
RealView® ARMulator® ISS
Version 1.4.3

User Guide
Copyright © 2002-2007 ARM Limited. All rights reserved.
ARM DUI 0207D

RealView ARMulator ISS
User Guide

Copyright © 2002-2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

August 2002 A Non-Confidential Release 1.3

B Non-Confidential Not Released

January 2004 C Non-Confidential Release 1.4 for RVDS v2.1

March 2007 D Non-Confidential Release 1.4.3 for RVDS v3.1
ii Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Contents
RealView ARMulator ISS User Guide

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 RealView ARMulator ISS overview ... 1-2

Chapter 2 RVISS Basics
2.1 About RVISS ... 2-2
2.2 Connections to RVISS in RealView Debugger .. 2-3
2.3 RVISS components ... 2-5
2.4 Tracer .. 2-8
2.5 RVISS cycle types .. 2-16
2.6 Pagetable module ... 2-21
2.7 Default memory model .. 2-28
2.8 Memory modeling with mapfiles .. 2-29
2.9 Semihosting .. 2-33
2.10 Peripheral models ... 2-34

Chapter 3 Writing RVISS Models
3.1 The RVISS extension kit ... 3-2
3.2 Writing a new peripheral model ... 3-6
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. iii

3.3 Building a new model ... 3-9
3.4 Configuring RVISS to use a new model ... 3-11
3.5 Configuring RVISS to disable a model ... 3-13

Chapter 4 RVISS Reference
4.1 SimRdi_Manager interface ... 4-3
4.2 RVISS models .. 4-21
4.3 RVISS model insertion ... 4-22
4.4 Communicating with the core ... 4-26
4.5 Basic model interface ... 4-35
4.6 The memory interface ... 4-37
4.7 Memory model interface ... 4-40
4.8 Coprocessor model interface .. 4-50
4.9 Exceptions .. 4-61
4.10 Events ... 4-64
4.11 Handlers ... 4-68
4.12 Memory access functions ... 4-73
4.13 Event scheduling functions ... 4-75
4.14 General purpose functions ... 4-76
4.15 Accessing the RealView Debugger .. 4-88
4.16 Tracer ... 4-93
4.17 Map files ... 4-95
4.18 RVISS configuration files .. 4-99
4.19 ToolConf ... 4-105
4.20 Reference peripherals .. 4-111

Appendix A Using MPCore Models
A.1 About MPCore .. A-2
A.2 Default peripheral system ... A-3
A.3 Limitations .. A-5
A.4 Writing a new MPCore model ... A-6

Appendix B ARM1136JF-S and ARM1136J-S Models
B.1 Restrictions for the ARM1136JF-S and ARM1136J-S models B-2
iv Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Preface

This preface introduces the RealView® ARMulator® Instruction Set Simulator (RVISS)
target. It contains the following sections:

• About this book on page vi

• Feedback on page ix.

Note
 Models of the Cortex™ family of processors are provided by the Instruction Set System
Model (ISSM) software simulator. Details of these models are described in the
RealView Debugger Target Configuration Guide.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. v

Preface
About this book

This book provides reference information for RVISS, the ARM® processor simulator.

Intended audience

This book is written for all ARM developers. It assumes that you are an experienced
software developer, and that you are familiar with the ARM development tools provided
with RealView Development Suite.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the material in this book, and a
summary description of RVISS.

Chapter 2 RVISS Basics

Read this chapter for a description of RVISS, the ARM instruction set
simulator.

Chapter 3 Writing RVISS Models

Read this chapter for help in writing your own extensions and
modifications to RVISS.

Chapter 4 RVISS Reference

This chapter provides more details to help you use RVISS.

Appendix A Using MPCore Models

This appendix gives details about the MPCore™ model.

Appendix B ARM1136JF-S and ARM1136J-S Models

This appendix gives details about the ARM1136JF-S™ and
ARM1136J-S™ models.
vi Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Preface
Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. vii

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently
Asked Questions.

ARM publications

This book contains information that is specific to RVISS. See the RealView Debugger
documentation for information on using RVISS with RealView Debugger.
viii Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Preface
Feedback

ARM Limited welcomes feedback on both RealView ARMulator ISS, and its
documentation.

Feedback on RealView ARMulator ISS

If you have any problems with RealView ARMulator ISS, contact your supplier. To help
your supplier provide a rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. ix

Preface
x Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Chapter 1
Introduction

This chapter introduces the debug support facilities provided in the RealView®
ARMulator® Instruction Set Simulator (RVISS). It contains the following section:

• RealView ARMulator ISS overview on page 1-2.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 RealView ARMulator ISS overview

You can debug your prototype software using RealView Debugger which runs on your
host computer, and is connected to a target system that runs your prototype software.

Your target system can be any one of:

• a software simulator, RVISS, simulating ARM® hardware

• an ARM evaluation or development board

• a third-party ARM architecture-based development board

• ARM architecture-based hardware of your own design.

This document describes only the RVISS. For details of the other target systems, see the
documentation for that target.

1.1.1 What is RealView ARMulator ISS?

RVISS is an Instruction Set Simulator (ISS). It simulates the instruction sets and
architecture of ARM processors, together with a memory system and peripherals. You
can extend it to simulate other peripherals and custom memory systems.

You can use RVISS for software development and for benchmarking ARM
architecture-targeted software. It models the instruction set and counts cycles. There are
limits to the accuracy of benchmarking.

See also
• Accuracy on page 2-2

• Chapter 3 Writing RVISS Models.

1.1.2 Semihosting

You can use the I/O facilities of the host computer, instead of providing the facilities on
your target system. This is called semihosting.

The ARM C and C++ code use semihosting facilities by default.

To access semihosting facilities from assembly code, use the semihosting Supervisor
Call (SVC). RVISS intercepts any semihosting SVC call, and then requests service from
RealView Debugger.

See also

• RealView Compilation Tools Libraries and Floating Point Support Guide.
1-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Chapter 2
RVISS Basics

This chapter describes RealView® ARMulator® Instruction Set Simulator (RVISS), a
collection of programs that provide software simulation of ARM® processors. It
contains the following sections:

• About RVISS on page 2-2

• Connections to RVISS in RealView Debugger on page 2-3

• RVISS components on page 2-5

• Tracer on page 2-8

• RVISS cycle types on page 2-16

• Pagetable module on page 2-21

• Default memory model on page 2-28

• Memory modeling with mapfiles on page 2-29

• Semihosting on page 2-33

• Peripheral models on page 2-34.

Note
 The RVISS Profiler feature is not supported by RealView Debugger. However, you can
use RealView Debugger tracing to capture profiling information.

See the RealView Debugger Trace User Guide for more details.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-1

RVISS Basics
2.1 About RVISS

RVISS is an instruction set simulator. It simulates the instruction sets and architecture
of various ARM processors. To run software on RVISS, you can access it using
RealView Debugger.

RVISS is suited to software development and benchmarking ARM architecture-targeted
software. It models the instruction set and counts cycles (see RVISS cycle types on
page 2-16). There are limits to the accuracy of benchmarking and cycle counting, see
Accuracy.

RVISS provides all the facilities required to enable complete C or C++ programs to run
on the simulated system. For information on the C library semihosting SVCs supported
by RVISS, see the RealView Compilation Tools Libraries and Floating Point Support
Guide.

2.1.1 Accuracy

RVISS is not 100% cycle accurate, because it is not based on the actual processor
design. In general, models of the less complex, uncached ARM processor cores are
reasonably cycle accurate, but models of the cached variants might not correspond
exactly with the actual hardware. This assumes that the main memory modelled has a
von Neumann architecture and that the cycle accuracy of the main memory is correct.

RVISS is suitable for use as a software development tool for system design, but a
hardware model must be used if 100% accuracy is required.

RVISS does not model Asynchronous Mode on cached cores. If you set the control bits
in CP15 to specify Asynchronous Mode, RVISS gives a warning:

Set to Asynch mode, WARNING this is not supported

You can continue debugging, but RVISS behaves exactly as it does in Synchronous
Mode.

RVISS memory models do not support multilayer Advanced High-performance Bus
(AHB). Cores with multiple external buses, such as the ARM926EJ-S™ and ARM11
variants, present a unified bus to the memory system.

For ARM10 and ARM 11 models and Intel XScale technology-based microarchitecture
processors, be aware of the following:

• In RealView Debugger tracing, when you view the interleaved instruction and
data access trace, then all data accesses appear to be captured within a cycle of the
instruction being executed. In reality the data accesses are spread out in time.
2-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.2 Connections to RVISS in RealView Debugger

RealView Debugger enables you to connect to RVISS models using a RealView
Connection Broker interface. RVISS models communicate with RealView Connection
Broker through an intermediate interface called SimRdi_Manager. See the following
documentation for more details on how to connect to RVISS models:

• RealView Debugger User Guide

• RealView Debugger Target Configuration Guide.

Figure 2-1 is a simplified diagram showing the interaction between RealView Debugger
and RVISS through the RealView Connection Broker.

Figure 2-1 RealView Debugger connections to RVISS
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-3

RVISS Basics
In Figure 2-1 on page 2-3, RealView Debugger must first establish a connection to
RVISS at the request of the user. The connection is established as follows, and the
numbers in parentheses refer to the callouts on the diagram:

1. RealView Debugger contacts RealView Connection Broker (1).

2. RealView Connection Broker activates RVISS through the REMSIM interface
(2), and this in turn calls SimRdi_Manager.

3. SimRdi_Manager instantiates the required RVISS model (3).

4. The RVISS model registers with SimRdi_Manager, advertising the
SimRdi_Manager services it is providing, and installs a listener to wait for
announcements from SimRdi_Manager (4).

5. When the RVISS model setup is finished, requests can be received from, and
responses sent to, the RealView Debugger (5).

SimRdi_Manager interface on page 4-3 describes how to write RVISS models that
communicate with the SimRdi_Manager interface.

2.2.1 RealView Debugger features supported for RVISS connections

RealView Debugger connections to RVISS models support the following features:

• data trace

• watch points

• ability to connect to multiple instances of RVISS.
2-4 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.3 RVISS components

RVISS consists of a series of modules, implemented as Dynamic Link Libraries (.dll
files) for Windows, or as Shared Objects (.so files for Red Hat Linux, or .sdi on all
platforms).

The main modules are:

• a model of the ARM processor core

• a model of the memory used by the processor.

There are alternative predefined modules for each of these parts. You can select the
combination of processor and memory model you want to use.

One of the predefined memory models, mapfile, enables you to specify a simulated
memory system in detail. It enables you to specify custom memory attributes, such as
access width and wait states, for a defined address range.

In addition there are predefined modules which you can use to:

• model additional hardware, such as a coprocessor, peripherals, or memories

• model pre-installed software, such as a C library, semihosting SVC handler, or an
operating system

• extract debugging or benchmarking information.

Note
 ARM10, ARM11 and Intel XScale technology-based models are not suitable for

benchmarking.

You can use different combinations of predefined modules and different memory maps.

You can write your own modules, or edit copies of the predefined ones, if the modules
provided do not meet your requirements. For example:

• to model a different peripheral, coprocessor, or operating system

• to model a different memory system

• to provide additional debugging or benchmarking information.

The source code of some modules is supplied. You can use these as examples to help
you write your own modules.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-5

RVISS Basics
2.3.1 Configuring RVISS

You can configure some features of an RVISS model with the RealView Debugger
ARMulator Configuration dialog box. However, RVISS provides configuration files
with the extension .ami that enable you to configure the predefined RVISS modules.
The remaining sections in this chapter describe each of the predefined modules, and
how you can configure them.

Supplied RVISS configuration files

The following RVISS configuration files are supplied:

• bustypes.ami

• default.ami

• example1.ami

• peripherals.ami

• processors.ami

• v6processors.ami

• vfp.ami.

These files are located in the following directory, which is specified in the ARMCONF
environment variable:

install_directory\RVARMulator\ARMulator\...\...\platform

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

Modifying the RVISS configuration files

You do not have to edit the supplied RVISS configuration files. You can:

1. Create a new .ami file, or edit copies of an existing .ami file.

2. Make sure that the path to your .ami file is put on your ARMCONF environment
variable before the path to the standard files. This ensures that your configurations
overrides the model parameters.

However, make sure that your file has the same structure as the .ami file on which it is
based.
2-6 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
If you write any RVISS models of your own, you can produce additional .ami files to
allow your models to be configured.

Note
 Where there is a conflict between configuration settings in a .ami file, and settings you
have made from in RealView Debugger, the RealView Debugger settings take
precedence.

How the configured features are used

When you connect to an RVISS model from RealView Debugger, RVISS reads all the
.ami files on any of the paths it finds in the ARMCONF environment variable. Some features,
such as a map file, are available when you connect to a model. For features such as the
Tracer, you must enable them in RealView Debugger.

Note
 RVISS reads all .ami files on these paths. Change the file extension of any back-ups you
make of files that you have edited, or copy them to a backup directory. This prevents
RVISS reading both the old and new versions. If you do not do this, the old version
might override the new one, depending on the order that RVISS encounters them.

See also
• Tracer on page 2-8

• RVISS cycle types on page 2-16

• Pagetable module on page 2-21

• Default memory model on page 2-28

• Memory modeling with mapfiles on page 2-29

• Semihosting on page 2-33

• Peripheral models on page 2-34

• RVISS configuration files on page 4-99

• Chapter 3 Writing RVISS Models

• RealView Debugger Target Configuration Guide.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-7

RVISS Basics
2.4 Tracer

You can use Tracer to trace instructions, memory accesses, and events. The RVISS
peripherals configuration file controls what is traced (see RVISS configuration files on
page 4-99):

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The source code for Tracer is supplied in the following directory:

RVARMulator\ExtensionKit\...\...\platform\

2.4.1 RealView Debugger support for tracing

You can trace RVISS models in RealView Debugger in the following ways:

• Configure and enable the RVISS Tracer feature.

Note
 If you save the Tracer output to a file, you cannot use the RealView Debugger

analysis features to analyze the captured trace.

• Use the trace and analysis features provided by RealView Debugger.

See also
• Enabling the RVISS Tracer feature in RealView Debugger

• Configuring Tracer on page 2-9

• Interpreting trace file output on page 2-11

• RealView Debugger Trace User Guide.

2.4.2 Enabling the RVISS Tracer feature in RealView Debugger

To enable the RVISS Tracer feature in RealView Debugger you must set bit 4 of the
RVISS logging level variable @rviss_log. To do this, enter the following command at
the RealView Debugger CLI prompt:

cexpression rviss_log=0x10

Note
 Although you enable and disable the RVISS Tracer feature in RealView Debugger, what
you trace is controlled by the .ami files.
2-8 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
See also

• Configuring RVISS on page 2-6.

2.4.3 Configuring Tracer

Tracer has its own section in the RVISS peripherals configuration file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The section has the following items:

{ Default_Tracer=Tracer
;; Output options - can be plaintext to file, binary to file or to RDI log
;; window. (Checked in the order RDILog, File, BinFile.)
;VERBOSE=True
;RDILog=True
RDILog=False
File=armul.trc
BinFile=armul.trc
;; Tracer options - what to trace
Architectural=False
TraceInstructions=True
TraceRegisters=True
OpcodeFetch=True
;;Normally True is useful, but sometimes it's too expensive.
TraceMemory=True
;TraceMemory=False
;Normally False, only True for timing tests.
;NB ARM10+XScale models do not emit ICycles on IBus or DBus.
;TraceIdle=True
TraceNonAccounted=False
;+TraceEvents=False
TraceEvents=True
EventMask=0
;;If there is a non-core bus, do we trace it (as well).
TraceBus=True
;; Flags - disassemble instructions; start up with tracing enabled;
Disassemble=True
;Set to True to output instuctions and memory-accesses in "ARMEIS" format.
TraceEIS=False
; Curently, precedes each access or opcode line with "T <corecycles>",
; or blank if the time has not changed.
TimeStamp=True

{Trace_EventNumbers
MMUEvent_DTLBWalk=True
MMUEvent_ITLBWalk=True
}

ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-9

RVISS Basics
{TraceGenericNotifications
;We define generic notifications to have case-insensitive names.
;Generic notifications are registerred during instantiation by anything
; that can drive them.
;The data-format of each notification is negotiated at "route-links" time.
;This speeds up listeners, at the expense of complexity.
DTLB_LOCKDOWN=True
ITLB_LOCKDOWN=True
}

;TraceCoproRegisters=P11c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15

StartOn=False
}

where:

RDILog Make sure this is set to False.

File Specifies the file where the trace information is written as a text
file.

If you do not specify a path, the file is stored in:

install_directory\RVD\Core\...\...\...\bin

The other options control what is being traced:

TraceInstructions Traces instructions.

TraceRegisters Traces registers.

OpcodeFetch Traces instruction fetch memory accesses.

TraceMemory Traces memory accesses.

TraceIdle Traces idle cycles.

TraceNonAccounted Traces unaccounted accesses to memory. That is, those accesses
made by RealView Debugger.

TraceEvents Traces events.

TraceBus Determines the following:

TRUE Bus (off-chip accesses traced)

FALSE Core (off-chip accesses not traced).

Disassemble Disassembles instructions. Simulation is much slower if you
enable disassembly.
2-10 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
TraceEIS If set TRUE, changes output to a format compatible with other
simulators. This enables tools to compare traces.

StartOn Instructs RVISS to trace as soon as execution begins.

Other tracing controls

You can also control tracing using:

Range=low address,high address

Tracing is carried out only within the specified address range.

Sample=n Only every nth trace entry is sent to the trace file.

Tracing events

When tracing events, you can select the events to be traced using:

EventMask=mask,value

Only those events whose number when masked (bitwise-AND)
with mask equals value are traced.

Event=number Only number is traced. (This is equivalent to
EventMask=0xFFFFFFFF,number.)

For example, the following traces only MMU/cache events:

EventMask=0xFFFF0000,0x00010000

See also
• Tracing events

• Events on page 4-64.

2.4.4 Interpreting trace file output

This section describes how you interpret the output from Tracer.

Example of a trace file

The following example shows part of a trace file:

Date: Thu Feb 01 16:41:36 2007
Source: Armul
Options: Trace Instructions (Disassemble) Trace Memory Cycles
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-11

RVISS Basics
BNR4O___ A0000000 00000C1E
BNR8O___ 00008000 E28F8090 E898000F
BSR8O___ 00008008 E0800008 E0811008
BSR8O___ 00008010 E0822008 E0833008
BSR8O___ 00008018 E240B001 E242C001
MNR4O___ 00008000 E28F8090
IT 00008000 e28f8090 ADD r8,pc,#0x90 ; #0x8098
MNR4O___ 00008004 E898000F
IT 00008004 e898000f LDMIA r8,{r0-r3}
BNR4O___ A0000000 00000C1E
BNR8O___ 00008098 00007804 00007828
BSR8O___ 00008080 10844009 E3C44003
BSR8O___ 00008088 E2555004 24847004
BSR8O___ 00008090 8AFFFFFC EAFFFFF2
MNR8____ 00008098 00007804 00007828
BNR8O___ 000080A0 00007828 00007840
BSR8O___ 000080A8 E3A00840 E1A0F00E
BSR8O___ 000080B0 E92D400C E28F0014
BSR8O___ 000080B8 E5901000 E5900004
MNR8____ 000080A0 00007828 00007840
MNR4O___ 00008008 E0800008
IT 00008008 e0800008 ADD r0,r0,r8
MNR4O___ 0000800C E0811008
IT 0000800C e0811008 ADD r1,r1,r8
MNR4O___ 00008010 E0822008

Trace memory (M lines)

Memory (M) lines indicate:

• memory accesses, for cores without on-chip memory

• on-chip memory accesses, for cores with on-chip memory.

They have the following format for general memory accesses:

M<type><rw><size>[O][L][S] <address> <data>

where:

<type> Indicates the cycle type:

S sequential

N nonsequential.

<rw> Indicates the access type:

R read

W write.
2-12 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
<size> Indicates the size of the memory access:

4 word (32 bits)

2 halfword (16 bits)

1 byte (8 bits).

O Indicates an opcode fetch (instruction fetch).

L Indicates a locked access (SWP instruction).

S Indicates a speculative instruction fetch.

D Indicates that the DMORE signal of the ARM9TDMI® data interface is
HIGH.

<address> The address in hexadecimal format, for example 00008008.

<data> Indicates One of the following:

value gives the read/written value, for example EB00000C

(wait) indicates nWAIT was LOW to insert a wait state

(abort) indicates ABORT was HIGH to abort the access.

Trace memory lines can also have any of the following formats:

MI for idle cycles

MC for coprocessor cycles

MIO for idle cycles on the instruction bus of Harvard architecture processors
such as ARM9TDMI.

Trace instructions (I lines)

The format of the trace instruction (I) lines is as follows:

[IT | IS] <instr_addr> <opcode> [<disassembly>]

For example:

IT 00008044 e04ec00f SUB r12,r14,pc

where:

IT Indicates that the instruction was taken.

IS Indicates that the instruction was skipped (almost all ARM
instructions are conditional).
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-13

RVISS Basics
<instr_addr> The address of the instruction in hexadecimal format, for example
00008044.

<opcode> The opcode in hexadecimal format, for example e04ec00f.

<disassembly> The disassembly (uppercase if the instruction is taken), for
example, SUB r12,r14,pc. This is optional and is enabled by
setting Disassemble=True in peripherals.ami.

Branches with link in Thumb® code appear as two entries, with the first marked:

1st instr of BL pair.

Trace events (E lines)

The format of the event (E) lines is as follows:

E <word1> <word2> <event_number>

For example:

E 00000048 00000000 10005

where:

<word1> The first of a pair of words, such as the PC value.

<word2> The second of a pair of words, such as the aborting address.

<event_number> An event number, for example 0x10005. This is the MMU
Event_ITLBWalk.

Trace registers (R lines)

The format of the event (R) lines is as follows:

R <register>=<newvalue>[,<anotherregister>=<newvalue>[...]]

For example:

R r14=20000060, cpsr=200000d3

where:

<register> A register that has a new value as a result of the current
instruction.

<newvalue> The new contents of <register>.
2-14 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
Trace bus (B lines)

The format of bus (B) lines is the same as the format of M lines. B lines indicate off-chip
memory accesses.

See also
• Tracing events on page 2-11

• Events on page 4-64.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-15

RVISS Basics
2.5 RVISS cycle types

In addition to simulating instruction execution on ARM cores, RVISS counts bus and
processor cycles.

This section describes the meaning of the various types of cycles counted.

Note
 RVISS does not model the AMBA Advanced eXtensible Interface (AXI) because the
bus modeling is not accurate enough to differentiate between Advanced
High-performance Bus (AHB) and AXI accesses.

2.5.1 Uncached von Neumann cores

Table 2-1 shows the meanings of cycle types for uncached von Neumann cores, such as
the ARM7TDMI®.

Sequential cycles

The CPU requests transfer to or from:

• the same address as the address accessed in the immediately preceding cycle

• an address that is one word after the address accessed in the immediately
preceding cycle

Table 2-1 Cycle type meanings for uncached von Neumann cores

Cycle type
SEQ
signal

nMREQ
signal

Meaning

S_Cycles 1 1 Sequential cycles. See Sequential cycles for details.

N_Cycles 0 1 Nonsequential cycles. The CPU requests a transfer to or from an address
unrelated to the address used in the immediately preceding cycle.

I_Cycles 1 0 Internal cycles. The CPU does not require a transfer because it is
performing an internal function.

C_Cycles 0 0 Coprocessor cycles.

Total - - The sum of S_Cycles, N_Cycles, I_Cycles, C_Cycles, and Waits.

IS - - Merged I-S cycle. See Merged I-S cycles on page 2-17 for details.
2-16 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
• for Thumb instruction fetches only, an address that is one half-word after the
address accessed in the immediately preceding cycle.

Merged I-S cycles

A memory controller can start speculatively decoding an address during an I-Cycle. If
the I_Cycle is followed by an S_Cycle, the memory controller can be ready to issue it
earlier than otherwise. The timing of this cycle depends on the memory controller
implementation.

2.5.2 Uncached Harvard cores

Table 2-2 shows the meanings of cycle types for uncached Harvard cores, such as the
ARM9TDMI.

Table 2-2 Cycle type meanings for uncached Harvard cores

Cycle types Instruction bus Data bus Meaning

Core cycles - - The total number of ticks of the core clock. This includes pipeline
stalls because of interlocks and instructions that take more than one
cycle.

ID_Cycles Active Active -

I_Cycles Active Idle -

Idle Cycles Idle Idle -

D_Cycles Idle Active -

Total - - The sum of core cycles, ID_Cycles, I_Cycles, Idle_Cycles,
D_Cycles, and Waits.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-17

RVISS Basics
2.5.3 Cached cores with MMUs or MPUs and AMBA ASB interfaces

Table 2-3 shows the meanings of the bus cycle types for cached cores with AMBA™
Advanced System Bus (ASB) interfaces.

ARM920T™ is an example of a cached core with a Memory Management Unit (MMU).
ARM940T™ is an example of a cached core with a Memory Protection Unit (MPU).

There are no N_Cycles for these cores. Nonsequential accesses use an A_Cycle
followed by an S_Cycle. This is the same as a merged I-S cycle.

See also

• Internal cycle types for cached cores on page 2-19.

2.5.4 Cached cores with MMUs or MPUs and AMBA AHB interfaces

Table 2-4 shows the types of transfer that can occur on the AHB. ARM946E-S™, for
example, is a cached core with an AHB interface.

Table 2-3 Cycle type meanings for cached cores with AMBA ASB interfaces

Cycle types Meaning

A_Cycles An address is published speculatively. No data is transferred. Listed as I_Cycles in RealView Debugger
@stats_symbolname symbols.

S_Cycles Sequential data is transferred from the current address.

Table 2-4 Cycle types on AMBA AHB interfaces

Cycle types Meaning

IDLE The bus master does not want to use the bus. Slaves must respond with a zero wait state OKAY
response on HRESP.

BUSY The bus master is in the middle of a burst, but cannot proceed to the next sequential access.
Slaves must respond with a zero wait state OKAY response on HRESP.

NON-SEQ The start of a burst or single access. The address is unrelated to the address of the previous
access.

SEQ Continuing with a burst. The address is equal to the previous address plus the data size.
2-18 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
See also

• Internal cycle types for cached cores.

2.5.5 Internal cycle types for cached cores

Table 2-5 shows the meaning of internal cycle types for cached cores.

Note
 If you want to count execution time, use external bus cycle counts. You cannot use
F_Cycles to count execution time, because F_Cycles does not increment for uncached
accesses.

2.5.6 StrongARM1

Table 2-6 shows the meaning of cycle types reported for StrongARM1.

Table 2-5 Internal cycle types for cached cores

Cycle types Meaning

F_Cycles Fast clock (FCLK) cycles. These are internal core cycles accessing the cache. F_Cycles is
not incremented for uncached accesses because the core clock switches to the bus clock.

Core Cycles Core cycles are clock ticks to the core. Core Cycles are incremented for each tick, whether
the core is running FCLK (cache accesses) or bus clock (BCLK, non-cache accesses).

True Idle Cycles Idle cycles that are not part of a merged I-S cycle.

Table 2-6 StrongARM specific cycle types

Cycle types Meaning

Core_Idle No instruction fetched from instruction cache. No data fetched from data cache.

Core_IOnly Instruction fetched from instruction cache. No data fetched from data cache.

Core_DOnly No instruction fetched from instruction cache. Data fetched from data cache.

Core_ID Instruction fetched from instruction cache. Data fetched from data cache.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-19

RVISS Basics
2.5.7 Core-specific verbose statistics

There is a line in the default.ami file:

Counters=False

You can change this to read:

Counters=True

If you do this, additional statistics, such as cache hits and cache misses, are counted by
RVISS and appear in RealView Debugger as @stats_symbolname symbols. These
statistics are core-specific.

2.5.8 See also
• RealView Debugger User Guide

• RealView Debugger Target Configuration Guide

• RealView Debugger Command Line Reference Guide.
2-20 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.6 Pagetable module

This section describes the RVISS pagetable module.

2.6.1 Overview of the pagetable module

The pagetable module enables you to run code on a model of a system with an MMU
or an MPU, without having to write initialization code for the MMU or MPU.

Note
 This module enables you to debug code, or perform approximate benchmarking. For a
real system. you must write initialization code to set up the MMU or MPU. You can
debug your initialization code on RVISS by disabling the pagetable module.

On models of ARM architecture v4 (ARMv4), ARMv5, and ARMv6 processors with an
MMU, the pagetable module sets up pagetables and initializes the MMU. On processors
with an MPU, the pagetable module sets up the MPU. You can control whether to
include the pagetable model in the following ways:

• Use the Default Page-Tables checkbox in the RealView Debugger ARMulator
Configuration dialog box to set PAGETAB to No_Pagetables (the default) or
Default_Pagetables. RealView Debugger sets the PAGETAB key in the root of the
configuration.

• Find the PAGETAB variable in the RVISS configuration file:

install_directory\RVARMulator\ARMulator\...\...\platform\default.ami

Alter the entry as appropriate (see also Pagetables=$PAGETAB in this file):

{PAGETAB=Default_Pagetables
}

{PAGETAB=No_Pagetables
}

• Edit the Pagetables section in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

This controls the contents of the pagetables, and the configuration of the caches
and MMU or MPU. To locate the Pagetables section, find the line:

{Default_Pagetables=PageTables

Use this option only if you want to override the RealView Debugger
configuration.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-21

RVISS Basics
See also
• ARM Architecture Reference Manual

• the Technical Reference Manual for the processor you are simulating.

2.6.2 Controlling the MMU, MPU or MPU and cache

The first set of flags enables or disables features of the caches and MMU, MPU, or
ARMv6 Memory Protection Unit (MPU). For the MMU and MPU, the flags are:

MMU=Yes
AlignFaults=No
Cache=Yes
WriteBuffer=Yes
Prog32=Yes
Data32=Yes
LateAbort=Yes
BigEnd=No
BranchPredict=Yes
ICache=Yes
HighExceptionVectors=No
FastBus=No

For the MPU used by ARM1156T2-S and ARM1156T2F-S processors, the flags are:

PhysicalBase=0
Size=4GB
Cacheable=Yes
Shareable=No
Bufferable=Yes
AccessPermissions=3
TEX=0
Execute_Never=0

Each flag corresponds to a bit in the system control register, c1 of CP15.

Some flags only apply to certain processors. For example:

• BranchPredict only applies to the ARM810

• ICache applies to StrongARM®-110 and ARM940T processors, but not
ARM720T™ for example.

These flags are ignored by other processor models.

Note
 See the RealView Debugger documentation for supported processors.
2-22 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
The FastBus flag is used by some cores such as ARM940T:

• If your system uses FastBus Mode, set FastBus=Yes for benchmarking.

• If you set FastBus=No, RVISS assumes that the memory clock is slower than the
core clock by a factor of the memory clock configuration value MCCfg. RVISS does
not model Asynchronous mode.

Note
 ARM925T only uses the same clock for both core and bus interface. MCCfg therefore has
no effect on an ARM925T.

The MMU flag is used to enable the MPU in processors with an MPU.

See also
• Application Note 51 ARMulator Cache Models

• Application Note 93 Benchmarking with ARMulator

• the Technical Reference Manual for your core.

2.6.3 Controlling registers 2 and 3

The following options apply only to processors with an MMU:

PageTableBase=0xA0000000
DAC=0x00000001

They control:

• the translation table base register (system control register 2)

• the domain access control register (system control register 3).

You must align the address in the translation table base register to a 16KB boundary.

2.6.4 Memory regions

The rest of the Pagetables configuration section defines a set of memory regions. Each
region has its own set of properties.

By default, a description of a two regions is contained in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The regions have the following items:
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-23

RVISS Basics
{ Region[0]
VirtualBase=0
PhysicalBase=0
Size=4GB
Cacheable=No
Bufferable=No
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}

{ Region[1]
VirtualBase=0
PhysicalBase=0
Size=128Mb
Cacheable=Yes
Bufferable=Yes
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}

You can add more regions following the same general form:

Region[n] Names the region n, starting with Region[0]. n is an integer.

VirtualBase This applies only to a processor with an MMU. It gives the address
of the base of the region in the virtual address space of the
processor. This address must be aligned to a 1MB boundary. It is
mapped to PhysicalBase by the MMU.

PhysicalBase The physical address of the base of the region. On a processor with
an MMU, this address must be aligned to a 1MB boundary.

On a processor with an MPU it must be aligned to a boundary that
is a multiple of the size of the region.

Size The size of this region. On a processor with an MMU Size must
be a whole number of megabytes. On a processor with an MPU,
Size must be 4KB or a power-of-two multiple of 4KB.

Cacheable Specifies whether the region is to be marked as cacheable. If it is,
reads from the region are cached.

Bufferable Specifies whether the region is to be marked as bufferable. If it is,
writes to the region use the write buffer.
2-24 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
Updateable This applies only to the ARM610 processor. It controls the U bit in
the translation table entry.

Domain This applies only to processors with an MMU. It specifies the
domain field of the table entry.

AccessPermissions Specifies the access controls to the region. See the processor
technical reference manual for more information.

Translate Controls whether accesses to this region cause translation faults.
Setting Translate=No for a region causes an abort to occur
whenever the processor reads from or writes to that region.

You must ensure that you do not define more regions than your target hardware
supports. At least one region must be defined.

2.6.5 Pagetable module and memory management units

Processors such as ARM720T™ and ARM920T have an MMU.

An MMU uses a set of page tables, stored in memory, to define memory regions. On
reset, the pagetable module writes out a top-level page table to the address specified in
the translation table base register. The table corresponds to the regions you define in the
Pagetables section of the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

For example, the default configuration details given in Memory regions on page 2-23
define the following page table:

• The entire address space, 4GB, is defined as a single region. This region is not
cacheable or bufferable. Virtual addresses are mapped directly to the same
physical addresses over the whole address space.

• The first 128MB of the address space is defined as a second region overlapping
the first. This region is cacheable and bufferable. Virtual addresses are mapped
directly to physical addresses.

They also set up the control registers as follows:

• The translation table base register, register 2, is initialized to point to this page
table in memory, at 0xA0000000.

• The domain access control register, register 3, is initialized with value 0x00000001.
This sets the access to the region as client.

• The M, C and W bits of the control register, register 1, are configured to enable
the MMU, cache, and write buffer. If the processor has separate instruction and
data caches, the I bit configures the instruction cache enabled.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-25

RVISS Basics
2.6.6 Pagetable module and memory protection units

Processors such as ARM740T and ARM940T have an MPU.

An MPU uses a set of protection regions. The base and size of each protection region is
stored in registers in the MPU. On reset, the page table module initializes the MPU.

For example, the default configuration details given above define a single region,
region 0. This region is marked as read/write, cacheable, and bufferable. It occupies the
whole address range, 0 to 4GB.

ARM740T MPU

For an ARM740T, the MPU is initialized as follows:

• The P, C, and W bits are set in the configuration register, register 1, to enable the
protection unit, the cache and the write buffer.

• The cacheable register, register 2, is initialized to 1, marking region 0 as
cacheable.

• The write buffer control register, register 3, is initialized to 1, marking region 0 as
bufferable.

• The protection register, register 5, is initialized to 3, marking region 0 as
read/write access. This is configured in the AccessPermissions line.

• The protection region base and size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and marking the region as enabled. The
protection region base and size register for region 0 is part of register 6. Register 6
is actually a set of eight registers, each being the protection region base and size
register for one region. See the technical reference manual for the processor for
more details.

• The protection region base and size register for region 1 is initialized to set the
size of region 0 as 128MB and enabled.

ARM940T MPU

For an ARM940T, the MPU is initialized as follows:

• The P, D, W, and I bits are set in the configuration register, register 1, to enable
the MPU, the write buffer, the data cache and the instruction cache.

• Both the cacheable registers, register 2, are initialized to 1, marking region 0 as
cacheable for the I and D caches. This is displayed in RealView Debugger as
0x0101, where:

— the low byte (bits 0..7) represent the data cache cacheable register

— the high byte (bits 8..15) represent the instruction cache cacheable register.
2-26 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
• The write buffer control register, register 3, is initialized to 1, marking region 0 as
bufferable. This applies only to the data cache. The instruction cache is read only.

• Both the protection registers, register 5, are initialized to 3, marking region 0 as
allowing full access for both instruction and data caches. This is displayed in
RealView Debugger as 0x00030003, where:

— the low halfword (bits 0..15) represent the data cache protection register

— the high halfword (bits 16..31) represent the instruction cache protection
register.

The first register value shown is for region 0, the second for region 1 and so on.

• The protection region base and size register for regions 0 and 1 are initialized to
mark the sizes of the regions and mark them as enabled. The protection region
base and size registers for all regions are part of register 6. Register 6 is really a
set of sixteen registers, each being the protection region base and size register for
one region. See the technical reference manual for the processor for more details.

• Register 7 is a control register. Reading from it is unpredictable. At startup
RealView Debugger shows a value of zero. It is not written to by the page table
module.

• The programming lockdown registers, register 9, are both initialized to zero. The
first register value shown in RealView Debugger is for data lockdown control, the
second is for instruction lockdown control.

• The test and debug register, register 15, is initialized to zero. Only bits 2 and 3
have any effect in RVISS. These control whether the cache replacement algorithm
is random or round-robin.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-27

RVISS Basics
2.7 Default memory model

The RVISS default memory model, flatmem, is a model of a zero-wait state memory
system. The simulated memory size is not fixed. Host memory is allocated in chunks of
64KB each time a new region of memory is accessed. The memory size is limited by
the host computer, but in theory all 4GB of the address space is available. The default
memory model does not generate aborts.

If you do not specify a mapfile, RVISS uses the default memory model. The default
memory model is not visible in RealView Debugger.

Note
 If you specify a mapfile, the mapfile does not replace the default memory model, but
sits between the memory model and the core, and inserts events, for example wait states
and aborts. The memory map defined in the map file is visible in the Mapfile tab of the
RealView Debugger Registers pane.

The default memory model routes memory accesses to memory-mapped peripheral
models as appropriate. Routing is based on configuration details you provide in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

or in another .ami file.
2-28 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.8 Memory modeling with mapfiles

This section describes RVISS memory modeling using map files.

2.8.1 Overview of memory modeling with mapfiles

mapfile is a memory model which you can configure yourself. You can specify the size,
access width, access type and access speeds of individual memory blocks in the memory
system in a memory map file.

RVISS simulates each memory access as it occurs. It counts wait states according to the
type of memory access.

The RealView Debugger internal variables @mapfile_symbolname and @stats_symbolname
give details of accesses of each cycle type, regions of memory accessed and time spent
accessing each region.

See also
• Map files on page 4-95

• RealView Debugger User Guide

• RealView Debugger Target Configuration Guide

• RealView Debugger Command Line Reference Guide.

2.8.2 Clock frequency

You can configure the clock frequency used by mapfile from the RealView Debugger
ARMulator Configuration dialog box.

The clock frequency is used to determine the number of wait states to be added to each
memory access, and to calculate time from number of cycles.

If you do not specify a clock speed, a value of 20MHz is used. If you specify a number
without units, the units are Hz. You can specify Hz, kHz, or MHz.

See also

• RealView Debugger Target Configuration Guide.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-29

RVISS Basics
2.8.3 Selecting the mapfile memory model

You specify a memory map file in the peripherals.ami configuration file, or your own
variant. RealView Debugger automatically applies the map memory model defined in
the file when you connect to the RVISS model.

See also

• Configuring the map memory model on page 2-31.

2.8.4 How the mapfile memory model calculates wait states

For nonsequential/sequential reads/writes to various regions of memory, the memory
map file specifies access times in nanoseconds. By inserting wait states, the map
memory model ensures that every access from the ARM processor takes at least that
long.

The number of wait states inserted is the least number required to take the total access
time over the number of nanoseconds specified in the memory map file. Consider this
when designing your system.

For example, with a clock speed of 33MHz (a period of 30ns), an access specified to
take 70ns in a memory map file results in two wait states being inserted, to lengthen the
access to 90ns.

If the access time is 60ns (only 14% faster) the model inserts only one wait state (33%
quicker).

A mismatch between processor clock-speed and memory map file can sometimes lead
to faster processor speeds having worse performance. For example, a 100MHz
processor (10ns period) takes five wait states to access 60ns memory (a total access time
of 60ns). At 110MHz, the map memory model must insert six wait states (a total access
time of 63ns). So the 100MHz-processor system is faster than the 110MHz processor.
(This does not apply to cached processors, where the 110MHz processor would be
faster.)

Note
 For accurate simulation of the real hardware, access times specified in the memory map
file must include propagation delays and memory controller decode time in addition to
the access time of the memory devices. For example, for 70ns RAM, if there is a 10ns
propagation delay, configure the map file as 80ns.
2-30 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.8.5 Configuring the map memory model

You can configure the map memory model to model several different types of memory
controller, by editing its entry in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The entry has the following items:

{ Default_Mapfile=Mapfile
AMBABusCounts=False
;SpotISCyles=True|False
SpotISCyles=True
;ISTiming=Late|Early|Speculative
ISTiming=Late
;MAPFILETOLOAD=<name>
}

Specifying a mapfile to load

You can specify a mapfile to load by replacing <name> in the MAPFILETOLOAD line with the
path and filename of the mapfile to load, and removing the commenting characters from
the line.

Counting AMBA decode cycles

You can configure the model to insert an extra decode cycle for every nonsequential
access from the processor. This models the decode cycle seen on some AMBA bus
systems. Enable this by setting AMBABusCounts=True in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

Merged I-S cycles

All ARM processors, particularly cached processors, can perform a nonsequential
access as a pair of idle and sequential cycles, known as merged I-S cycles. By default,
the model treats these cycles as a nonsequential access, inserting wait states on the
S-cycle to lengthen it for the nonsequential access.

You can disable this by setting SpotISCycles=False in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

However, this is likely to result in exaggerated performance figures, particularly when
modeling cached ARM processors.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-31

RVISS Basics
The model can simulate merged I-S cycles using one of the following strategies:

Speculative This models a system where the memory controller hardware
speculatively decodes all addresses on idle cycles. The controller can use
both the I- and S-cycles to perform the access. This results in one fewer
wait state.

Early This starts the decode when the ARM processor declares that the next
cycle is going to be an S-cycle, that is, half-way through the I-cycle. This
can sometimes result in one fewer wait states. (Whether or not there are
fewer wait states depends on the cycle time and the nonsequential access
time for that region of memory.)

This is the default setting. You can change this by setting ISTiming=Spec
or ISTiming=Late in peripherals.ami.

Late This does not start the decode until the S-cycle. In effect all S-cycles that
follow an I-cycle are treated as if they are N-cycles.

See RVISS cycle types on page 2-16 for details of merged I-S cycles.
2-32 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
2.9 Semihosting

Semihosting provides code running on an ARM target use of facilities on a host
computer that is running an RealView Debugger. Examples of such facilities include the
keyboard input, screen output, and disk I/O.

See RealView Compilation Tools Libraries and Floating Point Support Guide for more
details.

2.9.1 Semihosting configuration

The semihosting SVC handler configuration is controlled by a section in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The section has the following items:

{Default_Semihost=Semihost
; Demon is only needed for validation.
DEMON=False
ANGEL=TRUE
AngelSVCARM=0x123456
AngelSVCThumb=0xab
; And the default memory map
HeapBase=0x00000000
HeapLimit=0x07000000
StackBase=0x08000000
StackLimit=0x07000000
}

Note
 RealView Debugger overrides the AngelSVCARM and AngelSVCThumb settings.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-33

RVISS Basics
2.10 Peripheral models

RVISS includes several peripheral models. This section gives basic user information
about them.

Note
 The Stackuse model is not supported.

2.10.1 Configuring RVISS to use the peripheral models

Enable or disable each peripheral model by changing the relevant entry in your copy of
the file:

install_directory\RVARMulator\ARMulator\...\...\platform\default.ami

For example:

{ WatchDog=No_watchdog
}

can be changed to:

{ Watchdog=Default_WatchDog
}

Other peripheral models are controlled in the same way, using the No_ and Default_
prefixes to the peripheral names.

2.10.2 Configuring details of the peripherals

Configuration details for the peripheral models are in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami.

See also

• Configuring RVISS on page 2-6.

2.10.3 Interrupt controller

The interrupt controller is an implementation of the reference interrupt controller.

The configuration of the interrupt controller model is controlled by a section in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami
2-34 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
The section has the following items:

{ Default_Intctrl=Intctrl
WAITS=0
Range:Base=0x0a000000
}

Range:Base specifies the area in memory into which the interrupt controller registers are
mapped.

WAITS specifies the number of wait states that accessing the interrupt controller imposes
on the processor. The maximum is 30.

See also

• Interrupt controller on page 4-111.

2.10.4 Timer

The timer is an implementation of the reference timer. It provides two counter-timers.

The configuration of the timer model is controlled by a section in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The section has the following items:

{Default_Timer=Timer
WAITS=0
Range:Base=0x0a800000
;Frequency of clock to controller.
CLK=20000000
;; Interrupt controller source bits - 4 and 5 as standard
IntOne=4
IntTwo=5
}

Range:Base specifies the area in memory into which the timer registers are mapped.

CLK is used to specify the clock rate of the peripheral. This is usually the same as the
processor clock rate.

IntOne specifies the interrupt line connection to the interrupt controller for timer 1
interrupts. IntTwo specifies the interrupt line connection to the interrupt controller for
timer 2 interrupts.

WAITS specifies the number of wait states that accessing the timer imposes on the
processor. The maximum is 30.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-35

RVISS Basics
See also

• Timer on page 4-113.

2.10.5 Watchdog

Use Watchdog to prevent a failure in your program locking up your system. If your
program fails to access Watchdog before a predetermined time, Watchdog halts RVISS
and returns control to RealView Debugger.

Note
 This is a generic model of a watchdog timer. It is supplied to help users model their
system environment. It does not model any actual hardware supplied by ARM Limited.

The Watchdog configuration is controlled by a section in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The section has the following items:

{Default_WatchDog=WatchDog
Waits=0
Range:Base=0xb0000000
KeyValue=0x12345678
WatchPeriod=0x80000
IRQPeriod=3000
IntNumber=16
StartOnReset=True
RunAfterBark=True
}

Range:Base specifies the area in memory into which the watchdog registers are mapped.

This is a two-timer watchdog.

If StartOnReset is True, the first timer starts on reset. If StartOnReset is False, the first
timer starts only when your program writes the configured key value to the KeyValue
register. This is located at the address given in the Range:Base line (0xB0000000).

The first timer generates an IRQ after WatchPeriod memory cycles, and starts the second
timer. The second timer times out after IRQPeriod memory cycles, if your program has
not written the configured key value to the KeyValue register. Configure IRQPeriod to a
suitable value to allow your program to react to the IRQ.

If RunAfterBark is True, Watchdog halts RVISS if the second timer times out. You can
continue to execute, or debug.
2-36 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Basics
If RunAfterBark is False, Watchdog halts RVISS and returns control to RealView
Debugger.

IntNumber specifies the interrupt line number that Watchdog is attached to.

Waits specifies the number of wait states that accessing the watchdog imposes on the
processor. The maximum is 30.

When the Watchdog activates, execution stops and the following messages are
displayed in the StdIO tab of the RealView Debugger Output pane:

Fatal System Error: Watchdog timed out at cycle_count!!
Halting System to allow debug.
Watchdog has halted emulation and reset
the target.

After the Watchdog activates:

1. Reset the target to reset the timers.

2. Reload your image.

See also

• RealView Debugger User Guide.

2.10.6 Tube

The tube is a memory-mapped 4-byte register. If you write a printable character to each
byte, the characters appear in the StdIO tab of the RealView Debugger Output pane. It
enables you to check that writes are taking place to a specified location in memory.

The address at which the Tube is mapped is controlled by an entry in the file:

install_directory\RVARMulator\ARMulator\...\...\platform\peripherals.ami

The entry has the following items:

{Default_Tube=Tube
Range:Base=0x0d800020
}

This is the default address.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 2-37

RVISS Basics
Considerations when using tube

Be aware of the following:

• Semihosting must be enabled for the RVISS target.

• It is suggested that you also use Watchdog to prevent a failure in your program
locking up your system. You might want to set RunAfterBark=False to return
control back to RealView Debugger if, for example, your program gets into an
endless loop when writing to the memory mapped register.

• Tube intercepts writes to the specified address. Therefore, the characters do not
appear in the specified location in RealView Debugger Memory pane.

• Do not use the RVISS map file feature. If you do, then no characters are output.

See also
• Watchdog on page 2-36

• RealView Debugger User Guide.
2-38 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Chapter 3
Writing RVISS Models

This chapter is intended to assist you in writing your own models to add to RealView®
ARMulator® Instruction Set Simulator (RVISS). It contains the following sections:

• The RVISS extension kit on page 3-2

• Writing a new peripheral model on page 3-6

• Building a new model on page 3-9

• Configuring RVISS to use a new model on page 3-11

• Configuring RVISS to disable a model on page 3-13.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-1

Writing RVISS Models
3.1 The RVISS extension kit

You can add extra models to RVISS without altering the existing models. Each model
is self-contained, and communicates with RVISS through defined interfaces. The
definition of these interfaces is in Chapter 4 RVISS Reference.

3.1.1 Location of files

The RVISS extension kit contains the source code of some models. You can make
copies of these models, and modify the copies.

Location of source files

The source code of the models for you to copy is supplied in:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armulext

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

Location of header files

Header files are supplied in:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armulif

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.
3-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
Location of makefiles

Makefiles are supplied in:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armulext\model.b\tar

get

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• model is the model name. For example, millisec.b is the directory for the
peripheral model millisec that implements a simple millisecond timer counter.

• target is:

— intelrel for Windows

— linux86 for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

Use these files as examples to help you write your own models. To help you choose
suitable models to examine, this chapter includes a list of them with brief descriptions
of what they do (see Supplied models on page 3-4).

Example code is supplied in:

 $ARMROOT\RVARMulator\ExtensionKit\...\...\platform\armulext\

The libraries that this example code links against are supplied in one of:

• $ARMROOT\RVARMulator\ExtensionKit\...\...\platform\armulif\armulif.b\platform\

• $ARMROOT\RVARMulator\ExtensionKit\...\...\platform\clx\clx.b\platform\

• $ARMROOT\RVARMulator\ExtensionKit\...\...\platform\rdi\rditools.b\platform\

You must ensure that the makefile contains the correct build options for linking against
RVISS.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-3

Writing RVISS Models
3.1.2 Supplied models

RVISS is supplied with source code for the following groups of models:

• basic models

• peripheral models.

Basic models

tracer.c The tracer module can trace instruction execution and events from within
RVISS (see Tracer on page 4-93). You can link your own tracing code
onto the tracer module.

profiler.c Not supported by RealView Debugger. However, you can use RealView
Debugger tracing to capture profiling information.

See the RealView Debugger Trace User Guide for more details.

pagetab.c On reset, this module sets up cache, MPU or MMU and associated
pagetables inside RVISS (see Pagetable module on page 2-21).

nothing.c This model does nothing. You can use this in the peripherals.ami file to
disable models (see Configuring RVISS to disable a model on page 3-13).

semihost.c This model provides the semihosting SVCs described in RealView
Compilation Tools Libraries and Floating Point Support Guide.

dcc.c This is a model of a Debug Communications Channel (DCC).

mapfile.c This model enables you to specify the characteristics of a memory
system. See Map files on page 4-95 for more information.

flatmem.c flatmem models a zero-wait state memory system. See Default memory
model on page 2-28 for more information.

validate.c validate is a coprocessor model used for validation with some cores. It
can generate delayed IRQ and FIQ signals, for example.

Peripheral models

intc.c See Interrupt controller on page 2-34. intc is a model of the
interrupt controller peripheral described in the Reference
Peripherals Specification (RPS).

timer.c See Timer on page 2-35. timer is a model of the RPS timer
peripheral. Two timers are provided. timer must be used in
conjunction with an interrupt controller, but not necessarily intc.
3-4 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
millisec.c A simple millisecond timer.

watchdog.c Watchdog. See Watchdog on page 2-36. watchdog is a generic
watchdog model. It does not model any specific watchdog
hardware, but provides generic watchdog functions.

tube.c Tube. See Tube on page 2-37. tube is a simple debugging aid. It
enables you to check that writes are taking place to a specified
location in memory.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-5

Writing RVISS Models
3.2 Writing a new peripheral model

This section describes how to write a new peripheral model.

3.2.1 Using a sample model as a template

To write a new model, the best procedure is to copy one of the supplied models and then
edit the copy. To do this:

1. Select which model is closest to the model you want to write. This might be, for
example, Timer.

2. Copy the source file, in this case timer.c, with a new name such as mymodel.c.

3. Copy the make subdirectory, in this case timer.b, with a corresponding new name,
in this case mymodel.b.

4. Find the Makefile for your model (see Location of files on page 3-2).

Load Makefile into a text editor and change all instances of timer to mymodel.

You can now edit MyModel.

Note
 Although some of the ARM11 hardware processors are AXI, the bus modeling is not
accurate enough to differentiate between AHB and AXI accesses. Therefore, you must
use the ARMul_MemType_ARMissAHB memory type when building peripheral models for all
ARM11 processor models (ARM1136, ARM1156, ARM1176, and MPCore™).

3.2.2 Return values

A model must return one of the following states for memory accesses:

PERIP_OK If the model is able to service the request.

PERIP_BUSY If a memory access requires wait-states. A model must not return
this state to a debugger access.

PERIP_DABORT If a peripheral asserts the DABORT signal on the bus.

PERIP_NODECODE If the model has been called with an address which belongs to it,
but which has no meaning to it. The memory model handles the
call as a memory access.
3-6 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
3.2.3 Initialization, finalization, and state macros

To help you to write new RVISS models, the following macros are provided in
minperip.h:

• BEGIN_INIT()

• END_INIT()

• BEGIN_EXIT()

• END_EXIT()

• BEGIN_STATE_DECL()

• END_STATE_DECL().

Use the following to define an initialization function for your model:

BEGIN_INIT(your_model)
{
 /*
 * (your initialization code here)
 */
}
END_INIT(your_model)

Use the following to define a finalization function for your model:

BEGIN_EXIT(your_model)
{
 /*
 * (your finalization code here)
 */
}
END_EXIT(your_model)

The BEGIN_INIT() macro allocates a structure to hold any private data used by your
model, and the END_EXIT() macro frees it. Declare the data structure using:

BEGIN_STATE_DECL(your_model)
 /*
 * (your private data here)
 */
END_STATE_DECL(your_model)

The data type is your_modelState.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-7

Writing RVISS Models
3.2.4 Registering your model

You can register your model in the following ways:

• If you are writing a peripheral model that is designed to hang off a bus-decoder,
the model should call registerPeripFunc(). This enables RVISS to call your
model with accesses to memory locations that belong to your model. The
bus-decoder is generally implemented by the end-of-chain memory, Flatmem, and
ensures that the peripheral will be called for the range of addresses that it is
registered for. An example of this is shown in the millisec.c file that is supplied
with the examples See ARMul_BusRegisterPeripFunc on page 4-79.

• If you are writing an end-of-chain memory you must do one of the following:

— use ARMulif_InsertMemInterface() at a point just above Flatmem to intercept
all calls to Flatmem and don't pass them on

— change your configuration to load your own .dll file instead of Flatmem.

• If you are implementing a new tracer, then this usually inserts itself between the
core and cache to intercept all L1 memory accesses. The source code for the tracer
is supplied with the examples so that you can see how it does this.
3-8 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
3.3 Building a new model

RVISS finds its configuration files by looking for the .dll, .so or .sdi files along the set
of paths in the ARMCONF environment variable. These paths are automatically set up by
the installer. RVISS usually expects to find models in the executable path:

install_directory\RVARMulator\ARMulator\...\...\platform

When you build a new model, you must do one of the following:

• place it along the path set up by the installer. This is usually
$ARMROOT\RVARMulator\ARMulator\...\...\platform

• append or prepend the directory containing the library (not the name of the
library) to ARMDLL.

In paths referred to in this chapter:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• mymodel is the name you have given the new model.

• target is:

— intelrel for Windows

— linux86 for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

RVISS uses the first .dll that it finds.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-9

Writing RVISS Models
3.3.1 How to build a new model

To build your new model:

1. Change your current directory to the build_path for your system.

2. Build the model using the make utility installed on your system. This might be
one of:

• nmake for Windows

• make or GNU make for Red Hat Linux.

The file is placed in the directory that contains the makefile.

Note
 For clarity, the executable and build paths are referred to in this section as

exec_path and build_path. See Building a new model on page 3-9 for the full path
name.

3. Move the built file from the build_path to the exec_path. Depending on your
system, the filename is:

• on Windows, mymodel.dll

• on Red Hat Linux, mymodel.so.

Note
 If your makefile invokes Microsoft Visual Studio, you must use Version 6 (not an earlier
or a later version). You must also recompile any existing plugins with this version.

Example code is supplied in:

$ARMROOT\RVARMulator\ExtensionKit\...\...\platform\armulext\
3-10 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
3.4 Configuring RVISS to use a new model

RVISS determines which models to use by reading the .ami and .dsc configuration files.
See RVISS configuration files on page 4-99.

Before a new model can be used by RVISS, you must add a .dsc file for your model,
and references to it must be added to the configuration files default.ami and
peripherals.ami.

3.4.1 Adding a .dsc file

Create a file called MyModel.dsc and place it in the ARMCONF environment variable.

install_directory\RVARMulator\ARMulator\...\...\platform

MyModel.dsc must contain the following:

;; ARMulator configuration file type 3
{ Peripherals
 {MyModel
 MODEL_DLL_FILENAME=MyModel
 }
 { No_MyModel=Nothing
 }
}

You do not need to supply a file extension for the MyModel.dsc file in ToolConf. Naming
the filename without an extension ensures that your model works on all platforms. If
you want to supply an extension, the file will be called either MyModel.dll or MyModel.so,
depending on your system. see How to build a new model on page 3-10):

• MyModel.dll

• MyModel.so.

Either of these can be renamed to MyModel.sdi. Your build system then creates a file with
the appropriate file extension.

Nothing is a predefined model that does nothing. The No_MyModel=Nothing line enables
the use of No_MyModel in a .ami file. This enables a user to configure RVISS to exclude
your model (see Configuring RVISS to disable a model on page 3-13).

You can include other configuration details in your MyModel.dsc file if required. For
examples, see the supplied .dsc files in:

install_directory\RVARMulator\ARMulator\...\...\platform
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-11

Writing RVISS Models
Note
 You can keep your model files in a separate directory if required. This enables you to
use a network installation of RVISS without causing problems with other users who are
using different models. This also ensures that your files still work if a newer version of
RVISS is installed.

3.4.2 Editing default.ami and peripherals.ami

This description assumes that your model was based on Timer:

1. Load the default.ami file into a text editor, and find the following lines:

{Timer=Default_Timer
}

2. Add the reference to your model:

{Timer=Default_Timer
}

{MyModel=Default_MyModel
}

3. Save your edited default.ami file.

4. Load the peripherals.ami file into a text editor, and find the Timer section:

{ Default_Timer=Timer
.
.
.
}

5. Using this as an example, add a configuration section for your model. Depending
on how much your model differs from Timer, it might be easiest to edit a copy of
the Timer section.

6. Save your edited peripherals.ami file.
3-12 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Writing RVISS Models
3.5 Configuring RVISS to disable a model

You can disable a model by changing its entry in peripherals.ami. For example, to
disable the Tube model:

1. Find the following lines in peripherals.ami:

{Default_Tube=Tube
Range:Base=0x0d800020
}

2. Change them to read:

{Default_Tube=No_Tube
Range:Base=0x0d800020
}

This uses the nothing.c model to override the tube.c model. nothing ignores any
configuration details such as Range:Base.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 3-13

Writing RVISS Models
3-14 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Chapter 4
RVISS Reference

This chapter gives reference information about RealView® ARMulator® Instruction Set
Simulator (RVISS). It contains the following sections:

• SimRdi_Manager interface on page 4-3

• RVISS models on page 4-21

• RVISS model insertion on page 4-22

• Communicating with the core on page 4-26

• Basic model interface on page 4-35

• The memory interface on page 4-37

• Memory model interface on page 4-40

• Coprocessor model interface on page 4-50

• Exceptions on page 4-61

• Events on page 4-64

• Memory access functions on page 4-73

• Event scheduling functions on page 4-75

• General purpose functions on page 4-76

• Accessing the RealView Debugger on page 4-88

• Tracer on page 4-93

• Map files on page 4-95
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-1

RVISS Reference
• RVISS configuration files on page 4-99

• ToolConf on page 4-105

• Reference peripherals on page 4-111.
4-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.1 SimRdi_Manager interface

RealView Debugger enables you to connect to RVISS models using a RealView
Connection Broker interface. An intermediate interface is required to interface the
various RVISS modules and RealView Connection Broker. This intermediate interface
is called SimRdi_Manager. SimRdi_Manager does not enable RVISS models to
manipulate the RealView Connection Broker interface directly. Instead the interface
presents several services that models can call or register against.

Note
 Although RealView Debugger does not support the Remote Debug Interface (RDI) for
hardware targets, this interface is still supported.

4.1.1 Using the SimRdi_Manager interface

During initialization an RVISS model must install a listener to wait for an
announcement from SimRdi_Manager. When the listener is called the model must
register with SimRdi_Manager.

When you create an RVISS model that communicates through RealView Connection
Broker, you must decide on the services that your model is to provide. Your model must
notify SimRdi_Manager which services it is providing.

See also
• Connections to RVISS in RealView Debugger on page 2-3

• Supported SimRdi_Manager services on page 4-5

• Adding a SimRdi_Manager listener on page 4-6

• Advertising the SimRdi_Manager services provided by your model on page 4-9

• RealView Debugger Target Configuration Guide.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-3

RVISS Reference
4.1.2 Header files

The interfaces that models use to interface to SimRdi_Manager are kept in the following
directory of the rebuild kit:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armulif

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

These interfaces are:

simrdi_registration_event.h

An interface for models to determine whether or not RVISS is being
controlled by SimRdi_Manager.

uniregs_registration_event.h

If you are writing a replacement standard ARM® coprocessor without
defining non-coprocessor registers, then include this file.

mini_simrdi_manager.h

The main header file that you must include. It provides anything else that
is required.

tmgrem.h An internal header file. The following enumerations and unions in this
file are useful (see Stopping RVISS on page 4-18 for details):

• REGVAL

• STATUS_INFO

• GEN_SIGNALS

• STATUS_MODE.

Note
 Do not use any other enumerations, unions, macros, or structures in this

file.
4-4 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.1.3 Supported SimRdi_Manager services

The services supported by the SimRdi_Manager are:

Global break conditions

These are the concept of a synchronous event that is not tied to a specific
address. For example, the exceptions Reset and Undefined Instruction are
already automatically registered as Global Breaks in SimRdi_Manager.

See Global break service on page 4-11 for details on how to advertise this
service.

Adding registers

Models with registers that users can interrogate and potentially write to
can expose those registers. Normally these symbols are named @name. You
are strongly encouraged to expose the internal state of models in this way.

See Register services on page 4-12 for details on how to advertise this
service.

Adding register window tabs

If you add registers, then depending on how you add them, they might
automatically appear in the register window. Otherwise, if you want them
to appear in the register window you must explicitly write a register
window tab structure to do this and expose it to SimRdi_Manager.

See Register windows service (regwin) on page 4-16 for details on how to
advertise this service.

Note
 Currently, a model can use only these three SimRdi_Manager services. The remaining
services are for future releases of RVISS, and are offered only as comments in the
header files, with no support by ARM Limited.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-5

RVISS Reference
4.1.4 Adding a SimRdi_Manager listener

For your RVISS model to communicate through the RealView Connection Broker, it
must register with SimRdi_Manager, and advertise the services it can provide. See
Advertising the SimRdi_Manager services provided by your model on page 4-9 for more
information on how to advertise the services provided by your model.

To add a SimRdi_Manager listener:

1. Define a listener function, for example, Model_SimRdi_Listener.

2. Register the listener function using ARMulif_InstallSimRdiRegistration().

The prototype for the ARMulif_InstallSimRdiRegistration() function is in the header
file simrdi_registration_event.h. This file is automatically included if you include the
header file mini_simrdi_manager.h. See ARMulif_InstallSimRdiRegistration on page 4-8
for more details.

The listener is passed a structure of type SimRdiRegistrationProcVec and the handle that
was passed into ARMulif_InstallSimRdiRegistration().

SimRdiRegistrationProcVec contains:

• a signature that SimRdi_Manager checks for you

• a toolconf that you can use as required

• pointers to structures containing methods.

The number of these last elements is also in this structure so that more can be added
later and the model can check that a particular pointer it requires is there.

In this release, only two members are defined:

SimRdiProcVec* simrdiprocvec;
This is the interface to the SimRdi_Manager.

UniregsRegistration* uniregsprocvec;
An abbreviated interface that is simpler to use for those models that are
implementing or re-implementing the standard ARM coprocessors.

Example 4-1 on page 4-7 shows a skeleton SimRdi_Manager listener.
4-6 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
Example 4-1 Skeleton SimRdi_Manager listener

void Model_SimRdi_Listener(SimRdiRegistrationProcVec *registration,void *handle)
{

/* typically a model must first check that the service it wants
 is in the registration. */
if (registration->number < 1)

return; /* no services available! */
else
/* registration->simrdiprocvec is an interface to

SimRdi_Manager, typically a model would now save this
pointer in its state, which people usually choose to
pass in as handle.
simrdiprocvec will *not* move in memory so it is safe to
store it. */

{
Model_State *state = (Model_State*)handle;
state->srpv = registration->simrdiprocvec;
...; /* go on to register services it can provide against

SimRdi_Manager using the methods in simrdiprocvec */
}

}

The structure SimRdiProcVec is defined in the header file mini_simrdi_manager.h.

A model advertises to SimRdi_Manager the services it provides by requesting an
advert, filling in the advert, and then advertising the advert. The SimRdiProcVec contains
pointers to functions to do this.

For example, you might have a service called service and if srpv is a variable holding
a pointer to a SimRdiProcVec, then srpv->service is a structure containing methods that
enable you to manipulate the service.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-7

RVISS Reference
ARMulif_InstallSimRdiRegistration

This prototype function installs an unknown RDIInfo handler that captures a specific
RDIInfo call that has been defined for this purpose.

Syntax

void ARMulif_InstallSimRdiRegistration(RDI_ModuleDesc* coredesc,
SimRdiRegistrationListener* func,
void* handle_to_pass_to_listener);

where:

coredesc Used in multicore systems to describe the core it is connected to.

func The listener function, for example, Model_SimRdi_Listener. See
SimRdiRegistrationListener for details.

handle_to_pass_to_listener

The handle of the unknown RDIInfo handler that is to be passed to the
listener function.

SimRdiRegistrationListener

The prototype for a listener function that is registered with SimRdi_Manager using the
ARMulif_InstallSimRdiRegistration function.

Syntax

typedef void SimRdiRegistrationListener(
 SimRdiRegistrationProcVec* registration,
 void* handle);

where:

registration The services available in the version of SimRdi_Manager that calls the
listener function.

handle The handle specified in the ARMulif_InstallSimRdiRegistration function.
4-8 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.1.5 Version information

By examining the version information in SimRdiProcVec->version->major and
SimRdiProcVec->version->minor, the model can determine what version of the
SimRdiProcVec it is using, and if the service exists in that version:

• a major number revision means that the model is incompatible with this version
of SimRdiProcVec

• a minor revision number greater than or equal to the one that the model knows
about means that the service exists.

When a model is compatible with the SimRdiProcVec version, the service provided by the
model exists. Therefore, the model can safely obtain the version number of the service
using:

srpv->service->version;

To obtain the major version number use srpv->service->version & 0x0000FF00.

To obtain the minor version number use srpv->service->version & 0x000000FF.

Note
 The top 16 bits are reserved.

The interpretation of the major and minor numbers of the service version are the same
as that of SimRdiProcVec. That is, where the major revision number has changed, the
service must not be used. However, a minor revision number greater than or equal to the
one that the model knows about is compatible, and the service can be used safely.

4.1.6 Advertising the SimRdi_Manager services provided by your model

During the initialization, your RVISS model must notify SimRdi_Manager which
services it is providing (see Supported SimRdi_Manager services on page 4-5). You do
this by creating adverts.

To request an advert call srpv->service->c_new(srpv->service). SimRdi_Manager
populates the advert with default values. If a peripheral model was created with a lower
version than your current SimRdi_Manager, then the peripheral model alters only those
fields in the advert that it knows about. Therefore, SimRdi_Manager can determine the
version of SimRdi_Manager that was used to build the peripheral model by checking
the unaltered fields.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-9

RVISS Reference
A typical sequence during model initialization is:

SimRdi_Service_Advert *ad = srpv->service->c_new(srpv->service);
state->saved_advert_id = ad->x.id; /* save id of advert */
...; /* fill out advert */
srpv->service->advertise(srpv->service, ad);
ad = NULL; /* do not assume that ad is still valid */

Then during destruction of the model it calls:

if (advertised_a_service)
{

srpv->service->destroy(srpv->service, state->saved_advert_id);
}

Each advert has a structure x that is of type SimRdi_Advert_Base. This type has standard
fields that you can fill in:

name The name of the advert, useful for debugging purposes.

id A unique identifier for the advert that can be used to destroy the advert
when the model exits. After the advert has been advertised, you must not
assume that the pointer to the advert remains valid. SimRdi_Manager is
free to move the advert to optimize access to it.

handle Data that is specific to the model. You can choose how you use this field.

coredesc If the model is attached to a single processor then the model can include
a core description for the processor that instantiated it. This is required in
multiprocessor systems to identify the core that the model belongs to.

Note
 Multiprocessor models are not available in this release. However, filling

in this field ensures that your model works with a multiprocessor RVISS
when this feature is available.

simrdi_manager_data

Private data to SimRdi_Manager.

Note
 You must not modify this.

config_flags The interpretation of these flags depends on the type of the advert.
Typically some of the bits are used to sort the adverts for a particular
service. Also a bitwise OR of all the adverts registered for a particular
service is available in the srpv->service structure.
4-10 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
notice Is reserved for future expansion, and is set to NULL.

4.1.7 Global break service

A global break service represents the concept of a synchronous condition that cannot
necessarily be assigned to an address. Examples are the processor exceptions, undefined
instruction, and supervisor call.

Global breaks are advertised through the type SimRdi_Global_Breaks_Advert, which has
the following members that the model must fill in:

x The base advert that the model populates.

len The number of strings in the global_breaks array.

global_breaks

A list of strings that describe the global break. These strings appear in the
Processor Events dialog box.

handle_for_function

Passed as an argument to the simrdi_global_breaks function. The
function must return either SIM_REGISTER_ACCESS on error or SIM_OK on
success.

simrdi_global_breaks

A function that is called to turn global breaks on and off, and to determine
the current state of the global breaks.

start_global_number

A pointer to an int that is filled in the global break number of the first
global break in global_breaks. They are numbered consecutively from
*start_global_number. The position pointed at must remain valid for the
lifetime of the model.

When a global break happens, and it is enabled, then the model uses as the global break
handle *start_global_number+i for the global break described by the string
global_breaks[i].

Note
 The model must stop the simulation if the global break is enabled, see Stopping RVISS
on page 4-18.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-11

RVISS Reference
4.1.8 Register services

A model might have internal state that is to be exposed to the user. For example, a
memory-mapped peripheral might want to provide a view of the state of the peripheral
other than relying on the user examining the memory interface of the peripheral directly.

SimRdi_Manager has a unified register space, called Uniregs, that is split into blocks.
These blocks are enumerated and named in armulif/uniregs_registration_event.h.
The standard ARM coprocessors and cores occupy the first 32 blocks (0...31), and
blocks 32 (uniregs_armulator) to 63 (uniregs_armulator_top) are reserved for use by
simulators.

When a model wants to expose some registers it fills out one or more
SimRdi_Uniregs_Adverts types. This type has the following members:

x The base advert which the model must fill in as defined above.

description A reasonably short description of the register set. This can be used by the
autogenerator of register window tabs (see Autogenerated register
window tabs on page 4-17).

sdm_me Reserved, and must be left NULL.

block_num The block to register against, and must be one of the block names defined
in uniregs_registration_event.h between uniregs_armulator and
uniregs_armulator_top.

config_flags The adverts in a block are sorted by config_flags and UNIREGS_SORT_MASK.
If the UNIREGS_DO_NOT_AUTO_GENERATE_REG_WIN bit is set then the register is
not automatically displayed (see Autogenerated register window tabs on
page 4-17).

len The number of registers being exposed by this advert.

desc An array of descriptions for the registers being exposed by the model.
The length of this array is specified by len.

handle_for_function

The handle that is passed to the _SimReg function.

_SimReg The function that reads and writes the registers. The type of this function
is SimabsRegisterAccess:

typedef SIM_ERR SimabsRegisterAccess(void *handle,
 bool_int reg_read,
 uint32 reg_num,
 REGVAL *regval, uint16 size);

handle The handle_for_function from the advert.
4-12 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
reg_read True for a read, or False for a write.

regval The register value.

size The size of the register in bytes.

The register corresponding to description desc[i] (0<=i<len) is passed as
reg_num, and is given by:

reg_num = (ad->reg_numbers == NULL)
? (i + ad->start_reg_number)

 : reg_number[i];

Therefore, if the register numbers in your model are not consecutive you
can have SimRdi_Manager give you the correct numbers without having
to map them.

The maximum size of registers is 32 bits and they can be read or written
in host-endian format. Normally, using memcpy suffices, but a model can
use regval->reg32 for 32 bit quantities.

Note
 A future version of SimRdi_Manager might enable you to change the

maximum size of registers.

Returns SIM_OK on success, or SIM_REGISTER_ACCESS on error.

read and write

Must not be used by you, because they are used by the RVISS
coprocessors. Leave these set to NULL.

Register definitions

The registers are described using the Register_Definition type whose members are:

size The size in bytes of the register.

change_case Set this to one of the following:

EECHGCASE_UP
The uppercase version of the register symbol name is accepted
in addition to the exact register name.

EECHGCASE_DOWN
The lowercase version of the register symbol name is accepted
in addition to the exact register name.

EECHGCASE_NOT
Only the exact register name is accepted.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-13

RVISS Reference
type One of TYPE_SIGNED_CHAR, TYPE_UNSIGNED_CHAR, TYPE_SIGNED_SHORT_INT,
TYPE_UNSIGNED_SHORT_INT, TYPE_SIGNED_LONG or TYPE_UNSIGNED_LONG.

name The symbol name of the register. By convention it starts with the @
symbol and must only contain alphanumeric characters, _, @, and $.

buttonName The name that appears in the register window if the model asks for it to
be exposed. The buttonName must be padded to the right with spaces to
make it a fixed length long. This means that the register values all line up
when shown in the register window. Typically, a model pads the string to
a length that is the same length as the longest unpadded buttonName that
it wants to expose.

flags Set this to one of the following:

0 read/write

1 read-only

2 write-only

reg_map Reserved. Leave this set at zero.

Block numbers

Block numbers are used to group adverts for particular kinds of register together.
Current block numbers are defined in uniregs_registration_event.h:

uniregs_armulator

Reserved.

uniregs_general_regs_export

Put in this block any register that does not seem to fit anywhere else.

uniregs_model_debugging_registers

This block is not intended for end users to see. Put registers in here that
you find useful while debugging the model code but do not want end
users seeing.

Note
 For the registers in this model to be available you must set the

ARM_VERBOSE environment variable as follows:

ARM_VERBOSE=simrdi_manager:show_all_blocks_in_regwin

If you have an RealView Connection Broker process running you must
restart it to ensure that it recognizes the new value for ARM_VERBOSE.
4-14 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
uniregs_cycle_counters

This block contains the cycle counter for the model. For example, the
cycle counter provided by the memory callback is always the top one in
this block. This is because the cycle counter sorting bits of config_flags
are all set and the counter gets sorted first. The cycle counters provided
by the model are sorted last (corresponding to RealView Debugger
@stats_symbolname symbols).

uniregs_peripherals

This block contains peripherals/models that are tied to a particular
processor.

uniregs_shared_peripherals

This block contains peripherals that are shared between many cores on a
multi-core platform.

uniregs_shared_buses

Registers relating to shared buses.

uniregs_extensions

Those modules that are not peripherals but are general extensions can put
their registers here.

uniregs_shared_extensions

Modules that are extensions that are not tied to a particular core in
multi-core systems must go here.

The symbols in blocks are only exported if they exist in the list srpv->blocks_to_export,
that is an array of maximum length srpv->blocks_to_export_len. This is a list of block
numbers terminated by a block number of -1.

During the debugging of models it might be useful to set the ARM_VERBOSE environment
variable to simrdi_manager:show_all_blocks_in_regwin. This forces all blocks to be
exported.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-15

RVISS Reference
4.1.9 Register windows service (regwin)

The register windows service (regwin) service of SimRdiProcVec lets you define your
own register tabs. Each advert can only register a single tab and it contains a pointer to
a type RegWin that is a typedef to structure REG_WIN.

The REG_WIN structure has the following members:

tab_name The format short_name,long_name. short_name is what appears on the tab,
long_name is what appears in the tool tip, or when you right-click on the
tab.

lines An array of lines. The format for lines is:

“_text” An uninterpreted description line.

“$+” Expansion block (the little + button that you push to expose
more registers), the default for this is normally closed. The
following line must be a “_text” line that names this block.

“$-” Expansion block, normally open. Again the following line
must be a "_text" line.

“=name” Corresponds to one of the register names that has been added
through the register adverts, for example, @model_register.
The name that appears in the window is the buttonName field of
the Register_Definition structure.

Note
 Each buttonName must be padded with spaces if you want the

values to line up.

“name” Only the value appears.

Note
 None of the strings in these arrays must contain tab or new-line

characters.

line_cnt Number of lines in lines.

enum_cnt Reserved. Set to zero.

enum_list Reserved. Set to NULL.
4-16 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
Autogenerated register window tabs

SimRdi_Manager automatically generates an entry for the variables in a register tab that
corresponds to a specific block when both these conditions exist:

• the config_flags of the variables do not have the following bit set (in
uniregs_registration_event.h):

UNIREGS_DO_NOT_AUTO_GENERATE_REG_WIN

• the block number appears in the blocks_to_export list in the SimRdiProcVec.

Each advert is converted to an expansion block, that is open by default, and the
description field of SimRdi_Uniregs_Advert is used as the expansion name of the block.

Note
 If you want to alter the order of tabs that appear in the window, then use the reg_numbers
field of the advert to reorder them. The order in the reg_numbers array is the order they
appear in the register window.

The adverts and, therefore, the order of expansion groups, can be changed by altering
the bits of config_flags & UNIREGS_SORT_MASK.

Note
 Currently only the uniregs_cycle_counters block has a special interpretation of the sort
order of adverts, but in the future ARM Limited might add special interpretations to
other blocks. Suggestions for the use of each block are provided in the comments in
uniregs_registration_event.h.

If your model is to expose many registers, or requires expansion blocks, then your
model must create its own register window. The autogenerate facilities are provided
only as a way of preventing tab-proliferation.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-17

RVISS Reference
4.1.10 Other members of SimRdiProcVec

SimRdiProcVec is the structure that SimRdi_Manager-aware modules see. This structure
contains:

agent The agent handle for the system.

armulator_handle

The handle for RVISS. The use of this is discouraged as it does not enable
multiprocessor systems to work. Normally, models have other ways of
obtaining the related core module handle and procvec (if they have access
to a coredesc then it contains both).

armulator The procvec for RVISS.

sim_handle Some more advanced methods that callback through RealView
Connection Broker require a handle. None of these methods are available
for users in this release.

little_endian

True if RealView Debugger believes that the target is little-endian.

really_little_endian

True if the target is little-endian.

target_is_executable

True if the target is currently executable. The user setting the PC or
resetting the processor changes this from False to True. If your model
changes the state of the model then it can change this to True or False as
required.

Note
 More elements are included, but these are either intended to be used solely by ARM
Limited, or to be made available in future releases. Use of any of these features is not
supported by ARM Limited, and there is no guarantee to support them in future
releases. However, the calls and structures explicitly mentioned in this document are
supported.

4.1.11 Stopping RVISS

To stop RVISS, your model must call the stop_simulation() member of SimRdiProcVec.
Before your model calls this function, it must provide a reason why it is stopping. This
is done by filling out the stop_info structure and by setting stop_reason_valid to True.
4-18 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
The STATUS_INFO structure is declared in tmgrem.h where more detailed information is
available, and it has the following members:

detail Holds extra information depending on the value of the mode field.

mode Set this to one of the values specified by STATUS_MODE. Commonly used
values are:

SMODE_UNKNOWN
Unknown reason.

SMODE_SIG
An exception, signal, or other event stopped RVISS. The
detail field contains a reason for stopping. See Built-in stop
reasons on page 4-20 for a list of built-in stop reasons.

SMODE_SIG_MEM
An exception on memory stopped RVISS. The detail field
contains a reason for stopping. See Built-in stop reasons on
page 4-20 for a list of built-in stop reasons.

SMODE_GLOBRK
A global break stopped RVISS. The detail field contains the
global break handle as described in the section on global break
adverts.

trip_page If you know the address of the reason for the stop then set this to 0.
Otherwise set this to 0xFFFFFFFF.

trip_addr If you know the address of the reason for the stop then set this to the
address. Otherwise set this to 0xFFFFFFFF.

If the target gets into a state where it cannot execute:

1. Set mode to SMODE_SIG.

2. Set detail to OSIG_BADSTATE (see Table 4-1 on page 4-20).

3. Clear the srpv->target_is_executable flag.

If your model outputs an error message through the host interface:

1. Set mode to SMODE_SIG.

2. Set detail to OSIG_ERROR_MSG (see Table 4-1 on page 4-20).
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-19

RVISS Reference
Built-in stop reasons

The built-in reasons for stopping begin with the prefix OSIG_, and they are declared in
the enumeration GEN_SIGNALS in tmgrem.h. The reasons are listed in Table 4-1.

Table 4-1 Built-in stop reason values

Reason value Description

OSIG_USER_HALT Halted by user action

OSIG_EMU_STOP Stop from emulator

OSIG_ILL_OP Illegal instruction

OSIG_MEM_VIOL Memory access violation

OSIG_TIME_OUT Time-out from emulator

OSIG_NO_POWER No target power detected

OSIG_BUSY Target not responding because it is busy

OSIG_ERROR Unknown error

OSIG_ERROR_MSG Error from target

OSIG_RESET Reset of target

OSIG_ABORT Aborted

OSIG_BADSTATE Bad state

OSIG_BUSERR Bus error

OSIG_INT Interrupt

OSIG_TRAP Trap to use

OSIG_ANA_FULL Analyzer full

OSIG_ANA_TRIG Analyzer triggered

OSIG_GLOBRK Global break detected

OSIG_BRANCH Control flow breakpoint

OSIG_REGBRK Register breakpoint
4-20 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.2 RVISS models

RVISS comprises a collection of models that simulate ARM architecture-based
hardware. They enable you to benchmark, develop, and debug software before your
hardware is available. See Accuracy on page 2-2 for information on the limitations of
RVISS models.

4.2.1 Configuring models through ToolConf

RVISS models are configured through ToolConf. ToolConf is a database of tags and
values that RVISS reads from configuration files (.dsc and .ami files) during
initialization (see ToolConf on page 4-105).

A number of functions are provided for looking up values from this database. The full
set of functions is defined in:

install_directory\RVARMulator\ARMulator\...\...\clx\toolconf.h

For Windows replace \ with /.

All the functions take an opaque handle called a toolconf.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-21

RVISS Reference
4.3 RVISS model insertion

Models must register themselves with RVISS, otherwise RVISS cannot call them when
required.

4.3.1 Example 1: RVISS without the Mapfile and Tracer inserted

Figure 4-1 shows an example structure of RVISS. This example includes both Mapfile
and Tracer, but neither of them are inserted.

Figure 4-1 RVISS without the Mapfile and Tracer inserted

The links in this structure are produced as follows:

• During initialization, every peripheral, including Timer and Interrupt Controller,
calls bus->bus_registerPeripFunc(BusRegAct_Insert, regn). This creates the
links from the decoder to the peripherals. See ARMul_BusRegisterPeripFunc on
page 4-79 for details.
4-22 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
• During initialization, Timer calls ARMulif_GetInterruptController, and Interrupt
Controller calls ARMulif_InstallNewInterruptController to create the link from
Timer to Interrupt Controller. You can find the prototypes for these functions in
armul_askrdi.h.

• The remaining links are created by RVISS itself.

At run time, Interrupt Controller calls ARMulif_SetSignal (see ARMulif_SetSignal on
page 4-61) to use the link from Interrupt Controller to the core.

4.3.2 Example 2: RVISS with Mapfile inserted, and Tracer inserted in one link

Figure 4-2 shows the structure with both Mapfile and Tracer inserted.

Figure 4-2 RVISS with Mapfile inserted, and Tracer inserted in one link

The links in this figure are created in the same way as in Example 1, except that:

• During initialization, Mapfile calls ARMulif_QueryMemInterface and
ARMul_InsertMemInterface to insert itself in the link between MMU/Cache and
Flatmem.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-23

RVISS Reference
• Tracer calls ARMulif_QueryMemInterface and ARMul_InsertMemInterface to insert
itself in the link between MMU/Cache and Flatmem. Tracer can do this at any
time.

Tracer can also call ARMul_RemoveMemInterface to remove itself at any time.

You can find the prototypes for these functions in armul_askrdi.h and armul_mem.h.

4.3.3 Example 3: RVISS with Mapfile inserted, and Tracer inserted in two links

Figure 4-3 shows the structure with the Mapfile inserted, and the Tracer inserted in two
links.

Figure 4-3 RVISS with Mapfile inserted, and Tracer inserted in two links
4-24 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
The links in Figure 4-3 on page 4-24 are created in the same way as shown in Example
2: RVISS with Mapfile inserted, and Tracer inserted in one link on page 4-23, except
that:

• Tracer calls ARMulif_QueryMemInterface and ARMul_InsertMemInterface a second
time to insert itself in the link between Core and MMU/Cache. Tracer can do this
at any time.

Tracer can also call ARMul_RemoveMemInterface to remove itself at any time.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-25

RVISS Reference
4.4 Communicating with the core

During initialization, all the models receive a pointer to an mdesc structure of type
RDI_ModuleDesc *. They copy this structure into their own state as a field called coredesc.
This is passed as the first parameter to most ARMulif (RVISS interface) functions.
RVISS exports these functions to enable models to access the RVISS state through this
handle.

The following functions provide read and write access to ARM registers:

• ARMulif_GetReg on page 4-27

• ARMulif_SetReg on page 4-28

• ARMulif_GetPC and ARMulif_GetR15 on page 4-28

• ARMulif_SetPC and ARMulif_SetR15 on page 4-29

• ARMulif_GetCPSR on page 4-29

• ARMulif_SetCPSR on page 4-29

• ARMulif_GetSPSR on page 4-30

• ARMulif_SetSPSR on page 4-30.

A model must pass a pointer to their coredesc structure when calling a function in
ARMulif that calls the core.

The following functions provide convenient access to specific bits or fields in the CPSR:

• ARMulif_ThumbBit on page 4-31

• ARMulif_GetMode on page 4-31.

The following functions call the read and write methods for a coprocessor:

• ARMulif_CPRead on page 4-32

• ARMulif_CPWrite on page 4-33.

The following function enables you to change the configuration of your modeled
processor:

• ARMulif_SetConfig on page 4-34.

Note
 It is not appropriate to access some parts of the state from certain parts of a model. For
example, you must not set the contents of an ARM register from a memory access
function, because the memory access function can be called during simulation of an
instruction. In contrast, it is sometimes required to set the contents of ARM registers
from a SVC handler function.
4-26 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.4.1 Mode numbers

A number of the following functions take an unsigned mode parameter to specify the
processor mode. The mode numbers are defined in armdefs.h, and are listed here:

• USER32MODE

• FIQ32MODE

• IRQ32MODE

• SVC32MODE

• ABORT32MODE

• UNDEF32MODE

• SYSTEM32MODE

In addition, the special value CURRENTMODE is defined. This enables ARMulif_GetReg(), for
example, to return registers of the current mode.

4.4.2 ARMulif_GetReg

This function reads a register for a specified processor mode.

Syntax

ARMword ARMulif_GetReg(RDI_ModuleDesc *mdesc, ARMword mode, unsigned reg)

where:

mdesc is the handle for the core.

mode is the processor mode. Values for mode are defined in armdefs.h (see
Mode numbers).

reg is the register to read. Valid values are 0 to 14 for registers r0 to r14, PC,
or CPSR.

Return

The function returns the value in the given register for the specified mode.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-27

RVISS Reference
4.4.3 ARMulif_SetReg

This function writes a register for a specified processor mode.

Syntax

void ARMulif_SetReg(RDI_ModuleDesc *mdesc, ARMword mode,
 unsigned reg, ARMword value)

where:

mdesc is the handle for the core.

mode is the processor mode. Mode numbers are defined in armdefs.h (see Mode
numbers on page 4-27).

reg is the register to write. Valid values are 0 to 14 for registers r0 to r14, PC,
or CPSR.

value is the value to be written to register reg for the specified processor mode.

Usage

You can use this function to write to any of the general purpose registers r0 to r14, the
PC, or CPSR.

4.4.4 ARMulif_GetPC and ARMulif_GetR15

This function reads the pc. ARMulif_GetPC and ARMulif_GetR15 are synonyms.

Syntax

ARMword ARMulif_GetPC(RDI_ModuleDesc *mdesc)

ARMword ARMulif_GetR15(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

This function returns the value of the pc.
4-28 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.4.5 ARMulif_SetPC and ARMulif_SetR15

This function writes a value to the pc. ARMulif_SetPC and ARMulif_SetR15 are synonyms.

Syntax

void ARMulif_SetPC(RDI_ModuleDesc *mdesc, ARMword value)

void ARMulif_SetR15(RDI_ModuleDesc *mdesc, ARMword value)

where:

mdesc is the handle for the core.

value is the value to be written to the pc.

4.4.6 ARMulif_GetCPSR

This function reads the CPSR.

Syntax

ARMword ARMulif_GetCPSR(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

The function returns the value of the CPSR.

4.4.7 ARMulif_SetCPSR

This function writes a value to the CPSR.

Syntax

void ARMulif_SetCPSR(RDI_ModuleDesc *mdesc, ARMword value)

where:

mdesc is the handle for the core.

value is the value to be written to the CPSR.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-29

RVISS Reference
4.4.8 ARMulif_GetSPSR

This function returns the current contents of the SPSR for a specified processor mode.

Syntax

ARMword ARMulif_GetSPSR(RDI_ModuleDesc *mdesc, ARMword mode)

where:

mdesc is the handle for the core.

mode is the processor mode for the SPSR you want to read.

User mode

ARMulif_GetSPSR returns the current contents of the CPSR if mode is USER32MODE.

4.4.9 ARMulif_SetSPSR

This function writes a value to the SPSR for a specified processor mode.

Syntax

void ARMulif_SetSPSR(RDI_ModuleDesc *mdesc, ARMword mode, ARMword value)

where:

mdesc is the handle for the core.

mode is the processor mode for the SPSR you want to write.

value is the value to be written to the SPSR for the specified mode.

User mode

ARMulif_SetSPSR does nothing if mode is USER32MODE.
4-30 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.4.10 ARMulif_ThumbBit

This function returns 1 if the core is in Thumb® state, 0 if the core is in ARM state.

Syntax

unsigned ARMulif_ThumbBit(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

4.4.11 ARMulif_GetMode

This function reads the current processor mode.

Syntax

unsigned ARMulif_GetMode(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-31

RVISS Reference
4.4.12 ARMulif_CPRead

This function calls the read method for a coprocessor.

Syntax

int ARMulif_CPRead(RDI_ModuleDesc *mdesc, unsigned cpnum,
 unsigned reg, ARMword *data)

where:

mdesc is the handle for the core.

cpnum is the number of the coprocessor.

reg is the number of the coprocessor register to read from, as indexed by CRn
in an LDC or STC instruction.

data is a pointer for the data read from the coprocessor register. The number
of words transferred, and the order of the words, is coprocessor
dependent.

Return

The function must return:

• ARMul_DONE, if the register can be read

• ARMul_CANT, if the register cannot be read.
4-32 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.4.13 ARMulif_CPWrite

This function calls the write method for a coprocessor. It also intercepts calls to write
the FPE emulated registers.

Syntax

int ARMulif_CPWrite(RDI_ModuleDesc *mdesc, unsigned cpnum,
 unsigned reg, ARMword *data)

where:

mdesc is the handle for the core.

cpnum is the number of the coprocessor.

reg is the number of the coprocessor register to read from, as indexed by CRn
in an LDC or STC instruction.

data is a pointer for the data read from the coprocessor register. The number
of words transferred, and the order of the words, is coprocessor
dependent.

Return

The function must return:

• ARMul_DONE, if the register can be written

• ARMul_CANT, if the register cannot be written.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-33

RVISS Reference
4.4.14 ARMulif_SetConfig

This function changes the config value of the modeled processor. The config value
represents the state of the configuration pins on the ARM core.

Syntax

void ARMulif_SetConfig(RDI_ModuleDesc *mdesc,
 ARMword bitsToChange, ARMword newValue)

where:

mdesc is the handle for the core.

bitsToChange is a bitmask of the config bits to change.

newValue contains the new values of the bits to change.

Return

The function returns the previous config value.

Usage

Note
 If a bit is cleared in bitsToChange it must not be set in newValue. For example, to set bit[1]
and clear bit[0]:

bitsToChange 0x03 (0b00000011)

newValue 0x02 (0b00000010)

Example

oldConfig = ARMulif_SetConfig(state, 0x00000001, 0x00000001);
//This sets bit[0] to value 1
oldConfig = ARMulif_SetConfig(state, 0x00000002, 0x00000001);
//This sets bit[0] to value 0 - note that bit[0] is unaffected.

You can use the following call to obtain the current settings of the configuration pins,
without modifying them:

currentConfig = ARMulif_SetConfig(state, 0, 0)
4-34 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.5 Basic model interface

This section describes the basic interface model:

• for each model, you must write an initialization function

• for additional functionality, you must register callbacks.

Macros are provided in minperip.h for the following abstractions:

• Declaration of a private state data structure

• Model initialization on page 4-36

• Model finalization on page 4-36.

See also Initialization, finalization, and state macros on page 3-7.

4.5.1 Declaration of a private state data structure

Each model must store its state in a private data structure. Initialization and finalization
macros are provided by ARMulif. These macros require the use of certain fields in this
data structure.

To declare a state data structure, use the BEGIN_STATE_DECL and END_STATE_DECL macros
as follows:

 /*
 * Create a YourModelState data structure
 */
 BEGIN_STATE_DECL(YourModel)
 /*
 * Your private data here
 */
 END_STATE_DECL(YourModel)

This declares a structure:

 typedef struct YourModelState

This structure contains:

• predefined data fields:

— toolconf config

— const struct RDI_HostosInterface *hostif

— RDI_ModuleDesc coredesc;

— RDI_ModuleDesc agentdesc

• the private data you put between the macros.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-35

RVISS Reference
4.5.2 Model initialization

The BEGIN_INIT() and END_INIT() macros form the start and finish of the initialization
function for the model. The initialization function is called:

• during RVISS initialization

• whenever RealView Debugger is downloading a new image.

The following local variables are provided in the initialization function:

• bool coldboot

TRUE if RVISS is initializing, FALSE if RealView Debugger is downloading a new
image.

• YourModelState *state

A pointer to the private state data structure. Memory for this is allocated and
cleared by the initialization macro, and the predefined data fields are initialized.

In the initialization function, your model must:

• initialize any private data

• install any callbacks.

4.5.3 Model finalization

The BEGIN_EXIT() and END_EXIT() macros form the start and finish of the finalization
function for the model. The finalization function is called when RVISS is closing down.

The following local variable is provided in the finalization function:

YourModelState *state

Your model must de-install any callbacks in the finalization function.

The END_EXIT() macro frees memory allocated for state.
4-36 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.6 The memory interface

The memory interface is the interface between the RVISS core and the memory model.

Because there are many core processor types, there are many memory type variants. The
memory initialization function is told which type it must provide (see Memory model
initialization function on page 4-41). A model must refuse to initialize in the case of an
unrecognized memory type variant.

Note
 The nTRANS signal from the processor is not passed to the memory interface. Because
this signal changes infrequently and might not be used by a memory model, a model
must use TransChangeUpcall() to track nTRANS. You can find the prototype for
TransChangeUpcall in armul_mem.h.

4.6.1 Memory type variants

The memory type variants are defined in the ARMul_MemInterface structure in
armul_mem.h.

Basic memory types

There are three basic variants of memory type. All three use the same function interface
to the core. The types are defined as follows:

ARMul_MemType_Basic

supports byte and word loads and stores.

ARMul_MemType_16Bit

is the same as ARMul_MemType_Basic but with the addition of halfword
loads and stores.

ARMul_MemType_Thumb

is the same as ARMul_MemType_16Bit but with halfword instruction fetches.
The halfword instruction fetches can be sequential.

This can indicate to a memory model that most accesses are
halfword-instruction-sequential rather than the usual
word-instruction-sequential.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-37

RVISS Reference
Note
 Memory models that do not support halfword accesses must refuse to initialize for
ARMul_MemType_16Bit and ARMul_MemType_Thumb.

For all three types, the model must fill in the interf->x.basic function pointers.

The file flatmem.c contains an example function that implements a basic model.

Cached versions of basic memory types

There are three variants of the basic memory types for cached processors such as the
ARM710 and ARM740T. These variants are defined as follows:

• ARMul_MemType_BasicCached

• ARMul_MemType_16BitCached

• ARMul_MemType_ThumbCached.

These differ from the basic equivalents in that there are only two types of cycle:

• Memory cycle, where acc_MREQ(acc) is TRUE.

• cycle, where acc_MREQ(acc) is FALSE.

A non-sequential access consists of an Idle cycle followed by a Memory cycle, with the
same address supplied for both.

A sequential access is a Memory cycle, with address incremented from the previous
access.

Byte-lane memory for StrongARM

StrongARM® variants are defined as follows:

• ARMul_MemType_StrongARM

• ARMul_MemType_ByteLanes.

Externally, StrongARM can use a byte-lane memory interface. There is a StrongARM
variant of the basic memory type that handles this. All the function types are the same,
and the model must still fill in the basic part of the ARMul_MemInterface structure, but the
meaning of the ARMul_acc word passed to the access() function is different.

The StrongARM variant replaces acc_WIDTH (see Macros for access types on page 4-49)
with acc_BYTELANE(acc). This returns a four-bit mask of the bytes in the word passed to
the access() function that are valid.
4-38 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
There is no byte-order problem with this method of access. The model can ignore byte
order. Bit[0] of this word corresponds to bits[7:0] of the data, bit[1] to bits[15:8], bit[2]
to bits[23:16], and bit[3] to bits[31:24].

Note
 Byte-lane memory for ARM7TDMI® is not supported.

ARM8 memory type

The ARM8 memory type is defined as:

ARMul_MemType_ARM8

This is a double bandwidth interface. The ARM8 core can request two sequential
accesses per cycle.

ARM9 memory type

The ARM9 memory type is defined as:

ARMul_MemType_ARM9
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-39

RVISS Reference
4.7 Memory model interface

The memory model interface is defined in the file armul_mem.h, which is included from
armul_defs.h. All memory access are performed through a single function pointer that
is passed a flags word. The flags word consists of a bitfield in which the bits correspond
to the signals on the outside of the ARM processor. This determines the type of memory
access that is being performed.

At initialization time, the initialization function registers a number of functions in the
memory interface structure, ARMul_MemInterface in armul_mem.h.

For details of the initialization function, see:

• Memory model initialization function on page 4-41.

For details of the basic function entries, see:

• armul_ReadClock on page 4-42

• armul_GetCycleLength on page 4-42

• armul_ReadCycles on page 4-43

• armul_MemAccess on page 4-44.

For details of the functions required for some processors, but not for others, see:

• armul_MemAccess2 on page 4-45

• armul_MemAccAsync on page 4-46

• armul_HarvardMemAccess on page 4-47.

Type definitions for these functions are in armul_mem.h.

Note
 armul_mem.h contains several type definitions for several functions that are not used by
RVISS. You do not have to supply these functions.
4-40 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.7.1 Memory model initialization function

A memory model must export a function that is called during initialization. You must
provide the memory model initialization function. If the model and the function are
registered, and an armul.cnf entry is found, then the memory model initialization
function is called.

The name of the function is defined by you. In the description below, the name MemInit
is used.

Syntax

void ARMul_Error armul_MemInit(struct ARMul_State *state,
 ARMul_MemInterface *interf,
 /* ARMul_MemType variant, */
 toolconf your_config, toolconf core_config)

where:

state is a pointer to the RVISS state.

interf is a pointer to the memory interface structure. See the ARMul_MemInterface
structure in armul_mem.h for an example.

variant is the interface variant. See the ARMul_MemType enumeration in
armul_mem.h. See Memory type variants on page 4-37 for a description of
the variants.

your_config is the configuration database for your model or models.

core_config is the configuration database for the core.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization

• an ARMul_Error value.

The error must be passed through Hostif_RaiseError() for formatting (see
Hostif_RaiseError on page 4-87).

Usage

The initialization must set the handle for the model by assigning to interf->handle. The
handle is usually a pointer to the state representing this instantiation of the model.
RVISS passes this handle to all the access functions it calls.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-41

RVISS Reference
4.7.2 armul_ReadClock

This function must return the elapsed time in microseconds since the simulation model
reset.

The read_clock entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadClock() function.

Syntax

ARMTime armul_ReadClock(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

This function returns an ARMTime value representing the elapsed time in microseconds.
The default type of ARMTime is unsigned long. ARMTime is defined in armul_types.h.

Usage

A model can supply NULL if it does not support this functionality.

4.7.3 armul_GetCycleLength

The get_cycle_length entry in the ARMul_MemInterface structure is a pointer an
armul_GetCycleLength() function. This function must return the length of a single cycle
in units of one tenth of a nanosecond.

You must implement this function, even if the implementation is very simple. You
define the function name yourself.

Syntax

unsigned long armul_GetCycleLength(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

The function returns an unsigned long representing the length of a single cycle in units
of one tenth of a nanosecond. For example, it returns 300 for a 33.3MHz clock.
4-42 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.7.4 armul_ReadCycles

The read_cycles entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadCycles() function. This function must calculate the total cycle count since
the simulation model reset.

You must implement this function, even if the implementation is very simple. You
define the function name yourself.

Syntax

const ARMul_Cycles *armul_ReadCycles(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

RVISS calls this function each time RealView Debugger reads the counters. It must
calculate the total cycle count and returns a pointer to the ARMul_Cycles structure that
contains the cycle counts. The ARMul_Cycles structure is defined in armul_mem.h.

Usage

A model can keep count of the accesses made to it by RVISS by providing this function.
The value of the CoreCycles field in ARMul_Cycles is provided by RVISS, not by the
memory model. When you write this function, you must calculate the Total field,
because this is the value returned when ARMul_Time() is called. See Event scheduling
functions on page 4-75 for a description of ARMul_Time().
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-43

RVISS Reference
4.7.5 armul_MemAccess

The access entry in the ARMul_MemInterface structure is a pointer to an
armul_MemAccess() function. This function is called on each ARM core cycle.

You must implement this function, even if the implementation is very simple. You
define the function name yourself.

Syntax

int armul_MemAccess(void *handle, ARMword address, ARMword *data,
 ARMul_acc access_type)

where:

handle is the value of interf->handle set in MemInit.

address is the value on the address bus.

data is a pointer to the data for the memory access. See Data for reads and
writes on page 4-48 for details.

access_type encodes the type of cycle. On some processors, for example, cached
processors, some of the signals are not valid. See Macros for access types
on page 4-49 for details of the macros for determining access type.

Return

The function returns:

1 indicates successful completion of the cycle

0 tells the processor to busy-wait and try the access again next cycle

–1 signals an abort

–2 indicates that an address was not decoded by a peripheral model (see
Reference peripherals on page 4-111).

Note
 Memory models must not return –2. Only a peripheral that has registered

an address range with a bus-decoder can return –2.
4-44 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.7.6 armul_MemAccess2

This function is required for ARM8 models.

Syntax

int armul_MemAccess2(void *handle, ARMword address, ARMword *data,
 ARMul_acc access_type)

where:

handle is the value of interf->handle set in MemInit.

address is the value on the address bus.

data is a pointer to the data for the memory access. See Data for reads and
writes on page 4-48 for details.

access_type encodes the type of cycle. On some processors, for example, cached
processors, some of the signals are not valid. See Macros for access types
on page 4-49 for details of the macros for determining access type.

Return

The function returns:

1 Indicates successful completion of the cycle.

0 Tells the processor to busy-wait and try the access again next cycle.

–1 Signals an abort.

2 Signals successful return of a single word of a doubleword load. To load
the second word, the caller increments address by 4 and issues a single
word load.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-45

RVISS Reference
4.7.7 armul_MemAccAsync

This is a memory access function used by ARM10, ARM11 and XScale models.

Syntax

int armul_MemAccAsync(void *handle, ARMword address, ARMword *data,
ARMul_acc acc, ARMTime *abs_time)

where:

handle is the value of interf->handle set in MemInit.

address is the value on the address bus.

data is a pointer to the data for the memory access. See Data for reads and
writes on page 4-48 for details.

acc encodes the type of cycle. On some processors, for example, cached
processors, some of the signals are not valid. See Macros for access types
on page 4-49 for details of the macros for determining access type.

abs_time is the absolute time since reset.

Return

The function returns:

1 indicates successful completion of the cycle

0 tells the processor to busy-wait and try the access again next cycle

–1 signals an abort.
4-46 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.7.8 armul_HarvardMemAccess

This is the memory access function used for true Harvard models, where both busses
present the required access parameters in the same function call.

Syntax

void armul_HarvardMemAccess(void *handle, ARMword address1, ARMword *data1,
 ARMul_acc access1, int *return1, ARMword address2,
 ARMword *data2, ARMul_acc access2, int *return2)

where:

handle is the value of interf->handle set in MemInit.

address1 is the value on the data address bus.

data1 is a pointer to the data for the data memory access. See Data for reads
and writes on page 4-48 for details.

access1 encodes the type of cycle for the data memory access. On some
processors, for example, cached processors, some of the signals are not
valid. See Macros for access types on page 4-49 for details of the macros
for determining access type.

return1 is the return value for the data memory access:

1 indicates successful completion of the cycle

0 tells the processor to busy-wait and try the access again next
cycle

–1 signals an abort.

address2 is the value on the instruction address bus.

data2 is a pointer to the data for the instruction memory access. See Data for
reads and writes on page 4-48 for details.

access2 encodes the type of cycle for the instruction memory access. On some
processors, for example, cached processors, some of the signals are not
valid. See Macros for access types on page 4-49 for details of the macros
for determining access type.

return2 is the return value for the instruction memory access:

1 indicates successful completion of the cycle

0 tells the processor to busy-wait and try the access again next
cycle

–1 signals an abort.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-47

RVISS Reference
4.7.9 Data for reads and writes

Reads For reads, the memory model function must write the value to be read by
the core to the location pointed to by data. For example, with a byte load
it must write the byte value, with a halfword load it must write the
halfword value.

Note
 Your model must ensure that the value written is the correct width.

The model can ignore the alignment of the address passed to it because
this is handled by RVISS. However, it must present the bytes of the word
in the correct order for the byte order of the processor. Your model can
determine this by using either a ConfigChangeUpcall() upcall or
ARMulif_SetConfig() (see Communicating with the core on page 4-26).

armul_defs.h provides a flag variable macro named HostEndian.
HostEndian is TRUE if RVISS is running on a big-endian machine. See the
flatmem.c memory model for an example of how to handle byte order.

Writes For writes, data points to the datum to be stored. However, this value
might have to be shortened for a byte or halfword store.

As with reads, byte order must be handled correctly.
4-48 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.7.10 Macros for access types

The macros for determining access type are:

acc_MREQ(acc) chooses between memory request and non-memory request
accesses.

acc_WRITE(acc), acc_READ(acc)

for memory cycles, these determine whether the current access is
a read or a write cycle. Not acc_READ implies acc_WRITE, and not
acc_WRITE implies acc_READ.

acc_SEQ(acc) for a memory cycle, this is TRUE if the address is the same as, or
sequentially follows from, the address of the preceding cycle. For
a non-memory cycle it distinguishes between coprocessor
(acc_SEQ) and idle (not acc_SEQ) cycles.

acc_OPC(acc) for memory cycles, this is TRUE if the data being read is an
instruction. It is never TRUE for writes.

acc_LOCK(acc) distinguishes a read-lock-write memory cycle.

acc_ACCOUNT(acc) is TRUE if the cycle is coming from the ARM core, rather than the
remote debug interface.

acc_WIDTH(acc) returns BITS_8, BITS_16, BITS_32, or BITS_64 depending on whether
a byte, halfword, word or doubleword is being accessed.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-49

RVISS Reference
4.8 Coprocessor model interface

The coprocessor model interface is defined in armul_copro.h. The basic coprocessor
functions are:

• ARMulif_InstallCoprocessorV5 on page 4-51

• LDC on page 4-52

• STC on page 4-53

• MRC on page 4-54

• MCR on page 4-55

• MRC on page 4-54

• MCR on page 4-55

• MCRR on page 4-56

• MRRC on page 4-57

• CDP on page 4-58.

Caution
 Some coprocessors have registers that are write-only. The value written to these
registers must be a specific value. If an incorrect value is written to these registers in a
model, the result is unpredictable, and might not follow what happens in the hardware.

In addition, two functions are provided that enable RealView Debugger to read and
write coprocessor registers. They are:

• read on page 4-59

• write on page 4-60.

If a coprocessor does not handle one or more of these functions, it must leave their
entries in the ARMul_CPInterface structure unchanged.
4-50 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.8.1 ARMulif_InstallCoprocessorV5

Use this function to register a coprocessor handler.

This function is prototyped in armul_copro.h.

Syntax

unsigned ARMulif_InstallCoprocessorV5(RDI_ModuleDesc *mdesc, unsigned number,
 struct ARMul_CoprocessorV5 *cpv5, void *handle)

where:

mdesc is the handle for the core.

number is the coprocessor number.

cpv5 is a pointer to the coprocessor interface structure.

handle is a pointer to private data to pass to each coprocessor function.

Return

This function returns either:

• ARMulErr_NoError, if there is no error

• an ARMul_Error value.

The error must be passed through Hostif_RaiseError() for formatting (see
Hostif_RaiseError on page 4-87).
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-51

RVISS Reference
4.8.2 LDC

This function is called when an LDC instruction is recognized for a coprocessor.

Syntax

unsigned LDC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_TRANSFER indicates that the ARM processor is about to
perform the load.

ARMul_CP_DATA indicates that valid data is included in data.

instr the current opcode.

data is a pointer to the data being loaded to the coprocessor from memory.

Return

The function must return one of:

• ARMul_CP_INC, to request more data from the core (only in response to
ARMul_CP_FIRST, ARMul_CP_BUSY, or ARMul_CP_DATA).

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_CP_DATA).

• ARMul_CP_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_CP_FIRST or ARMul_CP_BUSY).

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_CP_FIRST or
ARMul_CP_BUSY).
4-52 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
• ARMUL_CP_LAST, to indicate that the next load is the last in the sequence. This is only
required for ARM9.

4.8.3 STC

This function is called when an STC instruction is recognized for a coprocessor.

Syntax

unsigned STC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later. In that case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates that the coprocessor must return valid data
in *data.

instr is the current opcode.

data is a pointer to the location of the data being saved to memory.

Return

The function must return one of:

• ARMul_CP_INC, to indicate that there is more data to transfer to the core (only in
response to ARMul_CP_FIRST, ARMul_CP_BUSY, or ARMul_CP_DATA).

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_CP_DATA).

• ARMul_CP_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_CP_FIRST or ARMul_CP_BUSY).
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-53

RVISS Reference
• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_CP_FIRST or
ARMul_CP_BUSY).

• ARMUL_CP_LAST, to indicate that the next save is the last in the sequence. This is
only required for ARM9.

4.8.4 MRC

This function is called when an MRC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function must
return ARMul_CP_CANT.

Syntax

unsigned MRC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates that valid data is included in *data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete, and valid
data has been returned to *data

• ARMul_CP_BUSY, to indicate that the coprocessor is busy
4-54 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.

4.8.5 MCR

This function is called when an MCR instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function must
return ARMul_CP_CANT.

Syntax

unsigned MCR(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-55

RVISS Reference
4.8.6 MCRR

This function is called when an MCRR instruction is recognized for a coprocessor.

The function must return ARMul_CP_CANT if:

• the requested coprocessor register does not exist

• the requested coprocessor register cannot be written to

• the coprocessor is ARMv4T or earlier.

Syntax

unsigned MCRR(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
4-56 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.8.7 MRRC

This function is called when an MRRC instruction is recognized for a coprocessor.

The function must return ARMul_CP_CANT if:

• the requested coprocessor register does not exist

• the requested coprocessor register cannot be read from

• the coprocessor is ARMv4T or earlier.

Syntax

unsigned MRRC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred from the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-57

RVISS Reference
4.8.8 CDP

This function is called when a CDP instruction is recognized for a coprocessor. If the
requested coprocessor operation is not supported, the function must return
ARMul_CP_CANT.

Syntax

unsigned CDP(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This can be one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM processor is
about to service an interrupt, so the coprocessor
must discard the current instruction. Usually, the
instruction is retried later, in which case the type is
reset to ARMul_CP_FIRST.

instr is the current opcode.

data is not used.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported.
4-58 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.8.9 read

This function enables RealView Debugger to read a coprocessor register. The function
reads the coprocessor register numbered reg and transfers its value to the location
addressed by value.

If the requested coprocessor register does not exist, or the register cannot be read, the
function must return ARMul_CP_CANT.

Syntax

unsigned read(void *handle, int reg, ARMword instr, ARMword *value)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

reg is the register number of the coprocessor register to be read.

instr is not used.

value is a pointer to the location of the data to be read from the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_CANT, to indicate that the register is not supported.

Usage

This function is called by RealView Debugger.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-59

RVISS Reference
4.8.10 write

This function enables RealView Debugger to write to a coprocessor register.

The function writes the value at the location addressed by value to the coprocessor
register numbered reg.

If the requested coprocessor does not exist or the register cannot be written, the function
must return ARMul_CP_CANT.

Syntax

unsigned write(void *handle, int reg, ARMword instr, ARMword *value)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

reg is the register number of the coprocessor register that is to be written.

instr is not used.

value is a pointer to the location of the data that is to be written to the
coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_CANT, to indicate that the register is not supported.

Usage

This function is called by RealView Debugger.
4-60 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.9 Exceptions

The following functions enable a model to set or clear signals:

• ARMulif_SetSignal

• ARMulif_GetProperty on page 4-62.

4.9.1 ARMulif_SetSignal

The ARMulif_SetSignal function is used to set the state of signals or properties.

Syntax

void ARMulif_SetSignal(RDI_ModuleDesc *mdesc, ARMSignalType sigType,
 SignalState sigState)

where:

mdesc is the handle for the core.

sigtype is the signal to be set. sigtype can be any one of:

RDIPropID_ARMSignal_IRQ

Assert an interrupt.

RDIPropID_ARMSignal_FIQ

Assert a fast interrupt.

RDIPropID_ARMSignal_RESET

Assert the reset signal. The core resets, and does not restart
until the reset signal is de-asserted.

RDIPropID_ARMSignal_BigEnd

Set this signal for big-endian operation, or clear it for
little-endian operation.

RDIPropID_ARMSignal_HighException

Set the base location of exception vectors.

RDIPropID_ARMSignal_BranchPredictEnable

(ARM10 only)

RDIPropID_ARMSignal_LDRSetTBITDisable

(ARM10 only)

RDIPropID_ARMSignal_WaitForInterrupt

(ARM10 and XScale only)

RDIPropID_ARMSignal_DebugState

Enter or exit debug state.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-61

RVISS Reference
RDIPropID_ARMulProp_CycleDelta

Wait the core for a specified number of cycles.

RDIPropID_ARMulProp_Accuracy

Select the modeling accuracy, as a percentage in the range 0%
to 100%. Currently this only affects ARM10 models. A setting
less than 50% turns of interlock modeling. RVISS runs faster
with interlock modeling turned off, but cycling count accuracy
is reduced.

sigstate For signals, you must give sigstate one of the following values:

FALSE Signal off

TRUE Signal on.

For properties, you must give sigstate an integer value.

Note
 For information about signalling interrupts when using an interrupt controller see
Interrupt controller on page 4-111.

4.9.2 ARMulif_GetProperty

The ARMulif_GetProperty function is used to read the values of properties and signals.

Syntax

void ARMulif_GetProperty(RDI_ModuleDesc *mdesc, ARMSignalType id,
 ARMword *value)

where:

mdesc is the handle for the core.

id is the signal or property to read. id can be any one of:

RDIPropID_ARMSignal_IRQ

TRUE if the interrupt signal is asserted.

RDIPropID_ARMSignal_FIQ

TRUE if the fast interrupt signal is asserted.

RDIPropID_ARMSignal_RESET

TRUE if the reset signal is asserted.

RDIPropID_ARMSignal_BigEnd

TRUE if the bigend signal is asserted.
4-62 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
RDIPropID_ARMSignal_HighException

TRUE if the vector table is at 0xFFFF0000.

RDIPropID_ARMSignal_BranchPredictEnable

(ARM10 only)

RDIPropID_ARMSignal_LDRSetTBITDisable

(ARM10 only)

RDIPropID_ARMSignal_WaitForInterrupt

(ARM10 and XScale only)

RDIPropID_ARMulProp_CycleCount

Count of the number of cycles executed since initialization.

RDIPropID_ARMulProp_RDILog

Current setting of the logging level. Generally, this is zero if
logging is disabled, and nonzero if it is enabled.

RDIPropID_ARMSignal_ProcessorProperties

The properties word associated with the processor being
simulated. This is a bitfield of properties, defined in armdefs.h.

value is a pointer to a block to write the property to. This allows for properties
with more than 32 bits. However, all the properties listed are actually 32
bits wide at most.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-63

RVISS Reference
4.10 Events

RVISS has a mechanism for broadcasting and handling events. These events consist of
an event number and a pair of words. The number identifies the event. The details
depends on the event.

The core RVISS generates some example events, defined in armdefs.h. They are divided
into the following groups:

• events from the ARM processor core, listed in Table 4-3 on page 4-65

• events from the MMU and cache (not on StrongARM-110), listed in Table 4-2

• events from the prefetch unit (ARM8-based processors only), listed in Table 4-4
on page 4-65

• configuration change events, listed in Table 4-6 on page 4-66.

These events can be logged in the trace file if tracing is enabled, and trace events is
turned on. Additional modules can provide new event types that are handled in the same
way. User defined events must have values between UserEvent_Base (0x100000) and
UserEvent_Top (0x1FFFFF).

You can catch events by installing an event handler (see Event handler on page 4-72).
You can raise an event by calling ARMulif_RaiseEvent() (see ARMulif_RaiseEvent on
page 4-67).

Table 4-2 Events from the MMU and cache (not on StrongARM-110)

Event name Word 1 Word 2 Event number

MMUEvent_DLineFetch Miss address Victim address 0x10001

MMUEvent_ILineFetch Miss address Victim address 0x10002

MMUEvent_WBStall Physical address of write Number of words in write buffer 0x10003

MMUEvent_DTLBWalk Miss address Victim address 0x10004

MMUEvent_ITLBWalk Miss address Victim address 0x10005

MMUEvent_LineWB Miss address Victim address 0x10006

MMUEvent_DCacheStall Address causing stall Address fetching 0x10007

MMUEvent_ICacheStall Address causing stall Address fetching 0x10008
4-64 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
Table 4-3 Events from the ARM processor core

Event name Word 1 Word 2
Event
number

CoreEvent_Reset - - 0x1

CoreEvent_UndefinedInstr pc value Instruction 0x2

CoreEvent_SVC pc value SVC number 0x3

CoreEvent_PrefetchAbort pc value - 0x4

CoreEvent_DataAbort pc value Aborting address 0x5

CoreEvent_AddrExceptn pc value Aborting address 0x6

CoreEvent_IRQ pc value - 0x7

CoreEvent_FIQ pc value - 0x8

CoreEvent_Breakpoint pc value RDI_PointHandle 0x9

CoreEvent_Watchpoint pc value Watch address 0xA

CoreEvent_IRQSpotted pc value - 0x17

CoreEvent_FIQSpotted pc value - 0x18

CoreEvent_ModeChange pc value New mode 0x19

CoreEvent_Dependency pc value Interlock register
bitmask

0x20

Table 4-4 Events from the prefetch unit (ARM810 only)

Event name Word 1 Word 2 Event number

PUEvent_Full Next pc value - 0x20001

PUEvent_Mispredict Address of branch - 0x20002

PUEvent_Empty Next pc value - 0x20003
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-65

RVISS Reference
Table 4-5 Debug events

Event name Word 1 Word 2 Event number

DebugEvent_InToDebug - - 0x40001

DebugEvent_OutOfDebug - - 0x40002

DebugEvent_DebuggerChangedPC pc - 0x40003

Table 4-6 Config events

Event name Word 1 Word 2 Event number

ConfigEvent_AllLoaded - - 0x50001

ConfigEvent_Reset - - 0x50002

ConfigEvent_VectorsLoaded - - 0x50003

ConfigEvent_EndiannessChanged 1 (big end) or 2
(little end)

- 0x50005
4-66 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.10.1 ARMulif_RaiseEvent

This function invokes events. The events are passed to the user-supplied event handlers.

Syntax

void ARMulif_RaiseEvent(RDI_ModuleDesc *mdesc, ARMword event,
 ARMword data1, ARMword data2)

where:

mdesc is the handle for the core.

event is one of the event numbers defined in Table 4-2 on page 4-64, Table 4-3
on page 4-65, Table 4-4 on page 4-65, or Table 4-5 on page 4-66.

data1 is the first word of the event.

data2 is the second word of the event.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-67

RVISS Reference
4.11 Handlers

RVISS can be made to call back your model when some state values change. You do
this by installing the relevant event handler.

You must provide implementations of the event handlers if you want to use them in your
own models. For examples, see the implementations in the models supplied by ARM
Limited.

You can use event handlers to avoid having to check state values on every access. For
example, a peripheral model is expected to present the ARM core with data in the
correct byte order for the value of the ARM processor bigend signal. A peripheral
model can attach to the EventHandler() (see Event handler on page 4-72) to be informed
when this signal changes.
4-68 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.11.1 Exception handler

This event handler is called whenever the ARM processor takes an exception.

Syntax

typedef unsigned GenericCallbackFunc(void *handle, void *data)

where:

handle is the handle passed to ARMulif_InstallExceptionHandler.

data must be cast to (ARMul_Event *), and contain:

((ARMul_Event *)data)->event

is the core event causing the exception (see Table 4-3 on
page 4-65).

((ARMul_Event *)data)->data1

is the address of the hardware vector for the exception.

((ARMul_Event *)data)->data2

is the instruction that caused the exception.

Usage

As an example, this can be used by an operating system model to intercept and simulate
SVCs. If an installed handler returns nonzero, the ARM processor does not take the
exception (the exception is ignored).

Note
 If the processor is in Thumb state, the equivalent ARM instruction is supplied.

Install the exception handler using:

int ARMulif_InstallExceptionHandler(RDI_ModuleDesc *mdesc,
 GenericCallbackFunc *func, void *handle)

The new exception handler is installed in one of the following ways:

• On models in the ARM7, ARM9 and StrongARM families, the new exception
handler is added to the end of the list. The list is iterated over and all exception
handlers are called. If any return true, the built-in exception handlers are not run.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-69

RVISS Reference
• On models in the ARM10, ARM11 and XScale families, the new exception
handler is added to the start of the list. When an exception occurs, the core iterates
over the list from the beginning. This means that the handler that was installed last
will be called first. The core stops iterating if a handler returns true.

Remove the exception handler using:

int ARMulif_RemoveExceptionHandler(RDI_ModuleDesc *mdesc,
 GenericCallbackFunc *func, void *handle)

4.11.2 Unknown information handler

The unknown information function is called if RVISS cannot handle an RDI_InfoProc
request itself. It returns an RDIError value. This function can be used by a model
extending the interface between RVISS and RealView Debugger.

Syntax

typedef int RDI_InfoProc(void *handle, unsigned type,
 ARMword *arg1, ARMword *arg2)

where:

handle is the handle passed to ARMulif_InstallUnkRDIInfoHandler.

type is the RDI_InfoProc subcode. These are defined in rdi_info.h. See Usage
for some examples.

arg1/arg2 are arguments passed to the handler from RVISS.

Usage

RVISS stops calling RDI_InfoProc() functions when one returns a value other than
RDIError_UnimplementedMessage.

The following codes are examples of the RDI_InfoProc subcodes that can be specified as
type:

RDIInfo_Target

This enables models to declare how to extend the functionality of the
target.

RDIInfo_SetLog

This is passed around so that models can switch logging information on
and off. For example, tracer.c uses this call to switch tracing on and off
from bit 4 of the logging level value.
4-70 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
RDIRequestCyclesDesc

This enables models to extend the list of counters provided by RealView
Debugger @stats_symbolname symbols. Models call
ARMul_AddCounterDesc() (see General purpose functions on page 4-76) to
declare each counter in turn. It is essential that the model also trap the
RDICycles info call.

RDICycles Models that have declared a statistics counter by trapping
RDIRequestCyclesDesc must also respond to RDICycles by calling
ARMul_AddCounterValue() (see General purpose functions on page 4-76)
for each counter in turn, in the same order as they were declared.

These info calls have already been dealt with by RVISS, and are passed for information
only, or so that models can add information to the reply. Models must always respond
to these messages with RDIError_UnimplementedMessage, so that the message is passed
on even if the model has responded.

Install the handler using:

int ARMulif_InstallUnkRDIInfoHandler(RDI_ModuleDesc *mdesc,
 RDI_InfoProc *func, void *handle)

Remove the handler using:

int ARMulif_RemoveUnkRDIInfoHandler(RDI_ModuleDesc *mdesc,
 RDI_InfoProc *func, void *handle)

Example

The semihost.c model supplied with RVISS uses the UnkRDIInfoUpcall() to interact
with RealView Debugger:

RDIErrorP returns errors raised by the program running under RVISS to
RealView Debugger.

RDISet_Cmdline finds the command line set for the program by RealView
Debugger.

RDIVector_Catch intercepts the hardware vectors.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-71

RVISS Reference
4.11.3 Event handler

This handler catches RVISS events (see Events on page 4-64).

Syntax

typedef unsigned GenericCallbackFunc(void *handle, void *data)

where:

handle is the handle passed to ARMulif_InstallEventHandler.

data must be cast to (ARMul_Event *), and contain:

((ARMul_Event *)data)->event

is one of the event numbers defined in Table 4-2 on page 4-64,
Table 4-3 on page 4-65, and Table 4-4 on page 4-65.

((ARMul_Event *)data)->addr1

is the first word of the event.

((ARMul_Event *)data)->addr2

is the second word of the event.

Usage

Install the handler using:

void *ARMulif_InstallEventHandler(RDI_ModuleDesc *mdesc, uint32 events,
 GenericCallbackFunc *func, void *handle)

Specify one or more of the following for events:

• CoreEventSel

• MMUEventSel

• PUEventSel

• DebugEventSel

• TraceEventSel

• ConfigEventSel.

Remove the handler using:

int ARMulif_RemoveEventHandler(RDI_ModuleDesc *mdesc, void *node)

Example handler installation

ARMulif_InstallEventHandler(mdesc, CoreEventSel | ConfigEventSel, func, handle)
4-72 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.12 Memory access functions

The memory system can be probed by a peripheral model using a set of functions for
reading and writing memory. These functions access memory without inserting cycles
on the bus. If your model inserts cycles on the bus, it must install itself as a memory
model, possibly between the core and the real memory model.

Note
 It is not possible to tell if these calls result in a data abort.

4.12.1 Reading from a given address

The following functions return the word, halfword, or byte at the specified address.
Each function accesses the memory without inserting cycles on the bus.

Syntax

ARMword ARMulif_ReadWord(RDIModuleDesc *mdesc, ARMword address)

ARMword ARMulif_ReadHalfword(RDIModuleDesc *mdesc, ARMword address)

ARMword ARMulif_ReadByte(RDIModuleDesc *mdesc, ARMword address)

where:

mdesc is the handle for the core.

address is the address in simulated memory from which the word, halfword, or
byte is to be read.

Return

The functions return the word, halfword, or byte, as appropriate.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-73

RVISS Reference
4.12.2 Writing to a specified address

The following functions write the specified word, halfword, or byte at the specified
address. Each function accesses memory without inserting cycles on the bus.

Syntax

void ARMulif_WriteWord(RDIModuleDesc *mdesc, ARMword address, ARMword data)

void ARMulif_WriteHalfword(RDIModuleDesc *mdesc, ARMword address, ARMword data)

void ARMulif_WriteByte(RDIModuleDesc *mdesc, ARMword address, ARMword data)

where:

mdesc is the handle for the core.

address is the address in simulated memory to write to.

data is the word or byte to write.
4-74 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.13 Event scheduling functions

The following functions enable you to schedule or remove events:

• ARMulif_ScheduleTimedFunction

• ARMulif_DescheduleTimedFunction.

4.13.1 ARMulif_ScheduleTimedFunction

This function schedules events using memory system cycles. It enables a function to be
called at a specified number of cycles in the future.

Syntax

void *ARMulif_ScheduleTimedFunction(RDI_ModuleDesc *mdesc,
 ARMul_TimedCallback *tcb)

where:

mdesc is the handle for the core.

tcb is a handle for you to use if you want to remove the function from the
scheduled memory cycle based event.

Note
 The function can be called only on the first instruction boundary following the specified
cycle.

4.13.2 ARMulif_DescheduleTimedFunction

ARMul_DescheduleTimedFunction() removes a previously-scheduled memory cycle based
event.

Syntax

unsigned ARMulif_DescheduleTimedFunction(RDI_ModuleDesc *mdesc, void *tcb);

where:

mdesc is the handle for the core.

tcb is the handle supplied by ARMulif_ScheduleTimedFunction when the event
was first set up.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-75

RVISS Reference
4.14 General purpose functions

This section describes the general purpose RVISS functions. They include functions to
access processor properties, add counter descriptions and values, stop RVISS and
execute code.

4.14.1 ARMul_AddCounterDesc

The ARMul_AddCounterDesc() function adds new counters to the RealView Debugger
@stats_symbolname symbols.

Syntax

int ARMul_AddCounterDesc(void *handle, ARMword *arg1, ARMword *arg2,
 const char *name)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

name is a string that names the statistic counter. The string must be less than 32
characters long.

Return

The function returns one of:

• RDIError_BufferFull

• RDIError_UnimplementedMessage.

Usage

When RVISS receives an RDIRequestCycleDesc() call from RealView Debugger, it uses
the UnkRDIInfoUpcall() (see Unknown information handler on page 4-70) to ask each
module in turn if it wishes to provide any statistics counters. Each module responds by
calling ARMul_AddCounterDesc() with the arguments passed to the UnkRDIInfoUpcall().

All statistics counters must be either a 32-bit or 64-bit word, and be monotonically
increasing. That is, the statistic value must go up over time. This is a requirement
because of the way the RealView Debugger calculates the statistics increments.
4-76 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.14.2 ARMul_AddCounterValue

This function provides the facility for your model to supply the statistics for RealView
Debugger to display.

Syntax

int ARMul_AddCounterValue(void *handle, ARMword *arg1, ARMword *arg2, bool is64,
 const ARMword *counter)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

is64 denotes whether the counter is a pair of 32-bit words making a 64-bit
counter (least significant word first), or a single 32-bit value. This enables
modules to provide a full 64-bit counter.

counter is a pointer to the current value of the counter.

Return

The function always returns RDIError_UnimplementedMessage.

Usage

Your model must call this function, or ARMul_AddCounterValue64, from its
UnkRDIInfoUpcall() handler. ARMul_AddCounterValue64 is identical to
ARMul_AddCounterValue except for the word order of the counter.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-77

RVISS Reference
4.14.3 ARMul_AddCounterValue64

This function provides the facility for your model to supply the statistics for RealView
Debugger to display.

Syntax

int ARMul_AddCounterValue64(void *handle, ARMword *arg1, ARMword *arg2,
 const uint64 counterval)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

counterval is the current value of the counter.

Return

The function always returns RDIError_UnimplementedMessage.

Usage

Your model must call this function, or ARMul_AddCounterValue, from its
UnkRDIInfoUpcall() handler. This function is identical to ARMul_AddCounterValue except
that the word order is big-endian or little-endian according to the word order of the host
system.
4-78 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.14.4 ARMul_BusRegisterPeripFunc

A peripheral model must call this function to register the peripheral with RVISS. This
enables RVISS to call the model whenever it makes accesses to memory locations
belonging to the peripheral.

Syntax

int ARMul_BusRegisterPeripFunc(enum BusRegAct act,
 ARMul_BusPeripAccessRegistration *breg);

where:

act is the action you want. act must have one of the following values: insert
or remove.

breg is a structure containing information for RVISS. You can obtain this
structure by calling ARMulif_ReadBusRange (see ARMulif_ReadBusRange
on page 4-85).

breg is a structure of type ARMul_BusPeripAccessRegistration (see
ARMul_BusPeripAccessRegistration for details).

ARMul_BusPeripAccessRegistration

This structure and type are declared in the file armul_bus.h, in:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armulif

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

The declaration is as follows:

typedef struct ARMul_BusPeripAccessRegistration {
 ARMul_BusPeripAccessFunc *access_func;
 void *access_handle;
 uint32 capabilities; /* See PeripAccessCapability_* below */
 struct ARMul_Bus *bus;
 /* 0=> normal peripheral, earlier in list than anything it
 * overlaps with. */
 unsigned priority;
 /* 0..100%
 * A higher number will be placed earlier in the list than
 * anything that it doesn't overlap with and has a lower access_frequency.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-79

RVISS Reference
 */
 unsigned access_frequency;
 unsigned addr_size; /* Number of elements in range[] */
 AddressRange range[1];
} ARMul_BusPeripAccessRegistration;

where:

access_func Pointer to the function to call for a memory access in the given
address range.

access_handle Pointer to object data for access_func.

capabilities See PeripAccessCapability.

bus This is returned by ARMulif_QueryBus. Do not alter it.

priority Use this field to assign a priority to peripherals. Zero is the highest
priority. If peripherals have overlapping address ranges, the
highest priority peripheral is accessed first. Lower priority
peripherals are only accessed if higher priority peripherals return
without processing the call.

access_frequency Use this field to inform RVISS which peripheral you expect to be
accessed more frequently. This enables RVISS to access
peripherals more efficiently. Assign the frequency as a percentage
in the range 0% to 100%.

addr_size This is for future expansion. 1 is for 32-bit addresses. This is the
only address size currently supported.

range The address range occupied by this peripheral.

PeripAccessCapability

This parameter defines the capabilities of the peripheral. It is the sum of the values of
the individual capabilities (see Table 4-7 on page 4-81).

For example:

• A value of 0x20020 means that the peripheral can handle word data accesses, but
not bytes, halfwords, or doublewords, and understands the Endian signal. This
value is predefined as PeripAccessCapability_Minimum.
4-80 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
• A value of 0x20038 means that the peripheral can handle byte, halfword, and word
data accesses, but not doubleword, and understands the Endian signal. This value
is predefined as PeripAccessCapability_Typical.

4.14.5 ARMulif_CoreCycles

This function returns, on core models that support it, the number of times the main
pipeline has advanced.

Note
 For ARM9 models this is a gated clock. The clock can be installed by the memory or
interlocks.

Syntax

ARMTime ARMulif_CoreCycles(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

Returns, on the core models that support it, the number of times the main pipeline has
advanced.

Table 4-7 Peripheral access capabilities

Capability Predefined name Value

Byte PeripAccessCapability_Byte 0x8

Half word PeripAccessCapability_HWord 0x10

Word PeripAccessCapability_Word 0x20

Doubleword PeripAccessCapability_DWord 0x40

Peripheral accepts idle cycles PeripAccessCapability_Idles 0x10000 (unsigned long)

Peripheral understands Endian signal PeripAccessCapability_Endian 0x20000 (unsigned long)

Peripheral understands bytelanes PeripAccessCapability_Bytelane 0x40000 (unsigned long)
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-81

RVISS Reference
4.14.6 ARMulif_CPUCycles

This function returns the time in units of CPU speed.

Note
 Only supported on ARM10-based and XScale models.

Syntax

ARMTime ARMulif_CpuCycles(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

Returns, on core models that support it, the time in units of CPUSPEED.

4.14.7 ARMulif_EndCondition

This function returns the reason passed to ARMulif_StopExecution.

Syntax

unsigned ARMulif_EndCondition(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

4.14.8 ARMulif_GetCoreClockFreq

This function returns the CPUSPEED in Hertz.

Syntax

ARMTime ARMulif_GetCoreClockFreq(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.
4-82 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.14.9 ARMulif_InstallHourglass

Use this function to install an hourglass callback from RVISS to your model.

Syntax

void *ARMulif_InstallHourglass(RDI_ModuleDesc *mdesc,
 armul_Hourglass *newHourglass, void *handle);

where:

mdesc is the handle for the core.

newHourglass is a function of type armul_Hourglass. See ARMul_Hourglass for more
information.

handle is a pointer to the data required by your function, newHourglass.

Usage

When you install an hourglass, RVISS gives your model a callback each time an
instruction is executed.

Return

This function returns a handle for your model to use to remove the hourglass callback.

ARMul_Hourglass

The prototype for armul_Hourglass is:

void armul_Hourglass(void *handle, ARMword pc, ARMword instr, ARMword cpsr,
 ARMword condpassed)

where:

handle is the handle for the core.

pc is the address of the current instruction.

instr is the current instruction. For example, this is a 32-bit word for ARM
instructions, or a 16-bit halfword for Thumb instructions.

cpsr is the current contents of the CPSR.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-83

RVISS Reference
Note
 This contains the mode bits, but does not reflect the correct contents of

the flag bits.

condpassed is 0 if the condition of current instruction fails and the instruction is
therefore not executed, or 1 otherwise.

Note
 If your model uses this, it must test the bottom bit of condpassed. The use

of the other bits is reserved.
4-84 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.14.10 ARMulif_ReadBusRange

You must supply a breg structure to register a peripheral. Call this function to initialize
the fields in this structure.

Syntax

int ARMulif_ReadBusRange(struct RDI_ModuleDesc *mdesc,
 struct RDI_HostosInterface const *hostif,
 toolconf config,
 struct ARMul_BusPeripAccessRegistration *breg,
 uint32 default_base, uint32 default_size,
 char const *default_bus_name);

where:

mdesc is the handle for the core.

hostif is the handle for the host interface.

config is the configuration passed in to your model in BEGIN_INIT.

breg is a structure containing information for RVISS. You require this for
registerPeripFunc() (see ARMul_BusRegisterPeripFunc on page 4-79).

For details of the structure, see armulbus.h in:

install_directory\RVARMulator\ExtensionKit\...\...\platform\armuli

f

In this path:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.

default_base is the default base address to use for your peripheral. This address is used
if config does not contain a base address for your peripheral.

default_size is the default size of the area in memory to use for your peripheral. This
is used if config does not contain a size for your peripheral.

default_bus_name

is a pointer to a string. This string is used if no bus name is found in the
config parameter for this peripheral, for example in a .dsc or .ami file.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-85

RVISS Reference
4.14.11 ARMulif_RemoveHourglass

Use this function to remove an hourglass callback.

Syntax

int ARMulif_RemoveHourglass(RDI_ModuleDesc *mdesc, void *node);

where:

mdesc is the handle for the core.

node is the handle returned by ARMulif_InstallHourglass.

4.14.12 ARMulif_StopExecution

This function stops simulator execution at the end of the current instruction, giving a
reason code.

Syntax

void ARMulif_StopExecution(RDI_ModuleDesc *mdesc, unsigned reason)

where:

mdesc is the handle for the core.

reason is an RDIError error value. RealView Debugger interprets reason and
issues a suitable message. Expected errors are:

RDIError_NoError

Program ran to a natural termination.

RDIError_BreakpointReached

Stop condition was a breakpoint.

RDIError_WatchPointReached

Stop condition was a watchpoint.

RDIError_UserInterrupt

Execution interrupted by the user.

4-86 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.14.13 ARMulif_Time

This function returns the number of memory cycles executed since system reset.

Syntax

ARMTime ARMulif_Time(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

The function returns the total number of cycles executed since system reset.

4.14.14 Hostif_RaiseError

Several initialization and installation functions can return errors of type ARMul_Error.
These errors must be passed through Hostif_RaiseError(). This is a printf-like function
that formats the error message associated with an ARMul_Error error code.

Hostif_RaiseError only prints the error message. After calling this function, the model
must return with an appropriate error, such as RDIError_UnableToInitialise.

Hostif_RaiseError must only be used during initialization.

Syntax

void Hostif_RaiseError(const struct RDI_HostosInterface *hostif,
const char *format, ...)

where:

hostif is the handle for the host interface.

format is the error code for the error message to be formatted.

... are printf-style format specifiers of variadic type.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-87

RVISS Reference
4.15 Accessing the RealView Debugger

This section describes functions that you can use to access RealView Debugger.

Several functions are provided to display messages in the appropriate RealView
Debugger window.

All the functions described in this section take the following as the first parameter:

const struct RDI_HostosInterface *hostif

This value is available in the state data structure of the model, as defined between the
BEGIN_STATE_DECL() and END_STATE_DECL() macros (see Basic model interface on
page 4-35).

4.15.1 Hostif_ConsolePrint

This function prints the text specified in the format string to the RVISS console. Under
RealView Debugger, the text appears in the corresponding I/O window.

Syntax

void Hostif_ConsolePrint(const struct RDI_HostosInterface *hostif,
 const char *format, ...)

where:

hostif is the handle for the host interface.

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.

Note
 Use Hostif_PrettyPrint() to display startup messages.
4-88 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.15.2 Hostif_ConsoleRead

This function reads a string from the RVISS console. Reading terminates at a newline
or if the end of the buffer is reached.

Syntax

char *Hostif_ConsoleRead(const struct RDI_HostosInterface *hostif,
 char *buffer, int len)

where:

hostif is the handle for the host interface.

buffer is a pointer to a buffer to hold the string.

len is the maximum length of the buffer.

Return

This function returns a pointer to a buffer, or NULL on error or end of file.

The buffer contains at most len-1 characters, terminated by a zero. If a newline is read,
it is included in the string before the zero.

4.15.3 Hostif_ConsoleReadC

This function reads a character from the RVISS console.

Syntax

int Hostif_ConsoleReadC(const struct
 RDI_HostosInterface *hostif)

where:

hostif is the handle for the host interface.

Return

This function returns the ASCII value of the character read, or EOF.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-89

RVISS Reference
4.15.4 Hostif_ConsoleWrite

This function writes a string to the RVISS console.

Syntax

int Hostif_ConsoleWrite(const struct RDI_HostosInterface *hostif,
 const char *buffer, int len)

where:

hostif is the handle for the host interface.

buffer is a pointer to a buffer holding a zero-terminated string.

len is the length of the buffer.

Return

This function returns the number of characters actually written. This is len unless an
error occurs.

4.15.5 Hostif_DebugPause

This function waits for the user to press any key.

Syntax

void Hostif_DebugPause(const struct RDI_HostosInterface *hostif)

where:

hostif is the handle for the host interface.
4-90 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.15.6 Hostif_DebugPrint

This function displays a message in the RealView Debugger logging window or to the
console when running RealView Debugger in command-line mode.

Syntax

void Hostif_DebugPrint(const struct RDI_HostosInterface *hostif,
 const char *format, ...)

where:

hostif is the handle for the host interface.

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.

4.15.7 Hostif_PrettyPrint

This function prints a string in the same way as Hostif_ConsolePrint(), but in addition
performs line-break checks so that wordwrap is avoided. Use it to display startup
messages.

Syntax

void Hostif_PrettyPrint(const struct RDI_HostosInterface *hostif,
 struct hashblk * /*toolconf*/ config,
 const char *format, ...)

where:

hostif is the handle for the host interface.

config is a pointer to the toolconf configuration database of the model. This
value is available in the state data structure of the model, as defined
between the BEGIN_STATE_DECL() and END_STATE_DECL() macros (see Basic
model interface on page 4-35).

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-91

RVISS Reference
4.15.8 Hostif_WriteC

This function writes a character to the RVISS console.

Syntax

void Hostif_ConsoleWriteC(const struct
 RDI_HostosInterface *hostif, int c)

where:

hostif is the handle for the host interface.

c is the character to write. c is converted to an unsigned char.
4-92 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.16 Tracer

This section describes the functions provided by the tracer module, tracer.c.

Note
 These functions are not exported. If you want to use any of these functions in your
model, you must build your model together with tracer.c.

The default implementations of these functions can be changed by compiling tracer.c
with EXTERNAL_DISPATCH defined.

The formats of Trace_State and Trace_Packet are documented in tracer.h.

See also:

• Tracer on page 2-8.

4.16.1 Tracer_Open

This function is called when the tracer is initialized.

Syntax

unsigned Tracer_Open(Trace_State *ts)

Usage

The implementation in tracer.c opens the output file from this function, and writes a
header.

4.16.2 Tracer_Dispatch

This function is called on each traced event for every instruction, event, or memory
access.

Syntax

void Tracer_Dispatch(Trace_State *ts, Trace_Packet *packet)

Usage

In tracer.c, this function writes the packet to the trace file.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-93

RVISS Reference
4.16.3 Tracer_Close

This function is called at the end of tracing.

Syntax

void Tracer_Close(Trace_State *ts)

Usage

The file tracer.c uses this to close the trace file.

4.16.4 Tracer_Flush

This function is called when tracing is disabled.

Syntax

extern void Tracer_Flush(Trace_State *ts)

Usage

The file tracer.c uses this to flush output to the trace file.
4-94 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.17 Map files

The type and speed of memory in a simulated system can be detailed in a map file. A
map file defines the number of regions of attached memory, and for each region:

• the address range to which that region is mapped

• the data bus width in bytes

• the access time for the memory region.

See the RealView Debugger User Guide for details of how to use a map file in a
debugging session.

To calculate the number of wait states for each possible type of memory access, RVISS
uses the access times supplied in the map file, and the clock frequency from RealView
Debugger (see the RealView Debugger Target Configuration Guide).

See also Memory modeling with mapfiles on page 2-29.

Note
 A memory map file defines the characteristics of the memory areas defined in
peripherals.ami (see RVISS configuration files on page 4-99). A .map file must define
read/write areas that are at least as large as those specified for the heap and stack in
peripherals.ami, and at the same locations. If this is not the case, Data Aborts are likely
to occur during execution.

4.17.1 Format of a map file

The format of each line is:

start size name width access{*} read-times write-times

where:

start The start address of the memory region in hexadecimal, for example
80000.

size The size of the memory region in hexadecimal, for example, 4000.

name A single word that you can use to identify the memory region when
memory access statistics are displayed. You can use any name. To ease
readability of the memory access statistics, give a descriptive name such
as SRAM, DRAM, or EPROM.

width The width of the data bus in bytes (that is, 1 for an 8-bit bus, 2 for a 16-bit
bus, or 4 for a 32-bit bus).
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-95

RVISS Reference
access Describes the type of accesses that can be performed on this region of
memory:

r for read-only.

w for write-only.

rw for read-write.

- for no access. Any access causes a Data or Prefetch Abort.

An asterisk (*) can be appended to access to describe a Thumb-based
system that uses a 32-bit data bus to memory, but which has a 16-bit latch
to latch the upper 16 bits of data, so that a subsequent 16-bit sequential
access can be fetched directly out of the latch.

read-times

Describes the nonsequential and sequential read times in nanoseconds.
These must be entered as the nonsequential read access time followed by
a slash (/), followed by the sequential read access time. Omitting the
slash and using only one figure indicates that the nonsequential and
sequential access times are the same.

Note
 For accurate modeling of real devices, you might have to add a signal

propagation delay (20 to 30ns) to the read and write times quoted for a
memory chip.

write-times

Describes the nonsequential and sequential write times. The format is the
same as that given for read times.

The following examples assume a clock speed of 20MHz, the default.

Example 1

Example 4-2 describes a system with a single continuous section of RAM from 0 to
0x7FFFFFFF with a 32-bit data bus, read-write access, nonsequential access time of
135ns, and sequential access time of 85ns.

Example 4-2 Single contiguous section of RAM

0 80000000 RAM 4 rw 135/85 135/85
4-96 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
Example 2

Example 4-3 describes a typical embedded system with 32KB of on-chip memory,
16-bit ROM and 32KB of external DRAM:

Example 4-3 Embedded system memory map

00000000 8000 SRAM 4 rw 1/1 1/1
00008000 8000 ROM 2 r 100/100 100/100
00010000 8000 DRAM 2 rw 150/100 150/100
7FFF8000 8000 Stack 2 rw 150/100 150/100

The regions of memory are:

• A fast region from 0 to 0x7FFF with a 32-bit data bus. This is labeled SRAM.

• A slower region from 0x8000 to 0xFFFF with a 16-bit data bus. This is labelled
ROM and contains the image code. It is marked as read-only.

• A region of RAM from 0x10000 to 0x17FFF that is used for image data.

• A region of RAM from 0x7FFF8000 to 0x7FFFFFFF that is used for stack data. The
stack pointer is initialized to 0x80000000.

In the final hardware, the two distinct regions of the external DRAM are combined. This
does not make any difference to the accuracy of the simulation.

To represent fast (no wait state) memory, the SRAM region is given access times of 1ns.
In effect, this means that each access takes 1 clock cycle, because RVISS rounds this up
to the nearest clock cycle. However, specifying it as 1ns enables the same map file to be
used for a number of simulations with differing clock speeds.

Note
 To ensure accurate simulations, make sure that all areas of memory likely to be accessed
by the image you are simulating are described in the memory map.

To ensure that you have described all areas of memory that you think the image
accesses, you can define a single memory region that covers the entire address range as
the last line of the map file. For example, you can add the following line to Example 4-3:

00000000 80000000 Dummy 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory
you expect by examining the values of the @mapfile_symbolname symbols.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-97

RVISS Reference
Note
 A dummy memory region must be the last entry in a map file.

Displaying the memory statistics

To get a list of the mapfile symbols in RealView Debugger use the REGINFO command as
follows:

reginfo,access,match:@mapfile

To display the memory statistics use the RealView Debugger PRINTF command, for
example:

printf "%d", @mapfile_symbolname

See also

• RealView Debugger User Guide

• RealView Debugger Target Configuration Guide

• RealView Debugger Command Line Reference Guide for details of the PRINTF and
REGINFO commands.
4-98 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.18 RVISS configuration files

RVISS configuration files (.ami and .dsc files) are ToolConf files, which are located in
the following directories:

• The main RVISS configuration directory contains .ami and .dsc files:

install_directory\RVARMulator\ARMulator\...\...\platform

By default, the following .ami files are supplied:

— bustypes.ami

— default.ami

— example1.ami

— peripherals.ami

— processors.ami

— vfp.ami.

By default, the following .dsc files are supplied:

— arm925.dsc

— arm1020ej.dsc

— arm1026ej.dsc

— armiss.dsc

— armulate.dsc

— peripherals.dsc

— v6armiss.dsc

— vfp11.dsc

— vfp.dsc

— xScale.dsc.

• For the MPCore™ model, the following directory contains the smp11.dsc file:

install_directory\RVARMulator\MPCore\ARMulator\...\...\rvds30\platform

• For ARMv6 architecture models that support Thumb-2 and TrustZone™, the
following directory contains the v6thumb2.dsc and v6trustzone.dsc files:

install_directory\RVARMulator\v6ARMulator\...\...\platform.

In these paths:

• platform is:

— win_32-pentium for Windows

— linux-pentium for Red Hat Linux.

• For Red Hat Linux, replace \ with /.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-99

RVISS Reference
When you connect to an RVISS model from RealView Debugger, RVISS loads all .ami
files it finds on any of the paths specified in the environment variable ARMCONF. This is
initially set up to point to:

install_directory\RVARMulator\ARMulator\...\...\platform

If a configuration is specified differently in two files, the file in the path that appears
first is used. If there are several directories in ARMCONF, RVISS loads .ami files from
directories in the order that they appear in the list. RVISS loads .ami files from within
each directory in an unpredictable order.

4.18.1 Predefined tags

Before reading .ami files, RVISS creates several tags itself, based on the settings you
give to RealView Debugger. These are given in Table 4-8. Preprocessing directives in
.ami files use these tags to control the configuration.

4.18.2 Processors

The processors region is a child ToolConf database (see ToolConf on page 4-105). It has
a full list of models supported by RVISS. This list is the basis of:

• the list of processors in the RealView Debugger ARMulator Configuration dialog
box

• the list of accepted targets for the --target option when starting RealView
Debugger from the command-line.

Table 4-8 Tags predefined by RVISS

Tag Description

CPUSpeed Set to the speed set in the RealView Debugger ARMulator
Configuration dialog box, or in the -clock command line option
when running RealView Debugger in command-line mode. For
example, CPUSpeed=30MHz.

FCLK Set to the same value as CPUSpeed, if that value is not zero. Not set
if CPUSpeed is zero.

MCLK Set to the same value as FCLK for uncached cores. Set to FCLK/MCCFG
for cached cores.

ByteSex Set to L or B if a bytesex is specified from RealView Debugger. Not
set otherwise.

FPE Set to True or False from RealView Debugger.
4-100 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
You can add a variant processor to this list, for example to include a particular memory
model in the definition. For examples, see the example1.ami file in:

install_directory\RVARMulator\ARMulator\...\...\platform

Default specifies the processor to use if no other processor is specified. Each other entry
in the Processors region is the name of a processor.

Example 4-4 declares two processors, TRACED_ARM10 and MAPPED_ARM7. In this example,
MCCFG is the ratio of the clock frequency on the processor to the clock frequency on the
external bus.

Example 4-4 Processors in a toolconf file

{PROCESSORS

 {TRACED_ARM10=ARM10200E

 ;CPUSPEED=400MHz

 ;Memory clock divisor.
 ;(The AHB runs this many times slower than the core.)
 MCCFG=4

 {Flatmem
 {Peripherals
 {Tracer=Default_Tracer
 ;; Output options - can be plaintext to file, binary to file or to
 ;; RDI log window. (Checked in the order RDILog, File, BinFile.)
 RDILog=False
 File=armul.trc
 BinFile=armul.trc
 ;; Tracer options - what to trace
 TraceInstructions=True
 TraceRegisters=False
 TraceMemory=True
 TraceEvents=False
 ;; Flags - disassemble instructions; start up with tracing enabled.
 Disassemble=True
 StartOn=True
 }
 }
 }

 ;End TRACED_ARM10
 }

 {MAPPED_ARM7=ARM720T
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-101

RVISS Reference
 {Flatmem
 {Peripherals
 {Mapfile=Default_Mapfile
 MAPFILETOLOAD=C:\Myprojects\arm7_map.map
 }
 }
 }
 ;End MAPPED_ARM7
 }

;End Processors
}

Finding the configuration for a selected processor

RVISS uses the following algorithm to find a configuration for a selected processor:

1. Set the current region to be Processors.

2. Find the selected processor in the current region.

3. If the tag has a child, that child is the required configuration.

See also
• ToolConf on page 4-105

• RealView Debugger User Guide

• RealView Debugger Target Configuration Guide

• RealView Debugger Command Line Reference Guide.

4.18.3 Adding a variant processor model

Suppose you have created a memory model called MyASIC, designed to be combined with
an ARM7TDMI processor core to make a new microcontroller called ARM7TASIC.

To enable your variant processor model to be selected from RealView Debugger:

1. Create a new .ami file modeled on example1.ami.

2. Add your variant processor model to the following RealView Debugger
configuration file:

$RVDEBUG_INSTALL\etc\armul.var
4-102 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.18.4 Changing the cache or TCM size of a synthesizable processor

To change the cache or TCM size of a synthesizable processor:

1. Create a new .ami file based on the processors.ami file containing:

{PROCESSORS
 {Variant_name=processor_name
 configuration_settings
 }
}
;End of Processors

{UNIREGSNAMES
Variant_name=processor_name
}

2. Place your new .ami file in the same location as the processors.ami file (see RVISS
configuration files on page 4-99).

For example, to change both the instruction and data caches of an ARM946E-S to 8KB:

1. Edit your new .ami file.

2. In the PROCESSORS section enter the configuration settings for your variant:

{PROCESSORS
 {ARM946E-S_Cached=ARM946E-S
 ICache_Lines=256
 DCache_lines=256
 }
}

3. In the UNIREGSNAMES section, add an entry that corresponds to the configuration in
the PROCESSORS section:

{UNIREGSNAMES
ARM946E-S_Cached=ARM946E-S
}

This overrides the corresponding lines in armulate.dsc.

Caution
 Any processors that inherit properties from ARM946E-S are also affected if you make
this change.

Cores that do not inherit their properties from ARM946E-S, such as
ARM946E-S-REV0 or ARM946E-S-REV1, are not affected.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-103

RVISS Reference
If you want to change the cache or TCM size of a processor that does not already have
a section in the .ami file containing your variants, you can add a section. For example,
to change the instruction RAM size of the ARM926EJ-S from 64KB to 32KB:

1. Edit the .ami file containing your variants.

2. Insert the following entry in the PROCESSORS section:

{ARM926EJ-S=Processors_Common_ARMULATE
 IRamSize=0x8000
}

This overrides the corresponding line in armulate.dsc.

Any details that are not specified in your file remain unaltered from those specified in
armulate.dsc.
4-104 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.19 ToolConf

This section describes the RVISS ToolConf module

4.19.1 Toolconf overview

ToolConf is a module within RVISS. A ToolConf file is a tree-structured database
consisting of tag and value pairs. Tags and values are strings, and are usually
case-insensitive. ToolConf files are files of type .ami or .dsc.

You can find a value associated with a tag from a ToolConf database, or add or change
a value.

If a tag is given a value more than once, the first value is used.

4.19.2 File format

The following are typical ToolConf database lines:

TagA=ValueA
TagA=NewValue
Othertag
Othertag=Othervalue
;; Lines starting with ; (semicolon) are comments.
; Tag=Value

The first line creates a tag in the ToolConf called TagA, with value ValueA.

The second line has no effect, as TagA already has a value.

The third line creates a tag called Othertag, with no value.

The fourth line gives the value Othervalue to Othertag.

There must be no whitespace at the beginning of database lines, in tags, in values, or
between tags or values and the = symbol.

Conventionally, ordinary comments start with two semicolons. Lines starting with one
semicolon are usually commented-out lines. You can comment out a line to disable it,
or remove the comment characters from a commented line to enable it.

A comment must be on a line by itself.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-105

RVISS Reference
File header

If you add any ToolConf files, the first line of the file must be:

;; ARMulator configuration file type 3

RVISS ignores any .ami or .dsc files that do not begin with this header.

Tree structure

Each tag can have another ToolConf database associated with it, called its child. When
a tag lookup is performed on a child, if the tag is not found in the child, the search
continues in the parent, and if required in the parent’s parent and so on until the tag is
found.

This means that the child only includes tags whose values are different from those of
the same tag in the parent.

If child databases are specified more than once for the same parent, the child databases
are merged.

Specifying children

There are two ways of specifying children in a ToolConf database.

One is more suited to specifying large children:

{ TagP=ValueP
TagC1=ValueC1
TagC2=ValueC2
}

This creates a tag called TagP, with the value ValueP, and a child database. Two tags are
given values in the child.

The other is more suited to specifying small children:

TagP:TagC=ValueC

This creates a tag called TagP, with no value. TagP has a child in which one tag is
created, TagC, with value ValueC. It is equivalent to:

{ TagP
TagC=ValueC
}

4-106 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
Conditional expressions

The full #if...#elif...#else...#endif syntax is supported. You can use this to skip
regions of a ToolConf database. Expressions use tags from the file, for example, the C
preprocessor sequence:

#define Control True

#if defined(Control) && Control==True
#define controlIsTrue Yes
#endif

maps to the ToolConf sequence:

Control=True

#if Control && Control=True
ControlIsTrue=Yes
#endif

A condition is evaluated from left to right, on the contents of the configuration at that
point. Table 4-9 shows the operators that can be used in ToolConf conditional
expressions.

File inclusion

You can use the #include directive to include one ToolConf file in another. The directive
is ignored if it is in a region which is being skipped under control of a conditional
expression.

Table 4-9 Operators in ToolConf preprocessor expressions

Operator Example Description

none Tag Test for existence of tag definition

== Tag==Value Case-insensitive string equality test

!= Tag!=Value Case-insensitive string inequality test

(...) (Tag==Value) Grouping

&& TagA==ValueA && TagB==ValueB Boolean AND

|| TagA==ValueA || TagB==ValueB Boolean OR

! !(Tag==Value) Boolean NOT
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-107

RVISS Reference
4.19.3 Boolean flags in a ToolConf database

Table 4-10 shows the full set of permissible values for Boolean flags. The strings are
case-insensitive.

4.19.4 SI units in a ToolConf database

Some values can be specified using SI (Système Internationale) units, for example:

ClockSpeed=10MHz
MemorySize=2Gb

The scaling factor is set by the prefix to the unit. RVISS only accepts k, M, or G prefixes
for kilo, mega, and giga. These correspond to scalings of 103, 106, and 109, or 210, 220,
and 230. RVISS decides which scaling to use according to context.

Table 4-10 Boolean values

True False

True False

On Off

High Low

Hi Lo

1 0

T F
4-108 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.19.5 ToolConf_Lookup

This function performs a lookup on a specified tag in an .ami or .dsc file. If the tag is
found, its associated value is returned. Otherwise, NULL is returned.

Syntax

const char *ToolConf_Lookup(toolconf hashv, tag_t tag)

where:

hashv is the database to perform the lookup on.

tag is the tag to search for in the database. The tag is case-dependent.

Return

The function returns:

• a const pointer to the tag value, if the search is successful

• NULL, if the search is not successful.

Example

const char *option = ToolConf_Lookup(db, ARMulCnf_Size);

/* ARMulCnf_Size is defined in armcnf.h */
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-109

RVISS Reference
4.19.6 ToolConf_Cmp

This function performs a case-insensitive comparison of two ToolConf database tag
values.

Syntax

int ToolConf_Cmp(const char *s1, const char *s2)

where:

s1 is a pointer to the first string value to compare.

s2 is a pointer to the second string value to compare.

Return

The function returns:

• 1, if the strings are identical

• 0, if the strings are different.

Example

if (ToolConf_Cmp(option, "8192"))
4-110 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.20 Reference peripherals

This section describes the following reference peripherals:

• interrupt controller

• timer.

4.20.1 Interrupt controller

The base address of the interrupt controller, IntBase, is configurable (see Interrupt
controller on page 2-34).

Table 4-11 shows the location of individual registers.

Table 4-11 Interrupt controller memory map

Address Read Write

IntBase IRQStatus Reserved

IntBase + 004 IRQRawStatus Reserved

IntBase + 008 IRQEnable IRQEnableSet

IntBase + 00C Reserved IRQEnableClear

IntBase + 010 Reserved IRQSoft

IntBase + 100 FIQStatus Reserved

IntBase + 104 FIQRawStatus Reserved

IntBase + 108 FIQEnable FIQEnableSet

IntBase + 10C Reserved FIQEnableClear
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-111

RVISS Reference
Interrupt controller defined bits

The FIQ interrupt controller is one bit wide. It is located on bit 0.

Table 4-12 gives details of the interrupt sources associated with bits 1 to 5 in the IRQ
interrupt controller registers. You can use bit 0 for a duplicate FIQ input.

Note
 Timer 1 and Timer 2 can be configured to use different bits in the IRQ controller
registers, see Timer on page 2-35.

Table 4-12 Interrupt sources

Bit Interrupt source

0 FIQ source

1 Programmed interrupt

2 Communications channel Rx

3 Communications channel Tx

4 Timer 1

5 Timer 2
4-112 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

RVISS Reference
4.20.2 Timer

The base address of the timer, TimerBase, is configurable (see Timer on page 2-35).

See Table 4-13 for the location of individual registers.

Timer load registers

Write a value to one of these registers to set the initial value of the corresponding timer
counter. You must write the top 16 bits as zeroes.

If the timer is in periodic mode, this value is also reloaded to the timer counter when the
counter reaches zero.

If you read from this register, the bottom 16 bits return the value that you wrote. The top
16 bits are undefined.

Timer value registers

Timer value registers are read-only. The bottom 16 bits give the current value of the
timer counter. The top 16 bits are undefined.

Table 4-13 Timer memory map

Address Read Write

TimerBase Timer1Load Timer1Load

TimerBase + 04 Timer1Value Reserved

TimerBase + 08 Timer1Control Timer1Control

TimerBase + 0C Reserved Timer1Clear

TimerBase + 10 Reserved Reserved

TimerBase + 20 Timer2Load Timer2Load

TimerBase + 24 Timer2Value Reserved

TimerBase + 28 Timer2Control Timer2Control

TimerBase + 2C Reserved Timer2Clear

TimerBase + 30 Reserved Reserved
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. 4-113

RVISS Reference
Timer clear registers

Timer clear registers are write-only. Writing to one of them clears an interrupt generated
by the corresponding timer.

Timer control registers

See Table 4-15 and Table 4-14 for details of timer register bits. Only bits 7, 6, 3, and 2
are used. You must write all others as zeroes.

The counter counts downwards. It counts BCLK cycles, or BCLK cycles divided by 16
or 256. Bits 2 and 3 define the prescaling applied to the clock.

In free-running mode, the timer counter overflows when it reaches zero, and continues
to count down from 0xFFFF.

In periodic mode, the timer generates an interrupt when the counter reaches zero. It then
reloads the value from the load register and continues to count down from this value.

Table 4-14 Clock prescaling using bits 2 and 3

Bit
3

Bit
2

Clock
divided by

Stages of
prescale

0 0 1 0

0 1 16 4

1 0 256 8

1 1 Undefined -

Table 4-15 Timer enable and mode control using bits 6 and 7

0 1

Bit 7 Timer disabled Timer enabled

Bit 6 Free-running
mode

Periodic mode
4-114 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Appendix A
Using MPCore Models

This appendix describes The MPCore™ model. It contains the following sections:

• About MPCore on page A-2

• Default peripheral system on page A-3

• Limitations on page A-5

• Writing a new MPCore model on page A-6.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. A-1

Using MPCore Models
A.1 About MPCore

The MPCore system from ARM is an ARM11-based Symmetric Multiprocessor (SMP)
solution available with between 1 and 4 cores. It is supplied with a set of peripherals
including a Snoop Control Unit to ensure cache coherency between the cores,
Timer/Watchdog units and an Interrupt Distributor. The MPCore model is single-core.

Available models are:

• MPCore_x1_RVDS, with 32K each of D-cache and I-cache

• MPCore_x1_rvds_16k, with 16K each of D-cache and I-cache

• MPCore_x1_rvds_32k, with 32K each of D-cache and I-cache (this is the same as
MPCore_x1_RVDS)

• MPCore_x1_rvds_64k, with 64K each of D-cache and I-cache.
A-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Using MPCore Models
A.2 Default peripheral system

The ARM MPCore specification gives a register map relative to the parameter
PERIPHBASE, which for the MPCore model is 0x1F00_0000. This allows a core to address
its local peripherals through a fixed offset (independent of core number) from
PERIPHBASE. In addition, these registers are aliased in the global memory maps so that
other cores can access them.

The following table shows the memory map for the MPCore model. All regions not
shown here contain RAM and are shared by all cores.

The following table shows the configuration of the interrupt distributor in MPCore.

Table A-1 MPCore memory map

Physical address range Registers

0x1F00_0000 to 0x1F00_00FF Snoop Control Unit's registers

0x1F00_0100 to 0x1F00_01FF Interrupt distributor local to current core

0x1F00_0200 to 0x1F00_02FF Reserved for P0 in multi-core systems

0x1F00_0300 to 0x1F00_03FF Reserved for P1 in multi-core systems

0x1F00_0400 to 0x1F00_04FF Reserved for P2 in multi-core systems

0x1F00_0500 to 0x1F00_05FF Reserved for P3 in multi-core systems

0x1F00_0600 to 0x1F00_06FF Timer/watchdog local to current core

0x1F00_0700 to 0x1F00_07FF Reserved for P0 in multi-core systems

0x1F00_0800 to 0x1F00_08FF Reserved for P1 in multi-core systems

0x1F00_0900 to 0x1F00_09FF Reserved for P2 in multi-core systems

0x1F00_0A00 to 0x1F00_0BFF Reserved for P3 in multi-core systems

0x1F00_1000 to 0x1F00_1FFF Global interrupt distributor

Table A-2 Interrupt distributor configuration

Pin Source Signal Banked?

29p00 TWD0 Timer IRQ Yes

30p00 TWD0 Watchdog IRQ Yes

29p01 TWD1 Timer IRQ Yes
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. A-3

Using MPCore Models
30p01 TWD1 Watchdog IRQ Yes

29p02 TWD2 Timer IRQ Yes

30p02 TWD2 Watchdog IRQ Yes

29p03 TWD3 Timer IRQ Yes

30p03 TWD3 Watchdog IRQ Yes

51 P0 Performance Monitoring Unit IRQ No

54 P1 Performance Monitoring Unit IRQ No

57 P2 Performance Monitoring Unit IRQ No

60 P3 Performance Monitoring Unit IRQ No

63 SCU Snoop Control Unit IRQ (overflow from MN0) No

64 SCU Snoop Control Unit IRQ (overflow from MN1) No

65 SCU Snoop Control Unit IRQ (overflow from MN2) No

66 SCU Snoop Control Unit IRQ (overflow from MN3) No

67 SCU Snoop Control Unit IRQ (overflow from MN4) No

Table A-2 Interrupt distributor configuration (continued)

Pin Source Signal Banked?
A-4 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Using MPCore Models
A.3 Limitations

The MPCore model has the following limitations:

• the Snoop Control Unit has a configuration register that reports the tag RAM sizes
for the different cores in the system. The real hardware will report non-existing
cores as having 0 as the tag RAM configuration for those cores. In the model, it
will always be reported the same as for the core that exists.

• The Snoop Control Unit is only modelled functionally.

• The model is an instruction set simulator and does not have accurate timing. The
model must therefore not be used for benchmarking.

• You cannot add new peripherals in the same way that you can with the MPCore
processor system. However, for the single core version of the MPCore model, you
can add old-style RVISS model peripherals. See Writing a new MPCore model on
page A-6.

• The VA to PA register block is not implemented. These registers will produce
errors if you attempt to access them. They are also inaccessible from real code.

• The MPCore processor is available with or without a VFP. The model always has
a VFP.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. A-5

Using MPCore Models
A.4 Writing a new MPCore model

This section describes how to create your own MPCore model.

Note
 The MPCore model in RVISS is a single-processor model.

A.4.1 Interrupts

The MPCore model already has an interrupt distributor (see Default peripheral system
on page A-3). You therefore do not need to include one. RVISS peripherals that generate
interrupts to a Vectored Interrupt Controller (VIC) are automatically redirected to the
interrupt distributor that is part of the MPCore system.

Note
 An MPCore system is not likely to contain a VIC and this is therefore not expected to
occur in real hardware. The model is set up in this way for convenience. Input pins 0..18
of the VIC are mapped to pins 32..50 of the interrupt distributor.

When a peripheral generates an interrupt it uses code similar to the following:

....
GenericAccessCallback **interrupt_controller;
...

void change_interrupt_pin(MyState* state, unsigned pin, unsigned level)
{
 if (state->interrupt_controller == NULL) {
 state->interrupt_controller = ARMulif_GetInterruptController(
 &state->coredesc
);
 if (state->interrupt_controller == NULL) {
 /* ... error ... */
 return;
 }
 }

 {
 GenericAccessCallback* ic = *state->interrupt_controller;
 if (ic != NULL) {
 ic->func(ic, pin, &level, 0);
 }
 else {
 /* ... error ... */
 return;
A-6 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Using MPCore Models
 }
 }
}

If pin is within the assigned range (0..18) then it is redirected to the interrupt distributor.
The exact pin that each peripheral communicates with is dependent on the peripheral
and the way in which it is configured.

Peripherals that do not use the VIC interface can signal the core directly by using the
IRQ/FIQ signal, but this is not recommended. The IRQ/FIQ signal does not interact
with the interrupt distributor, and the interrupt service routine must independently
locate the source of the interrupt. It is recommended that you modify these peripherals
to map to the interrupt distributor.

A.4.2 Configuring your new model

The MPCore model does not automatically load the peripherals in
PeripheralSets:Default_Common_Peripherals, but instead uses its own section
PeripheralSets:RVISSStylePeripherals. This means that any peripherals that are
incompatible with the MPCore_x1_RVDS model can be loaded unchanged into other RVISS
models.

PERIPHBASE is the base address of the memory-mapped MPCore peripheral registers.
PERIPHBASE is set to 0x1F00_0000.You cannot change this setting.

A.4.3 Setting up your new model

It is possible to setup different versions of an MPCore system with a customized
peripheral set. Use the following to set up your new model:

;; ARMulator configuration file type 3

; This file must have the suffix '.ami'

{ Processors
 { MyMpCoreSystem = MPCore_x1_rvds

;or MPCore_x1_rvds_16k, MPCore_x1_rvds_32k or MPCore_x1_rvds_64k,
;as required PERIPHERAL_SYSTEM=MyPeripherals

 }
}
{ PeripheralSets
 { MyPeripherals=RVISSStylePeripherals_MustHaves
 { MyPeripheral ...
 }
 }
}
{ UniregsNames
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. A-7

Using MPCore Models
 ; tell the debugger what core is in the model systemMyMpCoreSystem =
MPCore,VFPv2
}

See the RealView Debugger Target Configuration Guide for information on how to
select your new model.
A-8 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

Appendix B
ARM1136JF-S and ARM1136J-S Models

This appendix describes the ARM1136JF-S™ and ARM1136J-S™ models. It contains
the following section:

• Restrictions for the ARM1136JF-S and ARM1136J-S models on page B-2.
ARM DUI 0207D Copyright © 2002-2007 ARM Limited. All rights reserved. B-1

ARM1136JF-S and ARM1136J-S Models
B.1 Restrictions for the ARM1136JF-S and ARM1136J-S models

The following restrictions apply to ARM1136JF-S and ARM1136J-S models:

• The caches are not modelled accurately enough to show aliasing effects for cache
sizes greater than 16kB.

• Under RealView Debugger the Invalidate by Range operations that are new to the
ARMv6 architecture are shown as 64 bit registers. The high 32 bits of this register
is the start address and the low 32 bits are the end address.

• Table B-1 shows the registers that are not modeled for the ARM1136JF-S and
ARM1136J-S models.

Table B-1 Registers not modeled for ARM1136JF-S and ARM1136J-S RVISS
models

Register RealView Debugger symbol

Data Memory Remap Register @CP15_D_MEM_REMAP

Instruction Memory Remap Register @CP15_I_MEM_REMAP

DMA Memory Remap Register @CP15_DMA_MEM_REMAP

Peripheral Port Memory Remap Register @CP15_PERPH_MEM_REMAP

Instruction Cache Master Valid Register @CP15_ICACHE_MASTER_VALID_REGISTER_0/7

Instruction SmartCache Master Valid Register @CP15_ISMARTCACHE_MASTER_VALID_REGISTER_0/7

Data Cache Master Valid Register @CP15_DCACHE_MASTER_VALID_REGISTER_0/7

Data SmartCache Master Valid Register @CP15_DSMARTCACHE_MASTER_VALID_REGISTER_0/7

Main TLB VA Register @CP15_TLB_MAIN_VA

Main TLB PA Register @CP15_TLB_MAIN_PA

Main TLB Attribute Register @CP15_TLB_MAIN_ATT
B-2 Copyright © 2002-2007 ARM Limited. All rights reserved. ARM DUI 0207D

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on RealView ARMulator ISS
	Feedback on this book

	Introduction
	1.1 RealView ARMulator ISS overview
	1.1.1 What is RealView ARMulator ISS?
	1.1.2 Semihosting

	RVISS Basics
	2.1 About RVISS
	2.1.1 Accuracy

	2.2 Connections to RVISS in RealView Debugger
	2.2.1 RealView Debugger features supported for RVISS connections

	2.3 RVISS components
	2.3.1 Configuring RVISS

	2.4 Tracer
	2.4.1 RealView Debugger support for tracing
	2.4.2 Enabling the RVISS Tracer feature in RealView Debugger
	2.4.3 Configuring Tracer
	2.4.4 Interpreting trace file output

	2.5 RVISS cycle types
	2.5.1 Uncached von Neumann cores
	2.5.2 Uncached Harvard cores
	2.5.3 Cached cores with MMUs or MPUs and AMBA ASB interfaces
	2.5.4 Cached cores with MMUs or MPUs and AMBA AHB interfaces
	2.5.5 Internal cycle types for cached cores
	2.5.6 StrongARM1
	2.5.7 Core-specific verbose statistics
	2.5.8 See also

	2.6 Pagetable module
	2.6.1 Overview of the pagetable module
	2.6.2 Controlling the MMU, MPU or MPU and cache
	2.6.3 Controlling registers 2 and 3
	2.6.4 Memory regions
	2.6.5 Pagetable module and memory management units
	2.6.6 Pagetable module and memory protection units

	2.7 Default memory model
	2.8 Memory modeling with mapfiles
	2.8.1 Overview of memory modeling with mapfiles
	2.8.2 Clock frequency
	2.8.3 Selecting the mapfile memory model
	2.8.4 How the mapfile memory model calculates wait states
	2.8.5 Configuring the map memory model

	2.9 Semihosting
	2.9.1 Semihosting configuration

	2.10 Peripheral models
	2.10.1 Configuring RVISS to use the peripheral models
	2.10.2 Configuring details of the peripherals
	2.10.3 Interrupt controller
	2.10.4 Timer
	2.10.5 Watchdog
	2.10.6 Tube

	Writing RVISS Models
	3.1 The RVISS extension kit
	3.1.1 Location of files
	3.1.2 Supplied models

	3.2 Writing a new peripheral model
	3.2.1 Using a sample model as a template
	3.2.2 Return values
	3.2.3 Initialization, finalization, and state macros
	3.2.4 Registering your model

	3.3 Building a new model
	3.3.1 How to build a new model

	3.4 Configuring RVISS to use a new model
	3.4.1 Adding a .dsc file
	3.4.2 Editing default.ami and peripherals.ami

	3.5 Configuring RVISS to disable a model

	RVISS Reference
	4.1 SimRdi_Manager interface
	4.1.1 Using the SimRdi_Manager interface
	4.1.2 Header files
	4.1.3 Supported SimRdi_Manager services
	4.1.4 Adding a SimRdi_Manager listener
	4.1.5 Version information
	4.1.6 Advertising the SimRdi_Manager services provided by your model
	4.1.7 Global break service
	4.1.8 Register services
	4.1.9 Register windows service (regwin)
	4.1.10 Other members of SimRdiProcVec
	4.1.11 Stopping RVISS

	4.2 RVISS models
	4.2.1 Configuring models through ToolConf

	4.3 RVISS model insertion
	4.3.1 Example 1: RVISS without the Mapfile and Tracer inserted
	4.3.2 Example 2: RVISS with Mapfile inserted, and Tracer inserted in one link
	4.3.3 Example 3: RVISS with Mapfile inserted, and Tracer inserted in two links

	4.4 Communicating with the core
	4.4.1 Mode numbers
	4.4.2 ARMulif_GetReg
	4.4.3 ARMulif_SetReg
	4.4.4 ARMulif_GetPC and ARMulif_GetR15
	4.4.5 ARMulif_SetPC and ARMulif_SetR15
	4.4.6 ARMulif_GetCPSR
	4.4.7 ARMulif_SetCPSR
	4.4.8 ARMulif_GetSPSR
	4.4.9 ARMulif_SetSPSR
	4.4.10 ARMulif_ThumbBit
	4.4.11 ARMulif_GetMode
	4.4.12 ARMulif_CPRead
	4.4.13 ARMulif_CPWrite
	4.4.14 ARMulif_SetConfig

	4.5 Basic model interface
	4.5.1 Declaration of a private state data structure
	4.5.2 Model initialization
	4.5.3 Model finalization

	4.6 The memory interface
	4.6.1 Memory type variants

	4.7 Memory model interface
	4.7.1 Memory model initialization function
	4.7.2 armul_ReadClock
	4.7.3 armul_GetCycleLength
	4.7.4 armul_ReadCycles
	4.7.5 armul_MemAccess
	4.7.6 armul_MemAccess2
	4.7.7 armul_MemAccAsync
	4.7.8 armul_HarvardMemAccess
	4.7.9 Data for reads and writes
	4.7.10 Macros for access types

	4.8 Coprocessor model interface
	4.8.1 ARMulif_InstallCoprocessorV5
	4.8.2 LDC
	4.8.3 STC
	4.8.4 MRC
	4.8.5 MCR
	4.8.6 MCRR
	4.8.7 MRRC
	4.8.8 CDP
	4.8.9 read
	4.8.10 write

	4.9 Exceptions
	4.9.1 ARMulif_SetSignal
	4.9.2 ARMulif_GetProperty

	4.10 Events
	4.10.1 ARMulif_RaiseEvent

	4.11 Handlers
	4.11.1 Exception handler
	4.11.2 Unknown information handler
	4.11.3 Event handler

	4.12 Memory access functions
	4.12.1 Reading from a given address
	4.12.2 Writing to a specified address

	4.13 Event scheduling functions
	4.13.1 ARMulif_ScheduleTimedFunction
	4.13.2 ARMulif_DescheduleTimedFunction

	4.14 General purpose functions
	4.14.1 ARMul_AddCounterDesc
	4.14.2 ARMul_AddCounterValue
	4.14.3 ARMul_AddCounterValue64
	4.14.4 ARMul_BusRegisterPeripFunc
	4.14.5 ARMulif_CoreCycles
	4.14.6 ARMulif_CPUCycles
	4.14.7 ARMulif_EndCondition
	4.14.8 ARMulif_GetCoreClockFreq
	4.14.9 ARMulif_InstallHourglass
	4.14.10 ARMulif_ReadBusRange
	4.14.11 ARMulif_RemoveHourglass
	4.14.12 ARMulif_StopExecution
	4.14.13 ARMulif_Time
	4.14.14 Hostif_RaiseError

	4.15 Accessing the RealView Debugger
	4.15.1 Hostif_ConsolePrint
	4.15.2 Hostif_ConsoleRead
	4.15.3 Hostif_ConsoleReadC
	4.15.4 Hostif_ConsoleWrite
	4.15.5 Hostif_DebugPause
	4.15.6 Hostif_DebugPrint
	4.15.7 Hostif_PrettyPrint
	4.15.8 Hostif_WriteC

	4.16 Tracer
	4.16.1 Tracer_Open
	4.16.2 Tracer_Dispatch
	4.16.3 Tracer_Close
	4.16.4 Tracer_Flush

	4.17 Map files
	4.17.1 Format of a map file

	4.18 RVISS configuration files
	4.18.1 Predefined tags
	4.18.2 Processors
	4.18.3 Adding a variant processor model
	4.18.4 Changing the cache or TCM size of a synthesizable processor

	4.19 ToolConf
	4.19.1 Toolconf overview
	4.19.2 File format
	4.19.3 Boolean flags in a ToolConf database
	4.19.4 SI units in a ToolConf database
	4.19.5 ToolConf_Lookup
	4.19.6 ToolConf_Cmp

	4.20 Reference peripherals
	4.20.1 Interrupt controller
	4.20.2 Timer

	Using MPCore Models
	A.1 About MPCore
	A.2 Default peripheral system
	A.3 Limitations
	A.4 Writing a new MPCore model
	A.4.1 Interrupts
	A.4.2 Configuring your new model
	A.4.3 Setting up your new model

	ARM1136JF-S and ARM1136J-S Models
	B.1 Restrictions for the ARM1136JF-S and ARM1136J-S models

