
RealView® Compilation Tools
Version 4.0

Libraries and Floating Point Support Guide
Copyright © 2007-2010 ARM. All rights reserved.
ARM DUI 0349C (ID101213)

RealView Compilation Tools
Libraries and Floating Point Support Guide

Copyright © 2007-2010 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned
herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Some material in this document is based on IEEE 754 - 1985 IEEE Standard for Binary Floating-Point
Arithmetic. The IEEE disclaims any responsibility or liability resulting from the placement and use in the
described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Change History

Date Issue Confidentiality Change

March 2007 A Non-confidential Release 3.1 for RealView Development Suite v3.1

September 2008 B Non-Confidential Release 4.0 for RealView Development Suite v4.0

23 January 2009 B Non-Confidential Update 1 for RealView Development Suite v4.0

10 December 2010 C Non-Confidential Update 2 for RealView Development Suite v4.0
ii Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. iii
ID101213 Non-Confidential,

iv Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Contents
RealView Compilation Tools Libraries and Floating
Point Support Guide

Preface
About this book ... viii
Feedback .. xi

Chapter 1 Introduction
1.1 About the runtime libraries ... 1-2
1.2 About floating-point support ... 1-8

Chapter 2 The C and C++ Libraries
2.1 About the C and C++ libraries ... 2-2
2.2 Writing reentrant and thread-safe code ... 2-4
2.3 Building an application with the C library ... 2-19
2.4 Building an application without the C library .. 2-25
2.5 Tailoring the C library to a new execution environment ... 2-32
2.6 Tailoring static data access ... 2-41
2.7 Tailoring locale and CTYPE using assembler macros ... 2-42
2.8 Tailoring error signaling, error handling, and program exit 2-59
2.9 Tailoring storage management .. 2-65
2.10 Tailoring the runtime memory model ... 2-69
2.11 Tailoring the input/output functions .. 2-78
2.12 Tailoring other C library functions .. 2-92
2.13 Selecting real-time division .. 2-96
2.14 ISO implementation definition .. 2-97
2.15 C library extensions ... 2-106
2.16 Library naming conventions ... 2-117
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. v
ID121310 Non-Confidential

Contents
Chapter 3 The C Micro-library
3.1 About microlib .. 3-2
3.2 Building an application with microlib .. 3-4
3.3 Using microlib .. 3-6
3.4 Tailoring the microlib input/output functions .. 3-9
3.5 ISO C features missing from microlib .. 3-10

Chapter 4 Floating-point Support
4.1 The software floating-point library, fplib ... 4-2
4.2 Controlling the floating-point environment ... 4-10
4.3 The math library, mathlib ... 4-27
4.4 IEEE 754 arithmetic ... 4-36
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. vi
ID121310 Non-Confidential

Preface

This preface introduces the RealView Compilation Tools Libraries and Floating Point
Support Guide. It contains the following sections:

• About this book on page viii

• Feedback on page xi.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. vii
ID101213 Non-Confidential,

Preface
About this book
This book describes the ARM C and C++ libraries, compliance with the ISO standard,
tailoring to target-dependent functions and application-specific requirements. It also
describes the ARM C micro-library and the ARM support for floating-point
computations.

Intended audience

This book is written for all developers who are producing applications using RealView
Compilation Tools (RVCT). It assumes that you are an experienced software developer.
See the RealView Compilation Tools Essentials Guide for an overview of the ARM
development tools provided with RVCT.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM C and C++ libraries and
the ARM floating-point environment.

Chapter 2 The C and C++ Libraries

Read this chapter for a description of the ARM C and C++ libraries and
instructions on re-implementing individual library functions. The ARM
C library provides additional components to enable support for C++ and
to compile code for different architectures and processors.

For a description of the Rogue Wave Standard C++ Library, see the
Rogue Wave HTML documentation supplied with RVCT.

Chapter 3 The C Micro-library

Read this chapter for a description of the ARM C micro-library and
instructions on reimplementing individual micro-library functions.

Chapter 4 Floating-point Support

Read this chapter for a description of floating-point support in the ARM
compiler and libraries.

This book assumes that the ARM software is installed in the default location. For
example, on Windows this might be volume:\Program Files\ARM. This is assumed to be
the location of install_directory when referring to path names. For example
install_directory\Documentation\.... You might have to change this if you have
installed your ARM software in a different location.
viii Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Preface
Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

Further reading

This section lists publications from both ARM and third parties that provide additional
information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://infocenter.arm.com/help/index.jsp for current errata sheets and addenda, and
the ARM Frequently Asked Questions (FAQs).

ARM publications

This book contains reference information that is specific to development tools supplied
with RVCT. Other publications included in the suite are:

• RVDS Getting Started Guide (ARM DUI 0255)

• RVCT Essentials Guide (ARM DUI 0202)

• RVCT Compiler User Guide (ARM DUI 0205)

• RVCT Compiler Reference Guide (ARM DUI 0348)

• RVCT Linker User Guide (ARM DUI 0206)

• RVCT Linker Reference Guide (ARM DUI 0381)
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. ix
ID101213 Non-Confidential,

Preface
• RVCT Utilities Guide (ARM DUI 0382)

• RVCT Assembler Guide (ARM DUI 0204)

• RVCT Developer Guide (ARM DUI 0203)

A glossary is provided. See the RVDS Getting Started Guide.

For full information about the base standard, software interfaces, and standards
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM
products:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM
DDI 0406)

• ARM7-M Architecture Reference Manual (ARM DDI 0403)

• ARM6-M Architecture Reference Manual (ARM DDI 0419)

• ARM datasheet or technical reference manual for your hardware device.

Other publications

The following publication is referenced in the text:

• IEEE 754 - 1985 IEEE Standard for Binary Floating-Point Arithmetic
x Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Preface
Feedback
ARM welcomes feedback on both RVCT and the documentation.

Feedback on RealView Compilation Tools

If you have any problems with RVCT, contact your supplier. To help them provide a
rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tools, including the version number and build numbers.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. xi
ID101213 Non-Confidential,

Preface
xii Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Chapter 1
Introduction

This chapter introduces the ARM C and C++ libraries and the ARM floating-point
environment. It contains the following sections:

• About the runtime libraries on page 1-2

• About floating-point support on page 1-8.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 1-1
ID101213 Non-Confidential,

Introduction
1.1 About the runtime libraries
The following runtime libraries are provided to support compiled C and C++:

C standardlib

C library consisting of:

• Functions defined by the ISO C library standard.

• Target-dependent functions used to implement the C library
functions in the semihosted execution environment. You can
redefine these functions in your own application.

• Functions called implicitly by the compiler.

• ARM extensions that are not defined by the ISO C library standard,
but are included in the library.

C microlib

C micro-library (microlib) consisting of:

• Functions that are highly optimized to achieve the minimum code
size.

• Functions that are not compliant with ISO C library standard.

• Functions that are not compliant with IEEE 754 standard for binary
floating point arithmetic.

C++

C++ library containing the functions defined by the ISO C++ library
standard.

The C++ libraries depend on the C library for target-specific support.
There are no target dependencies in the C++ libraries.

The C++ libraries consist of:

• the Rogue Wave Standard C++ Library

• functions called implicitly by the compiler

• additional C++ functions not supported by the Rogue Wave library.

Note
 Some library functions are called implicitly by the compiler, even though calls to such
library functions might not exist in your source code. The compiler does this as a way
of improving your application, where appropriate.
1-2 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Introduction
Note
 If you are upgrading to RVCT from a previous release or are new to RVCT, ensure that
you read the RealView Compilation Tools Essentials Guide for the latest information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 1-3
ID101213 Non-Confidential,

Introduction
1.1.1 ABI for the ARM Architecture compliance

The Application Binary Interface for the ARM Architecture (ABI) is a family of
specifications that describe the processor-specific aspects of the translation of a source
program into object files. Object files produced by any toolchain that conforms to the
relevant aspects of the ABI can be linked together to produce a final executable image
or library. Each document in the specification covers a specific area of compatibility.
For example, the C Library ABI for the ARM Architecture (CLIBABI) describes the
parts of the C library that are expected to be common to all conforming
implementations. The ABI documents contain several areas that are marked as platform
specific. To define a complete execution environment these platform-specific details
have to be provided. This gives rise to a number of supplemental specifications, for
example the ARM GNU/Linux ABI supplement. The Base Standard ABI for the ARM
Architecture (BSABI) enables you to use ARM, Thumb, and Thumb-2 objects and
libraries from different producers that support the ABI for the ARM Architecture.
RVCT fully supports the BSABI, including support for DWARF 3 debug tables
(DWARF Debugging Standard Version 3).

For full information about the base standard, other ARM Embedded ABIs (AEABIs),
software interfaces, and other standards supported by ARM, see
install_directory\Documentation\Specifications\....

See http://www.arm.com for more information on the latest published versions.

The ARM C and C++ libraries conform to the standards described in the BSABI and in
the following AEABIs:

• C Library ABI for the ARM Architecture

• C++ ABI for the ARM Architecture (CPPABI).

Testing conformance

To request full CLIBABI portability, specify #define _AEABI_PORTABILITY_LEVEL 1
before you #include any library headers, for example, <stdlib.h>. You can also do this
by using -D_AEABI_PORTABILITY_LEVEL=1 on the command line. This increases the
portability of your object files to other implementations of the CLIBABI, but reduces the
performance of some library operations.

For more information see the CLIBABI specification, clibabi.pdf, in
install_directory\Documentation\Specifications\...
1-4 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Introduction
1.1.2 Library directory structure

The libraries are installed in two subdirectories within the RVCT library directory
...\lib:

armlib Contains the variants of the ARM C library, the floating-point arithmetic
library (fplib), and the math library (mathlib). The accompanying header
files are in ...\include.

cpplib Contains the variants of the Rogue Wave C++ library (cpp_*) and
supporting ARM C++ functions (cpprt_*), referred to collectively as the
ARM C++ Libraries. The accompanying header files are installed in
...\include.

The environment variable RVCT40LIB must be set to point to the lib directory, or if this
variable is not set, ARMLIB. Alternatively, use the --libpath argument to the linker to
identify the directory holding the library subdirectories. You must not identify the
armlib and cpplib directories separately because this directory structure might change
in future releases. The linker finds them from the location of lib.

Note
 • The ARM C libraries are supplied in binary form only.

• The ARM libraries must not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of the
function is used instead of the standard library version.

• Normally, only a few functions in the ISO C library require reimplementation to
create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable.
It can be obtained from Rogue Wave Software Inc., or through ARM, for an
additional license fee. See the Rogue Wave online documentation in
install_directory\Documentation\RogueWave for more information.

1.1.3 Build options and library variants

When you build your application, you must make certain choices. For example:

Target Architecture and instruction set

ARM, Thumb®, or Thumb-2.

Byte order Big-endian or little-endian.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 1-5
ID101213 Non-Confidential,

Introduction
Floating-point support

Software (SoftVFP), hardware (VFP), software or hardware with
half-precision or double-precision extensions, or no floating-point
support.

Position independence

Data can be read/write position independent or position dependent.

Code can be read-only position independent or position dependent.

Note
 Position independence is not supported in microlib.

When you link your assembler code, C or C++ code, the linker selects appropriate C
and C++ library variants compatible with the build options you specified. There is a
variant of the ISO C library for each combination of major build options.

For more information see:

• Chapter 3 Using armar in the Utilities Guide

• Specifying the procedure call standard (AAPCS) on page 2-24 in the Compiler
User Guide

• the Assembler Guide.

1.1.4 Using the VFP support libraries

The VFP support libraries are used by the VFP Support Code. The VFP Support Code
is executed from an undefined instruction trap that is triggered when an exceptional
floating point condition occurs.

Example code is provided in the main examples directory, in ...\vfpsupport. This
shows you how to set up the undefined instruction handler to invoke the VFP support
code.

1.1.5 Thumb C libraries

The linker automatically links in the Thumb C library if it detects that one or more of
the objects to be linked have been built for:

• Thumb or Thumb-2, either using the --thumb option or #pragma thumb

• interworking, using the --apcs /interwork option on architecture ARMv4T
1-6 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Introduction
• an ARMv6-M architecture target or processor, for example, Cortex-M1 or
Cortex-M0

• an ARMv7-M architecture target or processor, for example, Cortex-M3.

Despite its name, the Thumb C library might not contain exclusively Thumb code. If
ARM instructions are available, the Thumb library might use them to improve the
performance of critical functions such as memcpy(), memset(), and memclr(). The bulk of
the Thumb C library, however, is coded in Thumb for the best code density.

For an ARM-only build, compile with the --arm_only option.

Note
 The Thumb C library used for ARMv7-M targets contains only Thumb-2 code.

See Chapter 2 The C and C++ Libraries for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 1-7
ID101213 Non-Confidential,

Introduction
1.2 About floating-point support
The ARM floating-point environment is an implementation of the IEEE 754 standard
for binary floating-point arithmetic. See IEEE 754 arithmetic on page 4-36 for more
information on the ARM implementation of the standard.

An ARM system might have:

• a VFP coprocessor

• no floating-point hardware.

If you compile for a system with a hardware VFP coprocessor, the ARM compiler
makes use of it. If you compile for a system without a coprocessor, the compiler
implements the computations in software.

For example, the compiler option --fpu=vfp selects a hardware VFP coprocessor and the
option --fpu=softvfp specifies that arithmetic operations are to be performed in
software, without the use of any coprocessor instructions.

See Chapter 4 Floating-point Support for more information.
1-8 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Chapter 2
The C and C++ Libraries

This chapter describes the C and C++ libraries. The libraries support programs written
in C or C++. This chapter contains the following sections:

• About the C and C++ libraries on page 2-2

• Writing reentrant and thread-safe code on page 2-4

• Building an application with the C library on page 2-19

• Building an application without the C library on page 2-25

• Tailoring the C library to a new execution environment on page 2-32

• Tailoring static data access on page 2-41

• Tailoring locale and CTYPE using assembler macros on page 2-42

• Tailoring error signaling, error handling, and program exit on page 2-59

• Tailoring storage management on page 2-65

• Tailoring the runtime memory model on page 2-69

• Tailoring the input/output functions on page 2-78

• Tailoring other C library functions on page 2-92

• Selecting real-time division on page 2-96

• ISO implementation definition on page 2-97

• C library extensions on page 2-106

• Library naming conventions on page 2-117.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-1
ID101213 Non-Confidential,

The C and C++ Libraries
2.1 About the C and C++ libraries
This section contains information about the C and C++ libraries. If you are writing
deeply embedded applications required to fit into small amounts of memory, see
Chapter 3 The C Micro-library.

2.1.1 Features of the C and C++ libraries

In RVCT, the C library uses the standard ARM semihosted environment to provide
facilities such as file input/output. This environment is supported by RealView
ARMulator® ISS, RealView ICE, Real Time Simulator Model (RTSM), and Instruction
Set System Model (ISSM). See the description in Chapter 8 Semihosting in the
Developer Guide for more information on the debug environment.

You can reimplement any of the target-dependent functions of the C library as part of
your application. This enables you to tailor the C library and, therefore, the C++ library,
to your own execution environment.

You can also tailor many of the target-independent functions to your own
application-specific requirements, for example:

• the malloc family

• the ctype family

• all the locale-specific functions.

Many of the C library functions are independent of any other function and contain no
target dependencies. You can easily exploit these functions from assembler code.

2.1.2 Namespaces

All C++ standard library names, including the C library names, if you include them, are
defined in the namespace std using the following C++ syntax:

#include <cstdlib> // instead of stdlib.h

This means that you must qualify all the library names using one of the following
methods:

• specify the standard namespace, for example:

std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

• use the compiler option --using_std.
2-2 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Note
 errno is a macro, so it is not necessary to qualify it with a namespace.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-3
ID101213 Non-Confidential,

The C and C++ Libraries
2.2 Writing reentrant and thread-safe code
The ARM C libraries support multithreading, for example, where you are using a Real
Time Operating System (RTOS). When describing multithreading in the rest of this
section, the following definitions are used:

Threads Mean multiple streams of execution sharing global data between them.

Process Means a collection of all the threads that share a particular set of global
data.

If there are multiple processes on a machine, they can be entirely separate and do not
share any data (except under unusual circumstances). Similarly, each process might be
a single-threaded process or might be divided into multiple threads.

Where you have single-threaded processes, there is only one flow of control. In
multithreaded applications, however, several flows of control might try to access the
same functions, and the same resources, concurrently. To protect the integrity of
resources, any code you write for multithreaded applications must be reentrant and
thread-safe.

2.2.1 Introduction to reentrancy and thread-safety

Reentrancy and thread-safety are both related to the way functions handle resources.
However, they are different:

• A reentrant function does not hold static data over successive calls, nor does it
return a pointer to static data. For this type of function, the caller provides all the
data that the function requires, such as pointers to any workspace. This means that
multiple concurrent invocations of the function do not interfere with each other.

Note
 A reentrant function must not call non reentrant functions.

• A thread-safe function protects shared resources from concurrent access using
locks. Thread-safety concerns only how a function is implemented and not its
external interface. In C, local variables are dynamically allocated on the stack.
Therefore, any function that does not use static data, or other shared resources, is
usually thread-safe.
2-4 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.2.2 Use of static data in the C libraries

Static data refers to persistent read/write data that is not stored on the stack or the heap.
This persistent data can be external or internal in scope, and is:

• at a fixed address, when compiled with --apcs /norwpi

• at a fixed address relative to the static base, register r9, when compiled with
--apcs /rwpi.

Libraries that use static data might be reentrant, but this depends on their use of the
__user_libspace static data area, and on the build options you choose:

• When compiled with --apcs /norwpi, read/write static data is addressed in a
position-dependent fashion. This is the default. Code from these variants is
single-threaded because it uses read/write static data.

• When compiled with --apcs /rwpi, read/write static data is addressed in a
position-independent fashion using offsets from the static base register sb. Code
from these variants is reentrant and can be multiple threaded if each thread uses a
different static base value.

The following describes how the C libraries use static data:

• The default floating-point arithmetic libraries fz_* and fj_* do not use static data
and are always reentrant. However, the f_* and g_* libraries do use static data.

• All statically-initialized data in the C libraries is read-only.

• All writable static data is zero initialized.

• Most C library functions use no writable static data and are reentrant whether built
with default build options, --apcs /norwpi or reentrant build options, --apcs
/rwpi.

• Some functions have static data implicit in their definitions. You must not use
these in a reentrant application unless you build it with --apcs /rwpi and the caller
uses different values in sb.

See Position independence qualifiers on page 2-24 in the Compiler User Guide for
information on the --apcs build options described here.

Note
 Exactly which functions use static data in their definitions might change in future
releases.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-5
ID101213 Non-Confidential,

The C and C++ Libraries
2.2.3 The __user_libspace static data area

The __user_libspace static data area holds the static data for the C libraries. This is a
block of 96 bytes of zero-initialized data, supplied by the C library. It is also used as a
temporary stack during C library initialization.

The default ARM C libraries use the __user_libspace area to hold:

• errno, used by any function that is capable of setting errno. By default,
__rt_errno_addr() returns a pointer to errno.

• The FP status word for software floating-point (exception flags, rounding mode).
It is unused in hardware floating-point. By default, __rt_fp_status_addr() returns
a pointer to the FP status word.

• A pointer to the base of the heap (that is, the __Heap_Descriptor), used by all the
malloc-related functions.

• The alloca state, used by alloca() and its supporting functions.

• The current locale settings, used by functions such as setlocale(), but also used
by all other library functions that depend on them. For example, the ctype.h
functions have to access the LC_CTYPE setting.

The C++ libraries use the __user_libspace area to hold:

• The new_handler field and ddtor_pointer:

— the new_handler field is used to keep track of the value passed to
std::set_new_handler()

— the ddtor_pointer is used by __cxa_atexit() and __aeabi_atexit().

• C++ exception handling information for functions such as std::set_terminate()
and std::set_unexpected().

See the following specifications: CPPABI and the Exception Handling ABI for the ARM
Architecture for more information on __aeabi_atexit(), std::set_terminate() and
std::set_unexpected().

Note
 How the C and C++ libraries use the __user_libspace area might change in future
releases.
2-6 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Addressing __user_libspace

Two wrapper functions are provided to return a subsection of the __user_libspace static
data area:

__user_perproc_libspace()

Returns a pointer to 96 bytes used to store data that is global to an entire
process, that is data shared between all threads.

__user_perthread_libspace()

Returns a pointer to 96 bytes used to store data that is local to a particular
thread. This means that __user_perthread_libspace() returns a different
address depending on the thread it is called from.

Reimplementing __user_libspace

The __user_libspace() function does not normally have to be redefined. However, if
you are writing an operating system or a process switcher, you must reimplement this
function. See Tailoring static data access on page 2-41 for more information.

Where you are porting single-threaded processes to RVCT that reimplement this
function, you can continue to do this without having to change your code. The change
in behavior is, however, important if you are using RVCT to write multithreaded
applications.

2.2.4 Managing locks in multithreaded applications

A thread-safe function protects shared resources from concurrent access using locks.
There are functions you can reimplement that enable you to manage the locking
mechanisms and so prevent the corruption of shared data such as the heap. The function
prototypes for these functions are:

_mutex_initialize()

int _mutex_initialize(mutex *m);

This function accepts a pointer to a 32-bit word and initializes it as a valid
mutex.

By default, _mutex_initialize() returns zero for a nonthreaded
application. Therefore, in a multithreaded application,
_mutex_initialize() must return a nonzero value on success so that, at
runtime, the library knows that it is being used in a multithreaded
environment.

This function must be supplied if you are using mutexes.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-7
ID101213 Non-Confidential,

The C and C++ Libraries
_mutex_acquire()

void _mutex_acquire(mutex *m);

This function causes the calling thread to obtain a lock on the supplied
mutex.

_mutex_acquire() returns immediately if the mutex has no owner. If the
mutex is owned by another thread, _mutex_acquire() must block it until it
becomes available.

This function must be supplied if you are using mutexes.

_mutex_release()

void _mutex_release(mutex *m);

This function causes the calling thread to release the lock on a mutex
acquired by _mutex_acquire().

The mutex remains in existence, and can be relocked by a subsequent call
to mutex_acquire().

_mutex_release() assumes that the mutex is owned by the calling thread.

This function must be supplied if you are using mutexes.

_mutex_free()

void _mutex_free(mutex *m);

This function causes the calling thread to free the supplied mutex. Any
operating system resources associated with the mutex are freed. The
mutex is destroyed and cannot be reused.

_mutex_free() assumes that the mutex is owned by the calling thread.

This function is optional. If you do not supply this function, the C library
does not attempt to call it.

For the C library, a mutex is specified as a single 32-bit word of memory that can be
placed anywhere. However, if your mutex implementation requires more space than
this, or demands that the mutex be in special memory area, then you must treat the
default mutex as a pointer to a real mutex.

You can ensure that your mutex functions work correctly by adopting one of the
following approaches:

• Place your mutex functions in a nonlibrary object file. This helps to ensure that
they are resolved at link time.

• Place your mutex functions in a library object file, and arrange a nonweak
reference to something in the object.
2-8 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• Place your mutex functions in a library object file, and have the linker explicitly
extract the specific object from the library on the command line by writing
libraryname.a(objectfilename.o) when you invoke the linker.

2.2.5 Using the ARM C libraries with a multithreaded application

To use the ARM library in a multithreaded environment, you must provide:

• An implementation of __user_perthread_libspace() that returns a different block
of memory for each thread. This can be achieved by either:

— returning a different address depending on the thread it is called from

— having a single __user_perthread_libspace block at a fixed address and
swapping its contents when switching threads.

You can use either approach to suit your environment.

You do not have to reimplement __user_perproc_libspace unless there is a
specific reason to do so. In the majority of cases, there is no requirement to
reimplement this function.

• A way to manage multiple stacks.

A simple way to do this is to use the ARM two-region memory model (see The
memory models on page 2-69). Using this means that you keep the stack that
belongs to the primary thread entirely separate from the heap. Then you must
allocate more memory for additional stacks from the heap itself.

• Thread management functions, for example, to create or destroy threads, to
handle thread synchronization, and to retrieve exit codes.

Note
 The ARM C libraries supply no thread management functions of their own so you

must supply any that are required.

• A thread-switching mechanism.

Note
 The ARM C libraries supply no thread-switching mechanisms of their own. This

is because there are many different ways to do this and the libraries are designed
to work with all of them.

You only have to provide implementations of the mutex functions if you require them
to be called. See Managing locks in multithreaded applications on page 2-7.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-9
ID101213 Non-Confidential,

The C and C++ Libraries
In some applications, the mutex functions might not be useful. For example, a
co-operatively threaded program does not have to take steps to ensure data integrity,
provided it avoids calling its yield function during a critical section. However, in other
types of application, for example where you are implementing pre-emptive scheduling,
or in a Symmetric Multi-Processor (SMP) model, these functions play an important part
in handling locks.

If all of these requirements have been met, you can use the ARM C libraries in your
multithreaded environment. Here:

• some functions work independently in each thread

• some functions automatically use the mutex functions to mediate multiple
accesses to a shared resource

• some functions are still non reentrant so a reentrant equivalent is supplied

• a few functions remain non reentrant and no alternative is available.

See Thread-safety in the ARM C libraries and Thread-safety in the ARM C++ libraries
on page 2-17 for more information.

2.2.6 Thread-safety in the ARM C libraries

In the ARM libraries, functions can be thread-safe as follows:

• some functions are never thread-safe, for example setlocale()

• some functions are inherently thread-safe, for example memcpy()

• some functions, such as malloc(), can be made thread-safe by implementing the
mutex* functions

• other functions are only thread-safe if you pass the appropriate arguments, for
example tmpnam().

Threading problems might occur when your application makes use of the ARM libraries
in a way that is hidden, for example, if the compiler implicitly calls functions that you
have not explicitly called in your source code.
2-10 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Functions that are thread-safe

Table 2-1 shows those C library functions that are thread-safe.

Table 2-1 Functions that are thread-safe

Functions Description

calloc(),

free(),

malloc(),

realloc()

The heap functions are thread-safe, if the _mutex_*
functions are implemented.

A single heap is shared between all threads, and
mutexes are used to avoid data corruption when
there is concurrent access. Each heap
implementation is responsible for doing its own
locking. If you supply your own allocator, it must
also do its own locking. This enables it to do
fine-grained locking, if required, rather than
protecting the entire heap with a single mutex
(coarse-grained locking).

__alloca(),

__alloca_finish(),

__alloca_init(),

__alloca_initialize()

The alloca functions are thread-safe if the
mutex* functions are implemented.

The alloca state for each thread is contained in the
__user_perthread_libspace block. This means that
multiple threads do not conflict.

Note
 Be aware that the alloca functions also use the
heap. However, heap functions are all thread-safe.

abort(),

raise(),

signal(),

fenv.h

The ARM signal handling functions and FP
exception traps are thread-safe.

The settings for signal handlers and FP traps are
global across the entire process and are protected
by locks. Data corruption does not occur if
multiple threads call signal() or an fenv.h
function at the same time. However, be aware that
the effects of the call act on all threads and not
only on the calling thread.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-11
ID101213 Non-Confidential,

The C and C++ Libraries
clearerr(), fclose(),

feof(),ferror(), fflush(),

fgetc(),fgetpos(), fgets(),

fopen(),fputc(), fputs(),

fread(),freopen(), fseek(),

fsetpos(),ftell(), fwrite(),

getc(),getchar(), gets(),

perror(),putc(), putchar(),

puts(),rewind(), setbuf(),

setvbuf(),tmpfile(), tmpnam(),

ungetc()

The stdio library is thread-safe if the _mutex_*
functions are implemented.

Each individual stream is protected by a lock, so
two threads can each open their own stdio stream
and use it, without interfering with one another.

If two threads both want to read or write the same
stream, locking at the fgetc() and fputc() level
prevents data corruption, but it is possible that the
individual characters output by each thread might
be interleaved in a confusing way.

Note
 Be aware that tmpnam() also contains a static buffer
but this is only used if the argument is NULL. To
ensure that your use of tmpnam() is thread-safe,
supply your own buffer space.

fprintf(), printf(),

vfprintf(), vprintf(), fscanf(),

scanf()

When using these functions:

• The standard C printf() and scanf()
functions use stdio, so they are thread-safe.

• The standard C printf() is susceptible to
changes in the locale settings if called in a
multithreaded program.

clock() clock() contains static data that is written once at
program startup and then only ever read.
Therefore, clock() is thread-safe provided no
extra threads are already running at the time that
the library is initialized.

errno() errno is thread-safe.

Each thread has its own errno stored in a
__user_perthread_libspace block. This means that
each thread can call errno-setting functions
independently and then check errno afterwards
without interference from other threads.

atexit() The list of exit functions maintained by atexit() is
process-global and protected by a lock.

In the worst case, if more than one thread calls
atexit(), the order that exit functions are called
cannot be guaranteed.

Table 2-1 Functions that are thread-safe (continued)

Functions Description
2-12 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
FP status word

The FP status word is safe to use in a multithreaded environment, even in software
floating-point. Here, a status word for each thread is stored in its own
__user_perthread_libspace block.

abs(), acos(), asin(),atan(),

atan2(), atof(),atol(), atoi(),

bsearch(),ceil(), cos(),

cosh(),difftime(), div(),

exp(),fabs(), floor(),

fmod(),frexp(), labs(),

ldexp(),ldiv(), log(),

log10(),memchr(), memcmp(),

memcpy(),memmove(), memset(),

mktime(),modf(), pow(),

qsort(),sin(), sinh(),

sqrt(),strcat(), strchr(),

strcmp(),strcpy(), strcspn(),

strlcat(),strlcpy(), strlen(),

strncat(),strncmp(), strncpy(),

strpbrk(),strrchr(), strspn(),

strstr(),strxfrm(), tan(), tanh()

These functions are inherently thread-safe.

longjmp(), setjmp() Although setjmp() and longjmp() keep data in
__user_libspace, they call the __alloca_*
functions, that are thread-safe.

remove(), rename(), time() These use interrupts that communicate with the
ARM debugging environments. Typically, you
have to reimplement these for a real-world
application.

snprintf(), sprintf(),

vsnprintf(),vsprintf(), sscanf(),

isalnum(),isalpha(), iscntrl(),

isdigit(),isgraph(), islower(),

isprint(),ispunct(), isspace(),

isupper(),isxdigit(), tolower(),

toupper(),strcoll(), strtod(),

strtol(),strtoul(), strftime()

When using these functions, the string-based
functions read the locale settings. Typically, they
are thread-safe. However, if you change locale in
mid-session, you must ensure that these functions
are not affected.

The string-based functions, such as sprintf() and
sscanf(), do not depend on the stdio library.

stdin, stdout, stderr These are thread-safe.

Table 2-1 Functions that are thread-safe (continued)

Functions Description
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-13
ID101213 Non-Confidential,

The C and C++ Libraries
Note
 Be aware that, in hardware floating-point, the FP status word is stored in a VFP register.
In this case, your thread-switching mechanism must keep a separate copy of this register
for each thread.
2-14 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Functions that are not thread-safe

Table 2-2 shows the C library functions that are not thread-safe.

Table 2-2 Functions that are not thread-safe

Functions Description

setlocale() The locale settings are global across all threads, and
are not protected by a lock. If two threads call
setlocale(), there might be data corruption. Also,
many other functions, for example strtod() and
sprintf(), read the current locale settings. So, if one
thread calls setlocale() concurrently with another
thread calling such a function then there might be
unexpected results.

ARM recommends that you choose the locale you
want and call setlocale() once to initialize it. Do this
before creating any additional threads in your program
so that any number of threads can read the locale
settings concurrently without interfering with one
another.

Be aware that localeconv() is not thread-safe. Call the
ARM function _get_lconv() with a pointer to a
user-supplied buffer instead.

asctime(), localtime(),

strtok()

These functions are all thread-unsafe. Each contains a
static buffer that might be overwritten by another
thread between a call to the function and the
subsequent use of its return value.

ARM supplies reentrant versions, _asctime_r(),
_localtime_r(), and _strtok_r(). ARM recommends
that you use these functions instead to ensure safety.

Note
 These reentrant versions take additional parameters.
_asctime_r() takes an additional parameter that is a
pointer to a buffer that the output string is written into.
_localtime_r() takes an additional parameter that is a
pointer to a struct tm, that the result is written into.
_strtok_r() takes an additional parameter that is a
pointer to a char pointer to the next token.

gamma()a, lgamma() These extended mathlib functions use a global
variable, _signgam, so are not thread-safe.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-15
ID101213 Non-Confidential,

The C and C++ Libraries
mbrlen(), mbsrtowcs(),

mbrtowc(),wcrtomb(),

wcsrtombs()

The C89 multibyte conversion functions (defined in
stdlib.h) are not thread-safe, for example mblen() and
mbtowc(), because they contain internal static state that
is shared between all threads without locking.

However, the extended restartable versions (defined in
wchar.h) are thread-safe, for example mbrtowc() and
wcrtomb(), provided you pass in a pointer to your own
mbstate_t object. You must exclusively use these
functions with non-NULL mbstate_t * parameters if
you want to ensure thread-safety when handling
multibyte strings.

exit() Do not call exit() in a multithreaded program even if
you have provided an implementation of the
underlying _sys_exit() that actually terminates all
threads.

In this case, exit() cleans up before calling
_sys_exit() so disrupts other threads.

rand(), srand() These functions keep internal state that is both global
and unprotected. This means that calls to rand() are
never thread-safe

ARM recommends that you use your own locking to
ensure that only one thread ever calls rand() at a time,
for example, by defining $Sub$$rand() if you want to
avoid changing your code.

Alternatively, do one of the following:

• supply your own random number generator that
can have multiple independent instances

• arrange that only one thread ever needs to
generate random numbers.

a. gamma() is deprecated.

Table 2-2 Functions that are not thread-safe (continued)

Functions Description
2-16 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.2.7 Thread-safety in the ARM C++ libraries

The following summarizes thread-safety in the C++ libraries:

• The function std::set_new_handler() is not thread-safe. This means that some
forms of ::operator new and ::operator delete are not thread-safe with respect
to std::set_new_handler():

— The default C++ runtime library implementations of the following use
malloc() and free() and are thread-safe with respect to each other. They are
not thread-safe with respect to std::set_new_handler(). You are permitted
to replace them:

::operator new(std::size_t)

::operator new[](std::size_t)

::operator new(std::size_t, const std::nothrow_t&)

::operator new[](std::size_t, const std::nothrow_t)

::operator delete(void*)

::operator delete[](void*)

::operator delete(void*, const std::nothrow_t&)

::operator delete[](void*, const std::nothrow_t&)

— The following placement forms are also thread-safe. You are not permitted
to replace them:

::operator new(std::size_t, void*)

::operator new[](std::size_t, void*)

::operator delete(void*, void*)

::operator delete[](void*, void*)

• Construction and destruction of global objects is not thread-safe.

• Construction of local static objects can be made thread-safe, if you reimplement
the functions __cxa_guard_acquire(), __cxa_guard_release(),
__cxa_guard_abort(), __cxa_atexit() and __aeabi_atexit() appropriately. For
example, with appropriate reimplementation, the following construction of lsobj
can be made thread-safe:

struct T { T(); };
void f() { static T lsobj; }

See the CPPABI for information on the __cxa_ and __aeabi_ functions.

• Throwing an exception is thread-safe if any user constructors and destructors that
get called are also thread-safe. See the Exception Handling ABI for the ARM
Architecture for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-17
ID101213 Non-Confidential,

The C and C++ Libraries
• The ARM C++ library uses the ARM C library. To use the ARM C++ library in
a multithreaded environment, you must provide the functions described in Using
the ARM C libraries with a multithreaded application on page 2-9.
2-18 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.3 Building an application with the C library
This section covers creating an application that links with functions from the C or C++
libraries. Functions in the C library are responsible for:

• Creating an environment in which a C or C++ program can execute. This
includes:

— creating a stack

— creating a heap, if required

— initializing the parts of the library the program uses.

• Starting execution by calling main().

• Supporting use of ISO-defined functions by the program.

• Catching runtime errors and signals and, if required, terminating execution on
error or program exit.

2.3.1 Using the libraries with an application

There are three ways to use the libraries with an application:

• Build a semihosted application that can be debugged in a semihosted environment
such as with RealView ISS, ISSM, RealView ICE or RealMonitor. See Building
an application for a semihosted environment.

• Build a non hosted application that, for example, can be embedded into ROM. See
Building an application for a non semihosting environment on page 2-21.

• Build an application that does not use main() and does not initialize the library.
This application has restricted library functionality, unless you reimplement some
functions. See Building an application without the C library on page 2-25.

2.3.2 Building an application for a semihosted environment

If you are developing an application to run in a semihosted environment for debugging,
you must have an execution environment that supports ARM or Thumb semihosting,
and has sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for
example, RealView ISS, ISSM, RealView ICE and RealMonitor

• implementing your own handler for the semihosting calls. See Chapter 8
Semihosting in the Developer Guide.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-19
ID101213 Non-Confidential,

The C and C++ Libraries
See Overview of semihosting dependencies on page 2-22 for a list of functions that
require semihosting.

It is not necessary to write any new functions or include files if you are using the default
semihosting functionality of the library.

Using RealView ISS or ISSM

RealView ISS and ISSM support semihosting and have a memory map that enables the
use of the library. RealView ISS and ISSM use memory in the host machine and this is
normally adequate for your application.

Using RealView ICE

The ARM debug agents support semihosting but the memory map assumed by the
library might require tailoring to match the hardware being debugged. However, it is
easy to tailor the memory map assumed by the C library. See Tailoring the runtime
memory model on page 2-69.

Using reimplemented functions in a semihosted environment

You can also mix the semihosting functionality with new input/output functions. For
example, you can implement fputc() to output directly to hardware such as a UART, in
addition to the semihosted implementation. See Building an application for a non
semihosting environment on page 2-21 for information on how to reimplement
individual functions.

Converting a semihosted application to a standalone application

After an application has been developed in a semihosted debugging environment, you
can move the application to a non hosted environment by one of the following methods:

• Remove all calls to semihosted functions. See Avoiding semihosting on
page 2-23.

• Reimplement the lower-level functions, for example, fputc(). See Building an
application for a non semihosting environment on page 2-21. You do not have to
reimplement all semihosted functions. You must, however, reimplement the
functions that you are using in your application.

• Implement a handler for all the semihosting calls.
2-20 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.3.3 Building an application for a non semihosting environment

If you do not want to use any semihosting functionality, you must remove all calls to
semihosting functions or reimplement them with non semihosting functions.

To build an application that does not use semihosting functionality:

1. Create the source files to implement the target-dependent features. For example,
functions that use the semihosting calls or that depend on the target memory map.

2. Add the __use_no_semihosting symbol to the source. See Avoiding semihosting on
page 2-23.

3. Link the new objects with your application.

4. Use the new configuration when creating the target-dependent application.

You must reimplement functions that the C library uses to insulate itself from target
dependencies. For example, if you use printf() you must reimplement fputc(). If you
do not use the higher-level input/output functions like printf(), you do not have to
reimplement the lower-level functions like fputc().

If you are building an application for a different execution environment, you can
reimplement the target-dependent functions. For example, those functions that use
semihosting calls or depend on the target memory map. There are no target-dependent
functions in the C++ library, although some C++ functions use underlying C library
functions that are target-dependent.

Examples of embedded applications that do not use a hosted environment are included
in the main examples directory, in ...\emb_sw_dev.

See the Developer Guide for examples of creating embedded applications.

C++ exceptions in a non semihosted environment

The default C++ std::terminate() handler is required by the C++ Standard to call
abort(). The default C library implementation of abort() uses functions that require
semihosting support. Therefore, if you use exceptions in a non semihosted environment,
you must provide an alternative implementation of abort().
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-21
ID101213 Non-Confidential,

The C and C++ Libraries
Overview of semihosting dependencies

Table 2-3 shows the functions that depend directly on semihosting.

Table 2-4 shows those functions that depend indirectly on one or more of the functions
listed in Table 2-3.

Table 2-3 Direct semihosting dependencies

Function Description

__user_initial_stackheap() See Tailoring the runtime memory model on page 2-69.
You might have to reimplement this function if you are
using scatter-loading.

_sys_exit()

_ttywrch()
See Tailoring error signaling, error handling, and
program exit on page 2-59.

_sys_command_string(),
_sys_close(), _sys_ensure(),
_sys_iserror(),

_sys_istty(), _sys_flen(),

_sys_open(), _sys_read(),

_sys_seek(), _sys_write(),

_sys_tmpnam()

See Tailoring the input/output functions on page 2-78.

clock(), _clock_init(), remove(),

rename(), system(), time()
See Tailoring other C library functions on page 2-92.

Table 2-4 Indirect semihosting dependencies

Function Usage

__raise() Catch, handle, or diagnose C library exceptions, without C
signal support. See Tailoring error signaling, error
handling, and program exit on page 2-59.

__default_signal_handler() Catch, handle, or diagnose C library exceptions, with C
signal support. See Tailoring error signaling, error
handling, and program exit on page 2-59.

__Heap_Initialize() Choosing or redefining memory allocation. See Tailoring
storage management on page 2-65.
2-22 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Avoiding semihosting

If you write an application in C, you must link it with the C library even if it makes no
direct use of C library functions. This is because the compiler might implicitly call
functions in the C library, and because the C library also contains initialization code.
Some C library functions use semihosting.

To avoid using semihosting, do either of the following:

• reimplement the functions in your own application

• write the application so that it does not call any semihosted function.

To guarantee that no functions using semihosting are included in your application, use
either:

• IMPORT __use_no_semihosting from assembly language

• #pragma import(__use_no_semihosting) from C.

Note
 IMPORT __use_no_semihosting is only required to be added to a single assembly source
file. Similarly, #pragma import(__use_no_semihosting) is only required to be added to a
single C source file. It is not necessary to add these inserts to every single source file.

If you include a library function that uses semihosting and also reference
__use_no_semihosting, the library detects the conflicting symbols and the linker reports
an error. To find out which objects are using semihosting, link with --verbose
--list=out.txt, search the output for the symbol, and find out what object referenced
it. See --list=file on page 2-56 and --verbose on page 2-98 in the Linker Reference
Guide for more information.

ferror(), fputc(), __stdout Reimplementing the printf family. See Tailoring the
input/output functions on page 2-78.

__backspace(), fgetc(), __stdin Reimplementing the scanf family. See Tailoring the
input/output functions on page 2-78.

fwrite(), fputs(),

puts(),fread(), fgets(),

gets(), ferror()

Reimplementing the stream output family. See Tailoring
the input/output functions on page 2-78.

Table 2-4 Indirect semihosting dependencies (continued)

Function Usage
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-23
ID101213 Non-Confidential,

The C and C++ Libraries
API definitions

In addition to the semihosted functions listed in Table 2-3 on page 2-22 and Table 2-4
on page 2-22, Table 2-5 shows functions and files that might be useful when building
for a different environment.

If you are reimplementing a function that exists in the standard ARM library, the linker
uses an object or library from your project rather than the standard ARM library. Any
library you add to a project does not have to follow the ARM library naming convention.

Caution
 Do not replace or delete libraries supplied by ARM. You must not overwrite the
supplied library files. Place your reimplemented functions in separate object files or
libraries instead.

Table 2-5 Published API definitions

File or function Description

__main()

__rt_entry()
Initializes the runtime environment and executes the user
application.

__rt_lib_init(),

__rt_exit(),

__rt_lib_shutdown()

Initializes or finalizes the runtime library.

LC_CTYPE locale Defines the character properties for the local alphabet. See
Tailoring locale and CTYPE using assembler macros on
page 2-42.

rt_sys.h A C header file describing all the functions whose default
(semihosted) implementations use semihosting calls.

rt_heap.h A C header file describing the storage management abstract
data type.

rt_locale.h A C header file describing the five locale category filing
systems, and defining some macros that are useful for
describing the contents of locale categories.

rt_misc.h A C header file describing miscellaneous unrelated public
interfaces to the C library.

rt_memory.s An empty, but commented, prototype implementation of the
memory model. See Writing your own memory model on
page 2-71 for a description of this file.
2-24 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.4 Building an application without the C library
Creating an application that has a main() function causes the C library initialization
functions to be included as part of __rt_lib_init.

If your application does not have a main() function, the C library is not initialized and
the following features are not available in your application:

• low-level stdio functions that have the prefix _sys_

• signal-handling functions, signal() and raise() in signal.h

• other functions, such as atexit() and alloca().

See The standalone C library functions on page 2-28 for more information on the
functions that are not available without library initialization.

This section refers to creating applications without the library as bare machine C. These
applications do not automatically use the full C runtime environment provided by the C
library. Even though you are creating an application without the library, some functions
from the library that are called implicitly by the compiler must be included. There are
also many library functions that can be made available with only minor
reimplementations.

2.4.1 Integer and floating point functions

There are several compiler functions that are used by the compiler to handle operations
that do not have a short machine code equivalent. For example, integer divide uses a
function that is implicitly called by the compiler if there is no divide instruction
available in the target instruction set. (ARMv7-R and ARMv7-M architectures use the
instructions SDIV and UDIV in Thumb state. Other versions of the ARM architecture also
use compiler functions that are implicitly invoked.)

Integer divide, and all the floating-point functions, require __rt_raise() to handle math
errors. Reimplementing __rt_raise() enables all the math functions, and it avoids
having to link in all the signal-handling library code.

2.4.2 Bare machine integer C

If you are writing a program in C that does not use the library and is to run without any
environment initialization, you must:

• Reimplement __rt_raise(), because this error-handling function can be called
from numerous places within the compiled code.

• Not define main() to avoid linking in the library initialization code.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-25
ID101213 Non-Confidential,

The C and C++ Libraries
• Write an assembly language veneer that establishes the register state required to
run C. This veneer must branch to the entry function in your application.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in
your reset handler.

• Build your application using --fpu=none and link it normally. The linker uses the
appropriate C library variant to find any required compiler functions that are
implicitly called.

Many library facilities require __user_libspace for static data. Even without the
initialization code activated by having a main() function, __user_libspace is created
automatically and uses 96 bytes in the ZI segment. See The __user_libspace static data
area on page 2-6 for a description of the __user_libspace area.

2.4.3 Bare machine C with floating-point

If you want to use floating-point processing in your application you must:

• Perform the steps necessary for integer C as described in Bare machine integer C
on page 2-25. However, do not build your application with the --fpu=none option.

• Use the appropriate FPU option when you build your application.

• Call _fp_init() to initialize the floating-point status register before performing
any floating-point operations.

If you are using software floating-point, you can also define the function
__rt_fp_status_addr() to return the address of a writable data word to be used instead
of the floating-point status register. If you do not do this, the __user_libspace area is
created, occupying 96 bytes. See The __user_libspace static data area on page 2-6 for
a description of the __user_libspace area.

2.4.4 Exploiting the C library

If you create an application that includes a main() function, the linker automatically
includes the initialization code necessary for the execution environment. See Building
an application with the C library on page 2-19 for instructions. There are situations
though where this is not desirable or possible.

You can create an application that consists of customized startup code and still use many
of the library functions. You must either:

• avoid functions that require initialization

• provide the initialization and low-level support functions.
2-26 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Program design

The functions you must reimplement depend on how much of the library functionality
you require:

• If you want only the compiler support functions for division, structure copy, and
FP arithmetic, you must provide __rt_raise(). This also enables very simple
library functions such as those in errno.h, setjmp.h, and most of string.h to work.

• If you call setlocale() explicitly, locale-dependent functions are activated. This
enables you to use the atoi family, sprintf(), sscanf(), and the functions in
ctype.h.

• Programs that use floating-point must call _fp_init(). If you select software
floating-point, the program must also provide __rt_fp_status_addr(). If this
function is not reimplemented, the default action is to create a __user_libspace
area. See The __user_libspace static data area on page 2-6 for a description of
the __user_libspace area.

• Implementing high-level input/output support is necessary for functions that use
fprintf() or fputs(). The high-level output functions depend on fputc() and
ferror(). The high-level input functions depend on fgetc() and __backspace().

Implementing these functions and the heap enables you to use almost the entire library.

Using low-level functions

If you are using the libraries in an application that does not have a main() function, you
must reimplement some functions in the library. See The standalone C library functions
on page 2-28 for more information.

__rt_raise() is essential. It is required by all FP functions, by integer division (so that
divide-by-zero can be reported), and by some other library routines. You probably
cannot write a non trivial program without doing something that requires __rt_raise().

Note
 If rand() is called, srand() must be called first. This is done automatically during library
initialization but not when you avoid the library initialization.

Using high-level functions

High-level I/O functions, fprintf() for example, can be used if the low-level functions,
fputc() for example, are reimplemented. Most of the formatted output functions also
require a call to setlocale(). See Tailoring the input/output functions on page 2-78 for
instructions.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-27
ID101213 Non-Confidential,

The C and C++ Libraries
Anything that uses locale must not be called before first calling setlocale() to initialize
it, for example, call setlocale(LC_ALL, "C"). Locale-using functions are described in
The standalone C library functions. These include the functions in ctype.h and
locale.h, the printf() family, the scanf() family, ato*, strto*, strcoll/strxfrm, and
much of time.h.

Using malloc()

If heap support is required for bare machine C, _init_alloc() must be called first to
supply initial heap bounds, and __rt_heap_extend() must be provided even if it only
returns failure. Prototypes for both functions are in rt_heap.h.

2.4.5 The standalone C library functions

The rest of this section lists the include files, and the functions they contain, that are
available with an uninitialized library. Some otherwise-unavailable functions can be
used if the library functions they depend on are reimplemented.

alloca.h

Functions listed in this file are not available without library initialization. See Building
an application with the C library on page 2-19 for instructions.

assert.h

Functions listed in this file require high-level stdio, __rt_raise(), and _sys_exit(). See
Tailoring error signaling, error handling, and program exit on page 2-59 for
instructions.

ctype.h

Functions listed in this file require the locale functions.

errno.h

Functions in this file work without the requirement for any library initialization or
function reimplementation.

fenv.h

Functions in this file work without the requirement for any library initialization and
only require the reimplementation of __rt_raise().
2-28 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
float.h

This file does not contain any code. The definitions in the file do not require library
initialization or function reimplementation.

inttypes.h

Functions listed in this file require the locale functions.

limits.h

Functions in this file work without the requirement for any library initialization or
function reimplementation.

locale.h

Call setlocale() before calling any function that uses locale functions. For example:

setlocale(LC_ALL, "C")

See the contents of locale.h for more information on the following functions and data
structures:

• setlocale() selects the appropriate locale as specified by the category and locale
arguments.

• lconv is the structure used by locale functions for formatting numeric quantities
according to the rules of the current locale.

• localeconv() creates an lconv structure and returns a pointer to it.

• _get_lconv() fills the lconv structure pointed to by the parameter. This ISO
extension removes the requirement for static data within the library.

locale.h also contains constant declarations used with locale functions. See Tailoring
locale and CTYPE using assembler macros on page 2-42 for more information.

math.h

For functions in this file to work, you must first call _fp_init() and reimplement
__rt_raise().

setjmp.h

Functions in this file work without any library initialization or function
reimplementation.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-29
ID101213 Non-Confidential,

The C and C++ Libraries
signal.h

Functions listed in this file are not available without library initialization. See Building
an application with the C library on page 2-19 for instructions on building an
application that uses library initialization.

__rt_raise() can be reimplemented for error and exit handling. See Tailoring error
signaling, error handling, and program exit on page 2-59 for instructions.

stdarg.h

Functions listed in this file work without any library initialization or function
reimplementation.

stddef.h

This file does not contain any code. The definitions in the file do not require library
initialization or function reimplementation.

stdint.h

This file does not contain any code. The definitions in the file do not require library
initialization or function reimplementation.

stdio.h

The following dependencies or limitations apply to these functions:

• The high-level functions such as printf(), scanf(), puts(), fgets(), fread(),
fwrite(), and perror() depend on lower-level stdio functions fgetc(), fputc(),
and __backspace(). You must reimplement these lower-level functions when
using the standalone C library.

However, you cannot reimplement the _sys_ prefixed functions (for example,
_sys_read()) when using the standalone C library because they require library
initialization.

See Tailoring the input/output functions on page 2-78 for more information.

• The printf() and scanf() family of functions require locale.

• The remove() and rename() functions are system-specific and probably not usable
in your application.
2-30 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
stdlib.h

Most functions in this file work without any library initialization or function
reimplementation. The following functions depend on other functions being
instantiated correctly:

• ato*() requires locale

• strto*() requires locale

• malloc(), calloc(), realloc(), and free() require heap functions

• atexit() is not available when building an application without the C library.

string.h

Functions in this file work without any library initialization, with the exception of
strcoll() and strxfrm(), that require locale.

time.h

• mktime() and localtime() can be used immediately

• time() and clock() are system-specific and probably not usable unless
reimplemented

• asctime(), ctime(), and strftime() require locale.

wchar.h

Wide character library functions added to ISO C by Normative Addendum 1 in 1994.

• Support for wide-character output and format strings, swprintf(), vswprintf(),
swscanf(), and vswscanf()

• All the conversion functions (for example, btowc, wctob, mbrtowc, and wcrtomb)
require locale

• wcscoll and wcsxfrm require locale.

wctype.h

Wide character library functions added to ISO C by Normative Addendum 1 in 1994.
This requires locale.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-31
ID101213 Non-Confidential,

The C and C++ Libraries
2.5 Tailoring the C library to a new execution environment
This section describes how to reimplement functions to produce an application for a
different execution environment, for example, embedded in ROM or used with an
RTOS.

Symbols that start with a single or double underscore name functions that are used as
part of the low-level implementation. You can reimplement some of these functions.

Additional information on these library functions is available in the rt_heap.h,
rt_locale.h, rt_misc.h, and rt_sys.h include files and the rt_memory.s assembler file.

See the following specifications for descriptions of functions that have the prefix __cxa
or __aeabi:

• C Library ABI for the ARM Architecture

• Exception Handling ABI for the ARM Architecture

• C++ ABI for the ARM Architecture.

2.5.1 How C and C++ programs use the library functions

This section describes:

• specific library functions that are used to initialize the execution environment and
application

• library exit functions

• target-dependent library functions that the application itself might call during its
execution.

Initializing the execution environment and executing the application

The entry point of a program is at __main in the C library where library code does the
following:

1. Copies non root (RO and RW) execution regions from their load addresses to their
execution addresses. Also, if any data sections are compressed, they are
decompressed from the load address to the execution address. See the Linker
Reference Guide for more information.

2. Zeroes ZI regions.

3. Branches to __rt_entry.

If you do not want the library to perform these actions, you can define your own __main
that branches to __rt_entry as shown in Example 2-1 on page 2-33.
2-32 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Example 2-1 __main and __rt_entry

 IMPORT __rt_entry
 EXPORT __main
 ENTRY
__main
 B __rt_entry
 END

The library function __rt_entry() runs the program as follows:

1. Calls __rt_stackheap_init() to set up the stack and heap.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the
locale and, if necessary, set up argc and argv for main().

For C++, calls the constructors for any top-level objects by way of
__cpp_initialize__aeabi_. See C++ initialization, construction, and destruction
for more information.

3. Calls main(), the user-level root of the application.

From main(), your program might call, among other things, library functions. See
Library functions called from main() on page 2-36 for more information.

4. Calls exit() with the value returned by main().

C++ initialization, construction, and destruction

C++ places certain requirements on the construction and destruction of objects with
static storage duration. See section 3.6 of the C++ Standard.

The ARM C++ compiler uses the .init_array area to achieve this. This is a const data
array of self-relative pointers to functions. For example, you might have the following
C++ translation unit, contained in the file test.cpp:

struct T
{

T();
~T();

} t;
int f()
{

return 4;
}
int i = f();

This translates into the following pseudocode:
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-33
ID101213 Non-Confidential,

The C and C++ Libraries
 AREA ||.text||, CODE, READONLY
 int f()

{
return 4;

}
 static void __sti___8_test_cpp

{
 // construct 't' and register its destruction
 __aeabi_atexit(T::T(&t), &T::~T, &__dso_handle);
 i = f();
 }
 AREA ||.init_array||, DATA, READONLY
 DCD __sti___8_test_cpp - {PC}
 AREA ||.data||, DATA
 t % 4
 i % 4

This pseudocode is for illustration only. To see the code that is generated, compile the
C++ source code with armcc -c --cpp -S.

The linker collects each .init_array from the various translation units together. It is
important that the .init_array is accumulated in the same order.

The library routine __cpp_initialize__aeabi_ is called from the C library startup code,
__rt_lib_init, before main. __cpp_initialize__aeabi_ walks through the .init_array
calling each function in turn. On exit, __rt_lib_shutdown calls __cxa_finalize.

Usually there is at most one function for T::T(), mangled name _ZN1TC1Ev, one function
for T::~T(), mangled name _ZN1TD1Ev, one __sti__ function, and four bytes of
.init_array for each translation unit. The mangled name for the function f() is _Z1fv.
There is no way to determine the initialization order between translation units.

Function-local static objects with destructors are also handled using __aeabi_atexit.

.init_array sections must be placed contiguously within the same region, for their
base/limit symbols to be accessible. If they are not, the linker generates an error.

Legacy support

In RVCT v2.0 and earlier, C$$pi_ctorvec is used instead of .init_array. Objects with
C$$pi_ctorvec are still supported. Therefore, if you have legacy objects, your scatter file
is expected to contain:

LOAD_ROM 0x0000000
{
 EXEC_ROM 0x0000000
 {
 your_object.o(+RO)
 * (.init_array)
2-34 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
 * (C$$pi_ctorvec) ; backwards compatibility
 ...
 }
 RAM 0x0100000
 {
 * (+RW,+ZI)
 }
}

Exceptions system initialization

The exceptions system can be initialized either on demand (that is, when first used), or
before main is entered. Initialization on demand has the advantage of not allocating heap
memory unless the exceptions system is used, but has the disadvantage that it becomes
impossible to throw any exception (such as std::bad_alloc) if the heap is exhausted at
the time of first use.

The default is to initialize on demand. To initialize the exceptions system before main is
entered, include the following function in the link:

extern "C" void __cxa_get_globals(void);
extern "C" void __ARM_exceptions_init(void)
{
 __cxa_get_globals();
}

Although you can place the call to __cxa_get_globals directly in your code, placing it
in __ARM_exceptions_init ensures that it is called as early as possible. That is, before any
global variables are initialized and before main is entered.

__ARM_exceptions_init is weakly referenced by the library initialization mechanism,
and is called if it is present as part of __rt_lib_init.

Note
 The exception system is initialized by calls to various library functions, for example,
std::set_terminate(). Therefore, you might not have to initialize before the entry to
main.

Emergency buffer memory for exceptions

You can choose whether or not to allocate emergency memory that is to be used for
throwing a std::bad_alloc exception when the heap is exhausted.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-35
ID101213 Non-Confidential,

The C and C++ Libraries
To allocate emergency memory, you must include the symbol
__ARM_exceptions_buffer_required in the link. A call is then made to
__ARM_exceptions_buffer_init() as part of the exceptions system initialization. The
symbol is not included by default.

The following routines manage the exceptions emergency buffer:

extern "C" void *__ARM_exceptions_buffer_init()

Called once during runtime, to allocate the emergency buffer memory. It
returns a pointer to the emergency buffer memory, or NULL if no memory
is allocated.

extern "C" void *__ARM_exceptions_buffer_allocate(void *buffer, size_t size)

Called when an exception is about to be thrown, but there is not enough
heap memory available to allocate the exceptions object. buffer is the
value previously returned by __ARM_exceptions_buffer_init(), or NULL if
that routine was not called. __ARM_exceptions_buffer_allocate() returns
a pointer to size bytes of memory that is aligned on an eight-byte
boundary, or NULL if the allocation is not possible.

extern "C" void *__ARM_exceptions_buffer_free(void *buffer, void *addr)

Called to free memory possibly allocated by
__ARM_exceptions_buffer_allocate(). buffer is the value previously
returned by __ARM_exceptions_buffer_init(), or NULL if that routine was
not called. The routine determines whether the passed address has been
allocated from the emergency memory buffer, and if so, frees it
appropriately, then returns a non-NULL value. If the memory at addr was
not allocated by __ARM_exceptions_buffer_allocate(), the routine must
return NULL.

Default definitions of these routines are present in the image, but you can supply your
own versions to override the defaults supplied by the library. The default routines
reserve enough space for a single std::bad_alloc exceptions object. If you do not
require an emergency buffer, it is safe to redefine all these routines to return only NULL.

Library functions called from main()

The function main() is the user-level root of the application. It requires that the
execution environment is initialized, and that input/output functions can be called.
While in main() the program might perform one of the following actions that calls
user-customizable functions in the C library:

• Extend the stack or heap. See Tailoring the runtime memory model on page 2-69.
2-36 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• Call library functions that require a callout to a user-defined function, for example
__rt_fp_status_addr() or clock(). See Tailoring other C library functions on
page 2-92.

• Call library functions that use locale or CTYPE. See Tailoring locale and CTYPE
using assembler macros on page 2-42.

• Perform floating-point calculations that require the fpu or floating-point library.

• Input or output directly through low-level functions, for example putc(), or
indirectly through high-level input/output functions and input/output support
functions, for example, fprintf() or sys_open(). See Tailoring the input/output
functions on page 2-78.

• Raise an error or other signal, for example ferror. See Tailoring error signaling,
error handling, and program exit on page 2-59.

2.5.2 __rt_entry

The symbol __rt_entry is the starting point for a program using the ARM C library.
Control passes to __rt_entry after all scatter-load regions have been relocated to their
execution addresses.

Usage

The default implementation of __rt_entry:

1. Sets up the heap and stack.

2. Initializes the C library, by calling __rt_lib_init.

3. Calls main().

4. Shuts down the C library, by calling __rt_lib_shutdown.

5. Exits.

__rt_entry must end with a call to one of the following functions:

exit() Calls atexit()-registered functions and shuts down the library.

__rt_exit() Shuts down the library but does not call atexit() functions.

_sys_exit() Exits directly to the execution environment. It does not shut down the
library and does not call atexit() functions. See _sys_exit() on
page 2-60.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-37
ID101213 Non-Confidential,

The C and C++ Libraries
2.5.3 Exiting from the program

The program can exit normally at the end of main() or it can exit prematurely because
of an error.

Exiting from an assert

The behavior of the assert macro depends on the conditions in operation at the most
recent occurrence of #include <assert.h>:

1. If the NDEBUG macro is defined (on the command line or as part of a source file),
the assert macro has no effect.

2. If the NDEBUG macro is not defined, the assert expression (the expression given to
the assert macro) is evaluated. If the result is TRUE, that is != 0, the assert macro
has no more effect.

3. If the assert expression evaluates to FALSE, the assert macro calls the
__aeabi_assert() function if any of the following are true:

• you are compiling with --strict

• you are using -O0 or -O1

• you are compiling with --library_interface=aeabi_clib or
--library_interface=aeabi_glibc

• __ASSERT_MSG is defined

• _AEABI_PORTABILITY_LEVEL is defined and not 0.

4. Otherwise, if the assert expression evaluates to FALSE and the conditions specified
in point 3 do not apply, the assert macro calls abort(). Then:

a. abort() calls __rt_raise().

b. If __rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, __aeabi_assert() works
if you reimplement abort() and the stdio functions.

Another solution for retargeting is to reimplement the __aeabi_assert() function itself.
The function prototype is:

void __aeabi_assert(const char *expr, const char *file, int line);

where:

• expr points to the string representation of the expression that was not TRUE

• file and line identify the source location of the assertion.
2-38 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
The behavior for __aeabi_assert() supplied in the ARM C library is to print a message
on stderr and call abort().

You can restore the default behavior for __aeabi_assert() at higher optimization levels
by defining __ASSERT_MSG.

2.5.4 __rt_exit()

This function shuts down the library but does not call functions registered with
atexit().

Syntax

void __rt_exit(int code)

Where code is not used by the standard function.

Usage

Shuts down the C library by calling __rt_lib_shutdown, and then calls _sys_exit to
terminate the application. Reimplement _sys_exit rather than __rt_exit. See
_sys_exit() on page 2-60 for more information.

Return

The function does not return.

2.5.5 __rt_lib_init()

This is the library initialization function and is the companion to __rt_lib_shutdown().

Syntax

extern value_in_regs struct __argc_argv __rt_lib_init(unsigned heapbase,
unsigned heaptop)

where:

heapbase The start of the heap memory block.

heaptop The end of the heap memory block.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-39
ID101213 Non-Confidential,

The C and C++ Libraries
Usage

This is the library initialization function. It is called immediately after
__rt_stackheap_init() and passed an initial chunk of memory to use as a heap. This
function is the standard ARM library initialization function and must not be
reimplemented.

Return

The function returns argc and argv ready to be passed to main(). The structure is
returned in the registers as:

struct __argc_argv
{ int argc;

char **argv;
int r2, r3;

};

2.5.6 __rt_lib_shutdown()

This is the library shutdown function and is the companion to __rt_lib_init().

Syntax

void __rt_lib_shutdown(void)

Usage

This is the library shutdown function and is provided in case a user must call it directly.
This is the standard ARM library shutdown function and must not be reimplemented.
2-40 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.6 Tailoring static data access
This section describes using callouts from the C library to access static data. C library
functions that use static data can be categorized as follows:

• functions that do not use any static data of any kind, for example fprintf()

• functions that manage a static state, such as malloc(), rand(), and strtok()

• functions that do not manage a static state, but use static data in a way that is
specific to the implementation in the ARM compiler, for example isalpha().

When the C library does something that requires implicit static data, it uses a callout to
a function you can replace. These functions are shown in Table 2-6. They do not use
semihosting.

See also Tailoring the runtime memory model on page 2-69 for more information about
memory use.

The default implementation of __user_libspace creates a 96-byte block in the ZI
segment. Even if your application does not have a main() function, the
__user_libspace() function does not normally have to be redefined. However, if you are
writing an operating system or a process switcher, you must reimplement this function
(see Writing reentrant and thread-safe code on page 2-4).

Note
 Exactly which functions use static data in their definitions might change in future
releases.

Table 2-6 C library callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno. See
__rt_errno_addr() on page 2-61.

__rt_fp_status_addr() Called by the floating-point support code to get the address of
the floating-point status word. See __rt_fp_status_addr() on
page 2-63.

locale functions The function __user_libspace() creates a block of private
static data for the library. See Tailoring locale and CTYPE
using assembler macros on page 2-42, and Writing reentrant
and thread-safe code on page 2-4.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-41
ID101213 Non-Confidential,

The C and C++ Libraries
2.7 Tailoring locale and CTYPE using assembler macros
This section describes the use of assembler macros for tailoring locale functions.
Applications use locales when they display or process data that is dependent on the local
language or region, for example character set, monetary symbols, decimal point, time,
and date.

See the rt_locale.s include file for more information on locale-related functions.

2.7.1 Selecting locale at link time

The locale subsystem of the C library can be selected at link time or extended to be
selectable at runtime. The following describes the use of locale categories by the library:

• The default implementation of each locale category is for the C locale. The library
also provides an alternative, ISO8859-1 (Latin-1 alphabet) implementation of
each locale category that you can select at link time.

• Both the C and ISO8859-1 default implementations usually provide one locale for
each category to select at runtime.

• You can replace each locale category individually.

• You can include as many locales in each category as you choose and you can
name your locales as you choose.

• Each locale category uses one word in the private static data of the library.

• The locale category data is read-only and position independent.

• scanf() forces the inclusion of the LC_CTYPE locale category, but in either of the
default locales this adds only 260 bytes of read-only data to several kilobytes of
code.
2-42 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
ISO8859-1 Implementation

Table 2-7 shows the ISO8859-1 (Latin-1 alphabet) locale categories.

There is no ISO8859-1 version of the LC_TIME category.

Shift-JIS and UTF-8 Implementation

Table 2-8 shows the Shift-JIS (Japanese characters) or UTF-8 (Unicode characters)
locale categories.

The following describes the effects of Shift-JIS encoding:

• The ordinary ctype functions behave correctly on any byte value that is a
self-contained character in Shift-JIS. For example, half-width katakana
characters, that Shift-JIS encodes as single bytes between 0xA6 and 0xDF, are
treated as alphabetic by isalpha().

Table 2-7 Default ISO8859-1 locales

Symbol Description

__use_iso8859_ctype Selects the ISO8859-1 (Latin-1) classification of characters.
This is essentially 7-bit ASCII, except that the character codes
160-255 represent a selection of useful European punctuation
characters, letters, and accented letters.

__use_iso8859_collate Selects the strcoll/strxfrm collation table appropriate to the
Latin-1 alphabet. The default C locale does not require a
collation table.

__use_iso8859_monetary Selects the Sterling monetary category using Latin-1 coding.

__use_iso8859_numeric Selects separating thousands with commas in the printing of
numeric values.

__use_iso8859_locale Selects all the ISO8859-1 selections described in this table.

Table 2-8 Default Shift-JIS and UTF-8 locales

Function Description

__use_sjis_ctype Sets the character set to the Shift-JIS multibyte encoding of
Japanese characters

__use_utf8_ctype Sets the character set to the UTF-8 multibyte encoding of all
Unicode characters
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-43
ID101213 Non-Confidential,

The C and C++ Libraries
• The multibyte conversion functions, such as mbrtowc(), mbsrtowcs(), and
wcrtomb(), all convert between wide strings in Unicode and multibyte character
strings in Shift-JIS.

• printf("%ls") converts a Unicode wide string into Shift-JIS output, and
scanf("%ls") converts Shift-JIS input into a Unicode wide string.

You can arbitrarily switch between multibyte locales and single-byte locales at runtime
if you include more than one in your application. By default, only one locale at a time
is included.

2.7.2 Selecting locale at runtime

The C library function setlocale() selects a locale at runtime for the locale category, or
categories, specified in its arguments. It does this by selecting the requested locale
separately in each locale category. In effect, each locale category is a small filing system
containing an entry for each locale.

C header files describing what must be implemented, and providing some useful
support macros, are given in rt_locale.h and rt_locale.s.

2.7.3 Defining a locale block

The locale data blocks are defined using a set of assembly language macros provided in
rt_locale.s. Therefore, the recommended way to define locale blocks is by writing an
assembly language source file. RVCT provides a set of macros for each type of locale
data block, for example LC_CTYPE, LC_COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME.
You define each locale block in the same way with a _begin macro, some data macros
and an _end macro.

Specifying the beginning

To begin defining your locale block, you call the _begin macro. This macro takes two
arguments, a prefix and the textual name. For example:

LC_TYPE_begin prefix, name

where:

TYPE is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME
2-44 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
prefix is the prefix for the assembler symbols defined within the locale data

name is the textual name for the locale data.

Specifying the data

To specify the data for your locale block, you call the macros for that locale type in the
order specified in the documentation. For example:

LC_TYPE_function

Where:

TYPE is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME

function is a specific function related to your locale data.

When specifying locale data, you must call the macro repeatedly for each respective
function.

Specifying the ending

To complete the definition of your locale data block, you call the _end macro. This
macro takes no arguments. For example:

LC_TYPE_end

where:

TYPE is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME

Specifying a fixed locale

To write a fixed function that always returns the same locale, you can use the _start
symbol name defined by the macros. Example 2-2 on page 2-46 shows how this is
implemented for the CTYPE locale.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-45
ID101213 Non-Confidential,

The C and C++ Libraries
Example 2-2 Fixed locale

 GET rt_locale.s
AREA my_locales, DATA, READONLY
LC_CTYPE_begin my_ctype_locale, "MyLocale"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
AREA my_locale_func, CODE, READONLY

_get_lc_ctype FUNCTION
LDR r0, =my_ctype_locale_start
BX lr
ENDFUNC

Specifying multiple locales

Contiguous locale blocks suitable for passing to the _findlocale() function must be
declared in sequence. You must call the macro LC_index_end to end the sequence of
locale blocks. Example 2-3 shows how this is implemented for the CTYPE locale.

Example 2-3 Multiple locales

 GET rt_locale.s
AREA my_locales, DATA, READONLY

my_ctype_locales
LC_CTYPE_begin my_first_ctype_locale, "MyLocale1"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
LC_CTYPE_begin my_second_ctype_locale, "MyLocale2"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
LC_index_end
AREA my_locale_func, CODE, READONLY
IMPORT _findlocale

_get_lc_ctype FUNCTION
LDR r0, =my_ctype_locales
B _findlocale
ENDFUNC

2.7.4 LC_CTYPE data block

The macros that define an LC_CTYPE data block are as follows:

1. Call LC_CTYPE_begin with a symbol name and a locale name. See Specifying the
beginning on page 2-44 for more information.
2-46 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2. Call LC_CTYPE_table repeatedly to specify 256 table entries. LC_CTYPE_table takes
a single argument in quotes. This must be a comma-separated list of table entries.
Each table entry describes one of the 256 possible characters, and can be either an
illegal character (IL) or a combination sum using any of the following flags:

__S whitespace characters

__P punctuation characters

__B printable space characters

__L lowercase letters

__U uppercase letters

__N decimal digits

__C control characters

__X hexadecimal digit letters A-F and a-f

__A alphabetic but neither uppercase nor lowercase, such as Japanese
katakana.

Note
 A printable space character is defined as any character where the result of both

isprint() and isspace() is true.

__A must not be specified for the same character as either __N or __X.

See Specifying the data on page 2-45 for more information.

3. If required, call one or both of the following optional macros:

• LC_CTYPE_full_wctype. Calling this macro without arguments causes the
C99 wide-character ctype functions (iswalpha(), iswupper(), ...) to return
useful values across the full range of Unicode when this LC_CTYPE locale is
active. If this macro is not specified, the wide ctype functions treat the first
256 wchar_t values as the same as the 256 char values, and the rest of the
wchar_t range as containing illegal characters.

• LC_CTYPE_multibyte defines this locale to be a multi-byte character set. Call
this macro with three arguments. The first two arguments are the names of
functions that perform conversion between the multi-byte character set and
Unicode wide characters. The last argument is the value that must be taken
by the C macro MB_CUR_MAX for the respective character set. The two function
arguments have the following prototypes:
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-47
ID101213 Non-Confidential,

The C and C++ Libraries
size_t internal_mbrtowc(wchar_t *pwc, char c, mbstate_t *pstate);
size_t internal_wcrtomb(char *s, wchar_t w, mbstate_t *pstate);

internal_mbrtowc()

takes one byte c as input, and updates the mbstate_t pointed to by
pstate as a result of reading that byte. If the byte completes the
encoding of a multibyte character, it writes the corresponding
wide character into the location pointed to by pwc, and returns 1
to indicate that it has done so. If not, it returns -2 to indicate the
state change of mbstate_t and that no character is output.
Otherwise, it returns -1 to indicate that the encoded input is
invalid.

internal_wcrtomb()

takes one wide character w as input, and writes some number of
bytes into the memory pointed to by s. It returns the number of
bytes output, or -1 to indicate that the input character has no valid
representation in the multibyte character set.

4. Call LC_CTYPE_end, without arguments, to finish the locale block definition. See
Specifying the ending on page 2-45 for more information.

Example 2-4 shows an LC_CTYPE data block.

Example 2-4 Defining the CTYPE locale

LC_CTYPE_begin utf8_ctype, "UTF-8"
;
; Single-byte characters in the low half of UTF-8 are exactly
; the same as in the normal "C" locale.
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x00-0x08
LC_CTYPE_table "__C+__S, __C+__S, __C+__S, __C+__S, __C+__S"

; 0x09-0x0D(BS,LF,VT,FF,CR)
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x0E-0x16
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x17-0x1F
LC_CTYPE_table "__B+__S" ; space
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P, __P" ; !"#$%&'(
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ;)*+,-./
LC_CTYPE_table "__N, __N, __N, __N, __N, __N, __N, __N, __N, __N" ; 0-9
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ; :;<=>?@
LC_CTYPE_table "__U+__X, __U+__X, __U+__X, __U+__X, __U+__X, __U+__X" ; A-F
LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; G-P
LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; Q-Z
LC_CTYPE_table "__P, __P, __P, __P, __P, __P" ; [\]^_`
LC_CTYPE_table "__L+__X, __L+__X, __L+__X, __L+__X, __L+__X, __L+__X" ; a-f
LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; g-p
LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; q-z
2-48 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
LC_CTYPE_table "__P, __P, __P, __P" ; {|}~
LC_CTYPE_table "__C" ; 0x7F
;
; Nothing in the top half of UTF-8 is valid on its own as a
; single-byte character, so they are all illegal characters (IL).
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
;
; The UTF-8 ctype locale wants the full version of wctype.
LC_CTYPE_full_wctype
;
; UTF-8 is a multi-byte locale, so we must specify some
; conversion functions. MB_CUR_MAX is 6 for UTF-8 (the lead
; bytes 0xFC and 0xFD are each followed by five continuation
; bytes).
;
; The implementations of the conversion functions are not
; provided in this example.
;
IMPORT utf8_mbrtowc
IMPORT utf8_wcrtomb
LC_CTYPE_multibyte utf8_mbrtowc, utf8_wcrtomb, 6
LC_CTYPE_end

2.7.5 LC_COLLATE data block

The macros that define an LC_COLLATE data block are as follows:

1. Call LC_COLLATE_begin with a symbol name and a locale name. See Specifying the
beginning on page 2-44 for more information.

2. Call one of the following alternative macros:

• Call LC_COLLATE_table repeatedly to specify 256 table entries.
LC_COLLATE_table takes a single argument in quotes. This must be a
comma-separated list of table entries. Each table entry describes one of the
256 possible characters, and can be a number indicating its position in the
sorting order. For example, if character A is intended to sort before B, then
entry 65 (corresponding to A) in the table, must be smaller than entry 66
(corresponding to B).
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-49
ID101213 Non-Confidential,

The C and C++ Libraries
• Call LC_COLLATE_no_table without arguments. This indicates that the
collation order is the same as the string comparison order. Therefore,
strcoll() and strcmp() are identical.

See Specifying the data on page 2-45 for more information.

3. Call LC_COLLATE_end, without arguments, to finish the locale block definition. See
Specifying the ending on page 2-45 for more information.

Example 2-5 shows an LC_COLLATE data block.

Example 2-5 Defining the COLLATE locale

LC_COLLATE_begin iso88591_collate, "ISO8859-1"
LC_COLLATE_table "0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07"
LC_COLLATE_table "0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f"
LC_COLLATE_table "0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17"
LC_COLLATE_table "0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f"
LC_COLLATE_table "0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27"
LC_COLLATE_table "0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f"
LC_COLLATE_table "0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37"
LC_COLLATE_table "0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f"
LC_COLLATE_table "0x40, 0x41, 0x49, 0x4a, 0x4c, 0x4d, 0x52, 0x53"
LC_COLLATE_table "0x54, 0x55, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x60"
LC_COLLATE_table "0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x71, 0x72"
LC_COLLATE_table "0x73, 0x74, 0x76, 0x79, 0x7a, 0x7b, 0x7c, 0x7d"
LC_COLLATE_table "0x7e, 0x7f, 0x87, 0x88, 0x8a, 0x8b, 0x90, 0x91"
LC_COLLATE_table "0x92, 0x93, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9e"
LC_COLLATE_table "0xa5, 0xa6, 0xa7, 0xa8, 0xaa, 0xab, 0xb0, 0xb1"
LC_COLLATE_table "0xb2, 0xb3, 0xb6, 0xb9, 0xba, 0xbb, 0xbc, 0xbd"
LC_COLLATE_table "0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5"
LC_COLLATE_table "0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd"
LC_COLLATE_table "0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5"
LC_COLLATE_table "0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd"
LC_COLLATE_table "0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5"
LC_COLLATE_table "0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed"
LC_COLLATE_table "0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5"
LC_COLLATE_table "0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd"
LC_COLLATE_table "0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4b"
LC_COLLATE_table "0x4e, 0x4f, 0x50, 0x51, 0x56, 0x57, 0x58, 0x59"
LC_COLLATE_table "0x77, 0x5f, 0x61, 0x62, 0x63, 0x64, 0x65, 0xfe"
LC_COLLATE_table "0x66, 0x6d, 0x6e, 0x6f, 0x70, 0x75, 0x78, 0xa9"
LC_COLLATE_table "0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x89"
LC_COLLATE_table "0x8c, 0x8d, 0x8e, 0x8f, 0x94, 0x95, 0x96, 0x97"
LC_COLLATE_table "0xb7, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xff"
LC_COLLATE_table "0xa4, 0xac, 0xad, 0xae, 0xaf, 0xb4, 0xb8, 0xb5"
LC_COLLATE_end
2-50 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.7.6 LC_MONETARY data block

The macros that define an LC_MONETARY data block are as follows:

1. Call LC_MONETARY_begin with a symbol name and a locale name. See Specifying the
beginning on page 2-44 for more information.

2. Call the LC_MONETARY data macros as follows:

a. Call LC_MONETARY_fracdigits with two arguments: frac_digits and
int_frac_digits from the lconv structure.

b. Call LC_MONETARY_positive with four arguments: p_cs_precedes,
p_sep_by_space, p_sign_posn and positive_sign.

c. Call LC_MONETARY_negative with four arguments: n_cs_precedes,
n_sep_by_space, n_sign_posn and negative_sign.

d. Call LC_MONETARY_currsymbol with two arguments: currency_symbol and
int_curr_symbol.

e. Call LC_MONETARY_point with one argument: mon_decimal_point.

f. Call LC_MONETARY_thousands with one argument: mon_thousands_sep.

g. Call LC_MONETARY_grouping with one argument: mon_grouping.

See Specifying the data on page 2-45 for more information.

3. Call LC_MONETARY_end, without arguments, to finish the locale block definition. See
Specifying the ending on page 2-45 for more information.

Example 2-6 shows an LC_MONETARY data block.

Example 2-6 Defining the MONETARY locale

LC_MONETARY_begin c_monetary, "C"
LC_MONETARY_fracdigits 255, 255
LC_MONETARY_positive 255, 255, 255, ""
LC_MONETARY_negative 255, 255, 255, ""
LC_MONETARY_currsymbol "", ""
LC_MONETARY_point ""
LC_MONETARY_thousands ""
LC_MONETARY_grouping ""
LC_MONETARY_end
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-51
ID101213 Non-Confidential,

The C and C++ Libraries
2.7.7 LC_NUMERIC data block

The macros that define an LC_NUMERIC data block are as follows:

1. Call LC_NUMERIC_begin with a symbol name and a locale name. See Specifying the
beginning on page 2-44 for more information.

2. Call the LC_NUMERIC data macros as follows:

a. Call LC_NUMERIC_point with one argument: decimal_point from lconv
structure.

b. Call LC_NUMERIC_thousands with one argument: thousands_sep.

c. Call LC_NUMERIC_grouping with one argument: grouping.

3. Call LC_NUMERIC_end, without arguments, to finish the locale block definition. See
Specifying the ending on page 2-45 for more information.

Example 2-7 shows an LC_NUMERIC data block.

Example 2-7 Defining the NUMERIC locale

LC_NUMERIC_begin c_numeric, “C”
LC_NUMERIC_point “.”
LC_NUMERIC_thousands ““
LC_NUMERIC_grouping ““
LC_NUMERIC_end

2.7.8 LC_TIME data block

The macros that define an LC_TIME data block are as follows:

1. Call LC_TIME_begin with a symbol name and a locale name. See Specifying the
beginning on page 2-44 for more information.

2. Call the LC_TIME data macros as follows:

a. Call LC_TIME_week_short seven times to provide the short names for the days
of the week. Sunday being the first day. Then call LC_TIME_week_long and
repeat the process for long names.

b. Call LC_TIME_month_short twelve times to provide the short names for the
days of the month. Then call LC_TIME_month_long and repeat the process for
long names.

c. Call LC_TIME_am_pm with two arguments that are respectively the strings
representing morning and afternoon.
2-52 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
d. Call LC_TIME_formats with three arguments that are respectively the
standard date/time format used in strftime("%c"), the standard date format
strftime("%x"), and the standard time format strftime("%X"). These strings
must define the standard formats in terms of other simpler strftime
primitives. Example 2-8 shows that the standard date/time format is
permitted to reference the other two formats.

e. Call LC_TIME_c99format with a single string that is the standard 12-hour time
format used in strftime("%r") as defined in C99.

3. Call LC_TIME_end, without arguments, to finish the locale block definition. See
Specifying the ending on page 2-45 for more information.

Example 2-8 shows an LC_TIME data block.

Example 2-8 Defining the TIME locale

LC_TIME_begin c_time, “C”
LC_TIME_week_short “Sun”
LC_TIME_week_short “Mon”
LC_TIME_week_short "Tue"
LC_TIME_week_short "Wed"
LC_TIME_week_short "Thu"
LC_TIME_week_short "Fri"
LC_TIME_week_short "Sat"
LC_TIME_week_long "Sunday"
LC_TIME_week_long "Monday"
LC_TIME_week_long "Tuesday"
LC_TIME_week_long "Wednesday"
LC_TIME_week_long "Thursday"
LC_TIME_week_long "Friday"
LC_TIME_week_long "Saturday"
LC_TIME_month_short "Jan"
LC_TIME_month_short "Feb"
LC_TIME_month_short "Mar"
LC_TIME_month_short "Apr"
LC_TIME_month_short "May"
LC_TIME_month_short "Jun"
LC_TIME_month_short "Jul"
LC_TIME_month_short "Aug"
LC_TIME_month_short "Sep"
LC_TIME_month_short "Oct"
LC_TIME_month_short "Nov"
LC_TIME_month_short "Dec"
LC_TIME_month_long "January"
LC_TIME_month_long "February"
LC_TIME_month_long "March"
LC_TIME_month_long "April"
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-53
ID101213 Non-Confidential,

The C and C++ Libraries
LC_TIME_month_long "May"
LC_TIME_month_long "June"
LC_TIME_month_long "July"
LC_TIME_month_long "August"
LC_TIME_month_long "September"
LC_TIME_month_long "October"
LC_TIME_month_long "November"
LC_TIME_month_long "December"
LC_TIME_am_pm "AM", "PM"
LC_TIME_formats "%x %X", "%d %b %Y", "%H:%M:%S"
LC_TIME_c99format "%I:%M:%S %p"
LC_TIME_week_short “Sat”
LC_TIME_end

2.7.9 _get_lconv()

_get_lconv() sets the components of an lconv structure with values appropriate for the
formatting of numeric quantities.

Syntax

void _get_lconv(struct lconv *lc);

Usage

This extension to ISO does not use any static data. If you are building an application that
must conform strictly to the ISO C standard, use localeconv() instead.

Return

The existing lconv structure lc is filled with formatting data.

2.7.10 localeconv()

localeconv() creates and sets the components of an lconv structure with values
appropriate for the formatting of numeric quantities according to the rules of the current
locale.

Syntax

struct lconv *localeconv(void);
2-54 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Usage

The members of the structure with type char * are strings. Any of these, except for
decimal_point, can point to an empty string, "", to indicate that the value is not available
in the current locale or is of zero length.

The members with type char are non-negative numbers. Any of the members can be
CHAR_MAX to indicate that the value is not available in the current locale.

The members included in lconv are described in The lconv structure on page 2-56.

Return

The function returns a pointer to the filled-in object. The structure pointed to by the
return value is not modified by the program, but might be overwritten by a subsequent
call to the localeconv() function. In addition, calls to the setlocale() function with
categories LC_ALL, LC_MONETARY, or LC_NUMERIC might overwrite the contents of the
structure.

2.7.11 setlocale()

Selects the appropriate locale as specified by the category and locale arguments.

Syntax

char *setlocale(int category, const char *locale);

Usage

The setlocale() function is used to change or query part or all of the current locale. The
effect of the category argument for each value is described in Locale categories. A value
of "C" for locale specifies the minimal environment for C translation. An empty string,
"", for locale specifies the implementation-defined native environment. At program
startup, the equivalent of setlocale(LC_ALL, "C") is executed.

Locale categories

The values of category are:

LC_COLLATE Affects the behavior of strcoll().

LC_CTYPE Affects the behavior of the character handling functions.

LC_MONETARY Affects the monetary formatting information returned by localeconv().
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-55
ID101213 Non-Confidential,

The C and C++ Libraries
LC_NUMERIC Affects the decimal-point character for the formatted input/output
functions and the string conversion functions and the numeric formatting
information returned by localeconv().

LC_TIME Can affect the behavior of strftime(). For currently supported locales,
the option has no effect.

LC_ALL Affects all locale categories. This is the bitwise OR of all the locale
categories.

Return

If a pointer to a string is given for locale and the selection is valid, the string associated
with the specified category for the new locale is returned. If the selection cannot be
honored, a null pointer is returned and the locale is not changed.

A null pointer for locale causes the string associated with the category for the current
locale to be returned and the locale is not changed.

If category is LC_ALL and the most recent successful locale-setting call uses a category
other than LC_ALL, a composite string might be returned. The string returned when used
in a subsequent call with its associated category restores that part of the program locale.
The string returned is not modified by the program, but might be overwritten by a
subsequent call to setlocale().

2.7.12 _findlocale()

_findlocale() searches the locale database and returns a pointer to the data block for the
requested category and locale.

Syntax

void const *_findlocale(void const *index, const char *name);

Return

Returns a pointer to the requested data block.

2.7.13 The lconv structure

The lconv structure contains numeric formatting information. The structure is filled by
the functions _get_lconv() and localeconv().

The definition of lconv from locale.h is shown in Example 2-9 on page 2-57.
2-56 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Example 2-9 lconv structure

struct lconv {
 char *decimal_point;
 /* The decimal point character used to format non monetary quantities */
 char *thousands_sep;
 /* The character used to separate groups of digits to the left of the */
 /* decimal point character in formatted non monetary quantities. */
 char *grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted non monetary quantities. See below for more details. */
 char *int_curr_symbol;
 /* The international currency symbol applicable to the current locale.*/
 /* The first three characters contain the alphabetic international */
 /* currency symbol in accordance with those specified in ISO 4217. */
 /* Codes for the representation of Currency and Funds. The fourth */
 /* character (immediately preceding the null character) is the */
 /* character used to separate the international currency symbol from */
 /* the monetary quantity. */
 char *currency_symbol;
 /* The local currency symbol applicable to the current locale. */
 char *mon_decimal_point;
 /* The decimal-point used to format monetary quantities. */
 char *mon_thousands_sep;
 /* The separator for groups of digits to the left of the decimal-point*/
 /* in formatted monetary quantities. */
 char *mon_grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted monetary quantities. See below for more details. */
 char *positive_sign;
 /* The string used to indicate a non negative-valued formatted */
 /* monetary quantity. */
 char *negative_sign;
 /* The string used to indicate a negative-valued formatted monetary */
 /* quantity. */
 char int_frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal-point) to be displayed in an internationally formatted */
 /* monetary quantities. */
 char frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal-point) to be displayed in a formatted monetary quantity. */
 char p_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a non negative formatted monetary quantity. */
 char p_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a non negative formatted */
 /* monetary quantity. */
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-57
ID101213 Non-Confidential,

The C and C++ Libraries
 char n_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a negative formatted monetary quantity. */
 char n_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a negative formatted */
 /* monetary quantity. */
 char p_sign_posn;
 /* Set to a value indicating the position of the positive_sign for a */
 /* non negative formatted monetary quantity. See below for more details*/
 char n_sign_posn;
 /* Set to a value indicating the position of the negative_sign for a */
 /* negative formatted monetary quantity. */
};

The elements of grouping and non_grouping (shown in Example 2-9 on page 2-57) are
interpreted as follows:

CHAR_MAX No additional grouping is to be performed.

0 The previous element is repeated for the remainder of the digits.

other The value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
to the left of the current group.

The value of p_sign_posn and n_sign_posn (shown in Example 2-9 on page 2-57) are
interpreted as follows:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string is after the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.
2-58 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.8 Tailoring error signaling, error handling, and program exit
All trap or error signals raised by the C library go through the __raise() function. You
can reimplement this function or the lower-level functions that it uses.

Caution
 The IEEE 754 standard for floating-point processing states that the default response to
an exception is to proceed without a trap. You can modify floating-point error handling
by tailoring the functions and definitions in fenv.h. See also Chapter 4 Floating-point
Support.

See the rt_misc.h include file for more information on error-related functions.

The trap and error-handling functions are shown in Table 2-9. See also Tailoring the C
library to a new execution environment on page 2-32 for additional information about
application initialization and shutdown.

Table 2-9 Trap and error handling

Function Description

_sys_exit() Called, eventually, by all exits from the library. See
_sys_exit() on page 2-60.

errno Is a static variable used with error handling. See errno
on page 2-60.

__rt_errno_addr() Is called to obtain the address of the variable errno.
See __rt_errno_addr() on page 2-61.

__raise() Raises a signal to indicate a runtime anomaly. See
__raise() on page 2-61.

__rt_raise() Raises a signal to indicate a runtime anomaly. See
__rt_raise() on page 2-62.

__default_signal_handler() Displays an error indication to the user. See
__default_signal_handler() on page 2-62.

_ttywrch() Writes a character to the console. The default
implementation of _ttywrch() is semihosted and,
therefore, uses semihosting calls. See _ttywrch() on
page 2-63.

__rt_fp_status_addr() This function is called to obtain the address of the fp
status word. See __rt_fp_status_addr() on page 2-63.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-59
ID101213 Non-Confidential,

The C and C++ Libraries
2.8.1 _sys_exit()

The library exit function. All exits from the library eventually call _sys_exit().

Syntax

void _sys_exit(int return_code);

Usage

This function must not return. You can intercept application exit at a higher level by
either:

• Implementing the C library function exit() as part of your application. You lose
atexit() processing and library shutdown if you do this.

• Implementing the function __rt_exit(int n) as part of your application. You lose
library shutdown if you do this, but atexit() processing is still performed when
exit() is called or main() returns.

Return

The return code is advisory. An implementation might attempt to pass it to the execution
environment.

2.8.2 errno

The C library errno variable is defined in the implicit static data area of the library. This
area is identified by __user_libspace(). It occupies part of initial stack space used by
the functions that established the runtime stack. The definition of errno is:

(*(volatile int *) __rt_errno_addr())

You can define __rt_errno_addr() if you want to place errno at a user-defined location
instead of the default location identified by __user_libspace(). See also The
__user_libspace static data area on page 2-6.

Return

The default implementation is a veneer on __user_libspace() that returns the address of
the status word. A suitable default definition is given in the C library standard headers.
2-60 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.8.3 __rt_errno_addr()

This function is called to get the address of the C library errno variable when the C
library attempts to read or write errno. The library provides a default implementation.
It is unlikely that you have to reimplement this function.

Syntax

volatile int *__rt_errno_addr(void);

2.8.4 __raise()

This function raises a signal to indicate a runtime anomaly.

Syntax

int __raise(int signal, int type);

where:

signal Is an integer that holds the signal number.

type Is an integer or string constant or variable.

Usage

This function calls the normal C signal mechanism or the default signal handler. See
also _ttywrch() on page 2-63 for more information.

You can replace the __raise() function by defining:

int __raise(int signal, int type);

This enables you to bypass the C signal mechanism and its data-consuming signal
handler vector, but otherwise gives essentially the same interface as:

void __default_signal_handler(int signal, int type);

See also Thread-safety in the ARM C libraries on page 2-10.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-61
ID101213 Non-Confidential,

The C and C++ Libraries
Return

There are three possibilities for a __raise() return condition:

no return The handler performs a long jump or restart.

0 The signal was handled.

nonzero The calling code must pass that return value to the exit code. The default
library implementation calls _sys_exit(rc) if __raise() returns a
nonzero return code rc.

2.8.5 __rt_raise()

This function raises a signal to indicate a runtime anomaly.

Syntax

void __rt_raise(int signal, int type);

where:

signal Is an integer that holds the signal number.

type Is an integer or string constant or variable.

Usage

Redefine this to replace the entire signal handling mechanism for the library. The
default implementation calls __raise(). See __raise() on page 2-61 for more
information.

Depending on the value returned from __raise():

no return The handler performed a long jump or restart and __rt_raise() does not
regain control.

0 The signal was handled and __rt_raise() exits.

nonzero The default library implementation calls _sys_exit(rc) if __raise()
returns a nonzero return code rc.

2.8.6 __default_signal_handler()

This function handles a raised signal. The default action is to print an error message and
exit.
2-62 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Syntax

void __default_signal_handler(int signal, int type);

Usage

The default signal handler uses _ttywrch() to print a message and calls _sys_exit() to
exit. You can replace the default signal handler by defining:

void __default_signal_handler(int signal, int type);

The interface is the same as __raise(), but this function is only called after the C signal
handling mechanism has declined to process the signal.

A complete list of the defined signals is in signal.h. See Table 2-13 on page 2-101 for
those signals that are used by the libraries.

Note
 The signals used by the libraries might change in future releases of the product.

2.8.7 _ttywrch()

This function writes a character to the console. The console might have been redirected.
You can use this function as a last resort error handling routine.

Syntax

void __ttywrch(int ch);

Usage

The default implementation of this function uses semihosting.

You can redefine this function, or __raise(), even if there is no other input/output. For
example, it might write an error message to a log kept in nonvolatile memory.

2.8.8 __rt_fp_status_addr()

This function returns the address of the floating-point status word.

Syntax

unsigned *__rt_fp_status_addr(void);
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-63
ID101213 Non-Confidential,

The C and C++ Libraries
Usage

If __rt_fp_status_addr() is not defined, the default implementation from the C library
is used. The value is initialized when __rt_lib_init() calls _fp_init(). The constants
for the status word are listed in fenv.h. The default fp status is 0.

See also Thread-safety in the ARM C libraries on page 2-10.
2-64 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.9 Tailoring storage management
This section describes the functions from rt_heap.h that you can define if you are
tailoring memory management.

See the rt_heap.h and rt_memory.s include files for more information on
memory-related functions.

2.9.1 Avoiding the ARM-supplied heap and heap-using functions

If you are developing embedded systems that have limited RAM or that provide their
own heap management (for example, an operating system), you might require a system
that does not define a heap area. To avoid using the heap you can either:

• reimplement the functions in your own application

• write the application so that it does not call any heap-using function.

You can reference the __use_no_heap or __use_no_heap_region symbols in your code to
guarantee that no heap-using functions are linked in from the ARM library. You are only
required to import these symbols once in your application, for example, using either:

• IMPORT __use_no_heap from assembly language

• #pragma import(__use_no_heap) from C.

If you include a heap-using function and also reference __use_no_heap or
__use_no_heap_region, the linker reports an error. For example, the following sample
code results in the linker error shown:

#include <stdio.h>
#include <stdlib.h>
#pragma import(__use_no_heap)

void main()
{

char *p = malloc(256);
...

}

Error: L6915E: Library reports error: __use_no_heap was requested, but malloc
was referenced

To find out which objects are using the heap, link with --verbose --list=out.txt, search
the output for the relevant symbol (in this case malloc), and find out what object
referenced it.

__use_no_heap guards against the use of malloc(), realloc(), free(), and any function
that uses those functions. For example, calloc() and other stdio functions.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-65
ID101213 Non-Confidential,

The C and C++ Libraries
__use_no_heap_region has the same properties as __use_no_heap, but in addition, guards
against other things that use the heap memory region. For example, if you declare
main() as a function taking arguments, the heap region is used for collecting argc and
argv.

2.9.2 Support for malloc

malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. You can
choose between Heap1 or Heap2, the two provided heap implementations.

The default implementations of malloc(), realloc(), and calloc() maintain an
eight-byte aligned heap.

Heap1: Standard heap implementation

Heap1, the default implementation, implements the smallest and simplest heap
manager. The heap is managed as a singly-linked list of free blocks held in increasing
address order. The allocation policy is first-fit by address.

This implementation has low overheads, but the cost of malloc() or free() grows
linearly with the number of free blocks. The smallest block that can be allocated is four
bytes and there is an additional overhead of four bytes. If you expect more than 100
unallocated blocks it is recommended that you use Heap2.

Heap2: Alternative heap implementation

Heap2 provides a compact implementation with the cost of malloc() or free() growing
logarithmically with the number of free blocks. The allocation policy is first-fit by
address. The smallest block that can be allocated is 12 bytes and there is an additional
overhead of four bytes.

Heap2 is recommended when you require near constant-time performance in the
presence of hundreds of free blocks. To select the alternative standard implementation,
use either:

• IMPORT __use_realtime_heap from assembly language

• #pragma import(__use_realtime_heap) from C.

Using Heap2

The Heap2 real-time heap implementation must know the maximum address space the
heap spans. The smaller the address range, the more efficient the algorithm is.
2-66 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
By default, the heap extent is taken to be 16MB starting at the beginning of the heap
(defined as the start of the first chunk of memory given to the heap manager by
__rt_initial_stackheap() or __rt_heap_extend()).

The heap bounds are given by:

struct __heap_extent {
unsigned base, range;

};

__value_in_regs struct __heap_extent __user_heap_extent(
 unsigned defaultbase, unsigned defaultsize);

The function prototype for __user_heap_extent() is in rt_misc.h.

The Heap1 algorithm does not require the bounds on the heap extent, therefore it never
calls this function.

You must redefine __user_heap_extent() if:

• you require a heap to span more than 16MB of address space

• your memory model can supply a block of memory at a lower address than the
first one supplied.

If you know in advance that the address space bounds of your heap are small, you do
not have to redefine __user_heap_extent(), but it does speed up the heap algorithms if
you do.

The input parameters are the default values that are used if this routine is not defined.
You can, for example, leave the default base value unchanged and only adjust the size.

Note
 The size field returned must be a power of two. The library does not check this and fails
in unexpected ways if this requirement is not met. If you return a size of zero, the extent
of the heap is set to 4GB.

Using a heap implementation from bare machine C

To use a heap implementation in an application that does not define main() and does not
initialize the C library:

1. Call _init_alloc(base, top) to define the base and top of the memory you want
to manage as a heap.

2. Define the function unsigned __rt_heap_extend(unsigned size, void **block) to
handle calls to extend the heap when it becomes full.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-67
ID101213 Non-Confidential,

The C and C++ Libraries
alloca()

alloca() behaves identically to malloc() except that alloca() has automatic garbage
collection (see alloca() on page 2-111).
2-68 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.10 Tailoring the runtime memory model
This section describes:

• the management of writable memory by the C library as static data, heap, and
stack

• functions that can be redefined to change how writable memory is managed.

See Placing the stack and heap on page 3-13 in the Developer Guide for more
information.

2.10.1 The memory models

You can select either of the following memory models:

Single memory region

The stack grows downward from the top of the memory region. The heap
grows upwards from the bottom of the region. This is the default. The
memory managed by the heap never shrinks. Heap memory that is freed
by calling free() cannot be reused for other purposes.

Two memory regions

One memory region is for the stack and the other is for the heap. The size
of the heap region can be zero. The stack region can be in allocated
memory or inherited from the execution environment.

To use the two-region model rather than the default one-region model,
use either:

• IMPORT __use_two_region_memory from assembly language

• #pragma import(__use_two_region_memory) from C.

Note
 If you use the two-region memory model and do not provide any heap memory, you
cannot call malloc(), use stdio, or get command-line arguments for main().

If you set the size of the heap region to zero and define __user_heap_extend() as a
function that can extend the heap, the heap is created when it is required.

See the description of __use_no_heap in Tailoring storage management on page 2-65, for
more information on how to issue a warning message if the heap or heap region is used.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-69
ID101213 Non-Confidential,

The C and C++ Libraries
2.10.2 Controlling the runtime memory model

To modify the behavior of the heap and stack manager, you can use any of the following
methods:

• use a scatter-loading description file

• redefine __user_setup_stackheap() and __user_heap_extend()

• define symbols to specify the intial stack pointer and the start and end of the heap.

For information about scatter-loading description files, see Chapter 5 Using
Scatter-loading Description Files in the Linker User Guide.

__user_setup_stackheap() sets up and returns the locations of the initial stack and heap.
__user_heap_extend() returns extra blocks of memory for the heap to use. You only have
to redefine these functions if you:

• are not using a scatter-loading description file

• do not want the values used by the default implementation of these functions

• are not defining symbols __initial_sp, __heap_base, and __heap_limit to specify
the initial stack pointer and the start and end of the heap.

Note
 • You might see __user_initial_stackheap() instead of __user_setup_stackheap().

This is most likely to occur if you are maintaining legacy source code, because
__user_initial_stackheap() is an older implementation.

• You are advised to replace any occurrences of __user_initial_stackheap() in
your source code with __user_setup_stackheap().

The hidden static data for the library is provided by __user_libspace. The static data
area is also used as a stack during the library initialization process. This function does
not normally require reimplementation. See Tailoring static data access on page 2-41.

For more information about redefining __user_setup_stackheap(), see
__user_setup_stackheap() on page 2-71.

For more information about redefining __user_heap_extend(), see
__user_heap_extend() on page 2-74.

For information about defining the symbols __initial_sp, __heap_base, and
__heap_limit, see Creating the stack on page 3-6 and Creating the heap on page 3-6.
This method of controlling the runtime memory model is supported by both standardlib
and microlib.
2-70 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.10.3 Writing your own memory model

If the provided memory models do not meet your requirements, you can write your own.
A memory model must define the functions described in Table 2-10. All functions are
ARM state functions. The library takes care of entry from Thumb state if this is
required. An incomplete prototype implementation for the model is provided in
rt_memory.s located in the ...\include directory.

Use the prototype as a starting point for your own implementation.

2.10.4 __user_setup_stackheap()

__user_setup_stackheap() sets up and returns the locations of the initial stack and heap.

Unlike __user_initial_stackheap(), __user_setup_stackheap() works with systems
where the application starts with a value of sp (r13) that is already correct, for example,
Cortex-M3. To make use of sp, implement __user_setup_stackheap() to set up r0, r2,
and r3 (for a two-region model) and return. For a one-region model, set only r0.

When __user_setup_stackheap() is called, sp has the same value it had on entry to the
application. If this value is not valid then __user_setup_stackheap() must change the
value of sp before using any stack.

Using __user_setup_stackheap() rather than __user_initial_stackheap() improves
code size because there is no requirement for a temporary stack.

__user_setup_stackheap() returns the:

• heap base in r0

• stack base in sp

• heap limit in r2

• stack limit in r3.

Note
 __user_setup_stackheap() must be reimplemented in assembler.

Table 2-10 Memory model functions

Function Description

__rt_stackheap_init() Creates and initializes the stack pointer. Returns a region
of memory for use as the initial heap. An assembler-level
function.

__rt_heap_extend() Returns a new block of memory to add to the heap. See
__rt_heap_extend() on page 2-76.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-71
ID101213 Non-Confidential,

The C and C++ Libraries
2.10.5 __user_initial_stackheap()

If you have legacy source code you might see __user_initial_stackheap(). This is an
old function that is only supported for backwards compatibility with legacy source
code. The modern equivalent is __user_setup_stackheap().

Migrating to RVCT v4.0 from RVCT v2.x and earlier

In RVCT v2.x and earlier, the default implementation of __user_initial_stackheap()
used the value of the symbol Image$$ZI$$Limit. This symbol is not defined if the linker
uses a scatter-loading description file (specified with the --scatter command-line
option) so __user_initial_stackheap() must be reimplemented if you are using
scatter-loading description files, otherwise your link step fails.

Alternatively, you can upgrade your source code to use __user_setup_stackheap()
instead of __user_initial_stackheap().

Migrating to RVCT v4.0 from RVCT v3.x

In RVCT v3.x and later, the library includes more implementations of
__user_initial_stackheap(), and can select the correct implementation for you
automatically from information given in a scatter-loading description file. This means
that it is not necessary to reimplement this function if you are using scatter-loading files.
See Using a scatter-loading description file on page 2-73 for more information.

Syntax

extern __value_in_regs struct __user_initial_stackheap
__user_initial_stackheap(unsigned R0, unsigned SP, unsigned R2, unsigned SL);

Usage

__user_initial_stackheap() returns the:

• heap base in r0

• stack base in r1, that is, the highest address in the stack region

• heap limit in r2

• stack limit in r3, that is, the lowest address in the stack region.

If this function is reimplemented, it must:

• use no more than 88 bytes of stack

• not corrupt registers other than r12 (ip)

• maintain eight-byte alignment of the heap.
2-72 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
For the default one-region model, the values in r2 and r3 are ignored and all memory
between r0 and r1 is available for the heap. For a two-region model, the heap limit is
set by r2 and the stack limit is set by r3.

The value of sp (r13) at the time __main() is called is passed as an argument in r1. The
default implementation of __user_initial_stackheap(), using the semihosting
SYS_HEAPINFO, is given by the library in module sys_stackheap.o.

To create a version of __user_initial_stackheap() that inherits sp from the execution
environment and does not have a heap, set r0 and r2 to the value of r3 and return. See
__user_setup_stackheap() on page 2-71) for more information.

The definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap{
unsigned heap_base, stack_base, heap_limit, stack_limit;

};

Note
 The value of stack_base is 0x1 greater than the highest address used by the stack because
a full-descending stack is used.

See the examples directory for example reimplementations of this function.

Return

The values returned in r0 to r3 depend on whether you are using the one- or two-region
memory model:

One-region (r0,r1) is the single stack and heap region. r1 is greater than r0. r2 and r3
are ignored.

Two-region (r0, r2) is the initial heap and (r3, r1) is the initial stack. r2 is greater than
or equal to r0. r3 is less than r1.

Using a scatter-loading description file

The default implementation of __user_initial_stackheap() uses the value of the
symbol Image$$ZI$$Limit. This symbol is not defined if the linker uses a scatter-loading
description file. However, the C library provides alternative implementations that you
can make use of through information in scatter-loading description files.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-73
ID101213 Non-Confidential,

The C and C++ Libraries
Selecting the one-region model automatically

Define one special execution region in your scatter-loading description file,
ARM_LIB_STACKHEAP. This region has the EMPTY attribute.

This causes the library to select an implementation of __user_initial_stackheap() that
uses this as the combined heap/stack region. This uses the value of the symbols
Image$$ARM_LIB_STACKHEAP$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.

Selecting the two-region model automatically

Define two special execution regions in your scatter-loading description file,
ARM_LIB_HEAP and ARM_LIB_STACK. Both regions have the EMPTY attribute.

This causes the library to select an implementation of __user_initial_stackheap() that
uses the value of the symbols Image$$ARM_LIB_HEAP$$Base,
Image$$ARM_LIB_HEAP$$ZI$$Limit, Image$$ARM_LIB_STACK$$Base, and
Image$$ARM_LIB_STACK$$ZI$$Limit.

An example scatter-loading description file to define both ARM_LIB_HEAP and
ARM_LIB_STACK is supplied as scatter.scat. See
install_directory\RVDS\Examples\...\Cortex-M3\Example2.

sp is initialized appropriately from either ARM_LIB_STACKHEAP (for the one-region model)
or ARM_LIB_STACK (for the two-region model).

Error messages

If you use a scatter file but do not specify any special region names and do not
reimplement __user_initial_stackheap(), the library generates an error message.

2.10.6 __user_heap_extend()

This function can be defined to return extra blocks of memory, separate from the initial
one, to be used by the heap. If defined, this function must return the size and base
address of an eight-byte aligned heap extension block.

Syntax

extern unsigned __user_heap_extend(int 0, void **base, unsigned requested_size);
2-74 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Usage

There is no default implementation of this function. If you define this function, it must
have the following characteristics:

• The returned size must be either:

— a multiple of eight bytes of at least the requested size

— 0, denoting that the request cannot be honored.

• Size is measured in bytes.

• The function is subject only to AAPCS constraints.

• The first argument is always zero on entry and can be ignored. The base is
returned in the register holding this argument.

• The returned base address must be aligned on an eight-byte boundary.

Return

This function places a pointer to a block of at least the requested size in *base and
returns the size of the block. 0 is returned if no such block can be returned, in which case
the value stored at *base is never used.

2.10.7 __user_heap_extent()

If defined, this function returns the base address and maximum range of the heap.

Syntax

extern __value_in_regs struct __heap_extent __user_heap_extent(unsigned ignore1,
unsigned ignore2);

See also Support for malloc on page 2-66.

Usage

There is no default implementation of this function. The values of the parameters
ignore1 and ignore2 are not used by the function.

2.10.8 __rt_stackheap_init()

This function sets up the stack pointer and returns a region of memory for use as the
initial heap. It is called from the library initialization code.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-75
ID101213 Non-Confidential,

The C and C++ Libraries
On return from this function, SP must point to the top of the stack region, r0 must point
to the base of the heap region, and r1 must point to the limit of the heap region.

A user-defined memory model (that is, __rt_stackheap_init() and __rt_heap_extend())
is allocated 16 bytes of storage from the __user_perproc_libspace area if wanted. It
accesses this storage by calling __rt_stackheap_storage() to return a pointer to its
16-byte region.

2.10.9 __rt_heap_extend()

This function returns a new eight-byte aligned block of memory to add to the heap, if
possible. If you reimplement __rt_stackheap_init(), you must reimplement this
function. An incomplete prototype implementation is in rt_memory.s.

Syntax

extern unsigned __rt_heap_extend(unsigned size, void **block);

Usage

The calling convention is ordinary AAPCS. On entry, r0 is the minimum size of the
block to add, and r1 holds a pointer to a location to store the base address.

The default implementation has the following characteristics:

• The returned size is either:

— a multiple of eight bytes of at least the requested size

— 0, denoting that the request cannot be honored.

• The returned base address is aligned on an eight-byte boundary.

• Size is measured in bytes.

• The function is subject only to AAPCS constraints.

Return

The default implementation extends the heap if there is sufficient free heap memory. If
it cannot, it calls __user_heap_extend() if it is implemented (see __user_heap_extend()
on page 2-74). On exit, r0 is the size of the block acquired, or 0 if nothing could be
obtained, and the memory location r1 pointed to on entry contains the base address of
the block.
2-76 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.10.10 __vectab_stack_and_reset

__vectab_stack_and_reset is a library section that provides a way for the initial values
of sp and pc to be placed in the vector table, starting at address 0 for Cortex-M3
embedded applications.

__vectab_stack_and_reset requires the existence of a main() function in your source
code. If a main() function does not exist and you place the __vectab_stack_and_reset
section in a scatter-loading description file, an error is generated to the following effect:

Error: L6236E: No section matches selector - no section to be FIRST/LAST

If the normal start-up code is bypassed, that is, if there is intentionally no main()
function, you are responsible for setting up the vector table without
__vectab_stack_and_reset.

An example scatter-loading description file is supplied as cortex-m3.scat. See
install_directory\RVDS\Examples. It includes a minimal vector table illustrating the use
of __vectab_stack_and_reset to place the initial sp and pc values at addresses 0x0 and
0x4 in the vector table.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-77
ID101213 Non-Confidential,

The C and C++ Libraries
2.11 Tailoring the input/output functions
The higher-level input/output, such as the functions fscanf() and fprintf(), and the
C++ object std::cout, are not target-dependent. However, the higher-level functions
perform input/output by calling lower-level functions that are target-dependent. To
retarget input/output, you can either avoid these higher-level functions or redefine the
lower-level functions.

See rt_sys.h for more information on I/O functions.

See also Writing reentrant and thread-safe code on page 2-4.

2.11.1 Dependencies on low-level functions

Table 2-11 on page 2-79 shows the dependencies of the higher-level functions on
lower-level functions. If you define your own versions of the lower-level functions, you
can use the library versions of the higher-level functions directly. fgetc() uses __FILE,
but fputc() uses __FILE and ferror().

Note
 You must provide definitions of __stdin and __stdout if you use any of their associated
high-level functions. This applies even if your re-implementations of other functions
such as fgetc() and fputc() do not reference any data stored in those objects.

Table key:

1. __FILE1

2. __stdin2

3. __stdout3

4. fputc()4

5. ferror()5

6. fgetc()6

7. fgetwc()

8. fputwc()

9. __backspace()7

1. The file structure.
2. The standard input object of type __FILE.
3. The standard output object of type __FILE.
4. Outputs a character to a file.
5. Returns the error status accumulated during file I/O.
6. Gets a character from a file.
2-78 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
10. __backspacewc().

7. Moves the file pointer to the previous character. See Reimplementing __backspace() on
page 2-84.

Table 2-11 Input/output dependencies

High-level
function Low-level object

1 2 3 4 5 6 7 8 9 10

fgets x - - - x x - - - -

fgetws x - - - - - x - - -

fprintf x - - x x - - - - -

fputs x - - x - - - - - -

fputws x - - - - - - x - -

fread x - - - - x - - - -

fscanf x - - - - x - - x -

fwprintf x - - - x - - x - -

fwrite x - - x - - - - - -

fwscanf x - - - - - x - - x

getchar x x - - - x - - - -

gets x x - - x x - - - -

getwchar x x - - - - x - - -

perror x - x x - - - - - -

printf x - x x x - - - - -

putchar x - x x - - - - - -

puts x - x x - - - - - -

putwchar x - x - - - - x - -

scanf x x - - - x - - x -

vfprintf x - - x x - - - - -
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-79
ID101213 Non-Confidential,

The C and C++ Libraries
See the ISO C Reference for the syntax of the low-level functions.

Note
 If you choose to reimplement fgetc(), fputc(), and __backspace(), be aware that
fopen() and related functions use the ARM layout for the __FILE structure. You might
also have to reimplement fopen() and related functions if you define your own version
of __FILE.

printf family

The printf family consists of _printf(), printf(), _fprintf(), fprintf(), vprintf(),
and vfprintf(). All these functions use __FILE opaquely and depend only on the
functions fputc() and ferror(). The functions _printf() and _fprintf() are identical to
printf() and fprintf() except that they cannot format floating-point values.

The standard output functions of the form _printf(...) are equivalent to:

fprintf(& __stdout, ...)

where __stdout has type __FILE.

vfscanf x - - - - x - - x -

vfwprintf x - - - x - - x - -

vfwscanf x - - - - - x - - x

vprintf x - x x x - - - - -

vscanf x x - - - x - - x -

vwprintf x - x - x - - x - -

vwscanf x x - - - - x - - x

wprintf x - x - x - - x - -

wscanf x x - - - - x - - x

Table 2-11 Input/output dependencies (continued)

High-level
function Low-level object
2-80 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
scanf family

The scanf() family consists of scanf() and fscanf(). These functions depend only on
the functions fgetc(), __FILE, and __backspace(). See Reimplementing __backspace()
on page 2-84.

The standard input function of the form scanf(...) is equivalent to:

fscanf(& __stdin, ...)

where __stdin has type __FILE.

fwrite(), fputs(), and puts()

If you define your own version of __FILE, and your own fputc() and ferror() functions
and the __stdout object, you can use all of the printf() family, fwrite(), fputs(), puts()
and the C++ object std::cout unchanged from the library. Example 2-10 and
Example 2-11 on page 2-82 show you how to do this. Consider modifying the system
routines if you require real file handling.

You are not required to reimplement every function shown in these examples. Only
reimplement the functions that require reimplementation.

Example 2-10 Retargeting printf()

#include <stdio.h>

struct __FILE
{
int handle;

/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

};

/* FILE is typedef’d in stdio.h. */

FILE __stdout;

int fputc(int ch, FILE *f)
{
/* Your implementation of fputc(). */
return ch;

}
int ferror(FILE *f)
{

ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-81
ID101213 Non-Confidential,

The C and C++ Libraries
/* Your implementation of ferror(). */
return 0;

}
void test(void)
{
printf(“Hello world\n”);

}

Be aware of endianness with fputc(). fputc() takes an int parameter, but contains only
a character. Whether the character is in the top or the bottom byte of the integer variable
depends on the endianness. The following code sample avoids problems with
endianness:

extern void sendchar(char *ch);

int fputc(int ch, FILE *f)
{
/* example: write a character to an LCD */
char tempch = ch; // temp char avoids endianness issue
sendchar(&tempch);
return ch;

}

See also the implementation in the main examples directory, in
...\emb_sw_dev\source\retarget.c.

Example 2-11 Retargeting cout

File 1: Reimplement any functions that require reimplementation.

#include <stdio.h>

namespace std {

struct __FILE
{
int handle;

/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

};

FILE __stdout;
FILE __stdin;
FILE __stderr;
2-82 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
int fgetc(FILE *f)
{
/* Your implementation of fgetc(). */
return 0;

};
int fputc(int c, FILE *stream)
{
/* Your implementation of fputc(). */

}
int ferror(FILE *stream)
{
/* Your implementation of ferror(). */

}
long int ftell(FILE *stream)
{
/* Your implementation of ftell(). */

}
int fclose(FILE *f)
{
/* Your implementation of fclose(). */
return 0;

}
int fseek(FILE *f, long nPos, int nMode)
{
/* Your implementation of fseek(). */
return 0;

}
int fflush(FILE *f)
{
/* Your implementation of fflush(). */
return 0;

}
}

File 2: Print “Hello world” using your reimplemented functions.

#include <stdio.h>
#include <iostream>
using namespace std;

int main()
{
cout << “Hello world\n”;
return 0;

}

ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-83
ID101213 Non-Confidential,

The C and C++ Libraries
By default, fread() and fwrite() call fast block input/output functions that are part of
the ARM stream implementation. If you define your own __FILE structure instead of
using the ARM stream implementation, fread() and fwrite() call fgetc() instead of
calling the block input/output functions.

fread(), fgets(), and gets()

The functions fread(), fgets(), and gets() are implemented as a loop over fgetc() and
ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of __FILE, __stdin (for gets()), fgetc(), and
ferror(), you can use these functions, and the C++ object std::cin directly from the
library.

Reimplementing __backspace()

The function __backspace() is used by the scanf family of functions. It must never be
called directly, but reimplemented if you are retargeting the stdio arrangements at the
fgetc() level.

The semantics are:

int __backspace(FILE *stream);

__backspace(stream) must only be called after reading a character from the stream. You
must not call it after a write, a seek, or immediately after opening the file, for example.
It returns to the stream the last character that was read from the stream, so that the same
character can be read from the stream again by the next read operation. This means that
a character that was read from the stream by scanf but that is not required (that is, it
terminates the scanf operation) is read correctly by the next function that reads from the
stream.

__backspace is separate from ungetc(). This is to guarantee that a single character can
be pushed back after the scanf family of functions has finished.

The value returned by __backspace() is either 0 (success) or EOF (failure). It returns EOF
only if used incorrectly, for example, if no characters have been read from the stream.
When used correctly, __backspace() must always return 0, because the scanf family of
functions do not check the error return.

The interaction between __backspace() and ungetc() is:

• If you apply __backspace() to a stream and then ungetc() a character into the same
stream, subsequent calls to fgetc() must return first the character returned by
ungetc(), and then the character returned by __backspace().
2-84 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• If you ungetc() a character back to a stream, then read it with fgetc(), and then
backspace it, the next character read by fgetc() must be the same character that
was returned to the stream. That is the __backspace() operation must cancel the
effect of the fgetc() operation. However, another call to ungetc() after the call to
__backspace() is not required to succeed.

• The situation where you ungetc() a character into a stream and then
__backspace() another one immediately, with no intervening read, never arises.
__backspace() must only be called after fgetc(), so this sequence of calls is
illegal. If you are writing __backspace() implementations, you can assume that the
unget() of a character into a stream followed immediately by a __backspace()
with no intervening read, never occurs.

Reimplementing __backspacewc()

__backspacewc() is the wide-character equivalent of __backspace(). __backspacewc()
behaves in the same way as __backspace() except that it pushes back the last wide
character instead of a narrow character.

2.11.2 Target-dependent input and output support functions

rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by
_sys_open() and identifies an open file on the host system.

Target-dependent input and output functions use semihosting. If any function is
redefined, all stream-support functions must be redefined.

If the _sys_* functions are redefined, both normal character I/O and wide character I/O
works. That is, you are not required to do anything extra with these functions for wide
character I/O to work.

2.11.3 _sys_open()

This function opens a file.

Syntax

FILEHANDLE _sys_open(const char *name, int openmode)

Usage

The _sys_open function is required by fopen() and freopen().These functions, in turn,
are required if any file input/output function is to be used.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-85
ID101213 Non-Confidential,

The C and C++ Libraries
The openmode parameter is a bitmap, whose bits mostly correspond directly to the ISO
mode specification. See rt_sys.h for more information. Target-dependent extensions
are possible, but freopen() must also be extended.

Return

The return value is –1 if an error occurs.

2.11.4 _sys_close()

This function closes a file previously opened with _sys_open().

Syntax

int _sys_close(FILEHANDLE fh)

Usage

This function must be defined if any input/output function is to be used.

Return

The return value is 0 if successful. A nonzero value indicates an error.

2.11.5 _sys_read()

This function reads the contents of a file into a buffer.

Syntax

int _sys_read(FILEHANDLE fh, unsigned char *buf, unsigned len, int mode)

Note
 The mode parameter is here for historical reasons. It contains nothing useful and must
be ignored.

Return

The return value is one of the following:

• The number of characters not read (that is, len - result were read).

• An error indication.
2-86 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• An EOF indicator. The EOF indication involves the setting of 0x80000000 in the
normal result. The target-independent code is capable of handling either:

Early EOF The last read from a file returns some characters plus an EOF
indicator.

Late EOF The last read returns only EOF.

2.11.6 _sys_write()

Writes the contents of a buffer to a file previously opened with _sys_open().

Syntax

int _sys_write(FILEHANDLE fh, const unsigned char *buf, unsigned len, int mode)

Note
 The mode parameter is here for historical reasons. It contains nothing useful and must
be ignored.

Return

The return value is either:

• a positive number representing the number of characters not written (so any
nonzero return value denotes a failure of some sort)

• a negative number indicating an error.

2.11.7 _sys_ensure()

This function flushes buffers associated with a file handle.

Syntax

int _sys_ensure(FILEHANDLE fh)

Usage

A call to _sys_ensure() flushes any buffers associated with file handle fh, and ensures
that the file is up to date on the backing store medium.

Return

If an error occurs, the result is negative.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-87
ID101213 Non-Confidential,

The C and C++ Libraries
2.11.8 _sys_flen()

This function returns the current length of a file.

Syntax

long _sys_flen(FILEHANDLE fh)

Usage

The function is required to convert fseek(..., SEEK_END) into (..., SEEK_SET) as
required by _sys_seek().

If fseek() is used with an underlying system that does not directly support seeking
relative to the end of a file, then _sys_flen() must be defined. If the underlying system
can seek relative to the end of a file, you can define fseek() so that _sys_flen() is not
required.

Return

This function returns the current length of the file fh, or a negative error indicator.

2.11.9 _sys_seek()

This function puts the file pointer at offset pos from the beginning of the file.

Syntax

int _sys_seek(FILEHANDLE fh, long pos)

Usage

This function sets the current read or write position to the new location pos relative to
the start of the current file fh.

Return

The result is non-negative if no error occurs or is negative if an error occurs.

2.11.10 _sys_istty()

This function determines if a file handle identifies a terminal.
2-88 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Syntax

int _sys_istty(FILEHANDLE fh)

Usage

When a file is connected to a terminal device, this function is used to provide unbuffered
behavior by default (in the absence of a call to set(v)buf) and to prohibit seeking.

Return

The return value is:

0 There is no interactive device.

1 There is an interactive device.

other An error occurred.

2.11.11 _sys_tmpnam()

This function converts the file number fileno for a temporary file to a unique filename,
for example, tmp0001.

Syntax

void _sys_tmpnam(char *name, int fileno, unsigned maxlength)

Usage

The function must be defined if tmpnam() or tmpfile() is used.

Return

Returns the filename in name.

2.11.12 _sys_command_string()

This function retrieves the command line used to invoke the current application from
the environment that called the application.

Syntax

char *_sys_command_string(char *cmd, int len)
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-89
ID101213 Non-Confidential,

The C and C++ Libraries
where:

cmd Is a pointer to a buffer that can be used to store the command line. It is
not required that the command line is stored in cmd.

len Is the length of the buffer.

Usage

This function is called by the library startup code to set up argv and argc to pass to
main().

Note
 You must not assume that the C library is fully initialized when this function is called.
For example, you must not call malloc() from within this function. This is because the
C library startup sequence calls this function before the heap is fully configured.

Return

The function must return either:

• A pointer to the command line, if successful. This can be either a pointer to the
cmd buffer if it is used, or a pointer to wherever else the command line is stored.

• NULL, if not successful.
2-90 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.11.13 #pragma import(_main_redirection)

This pragma must be defined when redirecting standard input, output and error streams
at runtime. See Environment on page B-3 in the Compiler Reference Guide for more
information.

Syntax

#pragma import(_main_redirection)
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-91
ID101213 Non-Confidential,

The C and C++ Libraries
2.12 Tailoring other C library functions
This section describes target-dependent ISO C library functions. Implementation of
these ISO standard functions depends entirely on the target operating system.

The default implementation of these functions is semihosted. That is, each function uses
semihosting.

2.12.1 clock()

This is the standard C library clock function from time.h.

Syntax

clock_t clock(void)

Usage

If the units of clock_t differ from the default of centiseconds, you must define __CLK_TCK
on the compiler command line or in your own header file. The value in the definition is
used for CLK_TCK and CLOCKS_PER_SEC. The default value is 100 for centiseconds.

Note
 If you reimplement clock() you must also reimplement _clock_init().

Return

The returned value is an unsigned integer.

2.12.2 _clock_init()

This is an optional initialization function for clock().

Syntax

__weak void _clock_init(void)

Usage

You must provide a clock initialization function if clock() must work with a read-only
timer. If implemented, _clock_init() is called from the library initialization code.
2-92 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.12.3 time()

This is the standard C library time() function from time.h.

Syntax

time_t time(time_t *timer)

The return value is an approximation of the current calendar time.

Return

The value -1 is returned if the calendar time is not available. If timer is not a NULL
pointer, the return value is also stored in timer.

2.12.4 remove()

This is the standard C library remove() function from stdio.h.

Syntax

int remove(const char *filename)

Usage

remove() causes the file whose name is the string pointed to by filename to be removed.
Subsequent attempts to open the file result in failure, unless it is created again. If the file
is open, the behavior of the remove() function is implementation-defined.

Return

Returns zero if the operation succeeds or nonzero if it fails.

2.12.5 rename()

This is the standard C library rename() function from stdio.h.

Syntax

int rename(const char *old, const char *new)
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-93
ID101213 Non-Confidential,

The C and C++ Libraries
Usage

rename() causes the file whose name is the string pointed to by old to be subsequently
known by the name given by the string pointed to by new. The file named old is
effectively removed. If a file named by the string pointed to by new exists prior to the
call of the rename() function, the behavior is implementation-defined.

Return

Returns zero if the operation succeeds or nonzero if it fails. If the operation returns
nonzero and the file existed previously it is still known by its original name.

2.12.6 system()

This is the standard C library system() function from stdlib.h.

Syntax

int system(const char *string)

Usage

system() passes the string pointed to by string to the host environment to be executed
by a command processor in an implementation-defined manner. A null pointer can be
used for string, to inquire whether a command processor exists.

Return

If the argument is a null pointer, the system function returns nonzero only if a command
processor is available.

If the argument is not a null pointer, the system() function returns an
implementation-defined value.

2.12.7 getenv()

This is the standard C library getenv() function from stdlib.h.

Syntax

char *getenv(const char *name)
2-94 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Usage

The default implementation returns NULL indicating that no environment information is
available. You can reimplement getenv(). It depends on no other function and no other
function depends on it.

If you redefine the function, you can also call a function _getenv_init(). The C library
initialization code then calls this when the library is initialized, that is, before main() is
entered.

Unless you redefine the behavior that is normally expected from getenv(), that is, the
behavior of the standard C library getenv() function, getenv() searches the environment
list, provided by the host environment, for a string that matches the string pointed to by
name. The set of environment names and the method for altering the environment list
are implementation-defined.

Return

The return value is a pointer to a string associated with the matched list member. The
array pointed to must not be modified by the program, but might be overwritten by a
subsequent call to getenv().

2.12.8 _getenv_init()

This enables a user version of getenv() to initialize itself.

Syntax

void _getenv_init(void)

Usage

If this function is defined, the C library initialization code calls it when the library is
initialized, that is, before main() is entered.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-95
ID101213 Non-Confidential,

The C and C++ Libraries
2.13 Selecting real-time division
The division routine supplied with the ARM libraries provides good overall
performance. However, the amount of time required to perform a division depends on
the input values. A 4-bit quotient requires only 12 cycles, but a 32-bit quotient requires
96 cycles. Depending on your target, some applications require a faster worst-case cycle
count at the expense of lower average performance. For this reason, the ARM library
provides two divide routines.

The real-time routine:

• always executes in fewer than 45 cycles

• is faster than the standard division routine for larger quotients

• is slower than the standard division routine for typical quotients

• returns the same results

• does not require any change in the surrounding code.

Select the real-time divide routine, instead of the generally more efficient routine, by
using either:

• IMPORT __use_realtime_division from assembly language

• #pragma import(__use_realtime_division) from C.

Note
 Real-time division is not available in the libraries for Cortex-M1 and Cortex-M0.
2-96 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.14 ISO implementation definition
This section describes how the libraries fulfill the requirements of the ISO specification.

2.14.1 ISO C library implementation definition

The ISO specification leaves some features to the implementors, but requires that
implementation choices be documented. This section describes the ARM library
implementation.

In the generic ARM C library:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when
the program is linked with the standard libraries. If it is not linked with standard
libraries, no error is diagnosed.

• The __aeabi_assert() function prints information on the failing diagnostic on
stderr and then calls the abort() function:

*** assertion failed: expression, file name, line number

Note
 The behavior of the assert macro depends on the conditions in operation at the

most recent occurrence of #include <assert.h>. See Exiting from an assert on
page 2-38 for more information.

The following functions test for character values in the range EOF (–1) to 255 (inclusive):

• isalnum()

• isalpha()

• iscntrl()

• islower()

• isprint()

• isupper()

• ispunct().

The ISO C library variants are listed in Library naming conventions on page 2-117.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-97
ID101213 Non-Confidential,

The C and C++ Libraries
Mathematical functions

Table 2-12 shows the default response of mathematical functions when supplied with
out-of-range arguments.

Table 2-12 Mathematical functions

Function Condition Returned value Error number

acos(x) abs(x) > 1 QNaN EDOM

asin(x) abs(x) > 1 QNaN EDOM

atan2(x,y) x =0, y = 0 QNaN EDOM

atan2(x,y) x = Inf, y = Inf QNaN EDOM

cos(x) x=Inf QNaN EDOM

cosh(x) Overflow +Inf ERANGE

exp(x) Overflow +Inf ERANGE

exp(x) Underflow +0 ERANGE

fmod(x,y) x=Inf QNaN EDOM

fmod(x,y) y = 0 QNaN EDOM

log(x) x < 0 QNaN EDOM

log(x) x = 0 -Inf EDOM

log10(x) x < 0 QNaN EDOM

log10(x) x = 0 -Inf EDOM

pow(x,y) Overflow +Inf ERANGE

pow(x,y) Underflow 0 ERANGE

pow(x,y) x=0 or x=Inf, y=0 +1 EDOM

pow(x,y) x=+0, y<0 -Inf EDOM

pow(x,y) x=-0, y<0 and y integer -Inf EDOM

pow(x,y) x= -0, y<0 and y non-integer QNaN EDOM

pow(x,y) x<0, y non-integer QNaN EDOM

pow(x,y) x=1, y=Inf QNaN EDOM
2-98 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
HUGE_VAL is an alias for Inf. Consult the errno variable for the error number. Other than
the cases shown in Table 2-12 on page 2-98, all functions return QNaN when passed QNaN
and throw an invalid operation exception when passed SNaN.

The string passed to C99 nan() is ignored, and the same Not a Number (NaN) is returned
always, namely the one with all fraction bits clear except the topmost one. The sign bit
is clear as well. Passing strings of the form NAN(xxxx) to strtod has the same effect.

To enable C99 mathlib error-handling behavior that complies with POSIX and Annex
F of the C99 standard, refer to the symbol __use_c99_matherr in your program by
inserting:

• IMPORT __use_c99_matherr, in assembly language

• #pragma IMPORT __use_c99_matherr, in C.

When __use_c99_matherr is defined, the following behavior applies:

• In addition to setting errno, mathlib functions report errors by setting IEEE
floating-point exception flags. IEEE floating-point exception flags can only be
used in floating-point modes that support exceptions.

sqrt(x) x < 0 QNaN EDOM

sin(x) x=Inf QNaN EDOM

sinh(x) Overflow +Inf ERANGE

tan(x) x=Inf QNaN EDOM

atan(x) SNaN SNaN None

ceil(x) SNaN SNaN None

floor(x) SNaN SNaN None

frexp(x) SNaN SNaN None

ldexp(x) SNaN SNaN None

modf(x) SNaN SNaN None

tanh(x) SNaN SNaN None

Table 2-12 Mathematical functions (continued)

Function Condition Returned value Error number
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-99
ID101213 Non-Confidential,

The C and C++ Libraries
• Underflow and overflow range errors, in addition to setting ERANGE, also set the
IEEE overflow or underflow flag as appropriate (in floating-point modes that
support IEEE exceptions). The underflow flag is also set for partial underflow,
that is, denormal return values, whereas ERANGE is only set in the case of total
underflow (returning zero when the real mathematical answer is nonzero).

• Range errors, in addition to setting ERANGE, also set either the IEEE invalid
operation flag or divide-by-zero flag, depending on the nature of the range error.
Range errors that set divide-by-zero are:

— atanh of -1 and +1

— lgamma of zero and of negative integers

— log of zero (and equivalently, log10(0), log2(0), and log1p(-1), but not log
of negative numbers)

— pow(0, negative number)

— tgamma(0), but not tgamma of negative numbers.

Note
 In legacy RVCT 4.0 behavior, these errors are classed as domain errors rather than

range errors.

All other range errors report Invalid Operation.

The IEEE invalid operation flag or divide-by-zero flag is only set in floating-point
modes that support IEEE exceptions.

• Functions with two input parameters ignore a quiet NaN in one input parameter
if the other input parameter is sufficient to completely correct the output value.
(When __use_c99_matherr is not defined, a QNaN result is returned if any NaN is
present in the input parameters.) The list of cases that this applies to is as follows:

— hypot(infinity, x) and hypot(x, infinity) return infinity, even when x is
QNaN

— pow(x,0) and pow(1,x) return 1, even when x is QNan.

However, signalling NaNs (unspecified in C99) in these situations still cause an
exception and a QNaN return value.

• pow(x,0) and pow(1,x) return 1 with no error, for all finite or infinite value of x.
(When __use_c99_matherr is not defined, pow(infinity,0), pow(1,infinity) and
pow(0,0) are domain errors.
2-100 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• When x is negative and pow(x,y) is infinite in magnitude but has mathematically
indeterminate sign, positive infinity is returned. (When __use_c99_matherr is not
defined, NaN is returned.) The affected cases are:

— pow(-0,fraction)

— pow(-0,-infinity)

— pow(negative number,infinity)

— pow(-infinity,+infinity)

— pow(-infinity,fraction).

All such cases are still domain errors.

• pow(-1,infinity) gives +1 with no error. (When __use_c99_matherr is not
defined, pow(-1,infinity) gives NaN with a domain error.)

• atan2(infinity,infinity) is treated as if it were atan2(1,1), with the same signs,
so it returns pi/4, 3*pi/4, -pi/4, or -3*pi/4. (When __use_c99_matherr is not
defined, these are domain errors.)

• atan2(0,0) is treated as if it were atan2(0,1), with the same signs, so it returns +0,
-0, +pi, or -pi. (When __use_c99_matherr is not defined, these are domain errors.)

• tgamma(0) returns an infinity of the same sign as the input. (When
__use_c99_matherr is not defined, tgamma(0) returns NaN.) It remains a domain
error.

Signal functions

Table 2-13 shows the signals supported by the signal() function.

Table 2-13 Signal functions

Signal Number Description Additional argument

SIGABRT 1 This signal is only used if
abort() or assert() are
called by your application.

None

SIGFPE 2 Used to signal any
arithmetic exception, for
example, division by zero.
Used by hard and soft
floating-point and by
integer division.

A set of bits from
{FE_EX_INEXACT,
FE_EX_UNDERFLOW,
FE_EX_OVERFLOW,
FE_EX_DIVBYZERO,
FE_EX_INVALID,
DIVBYZERO}

SIGILL 3 Illegal instruction. None
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-101
ID101213 Non-Confidential,

The C and C++ Libraries
Although SIGSTAK exists in signal.h, this signal is no longer generated by the C
library and is considered obsolete.

A signal number greater than SIGUSR2 can be passed through __raise(), and caught
by the default signal handler, but it cannot be caught by a handler registered using
signal().

signal() returns an error code if you try to register a handler for a signal number greater
than SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call
exit(). This default behavior applies at program startup and until you change it.

SIGINT 4 Attention request from
user.

None

SIGSEGV 5 Bad memory access. None

SIGTERM 6 Termination request. None

SIGSTAK 7 Obsolete. None

SIGRTRED 8 Redirection failed on a
runtime library
input/output stream.

Name of file or device
being re-opened to redirect
a standard stream

SIGRTMEM 9 Out of heap space during
initialization or after
corruption.

Size of failed request

SIGUSR1 10 User-defined. User-defined

SIGUSR2 11 User-defined. User-defined

SIGPVFN 12 A pure virtual function
was called from C++.

-

SIGCPPL 13 Exception from C++. -

SIGOUTOFHEAP 14 Returned by the C++
function ::operator new
when out of heap space.

Size of failed request

reserved 15-31 Reserved. Reserved

other > 31 User-defined. User-defined

Table 2-13 Signal functions (continued)

Signal Number Description Additional argument
2-102 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Caution
 The IEEE 754 standard for floating-point processing states that the default action to an
exception is to proceed without a trap. A raised exception in floating-point calculations
does not, by default, generate SIGFPE. You can modify floating-point error handling
by tailoring the functions and definitions in fenv.h. See Tailoring error signaling, error
handling, and program exit on page 2-59 and Chapter 4 Floating-point Support for
more information.

For all the signals in Table 2-13 on page 2-101, when a signal occurs, if the handler
points to a function, the equivalent of signal(sig, SIG_DFL) is executed before the call
to the handler.

If the SIGILL signal is received by a handler specified to by the signal() function, the
default handling is reset.

Input/output characteristics

The generic ARM C library has the following input/output characteristics:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline
character do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end
of the file.

• A write to a text stream causes the associated file to be truncated beyond the point
where the write occurred if this is the behavior of the device category of the file.

• If semihosting is used, the maximum number of open files is limited by the
available target memory.

• A zero-length file exists, that is, where no characters have been written by an
output stream.

• A file can be opened many times for reading, but only once for writing or
updating. A file cannot simultaneously be open for reading on one stream, and
open for writing or updating on another.

• Local time zones and Daylight Saving Time are not implemented. The values
returned indicate that the information is not available. For example, the gmtime()
function always returns NULL.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-103
ID101213 Non-Confidential,

The C and C++ Libraries
• The status returned by exit() is the same value that was passed to it. For
definitions of EXIT_SUCCESS and EXIT_FAILURE, see the header file stdlib.h.
Semihosting, however, does not pass the status back to the execution
environment.

• The error messages returned by the strerror() function are identical to those
given by the perror() function.

• If the size of area requested is zero, calloc() and realloc() return NULL.

• If the size of area requested is zero, malloc() returns a pointer to a zero-size block.

• abort() closes all open files and deletes all temporary files.

• fprintf() prints %p arguments in lowercase hexadecimal format as if a precision
of 8 had been specified. If the variant form (%#p) is used, the number is preceded
by the character @.

• fscanf() treats %p arguments exactly the same as %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal
character.

• ftell(), fsetpos() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the messages shown in Table 2-14.

The following characteristics must be specified in an ISO-compliant implementation
(these are unspecified in the ARM C library):

• the validity of a filename

• whether remove() can remove an open file

• the effect of calling the rename() function when the new name already exists

• the effect of calling getenv() (the default is to return NULL, no value available)

Table 2-14 perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error
2-104 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
• the effect of calling system()

• the value returned by clock().

2.14.2 Standard C++ library implementation definition

This section describes the implementation of the C++ libraries. The ARM C++ library
provides all of the library defined in the ISO/IEC 14822 :1998(E) C++ Standard, aside
from some limitations described in Table 2-15.

For information on implementation-defined behavior that is defined in the Rogue Wave
C++ library, see the included Rogue Wave HTML documentation. By default, this is
installed in install_directory\Documentation\RogueWave.

The standard C++ library is distributed in binary form only.

Table 2-15 describes the most important features missing from the current release.

Table 2-15 Standard C++ library differences

Standard Implementation differences

locale The locale message facet is not supported. It fails to open
catalogs at runtime because the ARM C library does not
support catopen and catclose through nl_types.h. One of
two locale definitions can be selected at link time. Other
locales can be created by user-redefinable functions.

Timezone Not supported. The ARM C library does not support it.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-105
ID101213 Non-Confidential,

The C and C++ Libraries
2.15 C library extensions
This section describes C library extensions and functions. Some are defined by the
ISO/IEC 9899:1999 C standard and some are specific to the ARM compiler. These are
summarized in Table 2-16.

Table 2-16 C library extensions

Function Header file
definition Extension

atoll() on page 2-107 stdlib.h C99 standard

strtoll() on page 2-107 stdlib.h C99 standard

strtoull() on page 2-108 stdlib.h C99 standard

printf() on page 2-108 stdlib.h C99 standard

snprintf() on page 2-108 stdio.h C99 standard

vsnprintf() on page 2-109 stdio.h C99 standard

lldiv() on page 2-109 stdlib.h C99 standard

llabs() on page 2-109 stdlib.h C99 standard

wcscasecmp() on page 2-110 wchar.h GNU extension supported by the ARM
libraries.

wcsncasecmp() on page 2-110 wchar.h GNU extension supported by the ARM
libraries.

wcstombs() on page 2-110 stdlib.h POSIX extended functionality

alloca() on page 2-111 alloca.h Common nonstandard extension to
many C libraries

strlcpy() on page 2-111 string.h Common BSD-derived extension to
many C libraries

strlcat() on page 2-111 string.h Common BSD-derived extension to
many C libraries

strcasecmp() on page 2-112 string.h Standardized by POSIX.

strncasecmp() on page 2-112 string.h Standardized by POSIX.

_fisatty() on page 2-112 stdio.h Specific to ARM compiler
2-106 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
The headers <stdint.h> and <inttypes.h> from C99 are also available.

2.15.1 atoll()

The atoll() function converts a decimal string into an integer. This is similar to the ISO
functions atol() and atoi(), but returns a long long result. Like atoi(), atoll() can
accept octal or hexadecimal input if the string begins with 0 or 0x.

Syntax

longlong atoll(const char *nptr)

2.15.2 strtoll()

The strtoll() function converts a string in an arbitrary base to an integer. This is similar
to the ISO function strtol(), but returns a long long result. Like strtol(), the parameter
endptr can hold the location where a pointer to the end of the translated string is to be
stored, or can be NULL. The parameter base must contain the number base. Setting base
to zero indicates that the base is to be selected in the same way as atoll().

Syntax

longlong strtoll(const char *nptr, char **endptr, int base)

__heapstats() on page 2-113 stdlib.h Specific to ARM compiler

__heapvalid() on page 2-114 stdlib.h Specific to ARM compiler

_membitcpybl(),
_membitcpybb(),
_membitcpyhl(),
_membitcpyhb(),
_membitcpywl(),
_membitcpywb(),
_membitmovebl(),
_membitmovebb(),
_membitmovehl(),
_membitmovehb(),
_membitmovewl(),
_membitmovewb() on
page 2-115

string.h Specific to ARM compiler

Table 2-16 C library extensions (continued)

Function Header file
definition Extension
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-107
ID101213 Non-Confidential,

The C and C++ Libraries
2.15.3 strtoull()

strtoull() is exactly the same as strtoll(), but returns an unsigned long long.

Syntax

unsigned long long strtoull(const char *nptr, char **endptr, int base)

2.15.4 printf()

printf() is fully conformant to the ISOC89 standard at all times. It also optionally
supports the additional format directives defined in C99, that is, %a and %A for
hexadecimal floating-point, and %E, %F, and %G as uppercase versions of %e, %f, and %g.
These C99 format directives are not included by default.

To enable the C99 features in printf() you must specify #pragma
import(__use_c99_library). This affects all functions in the printf() and scanf()
families.

Syntax

int printf(const char *format, ...)

2.15.5 snprintf()

The snprintf() function works almost exactly like the ISO sprintf() function, except
that the caller can specify the maximum size of the buffer. The return value is the length
of the complete formatted string that would have been written if the buffer were big
enough. Therefore, the string written into the buffer is complete only if the return value
is at least zero and at most n-1.

The bufsize parameter specifies the number of characters of buffer that the function can
write into, including the terminating null.

stdio.h is an ISO header file.

The ISO C90 standard prohibits this function from being defined in ISO header files.
Code compiled with this function using the --c90 --strict options, generates an error.

The ISO C99 standard requires this function in ISO header files. Code compiled with
this function using the --c99 --strict options does not generate an error.

Syntax

int snprintf(char *buffer, size_t bufsize, const char *format, ...)
2-108 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.15.6 vsnprintf()

The vsnprintf() function works almost exactly like the ISO vsprintf() function, except
that the caller can specify the maximum size of the buffer. The return value is the length
of the complete formatted string that would have been written if the buffer were big
enough. Therefore, the string written into the buffer is complete only if the return value
is at least zero and at most n-1.

The bufsize parameter specifies the number of characters of buffer that the function can
write into, including the terminating null.

stdio.h is an ISO header file.

The ISO C90 standard prohibits this function from being defined in ISO header files.
Code compiled with this function using the --c90 --strict options, generates an error.

The ISO C99 standard requires this function in ISO header files. Code compiled with
this function using the --c99 --strict options, does not generate an error.

Syntax

int vsnprintf(char *buffer, size_t bufsize, const char *format, va_list ap)

2.15.7 lldiv()

The lldiv function divides two long long integers and returns both the quotient and the
remainder. It is the long long equivalent of the ISO function ldiv. The return type
lldiv_t is a structure containing two long long members, called quot and rem.

stdlib.h is an ISO header file.

The ISO C90 standard prohibits this function from being defined in ISO header files.
Code compiled with this function using the --c90 --strict options, generates an error.

The ISO C99 standard requires this function in ISO header files. Code compiled with
this function using the --c99 --strict options, does not generate an error.

Syntax

lldiv_t lldiv(long long num, long long denom)

2.15.8 llabs()

The llabs() function returns the absolute value of its input. It is the long long equivalent
of the ISO function labs.

stdlib.h is an ISO header file.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-109
ID101213 Non-Confidential,

The C and C++ Libraries
The ISO C90 standard prohibits this function from being defined in ISO header files.
Code compiled with this function using the --c90 --strict options, generates an error.

The ISO C99 standard requires this function in ISO header files. Code compiled with
this function using the --c99 --strict options, does not generate an error.

Syntax

long long llabs(long long num)

2.15.9 wcscasecmp()

The wcscasecmp() function performs a case-insensitive string comparison test on wide
characters. It is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax

int wcscasecmp(const wchar_t * __restrict s1, const wchar_t * __restrict s2)
__attribute__((__nonnull__(1,2)));

2.15.10 wcsncasecmp()

The wcsncasecmp() function performs a case-insensitive string comparison test of not
more than a specified number of wide characters. It is a GNU extension to the libraries.
It is not POSIX-standardized.

Syntax

int wcsncasecmp(const wchar_t * __restrict s1, const wchar_t * __restrict s2,
size_t n) __attribute__((__nonnull__(1,2)));

2.15.11 wcstombs()

This function works as described in the ISO C standard, with extended functionality as
specified by POSIX, that is, if s is a null pointer, wcstombs() returns the length required
to convert the entire array regardless of the value of n, but no values are stored.

Syntax

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n)
2-110 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.15.12 alloca()

The alloca() function allocates local storage in a function. It returns a pointer to size
bytes of memory, or NULL if not enough memory was available. The default
implementation returns an eight-byte aligned block of memory.

Memory returned from alloca() must never be passed to free(). Instead, the memory
is deallocated automatically when the function that called alloca() returns.

alloca() must not be called through a function pointer. You must take care when using
alloca() and setjmp() in the same function, because memory allocated by alloca()
between calling setjmp() and longjmp() is deallocated by the call to longjmp().

This function is a common non standard extension to many C libraries.

Syntax

void* alloca(size_t size)

2.15.13 strlcpy()

The strlcpy() function copies up to size-1 characters from the NUL terminated string src
to dst. It takes the full size of the buffer, not only the length, and terminates the result
with NUL as long as size is greater than 0. Include a byte for the NUL in your size value.

The strlcpy() function returns the total length of the string that would have been copied
if there was unlimited space. This might or might not be equal to the length of the string
actually copied, depending on whether there was enough space. This means that you
can call strlcpy() once to find out how much space is required, then allocate it if you
do not have enough, and finally call strlcpy() a second time to do the required copy.

This function is a common BSD-derived extension to many C libraries.

Syntax

extern size_t strlcpy(char *dst, const char *src, size_t size)

2.15.14 strlcat()

The strlcat() function concatenates two strings. It appends up to size-strlen(dst)-1
bytes from the NUL terminated string src to the end of dst. It takes the full size of the
buffer, not only the length, and terminates the result with NUL as long as size is greater
than 0. Include a byte for the NUL in your size value.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-111
ID101213 Non-Confidential,

The C and C++ Libraries
The strlcat() function returns the total length of the string that would have been created
if there was unlimited space. This might or might not be equal to the length of the string
actually created, depending on whether there was enough space. This means that you
can call strlcat() once to find out how much space is required, then allocate it if you
do not have enough, and finally call strlcat() a second time to create the required
string.

This function is a common BSD-derived extension to many C libraries.

Syntax

extern size_t strlcat(char *dst, *src, size_t size)

2.15.15 strcasecmp()

The strcasecmp() function performs a case-insensitive string comparison test.

Syntax

extern _ARMABI int strcasecmp(const char * s1, const char * s2)
__attribute__((__nonnull__(1,2)));

2.15.16 strncasecmp()

The strncasecmp() function performs a case-insensitive string comparison test of not
more than a specified number of characters.

Syntax

extern _ARMABI int strncasecmp(const char * s1, const char * s2, size_t n)
__attribute__((__nonnull__(1,2)));

2.15.17 _fisatty()

The _fisatty() function determines whether the given stdio stream is attached to a
terminal device or a normal file. It calls the _sys_istty() low-level function on the
underlying file handle. See Tailoring the input/output functions on page 2-78 for more
information.

This function is an extension that is specific to the ARM library.

Syntax

int _fisatty(FILE *stream)
2-112 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
The return value indicates the stream destination:

0 A file.

1 A terminal.

Negative An error.

2.15.18 __heapstats()

The __heapstats() function displays statistics on the state of the storage allocation heap.
The default implementation in the ARM compiler gives information on how many free
blocks exist, and estimates their size ranges.

Example 2-12 shows an example of the output from __heapstats().

Example 2-12 Output from __heapstats()

32272 bytes in 2 free blocks (avge size 16136)
1 blocks 2^12+1 to 2^13
1 blocks 2^13+1 to 2^14

Line 1 of the output displays the total number of bytes, the number of free blocks, and
the average size. The following lines give an estimate of the size of each block in bytes,
expressed as a range. __heapstats() does not give information on the number of used
blocks.

The function outputs its results by calling the output function dprint, that must work like
fprintf(). The first parameter passed to dprint is the supplied pointer param. You can
pass fprintf() itself, provided you cast it to the right function pointer type. This type is
defined as a typedef for convenience. It is called __heapprt. For example:

__heapstats((__heapprt)fprintf, stderr);

Note
 If you call fprintf() on a stream that you have not already sent output to, the library
calls malloc() internally to create a buffer for the stream. If this happens in the middle
of a call to __heapstats(), the heap might be corrupted. Therefore, you must ensure you
have already sent some output to stderr.

If you are using the default one-region memory model, heap memory is allocated only
as it is required. This means that the amount of free heap changes as you allocate and
deallocate memory. For example, the sequence:
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-113
ID101213 Non-Confidential,

The C and C++ Libraries
 int *ip;
 __heapstats((__heapprt)fprintf,stderr); // print initial free heap size
 ip = malloc(200000);
 free(ip);
 __heapstats((__heapprt)fprintf,stderr); // print heap size after freeing

gives output such as:

4076 bytes in 1 free blocks (avge size 4076)
1 blocks 2^10+1 to 2^11
2008180 bytes in 1 free blocks (avge size 2008180)
1 blocks 2^19+1 to 2^20

This function is an extension that is specific to the ARM library.

Syntax

void __heapstats(int (*dprint)(void *param, char const *format,...),
void* param)

2.15.19 __heapvalid()

The __heapvalid() function performs a consistency check on the heap. It outputs full
information about every free block if the verbose parameter is nonzero. Otherwise, it
only outputs errors.

The function outputs its results by calling the output function dprint, that must work like
fprintf(). The first parameter passed to dprint is the supplied pointer param. You can
pass fprintf() itself, provided you cast it to the right function pointer type. This type is
defined as a typedef for convenience. It is called __heapprt. For example:

Example 2-13 Calling __heapvalid() with fprintf()

__heapvalid((__heapprt) fprintf, stderr, 0);

Note
 If you call fprintf() on a stream that you have not already sent output to, the library
calls malloc() internally to create a buffer for the stream. If this happens in the middle
of a call to __heapvalid(), the heap might be corrupted. You must therefore ensure you
have already sent some output to stderr. The code in Example 2-13 fails if you have not
already written to the stream.

This function is an extension that is specific to the ARM library.
2-114 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
Syntax

int __heapvalid(int (*dprint)(void *param, char const *format,...), void*
param, int verbose)

2.15.20 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(),
_membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(),
_membitmovewl(), _membitmovewb()

Similar to the standard C library memcpy() and memmove() functions, these functions
provide efficient bit-aligned memory operations.

Syntax

void _membitcpy[b|h|w][b|l](void *dest, const void *src, int dest_offset, int
src_offset, size_t nbits);
void _membitmove[b|h|w][b|l](void *dest, const void *src, int dest_offset, int
src_offset, size_t nbits);

Usage

The number of contiguous bits specified by nbits is copied, or moved (depending on
the function being used), from a memory location starting src_offset bits after (or
before if a negative offset) the address pointed to by src, to a location starting
dest_offset bits after (or before if a negative offset) the address pointed to by dest.

To define a contiguous sequence of bits, a form of ordering is required. The variants of
each function define this order, as follows:

• Functions whose second-last character is b, for example _membitcpybl(), are
byte-oriented. Byte-oriented functions consider all of the bits in one byte to come
before the bits in the next byte.

• Functions whose second-last character is h are halfword-oriented.

• Functions whose second-last character is w are word-oriented.

Within each byte, halfword, or word, the bits can be considered to go in different order
depending on the endianness. Functions ending in b, for example _membitmovewb(), are
bitwise big-endian. This means that the Most Significant Bit (MSB) of each byte,
halfword, or word (as appropriate) is considered to be the first bit in the word, and the
Least Significant Bit (LSB) is considered to be the last. Functions ending in l are bitwise
little-endian. They consider the LSB to come first and the MSB to come last.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-115
ID101213 Non-Confidential,

The C and C++ Libraries
As with memcpy() and memmove(), the bitwise memory copying functions copy as fast as
they can in their assumption that source and destination memory regions do not overlap,
whereas the bitwise memory move functions ensure that source data in overlapping
regions is copied before being overwritten.

On a little-endian platform, the big-endian functions are distinct, but the little-endian
functions use the same bit ordering, so they are synonymous symbols that refer to the
same function. On a big-endian platform, the big-endian functions are all effectively the
same, but the little-endian functions are distinct.
2-116 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
2.16 Library naming conventions
The library naming convention described in this section applies to the current release of
RVCT. Do not rely on the library names because they might change in future releases.

2.16.1 Placing ARM libraries

Normally, you do not have to list any of these libraries explicitly on the linker command
line. The ARM linker automatically selects the correct C or C++ libraries to use, and it
might use several, based on the accumulation of the object attributes.

If library names are explicitly named in a makefile, you must rebuild your project as
follows:

1. Remove the explicit references to the old library names from the linker
command-line.

2. Add --info libraries to the linker command-line and rebuild the project. This
produces a list of all the libraries in use.

3. Add the new list of libraries to the linker command-line.

To include a specific library in a scatter-loading description file, see Placing ARM C
library code on page 5-43 in the Linker User Guide.

2.16.2 Helper functions

Compiler support, or helper, functions specific to RVCT are typically used when the
compiler cannot easily produce a suitable code sequence itself.

In RVCT v4.0 and later, the helper functions are generated by the compiler in the
resulting object files.

In RVCT v3.1 and earlier, the helper functions reside in libraries. Because these
libraries are specific to the ARM C compiler, they are intended to be redistributed as
necessary with your own code. For example, if you are distributing a library to a third
party, they might also require the appropriate helper library to link their final application
successfully. For more information about the redistribution rights of the libraries, see
your End User License Agreement.

2.16.3 Identifying library variants

The library filename identifies how the variant was built. The values for the fields of the
filename, and the relevant build options are:
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-117
ID101213 Non-Confidential,

The C and C++ Libraries
*root/prefix_arch[fpu][entrant].endian

root armlib An ARM C library.

cpplib An ARM C++ library.

prefix c ISO C and C++ basic runtime support.

cpp Rogue Wave C++ library.

cpprt The ARM C++ runtime libraries.

f IEEE compliant library with a fixed rounding mode (Round to
nearest) and no inexact exceptions.

fj IEEE compliant library with a fixed rounding mode (Round to
nearest) and no exceptions.

fz Behaves like the fj library, but additionally flushes denormals
and infinities to zero.

This library behaves like the ARM VFP in Fast mode. This is
the default.

g IEEE compliant library with configurable rounding mode and
all IEEE exceptions.

h Compiler support (helper) library. See Helper functions on
page 2-117.

m Transcendental math functions.

mc Non compliant ISO C micro-library basic runtime support.

mf Non compliant IEEE 754 micro-library support.

arch 4 An ARM only library for use with ARMv4.

t An ARM/Thumb interworking library for use with ARMv4T.

5 An ARM/Thumb interworking library for use with ARMv5T
and later.

Note
 Architectures that the 5 variant is used for contain subvariants

of function implementations that lend themselves to
optimization for a particular core. memcpy() is one such
example. The subvariant that is selected is based on the build
attributes of input object files at link time.

w A Thumb-2 only library for use with Cortex-M3.

p A Thumb-1 only library for use with Cortex-M1 and
Cortex-M0.
2-118 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C and C++ Libraries
fpu v Uses VFP instruction set.

s Soft VFP.

Note
 If neither v nor s is present in a library name, the library uses

no floating point.

entrant e Position-independent access to static data.

f FPIC addressing is enabled.

Note
 If neither e nor f is present in a library name, the library uses

position-dependent access to static data.

endian l Little-endian.

b Big-endian.

For example:

*armlib/c_4.b
*cpplib/cpprt_5f.l

Note
 Not all variant/name combinations are valid. See the armlib and cpplib directories for
the libraries that are supplied with RVCT.

The linker command-line option --info libraries provides information on every
library automatically selected for the link stage. See --info=topic[,topic,...] on
page 2-44 in the Linker Reference Guide for more information.

See Specifying the target processor or architecture on page 2-23 in the Compiler User
Guide for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 2-119
ID101213 Non-Confidential,

The C and C++ Libraries
2-120 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Chapter 3
The C Micro-library

This chapter describes the C micro-library (microlib). It contains the following
sections:

• About microlib on page 3-2

• Building an application with microlib on page 3-4

• Tailoring the microlib input/output functions on page 3-9

• ISO C features missing from microlib on page 3-10.

See Chapter 2 The C and C++ Libraries for more information on the default libraries.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-1
ID101213 Non-Confidential,

The C Micro-library
3.1 About microlib
Microlib is an alternative library to the default C library. It is intended for use with
deeply embedded applications that must fit into extremely small amounts of memory.
These applications do not run under an operating system.

Note
 Microlib does not attempt to be a standards-compliant ISO C library.

Microlib is highly optimized for small code size. It has less functionality than the
default C library and some ISO C features are completely missing. Some library
functions are also slower.

3.1.1 Differences from the default C library

The main differences between microlib and the default C library are:

• Microlib is not compliant with the ISO C library standard. Some ISO features are
not supported and others have less functionality.

• Microlib is not compliant with the IEEE 754 standard for binary floating point
arithmetic.

• Microlib is highly optimized for small code size.

• Locales are not configurable. The default C locale is the only one available.

• main() must not be declared to take arguments and must not return.

• Microlib provides limited support for C99 functions.

• Microlib does not support C++.

• Microlib does not support operating system functions.

• Microlib does not support position-independent code.

• Microlib does not provide mutex locks to guard against code that is not thread
safe.

• Microlib does not support wide characters or multibyte strings.

• Microlib does not support selectable one or two region memory models as the
standard library (stdlib) does. Microlib provides only the two region memory
model with separate stack and heap regions.
3-2 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C Micro-library
• Microlib does not support the bit-aligned memory functions
_membitcpy[b|h|w][b|l]() and membitmove[b|h|w][b|l]().

• Microlib can be used with either --fpmode=std or --fpmode=fast.

• The level of ANSI C stdio support that is provided can be controlled with #pragma
import(__use_full_stdio).

• setvbuf() and setbuf() always fail because all streams are unbuffered.

• feof() and ferror() always return 0 because the error and EOF indicators are not
supported.

See ISO C features missing from microlib on page 3-10 for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-3
ID101213 Non-Confidential,

The C Micro-library
3.2 Building an application with microlib
This section describes how to link your application with microlib.

Functions in microlib are responsible for:

• Creating an environment that a C program can execute in. This includes:

— creating a stack

— creating a heap, if required

— initializing the parts of the library the program uses.

• Starting execution by calling main().

To build a program using microlib, you must use the command-line option
--library_type=microlib. This option can be used by the compiler, assembler or linker.
Use it with the linker to override all other options.

Example 3-1 shows --library_type=microlib being used by the compiler. Specifying
--library_type=microlib when compiling main.c results in an object file containing an
attribute that asks the linker to use microlib. Compiling extra.c with
--library_type=microlib is unnecessary, because the request to link against microlib
exists in the object file generated by compiling main.c.

Example 3-1 Compiler option

armcc --library_type=microlib -c main.c
armcc -c extra.c
armlink -o image.axf main.o extra.o

Example 3-2 shows this option being used by the assembler. The request to the linker
to use microlib is made as a result of assembling more.s with --library_type=microlib.

Example 3-2 Assembler option

armcc -c main.c
armcc -c extra.c
armasm --library_type=microlib more.s
armlink -o image.axf main.o extra.o more.o

Example 3-3 on page 3-5 shows this option being used by the linker. Neither object file
contains the attribute requesting that the linker link against microlib, so the linker
selects microlib as a result of being explicitly asked to do so on the command line.
3-4 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C Micro-library
Example 3-3 Linker option

armcc -c main.c
armcc -c extra.c
armlink --library_type=microlib -o image.axf main.o extra.o

For more information see:

• --library_type=lib on page 2-81 in the Compiler Reference Guide

• input_file_list on page 2-48 in the Linker Reference Guide.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-5
ID101213 Non-Confidential,

The C Micro-library
3.3 Using microlib
To begin, you must specify a starting pointer for the stack. To use the heap functions,
for example, malloc(), calloc(), realloc() and free(), you must specify the location
and size of the heap region.

3.3.1 Creating the stack

To specify the initial stack pointer you can use either of the following methods:

• use a scatter-loading description file

• define a symbol, __initial_sp, to be equal to the top of the stack.

For information on the scatter-loading description file method, see ARM_LIB_STACK and
ARM_LIB_STACKHEAP in Using a scatter-loading description file on page 2-73.

Otherwise, specify the initial stack pointer by defining a symbol, __initial_sp, to be
equal to the top of the stack. The initial stack pointer must be aligned to a multiple of
eight bytes.

Example 3-4 shows how to set up the initial stack pointer using assembly language.

Example 3-4 Assembly language

EXPORT __initial_sp
__initial_sp EQU 0x100000 ; equal to the top of the stack

Example 3-5 shows how to set up the initial stack pointer using embedded assembler in
C.

Example 3-5 Embedded Assembler in C

__asm void dummy_function(void)
{

EXPORT __initial_sp
__initial_sp EQU 0x100000 ; equal to the top of the stack
}

3.3.2 Creating the heap

To specify the start and end of the heap you can use either of the following methods:

• use a scatter-loading description file
3-6 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C Micro-library
• define symbols __heap_base and __heap_limit.

For information on the scatter-loading description file method, see ARM_LIB_HEAP, and
ARM_LIB_STACKHEAP in Using a scatter-loading description file on page 2-73.

Otherwise, specify the start and end of the heap by defining symbols __heap_base and
__heap_limit respectively. On completion, you can use the heap functions in the normal
way.

Note
 The __heap_limit must point to the byte beyond the last byte in the heap region.

Example 3-6 shows how to set up the heap pointers using assembly language.

Example 3-6 Assembly language

EXPORT __heap_base
__heap_base EQU 0x400000 ; equal to the start of the heap

EXPORT __heap_limit
__heap_limit EQU 0x800000 ; equal to the end of the heap

Example 3-7 shows how to set up the heap pointer using embedded assembler in C.

Example 3-7 Embedded Assembler in C

__asm void dummy_function(void)
{

EXPORT __heap_base
__heap_base EQU 0x400000 ; equal to the start of the heap

EXPORT __heap_limit
__heap_limit EQU 0x800000 ; equal to the end of the heap
}

3.3.3 Entering and exiting your program

Use main() to begin your program. Do not declare main() to take arguments.

Note
 Your program must not return from main().
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-7
ID101213 Non-Confidential,

The C Micro-library
Microlib does not support:

• command-line arguments from an operating system

• programs that call exit().
3-8 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C Micro-library
3.4 Tailoring the microlib input/output functions
Microlib provides a limited stdio subsystem that supports unbuffered stdin, stdout and
stderr only. This enables you to use printf() for displaying diagnostic messages from
your application.

To use high level I/O functions you must provide your own implementation of the
following base functions so that they work with your own I/O device.

fputc() Implement this base function for all output functions. For example,
fprintf(), printf(), fwrite(), fputs(), puts(), putc() and putchar().

fgetc() Implement this base function for all input functions. For example,
fscanf(), scanf(), fread(), read(), fgets(), gets(), getc() and getchar().

__backspace()

Implement this base function if your input functions use scanf() or
fscanf().

Note
 Conversions that are not supported in microlib are %lc, %ls and %a.

See Tailoring the input/output functions on page 2-78 for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-9
ID101213 Non-Confidential,

The C Micro-library
3.5 ISO C features missing from microlib
This section provides a list of the major ISO C90 features that are not supported by
microlib.

Wide character and multibyte support

All functions dealing with wide characters or multibyte strings are not
supported by microlib. A link error is generated if these are used. For
example, mbtowc(), wctomb(), mbstowcs() and wcstombs(). All functions
defined in Normative Addendum 1 are not supported by microlib.

Operating system interaction

All functions that interact with an operating system are not supported by
microlib. For example, abort(), exit(), atexit(), clock(), time(),
system() and getenv().

File I/O By default, all the stdio functions that interact with a file pointer return
an error if called. The only exceptions to this are the three standard
streams stdin, stdout and stderr.

You can change this behavior using #pragma import(__use_full_stdio).
Use of this pragma provides a microlib version of stdio that supports
ANSI C, with only the following exceptions:

• the error and EOF indicators are not supported, so feof() and
ferror() return 0

• all streams are unbuffered, so setvbuf() and setbuf() fail.

Configurable locale

The default C locale is the only one available.

Signals The functions signal() and raise() are provided but microlib does not
generate signals. The only exception to this is if the program explicitly
calls raise().

Floating point support

Floating point support diverges from IEEE 754 in the following ways, but
uses the same data formats and matches IEEE 754 in operations involving
only normalized numbers:

• Operations involving NaNs, infinities or denormals can produce
unpredictable results.

• IEEE exceptions cannot be flagged by microlib, and there is no
fp_status() register in microlib.
3-10 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

The C Micro-library
• The sign of zero is not treated as significant by microlib, and zeroes
that are output from microlib floating point arithmetic have an
unpredictable sign bit.

• Only the default rounding mode is supported.

Position independent and thread safe code

Microlib has no reentrant variant. Microlib does not provide mutex locks
to guard against code that is not thread safe. Use of microlib is not
compatible with FPIC or RWPI compilation modes, and although ROPI
code can be linked with microlib, the resulting binary is not
ROPI-compliant overall.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 3-11
ID101213 Non-Confidential,

The C Micro-library
3-12 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Chapter 4
Floating-point Support

This chapter describes the ARM support for floating-point computations. It contains the
following sections:

• The software floating-point library, fplib on page 4-2

• Controlling the floating-point environment on page 4-10

• The math library, mathlib on page 4-27

• IEEE 754 arithmetic on page 4-36.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-1
ID101213 Non-Confidential,

Floating-point Support
4.1 The software floating-point library, fplib
When programs are compiled to use a floating-point coprocessor, they perform basic
floating-point arithmetic by means of floating-point machine instructions for the target
coprocessor. When programs are compiled to use software floating-point, there is no
floating-point instruction set available, so the ARM libraries must provide a set of
procedure calls to do floating-point arithmetic. These procedures are in the software
floating-point library, fplib.

4.1.1 Features of the floating-point library, fplib

Floating-point routines have names like __aeabi_dadd (add two doubles) and
__aeabi_fdiv (divide two floats). User programs can call these routines directly. Even
in environments with a coprocessor, the routines are provided. However, they are
typically only a few instructions long (because all they do is to execute the appropriate
coprocessor instruction).

All the fplib routines are called using a software floating-point variant of the calling
standard. This means that floating-point arguments are passed and returned in integer
registers. By contrast, if the program is compiled for a coprocessor, floating-point data
is passed in its floating-point registers.

So, for example, __aeabi_dadd takes a double in registers r0 and r1, and another double
in registers r2 and r3, and returns the sum in r0 and r1.

Note
 For a double in registers r0 and r1, the register that holds the high 32 bits of the double
depends on whether your program is little-endian or big-endian.

All the fplib routines (except those listed in Table 4-5 on page 4-8) are declared in the
header file rt_fp.h. You can include this file if you want to call an fplib routine directly.
The routines shown in Table 4-5 on page 4-8 are declared in the standard header file
math.h.

To call a function from assembler, the software floating-point function is called
__softfp_fn. For example, to call the cos() function, do the following:

IMPORT __softfp_cos
BL __softfp_cos
4-2 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
4.1.2 Arithmetic on numbers in a particular format

Table 4-1 describes routines to perform arithmetic on numbers in a particular format.
Arguments and return types are always in the same format.

Table 4-1 Arithmetic routines

Function Argument
types

Return
type Operation

__aeabi_fadd 2 float float Return x plus y

__aeabi_fsub 2 float float Return x minus y

__aeabi_frsub 2 float float Return y minus x

__aeabi_fmul 2 float float Return x times y

__aeabi_fdiv 2 float float Return x divided by y

_frdiv 2 float float Return y divided by x

_frem 2 float float Return remainder of x by y (see a in Notes
on arithmetic routines on page 4-4)

_frnd float float Return x rounded to an integer (see b in
Notes on arithmetic routines on page 4-4)

_fsqrt float float Return square root of x

__aeabi_dadd 2 double double Return x plus y

__aeabi_dsub 2 double double Return x minus y

__aeabi_drsub 2 double double Return y minus x

__aeabi_dmul 2 double double Return x times y

__aeabi_ddiv 2 double double Return x divided by y

_drdiv 2 double double Return y divided by x

_drem 2 double double Return remainder of x by y (see a in Notes
on arithmetic routines on page 4-4)

_drnd double double Return x rounded to an integer (see b in
Notes on arithmetic routines on page 4-4)

_dsqrt double double Return square root of x
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-3
ID101213 Non-Confidential,

Floating-point Support
Notes on arithmetic routines

a Functions that perform the IEEE 754 remainder operation. This is
defined to take two numbers, x and y, and return a number z so that z = x
– n * y, where n is an integer. To return an exactly correct result, n is
chosen so that z is no bigger than half of x (so that z might be negative
even if both x and y are positive). The IEEE 754 remainder function is not
the same as the operation performed by the C library function fmod, where
z always has the same sign as x. Where the IEEE 754 specification gives
two acceptable choices of n, the even one is chosen. This behavior occurs
independently of the current rounding mode.

b Functions that perform the IEEE 754 round-to-integer operation. This
takes a number and rounds it to an integer (in accordance with the current
rounding mode), but returns that integer in the floating-point number
format rather than as a C int variable. To convert a number to an int
variable, you must use the _ffix routines described in Table 4-2.

4.1.3 Conversions between floats, doubles, and ints

Table 4-2 describes routines to perform conversions between number formats,
excluding long longs.

Table 4-2 Number format conversion routines

Function Argument types Return type

__aeabi_f2d float double

__aeabi_d2f double float

_fflt int float

_ffltu unsigned int float

_dflt int double

_dfltu unsigned int double

_ffix float int (see Notes on
rounding on page 4-5)

_ffix_r float int

_ffixu float unsigned int (see Notes
on rounding on
page 4-5)
4-4 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Notes on rounding

Rounded toward zero, independently of the current rounding mode. This is because the
C standard requires implicit conversions to integers to round this way, so it is convenient
not to have to change the rounding mode to do so. Each function has a corresponding
function with _r on the end of its name, that performs the same operation but rounds
according to the current mode.

4.1.4 Conversions between long longs and other number formats

Table 4-3 describes routines to perform conversions between long longs and other
number formats.

_ffixu_r float unsigned int

_dfix double int (see Notes on
rounding)

_dfix_r double int

_dfixu double unsigned int (see Notes
on rounding)

_dfixu_r double unsigned int

Table 4-2 Number format conversion routines (continued)

Function Argument types Return type

Table 4-3 Conversion routines involving long long format

Function Argument types Return type

_ll_sto_f long long float

_ll_uto_f unsigned long long float

_ll_sto_d long long double

_ll_uto_d unsigned long long double

_ll_sfrom_f float long long (see Notes on
rounding on page 4-6)

_ll_sfrom_f_r float long long
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-5
ID101213 Non-Confidential,

Floating-point Support
Notes on rounding

Rounded toward zero, independently of the current rounding mode. This is because the
C standard requires implicit conversions to integers to round this way, so it is convenient
not to have to change the rounding mode to do so. This function has a corresponding
function with _r on the end of its name. This function performs the same operation but
rounds according to the current mode.

4.1.5 Floating-point comparisons

Table 4-4 describes routines to perform comparisons between floating-point numbers.
See Notes on floating-point comparison routines on page 4-7 for more information as
indicated in the Notes column.

_ll_ufrom_f float unsigned long long (see
Notes on rounding on
page 4-6)

_ll_ufrom_f_r float unsigned long long

_ll_sfrom_d double long long (see Notes on
rounding)

_ll_sfrom_d_r double long long

_ll_ufrom_d double unsigned long long (see
Notes on rounding)

_ll_ufrom_d_r double unsigned long long

Table 4-3 Conversion routines involving long long format (continued)

Function Argument types Return type

Table 4-4 Floating-point comparison routines

Function Argument types Return type Condition tested Notes

_fcmpeq 2 float Flags, EQ/NE x equal to y a

_fcmpge 2 float Flags, HS/LO x greater than or equal to y a, b

_fcmple 2 float Flags, HI/LS x less than or equal to y a, b

_feq 2 float Boolean x equal to y -

_fneq 2 float Boolean x not equal to y -
4-6 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Notes on floating-point comparison routines

a Returns results in the ARM condition flags. This is efficient in assembly
language, because you can directly follow a call to the function with a
conditional instruction, but it means there is no way to use this function
from C. This function is not declared in rt_fp.h.

_fgeq 2 float Boolean x greater than or equal to y b

_fgr 2 float Boolean x greater than y b

_fleq 2 float Boolean x less than or equal to y b

_fls 2 float Boolean x less than y b

_dcmpeq 2 double Flags, EQ/NE x equal to y a

_dcmpge 2 double Flags, HS/LO x greater than or equal to y a, b

_dcmple 2 double Flags, HI/LS x less than or equal to y a, b

_deq 2 double Boolean x equal to y -

_dneq 2 double Boolean x not equal to y -

_dgeq 2 double Boolean x greater than or equal to y b

_dgr 2 double Boolean x greater than y b

_dleq 2 double Boolean x less than or equal to y b

_dls 2 double Boolean x less than y b

_fcmp4 2 float Flags, VFP x less than or equal to y c

_fcmp4e 2 float Flags, VFP x less than or equal to y b, c

_fdcmp4 float, double Flags, VFP x less than or equal to y c

_fdcmp4e float, double Flags, VFP x less than or equal to y b, c

_dcmp4 2 double Flags, VFP x less than or equal to y c

_dcmp4e 2 double Flags, VFP x less than or equal to y b, c

_dfcmp4 double, float Flags, VFP x less than or equal to y c

_dfcmp4e double, float Flags, VFP x less than or equal to y b, c

Table 4-4 Floating-point comparison routines (continued)

Function Argument types Return type Condition tested Notes
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-7
ID101213 Non-Confidential,

Floating-point Support
b Causes an Invalid Operation exception if either argument is a NaN, even
a quiet NaN. Other functions only cause Invalid Operation if an argument
is an SNaN. QNaNs return not equal when compared to anything,
including other QNaNs (so comparing a QNaN to the same QNaN still
returns not equal).

c Returns VFP-type status flags in the CPSR. Also returns VFP-type status
flags in the top four bits of r0, meaning that it is possible to use this
function from C. This function is declared in rt_fp.h.

4.1.6 C99 functions

Table 4-5 describes routines that implement C99 functionality.

Table 4-5 C99 routines

Function Argument types Return
type Returns section Standard

ilogb double int Exponent of argument x 7.12.6.5

ilogbf float int Exponent of argument x 7.12.6.5

ilogbl long double int Exponent of argument x 7.12.6.5

logb double double Exponent of argument x 7.12.6.11

logbf float float Exponent of argument x 7.12.6.11

logbl long double long double Exponent of argument x 7.12.6.11

scalbn double, int double x * (FLT_RADIX ** n) 7.12.6.13

scalbnf float, int float x * (FLT_RADIX ** n) 7.12.6.13

scalbnl long double, int long double x * (FLT_RADIX ** n) 7.12.6.13

scalbln double, long int double x * (FLT_RADIX ** n) 7.12.6.13

scalblnf float, long int float x * (FLT_RADIX ** n) 7.12.6.13

scalblnl long double, long int long double x * (FLT_RADIX ** n) 7.12.6.13

nextafter 2 double double Next representable value after x
towards y

7.12.11.3

nextafterf 2 float float Next representable value after x
towards y

7.12.11.3
4-8 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
nextafterl 2 long double long double Next representable value after x
towards y

7.12.11.3

nexttoward double, long double double Next representable value after x
towards y

7.12.11.4

nexttowardf float, long double float Next representable value after x
towards y

7.12.11.4

nexttowardl 2 long double long double Next representable value after x
towards y

7.12.11.4

Table 4-5 C99 routines (continued)

Function Argument types Return
type Returns section Standard
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-9
ID101213 Non-Confidential,

Floating-point Support
4.2 Controlling the floating-point environment
This section describes the functions you can use to control the ARM floating-point
environment. RVCT supplies several different interfaces to the floating-point
environment, for compatibility and porting ease. With these functions, you can change
the rounding mode, enable and disable trapping of exceptions, and install your own
custom exception trap handlers.

4.2.1 __ieee_status()

RVCT supports an interface to the status word in the floating-point environment. This
is called __ieee_status and it is generally the most efficient function to use for
modifying the status word for VFP. __ieee_status is defined in fenv.h.

__ieee_status has the prototype:

unsigned int __ieee_status(unsigned int mask, unsigned int flags);

The function modifies the writable parts of the status word according to the parameters,
and returns the previous value of the whole word.

The writable bits are modified by setting them to:

new = (old & ~mask) ^ flags;

Four different operations can be performed on each bit of the status word, depending on
the corresponding bits in mask and flags (see Table 4-6).

The layout of the status word as seen by __ieee_status is shown in Figure 4-1.

Figure 4-1 IEEE status word layout

Table 4-6 Status word bit modification

Bit of mask Bit of flags Effect

0 0 Leave alone

0 1 Toggle

1 0 Set to 0

1 1 Set to 1

031 24 23 21 20 16 15 13 12 8 7 5 4

S ticky

25 22 19 18

FZ RM MasksR RRR VFPVFP

262728

RQC
4-10 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
The fields in Figure 4-1 on page 4-10 are as follows:

• Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative
flags, for each exception. The sticky flag for an exception is set to 1 whenever that
exception happens and is not trapped. Sticky flags are never cleared by the
system, only by the user. The mapping of exceptions to bits is:

— bit 0 (0x01) is for the Invalid Operation exception

— bit 1 (0x02) is for the Divide by Zero exception

— bit 2 (0x04) is for the Overflow exception

— bit 3 (0x08) is for the Underflow exception

— bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 (values 0x100 to 0x1000) are the exception masks. These control
whether each exception is trapped or not. If a bit is set to 1, the corresponding
exception is trapped. If a bit is set to 0, the corresponding exception sets its sticky
flag and returns a plausible result, as described in Exceptions on page 4-41.

• Bits 16 to 18, and bits 20 and 21, are used by VFP hardware to control the VFP
vector capability. The __ieee_status call does not let you modify these bits.

• Bits 22 and 23 control the rounding mode (Table 4-7).

Note
 The standard fplib libraries f* support only the Round to nearest rounding mode.

If you require support for the other rounding modes, you must use the full IEEE
g* libraries. See Library naming conventions on page 2-117.

• Bit 24 enables FZ (Flush to Zero) mode if it is set. In FZ mode, denormals are
forced to zero to speed up processing (because denormals can be difficult to work
with and slow down floating-point systems). Setting this bit reduces accuracy but
might increase speed.

Table 4-7 Rounding mode control

Bits Rounding mode

00 Round to nearest

01 Round up

10 Round down

11 Round toward zero
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-11
ID101213 Non-Confidential,

Floating-point Support
Note
 The standard fplib libraries do not support the FZ mode. Instead, each library

either always flushes to zero or never flushes to zero, and you choose the library
to use at build time. Only the VFP hardware honors the FZ mode if bit 24 is set.

However, this means that functions that are not provided in the hardware (and so
are supplied in software fplib) do not support the FZ mode even when compiling
for hard VFP. As a result, the behavior of fplib is not consistent across all
functions when you change the FZ mode dynamically.

• Bit 27 indicates that saturation has occurred in an advanced SIMD saturating
integer operation. This is accessible through the __ieee_status call.

• Bits marked R are reserved. They cannot be written to by the __ieee_status call,
and you must ignore anything you find in them.

In addition to defining the __ieee_status call itself, fenv.h also defines some constants
to be used for the arguments:

#define FE_IEEE_FLUSHZERO (0x01000000)
#define FE_IEEE_ROUND_TONEAREST (0x00000000)
#define FE_IEEE_ROUND_UPWARD (0x00400000)
#define FE_IEEE_ROUND_DOWNWARD (0x00800000)
#define FE_IEEE_ROUND_TOWARDZERO (0x00C00000)
#define FE_IEEE_ROUND_MASK (0x00C00000)
#define FE_IEEE_MASK_INVALID (0x00000100)
#define FE_IEEE_MASK_DIVBYZERO (0x00000200)
#define FE_IEEE_MASK_OVERFLOW (0x00000400)
#define FE_IEEE_MASK_UNDERFLOW (0x00000800)
#define FE_IEEE_MASK_INEXACT (0x00001000)
#define FE_IEEE_MASK_ALL_EXCEPT (0x00001F00)
#define FE_IEEE_INVALID (0x00000001)
#define FE_IEEE_DIVBYZERO (0x00000002)
#define FE_IEEE_OVERFLOW (0x00000004)
#define FE_IEEE_UNDERFLOW (0x00000008)
#define FE_IEEE_INEXACT (0x00000010)
#define FE_IEEE_ALL_EXCEPT (0x0000001F)

For example, to set the rounding mode to round down, you would do:

__ieee_status(FE_IEEE_ROUND_MASK, FE_IEEE_ROUND_DOWNWARD);

To trap the Invalid Operation exception and untrap all other exceptions:

__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_INVALID);

To untrap the Inexact Result exception:

__ieee_status(FE_IEEE_MASK_INEXACT, 0);
4-12 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
To clear the Underflow sticky flag:

__ieee_status(FE_IEEE_UNDERFLOW, 0);

4.2.2 __fp_status()

Previous versions of the ARM libraries implemented a function called __fp_status that
manipulated a status word in the floating-point environment. This is the same as
__ieee_status but uses an older-style status word layout. The ARM compiler still
supports the __fp_status function for backwards compatibility. __fp_status is defined
in stdlib.h.

__fp_status has the following prototype:

unsigned int __fp_status(unsigned int mask, unsigned int flags);

The layout of the status word as seen by __fp_status isshown in Figure 4-2.

Figure 4-2 Floating-point status word layout

The fields in Figure 4-2 are as follows:

• Bits 0 to 4 are the sticky flags, as described in __ieee_status() on page 4-10.

• Bits 8 to 12 (values 0x100 to 0x1000) control various aspects of the FPA
floating-point. The FPA architecture is obsolete and is not supported by RVCT.
Any attempt to write to these bits is ignored.

• Bits 16 to 20 (values 0x10000 to 0x100000) are the exception masks, as described
in __ieee_status() on page 4-10, but in a different place.

• Bits 24 to 31 contain the system ID that cannot be changed. It is set to 0x40 for
software floating-point, to 0x80 or above for hardware floating-point, and to 0 or
1 if a hardware floating-point environment is being faked by an emulator.

• Bits marked R are reserved. They cannot be written to by the __fp_status call, and
you must ignore anything you find in them.

The rounding mode cannot be changed with the __fp_status call.

In addition to defining the __fp_status call itself, stdlib.h also defines some constants
to be used for the arguments:

031 24 23 21 20 16 15 13 12 8 7 5 4

System ID Masks StickyFPA onlyR R R
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-13
ID101213 Non-Confidential,

Floating-point Support
#define __fpsr_IXE 0x100000
#define __fpsr_UFE 0x80000
#define __fpsr_OFE 0x40000
#define __fpsr_DZE 0x20000
#define __fpsr_IOE 0x10000
#define __fpsr_IXC 0x10
#define __fpsr_UFC 0x8
#define __fpsr_OFC 0x4
#define __fpsr_DZC 0x2
#define __fpsr_IOC 0x1

For example, to trap the Invalid Operation exception and untrap all other exceptions,
you would do:

__fp_status(_fpsr_IXE | _fpsr_UFE | _fpsr_OFE |
 _fpsr_DZE | _fpsr_IOE, _fpsr_IOE);

To untrap the Inexact Result exception:

__fp_status(_fpsr_IXE, 0);

To clear the Underflow sticky flag:

__fp_status(_fpsr_UFC, 0);

4.2.3 Microsoft compatibility functions

The following functions are implemented for compatibility with Microsoft products, to
ease porting of floating-point code to the ARM architecture. They are defined in
float.h.

_controlfp()

The function _controlfp() enables you to control exception traps and rounding modes:

unsigned int _controlfp(unsigned int new, unsigned int mask);

This function also modifies a control word using a mask to isolate the bits to modify.
For every bit of mask that is zero, the corresponding control word bit is unchanged. For
every bit of mask that is nonzero, the corresponding control word bit is set to the value
of the corresponding bit of new. The return value is the previous state of the control
word.

Note
 This is not quite the same as the behavior of __ieee_status() (or __fp_status()), where
you can toggle a bit by setting a zero in the mask word and a one in the flags word.
4-14 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Table 4-8 describes the macros you can use to form the arguments to _controlfp().

Note
 The values of these macros are not guaranteed to remain the same in future versions of
ARM products. To ensure that your code continues to work if the value changes in
future releases, use the macro rather than its value.

For example, to set the rounding mode to round down, you would do:

_controlfp(_RC_DOWN, _MCW_RC);

To trap the Invalid Operation exception and untrap all other exceptions:

_controlfp(_EM_INVALID, _MCW_EM);

To untrap the Inexact Result exception:

_controlfp(0, _EM_INEXACT);

Table 4-8 _controlfp argument macros

Macro Description

_MCW_EM Mask containing all exception bits

_EM_INVALID Bit describing the Invalid Operation exception

_EM_ZERODIVIDE Bit describing the Divide by Zero exception

_EM_OVERFLOW Bit describing the Overflow exception

_EM_UNDERFLOW Bit describing the Underflow exception

_EM_INEXACT Bit describing the Inexact Result exception

_MCW_RC Mask for the rounding mode field

_RC_CHOP Rounding mode value describing Round Toward Zero

_RC_UP Rounding mode value describing Round Up

_RC_DOWN Rounding mode value describing Round Down

_RC_NEAR Rounding mode value describing Round To Nearest
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-15
ID101213 Non-Confidential,

Floating-point Support
_clearfp()

The function _clearfp() clears all five exception sticky flags, and returns their previous
value. The macros given in Table 4-8 on page 4-15, for example _EM_INVALID,
_EM_ZERODIVIDE, can be used to test bits of the returned result.

_clearfp() has the following prototype:

unsigned _clearfp(void);

_statusfp()

The function _statusfp() returns the current value of the exception sticky flags. You can
use the macros shown in Table 4-8 on page 4-15 to test bits of the returned result, for
example, _EM_INVALID, _EM_ZERODIVIDE.

_statusfp has the following prototype:

unsigned _statusfp(void);

4.2.4 C99-compatible functions

The ARM compiler also supports a set of functions defined in the C99 standard, in
addition to the functions described previously.

These C99-compatible functions are the only interface that enables you to install
custom exception trap handlers with the ability to invent a return value. All the
functions, types, and macros in this section are defined in fenv.h.

C99 defines two data types, fenv_t and fexcept_t. The C99 standard does not give
information about these types, so for portable code you must treat them as opaque. The
ARM compiler defines them to be structure types. See ARM compiler extensions to the
C99 interface on page 4-19 for more information.

The type fenv_t is defined to hold all the information about the current floating-point
environment:

• the rounding mode

• the exception sticky flags

• whether each exception is masked

• what handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of
exceptions.
4-16 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
C99 rounding mode and exception macros

C99 also defines a macro for each rounding mode and each exception. The macros are
as follows:

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT
FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of all
of them.

Handling exception flags

C99 provides three functions to clear, test and raise exceptions:

void feclearexcept(int excepts);
int fetestexcept(int excepts);
void feraiseexcept(int excepts);

The feclearexcept() function clears the sticky flags for the given exceptions. The
fetestexcept() function returns the bitwise OR of the sticky flags for the given
exceptions (so that if the Overflow flag was set but the Underflow flag was not, then
calling fetestexcept(FE_OVERFLOW|FE_UNDERFLOW) would return FE_OVERFLOW).

The feraiseexcept() function raises the given exceptions, in unspecified order. If an
exception trap is enabled for an exception raised this way, it is called.

C99 also provides functions to save and restore everything about a given exception. This
includes the sticky flag, whether the exception is trapped, and the address of the trap
handler, if any. These functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts);
void fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag() function copies all the information relating to the given
exceptions into the fexcept_t variable provided. The fesetexceptflag() function copies
all the information relating to the given exceptions from the fexcept_t variable into the
current floating-point environment.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-17
ID101213 Non-Confidential,

Floating-point Support
Note
 fesetexceptflag() can be used to set the sticky flag of a trapped exception to 1 without
calling the trap handler, whereas feraiseexcept() calls the trap handler for any trapped
exception.

Handling rounding modes

C99 provides two functions for controlling rounding modes:

int fegetround(void);
int fesetround(int round);

The fegetround() function returns the current rounding mode, that has a value equal to
that of one of the macros listed in C99 rounding mode and exception macros on
page 4-17. The fesetround() function sets the current rounding mode to the value
provided. fesetround() returns zero for success, or nonzero if its argument is not a valid
rounding mode.

Saving the whole environment

C99 provides functions to save and restore the entire floating-point environment:

void fegetenv(fenv_t *envp);
void fesetenv(const fenv_t *envp);

The fegetenv() function stores the current state of the floating-point environment into
the fenv_t variable provided. The fesetenv() function restores the environment from the
variable provided.

Like fesetexceptflag(), fesetenv() does not call trap handlers when it sets the sticky
flags for trapped exceptions.

Temporarily disabling exceptions

C99 provides two functions that enable you to avoid risking exception traps when
executing code that might cause exceptions. This is useful when, for example, trapped
exceptions are using the ARM default behavior. The default is to cause SIGFPE and
terminate the application.

int feholdexcept(fenv_t *envp);
void feupdateenv(const fenv_t *envp);
4-18 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
The feholdexcept() function saves the current floating-point environment in the fenv_t
variable provided, sets all exceptions to be untrapped, and clears all the exception sticky
flags. You can then execute code that might cause unwanted exceptions, and make sure
the sticky flags for those exceptions are cleared. Then you can call feupdateenv(). This
restores any exception traps and calls them if necessary.

For example, suppose you have a function frob() that might cause the Underflow or
Invalid Operation exceptions (assuming both exceptions are trapped). You are not
interested in Underflow, but you want to know if an invalid operation is attempted. So
you could do this:

fenv_t env;
feholdexcept(&env);
frob();
feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept(), so
no trap occurs when feupdateenv() is called. However, if frob() raises Invalid
Operation, the sticky flag is set when feupdateenv() is called, so the trap handler is
invoked.

This mechanism is provided by C99 because C99 specifies no way to change exception
trapping for individual exceptions. A better method is to use __ieee_status() to disable
the Underflow trap while leaving the Invalid Operation trap enabled. This has the
advantage that the Invalid Operation trap handler is provided with all the information
about the invalid operation (that is, what operation was being performed, and on what
data), and can invent a result for the operation. Using the C99 method, the Invalid
Operation trap handler is called after the fact, receives no information about the cause
of the exception, and is called too late to provide a substitute result.

4.2.5 ARM compiler extensions to the C99 interface

The ARM compiler provides some extensions to the C99 interface, to enable it to do
everything that the ARM floating-point environment is capable of. This includes
trapping and untrapping individual exception types, and also installing custom trap
handlers.

The types fenv_t and fexcept_t are not defined by C99 to be anything in particular. The
ARM compiler defines them both to be the same structure type:

typedef struct{
 unsigned statusword;
 __ieee_handler_t __invalid_handler;
 __ieee_handler_t __divbyzero_handler;
 __ieee_handler_t __overflow_handler;
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-19
ID101213 Non-Confidential,

Floating-point Support
 __ieee_handler_t __underflow_handler;
 __ieee_handler_t __inexact_handler;
} fenv_t, fexcept_t;

The members of this structure are:

• statusword is the same status variable that the function __ieee_status sees, laid
out in the same format (see __ieee_status() on page 4-10).

• Five function pointers giving the address of the trap handler for each exception.
By default each is NULL. This means that if the exception is trapped then the default
exception trap action happens. The default is to cause a SIGFPE signal.

Writing custom exception trap handlers

If you want to install a custom exception trap handler, declare it as a function like this:

__softfp__ieee_value_t myhandler(__ieee_value_t op1,
 __ieee_value_t op2,
 __ieee_edata_t edata);

The parameters to this function are:

• op1 and op2 are used to give the operands, or the intermediate result, for the
operation that caused the exception:

— For the Invalid Operation and Divide by Zero exceptions, the original
operands are supplied.

— For the Inexact Result exception, all that is supplied is the ordinary result
that would have been returned anyway. This is provided in op1.

— For the Overflow exception, an intermediate result is provided. This result
is calculated by working out what the operation would have returned if the
exponent range had been big enough, and then adjusting the exponent so
that it fits in the format. The exponent is adjusted by 192 (0xC0) in
single-precision, and by 1536 (0x600) in double-precision.

If Overflow happens when converting a double to a float, the result is
supplied in double format, rounded to single-precision, with the exponent
biased by 192.

— For the Underflow exception, a similar intermediate result is produced, but
the bias value is added to the exponent instead of being subtracted. The
edata parameter also contains a flag to show whether the intermediate result
has had to be rounded up, down, or not at all.

The type __ieee_value_t is defined as a union of all the possible types that an
operand can be passed as:
4-20 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
typedef union{
 float __f;
 float __s;
 double __d;

short __h;
unsigned short __uh;

 int __i;
 unsigned int __ui;

long long __l;
unsigned long long __ul;
...

/* __STRICT_ANSI__ */
 struct { int __word1, __word2; } __str;
} __ieee_value_t; /* in and out values passed to traps */

Note
 If you do not compile with --strict, and you have code that used the older

definition of __ieee_value_t, your older code still works. See the file fenv.h for
more information.

• edata contains flags that give information about the exception that occurred, and
what operation was being performed. (The type __ieee_edata_t is a synonym for
unsigned int.)

• The return value from the function is used as the result of the operation that
caused the exception.

The flags contained in edata are:

• edata & FE_EX_RDIR is nonzero if the intermediate result in Underflow was
rounded down, and 0 if it was rounded up or not rounded. (The difference between
the last two is given in the Inexact Result bit.) This bit is meaningless for any other
type of exception.

• edata & FE_EX_exception is nonzero if the given exception (INVALID, DIVBYZERO,
OVERFLOW, UNDERFLOW, or INEXACT) occurred. This enables you to:

— use the same handler function for more than one exception type (the
function can test these bits to tell what exception it is supposed to handle)

— determine whether Overflow and Underflow intermediate results have been
rounded or are exact.

Because the FE_EX_INEXACT bit can be set in combination with either
FE_EX_OVERFLOW or FE_EX_UNDERFLOW, you must determine the type of exception that
actually occurred by testing Overflow and Underflow before testing Inexact.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-21
ID101213 Non-Confidential,

Floating-point Support
• edata & FE_EX_FLUSHZERO is nonzero if the FZ bit was set when the operation was
performed (see __ieee_status() on page 4-10).

• edata & FE_EX_ROUND_MASK gives the rounding mode that applies to the operation.
This is normally the same as the current rounding mode, unless the operation that
caused the exception was a routine such as _ffix, that always rounds toward zero.
The available rounding mode values are FE_EX_ROUND_NEAREST,
FE_EX_ROUND_PLUSINF, FE_EX_ROUND_MINUSINF and FE_EX_ROUND_ZERO.

• edata & FE_EX_INTYPE_MASK gives the type of the operands to the function, as one
of the type values shown in Table 4-9.

• edata & FE_EX_OUTTYPE_MASK gives the type of the operands to the function, as one
of the type values shown in Table 4-10.

Table 4-9 FE_EX_INTYPE_MASK operand type flags

Flag Operand type

FE_EX_INTYPE_FLOAT float

FE_EX_INTYPE_DOUBLE double

FE_EX_INTYPE_FD float double

FE_EX_INTYPE_DF double float

FE_EX_INTYPE_HALF short

FE_EX_INTYPE_INT int

FE_EX_INTYPE_UINT unsigned int

FE_EX_INTYPE_LONGLONG long long

FE_EX_INTYPE_ULONGLONG unsigned long long

Table 4-10 FE_EX_OUTTYPE_MASK operand type flags

Flag Operand type

FE_EX_OUTTYPE_FLOAT float

FE_EX_OUTTYPE_DOUBLE double

FE_EX_OUTTYPE_HALF short

FE_EX_OUTTYPE_INT int
4-22 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
• edata & FE_EX_FN_MASK gives the nature of the operation that caused the exception,
as one of the operation codes shown in Table 4-11.

FE_EX_OUTTYPE_UINT unsigned int

FE_EX_OUTTYPE_LONGLONG long long

FE_EX_OUTTYPE_ULONGLONG unsigned long long

Table 4-11 FE_EX_FN_MASK operation type flags

Flag Operation type

FE_EX_FN_ADD Addition.

FE_EX_FN_SUB Subtraction.

FE_EX_FN_MUL Multiplication.

FE_EX_FN_DIV Division.

FE_EX_FN_REM Remainder.

FE_EX_FN_RND Round to integer.

FE_EX_FN_SQRT Square root.

FE_EX_FN_CMP Compare.

FE_EX_FN_CVT Convert between formats.

FE_EX_FN_LOGB Exponent fetching.

Table 4-10 FE_EX_OUTTYPE_MASK operand type flags (continued)

Flag Operand type
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-23
ID101213 Non-Confidential,

Floating-point Support
When the operation is a comparison, the result must be returned as if it were an
int, and must be one of the four values shown in Table 4-12.

Input and output types are the same for all operations except Compare and
Convert.

Example exception handler

Example 4-1 on page 4-25 shows a custom exception handler. Suppose you are
converting some Fortran code into C. The Fortran numerical standard requires 0 divided
by 0 to be 1, whereas IEEE 754 defines 0 divided by 0 to be an Invalid Operation and
so by default it returns a quiet NaN. The Fortran code is likely to rely on this behavior,
and rather than modifying the code, it is probably easier to make 0 divided by 0 return 1.

FE_EX_FN_SCALBN Scaling.

Note
 The FE_EX_INTYPE_MASK flag only specifies the type of the
first operand. The second operand is always an int.

FE_EX_FN_NEXTAFTER Next representable number.

Note
 Both operands are the same type. Calls to nexttoward cause
the value of the second operand to change to a value that is
of the same type as the first operand. This does not affect
the result.

FE_EX_FN_RAISE The exception was raised explicitly, by feraiseexcept() or
feupdateenv(). In this case, almost nothing in the edata
word is valid.

Table 4-12 FE_EX_CMPRET_MASK comparison type flags

Flag Comparison

FE_EX_CMPRET_LESS op1 is less than op2

FE_EX_CMPRET_EQUAL op1 is equal to op2

FE_EX_CMPRET_GREATER op1 is greater than op2

FE_EX_CMPRET_UNORDERED op1 and op2 are not comparable

Table 4-11 FE_EX_FN_MASK operation type flags (continued)

Flag Operation type
4-24 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
When compiling, you must select a floating-point model that supports exceptions, for
example --fpmode=ieee_full or --fpmode=ieee_fixed.

After the handler is installed, dividing 0.0 by 0.0 returns 1.0.

Example 4-1 Custom exception handler

#include <fenv.h>
#include <signal.h>
#include <stdio.h>
__softfp __ieee_value_t myhandler(__ieee_value_t op1, __ieee_value_t op2,
 __ieee_edata_t edata)
{
 __ieee_value_t ret;
 if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV)

{
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT)

{
 if (op1.f == 0.0 && op2.f == 0.0)

{
 ret.f = 1.0;
 return ret;
 }
 }
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE)

{
 if (op1.d == 0.0 && op2.d == 0.0)

{
 ret.d = 1.0;
 return ret;
 }
 }
 }
 /* For all other invalid operations, raise SIGFPE as usual */
 raise(SIGFPE);
}
int main(void)
{
 float i, j, k;
 fenv_t env;
 fegetenv(&env);
 env.statusword |= FE_IEEE_MASK_INVALID;
 env.invalid_handler = myhandler;
 fesetenv(&env);
 i = 0.0;
 j = 0.0;
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-25
ID101213 Non-Confidential,

Floating-point Support
 k = i/j;
 printf(“k is %f\n“, k);
}

Exception trap handling by signals

If an exception is trapped but the trap handler address is set to NULL, a default trap
handler is used.

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE
prints an error message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second
parameter that tells you the type of floating-point exception that occurred. This feature
is provided for compatibility with Microsoft products. The values are _FPE_INVALID,
_FPE_ZERODIVIDE, _FPE_OVERFLOW, _FPE_UNDERFLOW and _FPE_INEXACT. They are defined in
float.h. For example:

void sigfpe(int sig, int etype){
 printf("SIGFPE (%s)\n",
 etype == _FPE_INVALID ? "Invalid Operation" :
 etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
 etype == _FPE_OVERFLOW ? "Overflow" :
 etype == _FPE_UNDERFLOW ? "Underflow" :
 etype == _FPE_INEXACT ? "Inexact Result" :
 "Unknown");
}
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the
function __rt_raise() instead of the ISO function raise(). In Example 4-1 on
page 4-25, instead of:

 raise(SIGFPE);

it is better to code:

 __rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise() is declared in rt_misc.h.
4-26 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
4.3 The math library, mathlib
In addition to the functions defined by the ISO C standard, mathlib provides the
following C99 functions and macros. These are in addition to those provided by the
floating-point library, fplib (see The software floating-point library, fplib on page 4-2):

• Determine the type of a floating-point number (fpclassify) on page 4-28

• Determine if a number is finite (isfinite) on page 4-28

• Determine if a number is infinite (isinf) on page 4-29

• Determine if a number is a NaN (isnan) on page 4-29

• Determine if a number is normal (isnormal) on page 4-29

• Return the sign bit of a number (signbit) on page 4-29

• Copy sign functions (copysign, copysignf) on page 4-30

• Comparison macros (isgreater, isgreaterequal, isless, islessequal, islessgreater,
isunordered) on page 4-30

• Inverse hyperbolic functions (acosh, asinh, atanh) on page 4-31

• Cube root (cbrt) on page 4-31

• Error functions (erf, erfc) on page 4-31

• One less than exp(x) (expm1) on page 4-32

• Hypotenuse function (hypot) on page 4-32

• The logarithm of the gamma function (lgamma) on page 4-32

• Logarithm of one more than x (log1p) on page 4-33

• IEEE 754 remainder function (remainder) on page 4-33

• IEEE round-to-integer operation (rint) on page 4-33

• Signalling NaNs (_WANT_SNAN) on page 4-33

• Complex math functions (cacos, casin, catan, ccos, csin, ctan, cacosh, casinh,
catanh, ccosh, csinh, ctanh, cexp, clog, cabs, cpow, csqrt, carg, cproj) on
page 4-33.

Mathlib also provides the following nonstandard functions:

• Gamma function (gamma, gamma_r) on page 4-34

• Bessel functions of the first kind (j0, j1, jn) on page 4-34
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-27
ID101213 Non-Confidential,

Floating-point Support
• Bessel functions of the second kind(y0, y1, yn) on page 4-35.

• Return the fraction part of a number(significand) on page 4-35

4.3.1 Range reduction in mathlib

Trigonometric functions in mathlib use range reduction to bring large arguments within
the range 0 to 2π. The ARM compiler provides two different range reduction functions.
One is accurate to one unit in the last place for any input values, but is larger and slower
than the other. The other is reliable enough for almost all purposes and is faster and
smaller.

The fast and small range reducer is used by default. To select the more accurate one, use
either:

• #pragma import (__use_accurate_range_reduction) from C

• IMPORT __use_accurate_range_reduction from assembly language.

4.3.2 Determine the type of a floating-point number (fpclassify)

This macro classifies its argument value based on type.

int fpclassify(real-floating x);

where real-floating can be type float, double,or long double.

Here, fpclassify returns one of the following values:

• FP_INFINITE if x is an infinity

• FP_NAN if x is a NaN

• FP_NORMAL if x is a normal

• FP_SUBNORMAL if x is a subnormal

• FP_ZERO if x is zero.

It does not cause any errors or exceptions.

4.3.3 Determine if a number is finite (isfinite)

This macro determines if its argument has a finite value.

int isfinite(real-floating x);

where real-floating can be type float, double,or long double.

Here, isfinite returns:

• nonzero if x is finite

• 0 if x is infinite or a NaN.
4-28 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
It does not cause any errors or exceptions.

4.3.4 Determine if a number is infinite (isinf)

This macro determines if its argument is an infinity.

int isinf(real-floating x);

where real-floating can be type float, double,or long double.

Here, isinf returns:

• nonzero if x is infinite

• 0 if x is finite or a NaN.

It does not cause any errors or exceptions.

4.3.5 Determine if a number is a NaN (isnan)

This macro determines if the value of its argument is a NaN.

int isnan(real-floating x);

where real-floating can be type float, double,or long double.

Here, isnan returns:

• nonzero if x is a NaN

• 0 otherwise.

It does not cause any errors or exceptions.

4.3.6 Determine if a number is normal (isnormal)

This macro determines if its argument value is normal.

int isnormal(real-floating x);

where real-floating can be type float, double,or long double.

Here, isnormal returns:

• nonzero if x is a normal

• 0 if x is infinite, a NaN, subnormal, or zero.

It does not cause any errors or exceptions.

4.3.7 Return the sign bit of a number (signbit)

This macro determines if the sign of its argument value is negative.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-29
ID101213 Non-Confidential,

Floating-point Support
int signbit(real-floating x);

where real-floating can be type float, double,or long double.

Here, signbit returns:

• 1 if x is negative

• 0 if x is positive.

signbit returns a sign value for all values of x (including zeros and NaNs).

It does not cause any errors or exceptions.

4.3.8 Copy sign functions (copysign, copysignf)

These functions replace the sign bit of x with the sign bit of y.

double copysign(double x, double y);
float copysignf(float x, float y);

These functions treat all floating-point numbers as signed (including zeros and NaNs)
and do not cause any errors or exceptions.

4.3.9 Comparison macros (isgreater, isgreaterequal, isless, islessequal, islessgreater,
isunordered)

These macros compare x and y as shown in Table 4-13.

int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);

where real-floating can be type float, double,or long double.

These macros do not cause any errors or exceptions, unlike the equivalent relationship
operators that do raise exceptions on all NaNs.

Table 4-13 Comparison macros

Macro Comparison

isgreater x is greater than y

isgreaterequal x is greater than or equal to y

isless x is less than y
4-30 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
4.3.10 Inverse hyperbolic functions (acosh, asinh, atanh)

These functions are the inverses of cosh, sinh and tanh.

double acosh(double x);
double asinh(double x);
double atanh(double x);

Here:

• acosh always has a choice of two return values, one positive and one negative,
because cosh is a symmetric function (that is, it returns the same value when
applied to x or –x). It chooses the positive result.

• acosh returns an EDOM error if called with an argument less than 1.0.

• atanh returns an EDOM error if called with an argument whose absolute value
exceeds 1.0.

4.3.11 Cube root (cbrt)

This function returns the cube root of its argument.

double cbrt(double x);

4.3.12 Error functions (erf, erfc)

These functions compute the standard statistical error function, related to the Normal
distribution:

double erf(double x);
double erfc(double x);

Here:

• erf computes the ordinary error function of x

islessequal x is less than or equal to y

islessgreater x (is less than or greater than) y

isunordered x is unordered with respect to y

Table 4-13 Comparison macros (continued)

Macro Comparison
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-31
ID101213 Non-Confidential,

Floating-point Support
• erfc computes one minus erf(x). It is better to use erfc(x) than 1-erf(x) when x
is large, because the answer is more accurate.

4.3.13 One less than exp(x) (expm1)

This function computes ex, minus one. It is better to use expm1(x) than exp(x)-1 if x is
very near to zero, because expm1 returns a more accurate value.

double expm1(double x);

4.3.14 Hypotenuse function (hypot)

This function computes the length of the hypotenuse of a right-angled triangle whose
other two sides have length x and y. Equivalently, it computes the length of the vector
(x,y) in Cartesian coordinates. Using hypot(x,y) is better than sqrt(x*x+y*y) because
some values of x and y might cause x * x + y * y to overflow even though its square
root would not.

double hypot(double x, double y);

hypot returns an ERANGE error when the result does not fit in a double.

4.3.15 The logarithm of the gamma function (lgamma)

These functions compute the logarithm of the absolute value of the gamma function of
x. The sign of the function is returned separately, so that the two can be used to compute
the actual gamma function of x.

Both functions return an ERANGE error if the answer is too big to fit in a double.

Both functions return an EDOM error if x is zero or a negative integer.

lgamma

double lgamma(double x);

lgamma returns the sign of the gamma function of x in the global variable _signgam.

lgamma_r

double lgamma_r(double x, int *sign);

lgamma_r returns it in a user variable, whose address is passed in the sign parameter. The
value, in either case, is either +1 or –1.
4-32 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Note
 lgamma_r() is deprecated.

4.3.16 Logarithm of one more than x (log1p)

This function computes the natural logarithm of x + 1. Like expm1, it is better to use this
function than log(x+1) because this function is more accurate when x is near zero.

double log1p(double x);

4.3.17 IEEE 754 remainder function (remainder)

This function is the IEEE 754 remainder operation. It is a synonym for _drem (see
Arithmetic on numbers in a particular format on page 4-3).

double remainder(double x, double y);

4.3.18 IEEE round-to-integer operation (rint)

This function is the IEEE 754 round-to-integer operation. It is a synonym for _drnd (see
Arithmetic on numbers in a particular format on page 4-3).

double rint(double x);

4.3.19 Signalling NaNs (_WANT_SNAN)

If you want to use signalling NaNs, you must indicate this to the compiler by defining
the macro _WANT_SNAN in your application. This macro must be defined before you
include any standard C headers. If your application is comprised of two or more
translation units, either all or none of them must define _WANT_SNAN. That is, the
definition must be consistent for any given application.

You must also use the relevant command-line option when you compile your source
code. This is associated with the predefined macro, __SUPPORT_SNAN__. See Predefined
macros on page 4-198 in the Compiler Reference Guide.

4.3.20 Complex math functions (cacos, casin, catan, ccos, csin, ctan, cacosh, casinh, catanh,
ccosh, csinh, ctanh, cexp, clog, cabs, cpow, csqrt, carg, cproj)

All of the complex math functions defined in section 7.3 Complex arithmetic
<complex.h> of ISO/IEC 9899:TC2 are supported.

In C99 mode, both imaginary and complex types are supported. In GNU mode, only
complex types are supported.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-33
ID101213 Non-Confidential,

Floating-point Support
The macro I expands to _Imaginary_I in C99 mode, or _Complex_I in GNU mode.

Branch cuts are supported. The sign of zero distinguishes one side of a cut from another.

The CX_LIMITED_RANGE pragma is supported, but has no effect because arithmetic is
performed according to the usual mathematical formulas for complex multiplication,
division, and absolute value, regardless of the state that the pragma is in.

All functions treat infinities, NaNs and zeroes in the manner specified in section G.6 of
ISO/IEC 9899:TC2, except that errors are signalled by setting errno instead of raising
floating point exceptions, as follows:

• instead of raising invalid floating-point exceptions, errno is set to EDOM

• instead of raising divide-by-zero exceptions, errno is set to ERANGE.

4.3.21 Gamma function (gamma, gamma_r)

These functions both compute the logarithm of the gamma function.They are synonyms
for lgamma and lgamma_r (see The logarithm of the gamma function (lgamma) on
page 4-32).

double gamma(double x);
double gamma_r(double x, int *);

Note
 Despite their names, these functions compute the logarithm of the gamma function, not
the gamma function itself.

Note
 These functions are deprecated.

4.3.22 Bessel functions of the first kind (j0, j1, jn)

These functions compute Bessel functions of the first kind. j0 and j1 compute the
functions of order 0 and 1 respectively. jn computes the function of order n.

double j0(double x);
double j1(double x);
double jn(int n, double x);

If the absolute value of x exceeds π times 252, these functions return an ERANGE error,
denoting total loss of significance in the result.
4-34 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Note
 These functions are deprecated.

4.3.23 Bessel functions of the second kind(y0, y1, yn)

These functions compute Bessel functions of the second kind. y0 and y1 compute the
functions of order 0 and 1 respectively. yn computes the function of order n.

double y0(double x);
double y1(double x);
double yn(int, double);

If x is positive and exceeds π times 252, these functions return an ERANGE error, denoting
total loss of significance in the result.

Note
 These functions are deprecated.

4.3.24 Return the fraction part of a number(significand)

This function returns the fraction part of x, as a number between 1.0 and 2.0 (not
including 2.0).

double significand(double x);

Note
 This function is deprecated.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-35
ID101213 Non-Confidential,

Floating-point Support
4.4 IEEE 754 arithmetic
The ARM floating-point environment is an implementation of the IEEE 754 standard
for binary floating-point arithmetic. This section contains a summary of the standard as
it is implemented by the ARM compiler.

This section includes:

• Basic data types

• Arithmetic and rounding on page 4-40

• Exceptions on page 4-41.

4.4.1 Basic data types

ARM floating-point values are stored in one of two data types, single-precision and
double-precision. In this document these are called float and double. These are the
corresponding C types.

Single precision

A float value is 32 bits wide. The structure is shown in Figure 4-3.

Figure 4-3 IEEE 754 single-precision floating-point format

The S field gives the sign of the number. It is 0 for positive, or 1 for negative.

The Exp field gives the exponent of the number, as a power of two. It is biased by 0x7F
(127), so that very small numbers have exponents near zero and very large numbers
have exponents near 0xFF (255).

So, for example:

• if Exp = 0x7D (125), the number is between 0.25 and 0.5 (not including 0.5)

• if Exp = 0x7E (126), the number is between 0.5 and 1.0 (not including 1.0)

• if Exp = 0x7F (127), the number is between 1.0 and 2.0 (not including 2.0)

• if Exp = 0x80 (128), the number is between 2.0 and 4.0 (not including 4.0)

• if Exp = 0x81 (129), the number is between 4.0 and 8.0 (not including 8.0).

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on
the front that is not stored to save space.

31 23 2230 0

S Exp Frac
4-36 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
So if Exp is 0x7F, for example:

• if Frac = 00000000000000000000000 (binary), the number is 1.0

• if Frac = 10000000000000000000000 (binary), the number is 1.5

• if Frac = 01000000000000000000000 (binary), the number is 1.25

• if Frac = 11000000000000000000000 (binary), the number is 1.75.

So in general, the numeric value of a bit pattern in this format is given by the formula:

(–1)S * 2(Exp–0x7F) * (1 + Frac * 2–23)

Numbers stored in this form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent
255 is used to represent infinity, and store NaN values. Infinity can occur as a result of
dividing by zero, or as a result of computing a value that is too large to store in this
format. NaN values are used for special purposes. Infinity is stored by setting Exp to
255 and Frac to all zeros. If Exp is 255 and Frac is nonzero, the bit pattern represents a
NaN.

Exponent 0 is used to represent very small numbers in a special way. If Exp is zero, then
the Frac field has no implicit 1 on the front. This means that the format can store 0.0, by
setting both Exp and Frac to all 0 bits. It also means that numbers that are too small to
store using Exp >= 1 are stored with less precision than the ordinary 23 bits. These are
called denormals.

Double precision

A double value is 64 bits wide. Figure 4-4 shows its structure.

Figure 4-4 IEEE 754 double-precision floating-point format

As before, S is the sign, Exp the exponent, and Frac the fraction. Most of the discussion
of float values remains true, except that:

• The Exp field is biased by 0x3FF (1023) instead of 0x7F, so numbers between 1.0
and 2.0 have an Exp field of 0x3FF.

• The Exp value used to represent infinity and NaNs is 0x7FF (2047) instead of 0xFF.

63 52 5162 0

S Exp Frac
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-37
ID101213 Non-Confidential,

Floating-point Support
Sample values

This section provides sample floating-point values:

• Single-precision floating-point values

• Double-precision floating-point values on page 4-39.

Single-precision floating-point values

Some sample float bit patterns, together with their mathematical values, are given in
Table 4-14.

Table 4-14 Sample single-precision floating-point values

Float value S Exp Frac Mathematical
value Notesa

a. See Notes on sample floating-point values on page 4-39 for more information.

0x3F800000 0 0x7F 000...000 1.0 -

0xBF800000 1 0x7F 000...000 -1.0 -

0x3F800001 0 0x7F 000...001 1.000 000 119 a

0x3F400000 0 0x7E 100...000 0.75 -

0x00800000 0 0x01 000...000 1.18*10-38 b

0x00000001 0 0x00 000...001 1.40*10-45 c

0x7F7FFFFF 0 0xFE 111...111 3.40*1038 d

0x7F800000 0 0xFF 000...000 Plus infinity -

0xFF800000 1 0xFF 000...000 Minus infinity -

0x00000000 0 0x00 000...000 0.0 e

0x7F800001 0 0xFF 000...001 Signaling NaN f

0x7FC00000 0 0xFF 100...000 Quiet NaN f
4-38 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Double-precision floating-point values

Some sample double bit patterns, together with their mathematical values, are given in
Table 4-15.

Notes on sample floating-point values

a The smallest representable number that can be seen to be greater than 1.0.
The amount that it differs from 1.0 is known as the machine epsilon. This
is 0.000 000 119 in float, and 0.000 000 000 000 000 222 in double. The
machine epsilon gives a rough idea of the number of significant figures
the format can keep track of. float can do six or seven places. double can
do fifteen or sixteen.

b The smallest value that can be represented as a normalized number in
each format. Numbers smaller than this can be stored as denormals, but
are not held with as much precision.

c The smallest positive number that can be distinguished from zero. This is
the absolute lower limit of the format.

Table 4-15 Sample double-precision floating-point values

Double value S Exp Frac Mathematical value Notesa

0x3FF00000 00000000 0 0x3FF 000...000 1.0 -

0xBFF00000 00000000 1 0x3FF 000...000 -1.0 -

0x3FF00000 00000001 0 0x3FF 000...001 1.000 000 000 000 000 222 a

0x3FE80000 00000000 0 0x3FE 100...000 0.75 -

0x00100000 00000000 0 0x001 000...000 2.23*10-308 b

0x00000000 00000001 0 0x000 000...001 4.94*10-324 c

0x7FEFFFFF FFFFFFFF 0 0x7FE 111...111 1.80*10308 d

0x7FF00000 00000000 0 0x7FF 000...000 Plus infinity -

0xFFF00000 00000000 1 0x7FF 000...000 Minus infinity -

0x00000000 00000000 0 0x000 000...000 0.0 e

0x7FF00000 00000001 0 0x7FF 000...001 Signaling NaN f

0x7FF80000 00000000 0 0x7FF 100...000 Quiet NaN f

a. See Notes on sample floating-point values for more information.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-39
ID101213 Non-Confidential,

Floating-point Support
d The largest finite number that can be stored. Attempting to increase this
number by addition or multiplication causes overflow and generates
infinity (in general).

e Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1,
minus zero, is treated differently by some operations, although the
comparison operations (for example == and !=) report that the two types
of zero are equal.

f There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet
NaNs have a 1 in the first bit of Frac, and signaling NaNs have a zero
there. The difference is that signaling NaNs cause an exception (see
Exceptions on page 4-41) when used, whereas quiet NaNs do not.

4.4.2 Arithmetic and rounding

Arithmetic is generally performed by computing the result of an operation as if it were
stored exactly (to infinite precision), and then rounding it to fit in the format. Apart from
operations whose result already fits exactly into the format (such as adding 1.0 to 1.0),
the correct answer is generally somewhere between two representable numbers in the
format. The system then chooses one of these two numbers as the rounded result. It uses
one of the following methods:

Round to nearest

The system chooses the nearer of the two possible outputs. If the correct
answer is exactly halfway between the two, the system chooses the one
where the least significant bit of Frac is zero. This behavior
(round-to-even) prevents various undesirable effects.

This is the default mode when an application starts up. It is the only mode
supported by the ordinary floating-point libraries. Hardware
floating-point environments and the enhanced floating-point libraries
support all four rounding modes. See Library naming conventions on
page 2-117.

Round up, or round toward plus infinity

The system chooses the larger of the two possible outputs (that is, the one
further from zero if they are positive, and the one closer to zero if they are
negative).

Round down, or round toward minus infinity

The system chooses the smaller of the two possible outputs (that is, the
one closer to zero if they are positive, and the one further from zero if they
are negative).
4-40 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
Round toward zero, or chop, or truncate

The system chooses the output that is closer to zero, in all cases.

4.4.3 Exceptions

Floating-point arithmetic operations can run into various problems. For example, the
result computed might be either too big or too small to fit into the format, or there might
be no way to calculate the result (as in trying to take the square root of a negative
number, or trying to divide zero by zero). These are known as exceptions, because they
indicate unusual or exceptional situations.

The ARM floating-point environment can handle exceptions in more than one way.

Ignoring exceptions

The system invents a plausible result for the operation and returns that. For example, the
square root of a negative number can produce a NaN, and trying to compute a value too
big to fit in the format can produce infinity. If an exception occurs and is ignored, a flag
is set in the floating-point status word to tell you that something went wrong at some
point in the past.

Trapping exceptions

This means that when an exception occurs, a piece of code called a trap handler is run.
The system provides a default trap handler that prints an error message and terminates
the application. However, you can supply your own trap handlers to clean up the
exceptional condition in whatever way you choose. Trap handlers can even supply a
result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided
by 0 was 1, you could supply a custom trap handler for the Invalid Operation exception
to identify that particular case and substitute the answer you required.

Types of exception

The ARM floating-point environment recognizes the following types of exception:

• The Invalid Operation exception happens when there is no sensible result for an
operation. This can happen for any of the following reasons:

— performing any operation on a signaling NaN, except the simplest
operations (copying and changing the sign)

— adding plus infinity to minus infinity, or subtracting an infinity from itself

— multiplying infinity by zero
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-41
ID101213 Non-Confidential,

Floating-point Support
— dividing 0 by 0, or dividing infinity by infinity

— taking the remainder from dividing anything by 0, or infinity by anything

— taking the square root of a negative number (not including minus zero)

— converting a floating-point number to an integer if the result does not fit

— comparing two numbers if one of them is a NaN.

If the Invalid Operation exception is not trapped, all these operations return a
quiet NaN, except for conversion to an integer, that returns zero (as there are no
quiet NaNs in integers).

• The Divide by Zero exception happens if you divide a finite nonzero number by
zero. (Dividing zero by zero gives an Invalid Operation exception. Dividing
infinity by zero is valid and returns infinity.)

If Divide by Zero is not trapped, the operation returns infinity.

• The Overflow exception happens when the result of an operation is too big to fit
into the format. This happens, for example, if you add the largest representable
number (marked d in Table 4-14 on page 4-38) to itself.

If Overflow is not trapped, the operation returns infinity, or the largest finite
number, depending on the rounding mode.

• The Underflow exception can happen when the result of an operation is too small
to be represented as a normalized number (with Exp at least 1).

The situations that cause Underflow depend on whether it is trapped or not:

— If Underflow is trapped, it occurs whenever a result is too small to be
represented as a normalized number.

— If Underflow is not trapped, it only occurs if the result requires rounding.
So, for example, dividing the float number 0x00800000 by 2 does not signal
Underflow, because the result (0x00400000) is exact. However, trying to
multiply the float number 0x00000001 by 1.5 does signal Underflow

(For readers familiar with the IEEE 754 specification, the chosen
implementation options in the ARM compiler are to detect tininess before
rounding, and to detect loss of accuracy as an inexact result.)

If Underflow is not trapped, the result is rounded to one of the two nearest
representable denormal numbers, according to the current rounding mode.
The loss of precision is ignored and the system returns the best result it can.

— The Inexact Result exception happens whenever the result of an operation
requires rounding. This would cause significant loss of speed if it had to be
detected on every operation in software, so the ordinary floating-point
4-42 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

Floating-point Support
libraries do not support the Inexact Result exception. The enhanced
floating-point libraries, and hardware floating-point systems, all support
Inexact Result.

If Inexact Result is not trapped, the system rounds the result in the usual
way.

The flag for Inexact Result is also set by Overflow and Underflow if either
one of those is not trapped.

All exceptions are untrapped by default.
ARM DUI 0349C Copyright © 2007-2010 ARM. All rights reserved. 4-43
ID101213 Non-Confidential,

Floating-point Support
4-44 Copyright © 2007-2010 ARM. All rights reserved. ARM DUI 0349C
Non-Confidential, ID101213

	RealView Compilation Tools Libraries and Floating Point Support Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on RealView Compilation Tools
	Feedback on this book

	Introduction
	1.1 About the runtime libraries
	1.1.1 ABI for the ARM Architecture compliance
	1.1.2 Library directory structure
	1.1.3 Build options and library variants
	1.1.4 Using the VFP support libraries
	1.1.5 Thumb C libraries

	1.2 About floating-point support

	The C and C++ Libraries
	2.1 About the C and C++ libraries
	2.1.1 Features of the C and C++ libraries
	2.1.2 Namespaces

	2.2 Writing reentrant and thread-safe code
	2.2.1 Introduction to reentrancy and thread-safety
	2.2.2 Use of static data in the C libraries
	2.2.3 The __user_libspace static data area
	2.2.4 Managing locks in multithreaded applications
	2.2.5 Using the ARM C libraries with a multithreaded application
	2.2.6 Thread-safety in the ARM C libraries
	2.2.7 Thread-safety in the ARM C++ libraries

	2.3 Building an application with the C library
	2.3.1 Using the libraries with an application
	2.3.2 Building an application for a semihosted environment
	2.3.3 Building an application for a non semihosting environment

	2.4 Building an application without the C library
	2.4.1 Integer and floating point functions
	2.4.2 Bare machine integer C
	2.4.3 Bare machine C with floating-point
	2.4.4 Exploiting the C library
	2.4.5 The standalone C library functions

	2.5 Tailoring the C library to a new execution environment
	2.5.1 How C and C++ programs use the library functions
	2.5.2 __rt_entry
	2.5.3 Exiting from the program
	2.5.4 __rt_exit()
	2.5.5 __rt_lib_init()
	2.5.6 __rt_lib_shutdown()

	2.6 Tailoring static data access
	2.7 Tailoring locale and CTYPE using assembler macros
	2.7.1 Selecting locale at link time
	2.7.2 Selecting locale at runtime
	2.7.3 Defining a locale block
	2.7.4 LC_CTYPE data block
	2.7.5 LC_COLLATE data block
	2.7.6 LC_MONETARY data block
	2.7.7 LC_NUMERIC data block
	2.7.8 LC_TIME data block
	2.7.9 _get_lconv()
	2.7.10 localeconv()
	2.7.11 setlocale()
	2.7.12 _findlocale()
	2.7.13 The lconv structure

	2.8 Tailoring error signaling, error handling, and program exit
	2.8.1 _sys_exit()
	2.8.2 errno
	2.8.3 __rt_errno_addr()
	2.8.4 __raise()
	2.8.5 __rt_raise()
	2.8.6 __default_signal_handler()
	2.8.7 _ttywrch()
	2.8.8 __rt_fp_status_addr()

	2.9 Tailoring storage management
	2.9.1 Avoiding the ARM-supplied heap and heap-using functions
	2.9.2 Support for malloc

	2.10 Tailoring the runtime memory model
	2.10.1 The memory models
	2.10.2 Controlling the runtime memory model
	2.10.3 Writing your own memory model
	2.10.4 __user_setup_stackheap()
	2.10.5 __user_initial_stackheap()
	2.10.6 __user_heap_extend()
	2.10.7 __user_heap_extent()
	2.10.8 __rt_stackheap_init()
	2.10.9 __rt_heap_extend()
	2.10.10 __vectab_stack_and_reset

	2.11 Tailoring the input/output functions
	2.11.1 Dependencies on low-level functions
	2.11.2 Target-dependent input and output support functions
	2.11.3 _sys_open()
	2.11.4 _sys_close()
	2.11.5 _sys_read()
	2.11.6 _sys_write()
	2.11.7 _sys_ensure()
	2.11.8 _sys_flen()
	2.11.9 _sys_seek()
	2.11.10 _sys_istty()
	2.11.11 _sys_tmpnam()
	2.11.12 _sys_command_string()
	2.11.13 #pragma import(_main_redirection)

	2.12 Tailoring other C library functions
	2.12.1 clock()
	2.12.2 _clock_init()
	2.12.3 time()
	2.12.4 remove()
	2.12.5 rename()
	2.12.6 system()
	2.12.7 getenv()
	2.12.8 _getenv_init()

	2.13 Selecting real-time division
	2.14 ISO implementation definition
	2.14.1 ISO C library implementation definition
	2.14.2 Standard C++ library implementation definition

	2.15 C library extensions
	2.15.1 atoll()
	2.15.2 strtoll()
	2.15.3 strtoull()
	2.15.4 printf()
	2.15.5 snprintf()
	2.15.6 vsnprintf()
	2.15.7 lldiv()
	2.15.8 llabs()
	2.15.9 wcscasecmp()
	2.15.10 wcsncasecmp()
	2.15.11 wcstombs()
	2.15.12 alloca()
	2.15.13 strlcpy()
	2.15.14 strlcat()
	2.15.15 strcasecmp()
	2.15.16 strncasecmp()
	2.15.17 _fisatty()
	2.15.18 __heapstats()
	2.15.19 __heapvalid()
	2.15.20 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(), _membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()

	2.16 Library naming conventions
	2.16.1 Placing ARM libraries
	2.16.2 Helper functions
	2.16.3 Identifying library variants

	The C Micro-library
	3.1 About microlib
	3.1.1 Differences from the default C library

	3.2 Building an application with microlib
	3.3 Using microlib
	3.3.1 Creating the stack
	3.3.2 Creating the heap
	3.3.3 Entering and exiting your program

	3.4 Tailoring the microlib input/output functions
	3.5 ISO C features missing from microlib

	Floating-point Support
	4.1 The software floating-point library, fplib
	4.1.1 Features of the floating-point library, fplib
	4.1.2 Arithmetic on numbers in a particular format
	4.1.3 Conversions between floats, doubles, and ints
	4.1.4 Conversions between long longs and other number formats
	4.1.5 Floating-point comparisons
	4.1.6 C99 functions

	4.2 Controlling the floating-point environment
	4.2.1 __ieee_status()
	4.2.2 __fp_status()
	4.2.3 Microsoft compatibility functions
	4.2.4 C99-compatible functions
	4.2.5 ARM compiler extensions to the C99 interface

	4.3 The math library, mathlib
	4.3.1 Range reduction in mathlib
	4.3.2 Determine the type of a floating-point number (fpclassify)
	4.3.3 Determine if a number is finite (isfinite)
	4.3.4 Determine if a number is infinite (isinf)
	4.3.5 Determine if a number is a NaN (isnan)
	4.3.6 Determine if a number is normal (isnormal)
	4.3.7 Return the sign bit of a number (signbit)
	4.3.8 Copy sign functions (copysign, copysignf)
	4.3.9 Comparison macros (isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered)
	4.3.10 Inverse hyperbolic functions (acosh, asinh, atanh)
	4.3.11 Cube root (cbrt)
	4.3.12 Error functions (erf, erfc)
	4.3.13 One less than exp(x) (expm1)
	4.3.14 Hypotenuse function (hypot)
	4.3.15 The logarithm of the gamma function (lgamma)
	4.3.16 Logarithm of one more than x (log1p)
	4.3.17 IEEE 754 remainder function (remainder)
	4.3.18 IEEE round-to-integer operation (rint)
	4.3.19 Signalling NaNs (_WANT_SNAN)
	4.3.20 Complex math functions (cacos, casin, catan, ccos, csin, ctan, cacosh, casinh, catanh, ccosh, csinh, ctanh, cexp, clog, cabs, cpow, csqrt, carg, cproj)
	4.3.21 Gamma function (gamma, gamma_r)
	4.3.22 Bessel functions of the first kind (j0, j1, jn)
	4.3.23 Bessel functions of the second kind(y0, y1, yn)
	4.3.24 Return the fraction part of a number(significand)

	4.4 IEEE 754 arithmetic
	4.4.1 Basic data types
	4.4.2 Arithmetic and rounding
	4.4.3 Exceptions

