSourceReference().

virtual CADIDisassemblerStatus CADIDisassembler::GetSourceReferenceForAddress (
 CADIDisassemblerCB *callback, const CADIAddr_t &address) = 0

where:

address is the requested address.

callback is the callback function to retrieve the disassembly.

3.3.6 CADIDisassembler::getAddressForSourceReference()

The return value indicates the first address corresponding to that generated for the given
source line.

virtual CADIDisassemblerStatus CADIDisassembler::getAddressForSourceReference(
 const char *sourceFile, uint32_t sourceLine,
 CADIAddr_t &address) = 0

where:

sourceLine is the source line number.

sourceFile is the source file name is returned as the first element of the 1-sized array.

address is set to the address corresponding to the source line.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-47

The Cycle Accurate Debug Interface
3.3.7 CADIDisassembler::getDisassembly()

Function enables standard type disassembly.

virtual CADIDisassemblerStatus CADIDisassembler::getDisassembly (
 CADIDisassemblerCB *callback, const CADIAddr_t &address,
 CADIAddr_t &nextAddr, const uint32_t mode,
 uint32_t desiredCount = 1) = 0

where:

address passes the address of the instruction to disassemble and to return the
address of the next valid instruction. Mandatory also if return value is
CADIDISASM_NO_INSTRUCTION or CADIDISASM_ILLEGAL_ADDRESS.

nextAddr returns the address of the next instruction. This must be used if the return
value is CADIDISASM_NO_INSTRUCTION or CADIDISASM_ILLEGAL_ADDRESS.

nextAddr must be a hint to the next address that might result in successful
disassembly.

callback is the callback function to retrieve the disassembly.

mode contains the execution mode. If 0, use the current execution mode.

desiredCount can be used to disassemble a sequence of instructions.
Up to desiredCount calls are made to
CADIDisassemblerCB::ReceiveDisassembly().

The first instruction is the instruction pointed to by address. The
sequence of disassembled instructions stops if there is an error (no
instruction or illegal address) occurs while attempting to disassemble an
instruction

3.3.8 CADIDisassembler::GetInstructionType()

This method determines whether the instruction is a call instruction.

virtual CADIDisassemblerStatus GetInstructionType(const CADIAddr_t &address,
 CADIDisassemblerInstructionType &insn_type) = 0

where:

address is used to pass the address of the instruction to check if it is a call.

insn_type is true if the instruction is a call instruction.
3-48 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.3.9 CADIDisassembler::ObtainInterface()

This is a default minimum implementation, to provide backwards-compatibility with
legacy code. This implementation assumes that there will be no other interfaces
implemented on the component providing CADIDisassembler.

virtual CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev)

See CADIDisassembler.h for implementation details.

3.3.10 The CADIDisassemblerCB class

This callback class must be implemented by the disassembly frontend.

class CADI_WEXP CADIDisassemblerCB : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADIDisassemblerCB2"; }
 static if_rev_t IFREVISION() { return 0; }
 virtual void ReceiveModeName(uint32_t mode, const char *modename) =0;
 virtual void ReceiveSourceReference(const CADIAddr_t &addr, const char
 *sourceFile, uint32_t sourceLine) =0;
 virtual void ReceiveDisassembly(const CADIAddr_t &addr,
 const char *opcodes, const char *disassembly) =0;
};

3.3.11 CADIDisassemblerCB::ReceiveModeName()

This callback is triggered by CADIDisassembler::GetModeNames().

virtual void ReceiveModeName(uint32_t mode, const char *modename) =0) = 0

where:

mode is the required mode.

modename returns the mode name string.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-49

The Cycle Accurate Debug Interface
3.3.12 CADIDisassemblerCB::ReceiveSourceReference()

This callback is triggered by CADIDisassembler::GetSourceReferenceForAddress(...).

virtual ReceiveSourceReference(const CADIAddr_t &addr, const char *sourceFile,
 uint32_t sourceLine) = 0

where:

addr is the address in the code.

sourceFile is the source code text.

sourceline is the line in the source that corresponds to the code at addr.

3.3.13 CADIDisassemblerCB::ReceiveDissassembly()

This callback is triggered by CADIDisassembler::GetDisassembly(...)).

virtual void ReceiveDisassembly(const CADIAddr_t &addr, const char *opcodes,
 const char *disassembly) = 0

where:

addr is the address in the code.

opcodes is the opcode text for the disassembly instruction.

disassembly is the text for the disassembly.
3-50 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.4 The CADIProfiling class

This class enables you to record and monitor profile information related to the
debugging session.

3.4.1 CADIProfiling::CADIProfileSetup()

This informs the target of the memory regions that are to be added. This function must
be called once before any number of calls to either of the following:

• CADIProfileControl(CADI_PROF_CNTL_Start)

• CADIProfileControl(CADI_PROF_CNTL_Stop).

virtual CADIReturn_t CADIProfiling::CADIProfileSetup (CADIProfileType_t type,
 uint32_t regionCount, CADIProfileRegion_t * region) =0

where:

type is the type of profiling (execution addresses or data access) to which these
regions apply:

• CADI_PROF_TYPE_Execution

• CADI_PROF_TYPE_Memory is used with CADIProfileGetMemory()

• CADI_PROF_TYPE_Trace is used with CADIProfileGetTrace().

regionCount is the number of regions.

region contains the memory areas being added. The caller allocates all memory.

The return value must be CADI_STATUS_IllegalArgument if any of the following are true:

• any region spans unpopulated memory

• any region spans illegal memory

• any region overlaps another region

• the address space of a region is not consistent with the profiling type.

The definition of CADIProfileRegion_t is:

typedef struct CADIProfileRegion_t
{
 int addressesAreValid;
 CADIOverlayId_t overlay;
 CADIMemSpace_t memorySpace;
 CADIAddrSimple_t start;
 CADIAddrSimple_t finish;
} CADIProfileRegion_t;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-51

The Cycle Accurate Debug Interface
3.4.2 CADIProfiling::CADIProfileControl ()

This starts, stops, or resets profiling by passing a member of the CADIProfileControl_t
enumeration.

virtual CADIReturn_t CADIProfiling::CADIProfileControl(
 CADIProfileControl_t control) =0

where:

control defines profiling behavior. The CADIProfileControl_t enumeration
values are:

• CADI_PROF_CNTL_Start

• CADI_PROF_CNTL_Stop

• CADI_PROF_CNTL_Reset (stop and then restart immediately).

Note
 Starting profiling resets any information that was saved. Stopping profiling does not
reset recorded information.

3.4.3 CADIProfiling::CADIProfileTraceControl ()

This starts, stops, and resets recording the execution trace.

virtual CADIReturn_t CADIProfiling::CADIProfileTraceControl (
 CADITraceBufferControl_t bufferArg, CADITraceControl_t control,
 CADITraceOverlayControl_t overlay) =0

where:

bufferArg is the buffer control.

control is the action to take when the buffer fills. The action might only be valid
for some types of trace. The enumerated values are:

• CADI_TRACE_CNTL_StartContinuous

• CADI_TRACE_CNTL_StartDiscontinuity

• CADI_TRACE_CNTL_Stop.

overlay selects overlay:

• If CADI_TRACE_OVERLAY_Memory, overlay events must be included in
the trace output at the expense of not being able to see inside the
trace manager.
3-52 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
• If CADI_TRACE_OVERLAY_Manager, the trace data must include the code
in the overlay manager code at the expense of not knowing the
details of memory regions that are overlaid.

3.4.4 CADIProfiling::CADIProfileGetExecution()

This gets the results of a profiling session for executable code.

If called before profiling is stopped or before a legal set of regions have been
established, this call must return CADI_STATUS_GeneralError.

virtual CADIReturn_t CADIProfiling::CADIProfileGetExecution (
 CADIProfileResultType_t * type, uint32_t regIndex, uint32_t regionSlots,
 uint32_t * regionCount, CADIProfileResults_t * region) =0

where:

type indicates whether percentage statistics or an absolute count is being
returned.

regIndex is the index into the target’s buffer.

regionSlots is the number of spaces requested to be filled. The target shall not fill
more than this number of elements in the region array.

regionCount is the actual number of regions setup by CADIProfileSetup plus one. The
additional count indicates the other category.

region corresponds to the regions setup by CADIProfileSetup. The array is
allocated (and deallocated, if applicable) by the caller and filled by the
target.

3.4.5 CADIProfiling::CADIProfileGetMemory()

This gets the results of a profiling session for memory accesses. If called before
profiling is stopped or before a legal set of profiling regions has been established, the
return value must be CADI_STATUS_GeneralError.

CADIProfileGetMemory() is similar to CADIProfileGetExecution() and is provided to
enable future versions to separately modify the call signatures of the two functions.

virtual CADIReturn_t CADIProfiling::CADIProfileGetMemory (
 CADIProfileResultType_t * type, uint32_t regIndex, uint32_t regionSlots,
 uint32_t * regionCount, CADIProfileResults_t * region) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-53

The Cycle Accurate Debug Interface
where:

type tells the caller whether percentage statistics or an absolute count is being
returned.

regIndex is the index into the target’s buffer.

regionSlots is the number of spaces requested to be filled. The target shall not fill
more than this number of elements in the region array.

regionCount is the actual number of regions setup by CADIProfileSetup plus one. The
additional count indicates the other category.

region corresponds to the regions setup by CADIProfileSetup. The array is
allocated (and deallocated, if applicable) by the caller and filled by the
target.

3.4.6 CADIProfiling::CADIProfileGetTrace()

This gets the results of a trace session. The block parameter contains the PC values that
have been executed by the target.

virtual CADIReturn_t CADIProfiling::CADIProfileGetTrace (uint32_t blockIndex,
 uint32_t blockSlots, uint32_t * blockCount, CADITraceBlock_t * block) =0

where:

blockIndex is the start index of the trace block.

blockCount is the number of samples being returned.

block is the list of executed addresses and overlay events in time sequential
order. The blocks in the array must be sorted by time executed and
block[0] must contain the most recently executed address or event. If
multiple program memory spaces exist (and execution uses multiple
spaces during execution), separate blocks must exist for each memory
space. The block array is allocated (and deallocated, if applicable) by the
caller and filled in by the target.

blockSlots is the number of spaces available to fill. The target must not fill more than
this number of elements in the block array.
3-54 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
CASITraceBlock_t and CASIAddr_t are defined as:

typedef struct CASITraceBlock_t
{
 CASITraceBlockType_t blockType;
 union
 {
 CASIAddr_t address;
 CASIOverlayId_t overlay; //uint32_t
 } u;
} CASITraceBlock_t;

typedef struct CASIAddr_t
{
 CASIMemSpace_t space; // Numeric designation of the memory space (uint32_t)
 CASIAddrSimple_t addr;// The actual memory address (uint32_t)
} CASIAddr_t;

3.4.7 CADIProfiling::CADIProfileGetRegAccesses()

Reads the number of read/write accesses for numberOfRegs registers, starting with
register index startReg.

virtual CADIReturn_t CADIProfiling::CADIProfileGetRegAccesses (
 uint32_t startRegID, uint32_t numberOfRegs,
 CADIRegProfileResults_t * reg, uint32_t & actualNumberOfRegs) =0

where:

startRegID is the index of the first register.

NumberOfRegs is the number of registers the profiling data is requested for.

reg on return, this contains the results.

Note
 reg must point to an array of objects of type

CADIResourceProfileResults_t with size numberOfRegs.

actualNumberOfRegs

on return, this contains the number of registers the profiling data was
actually read for.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-55

The Cycle Accurate Debug Interface
3.4.8 CADIProfiling::CADIProfileSetRegAccesses()

Writes the number of read/write accesses for numberOfRegs registers according to values
saved in reg, starting with register index startReg.

virtual CADIReturn_t CADIProfiling::CADIProfileSetRegAccesses (
 uint32_t startRegID, uint32_t numberOfRegs,
 CADIRegProfileResults_t * reg, uint32_t & actualNumberOfRegs) =0

where:

startRegID is the index of the first register.

NumberOfRegs is the number of registers the profiling data.

reg contains the results on return.

Note
 reg must point to an array of objects of type

CADIResourceProfileResults_t with size numberOfRegs.

actualNumberOfRegs

contains the number of updated registers.

3.4.9 CADIProfiling::CADIProfileGetMemAccesses()

Reads the number of read/write accesses for numberOfRegs memory units.

virtual CADIReturn_t CADIProfiling::CADIProfileGetMemAccesses (
 CADIAddrComplete_t startAddress, uint32_t numberOfUnits,
 CADIMemProfileResults_t * mem, uint32_t & actualNumberOfUnits) =0

where:

startAddress is the starting address for the memory units.

NumberOfUnitsis the number of memory units.

mem contains the results on return.

Note
 mem must point to an array of objects of type

CADIResourceProfileResults_t with size numberOfUnits.

actualNumberOfUnits

contains the number of memory units for which data was collected.
3-56 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.4.10 CADIProfiling::CADIProfileSetMemAccesses()

Writes the number of read/write accesses for numberOfUnits memory units according to
values saved in mem.

virtual CADIReturn_t CADIProfiling::CADIProfileSetMemAccesses (
 CADIAddrComplete_t startAddress, uint32_t numberOfUnits,
 CADIMemProfileResults_t * mem, uint32_t & actualNumberOfUnits) =0

where:

startAddress is the starting address for the memory units.

NumberOfUnits

is the number of memory units.

mem contains the values to use for the update.

Note
 mem must point to an array of objects of type

CADIResourceProfileResults_t with size numberOfUnits.

actualNumberOfUnits

contains the number of memory units for which data was collected.

3.4.11 CADIProfiling::CADIProfileGetAddrExecutionFrequency()

Reads the execution frequency for numberOfAddr disassembly addresses.

virtual CADIReturn_t CADIProfiling::CADIProfileGetAddrExecutionFrequency (
 uint64_t startAddr, uint32_t numberOfAddr, uint64_t * freq,
 uint32_t & actualNumberOfAddr) =0

where:

startAddr is the starting address for the memory units.

numberOfAddr

is the number of memory units.

freq contains the results.

Note
 freq must point to an array of uint32_t with size numberOfAddr.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-57

The Cycle Accurate Debug Interface
actualNumberOfAddr

contains the number of addresses for which the frequency was read.

3.4.12 CADIProfiling::CADIProfileSetAddrExecutionFrequency()

Writes the execution frequency for numberOfAddr disassembly addresses according to
values saved in freq.

virtual CADIReturn_t CADIProfiling::CADIProfileSetAddrExecutionFrequency (
 uint64_t startAddr, uint32_t numberOfAddr, uint64_t * freq,
 uint32_t & actualNumberOfAddr) =0

where:

startAddr is the starting address for the memory units.

numberOfAddr

is the number of memory units.

freq contains the values to use to update the disassembly addresses.

Note
 freq must point to an array of uint32_t with size numberOfAddr.

actualNumberOfAddr

contains the number of addresses updated.

3.4.13 CADIProfiling::CADIGetNumberOfInstructions()

Returns number of instructions of the target.

virtual uint32_t CADIProfiling::CADIGetNumberOfInstructions () =0

3.4.14 CADIProfiling::CADIProfileInitInstructionResultArray ()

This method prepares given array instructions by setting FID, name and
pathToInstructionInLISASource.

virtual CADIReturn_t CADIProfiling::CADIProfileInitInstructionResultArray (
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t * instructions,
 uint32_t & actualNumberOfInstructions) =0
3-58 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
where:

numberOfInstructions

is the desired number of array entries to be prepared.

instructions contains the values to use to update.

actualNumberOfInstructions

is the number of array entries actually prepared.

The definition of CADIInstructionProfileResults_t is:

typedef struct CADIInstructionProfileResults_t
{
 uint32_tFID;
 char name[CADI_DESCRIPTION];
 char pathToInstructionInLISASource[1024];
 uint64_texecutionCount;
} CADIInstructionProfileResults_t;

3.4.15 CADIProfiling::CADIProfileGetInstructionExecutionFrequency()

Reads the execution counts for numberOfInstructions instructions by setting the
appropriate executionCount entry in array instructions.

virtual CADIReturn_t CADIProfiling::CADIProfileGetInstructionExecutionFrequency(
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t * instructions,
 uint32_t & actualNumberOfInstructions) =0

where:

numberOfInstructions

is the desired number of array entries to read.

instructions contains the results.

actualNumberOfInstructions

is the number of array entries actually read.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-59

The Cycle Accurate Debug Interface
3.4.16 CADIProfiling::CADIProfileSetInstructionExecutionFrequency()

Writes the execution counts for numberOfInstructions instructions according to values
in instructions.

virtual CADIReturn_t CADIProfiling::CADIProfileSetInstructionExecutionFrequency(
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t * instructions,
 uint32_t & actualNumberOfInstructions) =0

where:

numberOfInstructions

is the desired number of array entries to write.

instructions contains the values to write.

actualNumberOfInstructions

is the number of array entries actually written.

3.4.17 CADIProfiling::CADIProfileRegisterResourceAccessCallBack()

Registers given resource access callback called if resource name is accessed as specified
by accessType.

virtual CADIReturn_t CADIProfiling::CADIProfileRegisterResourceAccessCallBack(
 CADIProfileResourceCallBack_t callBack, const char * name,
 CADIProfileResourceAccessType_t accessType) =0

3.4.18 CADIProfiling::CADIProfileUnregisterResourceAccessCallBack()

Unregisters the profile hazard callbacks.

virtual CADIReturn_t CADIProfiling::CADIProfileUnregisterResourceAccessCallBack(
 CADIProfileResourceCallBack_t callBack, const char * name) =0

3.4.19 CADIProfiling::CADIProfileRegisterCallBack()

Registers the profile hazard callbacks.

virtual CADIReturn_t CADIProfiling::CADIProfileRegisterCallBack (
 CADIProfileHazardCallBack_t callBack) =0
3-60 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.4.20 CADIProfiling::CADIProfileUnregisterCallBack()

Unregisters the hazard callback.

virtual CADIReturn_t CADIProfiling::CADIProfileUnregisterCallBack (
 CADIProfilingCallbacks *callbackObject) =0

3.4.21 CADIProfilingCallbacks::profileResourceAccess()

Profile resource callback.

virtual CADIReturn_t CADIProfilingCallback::profileResourceAccess (
 const char * name, CADIProfileResourceAccessType_t accessType) =0

3.4.22 CADIProfilingCallbacks::profileRegisterHazard()

Profile hazard callback.

virtual CADIReturn_t CADIProfilingCallback::profileRegisterHazard(
 CADIProfileHazardDescription_t desc) =0

desc is of type CADIProfileHazardDescription_t:

class CADIProfileHazardDescription_t
{
public:
 CADIProfileHazardDescription_t(CADIProfileHazardTypes_t type =
 CADI_PROF_HAZARD_RESOURCE_MAX_ACCESS,
 uint32_t numberOfAccesses = 0,
 uint32_t originInstructionFID = 0,
 uint32_t affectedInstructionFID = 0,
 const char *resource_par = "",
 const char *messages_par = "") :
 type(type), numberOfAccesses(numberOfAccesses),
 originInstructionFID(originInstructionFID),
 affectedInstructionFID(affectedInstructionFID){
 AssignString(resource, resource_par, CADI_DESCRIPTION_SIZE);
 AssignString(message, messages_par, CADI_DESCRIPTION_SIZE);
 }

 CADIProfileHazardTypes_t type;
 uint32_t numberOfAccesses; // number of accesses to affected resource
 uint32_t originInstructionFID; // FID of the originator
 // resource/instruction
 uint32_t affectedInstructionFID; // name of the affected
 // resource/instruction
 char resource[CADI_DESCRIPTION_SIZE];
 char message[CADI_DESCRIPTION_SIZE]; // hazard message
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-61

The Cycle Accurate Debug Interface
3.5 The CADICallback class

The CADICallbackObj class is the base class for the CADI callbacks in the component.

3.5.1 CADICallbackObj::appliOpen()

Opens an application and returns the ID of the stream.

virtual uint32_t CADICallbackObj::appliOpen (const char * sFileName,
 const char * mode) =0

where:

sFileName is name of the file to be opened.

mode indicates the permitted access on the file. See the ANSI C definition of
fopen for possible values of this parameter.

3.5.2 CADICallbackObj::appliInput ()

Input data from the stream opened by appliOpen().

virtual void CADICallbackObj::appliInput (uint32_t streamId, uint32_t count,
 uint32_t * actualCount, char * buffer) =0

where:

streamId is the stream identifier. Set to CADI_STREAMID_STDIN for stdin.

count is the number of characters requested.

actualCount is the number of characters supplied. This number must never be greater
than the number of characters requested. If this number is equal to the
number of characters requested, the caller can repeat the call to request
more input. A return value of 0 indicates end of file. A return of –1
indicates an error such as, for example, an invalid stream ID.

buffer is the characters stream. The buffer is not null terminated.
3-62 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.5.3 CADICallbackObj::appliOutput ()

Write data to the stream opened by appliOpen().

virtual void CADICallbackObj::appliOutput (uint32_t streamId, uint32_t count,
 uint32_t * actualCount, const char * buffer) =0

where:

streamId is the stream identifier and must be either CADI_STREAMID_STDOUT or
CADI_STREAMID_STDERR.

count is the number of characters to output.

actualCount is the number of characters output to the file. A return value of 0 indicates
end of file. A return of –1 indicates an error.

buffer contains the characters to output. This buffer can contain null characters
and is not null terminated.

3.5.4 CADICallbackObj::appliClose()

Note
 This function is deprecated. Do not use it in new models.

Close the stream opened by appliOpen(). If the return value is 1, the file was
successfully closed. A return value of –1 indicates an error.

virtual uint32_t CADICallbackObj::appliClose (uint32_t streamID) =0

3.5.5 CADICallbackObj::doString()

Output a string from the debugger.

virtual void CADICallbackObj::doString (char * stringArg) =0

3.5.6 CADI::CADICaptureSemihosting()

Specify that this debugger and this callback object wants to capture the semihosting
input exclusively. The tool will forward all inputs through appliInput callback to this
debugger exclusively (the outputs through appliOutput are broadcast).

virtual CADIReturn_t CADI::CADICaptureSemihosting(CADICallbackObj * callback) =0

where:

callback is the callback object that will capture the semihosting.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-63

The Cycle Accurate Debug Interface
3.5.7 CADI::CADIConsoleGetChannels()

This is a reverse console function.

virtual CADIReturn_t CADIConsoleGetChannels(uint32_t startIndex,
 uint32_t desiredCount, uint32_t *actualCount,
 CADIConsoleChannel_t *channels) =0

where:

startIndex is the start index in the list of channels.

desiredCount is the number of channels to return.

actualCount is the actual number of channels returned.

channels is an array of channels.

3.5.8 CADI::CADIConsoleNotifyInput()

This is a reverse console function.

virtual CADIReturn_t CADIConsoleNotifyInput(uint32_t streamID) = 0

where:

streamID is the identifier for the requested stream.

3.5.9 CADI::CADISemiHostingGetInputChannels()

This is a reverse semihosting function.

virtual CADISemiHostingGetInputChannels(uint32_t startIndex,
 uint32_t desiredCount, uint32_t *actualCount,
 CADISemiHostingInputChannel_t *channels) =0

where:

startIndex is the start index in the list of channels.

desiredCount is the number of channels to return.

actualCount is the actual number of channels returned.

channels is an array of channels.
3-64 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.5.10 CADI::CADISemiHostingSendInput()

This is a reverse semihosting function.

virtual CADIReturn_t CADISemiHostingSendInput(uint32_t channelID,
 uint32_t inputCount, uint32_t *input) =0

where:

channelID is identifier of the channel to use.

inputCount is number of values to send.

input is an array containing the values to send.

3.5.11 CADICallbackObj::modeChange()

Set a new execution mode from the callback object.

virtual void CADICallbackObj::modeChange (uint32_t newMode,
 CADIBptNumber_t bptNumber) =0

where:

newMode is one of the CADI_EXECMODE_* constants (see CADI_EXECMODE_t
enumeration on page 3-90).

bptNumber is the breakpoint number. This value is used if the debugger has an action
associated with that particular breakpoint. Temporary breakpoints, for
example, might run a script after the breakpoint was hit.

3.5.12 CADICallbackObj::reset()

Reset the execution from the callback object. See CADIExecGetResetLevels() for a
description of the levels.

virtual void CADICallbackObj::reset (uint32_t resetLevel) =0

3.5.13 CADICallbackObj::cycleTick()

Deprecated. Do not use.

virtual void CADICallbackObj::cycleTick (void) =0
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-65

The Cycle Accurate Debug Interface
3.5.14 CADICallbackObj::killInterface()

Deprecated. Do not use.

virtual void CADICallbackObj::killInterface (void) =0

3.5.15 CADICallbackObj::bypass()

Reserved for future use by the callback object.

virtual uint32_t CADICallbackObj::bypass (uint32_t commandLength,
 const char * command, uint32_t maxResponseLength, char * response) =0

3.5.16 CADICallbackObj::lookupSymbol()

Reserved for future use by the callback object.

virtual uint32_t CADICallbackObj::lookupSymbol (uint32_t symbolLength,
 const char * symbol, uint32_t maxResponseLength, char * response) =0

3.5.17 CADICallbackObj::refresh()

Use this callback whenever the state of a target changes spontaneously while the model
is in the stopped state. Do not use it with a modeChange(Stop), modeChange(Error) or
modeChange(ResetDone) callback.

A target can notify a debugger to update its display if, for example, a register value
changes in the target because it was edited by a debugger. The target uses
refresh(REGISTERS) to notify the other debuggers of the register change. If, however, a
target hits a breakpoint and stops, it must call the necessary modeChange() callbacks
instead of the refresh() callbacks.

virtual void CADICallbackObj::refresh (uint32_t refreshReason) =0

refreshReason is a combination of the CADI_REFRESH_REASON_t constants.

enum CADIRefreshReason_t
{
 CADI_REFRESH_REASON_MEMORY = 1,

 // also for CADIGetInstructionCount/CADIGetCycleCount
 CADI_REFRESH_REASON_REGISTERS = 2,

 CADI_REFRESH_REASON_BREAKPOINTS = 4,
 CADI_REFRESH_REASON_PARAMETERS = 8,

 // something changed which is not one of the above
3-66 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 CADI_REFRESH_REASON_OTHER = (1 << 31),

 // all of the above at the same time
 CADI_REFRESH_REASON_ALL = 0xFFFFFFFF
};

See CADI_EXECMODE_t enumeration on page 3-90 for details on the relationship
between modeChange() callbacks and refresh() callbacks. A target must not call this
function while the simulation is running.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-67

The Cycle Accurate Debug Interface
3.6 CADIBroker

This interface allows connecting to existing simulations and creating new simulations.

Note
 The CADI broker owns all CADI simulations and no other class is permitted to delete
them.

If a CADI factory creates a simulation, it must transfer the pointer to the new simulation
to the broker.

If the simulation is shut down or killed, the broker is responsible for deleting the
simulation. This must be done by processing GetSimulationInfos() and checking for
running simulations (check that the reference count is 0 and any other
implementation-specific conditions are in the appropriate state).

Example 3-5 The CADIBroker class

class WEXP CADIBroker: public CAInterface
{
public:
static if_name_t IFNAME() { return "eslapi.CADIBroker2"; }
static if_rev_t IFREVISION() { return 0; }
virtual ~CADIBroker() {}
virtual void Release () = 0;
virtual CADIReturn_t GetSimulationFactories(uint32_t startFactoryIndex,
uint32_t desiredNumberOfFactories, CADISimulationFactory **factoryList,
uint32_t *actualNumberOfFactories) = 0;
virtual CADIReturn_t GetSimulationInfos(uint32_t startSimulationInfoIndex,
uint32_t desiredNumberOfSimulations, CADISimulationInfo_t *simulationList,
uint32_t *actualNumberOfSimulations) = 0;
virtual CADISimulation* SelectSimulation(uint32_t simulationId,
CADIErrorCallback* errorCallbackObject, CADISimulationCallback*
simulationCallbackObject, char simulationCallbacksEnable[CADI_SIM_CB_Count])=0;
};

3.6.1 CADIBroker::Release()

Release this simulation. A debugger is expected to release the simulation as soon as the
CADI target is obtained.

virtual void Release() =0;
3-68 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.6.2 CADIBroker::GetSimulationFactories()

Returns a list of possible simulation factories provided by this simulation broker. This
list is static for a given CADIBroker.

Because this function copies an array of CADISimulationFactory pointers, the caller must
be responsible for calling ReleaseRef() on each of the referenced objects.

virtual CADIReturn_t CADIBroker::GetSimulationFactories(
 uint32_t startFactoryIndex,
 uint32_t desiredNumberOfFactories,
 CADISimulationFactory **factoryList,
 uint32_t *actualNumberOfFactories) = 0;

where:

startFactoryIndex

is the index of first factory to return. If startFactoryIndex exceeds the
maximum factory index, CADI_STATUS_IllegalArgument is returned.

desiredNumberOfFactories

is the desired number of factories to return.

Caution
 The factoryList array must be at least this size.

factoryList is the array of factory pointers returned. This array must be allocated by
caller. The minimum size of this array is desiredNumberOfFactories.

Note
 The returned factory pointers must not be used to delete the factories. The

factories are owned by the broker.

actualNumberOfFactories

is the actual number of factories returned.

3.6.3 CADIBroker::GetSimulationInfos()

Returns a list of simulation infos informing about the running simulations managed by
this CADI simulation broker.

Note
 This list may change dynamically during lifetime of this CADIBroker.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-69

The Cycle Accurate Debug Interface
virtual CADIReturn_t CADIBroker::GetSimulationInfos(
 uint32_t startSimulationInfoIndex,
 uint32_t desiredNumberOfSimulations,
 CADISimulationInfo_t *simulationList,
 uint32_t *actualNumberOfSimulations) = 0;

where:

startSimulationInfoIndex

is the index of the first simulation info to return.

If startSimulationInfoIndex exceeds the maximum simulation info
index, CADI_STATUS_IllegalArgument is returned.

desiredNumberOfSimulations

is the desired number of simulation infos to return.

Caution
 Array simulationInfoList must have at least this size.

simulationList

is the array of simulation infos returned. This array must be allocated by
the caller.

Note
 The minimum size of this array is desiredNumberOfSimulationInfos.

actualNumberOfSimulations

is the actual number of simulation infos returned.

3.6.4 CADIBroker::SelectSimulation()

This method enables connecting to the simulation selected by the simulation identifier.
A pointer to the simulation is returned on success. If no simulation with the given id is
managed by this broker, 0 is returned.

virtual CADISimulation* CADIBroker::SelectSimulation(uint32_t simulationId,
 CADIErrorCallback* errorCallbackObject,
 CADISimulationCallback* simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;
3-70 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
where:

simulationId

is the id of the simulation to be returned. This is part of the respective
entry in the list of the simulation infos simulationList returned by
GetSimulationInfos().

errorCallbackObject

is the error callback to be used for signaling error conditions.

simulationCallbackObject

is the callback object to be used for signaling model-wide conditions.

This callback might be called during execution of SelectSimulation() to,
for example, signal that the simulation wants to shut down.

Note
 This callback might be called during execution of SelectSimulation() to,

for example, signal that the simulation wants to shut down.

simulationCallbacksEnable

The elements of this array enable or disable specific simulation callbacks.
The simulation must always check if the callbacks are enabled or not and
these should not be called if they are disabled. The listener might not
want to be called in certain cases.

return value

is the pointer to the simulation or NULL.

3.6.5 CADIErrorCallback::Error()

The CADIErrorCallback class is the base class for CADI error callbacks. The function
Error() signals an error to the CADI listeners.

virtual void CADIErrorCallback::Error(CADIFactorySeverityCode_t severity,
 CADIFactoryErrorCode_t errorCode,
 uint32_t erroneousParameterId,
 const char *message) = 0;

where:

severity is the severity of the error.

errorCode is the error code.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-71

The Cycle Accurate Debug Interface
erroneousParameterId

If this error refers to a parameter, this is the id of the parameter that
caused the error.

message is the error message text.

3.6.6 Creating the CADIBroker

Example 3-6 shows the prototypes for the functions that create the CADIBroker.

Example 3-6 Creating the CADIBroker

extern "C"
{
// Global function exported by a dynamically loaded object.
// This function must exist in a dynamically loaded object (DLL/.so).
// It allows the client to instantiate the CADIBroker.
CADI_WEXP eslapi::CADIBroker * CreateCADIBroker();
}

The prototype type definition CADIBroker * (CreateCADIBroker_t)() enables a global
function to instantiate a broker. This is the type of the CreateCADIBroker global C
function that a client locates from a dynamically loaded object. Clients must locate this
symbol and cast it as a pointer to CreateCADIBroker_t:

CreateCADIBroker_t:
void * entry = lookup_symbol(dll, "CreateCADIBroker");
CADIBroker *broker = ((*CADIBroker::CreateCADIBroker_t)entry)();
3-72 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.7 The CADISimulationFactory class

The CADISimulationFactory class provides the mechanism used to start new
simulations.

Example 3-7 CADISimulationFactory class

class CADI_WEXP CADISimulationFactory : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADISimulationFactory2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }

 virtual void Release () = 0;
 virtual const char* GetName() = 0;
 virtual CADIReturn_t GetParameterInfos(uint32_t startParameterInfoIndex,
 uint32_t desiredNumberOfParameterInfos,
 CADIParameterInfo_t *parameterInfoList,
 uint32_t *actualNumberOfParameterInfos) = 0;

 virtual CADISimulation *Instantiate(CADIParameterValue_t *parameterValues,
 CADIErrorCallback *errorCallbackObject,
 CADISimulationCallback *simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;
};

3.7.1 CADISimulationFactory::Release()

Release this simulation. A debugger is expected to release the simulation factory as
soon as the CADI target is obtained.

virtual void CADISimulationFactory::Release() =0;

3.7.2 CADISimulationFactory::GetParameterInfos()

Returns a list of simulation infos informing about the running simulations managed by
this CADI simulation broker.

Note
 This list may change dynamically during lifetime of this CADIBroker.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-73

The Cycle Accurate Debug Interface
virtual CADIReturn_t CADISimulationFactory::GetSimulationInfos(
 uint32_t startSimulationInfoIndex,
 uint32_t desiredNumberOfSimulations,
 CADISimulationInfo_t *simulationList,
 uint32_t *actualNumberOfSimulations) = 0;

where:

startSimulationInfoIndex

is the index of the first simulation info to return. If
startSimulationInfoIndex exceeds the maximum simulation info index,
CADI_STATUS_IllegalArgument is returned

desiredNumberOfSimulations

is the desired number of simulation infos to return.

Caution
 Array simulationInfoList must have at least this size.

simulationList

is the array of simulation infos returned. This array must be allocated by
the caller.

Note
 The minimum size of this array is desiredNumberOfSimulationInfos.

actualNumberOfSimulations

is the actual number of simulation infos returned.

3.7.3 CADISimulationFactory::Instantiate()

This method instantiate a simulation based on the given parameter values. Errors
occurring during system initialization are signaled through the given error callback
CADIErrorCallback.

Note
 This call might require a significant amount of time to complete. The call does not
return until the instantiation is completed.
3-74 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
virtual CADISimulation * CADISimulationFactory::Instantiate(
 CADIParameterValue_t *parameterValues,
 CADIErrorCallback *errorCallbackObject,
 CADISimulationCallback *simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;

where:

parameterValues

are the parameter values for the simulation.

errorCallbackObject

is the error callback object to be used for signaling error conditions.

simulationCallbackObject

is the callback object to be used for signaling model-wide conditions.

simulationCallbacksEnable

The elements of this array enable or disable specific simulation callbacks.

Note
 The simulation must always check if the callbacks are enabled or not and

these must not be called if they are disabled. The listener might not want
to be called in certain cases.

return value

is the pointer to the created simulation or NULL.

3.7.4 The CADISimulationCallback class

CADISimulationCallback is the base class for simulation callbacks. It enables
registering as a listener for system-wide callbacks.

class CADI_WEXP CADISimulationCallback :
 public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADISimulationCallback2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 virtual void simMessage(const char *message) = 0;
 virtual void simShutdown() = 0;
 virtual void simKilled() = 0;
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-75

The Cycle Accurate Debug Interface
3.7.5 CADISimulationCallback::simMessage()

This method enables sending system-wide messages to all listeners.

virtual void CADISimulationCallback::simMessage(const char *message) = 0;

where:

message is the message text to send to the listeners.

3.7.6 CADISimulationCallback::simShutdown()

This method enables the simulation to signal that it wants to shut down. All clients are
requested to unregister their callback handlers, and release any references to the
simulation.

virtual void CADISimulationCallback::simShutdown() = 0;

3.7.7 CADISimulationCallback::simKilled()

The simulation is being forcedly terminated. After this call returns, the client must
cease all communication with the simulation. This callback is intended to provide
last-ditch recovery in situations where it is not possible to go through the clean
simShutdown() route.

virtual void CADISimulationCallback::simKilled() = 0;

3.7.8 The CADIErrorCallback class

CADIErrorCallback is the base class for error callbacks.

class CADI_WEXP CADIErrorCallback : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADIErrorCallback2"; }

 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }

 // This message is called to signal an error to the listeners
 virtual void Error(CADIFactorySeverityCode_t severity,
 CADIFactoryErrorCode_t errorCode, uint32_t erroneousParameterId,
 const char *message) = 0;
};
3-76 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.7.9 CADIErrorCallback::Error()

This method is called to signal an error to the listeners.

virtual void Error(CADIFactorySeverityCode_t severity,
 CADIFactoryErrorCode_t errorCode, uint32_t erroneousParameterId,
 const char *message) = 0;

where:

severity is the severity of the error (severities are defined in the
CADIFactorySeverityCode_t type).

errorCode is the error code (codes are defined in the CADIFactoryErrorCode_t type).

erroneousParameterId

if this error refers to a parameter, this is the id of the parameter causing
the error.

message is the error message.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-77

The Cycle Accurate Debug Interface
3.8 CADI data structures

This section describes some of the data structures and enumerations that are used by the
CADI interface. See the CADITypes.h file for details on data structures that are not
covered in this section. This section describes the following structures:

• CADITargetFeatures_t structure

• CADICallbackType_t on page 3-81

• CADICallbackObj on page 3-82

• CADIReg_t on page 3-82

• CADIRegInfo_t on page 3-83

• CADIRegGroup_t on page 3-85

• CADIMemSpaceInfo_t on page 3-86

• CADIMemBlockInfo_t on page 3-87

• CADIPipeStage_t on page 3-89

• CADIPipeStageContentInfo_t on page 3-89

• CADIBptConfigure_t on page 3-89

• CADIDisassemblerStatus on page 3-90

• CADI_EXECMODE_t enumeration on page 3-90

• CADIExecMode_t structure on page 3-91

• CADIFactoryErrorCode_t on page 3-92

• CADIFactorySeverityCode_t on page 3-93

• CADISimulationInfo_t on page 3-93.

• CADIParameterInfo_t and CADIParameterValue_t on page 3-95

• CADIReturn_t on page 3-96

• CADIBptCondition_t and CADIBptConditionOperator_t on page 3-97

• CADIBptRequest_t on page 3-94.

3.8.1 CADITargetFeatures_t structure

The CADITargetFeatures_t structure entries are:

char targetName[CADI_NAME_SIZE]

is the target name.

char targetVersion[CADI_NAME_SIZE]

is the target version.

uint32_t nrBreakpointsAvailable

is the number of breakpoints available for the interface.
3-78 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
uint8_t fOverlaySupportAvailable

indicates whether overlay is supported.

uint8_t fProfilingAvailable

indicates whether profiling is supported for this interface.

uint32_t nrResetLevels

is the number of reset levels (for example, hard or soft reset).

uint32_t nrExecModes

is the number of execution modes.

uint32_t nrExceptions

is the number of exceptions.

uint32_t nrMemSpaces

is the number of memory spaces.

uint32_t nrRegisterGroups

is the number of register groups.

uint32_t nrPipeStages

is the number of pipeline stages.

uint32_t nPCRegNum

is the number of the register that is used for the program counter.

uint16_t handledBreakpoints

is the number of handled breakpoints.

uint32_t nrOfHWThreads

is the number of hardware threads.

bool nExtendedTargetFeaturesRegNumValid

indicates whether extended target features are supported for registers.

uint32_t nExtendedTargetFeaturesRegNum

is the register id of a string register which contains a static string
consisting of colon separated tokens or arbitrary non-colon-ASCII char
such as FOO:BAR:ANSWER=42:STARTUP=0xe000.

The set and semantics of supported tokens are out of scope of the CADI
interface itself. There is no length restriction on this feature string.
Having such a string register is optional. Models which do not provide it
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-79

The Cycle Accurate Debug Interface
must set nExtendedTargetFeaturesRegNumValid to false. In this case,
the value of this field must be ignored. Having no such register and
having a string register that provides an empty string is equivalent. The
following tokens (where n denotes a decimal unsigned 32 bit integer) are
defined for CADI 2.0:

PC_MEMSPACE_REGNUM=n

Register ID of the a register which contains the memory space
ID of the current PC described in nPCRegNum.

SP_REGNUM=n:

Register ID of the stack pointer (or a register with similar
semantics).

LR_REGNUM=n:

Register ID of the link register (or a register with similar
semantics).

STACK_MEMSPACE_ID=n:

CADI memory space id used for stack unwinding

LOCALVAR_MEMSPACE_ID=n:

CADI memory space id used for local variables

GLOBALVAR_MEMSPACE_ID=n:

CADI memory space id used for global vars

Targets that do not have one of the features described above simply will
not expose such a token.

char canonicalRegisterDescription

is a string that describes the contents of the canonicalRegisterNumber
field of CADIRegInfo_t. Canonical register numbers are intended to be
target-specific numbers to identify registers in the device by some
scheme other than the DWARF index. The format of this field is
domain_name/string. The domain_name is that of the organization
specifying the scheme. The string part is left to the organization to
specify. An example would be arm.com/my/reg/numbers.

char canonicalMemoryDescription[CADI_DESCRIPTION_SIZE]

is a string that describes the contents of the canonicalMemoryNumber field
of CADIMemSpaceInfo_t. Canonical memory numbers are intended to be
target-specific numbers to identify memory spaces in the device by some
scheme other than the DWARF index. The format of this field is
'domain_name/string'. The domain_name is that of the organization
specifying the scheme. The string part is left to the organization to
specify such as, for example, arm.com/my/mem/numbers.
3-80 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
uint8_t canCompleteMultipleInstructionsPerCycle

is true if the target can complete multiple instructions in a single
simulation cycle.

3.8.2 CADICallbackType_t

The values in this type indicate the callback type used by CADIXfaceAddCallback().

enum CADICallbackType_t
{
 CADI_CB_AppliOpen = 0, /* Open the specified filename and return a
 streamID that the AppliInput and Applioutput functions can use. */

 CADI_CB_AppliInput = 1, /* This is used for input.
 Data travels from the host to the target. */

 CADI_CB_AppliOutput = 2, /* This is used for output.
 Data travels from the target to the host. */

 CADI_CB_AppliClose = 3, // Close the stream specified by streamID.

 CADI_CB_String = 4, /* The target system calls this to have the
 debugger display a string. Among other things, it can be used for
 things like hazard and stall indication. */

 CADI_CB_ModeChange = 5, /* Call this when the target changes execution
 modes as defined by CADIExecGetModes. The bptNumber parameter is
 ignored if the mode is not CADI_EXECMODE_Bpt. */

 CADI_CB_Reset = 6, // Called when the target is reset.

 CADI_CB_CycleTick = 7, /* This callback, when installed, is
 called after every cycle that is executed by the target.*/

 CADI_CB_KillInterface = 8, /* This call must ALWAYS be enabled. This is
 called when the target is dying. No further communication with the
 target is allowed after this callback is made. */

 CADI_CB_Bypass = 9, /* Callback to bypass the interface, to allow
 any string-based communication with the debugger.*/

 CADI_CB_LookupSymbol = 10, // Lookup a symbol from the debugger

 CADI_CB_DisasmNotifyModeChange = 11, // Target mode was changed.

 CADI_CB_DisasmNotifyFileChange = 12, // Target file was changed.

 CADI_CB_Refresh = 13, /* Used to notify debugger that it needs to
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-81

The Cycle Accurate Debug Interface
 refresh its state (e.g., register values changed) */

 CADI_CB_ProfileResourceAccess = 14, // Profile resource callback

 CADI_CB_ProfileRegisterHazard = 15, // Register hazard callback

 CADI_CB_Count = 16,

 CADI_CB_ENUM_MAX = 0xFFFFFFFF
 };

3.8.3 CADICallbackObj

The CADICallbackObj definition is:

class CADICallbackObj
{
public:
 virtual ~CADICallbackObj(){}
 virtual uint32_t appliOpen(const char *sFileName, const char *mode) = 0;
 virtual void appliInput(uint32_t streamId, uint32_t count,
 uint32_t *actualCount, char *buffer) = 0;
 virtual void appliOutput(uint32_t streamId, uint32_t count,
 uint32_t *actualCount, const char *buffer) = 0;
 virtual uint32_t appliClose(uint32_t streamID) = 0;
 virtual void doString(char *stringArg) = 0;
 virtual void modeChange(uint32_t newMode, CADIBptNumber_t bptNumber) = 0;
 virtual void reset(uint32_t resetLevel) = 0;
 virtual void cycleTick(void) = 0;
 virtual void killInterface(void) = 0;
 virtual uint32_t bypass(uint32_t commandLength, const char * command,
 uint32_t maxResponseLength, char * response) { return 0; }
 virtual uint32_t lookupSymbol(uint32_t symbolLength, const char * symbol,
 uint32_t maxResponseLength, char * response) { return 0; }
 };

3.8.4 CADIReg_t

This data buffer is used to read and write register values. The register data is packed,
byte-by-byte, into the bytes array. Data is always encoded in little endian mode. For
example, the lowest address in the bytes array contains the least significant value of the
register.
3-82 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
Example 3-8 CADIReg_t

struct CADIReg_t
{
public: // methods
 CADIReg_t(uint32_t regNumber = 0, uint64_t bytes_par = 0, uint16_t offset128 = 0,
 bool isUndefined = false, CADIRegAccessAttribute_t attribute = CADI_REG_READ_WRITE) :
 regNumber(regNumber), offset128(offset128), isUndefined(isUndefined),
 attribute(attribute)
 {
 for(int i=0; i < 8; ++i)
 bytes[i] = uint8_t(bytes_par >> (i * 8));
 }

public: // data
 uint32_t regNumber; /* From debugger to target: Register ID to be read/written. */
 uint8_t bytes[16]; /* From target to debugger for reads, from debugger to target for writes:
 Value to be read/written in little endian
 (regardless of the endianness of the host or the target). */
 uint16_t offset128; /* From debugger to target:
 Specify which part of the register value to read/write for
 long registers > 128 bits. Measured in multiples of 128 bits,
 e.g. 1 means bytes[0..15] contain bits 128..255). The actual bitwidth of
 non-string registers is determined by the 'bitsWide' field in
 CADIRegInfo_t. Similarly for string registers, specify the offset in
 units of 16 chars into the string which is to be read or written,
 e.g. offset128=1 means read/write str[16..31]. Reads to offsets beyond
 the length of the string are explicitly allowed and need to
 result in bytes[0..15] being all zero. Writes may make the string longer
 by writing nonzero data to offsets greater than the current length of a
 string. Writes may make a string shorter by writing data containing at
 least one zero byte to a specific offset. Write sequences always write
 lower offsets before higher offsets and must always be terminated by at
 least one write containing at least one zero byte.
 Unused chars in bytes[0..15] (after the terminating zero byte) should be
 set to zero.
 The 'bitsWide' field in CADIRegInfo_t is ignored for string registers.*/
 bool isUndefined; /* From target to debugger: If true the value of the register is
 completely undefined. Bytes[0..15] should be ignored. */
 CADIRegAccessAttribute_t attribute; /* Undefined for CADI2.0. Targets and Debuggers should set
 this to 0. */
};

3.8.5 CADIRegInfo_t

This structure defines information about a register.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-83

The Cycle Accurate Debug Interface
Example 3-9 CADIRegInfo_t

struct CADIRegInfo_t
{
public: // methods
 CADIRegInfo_t(const char *name_par = "", const char *description_par = "",
 uint32_t regNumber = 0, uint32_t bitsWide = 0,
 int32_t hasSideEffects = 0,
 CADIRegDetails_t details = CADIRegDetails_t(),
 CADIRegDisplay_t display = CADI_REGTYPE_HEX,
 CADIRegSymbols_t symbols = CADIRegSymbols_t(),
 CADIRegFloatFormat_t fpFormat = CADIRegFloatFormat_t(),
 uint32_t lsbOffset = 0, uint32_t dwarfIndex = ~0U,
 bool isProfiled = false, bool isPipeStageField = false,
 uint32_t threadID = 0,
 CADIRegAccessAttribute_t attribute = CADI_REG_READ_WRITE,
 uint32_t canonicalRegisterNumber_ = 0):
 regNumber(regNumber), bitsWide(bitsWide),
 hasSideEffects(hasSideEffects), details(details), display(display),
 symbols(symbols), fpFormat(fpFormat), lsbOffset(lsbOffset),
 dwarfIndex(dwarfIndex), isProfiled(isProfiled),
 isPipeStageField(isPipeStageField), threadID(threadID),
 attribute(attribute),
 canonicalRegisterNumber(canonicalRegisterNumber_)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }

public: // data
 char name[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION_SIZE];
 uint32_t regNumber; // Register ID. Used by read/write
 // functions to identify the register.
 uint32_t bitsWide; /* Bitwidth of non-string register.
 Ignored for string registers (targets
 should specify 0 for string registers). */
 int32_t hasSideEffects;
 CADIRegDetails_t details;
 CADIRegDisplay_t display; // Default is "HEX".
 CADIRegSymbols_t symbols; // For type "symbolic" only.
 CADIRegFloatFormat_t fpFormat; // For type "float" only.
 uint32_t lsbOffset; /* Offset of the least significant bit
 relative to bit 0 in the parent register
 (or 0 if there is no parent).*/
 enum { CADI_REGINFO_NO_DWARF_INDEX = 0xffffffff };
 uint32_t dwarfIndex; /* DWARF register index
 (CADI_REGINFO_NO_DWARF_INDEX if register has no
 DWARF register index).*/
3-84 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 bool isProfiled; // Profiling info is available
 bool isPipeStageField; /* Is pipe stage field, also true
 for pc and contentInfoRegisterId
 in CADIPipeStage_t. */
 uint32_t threadID; // Hardware thread ID, always set to 0.
 CADIRegAccessAttribute_t attribute; ///< Register access attributes.

 uint32_t canonicalRegisterNumber; /* The canonical register
 number as defined by the scheme specified in
 CADITargetFeatures_t::canonicalRegisterDescription.
 If the scheme is the empty string then no
 meaning can be ascribed to this field. */

};

3.8.6 CADIRegGroup_t

Register group description. All fields are target to debugger fields.

Example 3-10 CADIRegGroup_t

struct CADIRegGroup_t
{
public: // methods
 CADIRegGroup_t(uint32_t groupID = 0,
 const char *description_par = "", uint32_t numRegsInGroup = 0,
 const char *name_par = "", bool isPseudoRegister = false) :
 groupID(groupID), numRegsInGroup(numRegsInGroup),
 isPseudoRegister(isPseudoRegister)
 {
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 AssignString(name, name_par, CADI_NAME_SIZE);
 }

public: // data
 uint32_t groupID;
 char description[CADI_DESCRIPTION_SIZE];
 // This is the total number of registers in the group, including any
 // registers that are not direct children of this group.
 uint32_t numRegsInGroup;
 char name[CADI_NAME_SIZE];
 bool isPseudoRegister; /* True means that this register group is not
 displayed in the register window in the debugger.
 The registers in this group are probably serving other
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-85

The Cycle Accurate Debug Interface
 purposes such as pipeline stage fields or other special
 purpose registers (like the PC memory space). */
 };

3.8.7 CADIMemSpaceInfo_t

Memory space info data. Each memory space (program and data, for example) in the
system has a separate set of addresses. Any location in the memory of a device can
be fully specified with no less than an indication of the memory space and the
address within that space. Only one space can have the isProgramMemory flag set.

Example 3-11 CADIMemSpaceInfo_t

struct CADIMemSpaceInfo_t
{
public: // methods
 CADIMemSpaceInfo_t(const char *memSpaceName_par = "", const char *description_par = "",
 uint32_t memSpaceId = 0, uint32_t bitsPerMau = 0,
 CADIAddrSimple_t maxAddress = 0, uint32_t nrMemBlocks = 0,
 int32_t isProgramMemory = false, CADIAddrSimple_t minAddress = 0,
 int32_t isVirtualMemory = false, uint32_t isCache = false,
 uint8_t endianness = 0, uint8_t invariance = 0,
 uint32_t dwarfMemSpaceId = NO_DWARF_ID) :
 memSpaceId(memSpaceId), bitsPerMau(bitsPerMau), maxAddress(maxAddress),
 nrMemBlocks(nrMemBlocks), isProgramMemory(isProgramMemory), minAddress(minAddress),
 isVirtualMemory(isVirtualMemory), isCache(isCache), endianness(endianness),
 invariance(invariance), dwarfMemSpaceId(dwarfMemSpaceId)
 {
 AssignString(memSpaceName, memSpaceName_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }

public: // data
 char memSpaceName[CADI_NAME_SIZE]; // Memory space name.
 char description[CADI_DESCRIPTION_SIZE]; // Memory space description.
 uint32_t memSpaceId; // Memory space ID.
 uint32_t bitsPerMau; // Bits per Minimum Addressable Unit (e.g., 8 for byte).
 CADIAddrSimple_t maxAddress; // Maximum address of this memory space.
 uint32_t nrMemBlocks; // Number of memory blocks.
 int32_t isProgramMemory; // Only one space can have the isProgramMemory flag set.
 CADIAddrSimple_t minAddress; // Minimum address of this memory space.
 int32_t isVirtualMemory; // This memory space is a Virtual/Physical space.
 uint32_t isCache; // This memory space is a cache.

 uint8_t endianness; // endianness, 0=mono-endian (arch defined), 1=LE, 2=BE
 uint8_t invariance; // unit of invariance in bytes, 0=fixed invariance (arch defined)
3-86 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 enum { NO_DWARF_ID = 0xffffffff };
 uint32_t dwarfMemSpaceId; /* DWARF memory space ID (NO_DWARF_ID
 if memory space has no DWARF memory space ID). */

 uint32_t canonicalMemoryNumber; /* The canonical memory number as defined by the scheme
 specified in
 CADITargetFeatures_t::canonicalMemoryDescription.
 If the scheme is the empty string then no meaning can be
 ascribed to this field. */
};

3.8.8 CADIMemBlockInfo_t

This is a single block of memory addresses (inside a single memory space) that all have
the same properties. For example, different memory blocks in the same memory space
may be read-only. Blocks can be nested within one another. Blocks at the root level
have CADI_MEMBLOCK_ROOT as the parent ID. Name is used to give the user an
idea of the type of memory ("off chip", for example). If cyclesToAccess is 0, the
number is unknown or irrelevant.

Example 3-12 CADIMemBlockInfo_t

struct CADIMemBlockInfo_t
{
public: // methods
 CADIMemBlockInfo_t(const char *name_par = "",
 const char *description_par = "", uint16_t id = 0, uint16_t parentID = 0,
 CADIAddrSimple_t startAddr = 0, CADIAddrSimple_t endAddr = 0,
 uint32_t cyclesToAccess = 0, CADIMemReadWrite_t readWrite = CADI_MEM_ReadWrite,
 uint32_t *supportedMultiplesOfMAU_ = 0, uint32_t endianness = 0,
 uint32_t invariance = 0) :
 id(id), parentID(parentID), startAddr(startAddr), endAddr(endAddr),
 cyclesToAccess(cyclesToAccess), readWrite(readWrite), endianness(endianness),
 invariance(invariance)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 if (supportedMultiplesOfMAU_)
 std::memcpy(supportedMultiplesOfMAU, supportedMultiplesOfMAU_,
 sizeof(supportedMultiplesOfMAU));
 else
 std::memset(supportedMultiplesOfMAU, 0, sizeof(supportedMultiplesOfMAU));
 }

public: // data
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-87

The Cycle Accurate Debug Interface
 char name[CADI_NAME_SIZE]; // Memory block name.
 char description[CADI_DESCRIPTION_SIZE]; // Memory block description.
 uint16_t id; // Memory block ID.
 uint16_t parentID; // The ID of the parent. CADI_MEMBLOCK_ROOT if no parent.
 CADIAddrSimple_t startAddr; // The start address of this memory block.
 CADIAddrSimple_t endAddr; // The end address of this memory block.
 uint32_t cyclesToAccess; // Number of cycles needed for an access to this block.
 CADIMemReadWrite_t readWrite; // The read/write type of this block
 uint32_t supportedMultiplesOfMAU[CADI_MAU_MULTIPLES_LIST_SIZE];
 // Allowed multiples of the bits per mau, measured in bits

 uint8_t endianness; // endianness, 0=same as owning memory space, 1=LE, 2=BE
 uint8_t invariance; // unit of invariance in bytes, 0=same as owning memory space
};
3-88 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.8.9 CADIPipeStage_t

The definition of CADIPipeStage_t is:

typedef struct CADIPipeStage_t
{
 uint32_t id; // Pipestage id
 char name[CADI_NAME_SIZE];
 uint32_t pc; // Register id that holds the addr of the instruction
 uint32_t contentInfoRegisterId; // Register id that holds the current
 // content info for this pipe stage
 // (The register values correspond to the CADIPipeStageContentInfo_t enum)
} CADIPipeStage_t;

3.8.10 CADIPipeStageContentInfo_t

The definition of CADIPipeStageContentInfo_t is:

enum CADIPipeStageContentInfo_t
{
 CADI_PIPESTAGE_Invalid, // This pipe stage is empty or invalid,
 // nothing is displayed.
 CADI_PIPESTAGE_OpcodeOnly, // An instruction is in this stage,
 // only the opcode is valid.
 CADI_PIPESTAGE_DisassemblyOnly, // An instruction is in this stage,
 // only the disassembly is valid.
 CADI_PIPESTAGE_Instruction, // An instruction is in this stage, both the
 // opcode and the disassembly are valid.
 CADI_PIPESTAGE_ENUM_COUNT,
 CADI_PIPESTAGE_MAX = 0xFFFFFFFF
};

3.8.11 CADIBptConfigure_t

The definition of CADIBptConfigure_t is:

typedef enum CADIBptConfigure_t
 {
 CADI_BPT_Disable,
 CADI_BPT_Enable
 } CADIBptConfigure_t;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-89

The Cycle Accurate Debug Interface
3.8.12 CADIDisassemblerStatus

The CADIDisassemblerStatus enumeration is:

enum CADIDisasmStatus
{
 CADIDISASM_OK, // disassembling completed successfully
 CADIDISASM_NO_INSTRUCTION, // current address points to illegal
 // instructions/data
 CADIDISASM_ILLEGAL_ADDRESS, // address out of range (memory read failed)
 CADIDISASM_ERROR, // other error
 CADIDISASM_OK_ISCALL = -1 // disassembly completed successfully,
 // instruction is a call
};

3.8.13 CADI_EXECMODE_t enumeration

The values in CADI_EXECMODE_t enumeration are shown in Example 3-13:

Example 3-13 CADI_EXECMODE_t

enum CADI_EXECMODE_t {
 // modeChange(CADI_EXECMODE_Stop): The simulation was in state 'running' and has now stopped.
 // This is always the last callback in a sequence of callbacks when the simulation stopped.
 // If the stop was because one or more breakpoints have been hit then this callback is preceded
 // by one or more modeChange(CADI_EXECMODE_Bpt, num) callbacks where 'num' specified the
 // breakpoint(s) being hit.
 // CADIExecStop() eventually results in a modeChange(CADI_EXECMODE_Stop) callback.
 // This callback implies a refresh(REGISTERS|MEMORY) callback which means that a debugger should
 // assume registers and memory to have changed.
 CADI_EXECMODE_Stop = 0,

 // modeChange(CADI_EXECMODE_Run): The simulation was in state 'stopped' and is now running.
 // CADIExecContinue() and CADIExecSingleStep() eventually result in a
 // modeChange(CADI_EXECMODE_Run) callback.
 CADI_EXECMODE_Run = 1,

 // modeChange(CADI_EXECMODE_Bpt, num): A specific breakpoint was hit. The breakpoint number
 // 'num' of the breakpoint being hit is passed as the second parameter in the modeChange callback.
 // This callback may be called several times in a straight sequence if multiple breakpoints have
 // been hit at the same time. A modeChange(CADI_EXECMODE_Stop) callback is always following and
 // terminating this sequence, except when 'continueExecution' was true for all breakpoints being
 // hit. This callback does *not* mean that the simulation stopped. It may be followed by more
 // modeChange(CADI_EXECMODE_Bpt, num) callbacks. The final modeChange(CADI_EXECMODE_Stop) is
 // responsible for signaling that the simulation stopped.

 CADI_EXECMODE_Bpt = 2,
3-90 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 // modeChange(CADI_EXECMODE_Error) means: Same as modeChange(CADI_EXECMODE_Stop), but the model
 // is in a state 'stopped and error' after this callback. This means that all execution control
 // functions are disabled. CADIExecReset() needs to be called first to enable them again. This
 // callback is not followed by another modeChange(CADI_EXECMODE_Stop) callback, it implies
 // modeChange(CADI_EXECMODE_Stop).

 // This callback implies a refresh(REGISTERS|MEMORY) callback which means that a debugger should
 // assume registers and memory to have changed.
 CADI_EXECMODE_Error = 3,

 // Reserved for future use.
 CADI_EXECMODE_HighLevelStep = 4,
 // Reserved for future use.
 CADI_EXECMODE_RunUnconditionally = 5,

 // modeChange(CADI_EXECMODE_ResetDone): The CADIExecReset() request recently requested by a
 // debugger is now complete. This is always the last callback in a sequence of callbacks cased
 // by a CADIExecReset(). A modeChange(CADI_EXECMODE_Stop) might happen before this callback if the
 // model was running when CADIExecReset() was issued. If a debugger which did not call
 // CADIExecReset() receives this means that some other debugger or the simulation environment
 // itself completed a reset. It is safe to ignore this callback, since the display update in the
 // debugger is triggered by the refresh() callback.

 // This callback implies a refresh(REGISTERS|MEMORY) callback which means that a debugger should
 // assume registers and memory to have changed.
 CADI_EXECMODE_ResetDone = 5,

 CADI_EXECMODE_ENUM_MAX = 0xFFFFFFFF
 };

3.8.14 CADIExecMode_t structure

This structure is used to return the execution mode.

struct CADIExecMode_t
{
public:
 CADIExecMode_t(uint32_t number = 0, const char *name_par = "") :
 number(number)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 }
 uint32_t number;
 char name[CADI_NAME_SIZE];
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-91

The Cycle Accurate Debug Interface
number indicates the execution mode and must be one of:

• CADI_EXECMODE_Run for run mode

• CADI_EXECMODE_Bpt for breakpoint mode

• CADI_EXECMODE_Error if the target encounters errors and is not in a CADI call.

3.8.15 CADIFactoryErrorCode_t

The CADIFactoryErrorCode_t and CADIFactorySeverityCode_t types specify the values
for the different error conditions.

Example 3-14 CADIFactoryErrorCode_t

enum CADIFactoryErrorCode_t
{
 CADIFACT_ERROR_OK, // no error at all, message is empty
 // license checking
 CADIFACT_ERROR_LICENSE_FOUND_BUT_EXPIRED,
 CADIFACT_ERROR_LICENSE_NOT_FOUND,
 CADIFACT_ERROR_LICENSE_COUNT_EXCEEDED,
 CADIFACT_ERROR_CANNOT_CONTACT_LICENSE_SERVER,
 // always warning = true
 CADIFACT_ERROR_WARNING_LICENSE_WILL_EXPIRE_SOON,

 // for all other license errors
 CADIFACT_ERROR_GENERAL_LICENSE_ERROR,

 // info: the parameter which caused this error is indicated
 // in erroneousParameterId
 // dataType != dataType
 CADIFACT_ERROR_PARAMETER_TYPE_MISMATCH,
 CADIFACT_ERROR_PARAMETER_VALUE_OUT_OF_RANGE,
 // not out of range but still invalid
 CADIFACT_ERROR_PARAMETER_VALUE_INVALID,

 CADIFACT_ERROR_UNKNOWN_PARAMETER_ID,

 // for all other errors concerning a specific parameter
 CADIFACT_ERROR_GENERAL_PARAMETER_ERROR,

 // other, for everything else which prevented the CADI interface from
 // being created
 CADIFACT_ERROR_GENERAL_ERROR,

 // always warning = true, for everything else which still allowed the
 // CADI interface to be created
 CADIFACT_ERROR_GENERAL_WARNING,
3-92 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 CADIFACT_ERROR_MAX = 0xFFFFFFFF
};

3.8.16 CADIFactorySeverityCode_t

The severity code is based on the to the error codes in CADIFactoryErrorCode_t and
enables easy detection of errors and warnings

Example 3-15 CADIFactorySeverityCode_t

enum CADIFactorySeverityCode_t
{
 CADIFACT_SEVERITY_OK, // no error at all, model created
 CADIFACT_SEVERITY_WARNING, // only a warning, model still created
 CADIFACT_SEVERITY_ERROR, // error, model not created
 CADIFACT_SEVERITY_MAX = 0xFFFFFFFF
};

3.8.17 CADISimulationInfo_t

This structure contains details about the simulation.

Example 3-16 CADISimulationInfo_t

struct CADISimulationInfo_t
{
 public: // methods
 CADISimulationInfo_t(uint32_t id = 0, const char *name_par = "",
 const char *description_par = "") : id(id)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }

 public: // data
 uint32_t id; // Used for identification
 char name[CADI_NAME_SIZE]; // name of simulation
 char description[CADI_DESCRIPTION_SIZE]; // simulation description

};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-93

The Cycle Accurate Debug Interface
3.8.18 CADIBptRequest_t

The breakpoint request provides the PC address at which a breakpoint should occur and
a string that describes the condition of the breakpoint. The target decides whether it can
implement the breakpoint conditions.

Example 3-17 CADIBptRequest_t

struct CADIBptRequest_t
{
public: // methods
 CADIBptRequest_t(const CADIAddrComplete_t address = CADIAddrComplete_t(),
 uint64_t sizeOfAddressRange=0, int32_t enabled=0, const char *conditions_par = "",
 bool useFormalCondition = 1, CADIBptCondition_t formalCondition = CADIBptCondition_t(),
 CADIBptType_t type = CADI_BPT_PROGRAM, uint32_t regNumber = 0,
 int32_t temporary = false, uint8_t triggerType = 0,
 uint32_t continueExecution = false) :
 address(address), sizeOfAddressRange(sizeOfAddressRange), enabled(enabled),
 useFormalCondition(useFormalCondition), formalCondition(formalCondition), type(type),
 regNumber(regNumber), temporary(temporary), triggerType(triggerType),
 continueExecution(continueExecution)
 {
 AssignString(conditions, conditions_par, CADI_DESCRIPTION_SIZE);
 }

public: // data
 CADIAddrComplete_t address; // The PC address at which the breakpoint should occur.
 uint64_t sizeOfAddressRange; // Used only if type = CADI_BPT_PROGRAM_RANGE
 int32_t enabled; // Enable/Disable breakpoint
 char conditions[CADI_DESCRIPTION_SIZE]; /* The breakpoint condition. Ultimately
 the target decides if it can implement breakpoint
 conditions.*/
 bool useFormalCondition; /* 0 = use free-form "conditions",
 1 = use "formalCondition"*/
 CADIBptCondition_t formalCondition; // Formal conditions
 CADIBptType_t type; // Type
 uint32_t regNumber; // For register type only
 int32_t temporary; // Temporary breakpoint

 uint8_t triggerType; /* Allow breakpoints that trigger only on
 read/write/modify. This only has meaning for
 CADI_BPT_REGISTER and CADI_BPT_MEMORY breakpoints.
 The debugger should set this to zero for other
 breakpoint types. Setting this to zero for
 CADI_BPT_REGISTER and CADI_BPT_MEMORY results in
 undefined behaviour and must not be done. */
 uint32_t continueExecution; /* 1 = Continue execution after breakpoint has been hit
 This field should be obeyed by \e types of breakpoints,
3-94 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 including CADI_BPT_INST_STEP, etc. */
 };

3.8.19 CADIParameterInfo_t and CADIParameterValue_t

CADIParameterInfo_t and CADIParameterValue_t structures are used to configure

component parameters.

Example 3-18 CADIParameterInfo_t

struct CADIParameterInfo_t
{
public: // methods
 CADIParameterInfo_t(uint32_t id=0, const char *name_par="",
 CADIValueDataType_t dataType=CADI_PARAM_INVALID,
 const char *description_par = "", uint32_t isRunTime = 0,
 int64_t minValue = 0, int64_t maxValue = 0,
 int64_t defaultValue = 0, const char *defaultString_par = "") :
 id(id), dataType(dataType), isRunTime(isRunTime),
 minValue(minValue), maxValue(maxValue), defaultValue(defaultValue)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 AssignString(defaultString, defaultString_par,
 CADI_DESCRIPTION_SIZE);
 }

public: // data
 uint32_t id; // Used for identification
 char name[CADI_NAME_SIZE]; // Name of the parameter
 CADIValueDataType_t dataType; // Data type for interpretation purposes
 // of the debugger
 char description[CADI_DESCRIPTION_SIZE]; // Parameter description
 uint32_t isRunTime; /* If equals to 0, then the parameter is
 instantiation-time only.
 If equals to 1, then the parameter can be
 changed at run-time */
 int64_t minValue; // minimum admissible value
 int64_t maxValue; // maximum admissible value
 int64_t defaultValue; // default value if parameter is type
 // bool/int
 char defaultString[CADI_DESCRIPTION_SIZE]; // default string if
 // parameter is type CADI_PARAM_STRING
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-95

The Cycle Accurate Debug Interface
Example 3-19 CADIParameterValue_t

struct CADIParameterValue_t
{
public: // methods
 CADIParameterValue_t(uint32_t parameterID = static_cast<uint32_t>(-1),
 CADIValueDataType_t dataType=CADI_PARAM_INVALID,
 int64_t intValue = 0, const char *stringValue_par="") :
 parameterID(parameterID), dataType(dataType), intValue(intValue)
 {
 AssignString(stringValue, stringValue_par, CADI_DESCRIPTION_SIZE);
 }

public: // data
 uint32_t parameterID; // Refers to the id of respective
 // CADIParameterInfo_t.
 CADIValueDataType_t dataType; // Data type.
 int64_t intValue; // This also contains the BOOL
 // (0 = false, 1 = true).
 char stringValue[CADI_DESCRIPTION_SIZE]; // String value if type is
 // string.
};

3.8.20 CADIReturn_t

This is the result returned by most calls and it is a general indication of the status of the
call. When an error is detected, the debugger can call the CADIXfaceGetError API to
retrieve an error message in text form.

Example 3-20 CADIReturn_t

enum CADIReturn_t
{

 CADI_STATUS_OK, // The call was successful.
 CADI_STATUS_GeneralError, /* This indicates an error that isn’t
 sufficiently explained by one of the
 other error status values.*/
 CADI_STATUS_UnknownCommand, // The command is not recognized.
 CADI_STATUS_IllegalArgument, // An argument value is illegal.
 CADI_STATUS_CmdNotSupported, // The command is recognized but not
supported.
 CADI_STATUS_ArgNotSupported, /* An argument to the command is
 recognized but not supported. For
3-96 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 example, the target does not support
 a particular type of complex
 breakpoint.*/
 CADI_STATUS_InsufficientResources, /* Not enough memory or other resources
 exist to fulfill the command.*/
 CADI_STATUS_TargetNotResponding, /* A timeout has occurred across the
 CADI interface - the target did not
 respond to the command. */
 CADI_STATUS_TargetBusy, /* The target received a request, but is
 unable to process the command. The caller
 can try this call again after some
 time.*/
 CADI_STATUS_BufferSize, // Buffer too small (for char* types)
 CADI_STATUS_SecurityViolation, // Request has not been fulfilled due to
 // a security violation
 CADI_STATUS_PermissionDenied, // Request has not been fulfilled since
 // the permission was denied
 CADI_STATUS_ENUM_MAX = 0xFFFFFFFF // Max enum value.
};

3.8.21 CADIBptCondition_t and CADIBptConditionOperator_t

Breakpoint comparison operations only apply to CADI_BPT_MEMORY and
CADI_BPT_REGISTER breakpoints. Other breakpoints must always specify
CADI_BPT_COND_UNCONDITIONAL as conditionOperator. Breakpoint conditions are always
applied as a secondary condition after the primary condition of the breakpoint which
depends on the breakpoint type and the trigger type.

CADI_BPT_PROGRAM, CADI_BPT_PROGRAM_RANGE, CADI_BPT_INST_STEP, CADI_BPT_EXCEPTION
should obey the ignoreCount if the useFormalCondition is set. However, the debugger
must ensure that conditionOperator is CADI_BPT_COND_UNCONDITIONAL, otherwise the
behaviour is undefined.

Example 3-21 CADIBptCondition_t

struct CADIBptCondition_t
{
public: // methods
 CADIBptCondition_t(CADIBptConditionOperator_t conditionOperator =
 CADI_BPT_COND_UNCONDITIONAL, int64_t comparisonValue = 0,
 uint32_t threadID = 0, uint32_t ignoreCount = 0, uint32_t bitwidth = 0) :
 conditionOperator(conditionOperator), comparisonValue(comparisonValue),
 threadID(threadID), ignoreCount(ignoreCount), bitwidth(bitwidth)
 {
 }
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-97

The Cycle Accurate Debug Interface
public: // data
 CADIBptConditionOperator_t conditionOperator; // Operator for condition
 int64_t comparisonValue; // Value to compare against
 uint32_t threadID; // Reserved.
 uint32_t ignoreCount;
 uint32_t bitwidth; // width of comparision value
};

The conditional breakpoint operations are enumerated in
CADIBptConditionOperator_t.

Example 3-22 CADIBptConditionOperator_t

enum CADIBptConditionOperator_t
{
 CADI_BPT_COND_UNCONDITIONAL, // Normal breakpoint, always break, no additional condition.
 CADI_BPT_COND_EQUALS, // Only break if value == comparisionValue (unsigned comparison)
 CADI_BPT_COND_NOT_EQUALS, // Only break if value != comparisionValue (unsigned comparison)

 // signed comparison
 CADI_BPT_COND_GREATER_THAN_SIGNED, // Only break if value > comparisionValue
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS_SIGNED, // Only break if value >= comparisionValue
 CADI_BPT_COND_LESS_THAN_SIGNED, // Only break if value < comparisionValue
 CADI_BPT_COND_LESS_THAN_OR_EQUALS_SIGNED, // Only break if value <= comparisionValue

 // unsigned comparison
 CADI_BPT_COND_GREATER_THAN_UNSIGNED, // Only break if value > comparisionValue
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS_UNSIGNED, // Only break if value >= comparisionValue
 CADI_BPT_COND_LESS_THAN_UNSIGNED, // Only break if value < comparisionValue
 CADI_BPT_COND_LESS_THAN_OR_EQUALS_UNSIGNED, // Only break if value <= comparisionValue
 CADI_BPT_COND_ENUM_COUNT, // Not a valid condition operator

 // legacy support, same as signed comparison
 CADI_BPT_COND_GREATER_THAN = CADI_BPT_COND_GREATER_THAN_SIGNED,
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS = CADI_BPT_COND_GREATER_THAN_OR_EQUALS_SIGNED,
 CADI_BPT_COND_LESS_THAN = CADI_BPT_COND_LESS_THAN_SIGNED,
 CADI_BPT_COND_LESS_THAN_OR_EQUALS = CADI_BPT_COND_LESS_THAN_OR_EQUALS_SIGNED,

 // these are no breakpoint conditions:
 CADI_BPT_COND_ENUM_MAX = 0xFFFFFFFF
};
3-98 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
3.9 Accessing the debug interface from sc_main()

The CADI interface is typically used by attached debuggers. The interface can,
however, be directly accessed from the top-level application that creates and connects
the modules. This might be done, for example, to test the CADI interface or to write a
customized debug function.

Example 3-23 shows the CADI methods that must be created for the component:

Example 3-23 CADI callback used by main()

class TopCADICallbackObj : public CADICallbackObj
{
public:
 TopCADICallbackObj () { }
 ~TopCADICallbackObj () { }

 virtual uint32_t appliOpen(const char *sFileName, const char *mode)
 {
 return 0;
 }

 virtual void appliInput (uint32_t streamId, uint32_t count,
 uint32_t *actualCount, char *buffer)
 {
 // return value to debugger
 static int id = 100;
 sprintf (buffer, "Input:%d\n", id);
 (* actualCount) = (uint32_t) (strlen (buffer) + 1);
 ++ id;
 }

 virtual void appliOutput(uint32_t streamId, uint32_t count,
 uint32_t * actualCount, const char *buffer)
 {
 //output text from debugger
 char * tmp = new char [count + 1];
 memcpy (tmp, buffer, count);
 tmp [count] = 0;
 printf (tmp);
 (* actualCount) = count;
 }

 virtual uint32_t appliClose(uint32_t streamID)
 {
 return 0;
 }

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-99

The Cycle Accurate Debug Interface
 virtual void doString(char *stringArg) { }

 virtual void modeChange(uint32_t newMode, CADIBptNumber_t bptNumber)
 {
 if (newMode == CADI_EXECMODE_Stop)
 {
 // we are done, finish execution
 SEMINC(semaphore);
 }
 }

 virtual void reset(uint32_t resetLevel) { }

 virtual void cycleTick(void) { }

 virtual void killInterface(void) { }
};

Example 3-24 shows the code that must be added to the top-level application to access
CADI data:

Example 3-24 CADI code in main function

int sc_main (int argc, char *argv[])
{
 //Instantiate the modules
 .
 .
 .
 Slave_casi * s1 = new Slave_casi("Slave1");
 Slave_casi * s2 = new Slave_casi("Slave2");

 // setup CADI
 char enable [CADI_CB_Count];
 memset (& enable[0], 1, sizeof (enable));
 s1->getCADI ()->CADIXfaceAddCallback (new TopCADICallbackObj (), enable);
 s2->getCADI ()->CADIXfaceAddCallback (new TopCADICallbackObj (), enable);

 //Call init functions and setup memory map interface
 .
 .
 .
 //Connect the ports, call all interconnect functions, and reset
 .
 .
 .
 // start simulation
3-100 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
 sc_start (0x8000); // stops at 0x4000
 .
 .
 .
 // get CADI object from port and read register data
 CADI * cadi1 = s1->getCADI ();

 uint32_t actual;
 static CADIRegGroup_t regGroups [2];
 result = cadi->CADIRegGetGroups(0, features.nrRegisterGroups,
 & actualCount, regGroups);
 if (result != CADI_STATUS_OK || actualCount < 1)
 {
 printf("CADIRegGetGroups call failed!\n");
 }

 CADIRegGroup_t & regGroup = regGroups [0];
 static CADIRegInfo_t regs [2];
 result = cadi1->CADIRegGetMap (regGroups [0].groupID, 0, 2, & actual, regs);
 if (result != CADI_STATUS_OK || actualCount < 1)
 {
 printf("CADIRegGetMap call failed!\n");
 }

 CADIRegInfo_t & regInfo = regInfos [0];
 static CADIReg_t regs [1];
 regs [0].regNumber = regInfo.regNumber;
 CADIReg_t & reg = regs [0];
 SEMOPEN (semaphore);
 cadi->CADIExecContinue ();

 CADIReg_t reg;
 memset (& reg, 0, sizeof (CADIReg_t));
 reg.regNumber = regs [1].regNumber;
 cadi1->CADIRegRead (1, & reg, & actual, 0);
 uint32_t tmp32 = 0;
 tmp32 = (tmp32<<8) | reg.bytes[3];
 tmp32 = (tmp32<<8) | reg.bytes[2];
 tmp32 = (tmp32<<8) | reg.bytes[1];
 tmp32 = (tmp32<<8) | reg.bytes[0];

 printf ("CADI reg 0x%x\n", tmp32);

 // terminate components
 .
 .
 .

 cadi->CADIExecStop ();
 SEMDEC (semaphore);
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-101

The Cycle Accurate Debug Interface
 SEMCLOSE (semaphore);
 printf ("Closing CADI\n");
 cadi->CADIXfaceRelease (& refCount);
 DestroyCADIFactory (factory);

 fflush (stdout);
 fflush (stderr);
 return 0;
}

The module s1 is an instance of a Slave_casi component and it must provide the
getCADI() function and CADI object (based on CADIBase) that enables accessing the
registers and memory of the module as shown in Example 3-25.

Example 3-25 Slave_casi CADI functions

Slave_casi::Slave_casi(sc_module_name name, CASIModuleIF * parent)
 : CASIModule(name, parent)
{
 // instantiate ports
 .
 .
 .
 // Create CADI object
 cadi = new CADISlave (this);
 .
 .
 .

}

CADI* Slave_casi::getCADI()
{
 return cadi;
}

3-102 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Debug Interface
The CADISlave class contains the access functions as shown in Example 3-26.

Example 3-26 CADISlave CADI functions

CADIReturn_t CADISlave::CADIRegGetGroups(uint32_t groupIndex,
 uint32_t desiredNumOfRegGroups,uint32_t* actualNumOfRegGroups,
 CADIRegGroup_t* grp)
{
 if (groupIndex >= GROUP_COUNT)
 {
 return CADI_STATUS_IllegalArgument;
 }

 uint32_ti;
 for(i = groupIndex; (i < groupIndex + desiredNumOfRegGroups) && (i <
 GROUP_COUNT); i++)
 {
 grp[i] = regGroup[i];
 }
 *actualNumOfRegGroups = i - groupIndex;
 return CADI_STATUS_OK;
}

CADIReturn_t CADISlave::CADIRegGetMap(uint32_t groupID, uint32_t regIndex,
 uint32_t registerSlots, uint32_t* registerCount, CADIRegInfo_t* reg)
{
 if (groupID >= GROUP_COUNT)
 {
 return CADI_STATUS_IllegalArgument;
 }
 uint32_t i;
 uint32_tstart = regIndex + CADISlave_group_info[groupID].start;
 uint32_tend = regIndex + CADISlave_group_info[groupID].end;
 for (i = 0; (i < registerSlots) && (start + i <= end); i++)
 {
 reg[i] = regInfo[start + i];
 }
 *registerCount = i;
 return CADI_STATUS_OK;
}

CADIReturn_t CADISlave::CADIRegRead(uint32_t regCount, CADIReg_t* reg,
 uint32_t* numRegsRead, uint8_t doSideEffects)
{
 UNUSEDARG(doSideEffects);
 uint32_ti;
 for (i = 0; i < regCount; i++)
 {
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 3-103

The Cycle Accurate Debug Interface
uint16_t tmp16 = 0;
uint32_t tmp32 = 0;
uint64_t tmp64 = 0;

 switch (reg[i].regNumber)
 {
 case 0:
 //64-bit Register
 tmp64 = target->r_reg2;
 reg[i].bytes[0] = (uint8_t)((tmp64 >> 0) & 0xff);
 reg[i].bytes[1] = (uint8_t)((tmp64 >> 8) & 0xff);
 reg[i].bytes[2] = (uint8_t)((tmp64 >> 16) & 0xff);
 reg[i].bytes[3] = (uint8_t)((tmp64 >> 24) & 0xff);
 reg[i].bytes[4] = (uint8_t)((tmp64 >> 32) & 0xff);
 reg[i].bytes[5] = (uint8_t)((tmp64 >> 40) & 0xff);
 reg[i].bytes[6] = (uint8_t)((tmp64 >> 48) & 0xff);
 reg[i].bytes[7] = (uint8_t)((tmp64 >> 56) & 0xff);
 break;
 case 1:
 //32-bit Register
 tmp32 = target->r_reg3;
 reg[i].bytes[0] = (uint8_t)((tmp32 >> 0) & 0xff);
 reg[i].bytes[1] = (uint8_t)((tmp32 >> 8) & 0xff);
 reg[i].bytes[2] = (uint8_t)((tmp32 >> 16) & 0xff);
 reg[i].bytes[3] = (uint8_t)((tmp32 >> 24) & 0xff);
 break;
 case 2:
 //16-bit Register
 tmp16 = target->r_reg0;
 reg[i].bytes[0] = (uint8_t)((tmp16 >> 0) & 0xff);
 reg[i].bytes[1] = (uint8_t)((tmp16 >> 8) & 0xff);
 break;
 case 3:
 //8-bit Register
 tmp16 = target->r_reg1;
 reg[i].bytes[0] = (uint8_t)((tmp16 >> 0) & 0xff);
 break;
 default:
 break;
 }
 }
 *numRegsRead = regCount;
 return CADI_STATUS_OK;
}

3-104 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Chapter 4
The Cycle Accurate Profiling Interface

This chapter describes how to use the Cycle Accurate Profiling Interface (CAPI) to
gather customized profiling data and to enable the user to visualize that data. It contains
the following sections:

• Introduction to CAPI on page 4-2

• The CAPI classes on page 4-4

• The CAPIRegistry class on page 4-13

• The CAPICallback class on page 4-17

• CAPI data structures on page 4-19

• Accessing CAPI on page 4-25

• Example CAPI implementation on page 4-28.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-1

The Cycle Accurate Profiling Interface
4.1 Introduction to CAPI

The CAPI interface supports a generic implementation of profiling and enables the
collection of different types of data that are organized around streams and channels of
information.

To support profiling, a component must:

• implement and register the CAPI interface

• supply the type of information to profile

• gather the information by calling, for example, CAPIRecordEvents().

Depending on the simulation environment, the collected information from components
can be displayed in profile windows or transferred to an external file.

Note
 OSCI does not inherently support for collecting or displaying profile information.

4.1.1 Profiling streams and channels

The CAPI interface implemented by a component has one or more profiling streams.
Each stream contains one thread of related information. For instance, a bus component
might allocate a profiling stream to each master to collect:

• grants

• conflicts

• reads

• writes.

Each profiling stream is composed of one or more profiling channels. Each channel
represents one item of information to be collected and placed in the stream.
4-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
The Cache component in Example CAPI implementation on page 4-28, for example,
has one stream with two channels:

channel 1 records the address.

channel 2 records the operation type as one of:

• Read misses

• Read hits

• Write misses

• Write hits

• Refills

• Writebacks.

The operation channels can be displayed graphically.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-3

The Cycle Accurate Profiling Interface
4.2 The CAPI classes

The relationship between the various CAPI data structures is shown in Figure 4-1. (The
eventsTrace data blocks have three data entries in this example.)

Figure 4-1 CAPI data structures and the profiling stream
4-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
The CAPI class hierarchy is shown in Figure 4-2.

Figure 4-2 CAPI class hierarchy

Note
 See the CAPITypes.h file for definitions of enumerations and data structures that are used
with the CAPI interface.

Supporting profiling requires that a component:

• implement a class inheriting from CAPI,

• specify the information regarding the information to be profiled (such as the
profiling streams and channels to be collected).

The derived CAPI class CompName_CAPI for your component (named CompName) must
implement an empty constructor. Calling the base class generates calls to the CAPI
constructor and the function CAPIGetProfilingStreams() that returns the profiling
stream to be collected for this component.

CompName_CAPI::CompName_CAPI(eslapi::CASIModuleIF *comp):CAPI(comp)
{
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-5

The Cycle Accurate Profiling Interface
CAPIReturn_t CompName_CAPI::CAPIGetProfilingStreams(uint32_t desiredNrStreams,
 uint32_t *actualNrStreams,
 eslapi::CAPIStreamInfo_t *streams);

The following steps show a simplified sequence that describes how to use the CAPI
interface in a model during the simulation stage:

1. Get a pointer to the CAPI interface by calling getCAPI().

CAPI * capi = CompName->getCAPI()

2. Get the streams metadata by:

uint32_t actualNrStreams;
CAPIStreamInfo_t streamsInfo[100];
capi->CAPIGetProfilingStreams(100, &actualNrStreams, streamsInfo);

3. A specific stream can be obtained from the metadata by selecting a specific
stream by its name. Use either the literal name for the stream or the name from
the streamInfo structure:

CAPIStream_t * stream0 = capi->CAPIFindStream(“Accesses”);

CAPIStream_t * stream0 = capi->CAPIFindStream(streamsInfo[0].streamName);

4. The returned pointer can be used to enable profiling stream:

stream0->enabled = true;

5. The pointer is also used to collect information when an event occurs:

CAPIRecordEvent2(stream0, (uint16_t) addr, (uint8_t) COT_READ_HIT);

For more details on using CAPI, see Example CAPI implementation on page 4-28.

4.2.1 The CAPI class

Example 4-1 shows the CAPI class definition.

Example 4-1 CAPI class header file

class CAPI : public CAPIIF
{
public:
 CAPI (CASIModuleIF * _target =NULL);
 virtual ~CAPI () {}
 virtual CAPIReturn_t CAPIGetProfilingStreams (uint32_t desiredNrStreams,
 uint32_t * actualNrStreams, CAPIStreamInfo_t * streamsInfo
 int streamIndex) = 0;
 virtual CAPIStream_t * CAPIFindStream (const char * name);
 virtual uint32_t CAPIGetNumStreams(void);
4-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
 virtual const CAPIStream_t * CAPIGetStream(uint32_t index);
 virtual uint32_t CAPIGetNumStreams(void);
 virtual CAPIStream_t * CAPIGetStream(uint32_t index);
 void CAPIAddStream (CAPIStream_t *);
 void CAPIClearStreams (void);

 virtual CASIModuleIF* CAPIGetTarget();

 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CAPI2") == 0) && (minRev <= 0)){
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

protected:
 CASIModuleIF * target;
 std::vector <CAPIStream_t *> streams;

};

4.2.2 CAPI::CAPIGetProfilingStreams()

Returns the metadata associated with the profiling streams. Each CAPI objects defines
the structure of its streams by providing an appropriate implementation.

Example usage:

virtual CAPIReturn_t CAPI::CAPIGetProfilingStreams (uint32_t desiredNrStreams,
 uint32_t * actualNrStreams, CAPIStreamInfo_t * streamsInfo
 int streamIndex) =0

where:

desiredNrStreams

is the size of the streams array. Call with a relatively large number to
retrieve all the streams metadata.

actualNrStreams

returns the number of streams defined in the component.

streamsInfo returns the metadata for the first desiredNrStreams defined by the CAPI
object.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-7

The Cycle Accurate Profiling Interface
streamIndex is the index to the point in the stream array from which the streams are
returned.

Example 4-2 Getting the profiling streams

uint32_t nrStreams;
CAPIStreamInfo_t streamsInfo [100];
capi->CAPIGetProfilingStreams (100, & nrStreams, streamsInfo, 0);

4.2.3 CAPI::CAPIFindStream()

Returns the profiling stream associated with name.

virtual CAPIStream_t* CAPI::CAPIFindStream (const char * name)

where:

name matches the value in stream->info->streamName.

4.2.4 CAPI::CAPIGetNumStreams()

Returns the total number of streams in this CAPI interface.

virtual CAPIStream_t * CAPIGetStream(uint32_t index)

4.2.5 CAPI::CAPIGetStream()

Returns the stream for a given index.

virtual const CAPIStream_t * CAPIGetStream(uint32_t index)=0

where:

index is the index of the stream to return. (index must be between 0 and
CAPIGetNumStreams() - 1).

4.2.6 CAPI::CAPIGetStream()

Add a stream to the stream collection.

void CAPIAddStream (CAPIStream_t * stream)

where:

stream is a pointer to the stream to add.
4-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.2.7 CAPI::CAPIClearStreams()

Removes all streams from this interface.

void CAPIClearStreams (void))

4.2.8 CAPI::CAPIGetTarget()

Gets target module for the profile interface.

virtual CASIModuleIF* CAPIGetTarget())

4.2.9 CAPIRecordEvent1() and CAPIRecordEvent2()

Two macros are defined to simplify recording data to the profile stream:

• CAPIRecordEvent1() records a single argument to the specified stream.

• CAPIRecordEvent2() records two arguments to the specified stream.

Note
 The MXSI_EXPORT_LIBRARY is provided to aid converting MXPI profiling to CAPI. This
library contains an implementation of CAPIRecordEvent() that accepts a variable number
of arguments.

Example 4-3 CAPIRecordEvent1() macro

#define CAPIRecordEvent1(stream,arg1) \
{\
 uint64_t currentCycle; \
 uint64_t offset=0,base=0; \
 uint8_t temp8; \
 uint16_t temp16; \
 uint32_t temp32; \
 uint64_t temp64; \
\
 if(stream->enabled){\
 if(((uint32_t) stream->nrOfEventsInLastSegment)>= \
 ((uint32_t) stream->eventsTraceSegmentSize)) \
 {\

stream->eventTail->next = \
 eslapi::CAPIRegistry::getCAPIRegistry()->getCAPICallback()->allocateTraceSegment (stream); \
 stream->eventTail = stream->eventTail->next; \
 stream->eventTail->next = NULL; \
 stream->nrOfEventsInLastSegment = 0; \
 } \
\

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-9

The Cycle Accurate Profiling Interface
currentCycle = eslapi::CAPIRegistry::getCAPIRegistry()->getCAPICallback()->getCurrentCycle(); \
\
 base = stream->nrOfEventsInLastSegment * ((uint32_t) stream->eventWidthInBytes); \
 offset = 0; \
\
 ((uint64_t)&(stream->eventTail->eventsTrace[base + offset])) = \
 (uint64_t) currentCycle; \
 offset += 8; \
 \
 switch(stream->info->channels[1]->type){ \
 case eslapi::CAPI_CHANNEL_TYPE_U8: \
 case eslapi::CAPI_CHANNEL_TYPE_bool: \
 case eslapi::CAPI_CHANNEL_TYPE_SYMBOL: \
 temp8 = (uint8_t) arg1; \
 ((uint8_t)&(stream->eventTail->eventsTrace[base + offset])) = temp8; \
 offset += 1; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U16: \
 temp16 = (uint16_t) arg1; \
 ((uint16_t)&(stream->eventTail->eventsTrace[base + offset])) = temp16; \
 offset += 2; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U32: \
 temp32 = (uint32_t) arg1; \
 ((uint32_t)&(stream->eventTail->eventsTrace[base + offset])) = temp32; \
 offset += 4; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U64: \
 temp64 = (uint64_t) arg1; \
 ((uint64_t)&(stream->eventTail->eventsTrace[base + offset])) = temp64; \
 offset += 8; \
 break; \
 default: \
 assert(0); \
 }\
 stream->nrOfEventsInLastSegment ++; \
 stream->nrOfEvents ++; \
 }\
}

Example 4-4 CAPIRecordEvent2() macro

#define CAPIRecordEvent2(stream,arg1,arg2) \
{\
 uint64_t currentCycle; \
 uint64_t offset=0,base=0; \
4-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
 uint8_t temp8; \
 uint16_t temp16; \
 uint32_t temp32; \
 uint64_t temp64; \
\
 if(stream->enabled){\
 if(((uint32_t) stream->nrOfEventsInLastSegment) >=
 ((uint32_t) stream->eventsTraceSegmentSize)) { \
 stream->eventTail->next = \
 eslapi::CAPIRegistry::getCAPIRegistry()->getCAPICallback()->allocateTraceSegment (stream); \
 stream->eventTail = stream->eventTail->next; \
 stream->eventTail->next = NULL; \
 stream->nrOfEventsInLastSegment = 0; \
 } \
\
 currentCycle = eslapi::CAPIRegistry::getCAPIRegistry()->getCAPICallback()->getCurrentCycle(); \
\
 base = stream->nrOfEventsInLastSegment * ((uint32_t) stream->eventWidthInBytes); \
 offset = 0; \
\
 ((uint64_t)&(stream->eventTail->eventsTrace[base + offset])) = \
 (uint64_t) currentCycle; \
 offset += 8; \
 \
 switch(stream->info->channels[1]->type){ \
 case eslapi::CAPI_CHANNEL_TYPE_U8: \
 case eslapi::CAPI_CHANNEL_TYPE_bool: \
 case eslapi::CAPI_CHANNEL_TYPE_SYMBOL: \
 temp8 = (uint8_t) arg1; \
 ((uint8_t)&(stream->eventTail->eventsTrace[base + offset])) = temp8; \
 offset += 1; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U16: \
 temp16 = (uint16_t) arg1; \
 ((uint16_t)&(stream->eventTail->eventsTrace[base + offset])) = temp16; \
 offset += 2; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U32: \
 temp32 = (uint32_t) arg1; \
 ((uint32_t)&(stream->eventTail->eventsTrace[base + offset])) = temp32; \
 offset += 4; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U64: \
 temp64 = (uint64_t) arg1; \
 ((uint64_t)&(stream->eventTail->eventsTrace[base + offset])) = temp64; \
 offset += 8; \
 break; \
 default: \
 assert(0); \
 }\
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-11

The Cycle Accurate Profiling Interface
 \
 switch(stream->info->channels[2]->type){ \
 case eslapi::CAPI_CHANNEL_TYPE_U8: \
 case eslapi::CAPI_CHANNEL_TYPE_bool: \
 case eslapi::CAPI_CHANNEL_TYPE_SYMBOL: \
 temp8 = (uint8_t) arg2; \
 ((uint8_t)&(stream->eventTail->eventsTrace[base + offset])) = temp8; \
 offset += 1; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U16: \
 temp16 = (uint16_t) arg2; \
 ((uint16_t)&(stream->eventTail->eventsTrace[base + offset])) = temp16; \
 offset += 2; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U32: \
 temp32 = (uint32_t) arg2; \
 ((uint32_t)&(stream->eventTail->eventsTrace[base + offset])) = temp32; \
 offset += 4; \
 break; \
 case eslapi::CAPI_CHANNEL_TYPE_U64: \
 temp64 = (uint64_t) arg2; \
 ((uint64_t)&(stream->eventTail->eventsTrace[base + offset])) = temp64; \
 offset += 8; \
 break; \
 default: \
 assert(0); \
 }\
 stream->nrOfEventsInLastSegment ++; \
 stream->nrOfEvents ++; \
 }\
}

4-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.3 The CAPIRegistry class

Registers a CAPI interface with the default CAPI implementation. During registration,
the appropriate streams are created according to the CAPIGetProfilingStreams
definition. A model must register its CAPI object during construction. The header file
for the class is shown in Example 4-5.

Example 4-5 CAPIRegistry class

class WEXP CAPIRegistry: public CAInterface{
public:
 CAPIRegistry();
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CAPIRegistry2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }

 // Registers a CAPI interface with the default CAPI implementation.
 void CAPIRegisterInterface (CAPI * capi);
 /// Unregisters a CAPI interface.
 void CAPIUnregisterInterface (CAPI *capi);
 //Call this to get the CAPI interface for a component
 CAPI * CAPIFindInterface(char * comp_name);
 uint32_t CAPIGetNumInterfaces(void);
 CAPI * CAPIGetInterface(uint32_t index);
 // Reset the CAPI information
 void reset(void);
 // Remove all CAPI information
 void clear(void);

 // Memory Management Functions
 // Sets a new global profiling stream data memory manager
 void setCAPICallback (CAPICallback * _callback) { callback = _callback; }
 // Returns the current global profiling stream data memory manager
 inline CAPICallback * getCAPICallback () { return callback; }
 // Returns the static capiRegistry object
 inline static CAPIRegistry * getCAPIRegistry(void){
 if(capiRegistry == NULL) capiRegistry = new CAPIRegistry();
 return capiRegistry;
 }
 // Versioning base implementation
 // Return interface if requested
 virtual CAInterface * ObtainInterface(
 if_name_t ifName,
 if_rev_t minRev,
 if_rev_t * actualRev)
 {
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-13

The Cycle Accurate Profiling Interface
 if((strcmp(ifName,"eslapi.CAPIRegistry2") == 0) && (minRev <= 0))
 {
 *actualRev = 0;
 return this;
 }
 return NULL;
 }
 protected:
 static CAPIRegistry * capiRegistry;
 CAPICallback * callback;
 std::vector<CAPI*> interfaces;
};

4.3.1 CAPIRegistry::setCAPICallback()

Sets a new global profiling stream data memory manager.

static void CAPIRegistry::setCAPICallback (CAPICallback * memoryManager)

where:

memoryManager

is the memory manager callback object.

4.3.2 CAPIRegistry::getCAPICallback()

Returns the current global profiling stream data memory manager.

static CAPICallback* CAPIRegistry::getCAPICallback ()
 { return callback; }

4.3.3 CAPIRegistry::CAPIRegisterInterface()

Registers a CAPI interface with the default CAPI implementation. During registration,
the appropriate streams are created according to the CAPIGetProfilingStreams
definition. A model must register its CAPI object during construction.

static void CAPIRegistry::CAPIRegisterInterface (CAPI * capi)
4-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.3.4 CAPIRegistry::CAPIUnregisterInterface()

Unregisters a CAPI interface.

void CAPIUnregisterInterface (CAPI *capi)

where:

capi is the interface to unregister.

4.3.5 CAPIRegistry::CAPIFindInterface()

Gets the CAPI interface for a component.

CAPI * CAPIFindInterface(char * comp_name)

where:

comp_name is the component name.

4.3.6 CAPIRegistry::CAPIGetNumInterfaces()

Get the number of interfaces in use.

uint32_t CAPIGetNumInterfaces(void)

4.3.7 CAPIRegistry::CAPIGetInterface()

Gets an interface based on its index in the collection.

CAPI * CAPIGetInterface(uint32_t index)

where:

index is the index into the list of streams.

4.3.8 CAPIRegistry::reset()

Resets the CAPI information.

void reset(void)

4.3.9 CAPIRegistry::clear()

Removes all CAPI information.

void clear(void)
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-15

The Cycle Accurate Profiling Interface
4.3.10 CAPIRegistry::getCAPIRegistry()

Returns the static capiRegistry object.

inline static CAPIRegistry * getCAPIRegistry(void){
 if(capiRegistry == NULL) capiRegistry = new CAPIRegistry();
 return capiRegistry;
 }
4-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.4 The CAPICallback class

The CAPICallback establishes a basic relation between CAPI and the simulation kernel.
There exists a single unique CAPICallback that applies to all CAPI objects.

Example 4-6 CAPICallback definition

class CAPICallback : public CAPICallbackIF{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CAPICallback2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 virtual CAPITraceSegment_t * allocateTraceSegment
 (const CAPIStream_t * stream)
 {return NULL;}
 virtual void deallocateTraceSegment (const CAPIStream_t * stream,
 CAPITraceSegment_t * segment) {}
 virtual uint64_t getCurrentCycle (){return (uint64_t)-1;}
 virtual uint64_t getTotalAllocatedMemory(void) {return 0;}
 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CAPICallback2") == 0) && (minRev <= 0))
 {
 *actualRev = 0;
 return this;
 }
 return NULL;
 }
};

4.4.1 CAPICallback::allocateTraceSegment()

This function allocates a trace segment. Profiling data might grow very large for long
simulation. By setting an appropriate memory manager the CAPI client has full control
of how much of the profile data resides in memory at a given time

virtual CAPITraceSegment_t* CAPICallback::allocateTraceSegment (
 CAPIStream_t * stream) { return NULL }

where:

stream is the stream that uses this segment.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-17

The Cycle Accurate Profiling Interface
Note
 A profiling stream must have an active CAPITraceSegment_t at all times.The size of the
trace must be:

(stream->eventWidthInBytes) * (stream->eventsTraceSegmentSize).

The default implementation returns a NULL pointer.

4.4.2 CAPICallback::deallocateTraceSegment()

Deallocates a trace segment that was previously allocated.

virtual void deallocateTraceSegment (const CAPIStream_t * stream,
 CAPITraceSegment_t * segment) {}

where:

stream is the stream for the trace segment.

segment is the trace segment.

4.4.3 CAPICallback::getTotalAllocatedMemory()

Return a count of the total memory allocated for profiling.

virtual uint64_t getTotalAllocatedMemory(void) {return 0;}

4.4.4 CAPICallback::getCurrentCycle()

This function returns the current simulation cycle.

virtual uint64_t CAPICallback::getCurrentCycle () {return (uint64_t)-1;}

A cycle represents the moment in time a profiled event is recorded. You can define a
custom cycle or timing definition by providing an appropriate implementation for this
callback.
4-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.5 CAPI data structures

This section describes the classes and data structures used by the CAPI interface.

4.5.1 The CAPIStream_t structure

The CAPIStream_t structure specifies the information for an individual profiling stream.
Each CAPI interface implementation might contain one or more such streams.

Example 4-7 CAPIStream_t structure

class CAPIStream_t : public CAInterface
{
 CAPIStream_t(CAPI * _owner, CAPIStreamInfo_t * _info,
 uint64_t _segmentSize = CAPI_DEFAULT_SEGMENT_SIZE);

 inline static CAPIReturn_t recordEvent (CAPIStream_t *stream, ...);

 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CAPIStream_t2"; }

 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 // Return interface if requested
 virtual CAInterface * ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t * actualRev)
 {
 if((strcmp(ifName,"eslapi.CAPIStream_t2") == 0) && (minRev <= 0)){
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

CAPIStreamInfo_t * info;
 CAPI *owner;
 bool enabled;
 uint64_t eventWidthInBytes;
 uint64_t nrOfEvents;
 uint64_t nrOfEventsInLastSegment;
 CAPITraceSegment_t *eventHead;
 CAPITraceSegment_t *eventTail;
 uint64_t eventsTraceSegmentSize;
 void * userData;
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-19

The Cycle Accurate Profiling Interface
4.5.2 The CAPIStreamInfo_t structure

The CAPIStreamInfo_t structure specifies the channel information for a profiling stream.
Each stream can contain one or more channels. Use CAPIFindStream(stream_name) to
return a stream with the specified name from streams[] array that contains all of the
profiling streams for the component.

Example 4-8 CAPIStreamInfo_t structure

struct CAPIStreamInfo_t{
 char *streamName; //The ID Name of the stream
 char *streamLabel; //The name displayed in the profiling view of the stream
 char * description; //The description of the stream
 uint32_t nrOfChannels; //The number of channels
 CAPIChannelInfo_t **channels; //The channels data structure
};

4.5.3 The CAPIChannelInfo_t structure

The CAPIChannelInfo_t structure in Example 4-9 specifies the information for a
profiling channel. Each profiling stream can contain one or more such channels.

Example 4-9 CAPIChannelInfo structure

struct CAPIChannelInfo_t{
 char *channelName; //the channel name
 char * description; //the channel description
 CAPIChannelType_t type; //the type of the data elements for this channel
 int count; //number of the data elements of this type (default is 1)

 //For type CAPI_CHANNEL_TYPE_SYMBOL:
 // symbol values and colors
 CAPIChannelSymbolInfo_t * symbolInfo;
 // The high-level (conceptual) information type that this channel
 // describes (e.g., an ADDRESS value, a delay, etc.).
 CAPIChannelInfoType_t infoType;
};
4-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
Caution
 If you are profiling on a workstation running the Solaris operating system, a limitation
of the system prevents misaligned data reads and writes. The channels declared in a
stream must be in descending order of their byte size. For every CAPI stream, place
channels of 64-bit size before channels of 32-bit size, and so forth.

4.5.4 The CAPIChannelType_t enumeration

The CAPIChannelType enumeration in Example 4-10 specifies the possible types for the
profiling channels.

Example 4-10 CAPIChannelType_t

enum CAPIChannelType_t{
 CAPI_CHANNEL_TYPE_bool, //BOOL
 CAPI_CHANNEL_TYPE_SYMBOL, //A symbol with values 0, 1, 2, ..., and
 // associated strings in CAPIChannelSymbolInfo_t
 CAPI_CHANNEL_TYPE_U8, //unsigned char
 CAPI_CHANNEL_TYPE_U16, //unsigned short
 CAPI_CHANNEL_TYPE_U32, //unsigned int
 CAPI_CHANNEL_TYPE_U64, //unsigned long long
 CAPI_CHANNEL_TYPE_S8, //signed char
 CAPI_CHANNEL_TYPE_S16, //signed short
 CAPI_CHANNEL_TYPE_S32, //signed int
 CAPI_CHANNEL_TYPE_S64 //signed long long
 CAPI_CHANNEL_TYPE_F32, ///< floating point (32 bit)
 CAPI_CHANNEL_TYPE_F64 ///< floating point double (64 bit)
};

The channel types BOOL/U8/U16/… represent boolean, unsigned byte, half-word, or other
types as represented by the host machine.

The channel type CAPI_CHANNEL_TYPE_SYMBOL is stored in memory as a byte, and
represents possible enumeration values, starting with 0. Each such enumeration value
has an associated symbol name and color. The symbol names and colors show the
legend and the bar charts in the profiling view.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-21

The Cycle Accurate Profiling Interface
Note
 The CAPI view windows support the following types of channels on the X and Y axes:

• The X axis supports CAPI channels of numeric types (for example,
CAPI_CHANNEL_TYPE_U8, CAPI_CHANNEL_TYPE_U16, and so forth).

• The Y axis supports channels of numeric types and type
CAPI_CHANNEL_TYPE_SYMBOL.

4.5.5 The CAPIChannelSymbolInfo_t structure

The CAPIChannelSymbolInfo specifies the values associated with a channel of type
CAPI_CHANNEL_TYPE_SYMBOL.

Example 4-11 CAPIChannelSymbolInfo_t structure

struct CAPIChannelSymbolInfo_t{
 int nrSymbolValues; //the number of symbol values in the symbolValues
 //array of values
 CAPISymbolValue_t *symbolValues; //the symbol values array, associated with
 //values of 0, 1, 2, ...
};

4.5.6 The CAPISymbolValue_t structure

The CAPISymbolValue specifies the value names and colors associated with the values of
a symbol, for channels of type CAPI_CHANNEL_TYPE_SYMBOL.

Example 4-12 CAPISymbolValue_t structure

struct CAPISymbolValue_t{
 char *valueName; //The name of the values for this symbol channel
 //(corresponding to the values of 0, 1, 2, ...)
 uint32_t valueColor; //CAPIColor_e defines the colors for this value
};

Note
 The contents of valueColor give a hint to the color used. The CAPIColor_e enumeration
is not used directly for binary compatibility reasons.
4-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.5.7 The CAPIColor_e enumeration

The CAPIColor_e specifies the colors available for values of channels of type
CAPI_CHANNEL_TYPE_SYMBOL. Example 4-13 lists the first part of the enumeration, for the
full list of colors supported, see the CAPIColors.h header file.

Example 4-13 CAPIColor_e enumeration

enum CAPIColor_e{
 CAPI_COLOR_WHITE,
 CAPI_COLOR_BLACK,
 CAPI_COLOR_RED,
 CAPI_COLOR_GREEN,
 CAPI_COLOR_BLUE,
 . . .
}

Use the getCAPIColorName() function to return the human-readable name for a color
value:

const char* getCAPIColorName (CAPIColor_e color)

4.5.8 The CAPITraceSegment_t structure

This structure is used for nodes in the profile data list. Each node in the list, except for
the last node, stores eventsTraceSegmentSize number of events. The last element in the
list however, only stores nrOfEventsInLastSegment events.

Example 4-14 CAPITraceSegment_t structure

struct CAPITraceSegment_t{
 uint8_t *eventsTrace; // Profile data block
 CAPITraceSegment_t *next; // Next node in list
 };
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-23

The Cycle Accurate Profiling Interface
4.5.9 The CAPIReturn_t enumeration

This enumeration contains the return values for CAPI functions.

Example 4-15 CAPIReturn_t

enum CAPIReturn_t{
 CAPI_STATUS_OK,
 CAPI_STATUS_GeneralError,
 CAPI_STATUS_UnknownCommand,
 CAPI_STATUS_IllegalArgument,
 CAPI_STATUS_CmdNotSupported,
 CAPI_STATUS_ArgNotSupported,
 CAPI_STATUS_InsufficientResources
 };
4-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.6 Accessing CAPI

This section describes how to access the CAPI interfaces and record profiling
information. It contains the following sections:

• The CAPI derived class

• Memory Management on page 4-26

• Collecting the profiling information on page 4-27.

4.6.1 The CAPI derived class

To support profiling, a model must implement a class inheriting from CAPI and specify
the information regarding the information to be profiled such as the profiling streams
and channels to be collected for each stream.

The derived CAPI class, called CompName_CAPI, must implement an empty constructor
calling the base class CAPIBase constructor.

CompName_CAPI::CompName_CAPI(CASIModule *comp):CAPIBase(comp){};

The initialization and memory allocation for the CAPI interface of a model must be
completed by the end of the init phase.

The CAPI interface implements the function CAPIGetProfilingStreams() that is used by
CAPI clients to dynamically discover the description of the streams associated with the
model.

If a CASI model implements a CAPI interface, obtain a pointer to the CAPI interface
by calling:

CAPI * capi = model->getCAPI()

See Example CAPI implementation on page 4-28 for examples of constructing and
initializing an object derived from the CAPI class.

The CAPI object is guaranteed to be fully constructed after the init phase of the model
has completed.

The streams metadata can then be retrieved using :

uint32_t actualNrStreams;
CAPIStreamInfo_t streamsInfo [100]; // initialize the array with a maximum value
capi->CAPIGetProfilingStreams (100, & actualNrStreams, streamsInfo);

The function CAPIFindStream() returns a pointer to the CAPIStream_t data structure for a
given stream name (the stream names must be unique for each component).

CAPIStream_t *CAPI::CAPIFindStream(const char *name);
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-25

The Cycle Accurate Profiling Interface
The actual streams are obtained based on the metadata using a call to CAPIFindStream():

CAPIStream_t * stream0 = capi->CAPIFindStream(streamInfo[0].streamName);

During simulation, the actual profiling data can be directly accessed by inspecting the
list of collected profiling events exposed by the eventHead and eventTail members of
CAPIStreamInfo_t structure. To access the cycle value of the first collected event, use:

uint64_t cycle = * (uint64_t *) (stream->eventHead-> eventsTrace + 0);

4.6.2 Memory Management

For large simulations, the amount of profiling data collected can grow very large. The
memory management for streams is under complete control of the client application.
Clients must set the CAPICallback before the creation of any CAPI enabled model by
using the function setCAPICallback(). All the streams actual content is recorded in data
structures allocated through this callback. It is the responsibility of the memory
manager to cleanup the allocated memory after the simulation ends.

The CAPIRecordEvent() function must ensure that there is space in the current
eventsTrace array before recording data. If there is not sufficient space, the
allocateTraceSegment() function must be called to create a new array. The
allocateTraceSegment() function is accessed from the CAPICallback object.

The implementation of the allocateTraceSegment() function must allocate an object of
type CAPITraceSegment_t, and the eventsTrace array (the actual event collection area).
The size of the event collection area must be:

stream->eventWidthInBytes * stream->eventsTraceSegmentSize.

The memory manager can change the stream->eventsTraceSegmentSize to a new value,
but must keep the stream->eventWidthInBytes unchanged.

It is illegal to completely remove all the CAPITraceSegment_t structures associated with
a stream, at least one segment must be present in the list at all times.

The memory manager callback might be used during model construction time, so it is
advisable to setup a custom memory manager before any CAPI enabled model is
constructed. By default the CAPI support libraries do install a simple memory manager
that only allocates new trace segments.
4-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.6.3 Collecting the profiling information

The CAPIStream_t pointers are recorded inside the component during the init phase and
are used in subsequent calls to the CAPIRecordEvent function or macros. This reduces
function calls to a minimum and reduces overhead.

The pointer to a CAPIStream_t is returned by the CASIFindStream() function (see The
CAPI derived class on page 4-25).

For streams containing one or two channels, macros are provided for collecting the
profiling information. ARM strongly encourages using the macros whenever possible
because it significantly reduces the performance overhead of the profiling.

CAPIRecordEvent1(stream, arg1)
CAPIRecordEvent2(stream, arg1, arg2)

Note
 Each event recorded for a stream must contain a data element for every channel
included in that stream.

If stream1 is composed of channel_1 and channel_2, for example, then every event
recorded at runtime must provide a value for both channel_1 and channel_2 in that
stream.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-27

The Cycle Accurate Profiling Interface
4.7 Example CAPI implementation

This section describes a CAPI implementation in a typical component. It contains the
following sections:

• The CAPI object

• Initializing the channel objects on page 4-29

• Using the CAPIGetProfilingStreams() function on page 4-29

• Recording events on page 4-30

• Reading the recorded profile data on page 4-31.

4.7.1 The CAPI object

Example 4-16 shows an implementation of the CAPI derived class for a cache
component:

Example 4-16 CASICache_CAPI class

#include "CAPI.h"
class CASICache_CAPI: public CAPI {
public:
 Cache_CAPI(CASIModule *comp):CAPI(comp){}
 CAPIReturn_t CAPIGetProfilingStreams(uint32_t desiredNrStreams,
 uint32_t *actualNrStreams, CAPIStreamInfo_t *streams);
};

The cache collects one stream of information, called Accesses, containing two channels:
Address and Operation. The Address channel is of type CAPI_CHANNEL_TYPE_U16, while the
Operation channel is of type CAPI_CHANNEL_TYPE_SYMBOL.

The CacheOpType enumeration defines the different values possible for the symbol type
channel, corresponding to cache actions such as hits, misses, or refills:

enum CacheOpType{
 COT_READ_MISS,
 COT_READ_HIT,
 COT_WRITE_MISS,
 COT_WRITE_HIT,
 COT_REFILL,
 COT_WRITEBACK
};
4-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
4.7.2 Initializing the channel objects

Declare and initialize the CAPIChannelSymbolInfo, CAPIChannel and CAPIStreamInfo
objects as shown in Example 4-17:

Example 4-17 Declaring the channel objects

class Cache_CAPI: public CAPI {
public:
 Cache_CAPI(CASIModule *comp):CAPIBase(comp){}
 CAPIReturn_t CAPIGetProfilingStreams(uint32_t desiredNrStreams,
 uint32_t *actualNrStreams, CAPIStreamInfo_t *streams);
private:
 CAPIChannelSymbolInfo_t cache_optype_symbols[1]; //One channel is a symbol
 CAPIChannel_t *cache_channels[2]; //two channels
 CAPIStreamInfo_t cache_streams[1]; //one stream
};

4.7.3 Using the CAPIGetProfilingStreams() function

The function Cache_CAPI::CAPIGetProfilingStreams initializes the symbolStrings and
symbolColors fields for the Operation channel, and returns the streams in the streams
argument (see Example 4-18).

Note
 Objects and memory structures created with new, such as CAPIChannel_t, must be
destroyed or freed in the terminate() stage.

Example 4-18 The CAPIGetProfilingStreams function

CAPIReturn_t Cache_CAPI::CAPIGetProfilingStreams(uint32_t desiredNrStreams,
 uint32_t *actualNrStreams,CAPIStreamInfo_t *streams)
//Init the channels
 cache_channels[0]=new CAPIChannel_t();
 cache_channels[0]->channelName="Address";
 cache_channels[0]->description="The address being accessed";
 cache_channels[0]->type=CAPI_CHANNEL_TYPE_U16;
 cache_channels[1]=new CAPIChannel_t();
 cache_channels[1]->channelName="Operation Type";
 cache_channels[1]->description="The cache operation type";
 cache_channels[1]->type=CAPI_CHANNEL_TYPE_SYMBOL;
 cache_channels[1]->count=1;
 cache_channels[1]->symbolInfo=&cache_optype_symbols[0];
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-29

The Cycle Accurate Profiling Interface
//Init the streams
 cache_streams[0].streamName="Accesses";
 cache_streams[0].streamLabel="Accesses";
 cache_streams[0].description="The cache accesses stream";
 cache_streams[0].nrOfChannels=2;
 cache_streams[0].channels=&cache_channels[0];

//Init the symbols for the CacheOpType channel
 cache_optype_symbols[0].nrSymbolValues = 6;
 cache_optype_symbols[0].symbolValues = new CAPISymbolValue_t[6];
 cache_optype_symbols[0].symbolValues[0].valueName=strdup("Read - Miss");
 cache_optype_symbols[0].symbolValues[1].valueName=strdup("Read - Hit");
 cache_optype_symbols[0].symbolValues[2].valueName=strdup("Write - Miss");
 cache_optype_symbols[0].symbolValues[3].valueName=strdup("Write - Hit");
 cache_optype_symbols[0].symbolValues[4].valueName=strdup("Refill");
 cache_optype_symbols[0].symbolValues[5].valueName=strdup("Writeback");

 cache_optype_symbols[0].symbolValues[0].valueColor=CAPI_COLOR_RED;
 cache_optype_symbols[0].symbolValues[1].valueColor=CAPI_COLOR_GREEN;
 cache_optype_symbols[0].symbolValues[2].valueColor=CAPI_COLOR_RED;
 cache_optype_symbols[0].symbolValues[3].valueColor=CAPI_COLOR_BLUE;
 cache_optype_symbols[0].symbolValues[4].valueColor=CAPI_COLOR_YELLOW;
 cache_optype_symbols[0].symbolValues[5].valueColor=CAPI_COLOR_PURPLE;

//set the return variables
 streams[0] = cache_streams[0];
 *actualNrStreams = 1;
 return CAPI_STATUS_OK;
}

The Cache init phase initializes the CAPI interface for the model:

capi = new Cache_CAPI(this);
CAPI:CAPIRegisterInterface(capi);
cacheStream=capi->CAPIFindStream("Accesses");

The CAPI initialization code might be located, for example, in the initialization code
for the CASI object for the component.

4.7.4 Recording events

The cacheStream stream pointer is used to collect cache information (hit, miss, refill, and
so forth) during the cache operation:

if(hit) CAPIRecordEvent2(cacheStream, (uint16_t) addr, (uint8_t) COT_READ_HIT);
4-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
Note
 CAPIRecordEvent2() is a macro that records an event with two data items.

Maintaining consistency between the selection of colors and the order of streams
ensures that the Profile windows are easy to analyze.

In general, colors with a red hue are used to indicate something undesirable (for
example a cache miss) and green colors indicate success (for example a cache hit).

After collecting the profiling information during simulation, the user can view the
profiling by either:

• Using a third-party application to select the stream to view and the channels to
represent on the X and Y axes of a profiling graph that is displayed in a Profile
Window.

• writing a custom function that replays the profiling data (see Reading the
recorded profile data).

4.7.5 Reading the recorded profile data

The simulation environment might include tools that replay the collected profile
information in profile windows or output it to a file. It is also possible to create a custom
routine that accesses the collected profile data directly from the main C++ program.

The functions that record profile data must be placed in the individual components (see
Collecting the profiling information on page 4-27). The top-level program must include
the following code to access the recorded profile stream:

CAPICallback

The top level program must implement a callback function to access the
data recorded by the component (see Example 4-19 on page 4-32). The
CAPICallback function manages the allocation of memory for the data
collection functions of the profile interface.

CAPI display function

The top level program must implement a function to access the CAPI data
stream for the component (see Example 4-20 on page 4-32).

Calling the display function

The top level program must initialize the CAPI interface and call the
display function to output the recorded data (see Example 4-21 on
page 4-33).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-31

The Cycle Accurate Profiling Interface
Example 4-19 Implementing CAPICallback

class TopCAPICallback : public CAPICallback
{
public:
 TopCAPICallback (CASIClockDriverRoot * _clockRoot)
 : clockRoot (_clockRoot) {}

 virtual ~TopCAPICallback () {}

 virtual CAPITraceSegment_t * allocateTraceSegment (CAPIStream_t * stream)
 {
 // minimal functionality
 CAPITraceSegment_t * result = new CAPITraceSegment_t ();
 result->eventsTrace = new uint8_t [(int) (stream->eventWidthInBytes *
 stream->eventsTraceSegmentSize)];
 return result;
 }

 virtual uint64_t getCurrentCycle ()
 {
 return clockRoot->getCurrentCycle ();
 }

private:
 CASIClockDriverRoot * clockRoot;
};

Example 4-20 Function for reading profile information

void printCAPIEvents (eslapi::CAPIStream_t * stream)
{
 for (int i = 0; i < 10; ++ i)
 {
 printf (" Event %d ", i);
 uint64_t base = i * stream->eventWidthInBytes;
 uint64_t offset = 0;
 for (int j=0; j < (int) stream->info->nrOfChannels; ++ j)
 {
 switch (stream->info->channels[j]->type)
 {
 case eslapi::CAPI_CHANNEL_TYPE_U8:
 case eslapi::CAPI_CHANNEL_TYPE_BOOL:
 case eslapi::CAPI_CHANNEL_TYPE_SYMBOL:
 printf ("0x%x ", (int) * ((uint8_t*) &
 (stream->eventHead->eventsTrace[base + offset])));
4-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The Cycle Accurate Profiling Interface
 offset += 1;
 break;
 case eslapi::CAPI_CHANNEL_TYPE_U16:
 printf ("0x%x ", (int) * ((uint16_t*) &
 (stream->eventHead->eventsTrace[base + offset])));
 offset += 2;
 break;
 case eslapi::CAPI_CHANNEL_TYPE_U32:
 printf ("0x%x ", (int) * ((uint32_t*) &
 (stream->eventHead->eventsTrace[base + offset])));
 offset += 4;
 break;
 case eslapi::CAPI_CHANNEL_TYPE_U64:
 printf ("0x%x ", (int) * ((uint64_t*) &
 (stream->eventHead->eventsTrace[base + offset])));
 offset += 8;
 break;
 }
 }
 printf ("\n");
 }
}

Example 4-21 Calling printCAPIEvent() from main()

int sc_main (int argc, char *argv[])
{
 eslapi::CASIClockDriverRoot fast ("fast_clock", 1, SC_NS);
 eslapi::CASIClockDriver slow;
 fast.registerClockSlave (& slow, eslapi::CASI_PHASE_BOTH, 0, 4);
 // capi init
 TopCAPICallback eslapi::capiCallback (& fast);
 CAPI::setCAPICallback (& eslapi::capiCallback);

 .
 .
 .

 // use CAPI
 printf ("%s events\n", s1->getInstanceID ().c_str ());
 printCAPIEvents (s1->getCAPI ()->CAPIFindStream ("Events"));
 printf ("%s events\n", s2->getInstanceID ().c_str ());
 printCAPIEvents (s2->getCAPI ()->CAPIFindStream ("Events"));
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 4-33

The Cycle Accurate Profiling Interface
4-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Chapter 5
The CASI Memory Map Interface

This chapter describes the Cycle Accurate Simulation Interface - Memory Map
Interface (CASIMMI) used to modify the memory map of components connected to a
bus master. It contains the following sections:

• CASIMMI interfaces on page 5-2

• Sample implementation on page 5-8
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-1

The CASI Memory Map Interface
5.1 CASIMMI interfaces

This section describes the CASIMMI classes and interfaces.

The CASI Memory Map Interface simplifies configuring the address spaces managed
by a bus component:

1. A memory map describes how the address regions are assigned to the slaves
present in the system.

2. The bus routes a given bus transaction based on the transaction address.

3. The address region containing the transaction address is used to determine the
target slave.

Complex systems might define multiple memory maps for a single bus and change the
active memory map from one cycle to the next. For example, the memory map active
during reset might contain ROM modules that are replaced with RAM modules during
normal execution. If the active memory map is changed, the bus must notify its slaves
with the new address regions they are now assigned to.

The CASIMMI.h file (in the CASI include directory) contains the class and structure
definitions. See the header file for more information on data structures used by this class
and any design changes.

The memory maps are managed by the following steps:

1. The component defines the structure of its memory maps by interrogating the
connected slaves.

2. The environment sets the values for each memory map present and establishes the
ranges of the corresponding address spaces.

5.1.1 The CASIMMIMemoryMap structure

The CASIMMIMemoryMap and CASIMMIMemoryMaps structures define how the memory map
details are stored:

• CASIMMIMemoryMap describes a single address space (see Example 5-1 on page 5-3).

• CASIMMIMemoryMaps Describes the address spaces associated with a bus. Only one
address space can be active at any given time. During simulation, the bus address
space can be reconfigured by selecting a different memory map.
5-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
Example 5-1 CASIMMIMemoryMap structures

struct CASIMMIMemoryMap{
 std::string memoryMapName; // The identifier of this address map
 uint32_t num_address_regions; // Total number of address regions
 // The regions in this memory map
 // (all following are arrays that contain one entry for every region)
 uint64_t* start; // the start of the regions for this map
 uint64_t* size; // the size of the regions for this map
 string* name; // the names of the regions for this map
 string* slaveCompInstanceID; // the Instance ID of the slave that each region correspond to
 string* slavePortInstanceName; //the Instance Name of the Slave Port that each region correspond to
 CASIMMIMemoryMap& operator= (CASIMMIMemoryMap& puRef); //Make a deep copy of this structure
}

struct CASIMMIMemoryMaps{
 CASIMMIMemoryMap* maps; // An array with the address maps for this bus
 uint32_t numMaps; // num of addr maps supported
 CASIMMIMemoryMaps& operator= (CASIMMIMemoryMaps& puRef); // deep copy
}

5.1.2 The CASIMMIMemoryMapRequest structure

The CASIMMIMemoryMapRequest structure is used by the environment to identify the
memory maps structure.

Example 5-2 Request memory map details

struct CASIMMIMemoryMapRequest{
 uint32_t numMaps; // num of addr maps supported
 uint32_t* memoryMapID; // array with IDs of addr maps supported.
 std::string* mapNames; // array with names of addr maps supported (numAddrMaps number)
 CASIMMIMemoryMapRequest& operator= (CASIMMIMemoryMapRequest& puRef); // deep copy
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-3

The CASI Memory Map Interface
5.1.3 CASIMMI class definition

The CASSIMMI class describes the memory maps of a component. The memory maps are
describe in a two-step process:

1. The component defines the structure of its memory maps by interrogating the
connected slaves.

2. The environment sets the values for each memory map present and therefore
establishes the ranges of the corresponding address spaces.

Example 5-3 CASIMMI class definition

class CASIMMI : public CAInterface
{
public:
 CASIMMI();
 virtual ~CASIMMI();

 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CASIMMI2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }

 // register interface
 static CASIStatus registerInterface(CASIMMI* puMMI, CASIModuleIF* component,
 std::string name, uint32_t numMasterPorts, CASIPortIF **masterPortList);
 // Retrieve the MMI interface which was previously registered with the environment.
 static CASIMMI *getInterface(CASIModuleIF* component);

 // MMI structure
 // Request the bus maps (number and their names)
 virtual CASIStatus requestMemoryMaps(CASIMMIMemoryMapRequest* req) = 0;
 virtual void setEnableMME(bool value);
 virtual bool isMMEEnabled();

 // Reserved for future extensions.
 virtual CASIMMIDetails *getMMIDetails() {return ptrMMIDetails;}

 // Set the maps that are present in this bus for this system.
 virtual CASIStatus setMemoryMaps(CASIMMIMemoryMaps* maps);
 // Get the maps that are present in this bus for this system
 virtual CASIMMIMemoryMaps *getMemoryMaps();

 // Dynamic MMI, can be invoked during simulation
 // Set the CURRENT memory maps.
 virtual CASIStatus setCurrentMemoryMaps(uint32_t* ids, int numMaps);
 // Get the CURRENT memory maps.
5-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
 virtual uint32_t *getCurrentMemoryMaps(int &numMaps);

 // Return interface if requested
 virtual CAInterface *ObtainInterface(if_name_t ifName, if_rev_t minRev, if_rev_t* actualRev)
 {
 if((strcmp(ifName,"eslapi.CASIMMI2") == 0) && (minRev <= 0)){
 *actualRev = 0;
 return this;
 }
 return NULL;
 }

protected:
 // The maps that are present in this bus for this system (the actual regions for every map in
 // the bus). Value set by the setMemoryMaps() and returned by getMemoryMaps()
 CASIMMIMemoryMaps* MemoryMapList;

 // Map ID of the current Memory Maps
 // Value set by setCurrentMemoryMaps and returned by getCurrentMemoryMaps()
 uint32_t* currentMemoryMapIDs;
 int numCurrentMemoryMaps;

 CASIMMIDetails* ptrMMIDetails;
 // Bus Master Port should use the Address Regions set by the Memory Map Editor
 bool bMMEEnabled;

private:
 typedef std::map <CASIModuleIF *, CASIMMI *> ComponentMMIMap;
 static ComponentMMIMap componentMMIMap;
}

5.1.4 CASIMMI::registerInterface()

This function registers the MMI interface

static CASIStatus registerInterface (CASIMMI* puMMI,CASIModuleIF* component,
 std::string name,uint32_t numMasterPorts, CASIPortIF **masterPortList)

where:

puMMI is a pointer to a CASIMMI object.

component is the component that owns the ports.

name is the name of the interface.

numMasterPorts

is the number of master ports in the component.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-5

The CASI Memory Map Interface
masterPortList

is a pointer to an array of master ports.

5.1.5 CASIMMI::getInterface()

Retrieves the MMI interface that was previously registered with the environment.

static CASIMMI *getInterface (CASIModuleIF* component)

where:

component is the component that implements the MMI interface.

5.1.6 CASIMMI::requestMemoryMaps()

Requests the bus maps (both number and names).

virtual CASIStatus requestMemoryMaps(CASIMMIMemoryMapRequest *req) = 0

where:

reg is a pointer to a request structure.

5.1.7 CASIMMI::setEnableMME()

Enable the memory map editor.

virtual void setEnableMME(bool value)

5.1.8 CASIMMI::isMMEEnabled()

Determine if the memory map editor is enabled.

virtual bool isMMEEnabled()

5.1.9 CASIMMI::getMMIDetails()

Reserved for future use.

virtual CASIMMIDetails *getMMIDetails() {return ptrMMIDetails;}

5.1.10 CASIMMI::setMemoryMaps()

Set the maps that are present in this bus for this system, that is, set the actual regions for
every map in the bus.

virtual CASIStatus setMemoryMaps(CASIMMIMemoryMaps* maps);
5-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
Note
 This enables the environment to set the memory maps.

5.1.11 CASIMMI::getMemoryMaps()

Get the maps that are present in this bus for this system, as set by the previous
setMemoryMaps() call.

virtual CASIMMIMemoryMaps *getMemoryMaps()

5.1.12 CASIMMI::setCurrentMemoryMaps()

A component might have a number of alternate memory maps. This call enables
selecting a certain memory map for simulation. The call can be invoked dynamically
during simulation.

virtual CASIStatus setCurrentMemoryMaps(uint32_t* ids, int numMaps)

where:

ids is the array of memory map ids.

numMaps is the number of maps to set.

5.1.13 CASIMMI::getCurrentMemoryMaps()

Get the current memory maps.

virtual uint32_t *getCurrentMemoryMaps(int &numMaps)
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-7

The CASI Memory Map Interface
5.2 Sample implementation

The examples in this section describe adding the CASIMMI code to a component.

For more details on the CASIMMI class, see The CASIMMIMemoryMap structure on
page 5-2 and the CASIMMI.h and CASITransaction.h files for information on the memory
and transaction functions and data structures.

The CompBus_CASIMMI class is the component’s implementation of the master CASIMMI
class (CompBus is the name of the component that behaves like a bus. The name of the
classes will of course be different for your own component.) For more detail, see:

• CompBus_CASIMMI class Implementation details on page 5-9

• CompBus_CASIMMI.h file on page 5-10

• CompBus_CASIMMI::CASIMMI() constructor on page 5-11

• CompBus_CASIMMI::~CASIMMI destructor on page 5-11

• CompBus_CASIMMI::requestMemoryMaps on page 5-11

• CompBus_CASIMMI::getCurrentMemoryMaps() on page 5-12.

The slave_port_1_TS class is a transaction slave port that is part of the implementation
of a custom component. (slave_port_1_TS is the name of the port. The name of the
classes will of course be different for your own port.) This class describes the Memory
Map Interface classes and methods that are present in a component that provides a bus
slave port. ARM recommends that new designs that implement buses use the
CASIMMI memory map interface. For more details see:

• slave_port_1_TS::slave_port_1() on page 5-13

• slave_port_1_TS::setAddressRegions() on page 5-13

• slave_port_1_TS::getMappingConstraints() on page 5-14.

New designs that implement buses must use the new CASIMMI memory map interface.
5-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
5.2.1 CompBus::CompBus()

The class implementation for an example bus component initializes the CASIMMI
interface.

An example of a constructor for the component is shown in Example 5-4.

Example 5-4 Constructor

CompBus::CompBus(CASIModuleIF* c, const std::string &s) : CASIModule(c, s)
{
 bm1_BMaster = new sc_port< CASITransactionIF, 0 >(this, "bm1", 0x1000, 0x10000);
 initTransactionPort((CASIPortIF*)bm1_BMaster);
 registerPort(bm1_BMaster, "bm1");
}

5.2.2 CompBus_CASIMMI class Implementation details

For master ports that do not have multiple memory maps, it is simpler to use the built-in
sc_port<casi_transaction_if,0> class that contains a standard bus master. Instantiate
this class to create the master port:

sc_port::sc_port<casi_transaction_if,0> (CASIModuleIF* _owner,
 const std::string& name, uint64_t? blocksize, uint64_t? memsize,
 maxsim::CASITransactionProperties* prop)

For the examples in this section, CompBus is the name of the component that implements
the CASIMMI interface. The name of the classes will of course be different for your
own component. Create your own component class that inherits from CASIMMI if your
component uses multiple memory maps.

If you use the Bus Master Port constructor below, the CASIMMI will not be available:

sc_port<CASITransactionIF,0>(const std::string& name, uint64_t blocksize,
 uint64_t memsize,CASITransactionProperties* prop)

If you are creating a bus master port that requires more than one memory map and
require that the port supports the Memory Map Editor, you must create an object of a
class derived from CASIMMI and use registerInterface() to associate the bus master
port with that CASIMMI object.

Bus master ports in components that use the standard bus master port
(sc_port<CASITransactionIF, 0>) have their own predefined implementation of the
CASIMMI constructor, destructor, and requestMemoryMaps() functions. These are not
user modifiable.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-9

The CASI Memory Map Interface
Older buses continue to work without modification, but the Memory Map Editor is not
be available and memory regions must be edited from the Parameters window for each
slave component.

5.2.3 CompBus_CASIMMI.h file

The CompBus_CASIMMI.h file contains the class definition that provides the interface to the
memory map functionality. An example of a .h file is shown in Example 5-5.

Example 5-5 CompBus_CASIMMI.h file

class CompBus;
class CompBus_CASIMMI : public CASIMMI
{
public:

 CompBus_CASIMMI(CompBus* c, std::string& MemSpaceName, uint32_t numPort,
 CASIPortIF **masterPortList);
 virtual ~CompBus_CASIMMI();

public:

 // Implemented by the BUS
 // Request the bus maps (number and their names) to create the different tabs in the MME).
 // These are the maps supported by this bus
 CASIStatus requestMemoryMaps(CASIMMIMemoryMapRequest* req);

private:

 CompBus* target;
 casi_port_base** target_portlist;
 CASIMMIMemoryMapRequest* MemMapReq;

};
#endif
5-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
5.2.4 CompBus_CASIMMI::CASIMMI() constructor

An example of a CompBus_CASIMMI constructor is shown in Example 5-6.

Example 5-6 Constructor

CompBus_CASIMMI::CompBus_CASIMMI(CompBus* c, std::string& MemSpaceName, uint32_t numPort,
 CASIPortIF **masterPortList) : target(c), target_portlist(masterPortList){
 CASIModuleIF* puModule = dynamic_cast<CASIModuleIF *> (c);
 MemMapReq = new CASIMMIMemoryMapRequest;
 MemMapReq->numMaps = 2;
 MemMapReq->memoryMapID = 0x0;
 MemMapReq->mapNames = new std::string[MemMapReq->numMaps];
 MemMapReq->mapNames[0] = std::string("MapX");
 MemMapReq->mapNames[1] = std::string("MapY");
 registerInterface(this, puModule, MemSpaceName, 1, masterPortList);
}

5.2.5 CompBus_CASIMMI::~CASIMMI destructor

An example of a CompBus_CASIMMI destructor is shown in Example 5-7.

Example 5-7 CASIMMI destructor

CompBus_CASIMMI::~CompBus_CASIMMI()
{
 delete[] MemMapReq->mapNames;
 delete MemMapReq;
}

5.2.6 CompBus_CASIMMI::requestMemoryMaps

An example of the requestMemoryMaps() function is shown in Example 5-8 on
page 5-12.

Note
 For master ports that do not have multiple memory maps, it is simpler to use the built-in
sc_port class that contains a standard bus master. Ports generated by the component
master support only one memory map.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-11

The CASI Memory Map Interface
Example 5-8 requestMemoryMaps()

//Request the bus maps (number and their names) to create the different tabs in the MME).
//These are the maps supported by this bus

CASIStatus CompBus_CASIMMI::requestMemoryMaps(CASIMMIMemoryMapRequest* req)
{
 req->mapNames = new std::string[3];
 req->mapNames[0] = “Map1”;
 req->mapNames[1] = “Map2”;
 req->mapNames[2] = “Map3”;
 return CASI_STATUS_OK;
}

5.2.7 CompBus_CASIMMI::getCurrentMemoryMaps()

Some components can support multiple active memory map at the same time. This
requires that an array pointer and the number of maps is passed as parameters when
setting the current maps. An example of a getCurrentMemoryMaps() from the CASIMMI
class is shown in Example 5-7 on page 5-11.

Note
 Implementation of this function is not required. A default implementation is provided
in the CASIMMI base class.

The function is provided to enable the simulation environment to perform dynamic
remapping.

Example 5-9 getCurrentMemoryMaps

uint32_t *CASIMMI::getCurrentMemoryMaps(int &numMaps) {
 numMaps = 1;
 uint32_t* currentMemoryMapIDs = new uint32_t[1];
 currentMemoryMapIDs[1] = mapid;
 return currentMemoryMapIDs;
}

5-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
5.2.8 slave_port_1_TS::slave_port_1()

The slave port property value for casi_version must be CASI_VERSION_1_1 or higher. For
example:

Example 5-10 Setting the CASI version

slave_port_1_TS::slave_port_1_TS(CompSlave1* _owner) :
 CASITransactionSlave(_owner, "slave_port_1_TS"), owner(_owner)
{
 CASITransactionProperties prop;
 memset(&prop,0,sizeof(prop));
 prop.casiVersion = CASI_VERSION_1_1; // must be version 6 or higher
}

5.2.9 slave_port_1_TS::setAddressRegions()

Example 5-11 shows generated code that has been updated.

Example 5-11 setAddressRegions

/* Method to set the address regions */
//Sets the value of the address regions for this slave port
void slave_port_1_TS::setAddressRegions(uint64_t* start, uint64_t* size, std::string* name)
{
 if (start && size && name)
 {
 string port_name = this->getPortInstanceName();
 owner->message(CASI_MSG_INFO, "Set Address Region Called for Port %s", port_name.c_str());
 int i = 0;
 while (size[i] != 0) // empty string indicates end of array
 {
 owner->message(CASI_MSG_INFO, "Address Region: start= 0x%I64x size = 0x%I64x Name= %s",
 start[i], size[i], name[i].c_str());
 i++;
 }
 }

 // TODO: Add your code here.
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-13

The CASI Memory Map Interface
5.2.10 slave_port_1_TS::getMappingConstraints()

Example 5-12 shows an example of updating the getMappingConstraints() code for a
transaction slave. Example 5-13 on page 5-15 shows the definitions of data structures.

Example 5-12 getMappingConstraints

CASIMemoryMapConstraints* slave_port_1_TS::getMappingConstraints()
{
 puMemoryMapConstraints.minRegionSize = 0x1000;
 puMemoryMapConstraints.maxRegionSize = 0xffffffffffffffff;
 puMemoryMapConstraints.minAddress = 0x0;
 puMemoryMapConstraints.maxAddress = 0xffffffffffffffff;
 puMemoryMapConstraints.minNumSupportedRegions = 0x2;
 puMemoryMapConstraints.maxNumSupportedRegions = 0xa;
 puMemoryMapConstraints.alignmentBlockSize = 0x80 ;
 puMemoryMapConstraints.numFixedRegions = 0; // reserved for future use
 puMemoryMapConstraints.fixedRegionList = NULL; // reserved for future use

 return &puMemoryMapConstraints;
}

Note
 The minNumSupportedRegions and maxNumSupportedRegions values determine how many
regions can be present. These constraints must be used by an external editor that deletes
or adds regions.
5-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

The CASI Memory Map Interface
Example 5-13 Data structures

struct CASIMemRegion
{
 uint64_t start;
 uint64_t size;
 std::string name;
};

struct CASIMemoryMapConstraints
{
 uint64_t minRegionSize;
 uint64_t maxRegionSize;
 uint64_t minAddress;
 uint64_t maxAddress;
 //min number of supported regions by this slave at any given point in time
 uint32_t minNumSupportedRegions;
 //max number of supported regions by this slave at any given point in time
 uint32_t maxNumSupportedRegions;
 //Allignment requirement, the min block size where this slave's regions can be mapped to
 // (4k for AHB)
 uint64_t alignmentBlockSize;
 CASIMemoryMapConstraintsDetails *details; //Reserved
 uint32_t numFixedRegions;
 CASIMemRegion* fixedRegionList; // only if numFixedRegions > 0
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. 5-15

The CASI Memory Map Interface
5-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Appendix A
Static Scheduling of Communication Functions

This appendix describes the static scheduling mechanism that is used to enable
combinatorial support for communication functions. It contains the following sections:

• Introduction to combinatorial path scheduling on page A-2

• Specifying the combinatorial path on page A-5

• Error checking on page A-6

• Example implementation on page A-7.

Note
 Non-combinatorial path scheduling is typically used for components. See Cycle based
scheduling on page 1-17 and The clock interface classes on page 2-41 for more
information on the standard non-combinatorial communication process.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. A-1

Static Scheduling of Communication Functions
A.1 Introduction to combinatorial path scheduling

The simple cycle-based model described in Cycle based scheduling on page 1-17 is
adequate for simple models. Some complex models, however, require multiple
combinatorial paths to be handled in the same simulation cycle. A set of combinatorial
paths means that there are multiple functions in a component that must be called in a
specific order during the communication phase.

Creating a specific order for the functions in the combinatorial paths enables:

• protocols that require cyclic paths between components to manage arbitration

• communication between transactor and RTL components

• custom components that contain combinatorial paths between subcomponents

• optimizing simulation speed by enabling or disabling clock registration.

Figure A-1 shows a typical communicate and update sequence. The communicate() and
update() functions for each component are not called in a predictable order. From the
perspective of the component developers, the order must be considered as
non-deterministic.

Figure A-1 Standard communicate and update phases
A-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Static Scheduling of Communication Functions
Figure A-2 shows a system where there are multiple communications functions for
Component6, Component7, and Component8 that must be called in a specific order.

Figure A-2 System requiring ordered component communication

In this system, the remaining components use standard communicate() functions and the
order they are called is not specified by the designer. The read() and write() functions
in component 8 are not called by a communicate() function in the master of components
6 and 7. The order of function calls for these functions is not specified in the figure.
They might, for example, be called by the ackBus() functions.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. A-3

Static Scheduling of Communication Functions
Figure A-3 shows the calling order for the communication functions.

Figure A-3 Statically scheduled communicate and update phases

Note
 There are no dependencies between Component6 and Component7, so the scheduling
order for these components is determined randomly by the scheduling software and not
by the system designer.

Statically scheduling the communication functions does not affect the scheduling order
for the update functions.
A-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Static Scheduling of Communication Functions
A.2 Specifying the combinatorial path

The steps required to implement combinatorial paths with a static schedule are:

1. Identify the combinatorial paths that exist for your components and the specified
protocol.

2. Identify all of the communicate() functions that are required to implement the
combinatorial paths. (The individual communicate() functions are referred to as
nodes in the following text.)

3. Identify the order of combinatorial nodes inside each component.

4. Use explicit addDependency() calls for nodes inside the component to specify the
order between nodes.

5. Identify the required order for communication between component ports and use
the addDependency() calls to specify the order for combinatorial paths across
components.

Note
 Any non-combinatorial reads or writes that go across a cycle, that is, are latched

and updated, must not be specified as a dependency.

Writes are always combinatorial because they occur in the same cycle.

Reads, however, might or might not be latched an must be considered
non-deterministic. The execution order cannot be relied upon.

6. Ensure that each port that has a dependency has a matching dependency in the
corresponding port in the other component. Connected ports with dependencies
must use the same protocol.

7. Do not use calls to registerClock() and unregisterClock() to provide speed
optimizations. If clocking is turned on and off, use the enableClock() and
disableClock() functions instead.

The function prototypes for the static scheduling are described in the following
sections:

• CASIClockMaster::disableClockSlave() on page 2-46

• CASIClockMaster::enableClockSlave() on page 2-46

• CASIClockMaster::registerRealCommunicate() on page 2-46

• CASIClockMaster::registerRealUpdate() on page 2-47

• CASIClockMaster::addDependency() on page 2-48.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. A-5

Static Scheduling of Communication Functions
A.3 Error checking

The following actions result in an error when the system is compiled or simulated:

• There is a combinatorial read dependency and missing dependencies on other
side.

• There is a dependency graph is present on both sides of a port, but does not match
one-to-one on two sides of a port.

• The registerClock() or unregisterClock() functions are used dynamically for a
clock port that has dependencies.

• There are cycles in dependency graph (the function at the start of the graph is
dependent on a function at the end of the graph).

• The clock domain is different for components contributing to the same directed
acyclic graph (DAG).

• Both the old registerClockSlave() and new registerCommunicate() and
registerUpdate() mechanisms are used for the same component.

• Two functions with the same name have been registered from a component.

• The function names are not registered for a component and addDependency() is
called for the component.

• There is an attempt to register more than one update. (This might result in a
warning instead of an error.)
A-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Static Scheduling of Communication Functions
A.4 Example implementation

This section provides an example implementation of a arbitration component and two
bus ports. Figure A-4 shows the system interconnections.

Figure A-4 Component connections

Figure A-5 shows the order of the dependency paths between the combinatorial
communication functions for the components.

Figure A-5 Component function dependency graph

Example A-1 on page A-8 is a code fragment for the MyArbiter component
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. A-7

Static Scheduling of Communication Functions
Example A-1 Arbiter component

// component class:
class MyArbiter: public casi_module
{

MyArbiter (casi_m_base* c, const string &s);
void reqBus1() {...}
void reqBus2() {...}
void ackBus1() {...}
void ackBus2() {...}
void arbitrate() {...}
// normal communicate can also be registered

 // (not necessary, but works the same way as before)
void communicate(){...}
void update(){...}
...

}

MyArbiter::MyArbiter (casi_m_base* c, const string &s) : casi_module(c, s)
{

...
registerPort(Port1, "axi1");
registerPort(Port2, "axi2");
...

}

MyArbiter::interconnect(void){
// add combinatorial logic
clockMaster->registerCommunicate(this, &MyArbiter::reqBus1,"reqBusFrom1");
clockMaster->registerCommunicate(this, &MyArbiter::reqBus2,"reqBusFrom2");
clockMaster->registerCommunicate(this, &MyArbiter::ackBus1,"ackBusTo1");
clockMaster->registerCommunicate(this, &MyArbiter::ackBus2,"ackBusTo2");
clockMaster->registerCommunicate(this, &MyArbiter::arbitrate,"arbitrate");

// add dependency edges
// IMPOTANT: order of dependencies for a port matters! They must match
// the dependencies one-to-one on the other component connected

 // to this port.
clockMaster->addDependency (this, Port1,"reqBusFrom1");
clockMaster->addDependency (this, "actBusTo1",Port1);
clockMaster->addDependency (this, Port2,"reqBusFrom2");
clockMaster->addDependency (this, "actBusTo2",Port2);

clockMaster->addDependency (this, "reqBusFrom1","arbitrate");
clockMaster->addDependency (this, "reqBusFrom2","arbitrate");
clockMaster->addDependency (this, "arbitrate","ackBusTo1");
clockMaster->addDependency (this, "arbitrate","ackBusTo2");

}

A-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Static Scheduling of Communication Functions
Example A-2 is a code fragment for the component with the bus master port.

Example A-2 Source component with bus port

// source component
class MySrc: public casi_module
{

MySrc (casi_m_base* c, const string &s);

void reqBus() {...}
void ackBus() {...}

//normal communicate can still be present, but not necessary
void communicate(){...}
void update(){...}

...

}

MySrc:: MySrc(casi_m_base* c, const string &s) : casi_module(c, s)
{

...
registerPort(Port, "master");

 ...

}

MySrc::interconnect(void){
// add combinatorial logic
clockMaster->registerCommunicate(this, &MySrc::reqBus,"reqBus");
clockMaster->registerCommunicate(this, &MySrc::ackBus,"ackBus");

// add dependency edges
// IMPORTANT: the order of these dependencies matters!
clockMaster->addDependency (this, "reqBus", Port);
clockMaster->addDependency (this, Port,"ackBus");

}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. A-9

Static Scheduling of Communication Functions
A-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Appendix B
AMBA™ AHB TLM Specification for CASI

This appendix describes the AMBA High-performance Bus (AHB) Transaction Level
Model (TLM) specification for the ESL APIs. It contains the following sections:

• Introduction on page B-2

• AHB control signals on page B-3

• Implementation details for AHB interfaces on page B-6.

Note
 See the AMBA Specification Rev 2.0 (ARM IHI0011) for detailed specifications of the
AMBA AHB bus. AMBA is the Advanced Microcontroller Bus Architecture
specification.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-1

AMBA™ AHB TLM Specification for CASI
B.1 Introduction

A transaction is the exchange of a set of information between a master and a slave
interface.

If there are multiple AHB masters, a bus arbiter must determine which master has
control of the bus by transferring control information between the masters, slaves, and
bus arbiter.

The data in the AHB slave can be accessed by synchronous or asynchronous functions:

Synchronous access functions

The read() and write() functions enable synchronous access between
different components. These functions are expected to return
immediately (in the same cycle where they were initiated) and return the
status of the transaction. Because the functions are synchronous, the
master must first obtain control of the slave by successfully calling the
requestAccess() and checkForGrant() functions.

The read/write functions can implement also multi-cycled transactions.
If, for example, in the first cycle they return CASI_STATUS_WAIT, then the
initiating component will call the read/write function again in subsequent
cycles, until it receives the CASI_STATUS_OK representing the end of this
transaction.

The readDbg() and writeDbg() provide debug accesses and enable
debuggers to, for example, read the desired information without
advancing the simulation.

Asynchronous access functions

The asynchronous readReq() and writeReq() functions enable a
communication model where the initiator master component provides a
callback function pointer to the slave component.

When the slave component is ready to serve the transaction, it calls the
callback function notifying the master that the data is ready.
B-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA™ AHB TLM Specification for CASI
B.2 AHB control signals

The control information and slave response information are encapsulated in the
following data structures:

• AHB signal structure

• The CASIMMI structures (such as CASIMemoryMapConstraints) for the master and
connected slaves.

• the AHBTransactionProperties structure (see the CASITypes.h and
AHB_Transaction_CASI.h files)

• the ctrl array passed as a parameter with the access functions.

The AHB signal structure (declared in the AHB_Transaction.h header file) makes the
AHB signals available to all bus participants independently of their involvement in the
currently active AHB transfer:

typedef struct TAHBSignals
{
 uint32_t hclk; // not modeled, always 1
 uint32_t hreset; // not modeled, always 1
 uint32_t haddr; // can safely be read in update()
 uint32_t htrans; // can safely be read in update()
 uint32_t hwrite; // can safely be read in update()
 uint32_t hsize; // can safely be read in update()
 uint32_t hburst; // can safely be read in update()
 uint32_t hprot; // can safely be read in update()
 uint32_t hwdata[4]; // can safely be read in update()
 uint32_t hrdata[4]; // can safely be read in update()
 uint32_t hsel; // not modeled, always 0
 uint32_t hready; // can safely be read in update()
 uint32_t hresp; // not modeled, always 0
 uint32_t hbusreq[AHB_MAX_MASTERS]; // can safely be read in update()
 uint32_t hlock[AHB_MAX_MASTERS]; // can safely be read in update()
 uint32_t hgrant; // can safely be read in communicate()
 uint32_t hmaster; // can safely be read in communicate()
 uint32_t hmastlock; // can safely be read in update()
 uint16_t hsplit[AHB_MAX_MASTERS]; // not modeled, always 0
 uint32_t hready_z1; // hready delayed by one, can safely be read
 // in communicate(), maintained by AHB_casi
 uint32_t hgrant_z1; // hgrant delayed by one, can safely be read
 // in committed(), maintained by AHB_casi
} TAHBSignals;

The signals structure can be accessed by all masters and slaves connected to the bus.
Use the readReq() function to pass a pointer to the data structure to bus masters and
slaves.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-3

AMBA™ AHB TLM Specification for CASI
During the reset simulation stage. the AHB_casi component calls readReq() for all
connected slaves and makes the data structure available to the slaves. See the AMBA
Specification Rev 2.0 for details on the individual AHB signals.

B.2.1 AHB bus state machine

A typical implementation of an AHB master uses a simple state machine to access the
AHB slave:

1. Start in the arbitration state and use the requestAccess() and checkForGrant()
function to obtain a lock on the bus to the slave. If the bus is granted and ready,
the address state is entered.

2. The master issues a read() or write() call with dummy data to determine the
status of the slave. The data state is entered.

3. The read() or write() call is repeated to transfer the actual data. If the data is
transferred, the state returns to arbitration.

Note
 If there are multiple slaves connected to an AHB master, or the slaves do not have a
fixed memory map, the memory map for the slave components must be created before
the AHB master accesses the slaves.

For more information on memory map functions, see The CASITransactionIF interface
on page 2-56.

Figure B-1 on page B-5 shows the sequence of calls to perform a single write. In this
example, a single wait state has been inserted by the slave during the read data phase.
B-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA™ AHB TLM Specification for CASI
Figure B-1 AHB write
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-5

AMBA™ AHB TLM Specification for CASI
B.3 Implementation details for AHB interfaces

This section describes how the transaction interface functions are implemented for
typical AHB masters and slaves.

B.3.1 read() and write()

Perform synchronous read or writes on the slave.

The slave must drive the acknowledgement field, ctrl[AHB_IDX_ACK] to proper values.
The return value of the data stage read/write call represents the hready signal:
CASI_STATUS_OK means that hready is 1, CASI_STATUS_WAIT means hready is 0 (wait state
occurred). In the address stage no wait states can be inserted.

CASIStatus read(uint64_t addr, uint32_t* value, uint32_t* ctrl)
CASIStatus write(uint64_t addr, uint32_t* value, uint32_t* ctrl)

where:

addr is the transaction address.

value is an array of uint32_t for the value being read or written.

ctrl is an array of uint32_t, representing the control fields for the transaction:

• ctrl[AHB_IDX_CYCLE] is AHB_CYCLE_ADDR for address cycles or
AHB_CYCLE_DATA for data cycles.

• ctrl[AHB_IDX_ACC] contains the control information of the access,
hlock (falling edge), hburst, htrans, hprot and hsize.

• ctrl[AHB_IDX_ACK] is the acknowledgement field and must be set to
AHB_ACK_DONE by the slave when the transfer is complete.

Example B-1 lists an implementation of read() from the AHB_casi_TSPort.cpp file:

Example B-1 read()

CASIStatus AHB_casi_TSPort::read(uint64_t address, uint32_t *dataPtr,
 uint32_t *ctrlPtr)
{
 owner->doUpdate = true;
 CASIStatus slaveRet, ret = CASI_STATUS_OK;
 assert(portID < AHB_NUM_MASTERS);
 switch (ctrlPtr[AHB_IDX_CYCLE])
 {
 case AHB_CYCLE_ADDR:
 if (owner->nrSlavesInAddr > 0)
 {
B-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA™ AHB TLM Specification for CASI
 if (owner->enableDebugMessages) {
 cout << sc_time_stamp() << ", " << m_name
 << sc_string::to_string(
 ": WARNING, port %d read CASI_CYCLE_ADDR", portID)
 << sc_string::to_string(" addr:0x%08x",
 (uint32_t) address)
 << sc_string::to_string("%d slaves in addr phase.",
 owner->nrSlavesInAddr+1)
 << endl;
 }
 assert(owner->nrSlavesInData == 0);
 }
 assert(owner->nrSlavesInAddr == 0);
 owner->nrSlavesInAddr++;
 owner->acc = ctrlPtr[AHB_IDX_ACC];
 owner->signals.hmastlock = AHB_ACC_DECODE_HLOCK(owner->acc);
 owner->checkHLockForFallingEdge(portID, owner->signals.hmastlock);
 owner->signals.hwrite = 0;
 owner->signals.haddr = (uint32_t)(address & 0xffffffff);
 owner->signals.hmaster = portID;
 owner->decodeControl();
 // The granted master has started the transfer,
 // there is no longer a requirement to check the backoff cycles
 if (portID == owner->signals.hgrant)
 // everything else would be a protocol violation
 {
 owner->currBackoffCycle = 0;
 }
 if (owner->signals.htrans != AHB_TRANS_IDLE)
 {
 owner->bmaster->read(address, dataPtr, ctrlPtr);
 }
 break;
 case AHB_CYCLE_DATA:
 if (owner->enableDebugMessages) {
 cout << sc_time_stamp() << ", " << m_name
 << ": port " << portID << " read"
 << sc_string::to_string(" addr:0x%08x", (uint32_t) address)
 << sc_string::to_string(" ctrl:0x%x", ctrlPtr[AHB_IDX_ACC])
 << endl;
 }
 if (owner->nrSlavesInData > 0)
 {
 if (owner->enableDebugMessages) {
 cout << sc_time_stamp() << ", " << m_name
 << ": WARNING, port " << portID << " read CASI_CYCLE_DATA"
 << sc_string::to_string(" addr:0x%08x", (uint32_t) address)
 << sc_string::to_string("%d slaves in addr phase.",
 owner->nrSlavesInAddr+1) << endl;
 }
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-7

AMBA™ AHB TLM Specification for CASI
 assert(owner->nrSlavesInData == 0);
 }
 owner->nrSlavesInData++;
 owner->dataStagePortID = portID; // for cadi display only
 assert(owner->signals.hready_z1 || (owner->waitPortID == portID));
 slaveRet = owner->bmaster->read(address, dataPtr, ctrlPtr);
 switch (slaveRet)
 {
 case CASI_STATUS_OK:
 //assert(owner->hready != 0);
 owner->signals.hready = 1;
 owner->signals.hrdata[0] = dataPtr[0];
 owner->signals.hresp = AHB_ACK_DONE;
 // currently only OK supported
 if (owner->p_dataWidth > 32)
 {
 owner->signals.hrdata[1] = dataPtr[1];
 if (owner->p_dataWidth > 64)
 {
 owner->signals.hrdata[2] = dataPtr[2];
 owner->signals.hrdata[3] = dataPtr[3];
 }
 }
 break;
 case CASI_STATUS_WAIT:
 //owner->hready = false;
 owner->signals.hready = 0;
 owner->waitPortID = portID;
 ret = CASI_STATUS_WAIT;
 break;
 default:
 break;
 }
 break;
 default:
 assert(0);
 break;
 } // end switch
 return ret;
}

B-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA™ AHB TLM Specification for CASI
B.3.2 readDbg()

This function performs synchronous debug read transaction operations.

Similar to read(), except that the slave state must not change.

CASIStatus AHB_casi_TSPort::readDbg(uint64_t address, uint32_t *dataPtr,
 uint32_t *type)
{
 CASIStatus ret;
 ret = owner->bmaster->readDbg(address, dataPtr, type);
 return ret;
}

B.3.3 writeDbg()

This function performs synchronous debug write transaction operations.

Similar to write(), except that the slave must not change state.

CASIStatus AHB_casi_TSPort::writeDbg(uint64_t address, uint32_t *dataPtr,
 uint32_t *type)
{
 CASIStatus ret = CASI_STATUS_OK;
 ret = owner->bmaster->writeDbg(address, dataPtr, type);
 return ret;
}

B.3.4 readReq()

AHB Masters can obtain a pointer to the data structure that represents the AHB signal
set. The pointer to this data structure is passed to bus masters by the readReq() function.
It must be called in the reset simulation stage. In contrast to the slave interface, the
master can also receive its port ID.

CASIStatus AHB_casi_TSPort::readReq(uint64_t , uint32_t* value, uint32_t* ctrl,
 casi_transaction_callback_if*)
{
 CASIStatus ret = CASI_STATUS_NOTSUPPORTED;
 if (ctrl)
 {
 owner->pSignals = (TAHBSignals*) ctrl;
 ret = CASI_STATUS_OK;
 }
 return ret;
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-9

AMBA™ AHB TLM Specification for CASI
where:

ctrl is a pointer to the AHB signals structure.

value if not NULL, the ID of the port is be stored at (*Value). This is useful for
masters that evaluate the hmaster signal.

B.3.5 requestAccess()

The bus masters connected to the slave ports of the bus should call requestAccess() at
the rising and falling edges of the hreq signal and/or on the rising edge of hlock.

The value of hreq is encoded into bit 0 of the address parameter of this function (1 =
hreq asserted, 0 = hreq deasserted)

The value of hlock is coded in bit 1 (1 = hlock asserted, 0 = hlock deasserted). The
falling edge event of hlock is not handled by this call due to its different timing (it is set
during the address stage).

The changed semantics of requestAccess() means that this function is not called if hreq
and hlock are asserted and unchanged from the previous cycle. The return value of
requestAccess() can be ignored and always return CASI_GRANT_DENIED.

It is possible to deassert hlock by driving an IDLE cycle.

AHB_casi_TSPort::requestAccess(uint64_t address)
{
 assert(portID < owner->max_ports);
 // set the request flag for the respective port ID and lock
 // (coded in bit 1 (2^1))
 owner->registerRequest(portID, address);
 owner->doUpdate = true;

 return CASI_GRANT_DENIED;
}

B.3.6 checkForGrant()

Call checkForGrant() from the masters to retrieve the value of hgnt. The timing of
checkForGrant() is such that if it is called in cycle n, it gets the value of hgnt that has
been calculated by the AHB_casi component during its update() phase of cycle n–1. This
the value must be used to identify if the master will own the bus in cycle n+1.

Caution
 The master must include the status of hready when evaluating hgnt.
B-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA™ AHB TLM Specification for CASI
AHB_casi_TSPort::checkForGrant(uint64_t addr)
{
 CASIGrant grant;
 UNUSEDARG(addr);
 owner->doUpdate = true;
 grant = (owner->signals.hgrant == portID) ?
 CASI_GRANT_OK : CASI_GRANT_DENIED;
 return grant;
}

B.3.7 getAddressRegions()

This function returns the structure of the memory address regions supported by this
interface. The address regions are returned as start value and block size in addition to a
region name.

Note
 More than one range can be specified. The number of expected regions is given by the
function getNumRegions() and you must allocate the required memory for the
parameters.

This function returns the default address mapping.

void AHB_casi_TSPort::getAddressRegions(uint64_t* start, uint64_t* size,
 const char* name[])
{
 start[0] = owner->Base;
 size[0] = owner->Size;
 name[0] = "AHB_casi";
}

where:

start is the memory address region start addresses array.

size is the memory address region sizes array.

start is the memory address region names array.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. B-11

AMBA™ AHB TLM Specification for CASI
B-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

Appendix C
AMBA® AXI TLM Specification for CASI

This appendix describes the AMBA Advanced eXtensible Interface (AXI) Transaction
Level Model (TLM) specification for the ESL APIs. It contains the following sections:

• Introduction to AXI on page C-2

• Introduction to the CASI TLM for AXI on page C-9

• ESL API implementation of the AXI TLM on page C-44.

Note
 See the AMBA AXI Protocol v1.0 Specification (ARM IHI0022) for detailed
specifications of the AMBA AXI bus. AMBA is the Advanced Microcontroller Bus
Architecture specification.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-1

AMBA® AXI TLM Specification for CASI
C.1 Introduction to AXI

AXI is a point to point connection between a single master and a single slave interface.

Note
 Multiple masters can, however, communicate with multiple slaves by using a matrix
component that manages arbitration, multiplexing, and address decoding.

The AXI protocol is implemented by five independent channels:

Write address channel (AW)

This channel communicates the address from the master to the slave for
write requests. This channel also communicates information about the
write access (for example, write burst count and word size).

Write data channel (W)

This channel communicates the write data from the master to the slave.

Write response channel (B)

This channel communicates the status from the slave to a write request
from the master and indicates whether the write attempt was successful.
The AXI slave drives the status (typically OKAY) onto the response
channel.

Read address channel (AW)

This channel communicates the address from the master to the slave for
read requests. The channel also communicates information about the read
access (for example, read burst count and word size).

Read data channel (R)

This channel communicates the data and status from the slave to the
master for read requests. The AXI slave drives the data and status onto
the data channel.

A block diagram of two components that communicate over an AXI bus is shown in
Figure C-1 on page C-3:
C-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Figure C-1 Block diagram of master and slave components connected over an AXI bus

C.1.1 Control and data signals on the AXI channels

The signals on each of the five AXI channels are listed in Table C-1 through Table C-5
on page C-7. Refer to AMBA AXI Protocol v1.0 Specification for more information on
the signals.

Table C-1 Signals on the write address channel (AW)

Signal Source Description

AWID[3:0] Master Write address ID. This signal is the identification tag for the
write address group of signals.

AWADDR[31:0] Master Write address. The write address bus gives the address of the
first transfer in a write burst transaction. The associated control
signals are used to determine the addresses of the remaining
transfers in the burst.

AWLEN[3:0] Master Burst length. The burst length gives the exact number of
transfers in a burst. This information determines the number of
data transfers associated with the address.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-3

AMBA® AXI TLM Specification for CASI
AWSIZE[2:0] Master Burst size. This signal indicates the size of each transfer in the
burst. Byte lane strobes indicate exactly which byte lanes to
update.

AWBURST[1:0] Master Burst type. The burst type, coupled with the size information,
details how the address for each transfer within the burst is
calculated.

AWLOCK[1:0] Master Lock type. This signal provides additional information about the
atomic characteristics of the transfer.

AWCACHE[3:0] Master Cache type. This signal indicates the bufferable, cacheable,
write-through, write-back, and allocate attributes of the
transaction.

AWPROT[2:0] Master Protection type. This signal indicates the normal, privileged, or
secure protection level of the transaction and whether the
transaction is a data access or an instruction access.

AWVALID Master Write address valid. If this signal is 1, valid write address and
control information are available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes HIGH.

AWREADY Slave Write address ready. If this signal is 1, the slave is ready to
accept an address and associated control signals.

Table C-1 Signals on the write address channel (AW) (continued)

Signal Source Description
C-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Table C-2 Signals on the write data channel (W)

Signal Source Description

WID[3:0] Master Write ID tag. This signal is the ID tag of the write data transfer.
The WID value must match the AWID value of the write
transaction.

WDATA[31:0] Master Write data. The write data bus can be 8, 16, 32, 64, 128, 256,
512, or 1024 bits wide.

WSTRB[3:0] Master Write strobes. This signal indicates which byte lanes to update
in memory. There is one write strobe for each eight bits of the
write data bus. Therefore, WSTRB[n] corresponds to
WDATA[(8 n) + 7:(8 n)].

WLAST Master Write last. This signal indicates the last transfer in a write burst.

WVALID Master Write valid. If this signal is 1, valid write data and strobes are
available.

WREADY Slave Write ready. If this signal is 1, the slave can accept the write data.

Table C-3 Signals in the write response channel (B)

Signal Source Description

BID[3:0] Slave Response ID. The identification tag of the write response. The
BID value must match the AWID value of the write transaction
to which the slave is responding.

BRESP[1:0] Slave Write response. This signal indicates the status of the write
transaction. The allowable responses are OKAY, EXOKAY,
SLVERR, and DECERR.

BVALID Slave Write response valid. If this signal is 1, a valid write response is
available.

BREADY Master Response ready. If this signal is 1, the master can accept the
response information.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-5

AMBA® AXI TLM Specification for CASI
Table C-4 Signals on the read address channel (AR)

Signal Source Description

ARID[3:0] Master Read address ID. This signal is the identification tag for the read
address group of signals.

ARADDR[31:0] Master Read address. The read address bus gives the initial address of a
read burst transaction. Only the start address of the burst is
provided and the control signals that are issued alongside the
address detail how the address is calculated for the remaining
transfers in the burst.

ARLEN[3:0] Master Burst length. The burst length gives the exact number of
transfers in a burst. This information determines the number of
data transfers associated with the address.

ARSIZE[2:0] Master Burst size. This signal indicates the size of each transfer in the
burst.

ARBURST[1:0] Master Burst type. The burst type, coupled with the size information,
details how the address for each transfer within the burst is
calculated.

ARLOCK[1:0] Master Lock type. This signal provides additional information about the
atomic characteristics of the transfer.

ARCACHE[3:0] Master Cache type. This signal provides additional information about
the cacheable characteristics of the transfer.

ARPROT[2:0] Master Protection type. This signal provides protection unit information
for the transaction.

ARVALID Master Read address valid. If this signal is 1, the read address and
control information is valid and will remain stable until the
address acknowledge signal, ARREADY, is high.

ARREADY Slave Read address ready. If this signal is 1, the slave is ready to accept
an address and associated control signals.
C-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
C.1.2 Hardware flow control signals

All of the AXI channels have versions of READY and VALID signals that control the
flow between the master and slave. (The read data channel for example has RVALID
and RREADY.) For systems implemented in hardware, the handshaking is managed by
monitoring the state of READY and VALID on the rising clock edge as shown in
Figure C-2 on page C-8:

Note
 Figure C-2 on page C-8 shows READY low until VALID is high. The VALID and
READY signals can, however, go high in either order. The only requirement for
signifying that the transfer is complete is that both signals are high on the rising edge of
the clock.

Table C-5 Signals in the read data channel (R)

Signal Source Description

RID[3:0] Slave Read ID tag. This signal is the ID tag of the read data group of
signals. The RID value is generated by the slave and must match
the ARID value of the read transaction to which it is responding.

RDATA[31:0] Slave Read data. The read data bus can be 8, 16, 32, 64, 128, 256, 512,
or 1024 bits wide.

RRESP[1:0] Slave Read response. This signal indicates the status of the read
transfer. The allowable responses are OKAY, EXOKAY,
SLVERR, and DECERR.

RLAST Slave Read last. This signal indicates the last transfer in a read burst.

RVALID Slave Read valid. If this signal is 1, the required read data is available
and the read transfer can complete.

RREADY Master Read ready. If this signal is 1, the master can accept the read data
and response information.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-7

AMBA® AXI TLM Specification for CASI
Figure C-2 READY and VALID handshake signals
C-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
C.2 Introduction to the CASI TLM for AXI

This section describes how the CASI TLM for AXI uses data structures and access
functions to provide a simulation equivalent to the AXI hardware bus.

The TLM API does not contain five distinct pairs of master/slave ports that were shown
in Figure C-1 on page C-3 for the hardware implementation. The communication
between the master and slave ports is done by passing a transaction info structure
between the driveTransaction() and notifyEvent() functions. The signals that are
managed by the hardware channels in a physical system are managed by multiple calls
to driveTransaction() and notifyEvent() in the TLM API.

Figure C-3 shows a simplified block diagram of a system consisting of:

• a component named AXI_Master_casi that contains an AXI master port.

• a component named AXI_Slave_casi that contains an AXI slave port.

Figure C-3 Simplified AXI TLM block diagram

The classes and structures used to implement the AXI TLM are shown in Figure C-4 on
page C-10:
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-9

AMBA® AXI TLM Specification for CASI
Figure C-4 AXI classes

C.2.1 CASITransactionInfo structure

There would be considerable overhead for a SystemC model to attempt to manage each
of the individual signals in the five channels. A Transaction Level Model, however,
groups the individual signals into a data structure that is passed as a parameter by the
high-level access functions.

The data and control information for an AXI transaction is managed by a transaction
info structure that is shared by all five channels.
C-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
For AXI hardware, the channels can be active at the same time. For the TLM
implementation, different channel actions are managed by separate transaction steps
that reads and modifies the data structure to reflect the behavior of the corresponding
AXI signals.

Example C-1 lists the contents of the CASITransactionInfo structure that is defined in
CASITypes.h.

Example C-1 CASI transaction info structure

struct CASITransactionInfo
{
/* Transaction Control */
 // pointer to the initiator of the transaction
 CASITransactionMasterIF* initiator;
 // total number of transaction steps for this transaction
 uint32_t nts;
 // current transaction step of transaction
 uint32_t cts;
 // array containing current status for each step in the transaction
 CASITransactionStatus* status;
 // use notify request (CASI_NOTIFY_YES/CASI_NOTIFY_NO)
 CASINotify notify;

/* Pre-defined fixed Transaction Elements */
 // data direction (CASI_ACCESS_READ, CASI_ACCESS_WRITE)
 CASITransactionAccess access;
 // address of shared resource to be accessed
 uint64_t addr;
 // size of the data transfer (per beat) in MAUs (e.g. number of bytes)
 uint32_t dataSize;
 // number of data beats to be transferred (burst transfers)
 uint32_t dataBeats;
 // write data array
 uint32_t* dataWr;
 // read data array
 uint32_t* dataRd;

/* User-defined Transaction Elements */
 // flags/sideband/control signals controlled by the sender (master)
 uint32_t* masterFlags;
 // flags/sideband/control signals controlled by the receiver (slave)
 uint32_t* slaveFlags;
 …
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-11

AMBA® AXI TLM Specification for CASI
In addition to the expected bus-related signals (for example dataWr for the write data
signals WDATA[31:0]), there are also structure members that are used by the interface
to manage the progress of the transaction:

initiator is the component that initiated the AXI transaction.

nts is the number of transaction steps required for the current transaction. All
AXI operations require multiple transaction steps to complete.

cts is the current transaction step.

status is an array with one element for each of the transaction steps. The
contents of status[n] indicates the status of transaction step n.

notify determines how the slave port responds to the step.

The structure can be extended with user-defined elements that can be used by the sender
or receiver to provide additional information that is not part of the AXI protocol:

masterFlags is an array that can be filled in by master. These flags are valid for step n
when status[n] is greater than or equal to CASI_MASTER_READY.

slaveFlags is an array that can be filled in by slave. These flags are valid for step n
when status[n] is greater than or equal to CASI_SLAVE_READY.

… indicates that additional user-defined elements might be added to the
structure in the future.

C.2.2 CASITransactionInfo.masterFlags array

The masterFlags array contains flags that are set by the AXI master to describe the
transaction. The elements of the array can be accessed by the definitions in the
AXITransactionMasterFlagEnum:

enum AXITransactionMasterFlagEnum
{
 AXI_MF_ID = 0, // transaction ID
 AXI_MF_BURST_TYPE, // address auto increment mode
 AXI_MF_LOCK, // lock signals
 AXI_MF_CACHE, // cache flag signals
 AXI_MF_PROTECTION, // protection flag signals
 AXI_MF_DATA_STROBE, // data strobe signals
 AXI_MF_RESPONSE, // response signal
 AXI_MF_CHANNEL, // non-architectural: short cut to analyzing access,
 // cts and respective status
 AXI_MF_AW_INFO, // non-architectural: additional info for channel aw
 AXI_MF_AUSER, // user flag for address channel (read/write)
 AXI_MF_DUSER, // user flag for data channel (read/write)
C-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
 AXI_MF_BUSER, // user flag for write response channel
 AXI_MF_LAST // total number of Master Flags
};

CASITransactionInfo.masterFlags[AXI_MF_CHANNEL] indicates the channel that is active
for the current step in the transaction. It can have one of the values from AXIChannelEnum:

enum AXIChannelEnum
{
 AXI_CHANNEL_AR = 1,
 AXI_CHANNEL_R = 2,
 AXI_CHANNEL_AW = 4,
 AXI_CHANNEL_W = 8,
 AXI_CHANNEL_B = 16,
 AXI_TRANSFER_EMPTY = 32, // Indicates a 'dummy' driveTransaction() or
 // notifyEvent() call. There is not a 'valid' transfer in a channel.
 // this value is used for ACI
 AXI_TRANSFER_LAST = 64 // Indicates the last call for the port
 // (last driveTransaction() or last notifyEvent())
 // so the number of dummy calls can be reduced
};

C.2.3 AXITransactionInfo class

The AXI_Transaction.h file contains the definition of the AXITransactionInfo class that
extends the CASITransactionInfo structure for AXI transactions. The class definition is
listed in Example C-2:

Example C-2 AXITransactionInfo class

class AXITransactionInfo : public CASITransactionInfo
{
 public:
 AXITransactionInfo();
 void init (uint32_t dataBitwidth);

 // for compatibility
 // pointer to something used exclusively by the master port
 void* m_pExclusiveMasterPortRelated;
 // pointer to something used exclusively by the slave port
 void* m_pExclusiveSlavePortRelated;
 // next free p is required by SimpleHeap, must be public
 AXITransaction* nextFreeP;
 AXITransaction* m_pACIrelatedSPortInfoInt;
 AXITransaction* m_pACIrelatedMPortInfoExt;
 uint32_t m_ACISPortIdxInt, m_ACIMPortIdxInt;
 uint32_t m_ACISPortIdxExt, m_ACIMPortIdxExt;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-13

AMBA® AXI TLM Specification for CASI
 void* m_pPad; // for preliminary internal extensions
 // implementations can adapt their behavior according to
 // the value of the pad version
 uint32_t m_padVersion;
 uint32_t m_dataBitwidth;
 uint32_t m_datauint32width; // = (dataBitwidth + 31)/32
 uint32_t m_nextCts;
 uint32_t m_nextStrb;
};

Communication between the master and slave port is done by:

• The master calling the driveTransaction() function in the slave.

• The slave calling the notifyEvent() function in the master.

An AXITransactionInfo object is passed as a parameter for both functions.

C.2.4 AXI_TM::notifyEvent()

An example of a AXI transaction master port (AXI_TM) using the notifyEvent() function
to process notifications from the slave port is listed in Example C-3:

Example C-3 Processing the AXITransactionInfo structure in the master port

inline void AXI_TM::NotifyHandler::notifyEvent (CASITransactionInfo* info)
{
 mOwner->processNotify(static_cast<AXITransactionInfo*>(info));
}

Note
 The code examples in this appendix are based on the AXI_1m1s system.

The code in AXI_Master_casi.cpp is the source for the component that owns the AXI
master port. It creates the new port as shown in Example C-4.

Example C-4 Creating the master port

AXI_Master_casi::AXI_Master_casi(sc_module_name name): CASIModule(name, NULL)
{
 mPort = new AXI_TM(this, "axi_m");
}

C-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
The constructor for the port is in AXI_TM.cpp and it sets the owner and notify handler as
shown in Example C-5:

Example C-5 Setting the master port owner

AXI_TM::AXI_TM (AXI_Master_casi *owner, const std::string& name) :
 sc_port<casi_transaction_if, 1>(owner, name)
{
 mNotifyHandler.setOwner(owner); // sets local mOwner=owner
 setNotifyHandler(&mNotifyHandler);
}

The processNotify() function is implemented in the component that owns the AXI
master port.

Example C-6 processNotify() example

void AXI_Master_casi::processNotify (AXITransactionInfo* axi)
{
 if (axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_B)
 {
 axi->status[axi->cts] = CASI_SLAVE_READY;
 printf("AXI_Master: Cycle %4i: Channel B received - Write finished\n\n", mCycleCount);
 }
 else if (axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_W)
 {
 mAxiState = (mAxi.cts == mAxi.dataBeats ? STATE_B : mAxiState);
 printf("AXI_Master: Cycle %4i: Channel W received ready\n", mCycleCount);
 }
 else if (axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_R)
 {
 axi->status[axi->cts] = CASI_SLAVE_READY;
 if (axi->cts < axi->nts-1)
 {
 printf("AXI_Master: Cycle %4i: Channel R received - data %x\n", mCycleCount,
 axi->dataRd[axi->cts-1]);
 }
 else
 {
 printf("AXI_Master: Cycle %4i: Channel R received - data %x - Read finished\n\n",
 mCycleCount, axi->dataRd[axi->cts-1]);
 }
 }
}

ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-15

AMBA® AXI TLM Specification for CASI
C.2.5 AXI_TS::driveTransaction()

The AXI transaction slave port (AXI_TS) uses the driveTransaction() function to process
transaction requests from the master port as listed in Example C-7:

Example C-7 Processing the AXITransactionInfo structure in the slave port

void AXI_TS::driveTransaction (AXITransactionInfo* info)
{
 mOwner->processDrive(static_cast<AXITransactionInfo*>(info));
}

mOwner is a pointer to the component that owns the slave port and is set in the port
constructor as shown in Example C-8.

Example C-8 Slave port constructor

AXI_TS::AXI_TS (AXI_Slave_casi* owner, const std::string& name) :
 casi_transaction_slave(owner, name)
{
 mOwner = owner;
}

The processDrive() function is implemented in the component that owns the AXI slave
port and mOwner is a pointer to this component. Example C-9 shows the processDrive()
function from the AXI_Slave_casi.cpp file that defines the component that owns the AXI
slave port.

Example C-9 processDrive() example

void AXI_Slave_casi::processDrive (AXITransactionInfo* axi)
{
 if (!(axi->masterFlags[AXI_MF_CHANNEL] & AXI_TRANSFER_EMPTY))
 {
 if ((axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_AW) &&
 mActiveWrite == NULL)
 {
 axi->status[0] = CASI_SLAVE_READY;
 mActiveWrite = axi;

 printf("AXI_Slave: Cycle %4i: Channel AW received - address %x\n",
 mCycleCount, axi->addr);
C-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
 }
 if ((axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_AR) &&
 mActiveRead == NULL)
 {
 axi->status[0] = CASI_SLAVE_READY;
 mActiveRead = axi;

 printf("AXI_Slave: Cycle %4i: Channel AR received - address %x\n",
 mCycleCount, axi->addr);
 }
 if (axi->masterFlags[AXI_MF_CHANNEL] & AXI_CHANNEL_W)
 {
 axi->status[axi->cts] = CASI_SLAVE_READY;
 printf("AXI_Slave: Cycle %4i: Channel W received - data %x\n",
 mCycleCount, axi->dataWr[axi->cts-1]);
 }
 }
}

Note
 The processDrive() and processNotify() functions have a parameter of type
CASITransactionInfo, but this is cast to type AXITransactionInfo for use by the
processing functions in the components that contain the master and slave ports.

C.2.6 Transaction properties structure

AXI ports can be implemented with different characteristics such as bit width,
minimum addressable unit (byte or word for example), or specific interface functions.
The CASITransactionProperties structure is associated with an AXI master port and
specifies the properties for the master. This structure is also used to ensure that the
attached slave port uses a compatible implementation. The structure is listed in
Example C-10.

Example C-10 CASITransactionProperties structure

// port properties
struct CASITransactionProperties
{
 // the transaction version used for this transaction
 CASIVersion casiVersion;
 bool useMultiCycleInterface; // driveTransaction() is used
 // instead of read() or write()
 uint8_t addressBitwidth; // address bit width
 uint32_t mauBitwidth; // minimal addressable unit
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-17

AMBA® AXI TLM Specification for CASI
 uint32_t dataBitwidth; // maximum data bit width (data bus)
 uint32_t dataBeats; // maximum data beats in a burst transaction
 bool isLittleEndian; // alignment of MAUs
 bool isOptional; // if true this port can be disabled
 bool supportsAddressRegions; // M/S can negotiate address mapping
 uint32_t numCtrlFields; // # of ctrl elements used
 uint32_t numSlaveFlags; // # of slave flag elements used
 uint32_t numMasterFlags; // # of master flag elements used
 uint32_t numTransactionSteps; // # of transaction steps (maximum)
 uint32_t* validTimingTable; // lookup table providing transaction
 // step of validity
 uint32_t protocolID; // magic number of the protocol
 // (Vendor/Protocol-ID)
 bool supportsNotify; // M/S do event based execution upon
 // notify request
 bool supportsBurst; // burst transfer capability
 // (true/false)
 bool supportsSplit; // split transfer capability
 // (true/false)
 bool isAddrRegionForwarded;
 CASITransactionMasterIF * forwardAddrRegionToMasterPort;

 /* Visualization and Protocol Extension Area */
 CASITransactionDetails* details; // for future expansion
};

The contents of the CASITransactionProperties structure for the bus master is initialized
and destroyed by the following macros that are defined in the AXI_Transaction.h file:

• AXI_INIT_TRANSACTION_PROPERTIES(PROP__, DATA_BITWIDTH__)

• AXI_DESTRUCT_TRANSACTION_PROPERTIES(PROP__)

C.2.7 AXITransactionStepEnum

The data members of the CASITransactionInfo structure are filled in by different steps
in the transaction sequence. The step types are shown in Example C-11:

Example C-11 AXITransactionStepEnum

enum AXITransactionStepEnum
{
 AXI_STEP_ADDRESS = 0, // Read or Write address channel
 AXI_STEP_DATA0, // Read or Write data channel beat 0
 AXI_STEP_DATA1, // Read or Write data channel beat 1
 AXI_STEP_DATA2, // Read or Write data channel beat 2
 AXI_STEP_DATA3, // Read or Write data channel beat 3
C-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
 AXI_STEP_DATA4, // Read or Write data channel beat 4
 AXI_STEP_DATA5, // Read or Write data channel beat 5
 AXI_STEP_DATA6, // Read or Write data channel beat 6
 AXI_STEP_DATA7, // Read or Write data channel beat 7
 AXI_STEP_DATA8, // Read or Write data channel beat 8
 AXI_STEP_DATA9, // Read or Write data channel beat 9
 AXI_STEP_DATA10, // Read or Write data channel beat 10
 AXI_STEP_DATA11, // Read or Write data channel beat 11
 AXI_STEP_DATA12, // Read or Write data channel beat 12
 AXI_STEP_DATA13, // Read or Write data channel beat 13
 AXI_STEP_DATA14, // Read or Write data channel beat 14
 AXI_STEP_DATA15, // Read or Write data channel beat 15
 AXI_STEP_RESPONSE, // Write response channel for 16 beat transfer only
 AXI_STEP_LAST
};

The number of steps actually taken by a transaction depend on the transaction type. A
one word read requires a minimum of two steps (address out and data in), while a
16-word write requires at least 18 steps (address out, 16 times data out, response back)
The following variables are set or read by different steps:

nts This transaction info member indicates the maximum number of steps
required to complete the transaction sequence.

cts This transaction info member indicates the current step in the transaction
sequence.

*status This transaction info member array indicates the status for each of the
steps in the transaction sequence. See CASITransactionStatus on
page C-20.

*validTimingTable

This array, that is part of the transaction properties structure, enables a
generic probe (a monitor, for example) to determine whether an entry in
the data structure is valid or should be ignored. If, for example, the
contents of validTimingTable[3] is AXI_STEP_ADDRESS this indicates that
the third predefined transaction element (that is, dataSize) must be valid
in the transaction step that transfers the read or write address. This array,
and the other members of the transaction properties structure, are filled in
by the AXI_INIT_TRANSACTION_PROPERTIES macro.

Caution
 The AXI_INIT_TRANSACTION_PROPERTIES macro must be modified if the

AXI bus for the component has different characteristics than those used
in the definition of the macro in AXI_Transaction.h.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-19

AMBA® AXI TLM Specification for CASI
C.2.8 CASITransactionStatus

The CASITypes.h file contains an enumeration for the possible states of the master and
slave ports. The CASITransactionStatus enumeration is listed in Example C-12:

Example C-12 CASITransactionStatus enumeration

enum CASITransactionStatus
{
 // Master status responses.
 // Transaction step does not contain valid information.
 CASI_MASTER_WAIT = 0,
 // Transaction step does contain valid info by master.
 CASI_MASTER_READY = 1,

 // Slave status responses
 // Transaction step does not contain valid response.
 CASI_SLAVE_WAIT = 2,
 // Transaction step does contain valid response by Slave.
 CASI_SLAVE_READY = 3,
 // Slave acknowledges "cancelTransaction(?)".
 CASI_SLAVE_READY_CANCEL = 4,
 // Slave breaks transaction, can be continued by master.
 CASI_SLAVE_READY_SPLIT = 5,
 // Slave asks for restart of same transaction.
 CASI_SLAVE_READY_RETRY = 6,
 // Slave reports transaction error.
 CASI_SLAVE_READY_ERROR = 7
};

For the AXI implementation, the mapping of the handshake signals map onto the status
signals is listed in Table C-6:

Table C-6 Handshake signals and status

Status VALID READY Description

CASI_MASTER_WAIT 0 x The sender does not have valid data.

CASI_MASTER_READY 1 0 The sender has valid information to transfer
and is waiting for the receiver to become ready.

CASI_SLAVE_READY 1 1 Information has been transferred.
C-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
The negotiation of VALID and READY occurs for each channel that is required for the
transfer. The correspondence between the current transaction step (cts) and the channel
is listed in Table C-7 and Table C-8:

Note
 Advancing to the next transaction step might require several clock cycles because of
wait states issued by the receiver.

C.2.9 AXI transfer sequences

This section describes the different sequences of events that can occur during AXI read
or write operations.

Table C-7 Current transaction and channels for reads

cts Channel Description

0 AR The address to read from is transferred to slave.

1 to (nts-1) R Read data is transferred. If a read burst is being performed,
multiple transaction steps are required and nts is greater than 1.

Table C-8 Current transaction and channels for writes

cts Channel Description

0 AW Address to write to is transferred to slave.

Note
 The data channel can transport information in advance, of or in
parallel to, the write address channel. The slave must test for the
completion of the address transfer by testing:
status[AXI_STEP_ADDRESS] >= CASI_SLAVE_READY

1 to (nts-2) W Write data is transferred. If a write burst is being performed,
multiple transaction steps are required.

nts-1 B The response to the write is transferred from the slave to the
master. The response step is active when:
(cts == (nts – 1)) && (status[cts] >=CASI_MASTER_READY).
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-21

AMBA® AXI TLM Specification for CASI
Table C-9 lists the cycles for an example single-word write operation with waits on each
channel:

The actual transfer sequence can differ considerably from the sequence shown in
Table C-9:

• If wait states are not required, the receiving channel can set CASI_SLAVE_READY
before returning rather than waiting for the next call. For example, cycle 3 can be
combined with cycle 2.

• The write address and write data can be valid in the same cycle.

Table C-9 Cycle by cycle activity for a write transaction

Cycle cts status[0:2] Description

0 0 CASI_MASTER_WAIT,
CASI_MASTER_WAIT,
CASI_MASTER_WAIT

No action. AXI slave function driveTransaction() is not called by AXI
master.

1 0 - Null transaction (optional). Master calls the slave with an empty transaction.
This might be used for arbitration.

2 0 CASI_MASTER_READY,
CASI_MASTER_WAIT,
CASI_MASTER_WAIT

Address transfer. Master calls the slave with a valid transaction. The slave
does not change the status on return from driveTransaction().

3 0 CASI_SLAVE_READY,
CASI_MASTER_WAIT,
CASI_MASTER_WAIT

Master calls the slave again. Slave accepts address by changing status.

4 1 CASI_SLAVE_READY,
CASI_MASTER_READY,
CASI_MASTER_WAIT

Write data transfer. Master calls slave with a transaction with the data
elements filled in. The slave does not change the status on return.

5 1 CASI_SLAVE_READY,
CASI_SLAVE_READY,
CASI_MASTER_WAIT

Master calls the slave again. Slave accepts data by changing status.

6 2 CASI_SLAVE_READY,
CASI_SLAVE_READY,
CASI_MASTER_READY

Write response transfer. Slave calls notifyEvent() in AXI master with the
response elements filled in. The master does not change the status on return.

7 2 CASI_SLAVE_READY,
CASI_SLAVE_READY,
CASI_MASTER_READY

Slave calls the master again. Master accepts data by changing status.

8 0 CASI_MASTER_WAIT,
CASI_MASTER_WAIT,
CASI_MASTER_WAIT

No action (optional). If no additional writes are pending, all of the channels
are inactive and driveTransaction() is not called from master.
C-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
For cycle 2 in Table C-9 on page C-22, if the first three elements of the status
array were CASI_MASTER_READY, CASI_MASTER_READY, CASI_MASTER_WAIT, the slave
could accept both of these elements and set the array contents to
CASI_SLAVE_READY, CASI_SLAVE_READY, CASI_MASTER_WAIT on return.

• Cycles 4 and 5 transfer a single word. If a burst-write operation is occurring,
multiple cycles are required for the transfer. For a burst operation, the number of
transaction steps (nts) is larger.

C.2.10 AXI_Master_casi::communicate()

The communicate() function in the AXI master uses a local state variable (mAxiState) and
the transaction info structure (mAXI for this example) to control the sequencing of the
various transaction steps. Example C-13 shows an example from AXI_Master_casi.cpp:

Example C-13 AXI master communicate()

void AXI_Master_casi::communicate ()
{
 switch (mAxiState)
 {
 case STATE_AW:
 if (mAxi.status[0] != CASI_MASTER_READY)
 {
 mAxi.reset();
 mAxi.access = CASI_ACCESS_WRITE;
 mAxi.masterFlags[AXI_MF_CHANNEL] = AXI_CHANNEL_AW | AXI_TRANSFER_LAST;
 mAxi.status[0] = CASI_MASTER_READY;
 mAxi.masterFlags[AXI_MF_ID] = 0;
 mAxi.addr = 0;
 mAxi.dataBeats = 8;
 mAxi.nts = 1+mAxi.dataBeats+1;
 mAxi.dataSize = (1 << AXI_BURST_SIZE_4);
 mAxi.masterFlags[AXI_MF_BURST_TYPE] = AXI_BURST_INCR;
 mAxi.masterFlags[AXI_MF_LOCK] = AXI_LOCK_NORMAL;
 mAxi.masterFlags[AXI_MF_PROTECTION] = 0;
 mAxi.masterFlags[AXI_MF_CACHE] = 0;
 mAxi.masterFlags[AXI_MF_AUSER] = 0;
 }
 printf("AXI_Master: Cycle %4i: Channel AW driven - address %x\n", mCycleCount,
 mAxi.addr);

 mPort->driveTransaction(&mAxi);
 mAxiState = (mAxi.status[AXI_STEP_ADDRESS] >= CASI_SLAVE_READY ?
 STATE_W : mAxiState);
 break;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-23

AMBA® AXI TLM Specification for CASI
 case STATE_W:
 if (mAxi.status[mAxi.cts] >= CASI_SLAVE_READY)
 {
 mAxi.cts++;

 uint32_t dataToWrite = mAxi.cts-1;
 mAxi.dataWr[mAxi.cts-1] = dataToWrite;
 mAxi.masterFlags[AXI_MF_CHANNEL] = AXI_CHANNEL_W | AXI_TRANSFER_LAST;
 mAxi.status[mAxi.cts] = CASI_MASTER_READY;
 mAxi.masterFlags[AXI_MF_DATA_STROBE]= 0xF;
 mAxi.masterFlags[AXI_MF_DUSER] = 0;
 }
 printf("AXI_Master: Cycle %4i: Channel W driven - data %x\n", mCycleCount,
 mAxi.dataWr[mAxi.cts-1]);
 mPort->driveTransaction(&mAxi);
 mAxiState = (((mAxi.status[mAxi.cts] >= CASI_SLAVE_READY) && (mAxi.cts == mAxi.dataBeats))
 ? STATE_B : mAxiState);
 break;
 case STATE_B:
 mPort->driveTransaction(&mEmptyTransaction);
 break;

 case STATE_AR:
 if (mAxi.status[0] != CASI_MASTER_READY)
 {
 mAxi.reset();
 mAxi.access = CASI_ACCESS_READ;
 mAxi.masterFlags[AXI_MF_CHANNEL] = AXI_CHANNEL_AR | AXI_TRANSFER_LAST;
 mAxi.status[0] = CASI_MASTER_READY;
 mAxi.masterFlags[AXI_MF_ID] = 0;
 mAxi.addr = 0;
 mAxi.dataBeats = 8;
 mAxi.nts = 1+mAxi.dataBeats;
 mAxi.dataSize = (1 << AXI_BURST_SIZE_4);
 mAxi.masterFlags[AXI_MF_BURST_TYPE] = AXI_BURST_INCR;
 mAxi.masterFlags[AXI_MF_LOCK] = AXI_LOCK_NORMAL;
 mAxi.masterFlags[AXI_MF_PROTECTION] = 0;
 mAxi.masterFlags[AXI_MF_CACHE] = 0;
 mAxi.masterFlags[AXI_MF_AUSER] = 0;
 }
 printf("AXI_Master: Cycle %4i: Channel AR driven - address %x\n", mCycleCount,
 mAxi.addr);

 mPort->driveTransaction(&mAxi);
 mAxiState = (mAxi.status[AXI_STEP_ADDRESS] >= CASI_SLAVE_READY
 ? STATE_R : mAxiState);
 break;

 case STATE_R:
C-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
 mPort->driveTransaction(&mEmptyTransaction);
 break;
 }
}

C.2.11 AXI_Master_casi::update()

The update() function in the AXI master sets the a local state variable (mAxiState) to
indicate that response or read data step has finished. Example C-14 shows an example
from AXI_Master_casi.cpp:

Example C-14 AXI master update()

void AXI_Master_casi::update ()
{
 if (mAxiState == STATE_B && mAxi.status[mAxi.nts-1] >= CASI_SLAVE_READY)
 {
 mAxiState = STATE_AR;
 }
 else if (mAxiState == STATE_R &&
 mAxi.status[mAxi.nts-1] >= CASI_SLAVE_READY)
 {
 mAxiState = STATE_AW;
 }
 mCycleCount++;
}

C.2.12 AXI_Slave_casi::communicate()

Inside the communicate() function, the AXI slave determines if a write response or read
data is to be returned to the AXI master. Example C-15 shows the communicate()
function from AXI_Slave_casi.cpp. The function uses local state control variables
mActiveWriteDoB and mActiveReadDoR to indicate the action to take.

Example C-15 AXI slave communicate()

void AXI_Slave_casi::communicate()
{
 if (mActiveWriteDoB)
 {
 if (mActiveWrite->cts < mActiveWrite->nts-1)
 {
 mActiveWrite->cts++;
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-25

AMBA® AXI TLM Specification for CASI
 mActiveWrite->status[mActiveWrite->cts] = CASI_MASTER_READY;
 mActiveWrite->masterFlags[AXI_MF_CHANNEL] = AXI_CHANNEL_B;
 mActiveWrite->masterFlags[AXI_MF_RESPONSE] = AXI_RESP_OKAY;
 }
 printf("AXI_Slave: Cycle %4i: Channel B driven\n", mCycleCount);
 mPort->getMaster()->getNotifyHandler()->notifyEvent(mActiveWrite);
 }
 if (mActiveReadDoR)
 {
 if (mActiveRead->status[mActiveRead->cts] != CASI_MASTER_READY)
 {
 uint32_t dataToRead;
 mActiveRead->cts++;
 mActiveRead->status[mActiveRead->cts] = CASI_MASTER_READY;
 mActiveRead->masterFlags[AXI_MF_CHANNEL] = AXI_CHANNEL_R;
 mActiveRead->masterFlags[AXI_MF_RESPONSE] = AXI_RESP_OKAY;
 dataToRead = mActiveRead->cts-1;
 mActiveRead->dataRd[mActiveRead->cts-1] = dataToRead;
 }
 printf("AXI_Slave: Cycle %4i: Channel R driven - data %x\n",
 mCycleCount, mActiveRead->dataRd[mActiveRead->cts-1]);

 mPort->getMaster()->getNotifyHandler()->notifyEvent(mActiveRead);
 }
}

C.2.13 AXI_Slave_casi::update()

The AXI slave uses update() to set the flags that indicate that the communicate()
function must send a write response or read data to the AXI master. shows the update()
function from AXI_Slave_casi.cpp. The function uses local state control variables
mActiveWriteDoB and mActiveReadDoR to indicate that the B response channel or the R
data channel is active.

Example C-16 AXI slave update()

void AXI_Slave_casi::update()
{
 if (mActiveWrite != NULL)
 {
 if (mActiveWrite->status[mActiveWrite->nts-1] >= CASI_SLAVE_READY)
 {
 mActiveWrite = NULL;
 mActiveWriteDoB = false;
 }
 else if ((mActiveWrite->cts == mActiveWrite->dataBeats) &&
C-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
 (mActiveWrite->status[mActiveWrite->cts] >= CASI_SLAVE_READY))
 {
 mActiveWriteDoB = true;
 }
 }
 if (mActiveRead != NULL)
 {
 if (mActiveRead->status[mActiveRead->nts-1] >= CASI_SLAVE_READY)
 {
 mActiveRead = NULL;
 mActiveReadDoR = false;
 }
 else
 {
 mActiveReadDoR = true;
 }
 }
 mCycleCount++;
}

C.2.14 Example AXI write transaction sequences

This section describes typical AXI write sequences.

Write with no wait states

Figure C-5 on page C-30 shows a UML diagram of a write transaction that:

• has no wait states

• uses separate cycles for the AW and W information transfer.

In AXI_Master_casi::update(), a write transaction is requested by initializing the
transaction container and setting the master flag mAxiState to be STATE_AW. The actions
that occur in each cycle following the requested write are:

1. AXI_Master_casi::communicate() is called:

a. The value of mAxiState is tested and found to be STATE_AW and a write
address transfer is initiated.

b. The master port calls AXI_Slave_casi::driveTransaction() in the connected
slave with the following values set in the transaction container:
mAxi.cts=0
mAxi.status[0]=CASI_MASTER_READY
mAxi.addr=0
mAxi.masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_AW | AXI_TRANSFER_LAST
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-27

AMBA® AXI TLM Specification for CASI
mAxi.dataBeats=1
mAxi.nts= 1 + mAxi.dataBeats + 1
mAxi.masterFlags[AXI_MF_BURST_TYPE]= AXI_BURST_FIXED

c. The slave acknowledges with ready by using its reference to the transaction
container and changing the status:
mActiveWrite->status[0]=CASI_SLAVE_READY

d. The slave returns from the call to driveTransaction().

e. The value of mActiveWrite->status[AXI_STEP_ADDRESS] is tested and found
to be CASI_SLAVE_READY and the transfer for the AW channel is finished.

f. The state variable mAxiState is set to STATE_W.

g. In update(), the transaction remains unchanged, but both the master and
slave test for any changes in the transaction container.

2. AXI_Master_casi::communicate() is called:

a. The value of mAxiState is tested and found to be STATE_W and a write data
sequence is initiated.

b. The value of mAxi.status[AXI_STEP_ADDRESS] is tested and found to be
CASI_SLAVE_READY and the transfer for the channel continues.

Note
 If the slave is not ready, the transaction info is not be updated and another

driveTransaction() is issued to test the ready status.

c. mAxi.cts is incremented and is now 1.

d. The master port calls AXI_Slave_casi::driveTransaction() of the connected
slave with the following values set in the transaction container:
mAxi.status[mAxi.cts]=CASI_MASTER_READY
mAxi.masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_W | AXI_TRANSFER_LAST
mAxi.dataWr=0
mAxi.masterFlags[AXI_MF_DATA_STROBE]= 0xF
mAxi.masterFlags[AXI_MF_DUSER] = 0

e. The slave acknowledges with ready by changing the transaction container
mActiveWrite->status[mAxi.cts]=CASI_SLAVE_READY

f. The slave returns from the call to driveTransaction() and the transfer for
the W channel is finished.

Note
 If a burst write had been requested instead of a single write, the write data

sequence is repeated for each of the data beats.
C-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
g. In update(), the transaction remains unchanged, but both the master and
slave test for any changes in the transaction container.

3. AXI_Master_casi::communicate() and AXI_Slave_casi:communicate() are called:

a. In AXI_Master_casi::communicate(), the value of mAxiState is tested and
found to be STATE_B and the response sequence active. The only action in
the master is to call driveTransaction() with an empty transaction.

b. In AXI_Slave_casi::communicate(), the slave determines that the last step of
the write transaction has been reached.

c. mAxi.cts is incremented and is now 2.

d. The slave port calls AXI_Master_casi::notifyEvent() of the master with the
following values set in its reference to the transaction container:
mActiveWrite->status[mActiveWrite->cts]=CASI_MASTER_READY
mActiveWrite->masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_B
mActiveWrite->masterFlags[AXI_MF_RESPONSE] = AXI_RESP_OKAY

e. The master acknowledges with ready by changing the transaction container
mAxi.status[mAxi.cts]=CASI_SLAVE_READY

f. The slave returns from the call to notifyEvent() and the transfer for the B
channel is finished.

g. In AXI_Master_casi::update(), the transaction remains unchanged. If there
is another request pending, the master mAxiState is set to indicate the next
transaction type.

h. In AXI_Slave_casi::update(), the transaction remains unchanged, but the
mActiveWrite->status is found to be CASI_SLAVE_READY, so the
mActiveWriteDoB flag for response is set to false.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-29

AMBA® AXI TLM Specification for CASI
Figure C-5 Write with no wait states
C-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Write with wait state in address channel

Figure C-6 shows a UML diagram of a write transaction that:

• has one wait states for the address transfer cycle

• uses separate cycles for the AW and W information transfer.

Figure C-6 Write with wait state in address channel
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-31

AMBA® AXI TLM Specification for CASI
Write with combined AW and W channels

Figure C-7 shows a UML diagram of a write transaction that:

• has no wait states

• combines the AW and W information transfer in one cycle by setting
CASI_MASTER_READY for both the address and write data steps.

Figure C-7 Write with simultaneous AW and W, no wait states
C-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Write with combined channels and two calls to driveTransaction()

Figure C-8 shows a UML diagram of a write transaction that:

• has no wait states

• combines the AW and W information transfer in one cycle calling
driveTransaction() twice in the same cycle.

Figure C-8 Write with consecutive AW and W, no wait states
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-33

AMBA® AXI TLM Specification for CASI
Write with combined AW and W channels and wait states

Figure C-9 shows a UML diagram of a write transaction that:

• has a wait state for the W data.

• combines the AW and W information.

Figure C-9 Write with simultaneous AW and W and wait states
C-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
C.2.15 Example AXI read transaction sequences

This section describes typical AXI read sequences.

Read with no wait states

Figure C-10 on page C-36 shows a UML diagram of a read transaction that has no wait
states on either the AR or R channels.

1. In communicate of cycle 1 the master port activates channel AR and calls
driveTransaction() of the connected slave with transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_AR | AXI_TRANSFER_LAST
cts=0
status[cts]=CASI_MASTER_READY

2. The slave acknowledges with ready by modifying the transaction container:

status[cts]=CASI_SLAVE_READY

3. The slave returns from the call and the AR transfer stage is finished. In update(),
there are no changes to the transaction.

4. In communicate of cycle 2 the slave port activates channel R and calls
notifyEvent() of the connected master with modified transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_R
cts=1
status[cts]=CASI_MASTER_READY

5. The master acknowledges with ready by modifying the transaction container:

status[cts]=CASI_SLAVE_READY

6. The master returns from the call and the R transfer is finished.

This also means that the entire transaction is finished. In update(), there are no
changes to the transaction.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-35

AMBA® AXI TLM Specification for CASI
Figure C-10 Read with no wait states

Read with one wait state

Figure C-11 on page C-38 shows a UML diagram of a read transaction that has one wait
states on the AR channel.

1. In communicate of cycle 1 the master port activates channel AR and calls
driveTransaction() of the connected slave with transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_AR | AXI_TRANSFER_LAST
cts=0
status[cts]=CASI_MASTER_READY

2. The slave returns from the call but does not acknowledge ready by modifying the
transaction container.

3. In communicate of cycle 2, the master port repeats the driveTransaction() call.

4. The slave acknowledges ready by changing the transaction container:

status[cts]=CASI_MASTER_READY

5. The slave returns from the call and the AR transfer stage is finished. In update(),
there are no changes to the transaction.
C-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
6. In cycle 2, the transaction does not become active for the R channel because the
slave inserts a wait state. The slave does not call notifyEvent() in the master, but
it does increment cts.

7. In communicate of cycle 4 the slave port activates channel R and calls
notifyEvent() of the connected master with modified transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_R
cts=1
status[cts]=CASI_MASTER_READY

8. The master acknowledges with ready by modifying the transaction container:

status[cts]=CASI_SLAVE_READY

9. The master returns from the call and the R transfer is finished.

This also means that the entire transaction is finished. In update(), there are no
changes to the transaction.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-37

AMBA® AXI TLM Specification for CASI
Figure C-11 Read with single wait state on address step
C-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Read with wait states on both AR and R channels

Figure C-12 on page C-40 shows a UML diagram of a read transaction that wait states
on both the AR and R channels.

1. In communicate of cycle 1 the master port activates channel AR and calls
driveTransaction() of the connected slave with transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_AR | AXI_TRANSFER_LAST
cts=0
status[cts]=CASI_MASTER_READY

2. The slave returns from the call but does not acknowledge ready by modifying the
transaction container.

3. In communicate of cycle 2, the master port repeats the driveTransaction() call.

4. The slave acknowledges ready by changing the transaction container:

status[cts]=CASI_MASTER_READY

5. The slave returns from the call and the AR transfer stage is finished. In update(),
there are no changes to the transaction.

6. In cycle 2, the transaction does not become active for the R channel because the
slave inserts a wait state. The slave does not call notifyEvent() in the master, but
it does increment cts.

7. In communicate of cycle 4 the slave port activates channel R and calls
notifyEvent() of the connected master with modified transaction container fields:

masterFlags[AXI_MF_CHANNEL]= AXI_CHANNEL_R
cts=1
status[cts]=CASI_MASTER_READY

8. In communicate of cycle 5, the slave port repeats the notifyEvent() call.

9. The master acknowledges with ready by modifying the transaction container:

status[cts]=CASI_SLAVE_READY

10. The master returns from the call and the R transfer is finished.

This also means that the entire transaction is finished. In update(), there are no
changes to the transaction.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-39

AMBA® AXI TLM Specification for CASI
Figure C-12 Read with wait states on both address and data steps
C-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
C.2.16 Using the AXI Configurable Interconnect

AXI is bus specification that connects one master bus to one slave bus. Creating a bus
that has multiple AXI masters or multiple slaves requires an AXI Configurable
Interconnect (ACI) component that:

• provides one of its own AXI slaves for each of the external AXI masters

• provides one of its own AXI masters for each of the external AXI slaves

• manages arbitration requests from the different masters

• decodes the address from the master to select the appropriate slave port

• routes the data between the master that has control of the bus and the slave.

Hardware write access decoding is managed by combinatorial logic. The hardware
logic determines the winning ACI slave port and the routing to the according ACI
master port is established immediately. Within a single cycle, the initial winner can be
displaced due to detecting the rising edge of wvalid from a second ACI slave port. The
second winner can, in turn, be displaced by a third ACI slave port the winner can change
again. For a hardware implementation, it is sufficient that all signals are stable by the
end of the cycle.

In the CASI model of the ACI, it is not possible to defer the winner until the end of the
cycle by waiting for wvalid signals. Every master port that has active transactions must
issue requests to the corresponding slave port. All channels in the port (AW, AR and
W) must send a request. If one channel in the port is not active, an empty request must
be created and sent. The ACI counts the number of requests for the W channel and
compares the count with the number of transactions registered internally for the w
channel. When the counts are equal, the ACI can calculate the winner and continue
accordingly.

A master without active transactions in any of the AW, AR, or W channels is not
required to send requests to the slave. If at least one channel is active, however, the
master must send empty requests for each of the inactive channels.

Note
 As an alternative to sending empty requests, the master can set the last flag at the last
normal request. Setting the flag is a shortcut and is recommended as it eliminates the
requirement to send empty requests.

There is no arbitration for the R and B channels. Requests at the ACI master ports are
forwarded immediately to the corresponding ACI slave port. A slave is only required to
send normal requests for its active R or B channels. There is no requirement on the slave
to send empty requests or set the last flag.
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-41

AMBA® AXI TLM Specification for CASI
C.2.17 Example of ACI arbitration for the write channel

Figure C-13 on page C-43 shows the communication between two AXI masters (mp0
and mp1), the ACI, and an AXI slave port (sp0). In this example, mp1 has been granted
access to sp0.

1. communicate() for Master 0 (mp0) is called first and sends a request for channel W
to the connected ACI slave port a_sp0 by calling driveTransaction() of a_sp0.

The ACI cannot determine at this stage whether mp0 is the winner since it is
unknown whether Master 1 (mp0) will request channel W. The call returns with an
unchanged transaction status.

2. Master 1 (mp1) is called next in communicate() and also sends a request for channel
W to the connected ACI slave port a_sp1 by calling driveTransaction() of a_sp1.

3. Now the ACI can determine that the winner is slave port a_sp1. (The details of the
arbitration mechanism are not considered for this example.) The request from
a_sp1 is forwarded.

4. The ACI master port a_mp sends a request to the connected slave sp0 by calling
driveTransaction() of sp0.

5. Slave sp0 acknowledges that it is ready by changing the transaction status and
returning from the driveTransaction() call.

6. The ACI propagates the ready acknowledge to mp1 by changing the transaction
status.

7. The ACI returns from the driveTransaction() call from mp1.
C-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
Figure C-13 Bus write with ACI
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-43

AMBA® AXI TLM Specification for CASI
C.3 ESL API implementation of the AXI TLM

This section describes an example implementation that includes:

• a component with an AXI transaction master port

• a component with an AXI transaction slave port

• a system that connects the two components.

For more detail, see the example code supplied with the ESL API package.

The base classes for the AXI interface are described in The transaction interface classes
on page 2-52.

C.3.1 Top-level system

The top-level system is implemented with the code in Example C-17:

Example C-17 Top.cpp

int sc_main (int argc , char *argv[])
{
 printf("\nNative CASI Master/Slave Example.\n\n");
 casi_clock_driver_root my_clk("MY_CLK", 1, SC_NS);

 //Instantiate the modules
 AXI_Master_casi *MasterComp = new AXI_Master_casi("Master");
 MasterComp->connect(&my_clk);
 AXI_Slave_casi *SlaveComp = new AXI_Slave_casi("Slave");
 SlaveComp->connect(&my_clk);
 MasterComp->init(); // call init() for master component
 SlaveComp->init(); // call init() for slave component

 //Connect the master port in MasterComp to the slave port in SlaveComp
 CONNECT_T(MasterComp->mPort, SlaveComp->mPort);
 MasterComp->interconnect(); // call interconnect() for master component
 SlaveComp->interconnect(); // call interconnect() for slave component

 MasterComp->reset(CASI_RESET_HARD,NULL); //Call reset for master component
 SlaveComp->reset(CASI_RESET_HARD,NULL); //Call reset for slave component

 sc_start(95); // simulate for 95 cycles

 MasterComp->terminate();
 SlaveComp->terminate();
 return 0;
}

C-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

AMBA® AXI TLM Specification for CASI
C.3.2 AXI_Master_casi component

The class definition for the sample component that contains an AXI transaction master,
AXI_Master_casi, is listed in Example C-18:

Example C-18 AXI_Master_casi class definition

class AXI_Master_casi: public CASIModule
{
 friend class AXI_TM;

 public:
 SC_HAS_PROCESS(AXI_Master_casi);
 AXI_Master_casi(sc_module_name name);
 ~AXI_Master_casi();
 /* Functions for the different stages of simulation */
 void init();
 void interconnect();
 void configure();
 void reset(CASIResetLevel level, const CASIFileMapIF* filelist);
 void terminate();
 /* Functions for Component parameters (user defined) */
 void setParameter(const std::string& key, const std::string& value);
 std::string getParameter (const std::string& key);
 void communicate(void);
 void update(void);
 std::string getName();
 CASIInterfaceType getType);
 std::string getProperty(CASIPropertyType property);
 CADI* getCADI();
 CAPI* getCAPI();
 // processNotify is called from the slave port
 void processNotify(AXITransactionInfo* axi);
 public:
 // pointer to AXI transaction master port that belongs to this component
 AXI_TM* mPort;

 private:
 // indicates which channel is in use
 enum AxiState { STATE_AW, STATE_W, STATE_B, STATE_AR, STATE_R };
 AxiState mAxiState;

 // transaction structures used by port
 AXITransactionInfo mAxi;
 AXITransactionInfo mEmptyTransaction;
 uint32_t mCycleCount;
};
ARM DUI 0359B Copyright © 2007 ARM Limited. All rights reserved. C-45

AMBA® AXI TLM Specification for CASI
C.3.3 AXI_Slave_casi component

The class definition for the sample component that contains an AXI transaction slave,
AXI_slave_casi, is listed in Example C-19:

Example C-19 AXI_Slave_casi class

class AXI_Slave_casi: public CASIModule
{
 friend class AXI_TS;
 public:
 SC_HAS_PROCESS(AXI_Slave_casi);
 AXI_Slave_casi(sc_module_name name);
 ~AXI_Slave_casi();

 /* Functions for the different stages of simulation */
 void configure();
 void init();
 void interconnect();
 void reset(CASIResetLevel level, const CASIFileMapIF* filename);
 void terminate();

 /* Functions for Component parameters (user defined) */
 void setParameter(const std::string& key, const std::string& value);
 std::string getParameter(const std::string& key);
 void communicate(void);
 void update(void);
 std::string getName();
 CASIInterfaceType getType();
 std::string getProperty(CASIPropertyType property);
 CADI* getCADI();
 CAPI* getCAPI();

 //processDrive and processDriveDbg are called from the master port
 void processDrive (AXITransactionInfo* axi);
 CASIStatus processDriveDbg(AXITransactionInfo* axi);
 public:
 // pointer to AXI transaction slave port that belongs to this component
 AXI_TS* mPort;
 private:
 AXITransactionInfo* mActiveWrite; // structure used to write slave data
 bool mActiveWriteDoB; // current transaction is write
 AXITransactionInfo* mActiveRead; // structure used to read slave data
 bool mActiveReadDoR; // current transaction is read
 uint32_t mCycleCount;
};
C-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0359B

	ARM RealView ESL API v2.0 Developer's Guide
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Organization
	Terminology
	Further reading

	Feedback
	Feedback on this document

	Introduction
	1.1 Overview
	1.2 ESL API interface layers
	1.3 Theory of operation
	1.4 Components
	1.5 Connections
	1.5.1 Components with slave ports
	1.5.2 Components with master ports
	1.5.3 Components with master and slave ports
	1.5.4 Synchronous and asynchronous communication

	1.6 Cycle based scheduling
	1.6.1 Clocking the simulation

	1.7 Simulation stages
	1.8 Organizing source files for components and systems
	1.9 Overview of component creation
	1.9.1 Defining the component class

	1.10 Working with component ports
	1.10.1 Using master ports
	1.10.2 Using slave ports
	1.10.3 Defining the behavior of clocked components
	1.10.4 Registering the clock port
	1.10.5 Connecting a component to the clock
	1.10.6 Defining a factory class for the system
	1.10.7 The factory member functions

	1.11 Checklist for components
	1.11.1 The component class
	1.11.2 The port classes
	1.11.3 The factory class

	1.12 CAInterface extensions

	The Cycle Accurate Simulation Interface
	2.1 Class overview
	2.1.1 Interface classes
	2.1.2 Port classes
	2.1.3 Component and clock classes
	2.1.4 Support classes

	2.2 The CASIModule class
	2.2.1 CASIModule definition
	2.2.2 Functions to implement
	2.2.3 Functions for the simulation stages
	2.2.4 CASIModule::CASIModule()
	2.2.5 CASIModule::configure()
	2.2.6 CASIModule::init()
	2.2.7 CASIModule::interconnect()
	2.2.8 CASIModule::reset()
	2.2.9 CASIModule::communicate()
	2.2.10 CASIModule::update()
	2.2.11 CASIModule::terminate()
	2.2.12 CASIModule::casi_clocked()
	2.2.13 Functions for identification of a component
	2.2.14 CASIModule::getName()
	2.2.15 CASIModule::getType()
	2.2.16 CASIModule::getInstanceName()
	2.2.17 CASIModule::getInstanceID()
	2.2.18 CASIModule::getParent()
	2.2.19 CASIModule::getProperty ()
	2.2.20 Functions for the configuration of components
	2.2.21 CASIModule::setParameter()
	2.2.22 CASIModule::getParameter()
	2.2.23 CASIModule::getParameterList()
	2.2.24 CASIModule::defineParameter()
	2.2.25 CASIModule::testParameter()
	2.2.26 Functions for port administration
	2.2.27 CASIModule::createPort()
	2.2.28 CASIModule::registerPort()
	2.2.29 CASIModule::registerPortArray()
	2.2.30 CASIModule::exportPort()
	2.2.31 CASIModule::findPort()
	2.2.32 CASIModule::getPortList()
	2.2.33 Functions for connecting components
	2.2.34 CASIModule::connect_ports()
	2.2.35 CASIModule::connect()
	2.2.36 CASIModule::disconnect()
	2.2.37 Functions to administer the component hierarchy
	2.2.38 CASIModule::createSubcomponent()
	2.2.39 CASIModule::addSubcomponent()
	2.2.40 CASIModule::getSubcomponent()
	2.2.41 CASIModule::getSubcomponentList()
	2.2.42 CASIModule::setSubcomponentParameter()
	2.2.43 CASIModule::getComponentLayout()
	2.2.44 CASIModule::getObjectLoader()
	2.2.45 CASIModule::launchDebugger()
	2.2.46 CASIModule::setClockMaster()
	2.2.47 CASIModule::getClockMaster()
	2.2.48 Miscellaneous functions
	2.2.49 CASIModule::message()
	2.2.50 CASIModule::getCADI()
	2.2.51 CASIModule::getCAPI()
	2.2.52 CASIModule::getNumCAMMIs()
	2.2.53 CASIModule::getCAMMI()

	2.3 The CASIPortIF class
	2.3.1 CASIPortIF::getName()
	2.3.2 CASIPortIF::getType()
	2.3.3 CASIPortIF::getPortInstanceName()
	2.3.4 CASIPortIF::setPortInstanceName()
	2.3.5 CASIPortIF::setCASIOwner()
	2.3.6 CASIPortIF::getCASIOwner()
	2.3.7 CASIPortIF::enablePort()
	2.3.8 CASIPortIF::isPortEnabled()
	2.3.9 CASIPortIF::setConnected()
	2.3.10 CASIPortIF::isConnected()
	2.3.11 CASIExtPortMapIF

	2.4 The clock interface classes
	2.4.1 The CASIClockMaster class
	2.4.2 CASIClockMaster::registerClockSlave()
	2.4.3 CASIClockMaster::unregisterClockSlave()
	2.4.4 CASIClockMaster::replaceClockSlave()
	2.4.5 CASIClockMaster::disableClockSlave()
	2.4.6 CASIClockMaster::enableClockSlave()
	2.4.7 CASIClockMaster::registerRealCommunicate()
	2.4.8 CASIClockMaster::registerRealUpdate()
	2.4.9 CASIClockMaster::addDependency()
	2.4.10 CASIClockMaster::schedule()
	2.4.11 CASIClockMaster::pmessage()
	2.4.12 The CASIClockSlave class

	2.5 The transaction interface classes
	2.5.1 Introduction to the transaction interface
	2.5.2 The CASITransactionProperties structure
	2.5.3 CASITransactionProperties.validTimingTable
	2.5.4 The CASITransactionIF interface
	2.5.5 The CASITransactionSlave class
	2.5.6 The CASITransactionMasterIF class
	2.5.7 The CASITransactionCallbackIF interface class
	2.5.8 The multi-cycle transaction Interface
	2.5.9 The CASITransactionInfo structure
	2.5.10 The predefined sc_port<CASITransactionIF, 1> class
	2.5.11 The predefined sc_port< CASITransactionIF, 0> class
	2.5.12 AXI and AHB transactions

	2.6 The signal interface classes
	2.6.1 The CASISignalProperties structure
	2.6.2 The CASISignalIF Interface
	2.6.3 CASISignalIF::driveSignal()
	2.6.4 CASISignalIF::readSignal()
	2.6.5 The CASISignalSlave class
	2.6.6 The CASISignalMasterIF class
	2.6.7 The predefined sc_port<CASISignalIF, 1> class

	2.7 The component factory class CASIFactory
	2.7.1 CASIFactory::CASIFactory()
	2.7.2 CASIFactory::createInstance()

	2.8 The save/restore interface CASISaveRestore
	2.8.1 Enabling save/restore support
	2.8.2 MyComponent::saveData
	2.8.3 MyComponent::restoreData

	2.9 Integrating CASI models into OSCI SystemC

	The Cycle Accurate Debug Interface
	3.1 Introduction
	3.1.1 Simulation control and the CADI interface
	3.1.2 Registering the CADI interface with the component
	3.1.3 CADI API overview
	3.1.4 CADI Callback API overview

	3.2 Defining a CADI interface
	3.2.1 The component CADI class declaration
	3.2.2 The CADI class constructor
	3.2.3 CADI::CADIXfaceGetFeatures()
	3.2.4 CADI::CADIXfaceGetError()
	3.2.5 CADI::CADIgetDisassembler()
	3.2.6 CADI::CADIXfaceAddCallback()
	3.2.7 CADI::CADIXfaceRemoveCallback()
	3.2.8 CADI::CADIXfaceBypass()
	3.2.9 CADI::CADIGetParameterInfo()
	3.2.10 CADI::CADIGetTargetInfo()
	3.2.11 CADI::CADIGetParameterValues()
	3.2.12 CADI::CADIGetParameters()
	3.2.13 CADI::CADISetParameters()
	3.2.14 CADI::CADIRegGetGroups()
	3.2.15 CADI::CADIRegGetMap()
	3.2.16 CADI::CADIRegGetCompound()
	3.2.17 CADI::CADIRegWrite()
	3.2.18 CADI::CADIRegRead()
	3.2.19 CADI::CADIGetPC ()
	3.2.20 CADI::CADIGetCommittedPCs()
	3.2.21 CADI::CADIMemGetSpaces()
	3.2.22 CADI::CADIMemGetBlocks()
	3.2.23 CADI::CADIMemRead()
	3.2.24 CADI::CADIMemWrite()
	3.2.25 CADI::CADIMemGetOverlays()
	3.2.26 CADI::VirtualToPhysical()
	3.2.27 CADI::PhysicalToVirtual()
	3.2.28 CADI::CADIGetCacheInfo()
	3.2.29 CADI::CADICacheRead()
	3.2.30 CADI::CADICacheWrite ()
	3.2.31 CADI execution modes
	3.2.32 CADI::CADIExecGetModes()
	3.2.33 CADI::CADIExecGetResetLevels()
	3.2.34 CADI::CADIExecSetMode()
	3.2.35 CADI::CADIExecGetMode()
	3.2.36 CADI::CADIExecSingleStep()
	3.2.37 CADI::CADIExecReset()
	3.2.38 CADI::CADIExecContinue()
	3.2.39 CADI::CADIExecStop()
	3.2.40 CADI::CADIExecGetExceptions()
	3.2.41 CADI::CADIExecAssertException()
	3.2.42 CADI::CADIExecGetPipeStages()
	3.2.43 CADI::CADIExecGetPipeStageFields()
	3.2.44 CADI::CADIExecLoadApplication()
	3.2.45 CADI::CADIExecUnLoadApplication()
	3.2.46 CADI::CADIExecGetLoadedApplication()
	3.2.47 CADI::CADIExecSetApplication()
	3.2.48 CADI::CADIGetInstructionCount()
	3.2.49 CADI::CADIGetCycleCount()
	3.2.50 CADI::CADIBptGetList()
	3.2.51 CADI::CADIBptRead()
	3.2.52 CADI::CADIBptSet()
	3.2.53 CADI::CADIBptClear()
	3.2.54 CADI::CADIBptConfigure()

	3.3 The CADIDisassembler class
	3.3.1 CADIDisassembler::getType()
	3.3.2 CADIDisassembler::getModeCount()
	3.3.3 CADIDisassembler::getModeNames()
	3.3.4 CADIDisassembler::getCurrentMode()
	3.3.5 CADIDisassembler::getSourceReferenceForAddress()
	3.3.6 CADIDisassembler::getAddressForSourceReference()
	3.3.7 CADIDisassembler::getDisassembly()
	3.3.8 CADIDisassembler::GetInstructionType()
	3.3.9 CADIDisassembler::ObtainInterface()
	3.3.10 The CADIDisassemblerCB class
	3.3.11 CADIDisassemblerCB::ReceiveModeName()
	3.3.12 CADIDisassemblerCB::ReceiveSourceReference()
	3.3.13 CADIDisassemblerCB::ReceiveDissassembly()

	3.4 The CADIProfiling class
	3.4.1 CADIProfiling::CADIProfileSetup()
	3.4.2 CADIProfiling::CADIProfileControl ()
	3.4.3 CADIProfiling::CADIProfileTraceControl ()
	3.4.4 CADIProfiling::CADIProfileGetExecution()
	3.4.5 CADIProfiling::CADIProfileGetMemory()
	3.4.6 CADIProfiling::CADIProfileGetTrace()
	3.4.7 CADIProfiling::CADIProfileGetRegAccesses()
	3.4.8 CADIProfiling::CADIProfileSetRegAccesses()
	3.4.9 CADIProfiling::CADIProfileGetMemAccesses()
	3.4.10 CADIProfiling::CADIProfileSetMemAccesses()
	3.4.11 CADIProfiling::CADIProfileGetAddrExecutionFrequency()
	3.4.12 CADIProfiling::CADIProfileSetAddrExecutionFrequency()
	3.4.13 CADIProfiling::CADIGetNumberOfInstructions()
	3.4.14 CADIProfiling::CADIProfileInitInstructionResultArray ()
	3.4.15 CADIProfiling::CADIProfileGetInstructionExecutionFrequency()
	3.4.16 CADIProfiling::CADIProfileSetInstructionExecutionFrequency()
	3.4.17 CADIProfiling::CADIProfileRegisterResourceAccessCallBack()
	3.4.18 CADIProfiling::CADIProfileUnregisterResourceAccessCallBack()
	3.4.19 CADIProfiling::CADIProfileRegisterCallBack()
	3.4.20 CADIProfiling::CADIProfileUnregisterCallBack()
	3.4.21 CADIProfilingCallbacks::profileResourceAccess()
	3.4.22 CADIProfilingCallbacks::profileRegisterHazard()

	3.5 The CADICallback class
	3.5.1 CADICallbackObj::appliOpen()
	3.5.2 CADICallbackObj::appliInput ()
	3.5.3 CADICallbackObj::appliOutput ()
	3.5.4 CADICallbackObj::appliClose()
	3.5.5 CADICallbackObj::doString()
	3.5.6 CADI::CADICaptureSemihosting()
	3.5.7 CADI::CADIConsoleGetChannels()
	3.5.8 CADI::CADIConsoleNotifyInput()
	3.5.9 CADI::CADISemiHostingGetInputChannels()
	3.5.10 CADI::CADISemiHostingSendInput()
	3.5.11 CADICallbackObj::modeChange()
	3.5.12 CADICallbackObj::reset()
	3.5.13 CADICallbackObj::cycleTick()
	3.5.14 CADICallbackObj::killInterface()
	3.5.15 CADICallbackObj::bypass()
	3.5.16 CADICallbackObj::lookupSymbol()
	3.5.17 CADICallbackObj::refresh()

	3.6 CADIBroker
	3.6.1 CADIBroker::Release()
	3.6.2 CADIBroker::GetSimulationFactories()
	3.6.3 CADIBroker::GetSimulationInfos()
	3.6.4 CADIBroker::SelectSimulation()
	3.6.5 CADIErrorCallback::Error()
	3.6.6 Creating the CADIBroker

	3.7 The CADISimulationFactory class
	3.7.1 CADISimulationFactory::Release()
	3.7.2 CADISimulationFactory::GetParameterInfos()
	3.7.3 CADISimulationFactory::Instantiate()
	3.7.4 The CADISimulationCallback class
	3.7.5 CADISimulationCallback::simMessage()
	3.7.6 CADISimulationCallback::simShutdown()
	3.7.7 CADISimulationCallback::simKilled()
	3.7.8 The CADIErrorCallback class
	3.7.9 CADIErrorCallback::Error()

	3.8 CADI data structures
	3.8.1 CADITargetFeatures_t structure
	3.8.2 CADICallbackType_t
	3.8.3 CADICallbackObj
	3.8.4 CADIReg_t
	3.8.5 CADIRegInfo_t
	3.8.6 CADIRegGroup_t
	3.8.7 CADIMemSpaceInfo_t
	3.8.8 CADIMemBlockInfo_t
	3.8.9 CADIPipeStage_t
	3.8.10 CADIPipeStageContentInfo_t
	3.8.11 CADIBptConfigure_t
	3.8.12 CADIDisassemblerStatus
	3.8.13 CADI_EXECMODE_t enumeration
	3.8.14 CADIExecMode_t structure
	3.8.15 CADIFactoryErrorCode_t
	3.8.16 CADIFactorySeverityCode_t
	3.8.17 CADISimulationInfo_t
	3.8.18 CADIBptRequest_t
	3.8.19 CADIParameterInfo_t and CADIParameterValue_t
	3.8.20 CADIReturn_t
	3.8.21 CADIBptCondition_t and CADIBptConditionOperator_t

	3.9 Accessing the debug interface from sc_main()

	The Cycle Accurate Profiling Interface
	4.1 Introduction to CAPI
	4.1.1 Profiling streams and channels

	4.2 The CAPI classes
	4.2.1 The CAPI class
	4.2.2 CAPI::CAPIGetProfilingStreams()
	4.2.3 CAPI::CAPIFindStream()
	4.2.4 CAPI::CAPIGetNumStreams()
	4.2.5 CAPI::CAPIGetStream()
	4.2.6 CAPI::CAPIGetStream()
	4.2.7 CAPI::CAPIClearStreams()
	4.2.8 CAPI::CAPIGetTarget()
	4.2.9 CAPIRecordEvent1() and CAPIRecordEvent2()

	4.3 The CAPIRegistry class
	4.3.1 CAPIRegistry::setCAPICallback()
	4.3.2 CAPIRegistry::getCAPICallback()
	4.3.3 CAPIRegistry::CAPIRegisterInterface()
	4.3.4 CAPIRegistry::CAPIUnregisterInterface()
	4.3.5 CAPIRegistry::CAPIFindInterface()
	4.3.6 CAPIRegistry::CAPIGetNumInterfaces()
	4.3.7 CAPIRegistry::CAPIGetInterface()
	4.3.8 CAPIRegistry::reset()
	4.3.9 CAPIRegistry::clear()
	4.3.10 CAPIRegistry::getCAPIRegistry()

	4.4 The CAPICallback class
	4.4.1 CAPICallback::allocateTraceSegment()
	4.4.2 CAPICallback::deallocateTraceSegment()
	4.4.3 CAPICallback::getTotalAllocatedMemory()
	4.4.4 CAPICallback::getCurrentCycle()

	4.5 CAPI data structures
	4.5.1 The CAPIStream_t structure
	4.5.2 The CAPIStreamInfo_t structure
	4.5.3 The CAPIChannelInfo_t structure
	4.5.4 The CAPIChannelType_t enumeration
	4.5.5 The CAPIChannelSymbolInfo_t structure
	4.5.6 The CAPISymbolValue_t structure
	4.5.7 The CAPIColor_e enumeration
	4.5.8 The CAPITraceSegment_t structure
	4.5.9 The CAPIReturn_t enumeration

	4.6 Accessing CAPI
	4.6.1 The CAPI derived class
	4.6.2 Memory Management
	4.6.3 Collecting the profiling information

	4.7 Example CAPI implementation
	4.7.1 The CAPI object
	4.7.2 Initializing the channel objects
	4.7.3 Using the CAPIGetProfilingStreams() function
	4.7.4 Recording events
	4.7.5 Reading the recorded profile data

	The CASI Memory Map Interface
	5.1 CASIMMI interfaces
	5.1.1 The CASIMMIMemoryMap structure
	5.1.2 The CASIMMIMemoryMapRequest structure
	5.1.3 CASIMMI class definition
	5.1.4 CASIMMI::registerInterface()
	5.1.5 CASIMMI::getInterface()
	5.1.6 CASIMMI::requestMemoryMaps()
	5.1.7 CASIMMI::setEnableMME()
	5.1.8 CASIMMI::isMMEEnabled()
	5.1.9 CASIMMI::getMMIDetails()
	5.1.10 CASIMMI::setMemoryMaps()
	5.1.11 CASIMMI::getMemoryMaps()
	5.1.12 CASIMMI::setCurrentMemoryMaps()
	5.1.13 CASIMMI::getCurrentMemoryMaps()

	5.2 Sample implementation
	5.2.1 CompBus::CompBus()
	5.2.2 CompBus_CASIMMI class Implementation details
	5.2.3 CompBus_CASIMMI.h file
	5.2.4 CompBus_CASIMMI::CASIMMI() constructor
	5.2.5 CompBus_CASIMMI::~CASIMMI destructor
	5.2.6 CompBus_CASIMMI::requestMemoryMaps
	5.2.7 CompBus_CASIMMI::getCurrentMemoryMaps()
	5.2.8 slave_port_1_TS::slave_port_1()
	5.2.9 slave_port_1_TS::setAddressRegions()
	5.2.10 slave_port_1_TS::getMappingConstraints()

	Static Scheduling of Communication Functions
	A.1 Introduction to combinatorial path scheduling
	A.2 Specifying the combinatorial path
	A.3 Error checking
	A.4 Example implementation

	AMBA AHB TLM Specification for CASI
	B.1 Introduction
	B.2 AHB control signals
	B.2.1 AHB bus state machine

	B.3 Implementation details for AHB interfaces
	B.3.1 read() and write()
	B.3.2 readDbg()
	B.3.3 writeDbg()
	B.3.4 readReq()
	B.3.5 requestAccess()
	B.3.6 checkForGrant()
	B.3.7 getAddressRegions()

	AMBA AXI TLM Specification for CASI
	C.1 Introduction to AXI
	C.1.1 Control and data signals on the AXI channels
	C.1.2 Hardware flow control signals

	C.2 Introduction to the CASI TLM for AXI
	C.2.1 CASITransactionInfo structure
	C.2.2 CASITransactionInfo.masterFlags array
	C.2.3 AXITransactionInfo class
	C.2.4 AXI_TM::notifyEvent()
	C.2.5 AXI_TS::driveTransaction()
	C.2.6 Transaction properties structure
	C.2.7 AXITransactionStepEnum
	C.2.8 CASITransactionStatus
	C.2.9 AXI transfer sequences
	C.2.10 AXI_Master_casi::communicate()
	C.2.11 AXI_Master_casi::update()
	C.2.12 AXI_Slave_casi::communicate()
	C.2.13 AXI_Slave_casi::update()
	C.2.14 Example AXI write transaction sequences
	C.2.15 Example AXI read transaction sequences
	C.2.16 Using the AXI Configurable Interconnect
	C.2.17 Example of ACI arbitration for the write channel

	C.3 ESL API implementation of the AXI TLM
	C.3.1 Top-level system
	C.3.2 AXI_Master_casi component
	C.3.3 AXI_Slave_casi component

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

