
RealView® Compilation Tools
Version 3.0

Linker and Utilities Guide
Copyright © 2002-2006 ARM Limited. All rights reserved.
ARM DUI 0206G

RealView Compilation Tools
Linker and Utilities Guide

Copyright © 2002-2006 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

August 2002 A Non-Confidential Release 1.2

January 2003 B Non-Confidential Release 2.0

September 2003 C Non-Confidential Release 2.0.1 for RVDS v2.0

January 2004 D Non-Confidential Release 2.1 for RVDS v2.1

December 2004 E Non-Confidential Release 2.2 for RVDS v2.2

May 2005 F Non-Confidential Release 2.2 for RVDS v2.2 SP1

March 2006 G Non-Confidential Release 3.0 for RVDS v3.0
ii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Web Address

http://www.arm.com
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. iii

iv Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Contents
RealView Compilation Tools Linker and Utilities
Guide

Preface
About this book .. viii
Feedback ... xi

Chapter 1 Introduction
1.1 About RVCT .. 1-2
1.2 About the linker and utilities .. 1-3

Chapter 2 The Linker Command Syntax
2.1 About armlink .. 2-2
2.2 armlink command syntax .. 2-9

Chapter 3 Using the Basic Linker Functionality
3.1 Specifying the image structure .. 3-2
3.2 Section placement .. 3-8
3.3 Optimizations and modifications ... 3-11
3.4 Using command-line options to create simple images 3-26
3.5 Using command-line options to handle C++ exceptions 3-32
3.6 Getting information about images ... 3-33
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. v

Contents
Chapter 4 Accessing Image Symbols
4.1 ARM/Thumb synonyms .. 4-2
4.2 Accessing linker-defined symbols .. 4-3
4.3 Accessing symbols in another image ... 4-8
4.4 Hiding and renaming global symbols .. 4-11
4.5 Using $Super$$ and $Sub$$ to override symbol definitions 4-21
4.6 Symbol versioning .. 4-22

Chapter 5 Using Scatter-loading Description Files
5.1 About scatter-loading .. 5-2
5.2 Formal syntax of the scatter-loading description file 5-9
5.3 Examples of specifying region and section addresses 5-26
5.4 Equivalent scatter-loading descriptions for simple images 5-39

Chapter 6 System V Shared Libraries
6.1 Introduction ... 6-2
6.2 Using SVr4 shared libraries .. 6-3

Chapter 7 Creating and Using Libraries
7.1 About libraries ... 7-2
7.2 Library searching, selection, and scanning .. 7-3
7.3 The ARM librarian ... 7-7

Chapter 8 Using fromelf
8.1 About fromelf .. 8-2
8.2 fromelf command syntax .. 8-3
8.3 Examples of fromelf usage ... 8-11
vi Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Preface

This preface introduces the RealView Compilation Tools Linker and Utilities Guide. It
contains the following sections:

• About this book on page viii

• Feedback on page xi.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. vii

Preface
About this book

This book provides reference information for RealView® Compilation Tools (RVCT). It
describes the command-line options to the linker and other ARM® tools in RVCT.

Intended audience

This book is written for all developers who are producing applications using RVCT. It
assumes that you are an experienced software developer and that you are familiar with
the ARM development tools as described in RealView Compilation Tools v3.0
Essentials Guide.

Using this book

This book is organized into the following chapters and appendixes:

Chapter 1 Introduction

Read this chapter for an introduction to the linker and related utilities in
RVCT v3.0.

Chapter 2 The Linker Command Syntax

Read this chapter for an explanation of all command-line options
accepted by the linker.

Chapter 3 Using the Basic Linker Functionality

Read this chapter for details on using linker features and how to create
simple images.

Chapter 4 Accessing Image Symbols

Read this chapter for details on accessing symbols in images.

Chapter 5 Using Scatter-loading Description Files

Read this chapter for details on using a scatter-loading file to place code
and data in memory.

Chapter 6 System V Shared Libraries

Read this chapter for details on using System V shared libraries.

Chapter 7 Creating and Using Libraries

Read this chapter for an explanation of the procedures involved in
creating and accessing library objects.
viii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Preface
Chapter 8 Using fromelf

Read this chapter for a description of the fromelf utility and how you can
use it to change image format.

This book assumes that you have installed your ARM software in the default location,
for example, on Windows this might be volume:\Program Files\ARM. This is assumed to
be the location of install_directory when referring to path names, for example,
install_directory\Documentation\.... You might have to change this if you have
installed your ARM software in a different location.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. ix

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently
Asked Questions.

ARM publications

This book contains reference information that is specific to development tools supplied
with RVCT. Other publications included in the suite are:

• RealView Compilation Tools v3.0 Essentials Guide (ARM DUI 0202)

• RealView Compilation Tools v3.0 Compiler and Libraries Guide (ARM DUI
0205).

• RealView Compilation Tools v3.0 Assembler Guide (ARM DUI 0204)

• RealView Compilation Tools v3.0 Developer Guide (ARM DUI 0203)

• RealView Development Suite Glossary (ARM DUI 0324).

For full information about the base standard, software interfaces, and standards
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

This book is not intended to be an introduction to the ARM assembly language, C, or
C++ programming languages. Other books provide general information about
programming.

For an introduction to ARM architecture, see Andrew N. Sloss, Dominic Symes and
Chris Wright, ARM System Developer's Guide: Designing and Optimizing System
Software (2004). Morgan Kaufmann, ISBN 1-558-60874-5.
x Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Preface
Feedback

ARM Limited welcomes feedback on both RealView Compilation Tools and the
documentation.

Feedback on RealView Compilation Tools

If you have any problems with RVCT, contact your supplier. To help them provide a
rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tools, including the version number and build numbers.

Feedback on this book

If you notice any errors or omissions in this book, send an email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. xi

Preface
xii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 1
Introduction

This chapter introduces the ARM® linker, armlink, and the utility programs, armar and
fromelf provided with RealView® Compilation Tools (RVCT). It contains the following
sections:

• About RVCT on page 1-2

• About the linker and utilities on page 1-3.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About RVCT

RVCT consists of a suite of tools, together with supporting documentation and
examples, that enable you to write applications for the ARM family of Reduced
Instruction Set Computing (RISC) processors. You can use RVCT to build C, C++, and
ARM assembly language programs.

This book describes the ARM linker, armlink, the image conversion utility, fromelf, and
the ARM librarian, armar, provided with RVCT. If you are upgrading to RVCT from a
previous release, ensure that you read RealView Compilation Tools v3.0 Essentials
Guide for details about new features and enhancements in this release.

If you are new to RVCT, read RealView Compilation Tools v3.0 Essentials Guide for an
overview of the ARM tools and an introduction to using them as part of your
development project.

For information about previous releases of RVCT, see Appendix A in RealView
Compilation Tools v3.0 Essentials Guide.

See ARM publications on page x for a list of the other books in the RVCT
documentation suite that give information on the ARM assembler, compiler, and
supporting software.

1.1.1 Using the examples

This book references examples provided with RealView Development Suite in the main
examples directory install_directory\RVDS\Examples. See RealView Development Suite
Getting Started Guide for a summary of the examples provided.
1-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Introduction
1.2 About the linker and utilities

This section gives an overview of:

• armlink

• fromelf on page 1-4

• armar on page 1-4

• Compatibility with legacy objects and libraries on page 1-4.

1.2.1 armlink

The ARM linker combines the contents of one or more object files with selected parts
of one or more object libraries to produce:

• an Executable and Linking Format (ELF) executable image

• a partially linked ELF object that can be used as input to a subsequent link step

• a shared object, compatible with the Base Platform ABI for the ARM Architecture
[BPABI] or System V release 4 (SVr4) specification from Sun, or a BPABI or
SVr4 executable file.

The linker automatically selects the appropriate standard C or C++ library variants to
link with, based on the build attributes of the objects it is linking.

The linker can link ARM code, Thumb® code, and Thumb-2 code, and automatically
generates interworking veneers to switch processor state when required. The linker also
automatically generates inline veneers or long branch veneers, where required, to
extend the range of branch instructions.

The linker supports command-line options that enable you to specify the locations of
code and data within the system memory map. Alternatively, you can use
scatter-loading description files to specify the memory locations, at both load and
execution time, of individual code and data sections in your output image. This enables
you to create complex images spanning multiple memories.

The linker supports Read/Write data compression to minimize ROM size.

The linker can provide feedback, for the next time a file is compiled, to inform the
compiler about unused functions. These are placed in their own sections on subsequent
compilations for future elimination by the linker.

The linker can perform common section elimination and unused section elimination to
reduce the size of your output image. In addition, the linker enables you to:

• produce debug and reference information about linked files

• generate a static callgraph and list the stack usage over it
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-3

Introduction
• control the contents of the symbol table in output images

• show the sizes of code and data in the output.

In addition to unused common sections, the linker can perform elimination of common
groups or sections. The Comdat (the ELF name for Common) group elimination
process uses the same criteria as the common section removal mechanism.

The linker generates only ELF format outputs. To convert ELF images to other formats,
such as plain binary for loading into ROM, use fromelf. See fromelf.

See Chapter 2 The Linker Command Syntax for more information on the ARM linker
and all command-line options.

1.2.2 fromelf

fromelf is the ARM image conversion utility. It accepts ELF format input files and
converts them to a variety of output formats, including:

• plain binary

• Motorola 32-bit S-record format

• Intel Hex-32 format

• Byte Oriented (Verilog Memory Model) Hex format.

fromelf can also produce textual information about the input file and disassemble code.

See Chapter 8 Using fromelf for more information.

1.2.3 armar

The ARM librarian armar enables you to collect and maintain sets of ELF files in
standard format ar libraries. You can pass libraries to the linker in place of several ELF
object files.

See The ARM librarian on page 7-7 for more information.

1.2.4 Compatibility with legacy objects and libraries

If you are upgrading to RVCT from a previous release, ensure that you read Appendix
A in RealView Compilation Tools v3.0 Essentials Guide for details about compatibility
between the new release and previous releases of RVCT.
1-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 2
The Linker Command Syntax

This chapter describes the full command syntax for the ARM® linker, armlink, provided
with RealView® Compilation Tools (RVCT). It contains the following sections:

• About armlink on page 2-2

• armlink command syntax on page 2-9.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-1

The Linker Command Syntax
2.1 About armlink

This section describes:

• Input to armlink

• Output from armlink

• Ordering command-line options on page 2-4

• Specifying command-line options with an environment variable on page 2-4

• Summary of linker options on page 2-4.

2.1.1 Input to armlink

Input to armlink consists of:

• One or more object files in ELF object format. This format is described in the
ARM ELF specification. See ARM publications on page x for more information.

• One or more libraries created by armar as described in Chapter 7 Creating and
Using Libraries.

• A symbol definitions file.

2.1.2 Output from armlink

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a shared object

• a partially-linked object in ELF object format

• a relocatable ELF image.

For simple images, ELF executable files contain segments that are approximately
equivalent to RO and RW output sections in the image. An ELF executable file also has
ELF sections that contain the image output sections.

You can use fromelf to convert an executable image in ELF executable format to other
file formats. See Chapter 8 Using fromelf for more information.

Constructing an executable image

When you use the linker to construct an executable image, it:

• resolves symbolic references between the input object files

• extracts object modules from libraries to satisfy otherwise unsatisfied symbolic
references
2-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
• sorts input sections according to their attributes and names, and merges similarly
attributed and named sections into contiguous chunks

• removes unused sections

• eliminates duplicate common groups and common code, data, and debug sections

• organizes object fragments into memory regions according to the grouping and
placement information provided

• relocates relocatable values

• generates an executable image.

Load regions typically exist in the system memory map at reset, for example, in ROM,
or after the image is loaded into the target by a debugger. As part of executing the image,
however, some regions might have to be moved from their load addresses to their
execution addresses. The memory map of an image, therefore, has the following distinct
views:

Load view Memory view when the program and data are first loaded.

Execution view Memory view after code is moved to its normal execution
location.

When describing a memory map:

• The term root region is used to describe a region that has the same load and
execution addresses.

• Load regions are equivalent to ELF segments.

See Specifying the image structure on page 3-2 for more information on the image
hierarchy.

Constructing a partially-linked object

When you use the linker to construct a partially-linked object, it:

• eliminates duplicate copies of debug sections

• minimizes the size of the symbol table

• leaves unresolved references unresolved

• merges Comdat groups

• generates an object that can be used as an input to a subsequent link step.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-3

The Linker Command Syntax
Note
 If you use partial linking, you cannot refer to the component objects by name in a
scatter-loading description file.

2.1.3 Ordering command-line options

In general, command-line options can appear in any order in a single linker invocation.
However, the effects of some options depend on how they are combined with other
related options, for example, the --scatter option is mutually exclusive with the use of
any of the memory map options (see Specifying memory map information for the image
on page 2-14).

Where options override previous options on the same command line, the last one found
takes precedence. Where an option does not follow this rule, this is noted in the
description. Use the --show_cmdline option to see how the linker has processed the
command line. The commands are shown normalized, and the contents of any via files
are expanded.

2.1.4 Specifying command-line options with an environment variable

You can specify command-line options by setting the value of the RVCT30_LINKOPT
environment variable. The syntax is identical to the command line syntax. The linker
reads the value of RVCT30_LINKOPT and inserts it at the front of the command string. This
means that options specified in RVCT30_LINKOPT can be overridden by arguments on the
command-line.

2.1.5 Summary of linker options

This section gives a summary of linker command-line options. The options are arranged
in alphabetical order within functional groups.

Accessing help and information

To get information on the available command-line options use:

--help

To see the tool version number use:

--vsn
2-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
Specifying an input file list

To define input files passed to the linker use:

--input-file_list
--libpath pathlist
--scanlib | --no_scanlib
--userlibpath pathlist

You can use the POSIX option -- to specify that all subsequent arguments are treated
as filenames, not as command switches. For example, to link a file named --scatter
type:

armlink -- --scatter

Controlling linker behavior

To define how objects are linked together use:

--match crossmangled
--strict
--unresolved symbol

Specifying the output type and the output filename

Name the output file using the following option:

--output file

Use the following option to create a partially-linked object instead of an executable
image:

--partial

Use the following option to specify the format of the shared object or executable file:

--shared
--sysv

Use the following option to create a relocatable object:

--reloc

Specifying memory map information for the image

Use the following options to specify simple memory maps:

--fpic
--ro-base address
--rw-base address
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-5

The Linker Command Syntax
--ropi
--rwpi
--rosplit
--split

Alternatively, for more complex images, use the options:

--pad num
--scatter file

If you use the --scatter option, you must provide a scatter-loading description file and
(possibly) a re-implementation of the __user_initial_stackheap() function. See
Chapter 5 Using Scatter-loading Description Files for details.

Memory map options cannot be used for partial linking because they specify the
memory map of an executable image. See RealView Compilation Tools v3.0 Developer
Guide for more information.

Controlling debug information

To control debug information in the image use:

--compress_debug
--debug | --no_debug
--dynamic_debug
--no_bestdebug | --bestdebug

Controlling image contents

To control miscellaneous factors affecting the image contents use:

--cppinit symbol
--datacompressor on|off|list|id
--dynamiclinker name
--edit file-list
--entry location
--exceptions | --no_exceptions
--exceptions_tables=action
--fini symbol
--first section-id
--force_so_throw
--init symbol
--inline
--keep section-id
--last section-id
--linux_abitag version-id
--locals | --no_locals
--no_branchnop
--pt_arm_exidx
2-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
--remove | --no_remove
--soname name
--startup symbol
--symver_script file
--symver_soname
--tailreorder
--vfemode=mode

Controlling veneer generation

To control how veneers are generated use:

--no_inlineveneer
--no_veneershare

Specifying Byte Addressing mode

To control Byte Addressing mode use:

--be8
--be32

Generating image-related information

To control how to extract and present information about the image use:

--callgraph
--feedback file
--info topics
--list_mapping_symbols
--mangled | --unmangled
--map
--symbols
--symdefs file
--xref
--xrefdbg
--xreffrom object(section)
--xrefto object(section)

With the exception of --callgraph, the linker prints the information you request on the
standard output stream, stdout, by default. You can redirect the information to a text file
using the --list command-line option.

For --callgraph, the information is saved as an HTML file named output_name.htm. This
is saved in the same directory as the generated image.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-7

The Linker Command Syntax
Controlling linker diagnostics

To control how the linker emits diagnostics:

--diag_style arm|ide|gnu
--diag_suppress taglist
--diag_warning taglist
--errors file
--list file
--verbose

Using a via file

Use the following option to specify a via file containing additional command-line
arguments to the linker:

--via file

See the section on via files in RealView Compilation Tools v3.0 Compiler and Libraries
Guide for more information.

Miscellaneous

Use the following option if you require output to have strict ELF compliance:

--no_legacyalign
2-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
2.2 armlink command syntax

This section describes the syntax and options of the armlink command.

Note
 For command-line arguments that use parentheses, you might have to escape the
parentheses characters with a backslash (\) character on Sun Solaris or Red Hat Linux
systems.

Specify command-line keywords using double dashes -- (for example, --partial). The
single-dash command-line options used in previous versions of ADS and RVCT are still
supported for backwards-compatibility but are deprecated.

The linker command syntax is:

armlink [help-options] [input-file-list] [linker-control-options]
[output-format] [memory-map-options] [debug-options] [image-contents-options]
[veneer-generation-options] [Byte Addressing mode] [image-info-options]
[diagnostics-options] [via-file]

The rest of this chapter describes these options in more detail:

• Accessing help and information on page 2-10

• Specifying an input file list on page 2-10

• Controlling linker behavior on page 2-12

• Specifying the output type and the output filename on page 2-13

• Specifying memory map information for the image on page 2-14

• Controlling debug information on page 2-16

• Controlling image contents on page 2-17

• Controlling veneer generation on page 2-26

• Specifying Byte Addressing mode on page 2-26

• Generating image-related information on page 2-27

• Controlling linker diagnostics on page 2-31

• Using a via file on page 2-33

• Miscellaneous on page 2-33

• Controlling compatibility with legacy objects on page 2-33.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-9

The Linker Command Syntax
2.2.1 Accessing help and information

To get information on the available command-line options and the tool version number
use:

--help Prints a summary of some commonly used command-line options.

--vsn Displays the linker version information and license details.

2.2.2 Specifying an input file list

These options define the input files passed to the linker:

input-file-list

This is a space-separated list of objects, libraries, or a symbol definitions
(symdefs) file.

The symdefs file, can be included in the list to provide global symbol
values for a previously generated image file. See Accessing symbols in
another image on page 4-8 for more information.

You can use libraries in the input file list in the following ways:

• Specify a library to be added to the list of libraries that is used to
extract members if they resolve any non-weak unresolved
references. For example, specify mystring.lib in the input file list.

The standard C or C++ libraries are added to this list implicitly by
the linker when it scans the default library directories and selects
the closest matching library variants available.

Note
 Members from the libraries in this list are added to the image only

when they resolve an unresolved non-weak reference.

• Specify particular members to be extracted from a library and
added to the image as individual objects. For example, specify
mystring.lib(strcmp.o) in the input file list.

The linker processes the input file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to the
image unconditionally, as if they were objects. For example, the
following command unconditionally adds all a*.o objects and
stdio.o from mylib:
armlink main.o mylib(stdio.o) mylib(a*.o)
2-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
On UNIX platforms you might need to escape the parentheses, for
example:
armlink main.o mylib\(stdio.o\)

3. The standard C or C++ libraries are added to the list of libraries that
are later used to resolve any remaining non-weak unresolved
references.

For more information see Library searching, selection, and scanning on
page 7-3.

--libpath pathlist

Specifies a list of paths that are used to search for the ARM standard C
and C++ libraries.

The default path for the parent directory containing the ARM libraries is
specified by the RVCT30LIB environment variable. Any paths specified
here override the path specified by RVCT30LIB.

pathlist is a comma-separated list of paths that are only used to search
for required ARM libraries. Do not include spaces between the comma
and the path name when specifying multiple path names, for example,
path1,path2,path3,...,pathn.

This list must end with the parent directory of the ARM library
directories armlib and cpplib.

Note
 This option does not affect searches for user libraries. Use --userlibpath

instead.

See Library searching, selection, and scanning on page 7-3 for more
information on including libraries.

--scanlib Enables scanning of default libraries (the standard ARM C and C++
libraries) to resolve references. This is the default.

--no_scanlib Disables the scanning of default libraries.

--userlibpath pathlist

Specifies a list of paths that are used to search for user libraries.

pathlist is a comma-separated list of paths that are used to search for the
required libraries. Do not include spaces between the comma and the path
name when specifying multiple path names, for example,
path1,path2,path3,...,pathn.

See Library searching, selection, and scanning on page 7-3 for more
information on including user libraries.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-11

The Linker Command Syntax
2.2.3 Controlling linker behavior

These options control how objects are linked:

--match crossmangled

Instructs the linker to match the following combinations together:

• a reference to an unmangled symbol with the mangled definition

• a reference to a mangled symbol with the unmangled definition.

Libraries and matching operate as follows:

• If the library members define a mangled definition, and there is an
unresolved unmangled reference, the member is loaded to satisfy it.

• If the library members define an unmangled definition, and there is
an unresolved mangled reference, the member is loaded to satisfy
it.

Note
 This option has no effect if used with partial linking. The partial object

contains all the unresolved references to unmangled symbols, even if the
mangled definition exists. Matching is done only in the final link step.

--strict Instructs the linker to report conditions that might result in failure as
errors, rather than warnings. An example of such a condition is taking the
address of an interworking function from a non-interworking function.

--strict_relocations

Instructs the linker to report instances of obsolete and deprecated
relocations. For example:

Error: L6810E: Relocation 8 in section relocs from object et5ae.o
is of obsolete type R_ARM_SWI24.

Relocation errors and warnings are most likely to occur if you are linking
object files built with previous versions of the ARM tools.

This option enables you to ensure ABI compliance of objects. It is off by
default, and deprecated and obsolete relocations are handled silently by
the linker.

--unresolved symbol

Matches each reference to an undefined symbol to the global definition
of symbol. symbol must be both defined and global, otherwise it appears in
the list of undefined symbols and the link step fails. This option is
2-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
particularly useful during top-down development, because it enables you
to test a partially-implemented system by matching each reference to a
missing function to a dummy function.

2.2.4 Specifying the output type and the output filename

Specify the format and the name of the output file using the following options:

--output file

Specifies the name of the output file. The file can be either a
partially-linked object or an executable image. If the output filename is
not specified, the linker uses the following defaults:

__image.axf if the output is an executable image

__object.o if the output is a partially-linked object.

If file is specified without path information, it is created in the current
working directory. If path information is specified, then that directory
becomes the default output directory.

--partial Creates a partially-linked object instead of an executable image.

--reloc Makes relocatable ELF images (see the ARM ELF specification for more
information).

A relocatable image has a dynamic segment that contains relocations that
can be used to relocate the image post link-time. Examples of post
link-time relocation include advanced ROM construction and dynamic
loading at runtime.

If the image is loaded at its link-time address, the relocatable image
produced by the linker does not require the relocations to be processed
and debug data for the image is valid. Loading the image at a different
address to the link-time address and processing the relocations, however,
invalidates any debug data present in the image.

Used on its own, --reloc makes an image similar to Simple type 1 where
the load region attribute is set to RELOC (see Type 1, one load region and
contiguous output regions on page 3-27 for details).

--shared Generates an SVr4 shared object.

See Chapter 6 System V Shared Libraries for more information.

--sysv Enables you to generate an SVr4 formatted ELF executable file that can
be used on ARM Linux.

See Chapter 6 System V Shared Libraries for more information.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-13

The Linker Command Syntax
2.2.5 Specifying memory map information for the image

Use the following options to specify memory maps:

--ro-base address

Sets both the load and execution addresses of the region containing the
RO output section at address. address must be word-aligned. If this
option is not specified, and no scatter load file is specified, the default RO
base address is 0x8000.

--rw-base address

Sets the execution addresses of the region containing the RW output
section at address. address must be word-aligned.

--ropi Makes the load and execution region containing the RO output section
position-independent. If this option is not used, the region is marked as
absolute. Usually each read-only input section must be read-only
position-independent (ROPI). If this option is selected, the linker:

• checks that relocations between sections are valid

• ensures that any code generated by armlink itself, such as
interworking veneers, is read-only position-independent.

--rwpi Makes the load and execution region containing the RW and ZI output
section position-independent. If this option is not used the region is
marked as absolute. This option requires a value for --rw-base. If
--rw-base is not specified, --rw-base 0 is assumed. Usually each writable
input section must be read-write position-independent (RWPI).

If this option is selected, the linker:

• checks that the PI attribute is set on input sections to any read-write
execution regions

• checks that relocations between sections are valid

• generates static base-relative entries in the table Region$$Table.

This is used when regions are copied, decompressed, or initialized.

--fpic Enables you to link position-independent code (PIC), that is, code that
has been compiled using the /fpic qualifier. Relative addressing is only
implemented when your code makes use of System V shared libraries.
2-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
--split Splits the default load region, that contains the RO and RW output
sections, into the following load regions:

• One region containing the RO output section. The default load
address is 0x8000, but a different address can be specified with the
--ro-base option.

• One region containing the RW and ZI output sections. The load
address is specified with the --rw-base option. This option requires
a value for --rw-base. If --rw-base is not specified, --rw-base 0 is
assumed.

Both regions are root regions.

--rosplit Splits the default RO load region into two RO output sections, one for
RO-CODE and one for RO-DATA.

--pad num Enables you to set a value for padding bytes. The linker assigns this value
to all padding bytes inserted in load or execution regions.

num is an integer, which can be given in hexadecimal format. For example,
setting num to 0xFF might help to speed up ROM programming time. If num
is greater than 0xFF, then the padding byte is set to (char)num.

Note
 Padding is only inserted:

• within load regions. No padding is present between load regions.

• between fixed execution regions (in addition to forcing alignment).
Padding is not inserted up to the maximum length of a load region
unless it has a fixed execution region at the top.

• between sections to ensure that they conform to alignment
constraints.

--scatter file

Creates the image memory map using the scatter-loading description
contained in file. The description provides grouping and placement
details of the various regions and sections in the image. See Chapter 5
Using Scatter-loading Description Files.

The --scatter option is mutually exclusive with the use of any of the
memory map options --ro-base, --rw-base, --ropi, --rwpi, --rosplit, or
--split, and with --reloc, --startup, and --partial.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-15

The Linker Command Syntax
Note
 You might have to re-implement the stack and heap initialization function

__user_initial_stackheap() if you use this option. See Chapter 5 Using
Scatter-loading Description Files for details.

2.2.6 Controlling debug information

These options control debug information in the image:

--debug Includes debug information in the output file. The debug information
includes debug input sections and the symbol and string table. This is the
default.

--no_debug Does not include debug information in the output file. The ELF image is
smaller, but you cannot debug it at the source level. The linker discards
any debug input section it finds in the input objects and library members,
and does not include the symbol and string table in the image. This only
affects the image size as loaded into the debugger. It has no effect on the
size of any resulting binary image that is downloaded to the target.

If you are creating a partially-linked object rather than an image, the
linker discards the debug input sections it finds in the input objects, but
does produce the symbol and string table in the partially-linked object.

Note
 Do not use --no_debug if a fromelf --fieldoffsets step is required. If

your image is produced without debug information, fromelf cannot:

• translate the image into other file formats

• produce a meaningful disassembly listing.

--no_bestdebug

Selects sections without reference to debug information, that is, it
chooses the smallest sections.

--no_bestdebug is the default to ensure that the code and data of the final
image are the same regardless of whether you compile for debug or not.

Use the option --bestdebug to select sections with the best debug view.
Be aware that the code and data of the final image might not be the same
when building with or without debug.

--compress_debug

Forces the linker to compress .debug_* sections so removing some
redundancy and improving debug table size.
2-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
Optimizing debug tables is off by default. However, using the
--compress_debug option results in longer link times.

--dynamic_debug

Forces the linker to output dynamic relocations for debug sections.

Using this option allows an OS-aware debugger, for example, RealView
Debugger with Linux OS Awareness, to debug shared libraries produced
by armlink.

Use --dynamic_debug with --sysv and --sysv --shared images and shared
libraries.

See Chapter 6 System V Shared Libraries for more information.

For details, see generating debug information in the chapter describing how to use the
ARM compiler in RealView Compilation Tools v3.0 Compiler and Libraries Guide.

2.2.7 Controlling image contents

These options control miscellaneous factors affecting the image contents:

--datacompressor on|off

RW data compression is enabled by default to minimize ROM size. Use
--datacompressor off to turn off RW data compression.

--datacompressor list|id

Enable you to specify one of the supplied algorithms for RW data
compression:

• Use --datacompressor list to get a list of data compressors
available to the linker.

• If you do not specify a data compression algorithm, the linker
chooses the most appropriate one for you automatically. In general,
it is not necessary to override this choice. For more information see
RW data compression on page 3-17.

If you do want to override the linker, use --datacompressor id to
specify a data compression algorithm. Specifying a compressor
adds a decompressor to the code area. If the final image does not
have compressed data, the decompressor is not added.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-17

The Linker Command Syntax
--edit file-list

Enables you to specify steering files containing commands to edit the
symbol tables in the output binary. You can specify commands in a
steering file to:

• Hide global symbols. Use this option to hide specific global
symbols in object files. The hidden symbols are not publicly
visible.

• Rename global symbols. Use this option to resolve symbol naming
conflicts.

See Hiding and renaming global symbols on page 4-11 for more
information on steering file syntax.

When you are specifying more than one steering file, the syntax can be
either of the following:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3

Do not include spaces between the comma and the filenames.

--entry location

Specifies the unique initial entry point of the image. The image can
contain multiple entry points, but the initial entry point specified with this
option is stored in the executable file header for use by the loader. There
can be only one occurrence of this option on the command line. ARM
debuggers, for example, RealView Debugger or AXD, use this entry
address to initialize the program counter (PC) when an image is loaded.
The initial entry point must meet the following conditions:

• the image entry point must lie within an execution region

• the execution region must be non-overlay, and must be a root
execution region (load address == execution address).

Replace location with one of the following:

entry_address

A numerical value, for example:
--entry 0x0

symbol Specifies an image entry point as the address of symbol, for
example:
--entry reset_handler

offset+object(section)

Specifies an image entry point as an offset inside a section
within a particular object, for example:
2-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
--entry 8+startup.o(startupseg)

There must be no spaces within the argument to --entry. The
input section and object names are matched without
case-sensitivity. You can use the following simplified notation:

• object(section), if offset is zero.

• object, if there is only one input section. armlink
generates an error message if there is more than one
input section in object.

--exceptions Enables the final image to contain exception tables. This is the default.

See Using command-line options to handle C++ exceptions on page 3-32
for more information.

--no_exceptions

Forces the linker to generate an error message if any exceptions sections
are present in the image after unused sections have been eliminated. Use
this option to ensure that your code is exceptions free.

See Using command-line options to handle C++ exceptions on page 3-32
for more information.

--exceptions_tables=action

Specifies how exception tables are generated for legacy objects. Replace
action with one of the following:

nocreate The linker does not create exception tables for legacy objects.
This is the default.

unwind The linker creates an unwinding table for each section in your
image that does not already have an exception table.

cantunwind

The linker creates a nounwind table for each section in your
image that does not already have an exception table.

See Using command-line options to handle C++ exceptions on page 3-32
for more information.

--first section-id

Places the selected input section first in its execution region. This can, for
example, place the section containing the vector table first in the image.
Replace section-id with one of the following:

symbol Selects the section that defines symbol. You must not specify a
symbol that has more than one definition, because only one
section can be placed first. For example:
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-19

The Linker Command Syntax
--first reset

object(section)

Selects section from object. There must be no space between
object and the following open parenthesis. For example:
--first init.o(init)

object Selects the single input section in object. If you use this short
form and there is more than one input section, armlink
generates an error message. For example:
--first init.o

Note
 When using scatter-loading, use +FIRST in the scatter-loading description

file instead.

Using --first cannot override the basic attribute sorting order for output
sections in regions that places RO first, RW second, and ZI last. If the
region has an RO section, an RW or a ZI section cannot be placed first. If
the region has an RO or RW section, a ZI section cannot be placed first.

Two different sections cannot both be placed first in the same execution
region, so only one instance of this option is permitted.

--last section-id

Places the selected input section last in its execution region. For example,
this can force an input section that contains a checksum to be placed last
in the RW section. Replace section-id with one of the following:

symbol Selects the section that defines symbol. You must not specify a
symbol that has more than one definition because only a single
section can be placed last. For example:
--last checksum

object(section)

Selects the section from object. There must be no space
between object and the following open parenthesis. For
example:
--last checksum.o(check)

object Selects the single input section from object. If there is more
than one input section in object, armlink generates an error
message.
2-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
Note
 When using scatter-loading, use +LAST in the scatter-loading description

file instead.

Using --last cannot override the basic attribute sorting order for output
sections in regions that places RO first, RW second, and ZI last. If the
region has a ZI section, an RW section cannot be placed last. If the region
has an RW or ZI section, an RO section cannot be placed last.

Two different sections cannot both be placed last in the same execution
region, so only one instance of this option is permitted.

--remove Enables unused section elimination on the input sections to remove
unused sections from the image. An input section is considered used if it
contains the image entry point, or if it is referred to from a used section.
See also Unused section elimination on page 3-12.

Note
 You must take care to avoid reset code or exception handlers accidentally

being removed when using --remove. Use the --keep option to identify
exception handlers or use the ENTRY directive to label them as entry points.

--remove (RO/RW/ZI/DBG)

Note
 Support for --remove with section attribute qualifiers is deprecated and

will be removed in a future release.

--remove is equivalent to --remove (RO/RW/ZI/DBG).

--no_remove Disables unused section elimination on the input sections. This retains all
input sections in the final image even if they are unused.

--startup symbol

Enables the linker to use alternative C libraries with a different startup
symbol. If the linker find a definition of main() and does not find a
reference to (or definition of) symbol, then it adds a reference to symbol.
By default, symbol is set to __main.

For more information on using libraries, see the chapter describing the C
and C++ libraries in RealView Compilation Tools v3.0 Compiler and
Libraries Guide.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-21

The Linker Command Syntax
--symver_script file

Turns on implicit symbol versioning and enables you to specify file as a
symbol version script.

See Symbol versioning on page 4-22 for more information.

--symver_soname

Turns on implicit symbol versioning and enables you to version symbols
in order to force static binding. Where a symbol has no defined version,
the linker uses the SONAME of the file being linked.

This is the default if you are generating a BPABI-compatible executable
file but where you do not specify a version script with the option
--symver_script.

See Symbol versioning on page 4-22 and the Base Platform ABI for the
ARM Architecture [BPABI] for more information.

--soname name

Specifies the shared object runtime name that is used as the dependency
name by any object that links against this shared object. This dependency
is stored in the executable file produced by the linker.

See Chapter 6 System V Shared Libraries for more information.

--force_so_throw

By default, exception tables are discarded if no code throws an exception.
Use this option to specify that all shared objects might throw an exception
and so force the linker to keep the exception tables, regardless of whether
the image can throw an exception or not.

See Chapter 6 System V Shared Libraries for more information.

--pt_arm_exidx

Use this option to create a PT_ARM_EXIDX program header to describe the
location of the exception tables in objects with dynamic content. The
linker uses this to determine that a shared object might throw an
exception and, therefore, keeps the exception tables, regardless of
whether an exception can be thrown or not.

See Chapter 6 System V Shared Libraries for more information.
2-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
--dynamiclinker name

Specifies the dynamic linker used to load and relocate the file at runtime.
When you link with shared objects, the dynamic linker uses dependency
information stored in the executable to identify the files to load. If you are
working on ARM Linux platforms, the linker assumes that the default
dynamic linker is /lib/ld-linux.so.2.

See Chapter 6 System V Shared Libraries for more information.

--linux_abitag version-id

Enables you to specify the minimum compatible Linux kernel version for
the executable file you are building.

See Chapter 6 System V Shared Libraries for more information.

--vfemode=mode

Virtual Function Elimination (VFE) is a technique that enables the linker
to identify more unused sections. Use this option to specify how these,
and Runtime Type Information (RTTI) objects, are eliminated in the
linker. Depending on the mode specified, the linker uses extra
information about virtual functions and RTTI objects supplied by the
compiler to analyze more accurately how such functions are used.
Unused sections are then eliminated.

Replace mode with one of the following:

on Makes the linker VFE aware. In this mode, the linker chooses
force or off mode based on the content of object files. This is
the default.

This is the same as specifying no VFE option on the command
line.

off Forces the linker to ignore any extra information supplied by
the compiler. In this mode, the final image is the same as that
produced by compiling and linking without VFE awareness.

force Makes the linker VFE aware and forces the VFE algorithm to
be applied. If some of the object files do not contain VFE
information, the linker continues with the elimination but
displays a warning to alert you to possible errors.

force_no_rtti

When operating in default mode (using --vfemode=on), the
linker might remove both unused sections and RTTI objects.
Use this option to make the linker VFE aware and force the
removal of all RTTI objects whilst retaining all the virtual
sections.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-23

The Linker Command Syntax
See also Unused function elimination on page 3-13 for more details.

--init symbol

Specifies the symbol name that is used to define initialization code. The
dynamic linker executes this code when it loads the executable file or
shared object.

See Chapter 6 System V Shared Libraries for more information.

--cppinit symbol

Enables the linker to use alternative C++ libraries with a different
initialization symbol. By default, symbol is set to
__cpp_initialize__aeabi_.

For more information on using libraries, see the chapter describing the C
and C++ libraries in RealView Compilation Tools v3.0 Compiler and
Libraries Guide.

--no_branchnop

The linker replaces any branch with a relocation that resolves to the next
instruction with a NOP. This is the default.

Use this option to disable this behavior.

See Branch inlining on page 3-22 for more information on controlling
branch inlining.

--inline Enables branch inlining to optimize small function calls in your image.

Note
 This branch optimization is off by default because enabling it changes the

image such that debug information might be incorrect. If enabled, the
linker makes no attempt to correct the debug information.

See Branch inlining on page 3-22 for more information on controlling
branch inlining.

--tailreorder

Moves tail calling sections immediately before their target, if possible, to
optimize the branch instruction at the end of a section. A tail calling
section is a section that contains a branch instruction at the end of the
section. The branch must have a relocation that targets a function at the
start of a section. There are some restrictions to this option. The linker:

• can only move one tail calling section for each tail call target

• cannot move a tail calling section out of its execution region

• does not move tail calling sections before inline veneers.
2-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
See Branch inlining on page 3-22 for more information on handling tail
calling sections.

--keep section-id

Specifies input sections that must not be removed by unused section
elimination (see Specifying an image memory map on page 3-5).

All forms of the section-id argument can contain the * and ? wildcards.
You can specify multiple --keep options on the command line.

Replace section-id with one of the following:

symbol Specifies that an input section defining symbol is to be retained
during unused section elimination. If multiple definitions of
symbol exist, armlink generates an error message.

For example, you might use --keep int_handler.

To keep all sections that define a symbol ending in _handler,
use --keep *_handler.

object(section)

Specifies that section from object is to be retained during
unused section elimination. For example, to keep the vect
section from the vectors.o object use:
--keep vectors.o(vect)

To keep all sections from the vectors.o object where the first
three characters of the name of the section are vec, use:
--keep vectors.o(vec*)

object Specifies that the single input section from object is to be
retained during unused section elimination. If you use this
short form and there is more than one input section in object,
armlink generates an error message.

For example, you might use --keep dspdata.o.

To keep the single input section from each of the objects that
has a name starting with dsp, use --keep dsp*.o.

--locals Instructs the linker to add local symbols to the output symbol table when
producing an executable image. This is the default.

--no_locals Instructs the linker not to add local symbols to the output symbol table
when producing an executable image. This is a useful optimization if you
want to reduce the size of the output symbol table.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-25

The Linker Command Syntax
--fini symbol

Specifies the symbol name that is used to define the entry point for
finalization code. The dynamic linker executes this code when it unloads
the executable file or shared object.

See Chapter 6 System V Shared Libraries for more information.

2.2.8 Controlling veneer generation

These options control veneer generation:

--no_inlineveneer

Stops the generation of inline veneers to give greater control over how the
linker places sections.

--no_veneershare

Stops the linker sharing veneers. Veneer sharing can cause a significant
decrease in image size.

For details on both these options, see Veneer generation on page 3-19.

2.2.9 Specifying Byte Addressing mode

These options control Byte Addressing mode:

--be8 Specifies ARMv6 Byte Invariant Addressing big-endian mode.

This is the default Byte Addressing mode for ARMv6 big-endian images
and means that the linker reverses the endianess of the instructions to give
little-endian code and big-endian data for input objects that have been
compiled/assembled as big-endian.

Byte Invariant Addressing mode is only available on ARM processors
that support ARMv6 and above.

--be32 Specifies legacy Word Invariant Addressing big-endian mode, that is,
identical to big-endian images prior to ARMv6. This produces
big-endian code and data.

Word Invariant Addressing mode is the default mode for all pre-ARMv6
big-endian images.

For more information on endian support, see:

• the description of ARMv6 support in RealView Compilation Tools v3.0 Developer
Guide

• ARM Architecture Reference Manual.
2-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
2.2.10 Generating image-related information

These options control how to extract and present information about the image:

--callgraph Creates a static callgraph of functions in HTML format. The callgraph
gives definition and reference information for all functions in the image.

Note
 Any assembler files must contain PROC/ENDP and FRAME PUSH/POP directives

if the linker is to calculate the function stack sizes.

For each function func the linker lists the:

• processor state for which the function is compiled (ARM or
Thumb)

• set of functions that call func

• set of functions that are called by func

• number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:

• called through interworking veneers

• defined outside the image

• permitted to remain undefined (weak references).

The static callgraph also gives information about stack usage. It lists the:

• size of the stack frame used by each function

• maximum size of the stack used by the function over any call
sequence, that is, over any acyclic chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size
information in the call chain, + Unknown is added to the stack usage. A
reason is added to indicate why stack usage is unknown.

The linker reports missing stack frame information if there is no debug
frame information for the function.

For indirect functions, the linker cannot reliably determine which
function made the indirect call. This might affect how the maximum stack
usage is calculated for a call chain.

Use frame directives in assembly language code to describe how your
code uses the stack. These directives ensure that debug frame information
is present for debuggers to perform stack unwinding or profiling.

For more details on how stack usage is determined, see the chapter
describing the directives reference in RealView Compilation Tools v3.0
Assembler Guide.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-27

The Linker Command Syntax
--feedback file

Generates a feedback file, for the next time a file is compiled, to inform
the compiler about unused functions.

When you next compile the file, use the compiler option --feedback file
to specify the feedback file to use. Unused functions are placed in their
own sections for possible future elimination by the linker. For full details
on how to use this file see Linker feedback on page 3-14.

--info topics

Prints information about specified topics, where topics is a
comma-separated list of topic keywords. A topic keyword can be one of
the following:

common Lists all common sections that were eliminated from the
image. Using this option implies --info common,totals.

debug Lists all rejected input debug sections that were eliminated
from the image as a result of using --remove. Using this option
implies --info debug,totals.

inline Gives details of any function that is inlined by the linker, and
gives the total number of inlines, as a result of using --inline.
For more information on branch inlining see Branch inlining
on page 3-22.

libraries Prints the full path name of every library automatically
selected for the link stage.

You can use this option with a modifier, --info_lib_prefix, to
display information about a specific library. For example, use
the following options to identify the floating-point library used
by the linker:
--info libraries --info_lib_prefix=f

sizes Gives a list of the Code and Data (RO Data, RW Data, ZI Data,
and Debug Data) sizes for each input object and library
member in the image. Using this option implies --info
sizes,totals.

tailreorder

Gives details of any tail calling sections that have been moved
above their targets, as a result of using --tailreorder. For
more information on handling tail calling sections see Branch
inlining on page 3-22.

totals Gives totals of the Code and Data (RO Data, RW Data, ZI
Data, and Debug Data) sizes for input objects and libraries.
2-28 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
veneers Gives details of linker-generated veneers. For more
information on veneers see Veneer generation on page 3-19.

unused Lists all unused sections that were eliminated from the image
as a result of using --remove.

exceptions

Gives details of exception table generation and optimization.

The output from --info sizes,totals always includes the padding values
in the totals for input objects and libraries.

If you are using RW data compression (the default), or if you have
specified a compressor using the --datacompressor id option, the output
from --info sizes,totals includes an entry under Grand Totals to reflect
the true size of the image.

Note
 Spaces are not permitted between keywords in a list. For example, you

can enter --info sizes,totals but not --info sizes, totals.

For more details on how to use this information see Getting information
about images on page 3-33.

--mangled Instructs the linker to display mangled C++ symbol names in diagnostic
messages, and in listings produced by the --xref, --xreffrom, --xrefto,
and --symbols options.

If this option is selected, the linker does not unmangle C++ symbol
names. The symbol names are displayed as they appear in the object
symbol tables.

--unmangled Instructs the linker to display unmangled C++ symbol names in
diagnostic messages, and in listings produced by the --xref, --xreffrom,
--xrefto, and --symbols options.

If this option is selected, the linker unmangles C++ symbol names so that
they are displayed as they appear in your source code. This is the default.

--map Creates an image map. The map contains the address and the size of each
load region, execution region, and input section in the image, including
linker-generated input sections.

--symbols Lists each local and global symbol used in the link step, and its value.

Note
 This does not include mapping symbols. Use --list_mapping_symbols to

include mapping symbols in the output.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-29

The Linker Command Syntax
--list_mapping_symbols

Includes mapping symbols in the output produced by --symbols.

In the symbol table, mapping symbols are used to flag transitions
between ARM code, Thumb code, and data (see the ELF for the ARM
Architecture [AAELF] for details).

--symdefs file

Creates a file containing the global symbol definitions from the output
image.

By default, all global symbols are written to the symdefs file. If a symdefs
file called file already exists, the linker restricts its output to the symbols
already listed in this file.

Note
 If you do not want this behavior, be sure to delete any existing symdefs

file before the link step.

If file is specified without path information, the linker searches for it in
the directory where the output image is being written. If it is not found, it
is created in that directory.

You can use the symbol definitions file as input when linking another
image. See Accessing symbols in another image on page 4-8 for more
information.

--xref Lists all cross-references between input sections.

--xrefdbg Lists all cross-references between input debug sections.

--xreffrom object(section)

Lists cross-references from input section in object to other input
sections. This is a useful subset of the listing produced by using --xref if
you are interested in references from a specific input section. You can
have multiple occurrences of this option to list references from more than
one input section.

--xrefto object(section)

Lists cross-references to input section in object from other input
sections. This is a useful subset of the listing produced by using --xref if
you are interested in references to a specific input section. You can have
multiple occurrences of this option in order to list references to more than
one input section.
2-30 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
2.2.11 Controlling linker diagnostics

These options control how the linker emits diagnostics:

--diag_style arm|ide|gnu

Change the formatting of warning and error messages. --diag_style arm
is the default, --diag_style gnu matches the format reported by gcc, and
--diag_style ide matches the format reported by Microsoft Visual
Studio.

The default is arm, for example:

“sct.txt”, line 15 (column 14): Warning: L6314W: No section
matches pattern *(RW).
Finished: 0 information, 1 warning and 0 error messages.

Specifying --diag_style ide results in:

sct.txt(15, 14): warning: L6314: No section matches pattern *(RW).
armlink: Finished: 0 information, 1 warning and 0 error messages.

Specifying --diag_style gnu displays:

sct.txt:15:14: Warning: L6314W: No section matches pattern *(RW).
Finished: 0 information, 1 warning and 0 error messages.

--diag_suppress taglist

Disables all diagnostic messages that have the specified tag(s).

This option requires a comma-separated list of diagnostic message
numbers that specifies the messages that must be suppressed. For
example, to suppress the warning messages that have numbers L6314W and
L6305W, use the following command:

armlink --diag_suppress L6314,L6305 ...

--diag_warning taglist

Sets diagnostic messages that have the specified tag(s) to be displayed as
warning messages, for example, where you want to downgrade an error
message.

This option requires a comma-separated list of diagnostic message
numbers that specifies the messages that must be downgraded.

--errors file

Redirects the diagnostics from the standard error stream to file.

The specified file is created at the start of the link stage. If a file of the
same name already exists, it is cleared.

If file is specified without path information, it is created in the current
directory.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-31

The Linker Command Syntax
--list file Redirects the diagnostics from output of the --info, --map, --symbols,
--xref, --xreffrom, and --xrefto commands to file.

The specified file is created when diagnostics are output. If a file of the
same name already exists, it is overwritten. However, if diagnostics are
not output, a file is not created. In this case, the contents of any existing
file with the same name remain unchanged.

If file is specified without path information, it is created in the output
directory, that is, the directory where the output image is being written.

--verbose Prints detailed information about the link operation, including the objects
that are included and the libraries from which they are taken. Because this
output is typically quite long, you might want to use this command with
the --errors file command to redirect the information to file.

Use --verbose to output diagnostics to stderr.

Prefix letters in diagnostic messages

The RVCT tools automatically insert an identification letter to diagnostic messages, as
described in Table 2-1. Using these prefix letters enables the RVCT tools to use
overlapping message ranges.

The following rules apply:

• All the RVCT tools act on a message number without a prefix.

• A message number with a prefix is only acted on by the tool with the matching
prefix.

• A tool does not act on a message with a non-matching prefix.

Thus, the linker prefix L can be used with --diag_error, --diag_remark, and
--diag_warning, or when suppressing messages, for example:

armlink --diag_suppress L6314,L6305 ...

Table 2-1 Identifying diagnostic messages

Prefix letter RVCT tool

C armcc

A armasm

L armlink or armar

Q fromelf
2-32 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

The Linker Command Syntax
2.2.12 Using a via file

Use the following option to specify a via file containing additional command-line
arguments to the linker:

--via file Reads a further list of input filenames and linker options from file.

You can enter multiple --via options on the linker command line. The
--via options can also be included within a via file.

See RealView Compilation Tools v3.0 Compiler and Libraries Guide for more
information on writing via files.

2.2.13 Miscellaneous

By default, the linker assumes execution regions and load regions to be four-byte
aligned. This enables the linker to minimize the amount of padding that it inserts into
the image.

The --no_legacyalign option instructs the linker to insert padding to force natural
alignment. Use this option to ensure strict conformance with the ELF specification (see
Section placement on page 3-8 for more details).

2.2.14 Controlling compatibility with legacy objects

The ABI in RVCT v3.0 is different to that in ADS v1.2 and RVCT v1.2. Therefore,
legacy ADS v1.2 and RVCT v1.2 objects and libraries are not directly compatible with
RVCT v3.0. Some restricted compatibility is provided with the --apcs /adsabi
compiler option.

For more details, see the chapter on using the ARM compiler in RealView Compilation
Tools v3.0 Compiler and Libraries Guide, and the section on compatibility with legacy
objects and libraries in RealView Compilation Tools v3.0 Essentials Guide.

Note
 Support for the --apcs /adsabi compiler option is deprecated and will be removed in a
future release.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-33

The Linker Command Syntax
2-34 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 3
Using the Basic Linker Functionality

This chapter describes the basic functionality available in the ARM® linker, armlink
provided with RealView® Compilation Tools (RVCT). It contains the following sections:

• Specifying the image structure on page 3-2

• Section placement on page 3-8

• Optimizations and modifications on page 3-11

• Using command-line options to create simple images on page 3-26

• Using command-line options to handle C++ exceptions on page 3-32

• Getting information about images on page 3-33.

For information about advanced linker functionality, see the descriptions of:

• how to access symbols in Chapter 4 Accessing Image Symbols

• how to use scatter-loading in Chapter 5 Using Scatter-loading Description Files.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-1

Using the Basic Linker Functionality
3.1 Specifying the image structure

The structure of an image is defined by the:

• number of its constituent regions and output sections

• positions in memory of these regions and sections when the image is loaded

• positions in memory of these regions and sections when the image executes.

This section describes:

• Building blocks for objects and images

• Load view and execution view of an image on page 3-4

• Specifying an image memory map on page 3-5

• Image entry points on page 3-6.

3.1.1 Building blocks for objects and images

An image, as stored in an executable file, is constructed from a hierarchy of images,
regions, output sections, and input sections:

• An image consists of one or more regions. Each region consists of one or more
output sections.

• Each output section contains one or more input sections.

• Input sections are the code and data information in an object file.

Figure 3-1 on page 3-3 shows the relationship between regions, output sections, and
input sections.
3-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
Figure 3-1 Building blocks for an image

Figure 3-1 shows the building blocks that make up the image:

Input sections

An input section contains code or initialized data, or describes a fragment
of memory that is not initialized or that must be set to zero before the
image can execute. Input sections can have the attributes RO, RW, or ZI.
These three attributes are used by armlink to group input sections into
bigger building blocks called output sections and regions.

Output sections

An output section is a contiguous sequence of input sections that have the
same RO, RW, or ZI attribute. An output section has the same attributes as
its constituent input sections. Within an output section, the input sections
are sorted according to the rules described in Section placement on
page 3-8.

Regions A region is a contiguous sequence of one, two, or three output sections.
The output sections in a region are sorted according to their attributes.
The RO output section is first, then the RW output section, and finally the
ZI output section. A region typically maps onto a physical memory
device, such as ROM, RAM, or peripheral.

������

�������	

�������
 ��
��
����
����
�	

��
��
����
����	�	

��
��
����
����	�

��
��
����
����	��

����
����
����
�	�	

����
����
����
�	�

����
����
����
�	�

����
����
����	�
�	

����
����
����	�	�	

����
����
����	�	�

����
����
����	���	

����
����
����	���

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-3

Using the Basic Linker Functionality
3.1.2 Load view and execution view of an image

Image regions are placed in the system memory map at load time. Before you can
execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might
have to be copied from its load address in ROM to its execution address in RAM.

The memory map of an image has the following distinct views (as shown in Figure 3-2).

Load view Describes each image region and section in terms of the address it
is located at when the image is loaded into memory, that is, the
location before the image starts executing.

Execution view Describes each image region and section in terms of the address it
is located at while the image is executing.

Figure 3-2 Load and execution memory maps

Table 3-1 compares the load and execution views.

������
���

������
��� ������
���
�������

�����
�����������������

������
���

���

������
���

�������

�������

�������

�������

���

���� !����
��"�#��

��#� �

Table 3-1 Comparing load and execution views

Load Description Execution Description

Load
address

The address where a section, or region is
loaded into memory before the image
containing it starts executing. The load
address of a section or a non-root region
can differ from its execution address.

Execution
address

The address where a section or region is
located while the image containing it is
being executed

Load region A region in the load address space. Execution
region

A region in the execution address space
3-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.1.3 Specifying an image memory map

An image can consist of any number of regions and output sections. Any number of
these regions can have different load and execution addresses. To construct the memory
map of an image, armlink must have information about:

Grouping How input sections are grouped into output sections and regions.

Placement Where image regions are to be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to
pass this information to armlink:

Using command-line options

The following options can be used for simple cases where an image has
only one or two load regions and up to three execution regions:

• --ro-base

• --rw-base

• --ropi

• --rwpi

• --split

• --rosplit

The options listed above provide a simplified notation that gives the same
settings as a scatter-loading description for a simple image. For more
information, see Using command-line options to create simple images on
page 3-26.

Using a scatter-loading description file

A scatter-loading description file is used for more complex cases where
you require complete control over the grouping and placement of image
components. To use scatter-loading, specify --scatter filename at the
command line. This is described in full in Chapter 5 Using
Scatter-loading Description Files.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-5

Using the Basic Linker Functionality
3.1.4 Image entry points

An entry point in an image is a location where program execution can start. There are
two distinct types of entry point:

Initial entry point

The initial entry point for an image is a single value that is stored in the
ELF header file. For programs loaded into RAM by an operating system
or boot loader, the loader starts the image execution by transferring
control to the initial entry point in the image.

An image can have only one initial entry point. The initial entry point can
be, but is not required to be, one of the entry points set by the ENTRY
directive.

Entry points set by the ENTRY directive

These are entry points that are set in the assembly language sources with
the ENTRY directive. In embedded systems, this directive is typically used
to mark code that is entered through the processor exception vectors, such
as RESET, IRQ, and FIQ.

You can specify multiple entry points in an image with the ENTRY
directive. The directive marks the output code section with an ENTRY
keyword that instructs the linker not to remove the section when it
performs unused section elimination.

For C and C++ programs, the __main() function in the C library is also an
entry point.

See RealView Compilation Tools v3.0 Assembler Guide for more
information on the ENTRY directive.

If an embedded image is to be used by a loader, it must have a single
initial entry point specified in the header. See Specifying an initial entry
point for more information.

Specifying an initial entry point

You can specify an initial entry point with the --entry linker option. You can specify the
--entry option only once. See the description in armlink command syntax on page 2-9
for more information.

For embedded applications with ROM at zero use --entry 0x0 (or optionally 0xFFFF0000
for CPUs that have high vectors).
3-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
The initial entry point must meet the following conditions:

• the image entry point must always lie within an execution region

• the execution region must be non-overlay, and must be a root execution region
(the load address is the same as the execution address).

If you do not use the --entry option to specify the initial entry point then:

• if the input objects contain only one entry point set by the ENTRY directive, the
linker uses that entry point as the initial entry point for the image

• the linker generates an image that does not contain an initial entry point when
either:

— more than one entry point has been specified by using the ENTRY directive

— no entry point has been specified by using the ENTRY directive.

In both these situations, the linker issues the following warning:

L6305W: Image does not have an entry point. (Not specified or not set due
to multiple choices)

Specify a unique entry point with --entry to fix this warning.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-7

Using the Basic Linker Functionality
3.2 Section placement

The linker sorts all the input sections within a region according to their attributes. Input
sections with identical attributes form a contiguous block within the region.

The base address of each input section is determined by the sorting order defined by the
linker, and is correctly aligned within the output section that contains it.

In general, the linker sorts the input sections in the following order when generating an
image:

1. By attribute.

2. By input section name.

3. By their positions in the input list, except where overridden by FIRST or LAST (see
Using FIRST and LAST to place sections on page 3-9).

If an execution region contains more than 4MB of Thumb® code or more than 32MB of
ARM code, the linker might change the sort order to reduce the number of long branch
veneers to a minimum.

By default, the linker creates an image consisting of an RO, an RW, and optionally a ZI
output section. The RO output section can be protected at runtime on systems that have
memory management hardware. RO sections can also be placed into ROM in the target.

This section describes:

• Ordering input sections by attribute on page 3-9

• Using FIRST and LAST to place sections on page 3-9

• Aligning sections on page 3-10

• Ordering execution regions containing Thumb code on page 3-10.
3-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.2.1 Ordering input sections by attribute

Portions of the image are collected together into a minimum number of contiguous
regions. armlink orders input sections by attribute as follows:

1. read-only code

2. read-only data

3. read-write code

4. other initialized data

5. zero initialized (uninitialized) data.

Input sections that have the same attributes are ordered by name. Names are considered
to be case-sensitive and are compared in alphabetical order using the ASCII collation
sequence for characters.

Identically attributed and named input sections are ordered according to their relative
positions in the input list.

These rules mean that the positions of identically attributed and named input sections
included from libraries are not predictable. If more precise positioning is required, you
can extract modules manually and include them in the input list.

3.2.2 Using FIRST and LAST to place sections

Within a region, all RO code input sections are contiguous and form an RO output
section that must precede the output section containing all the RW input sections.

If you are not using scatter-loading, use the --first and --last linker options to place
input sections.

If you are using scatter-loading, use the attributes FIRST and LAST in the scatter-loading
description file to mark the first and last input sections in an execution region if the
placement order is important.

However, FIRST and LAST must not violate the basic attribute sorting order. This means
that an input section can be first (or last) in the execution region if the output section
containing it is the first (or last) output section in the region. For example, in an
execution region containing RO input sections, the FIRST input section must be an RO
input section. Similarly, if the region contains any ZI input sections, the LAST input
section must be a ZI input section.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-9

Using the Basic Linker Functionality
3.2.3 Aligning sections

When input sections have been ordered and before the base address is fixed, armlink
inserts padding, if required, to force each input section to start at an address that is a
multiple of the input section alignment.

The ARM linker permits ELF program headers and output sections to be aligned on a
four-byte boundary regardless of the maximum alignment of the input sections. This
enables armlink to minimize the amount of padding that it inserts into the image.

If you require strict conformance with the ELF specification then use the
--no_legacyalign option. Padding might be inserted to ensure compliance and the
linker faults base addresses that are not 0 mod Max(input section alignment).

It is possible to use ALIGN to expand the alignment (changing something that is normally
four-byte aligned to be eight-byte aligned), but you cannot reduce the natural alignment
(forcing two-byte alignment on something that is normally four-byte aligned).

Shown in Example 3-1, the input section alignment can be specified in assembly code
using:

ALIGN Use this attribute to the AREA directive from assembly language. The input
section address will be a multiple of 2(value in align attribute).

Example 3-1 Using the ALIGN attribute in assembly code

AREA LDR_LABEL, CODE, READONLY, ALIGN=3 ; align on eight-byte boundary

See the description of ALIGN in the directives reference in RealView Compilation Tools
v3.0 Assembler Guide.

3.2.4 Ordering execution regions containing Thumb code

The Thumb branch range is 4MB. When an execution region contains Thumb code that
exceeds 4MB, armlink attempts to order sections that are at a similar average call depth
and to place the most commonly called sections centrally. This helps to minimize the
number of veneers generated (see Veneer generation on page 3-19 for more details).
3-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.3 Optimizations and modifications

This section describes:

• Common debug section elimination

• Common group or section elimination

• Unused section elimination on page 3-12

• Unused function elimination on page 3-13

• Linker feedback on page 3-14

• RW data compression on page 3-17

• Veneer generation on page 3-19

• Reuse of veneers with overlay execution regions on page 3-22

• Branch inlining on page 3-22.

3.3.1 Common debug section elimination

In DWARF 2, the compiler and assembler generate one set of debug sections for each
source file that contributes to a compilation unit. armlink can detect multiple copies of
a debug section for a particular source file and discard all but one copy in the final
image. This can result in a considerable reduction in image debug size.

In DWARF 3, common debug sections are placed in common groups.

3.3.2 Common group or section elimination

If there are inline functions or templates used in the C++ source, the ARM compiler
generates complete objects for linking such that each object contains the out-of-line
copies of inline functions and template functions that the object requires. When these
functions are declared in a common header file, the functions might be defined many
times in separate objects that are subsequently linked together. In order to eliminate
duplicates, the compiler compiles these functions into separate instances of common
code sections or groups.

It is possible that the separate instances of a common code sections, or groups, are not
identical. Some of the copies, for example, might be found in a library that has been
built with different (but compatible) build options, different optimization, or different
debug options.

If the copies are not identical, armlink retains the best available variant of each common
code section, or group, based on the attributes of the input objects. armlink discards the
rest.

If the copies are identical, armlink retains the first section or group located.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-11

Using the Basic Linker Functionality
This optimization is controlled by linker options:

• Use the --bestdebug option to use the largest Comdat group (likely to give the best
debug view).

• Use the --no_bestdebug option to use the smallest Comdat group (likely to give
the smallest code size). This is the default. In most cases, it is unlikely that you
will have to use --bestdebug.

Because --no_bestdebug is the default, the final image is the same regardless of
whether you generate debug tables during compilation with -g.

For details, see generating debug information in the chapter describing how to use
the ARM compiler in RealView Compilation Tools v3.0 Compiler and Libraries
Guide.

3.3.3 Unused section elimination

Unused section elimination removes code that is never executed, or data that is not
referred to by the code, from the final image. This optimization can be controlled by the
--remove, --no_remove, --first, --last, and --keep linker options. Use the --info unused
linker option to instruct the linker to generate a list of the unused sections that have been
eliminated.

Unused section elimination is suppressed in those cases that might result in the removal
of all sections.

An input section is retained in the final image under the following conditions:

• if it contains an entry point

• if it is referred to, directly or indirectly, by a non-weak reference from an input
section containing an entry point

• if it was specified as the first or last input section by the --first or --last option
(or a scatter-loading equivalent)

• if it has been marked as unremovable by the --keep option.

Note
 Unused section elimination is a property of all groups, not just common groups.
3-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.3.4 Unused function elimination

Virtual Function Elimination (VFE) is a refinement of unused section elimination to
reduce ROM size in images generated from C++ code. This optimization can be used to
eliminate unused virtual functions and RTTI objects from your code.

If a function is compiled in its own section then VFE is synonymous with unused
section elimination (see Unused section elimination on page 3-12). However, where a
section contains more that one function, it can only be eliminated if all the functions are
unused. The linker cannot remove unused functions from within a section.

In the rest of this section, it is assumed that functions are compiled in their own sections.

Unused section elimination efficiently removes unused functions from C code.
However, in C++ applications, unused sections and RTTI objects are referenced by
pointer tables. This means that the elimination algorithm used by the linker cannot
guarantee to remove sections and RTTI objects reliably.

VFE is a collaboration between the ARM compiler and the linker whereby the compiler
supplies extra information about unused virtual functions that is then used by the linker.
Based on this analysis, the linker is able to remove unused sections reliably. This
collaboration also enables the linker to remove RTTI objects.

Note
 Assembler source files do not require VFE annotations, provided that they do not
reference the C++ libraries. This is because the linker assumes that no virtual function
calls are made by object files that do not reference the C++ libraries. Similarly, C source
files that were compiled with an old version of armcc can participate in VFE provided
that they do not reference the C++ libraries.

VFE operates in four modes:

On Use the command-line option --vfemode=on to make the linker VFE
aware. This is the default mode if you do not specify a VFE option on the
command line.

In this mode the linker chooses force or off mode based on the content
of object files:

• Where every object file contains VFE information or does not refer
to C++ libraries, the linker assumes force mode and continues with
the elimination.

• If any object file is missing VFE information and refers to a C++
library, for example, where code has been compiled with a previous
release of the ARM tools, the linker assumes off mode, and VFE is
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-13

Using the Basic Linker Functionality
disabled silently. Choosing off mode to disable VFE in this
situation ensures that the linker does not remove a virtual function
that is used by an object with no VFE information.

Off Use the command-line option --vfemode=off to make armlink ignore any
extra information supplied by the compiler. In this mode, the final image
is the same as that produced by compiling and linking without VFE
awareness.

Force Use the command-line option --vfemode=force to make the linker VFE
aware and force the VFE algorithm to be applied. If some of the object
files do not contain VFE information, for example, where they have been
compiled with a previous release of the ARM tools, the linker continues
with the elimination but displays a warning to alert you to possible errors.

Force no RTTI

Use the command-line option --vfemode=force_no_rtti to make the
linker VFE aware and force the removal of all RTTI objects. In this mode
all virtual functions are retained.

The compiler places the extra information in sections with names beginning .arm_vfe.
These sections are not referenced by the rest of the code and so are ignored by the linker
when it is not VFE aware. Such sections do not, therefore, increase the size of the final
image but they do increase the size of object files produced by the compiler.

To stop the compiler producing VFE information, use the compiler option --no_vfe.
However, the recommended way to switch off VFE is with the linker option
--vfemode=off.

Note
 If you do not specify a VFE option on the command line, default mode is assumed, that
is, --vfemode=on.

3.3.5 Linker feedback

armlink provides feedback for the next time a file is compiled, to inform the compiler
about unused functions. These are placed in their own sections for future elimination by
the linker.

When the --inline optimization is turned on (see Branch inlining on page 3-22),
functions inlined by the linker are also emitted in the feedback file. These functions are
also placed in their own sections.
3-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
The --feedback file option generates a feedback file containing each output filename,
as a comment, and the unused symbols found in the file, for example:

;#<FEEDBACK># ARM Linker, RVCT3.0 [Build num]: Last Updated: Date
;VERSION 0.2
;FILE dhry_1.o
unused_func1 <= USED 0
inlined_func <= LINKER_INLINED
;FILE dhry_2.o
unused_func2 <= USED 0

When you next compile the source, use the compiler option --feedback file to specify
the linker-generated feedback file to use. If no feedback file exists, the compiler issues
a warning message.

Linker feedback example

To see how linker feedback works:

1. Create a file fb.c containing the code shown in Example 3-2.

Example 3-2 Feedback example

#include <stdio.h>

void legacy() {
 printf("This is a legacy function, that is no longer used.\n");
}

int cubed(int i) {
 return i*i*i;
}

void main() {
 int n = 3;
 printf("%d cubed = %d\n",n,cubed(n));
}

2. Compile the program (ignore the warning that the feedback file does not exist):

armcc --asm -c --feedback fb.txt fb.c

This inlines the cubed() function by default, and creates an assembler file fb.s and
an object file fb.o. In the assembler file, the code for legacy() and cubed() is still
present. Because of the inlining, there is no call to cubed() from main.

An out-of-line copy of cubed() is kept because it was not declared as static.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-15

Using the Basic Linker Functionality
3. Link the object file to create the linker feedback file with the command line:

armlink --info sizes --list fbout1.txt --feedback fb.txt fb.o -o fb.axf

Linker diagnostics are output to the file fbout1.txt.

Note
 For full details on these options see Generating image-related information on

page 2-27 and Controlling linker diagnostics on page 2-31.

The linker feedback file identifies the source file that contains the unused
functions in a comment (not used by the compiler) and includes entries for the
legacy() and cubed() functions:

;#<FEEDBACK># ARM Linker, RVCT 3.0 [Build num]: Last Updated: Date
;VERSION 0.2
;FILE fb.o
cubed <= USED 0
legacy <= USED 0

This shows that the functions are not used.

4. Repeat the compile and link stages with a different diagnostics file:

armcc --asm -c --feedback fb.txt fb.c

armlink --info sizes --list fbout2.txt fb.o -o fb.axf

5. Compare the two diagnostics files, fbout1.txt and fbout2.txt, to see the sizes of
the image components (for example, Code, RO Data, RW Data, and ZI Data). The
Code component is smaller.

In the assembler file, fb.s, the legacy() and cubed() functions are no longer in the
main .text area. They are compiled into their own ELF sections. Therefore,
armlink can remove the legacy() and cubed() functions from the final image.

Note
 To get the maximum benefit from linker feedback you have to do a full compile and link
at least twice. However, a single compile and link using feedback from a previous build
is usually sufficient.
3-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.3.6 RW data compression

RW data areas typically contain a large number of repeated values (for example, zeros)
making them suitable for compression. RW data compression is enabled by default to
minimize ROM size.

The ARM libraries contain some decompression algorithms and the linker chooses the
optimal one to add to your image to decompress the data areas when the image is
executed. However, you can override the algorithm chosen by the linker.

This section describes data compression in more detail:

• Choosing a compressor

• How is compression applied? on page 3-18

• Working with RW data compression on page 3-18.

Choosing a compressor

armlink gathers information about the content of data sections before choosing the most
appropriate compression algorithm to generate the smallest code size. If compression is
appropriate, the linker can only use one data compressor for all the compressible data
sections in the image and different compressions might be tried on these sections to
produce the best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

Once a compressor has been chosen, armlink adds the decompressor to the code area of
your image. If the final image does not contain any compressed data, no decompressor
is added.

You can override the compression used by the linker by either:

• using the --datacompressor off option to turn off compression

• specifying a compressor of your choosing.

Use the command-line option --datacompressor list to get a list of compressors
available in the linker, for example:

Num Compression algorithm
==
0 Run-length encoding
1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-17

Using the Basic Linker Functionality
How is compression applied?

Run-length compression encodes data as non-repeated bytes and repeated zero-bytes.
Non-repeated bytes are output unchanged, followed by a count of zero-bytes.
Limpel-Ziv 1977 (LZ77) compression keeps track of the last n bytes of data seen and,
when a phrase is encountered that has already been seen, it outputs a pair of values
corresponding to the position of the phrase in the previously-seen buffer of data, and the
length of the phrase.

To specify a compressor, use the required ID on the linker command line, for example:

armlink --datacompressor 2 ...

When choosing a compressor be aware that:

• Compressor 0 performs well on data with large areas of zero-bytes but few
nonzero bytes.

• Compressor 1 performs well on data where the nonzero bytes are repeating.

• Compressor 2 performs well on data that contains repeated values.

The linker prefers compressor 0 or 1 where the data contains mostly zero-bytes (>75%).
Compressor 2 is chosen where the data contains few zero-bytes (<10%). If the image is
made up only of ARM code, then ARM decompressors are used automatically. If the
image contains any Thumb code, Thumb decompressors are used. If there is no clear
preference, all compressors are tested to produce the best overall size (see Choosing a
compressor on page 3-17).

Note
 It is not possible to add your own compressors into the linker. The algorithms that are
available, and how the linker chooses to use them, might change in the future.

Working with RW data compression

When working with RW data compression:

• Use the linker option --map to see where compression has been applied to regions
in your code.

• The linker does not apply compression if a Load$$region_name$$Base symbol is
used, where region_name follows any execution region containing compressed
data in the same load region.

• If you are using an ARM processor with on-chip cache, enable the cache after
decompression to avoid code coherency problems
3-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
See the chapter describing how to develop embedded software in RealView
Compilation Tools v3.0 Developer Guide for details.

In RVCT v2.0 and earlier, only the __main section and the region tables had to be placed
in a root region. In RVCT v2.1 and above, RW data compression requires that additional
sections (such as __dc*.o sections) be placed in a root region.

If you are using a scatter-loading description file:

• Where coded, decompressor objects named __dc*.o, must be in a root region, for
example:

ER_ROOT
{
 __main.o(*)
 * (Region$$Table)
 __scatter*.o(*)
 __dc*.o(*)
}

Or, preferably, use InRoot$$Sections to place all library sections that must be in a
root region, for example:

ER_ROOT
{
 * (InRoot$$Sections)
}

See Assigning sections to a root region on page 5-34 for more details. Also, see
the chapter on embedded software development in the RealView Compilation
Tools v3.0 Developer Guide.

• Specify that a load or execution region should not be compressed by adding the
NOCOMPRESS attribute (see Formal syntax of the scatter-loading description file on
page 5-9 for details).

3.3.7 Veneer generation

Veneers are small sections of code generated by the linker and inserted into your
program. armlink must generate veneers when a branch involves a destination beyond
the branching range of the current state.

The range of a BL instruction is 32MB for ARM, 16MB for Thumb-2, and 4MB for
Thumb. A veneer can, therefore, extend the range of the branch by becoming the
intermediate target of the instruction and then setting the PC to the destination address.
If ARM and Thumb are mixed, the veneer also changes processor state.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-19

Using the Basic Linker Functionality
armlink supports the following veneer types:

• ARM to ARM

• ARM to Thumb (interworking veneers)

• Thumb to ARM (interworking veneers)

• Thumb to Thumb.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is
generated only if no other existing veneer can satisfy the requirements. If two input
sections contain a long branch to the same destination, only one veneer is generated. A
veneer is only shared in this way if it can be reached by both sections.

If you are using ARMv4T, armlink generates veneers when a branch involves change of
state between ARM and Thumb. In ARMv5 and above, the BLX instruction is used.

Veneer sharing

You can use the command-line option --no_veneershare to specify that veneers are not
shared across execution regions. This assigns ownership of the created veneer section
to the object that created the veneer and so enables you to select veneers from a
particular object in a scatter-loading description file, for example:

ER1 +0
{
 object1.o(Veneer$$Code)
}

Veneer sharing makes it impossible to assign an owning object. Using
--no_veneershare, therefore, provides a more consistent image layout. This comes at a
cost with a significant increase in code size.

Veneer variants

Veneers have different variants depending on the branching range you require:

• Inline veneers

• Short branch veneers on page 3-21

• Long branch veneers on page 3-21.

Inline veneers

In this variant:

• the veneer must be inserted just before the target section to be in range

• an ARM-Thumb interworking veneer has a range of 256 bytes and so the function
code must appear in the first 256 bytes immediately after the veneer code
3-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
• a Thumb-ARM interworking veneer has a range of zero bytes and so the function
code must appear immediately after the veneer code

• an inline veneer is always position-independent.

These limitations mean that you cannot move inline veneers out of an execution region
using Veneer$$Code. Use the command-line option --no_inlineveneer to prevent the
generation of inline veneers.

Short branch veneers

In this variant:

• an ARM-Thumb short branch veneer has a range of 4MB

• a Thumb-ARM short branch veneer has a range of 32MB

• a short branch veneer is always position-independent.

Long branch veneers

In this variant:

• both ARM-Thumb and Thumb-ARM interworking veneers have a range of 232
bytes

• armlink combines long branch capability into the state change capability,
therefore, all interworking veneers are also long branch veneers

• a long branch veneer is either absolute or position-independent.

When you are using veneers be aware of the following:

• All veneers cannot be collected into one input section because the resulting
veneer input section might not be within range of other input sections. If the
sections are not within addressing range, long branching is not possible.

• armlink generates position-independent variants of the veneers automatically.
However, because such veneers are larger than non position-independent variants,
armlink only does this where necessary, that is, where the source and destination
execution regions are both position-independent and are rigidly related.

Veneers are generated to optimize code size. armlink, therefore, chooses the variant in
order of preference:

1. Inline veneer.

2. Short branch veneer.

3. Long veneer.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-21

Using the Basic Linker Functionality
3.3.8 Reuse of veneers with overlay execution regions

armlink reuses veneers whenever possible. However, both the following conditions are
enforced on reuse:

• an overlay execution region cannot reuse a veneer placed in any other execution
region

• no other execution region can reuse a veneer placed in an overlay execution
region.

If these conditions are not met, new veneers are created instead of reusing existing ones.
Unless you have instructed the linker to place veneers somewhere specific using
scatter-loading, a veneer is always placed in the execution region that contains the call
requiring the veneer. This implies that:

• for an overlay execution region, all its veneers are included within the execution
region

• an overlay execution region never requires a veneer from another execution
region.

3.3.9 Branch inlining

armlink has global visibility of all your program code and so can perform some
additional branch optimizations.

armlink uses branch inlining to optimize small function calls in your image. A small
function is defined as any one-instruction function that can be inlined into the 4 bytes
of a BL or BLX instruction. In this case, there is no branch and, therefore, the return
address is redundant.

Note
 This branch optimization is off by default because enabling it changes the image such
that debug information might be incorrect. If enabled, the linker makes no attempt to
correct the debug information.

Use the command-line options to control branch inlining:

--no_branchnop

The linker replaces any branch with a relocation that resolves to the next
instruction with a NOP. This is the default behavior. However, there are
cases where you might want to disable the option, for example, when
performing verification or pipeline flushes

Use the --no_branchnop option to disable this behavior.
3-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
--inline Enables branch inlining (see Controlling inlining).

--tailreorder

Moves tail calling sections immediately before their target, if possible, to
optimize function calls (see Handling tail calling sections on page 3-24).

If you enable branch inlining, armlink scans each function call in the image and then
inlines where applicable. When armlink inlines a function, it removes the reference to
the called function from the caller. armlink applies this optimization before any unused
sections are eliminated so that any section that is always inlined can then be removed.

Use the --info command-line option to display information about branch inlining:

--info inline

Displays a message each time a function is inlined and gives the total
number of inlines, for example:

Small function inlining results

Inlined function __Heap_DescSize from object h1_alloc.o at offset
0x5c in section .text from object malloc.o.
Inlined function __ieee_status from object istatus.o at offset
0x40 in section .text from object _printf_fp_dec.o.
.
Inlined total of 6 calls.

Controlling inlining

If you have enabled branch inlining, there are certain conditions that a function must
meet in order to be inlined:

• armlink handles only the simplest cases and does not inline any instruction that
reads or writes to the PC because this depends on the location of the function.

• If your image contains both ARM and Thumb code, functions that are called from
the other state must be built for interworking. An ARM caller might inline a
Thumb callee if an equivalent ARM instruction is available. However, a Thumb
caller cannot inline an ARM callee. Also, armlink can inline up to two 16-bit
Thumb instructions, However, an ARM caller can only inline a single 16-bit
Thumb instruction.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-23

Using the Basic Linker Functionality
• The action of the linker also depends on the size of the symbol representing a
function and on the caller (ARM or Thumb) and the callee (ARM or Thumb) as
shown in Table 3-2.

• In order to be inlined, the last instruction of a function must be either:

MOV pc, rn

or

BX rn

A function that consists of just a return sequence can be inlined as a NOP.

• A conditional ARM instruction can only be inlined if either the condition on the
BL matches the condition on the instruction being inlined, or the BL or instruction
to be inlined is unconditional. For example, BLEQ can only inline an unconditional
instruction like ADD or an instruction with a matching condition like ADDEQ.

An unconditional ARM BL can inline any conditional or unconditional instruction
that satisfies all the other criteria.

• A BL that is the last instruction of an IT block cannot inline a 16-bit Thumb
instruction or a 32-bit MRS, MSR, or CPS instruction. This is because the IT block
changes the behavior of the instructions within its scope so inlining the instruction
would change the behavior of the program.

Handling tail calling sections

As described in Controlling inlining on page 3-23, the linker replaces any branch with
a relocation that resolves to the next instruction with a NOP. This means that tail calling
sections, that is, sections that finish with a branch instruction, might be optimized so
that their target appears immediately after them in the execution region.

Table 3-2 Inlining small functions

Caller Callee
Symbol size that
can be inlined

ARM ARM 4 to 8 bytes

ARM Thumb 2 to 6 bytes

Thumb Thumb 2 to 6 bytes

Thumb ARM 4 to 8 bytes
3-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
You can take advantage of this behavior by using the command-line option
--tailreorder to move tail calling sections above their target. If this is possible, be
aware that:

• armlink can only move one tail calling section for each tail call target. If there are
multiple tail calls to a single section, the tail calling section with an identical
section name is moved before the target. If no section name is found in the tail
calling section that has a matching name, then the linker moves the first section it
encounters.

• armlink cannot move a tail calling section out of its execution region.

• armlink does not move tail calling sections before inline veneers.

Use the --info command-line option to display information about tail call optimization.
For example, --info tailreorder gives details of any moved tail calling sections:

Tailcall reorder results
Tail calling Section !!!main from object __main.o placed before .text from kernel.o
Tail calling Section .text from object rt_raise.o placed before .text from sys_exit.o
Tail calling Section .text from object plibspace.o placed before .text from libspace.o
Tail calling Section .text from object aeabi_idiv0.o placed before .text from rt_div0.o
......
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-25

Using the Basic Linker Functionality
3.4 Using command-line options to create simple images

A simple image consists of a number of input sections of type RO, RW, and ZI. These
input sections are collated to form the RO, RW, and ZI output sections. Depending on
how the output sections are arranged within load and execution regions, there are three
basic types of simple image:

Type 1 One region in load view, three contiguous regions in execution view. Use
the --ro-base option to create this type of image.

See Type 1, one load region and contiguous output regions on page 3-27
for more details.

Type 2 One region in load view, three non-contiguous regions in execution view.
Use the --ro-base and --rw-base options to create this type of image.

See Type 2, one load region and non-contiguous output regions on
page 3-28 for more details.

Type 3 Two regions in load view, three non-contiguous regions in execution
view. Use the --ro-base, --rw-base, and --split options to create this
type of image, You can also use the --rosplit option to split the default
load region into two RO output sections, one for code and one for data.

See Type 3, two load regions and non-contiguous output regions on
page 3-30 for more details.

In all three simple image types, there are up to three execution regions where:

• the first execution region contains the RO output section

• the second execution region contains the RW output section (if present)

• the third execution region contains the ZI output section (if present).

These execution regions are referred to as the RO, the RW, and the ZI execution region.

Simple images can also be created with scatter-loading description files. See Equivalent
scatter-loading descriptions for simple images on page 5-39 for more information on
how to do this.

This section describes simple images in more detail:

• Type 1, one load region and contiguous output regions on page 3-27

• Type 2, one load region and non-contiguous output regions on page 3-28

• Type 3, two load regions and non-contiguous output regions on page 3-30.
3-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.4.1 Type 1, one load region and contiguous output regions

An image of this type consists of a single load region in the load view and three
execution regions placed contiguously in the memory map. This approach is suitable for
systems that load programs into RAM, for example, an OS bootloader, Angel, or a
desktop system (see Figure 3-3).

Figure 3-3 Simple type 1 image

Use the following command for images of this type:

armlink --ro-base 0x8000

Load view

The single load region consists of the RO and RW output sections placed consecutively.
The RO and RW execution regions are both root regions. The ZI output section does not
exist at load time. It is created before execution using the output section description in
the image file.

�����
��
����
���

�����
��
����
���

�����
��
����
���

��������
���
 �����

��������
���
 �����

$���"�
"���
 �����

��������
���
 ����������
��
����
���

�����
�����������������

������

���

�����
��
����
���

������

%% �%&������"��
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-27

Using the Basic Linker Functionality
Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged
contiguously. The execution addresses of the RO and RW execution regions are the
same as their load addresses, so nothing has to be moved from its load address to its
execution address. However, the ZI execution region that contains the ZI output section
is created before execution begins.

Use armlink option --ro-base address to specify the load and execution address of the
region containing the RO output. The default address is 0x8000 as shown in Figure 3-3
on page 3-27.

3.4.2 Type 2, one load region and non-contiguous output regions

An image of this type consists of a single load region, and three execution regions in
execution view. The RW execution region is not contiguous with the RO execution
region. This approach is used, for example, for ROM-based embedded systems (see
Figure 3-4), where RW data is copied from ROM to RAM at startup.

Figure 3-4 Simple type 2 image

Use the following command for images of this type:

armlink --ro-base 0x0 --rw-base 0xA000

�����
��
����
���

�����
��
����
���

�����
��
����
���

�����
��
����
���

��������
���
 �����

��������
���
 �����

$���"�
"���
 �����

��������
���
 �����

�����
��
����
���

�����
�����������������

���

���

������
%% �%&������"��

%% �%&������"��������

'��!��
������ ���
3-28 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
Load view

In the load view, the single load region consists of the RO and RW output sections
placed consecutively, in ROM, for example. Here, the RO region is a root region, and
the RW region is non-root. The ZI output section does not exist at load time. It is created
at run-time.

Execution view

In the execution view, the first execution region contains the RO output section and the
second execution region contains the RW and ZI output sections.

The execution address of the region containing the RO output section is the same as its
load address, so the RO output section does not have to be moved. That is, it is a root
region.

The execution address of the region containing the RW output section is different from
its load address, so the RW output section is moved from its load address (from the
single load region) to its execution address (into the second execution region). The ZI
execution region, and its output section, is placed contiguously with the RW execution
region.

Use armlink options --ro-base address to specify the load and execution address for the
RO output section, and --rw-base exec_address to specify the execution address of the
RW output section. If you do not use the --ro-base option to specify the address, the
default value of 0x8000 is used by armlink. For an embedded system, 0x0 is typical for
the --ro-base value. If you do not use the --rw-base option to specify the address, the
default is to place RW directly above RO (as in Type 1, one load region and contiguous
output regions on page 3-27).
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-29

Using the Basic Linker Functionality
3.4.3 Type 3, two load regions and non-contiguous output regions

This type of image is similar to images of type 2 except that the single load region is
now split into two load regions (see Figure 3-5).

Figure 3-5 Simple type 3 image

Use the following command for images of this type:

armlink --split --ro-base 0x8000 --rw-base 0xE000

Load view

In the load view, the first load region consists of the RO output section, and the second
load region consists of the RW output section. The ZI output section does not exist at
load time. It is created before execution using the description of the output section
contained in the image file.

Execution view

In the execution view, the first execution region contains the RO output section and the
second execution region contains the RW and ZI output sections.

The execution address of the RO region is the same as its load address, so the contents
of the RO output section do not have to be moved or copied from their load address to
their execution address. Both RO and RW are root regions.

�����
��
����
���

�����
��
����
���
(� �

"���
 �����

���������

$�����
"���
 �����

���

%% �%&������"��

%% �%&������"��

�����
��
����
���

�����
��
����
���

��������
���
 �����

��������
���
 �����

��������
���
 �����

������

�����
��
����
���

�����
��������

������

������
3-30 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
The execution address of the RW region is also the same as its load address, so the
contents of the RW output section are not moved from their load address to their
execution address. However, the ZI output section is created before execution begins
and placed after the RW region.

Specify the load and execution address using the following linker options:

--split Splits the default single load region (that contains both the RO and RW
output sections) into two load regions (one containing the RO output
section and one containing the RW output section) so that they can be
placed separately using --ro-base and --rw-base.

--ro-base address

Instructs armlink to set the load and execution address of the region
containing the RO section at a four-byte aligned address (for example, the
address of the first location in ROM). If --ro-base option is not used to
specify the address, the default value of 0x8000 is used by armlink.

--rw-base address

Instructs armlink to set the execution address of the region containing the
RW output section at a four-byte aligned address. If this option is used
with --split, this specifies both the load and execution addresses of the
RW region (that is, it is a root region).
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-31

Using the Basic Linker Functionality
3.5 Using command-line options to handle C++ exceptions

By default, or if the option --exceptions is specified, the image can contain exception
tables. Exception tables are discarded silently if no code throws an exception. However,
if the option --no_exceptions is specified, the linker generates an error if any exceptions
sections are present after unused sections have been eliminated.

You can use the --no_exceptions option if you want to ensure that your code is
exceptions free. The linker generates an error message to highlight that exceptions have
been found and does not produce a final image.

However, you can use the --no_exceptions option with the --diag_warning option to
downgrade the error message to a warning. The linker produces a final image but also
generates a message to warn you that exceptions have been found.

The linker can create exception tables for legacy objects that contain debug frame
information. The linker can do this safely for C and assembly language objects. By
default, the linker does not create exception tables. This is the same as using the linker
option --exceptions_tables=nocreate.

The linker option --exceptions_tables=unwind enables the linker to use the .debug_frame
information to create a register-restoring unwinding table for each section in your image
that does not already have an exception table. If this is not possible, the linker creates a
nounwind table instead.

Use the linker option --exceptions_tables=cantunwind to create a nounwind table for
each section in your image that does not already have an exception table.

Note
 Be aware of the following:

• With the default settings, that is, --exceptions --exception_tables=nocreate, it is
not safe to throw an exception through C or assembly code (unless the C code is
compiled with the option --exceptions).

• The linker is unable to generate the cleanup code necessary for automatic
variables in legacy C++ code, for example, RVCT v1.2 or ADS v1.2.
3-32 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
3.6 Getting information about images

You can use the --info option to get information about how your image is generated by
the linker, for example:

armlink --info sizes ...

Here, sizes gives a list of the Code and Data sizes for each input object and library
member in the image. Using this option implies --info sizes,totals.

See Generating image-related information on page 2-27 for more details on the topic
keywords you can specify for the --info command-line option.

Example 3-3 shows an example of the output from this option.

Example 3-3 Image details

Code (inc. data) RO Data RW Data ZI Data Debug

3712 1580 19 44 10200 7436 Object Totals
0 0 16 0 0 0 (incl. Generated)
0 0 3 0 0 0 (incl. Padding)
21376 648 805 4 300 10216 Library Totals
0 0 6 0 0 0 (incl. Padding)

===

Code (inc. data) RO Data RW Data ZI Data Debug
25088 2228 824 48 10500 17652 Grand Totals
25088 2228 824 48 10500 17652 Image Totals

===

Total RO Size (Code + RO Data) 25912 (25.30kB)
Total RW Size (RW Data + ZI Data) 10548 (10.30kB)
Total ROM Size (Code + RO Data + RW Data) 25960 (25.35kB)

In Example 3-3, the output is shown in rows and columns, and totals are separated out
for easy reading. For more information see:

• Column details on page 3-34

• Row details on page 3-34.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-33

Using the Basic Linker Functionality
3.6.1 Column details

Example 3-3 on page 3-33 shows:

Code (inc. Data)

Shows how many bytes are occupied by code. In this image, there are
3712 bytes of code. This includes 1580 bytes of inline data (inc. Data),
for example, literal pools, and short strings.

RO Data Shows how many bytes are occupied by read-only data, such as initial
values of RW data variables. This is in addition to the inline data included
in the Code (inc. Data) column.

RW Data Shows how many bytes are occupied by read-write data.

ZI Data Shows how many bytes are occupied by zero initialized data.

Debug Shows how many bytes are occupied by debug data, for example, debug
input sections and the symbol and string table.

3.6.2 Row details

Example 3-3 on page 3-33 shows:

Object Totals

Shows how many bytes are occupied by objects linked together to
generate the image.

(incl. Generated)

armlink might generate image contents, for example, interworking
veneers, and input sections such as region tables. If the Object Totals row
includes this type of data, it is shown in this row. In Example 3-3 on
page 3-33 there are 19 bytes of RO data in total, of which 16 bytes is
linker-generated RO data.

Library Totals

Shows how many bytes are occupied by library members that have been
extracted and added to the image as individual objects.

(incl. Padding)

armlink inserts padding, if required, to force section alignment (see
Aligning sections on page 3-10). If the Object Totals row includes this
type of data, it is shown in the associated (incl. Padding) row. Similarly,
if the Library Totals row includes this type of data, it is shown in its
3-34 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using the Basic Linker Functionality
associated row. In Example 3-3 on page 3-33, there are 19 bytes of RO
data in the object total, of which 3 bytes is linker-generated padding, and
805 bytes of RO data in the library total, with 6 bytes of padding.

Example 3-3 on page 3-33 shows:

Grand Totals

Shows the true size of the image. In Example 3-3 on page 3-33 there are
10200 bytes of ZI data (in Object Totals) and 300 of ZI data (in Library
Totals) giving a total of 10500 bytes.

Image Totals

If you are using RW data compression (the default) to optimize ROM
size, the size of the final image changes and this is reflected in the output
from --info. Compare the number of bytes under Grand Totals and Image
Totals to see the effect of compression.

In Example 3-3 on page 3-33, RW data compression is not enabled. If
data is compressed, the RW value changes (see RW data compression on
page 3-17 for details).

Example 3-3 on page 3-33 also shows totals (in bytes and kilobytes) for the final image
size.

You can use the --map option to create an image map. This includes the address and size
of each load region, execution region, and input section in the image, and shows how
RW data compression is applied (see Generating image-related information on
page 2-27 for details).
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-35

Using the Basic Linker Functionality
3-36 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 4
Accessing Image Symbols

This chapter describes how to reference symbols with the ARM® linker, armlink. It
contains the following sections:

• ARM/Thumb synonyms on page 4-2

• Accessing linker-defined symbols on page 4-3

• Accessing symbols in another image on page 4-8

• Hiding and renaming global symbols on page 4-11

• Using $Super$$ and $Sub$$ to override symbol definitions on page 4-21

• Symbol versioning on page 4-22.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-1

Accessing Image Symbols
4.1 ARM/Thumb synonyms

The linker enables multiple definitions of a symbol to coexist in an image, only if each
definition is associated with a different processor state. armlink applies the following
rules when a reference is made to a symbol with ARM/Thumb® synonyms:

• B, BL, or BLX instructions to a symbol from ARM state resolve to the ARM
definition.

• B, BL, or BLX instructions to a symbol from Thumb state resolve to the Thumb
definition.

Any other reference to the symbol resolves to the first definition encountered by the
linker. In this case, armlink displays a warning that specifies the chosen symbol.
4-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
4.2 Accessing linker-defined symbols

The linker defines some symbols that contain the character sequence $$. These symbols,
and all other external names containing the sequence $$, are names reserved by ARM.
The symbols are used to specify region base addresses, output section base addresses,
and input section base addresses and their limits.

These symbolic addresses can be imported and used as relocatable addresses by your
assembly language programs, or referred to as extern symbols from your C or C++
source code. See Importing linker-defined symbols on page 4-7 for details.

Note
 Linker-defined symbols are only generated when your code references them.

This section describes:

• Region-related symbols

• Section-related symbols on page 4-5

• Importing linker-defined symbols on page 4-7.

4.2.1 Region-related symbols

Region-related symbols are generated when the linker creates an image. Table 4-1
shows the symbols that the linker generates for every execution region present in the
image.

Table 4-1 Region-related linker symbols

Symbol Description

Load$$region_name$$Base Load address of the region

Image$$region_name$$Base Execution address of the region

Image$$region_name$$Length Execution region length in bytes (multiple of 4)

Image$$region_name$$Limit Address of the byte beyond the end of the execution region

Image$$region_name$$RO$$Base Execution address of the RO output section in this region

Image$$region_name$$RO$$Length Length of the RO output section in bytes (multiple of 4)

Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section
in the execution region

Image$$region_name$$RW$$Base Execution address of the RW output section in this region
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-3

Accessing Image Symbols
If you are not using scatter-loading, the linker uses region_name values of:

• ER_RO, for read-only regions

• ER_RW, for read-write regions

• ER_ZI, for zero initialized regions.

For every execution region containing a ZI output section, the linker generates
additional symbols containing $$ZI$$.

Note
 • The ZI output sections of an image are not created statically, but are automatically

created dynamically at runtime. Therefore, there is no load address symbol for ZI
output sections.

• It is recommended that you use region-related symbols in preference to
section-related symbols.

Using scatter-loading description files

If you are using scatter-loading, the description file names all the execution regions in
the image, and provides their load and execution addresses.

If the description file defines both stack and heap, the linker also generates special stack
and heap symbols.

See Chapter 5 Using Scatter-loading Description Files for details.

Image$$region_name$$RW$$Length Length of the RW output section in bytes (multiple of 4)

Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output
section in the execution region

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes (multiple of 4)

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section
in the execution region

Table 4-1 Region-related linker symbols (continued)

Symbol Description
4-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
Placing the stack and heap above the ZI region

One common use of region-related symbols is to place a heap directly above the ZI
region. Example 4-1 shows how to create a retargeted version of
__user_initial_stackheap() in assembly language. The example assumes that you are
using the default one region memory model from the ARM C libraries. See the
description of __user_initial_stackheap() in the chapter describing the C and C++
libraries in RealView Compilation Tools v3.0 Compiler and Libraries Guide for more
information. See also the description of the example retarget.c in the chapter
describing handling processor exceptions in RealView Compilation Tools v3.0
Developer Guide for an example of how to do this in C.

Example 4-1 Placing the stack and heap above the ZI region

 EXPORT __user_initial_stackheap
 IMPORT ||Image$$region_name$$ZI$$Limit||
__user_initial_stackheap
 LDR r0, =||Image$$region_name$$ZI$$Limit||
 MOV pc, lr

4.2.2 Section-related symbols

The output section symbols shown in Table 4-2 are generated if you use command-line
options to create a simple image. A simple image has three output sections (RO, RW,
and ZI) that produce the three execution regions. For every input section present in the
image, the linker generates the input symbols shown in Table 4-2.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI,
then by name. So, for example, all .text sections are placed in one contiguous block. A
contiguous block of sections with the same attribute and name is known as a
consolidated section.

Table 4-2 Section-related linker symbols

Symbol Section type Description

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$RO$$Limit Output Address of the first byte beyond the end of the
RO output section.

Image$$RW$$Base Output Address of the start of the RW output section.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-5

Accessing Image Symbols
Note
 If your code refers to the input-section symbols, it is assumed that you expect all the
input sections in the image with the same name to be placed contiguously in the image
memory map. If your scatter-loading description places these input sections
non-contiguously, the linker diagnoses an error because the use of the base and limit
symbols over non-contiguous memory usually produces unpredictable and undesirable
effects.

If you are using a scatter-loading description file, the output section symbols in
Table 4-2 on page 4-5 are undefined. If your code accesses these symbols, you must
treat it as a weak reference.

The standard implementation of __user_initial_stackheap() uses the value in
Image$$ZI$$Limit. Therefore, if you are using a scatter-loading description file you
might have to re-implement __user_initial_stackheap() to set the heap and stack
boundaries. For more information, see Chapter 5 Using Scatter-loading Description
Files.

Image$$RW$$Limit Output Address of the byte beyond the end of the ZI
output section. (The choice of the end of the ZI
region rather than the end of the RW region is to
maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the ZI
output section.

SectionName$$Base Input Address of the start of the consolidated section
called SectionName.

SectionName$$Length Input Length of the consolidated section called
SectionName (in bytes).

SectionName$$Limit Input Address of the byte beyond the end of the
consolidated section called SectionName.

Table 4-2 Section-related linker symbols (continued)

Symbol Section type Description
4-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
4.2.3 Importing linker-defined symbols

There are two ways to import linker-defined symbols into your C or C++ source code.
Use either:

extern unsigned int symbol_name;

or:

extern void *symbol_name;

If you declare a symbol as an int, then you must use the address-of operator to obtain
the correct value as shown in Example 4-2.

Example 4-2 Importing linker-defined symbols

extern unsigned int Image$$ZI$$Limit
config.heap_base = (unsigned int) &Image$$ZI$$Limit
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-7

Accessing Image Symbols
4.3 Accessing symbols in another image

If you want one image to know the global symbol values of another image, you can use
a symbol definitions (symdefs) file.

This can be used, for example, if you have one image that always resides in ROM and
multiple images that are loaded into RAM. The images loaded into RAM can access
global functions and data from the image located in ROM.

This section describes:

• Creating a symdefs file

• Reading a symdefs file on page 4-9

• Symdefs file format on page 4-9.

4.3.1 Creating a symdefs file

Use the armlink option --symdefs filename to generate a symdefs file.

The linker produces a symdefs file during a successful final link stage. It is not produced
for partial linking or for unsuccessful final linking.

Note
 If filename does not exist, the file is created containing all the global symbols. If
filename exists, the existing contents of filename are used to select the symbols that are
output when the linker rewrites the file. If you do not want this behavior, ensure that any
existing symdefs file is deleted before the link step.

Outputting a subset of the global symbols

By default, all global symbols are written to the symdefs file.

When filename exists, the linker uses its contents to restrict the output to a subset of the
global symbols. To restrict the output symbols:

1. Specify --symdefs filename when you are doing a nearly-final link for image1. The
linker creates a symdefs file filename.

2. Open filename in a text editor, remove any symbol entries you do not want in the
final list, and save the file.

3. Specify --symdefs filename when you are doing a final link for image1.

You can edit filename at any time to add comments and link image1 again, for
example, to update the symbol definitions after one or more objects used to create
image1 have changed.
4-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
4.3.2 Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code
or data. To read a symdefs file, add it to your file list as you would add any object file.
The linker reads the file and adds the symbols and their values to the output symbol
table. The added symbols have ABSOLUTE and GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol
table. If a full link is being performed, the symbols are added to the image symbol table.

The linker generates error messages for invalid rows in the file. A row is invalid if:

• any of the columns are missing

• any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in exactly the same way as
symbols extracted from an object symbol table. The same restrictions apply regarding
multiple symbol definitions and ARM/Thumb synonyms.

4.3.3 Symdefs file format

The symdefs file contains symbols and their values. Unlike other object files, however,
it does not contain any code or data.

The file consists of an identification line, optional comments, and symbol information
as shown in Example 4-3.

Example 4-3 Symdefs file format

#<SYMDEFS># ARM Linker, RVCT3.0 [Build num]: Last Updated: Date
;value type name, this is an added comment
0x00008000 A __main
0x00008004 A __scatterload
0x000080e0 T main
0x0000814d T _main_arg
0x0000814d T __argv_alloc
0x00008199 T __rt_get_argv
...
 # This is also a comment, blank lines are ignored
...
0x0000a4fc D __stdin
0x0000a540 D __stdout
0x0000a584 D __stderr
0xfffffffd N __SIG_IGN
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-9

Accessing Image Symbols
Identifying string

If the first 11 characters in the text file are #<SYMDEFS>#, the linker recognizes the file as
a symdefs file.

The identifying string is followed by linker version information, and date and time of
the most recent update of the symdefs file. The version and update information are not
part of the identification string.

Comments

You can insert comments manually with a text editor. Comments have the following
properties:

• The first line must start with the special identifying comment #<SYMDEFS>#. This
comment is inserted by the linker when the file is produced and must not be
manually deleted.

• Any line where the first non-whitespace character is semicolon (;) or hash (#) is
a comment.

• A semicolon (;) or hash (#) after the first non-whitespace character does not start
a comment.

• Blank lines are ignored and can be inserted to improve readability.

Symbol information

The symbol information is provided by the address, type, and name of the symbol on a
single line:

Symbol value The linker writes the absolute address of the symbol in fixed
hexadecimal format, for example, 0x00008000. If you edit the file,
you can use either hexadecimal or decimal formats for the address
value.

Type flag A single letter to show symbol type:

A ARM code

T Thumb code

D Data

N Number.

Symbol name The symbol name.
4-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
4.4 Hiding and renaming global symbols

This section describes how to use a steering file to manage symbol names in output files.
For example, you can use steering files to protect intellectual property, or avoid
namespace clashes. A steering file is a text file that contains a set of commands to edit
the symbol tables of output objects.

Use the armlink command-line option --edit file-list to specify the steering file (see
the description of the --edit option in armlink command syntax on page 2-9). When you
are specifying more than one steering file, the syntax can be either of the following:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3

Do not include spaces between the comma and the filenames.

This section describes:

• Steering file format

• Steering file commands on page 4-12.

4.4.1 Steering file format

A steering file is a plain text file of the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace
character are interpreted as comments. A comment is treated as a blank line.

• Blank lines are ignored.

• Each nonblank, non-comment line is either a command, or part of a command that
is split over consecutive nonblank lines.

• Command lines that end with a comma (,) as the last non-whitespace character
are continued on the next nonblank line.

Each command line consists of a command, followed by one or more comma-separated
operand groups. Each operand group comprises either one or two operands, depending
on the command. The command is applied to each operand group in the command. The
following rules apply:

• Commands are case-insensitive, but are conventionally shown in uppercase.

• Operands are case-sensitive because they must be matched against case-sensitive
symbol names. You can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols
or STT_FILE, are not affected.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-11

Accessing Image Symbols
4.4.2 Steering file commands

Steering file commands enable you to:

• manage symbols in the symbol table

• control the copying of symbols from the static symbol table to the dynamic
symbol table

• store information about the libraries that a link unit depends on.

Note
 The steering file commands control only global symbols. Local symbols are not
affected by any command.

The following commands are supported:

• IMPORT on page 4-13

• EXPORT on page 4-14

• RENAME on page 4-15

• RESOLVE on page 4-16

• REQUIRE on page 4-18

• HIDE on page 4-19

• SHOW on page 4-20.
4-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
IMPORT

The IMPORT command specifies that a symbol is defined in a shared object at runtime.

Syntax

IMPORT [pattern {AS] replacement_pattern} [,[pattern AS] replacement_pattern] *

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that
matches zero or more undefined global symbols. If replacement_pattern
does not match any undefined global symbol, the linker ignores the
command. The operand can match only undefined global symbols.

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to
which the undefined global symbol is to be renamed. Wildcards must
have a corresponding wildcard in pattern. The characters matched by the
pattern wildcard are substituted for the replacement_pattern wildcard.

For example:

IMPORT my_func AS func1

imports and renames the undefined symbol my_func as func.

Usage

You cannot import a symbol that has been defined in the current shared object or
executable. Only one wildcard character (either * or ?) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as pattern if given,
otherwise as replacement_pattern), if a dynamic symbol table is present.

Note
 The IMPORT command only affects undefined global symbols. Symbols that have been
resolved by a shared library are implicitly imported into the dynamic symbol table. The
linker ignores any IMPORT directive that targets an implicitly imported symbol.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-13

Accessing Image Symbols
EXPORT

The EXPORT command specifies that a symbol can be accessed by other shared objects or
executables.

Syntax

EXPORT pattern {[AS replacement_pattern]} [,pattern [AS replacement_pattern]]*

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that
matches zero or more defined global symbols. If pattern does not match
any defined global symbol, the linker ignores the command. The operand
can match only defined global symbols.

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to
which the defined global symbol is to be renamed. Wildcards must have
a corresponding wildcard in replacement_pattern. The characters
matched by the replacement_pattern wildcard are substituted for the
pattern wildcard.

For example:

EXPORT my_func AS func1

renames and exports the defined symbol my_func as func1.

Usage

You cannot export a symbol to a name that already exists. Only one wildcard character
(either * or ?) is permitted in EXPORT.

The defined global symbol is included in the dynamic symbol table (as
replacement_pattern if given, otherwise as pattern), if a dynamic symbol table is
present.
4-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
RENAME

The RENAME command renames defined and undefined global symbol names.

Syntax

RENAME pattern {AS replacement_pattern} [,pattern AS replacement_pattern] *

where:

pattern Is a string, optionally including wildcard characters (either * or ?), that
matches zero or more global symbols. If pattern does not match any
global symbol, the linker ignores the command. The operand can match
both defined and undefined symbols.

replacement_pattern

Is a string, optionally including wildcard characters (either * or ?), to
which the symbol is to be renamed. Wildcards must have a corresponding
wildcard in pattern. The characters matched by the pattern wildcard are
substituted for the replacement_pattern wildcard.

For example, for a symbol named func1:

RENAME f* AS my_f*

renames func1 to my_func1.

Usage

You cannot rename a symbol to a symbol name that already exists, even if the target
symbol name is being renamed itself. Only one wildcard character (either * or ?) is
permitted in RENAME. For example, given an image containing the symbols func1, func2,
and func3:

EXPORT func1 AS func2 ;invalid, func2 exists
RENAME func3 AS b2
EXPORT func1 AS func3 ;invalid, func3 exists, even though it is renamed to b2

The linker processes the steering file before doing any replacements. You cannot,
therefore, use RENAME A AS B on line 1 and then RENAME B AS A on line 2.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-15

Accessing Image Symbols
RESOLVE

The RESOLVE command matches specific undefined references to a defined global
symbol.

Syntax

RESOLVE pattern {AS defined_pattern}

where:

pattern Is a string, optionally including wildcard characters, that must be
matched to a defined global symbol.

defined_pattern

Is a string, optionally including wildcard characters, that matches zero or
more defined global symbols. If defined_pattern does not match any
defined global symbol, the linker ignores the command. You cannot
match an undefined reference to an undefined symbol.

Usage

RESOLVE is an extension of the existing armlink --unresolved command-line option. The
difference is that --unresolved enables all undefined references to match one single
definition, whereas RESOLVE enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.

RESOLVE works when performing partial-linking and when linking normally.

For example, you might have two files file1.c and file2.c, as shown in Example 4-4
on page 4-17. Create an ed.txt file containing the line RESOLVE MP3* AS MyMP3*, and issue
the following command:

armlink file1.o file2.o --edit ed.txt --unresolved foobar

This command has the following effects:

• The references from file1.o (foo, MP3_Init() and MP3_Play()) are matched to the
definitions in file2.o (foobar, MyMP3_Init() and MyMP3_Play() respectively), as
specified by the steering file ed.txt.

• The RESOLVE command in ed.txt matches the MP3 functions and the --unresolved
option matches any other remaining references, in this case, foo to foobar.

• The output symbol table, whether it is an image or a partial object, does not
contain the symbols foo, MP3_Init or MP3_Play.
4-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
Example 4-4

file1.c

extern int foo;
extern void MP3_Init(void);
extern void MP3_Play(void);

int main(void)
{
 int x = foo + 1;
 MP3_Init();
 MP3_Play();
 return x;
}

file2.c:

int foobar;
void MyMP3_Init()
{
}
void MyMP3_Play()
{
}

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-17

Accessing Image Symbols
REQUIRE

The REQUIRE command creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags
specify dependencies to other shared objects used by the application, for example, a
shared library.

Syntax

REQUIRE pattern [,pattern] *

where:

pattern Is a string representing a filename. No wildcards are permitted.

Usage

The linker inserts a DT_NEEDED tag with the value of pattern into the dynamic array. This
tells the dynamic loader that the file it is currently loading requires pattern to be loaded.

Note
 DT_NEEDED tags inserted as a result of a REQUIRE command are added after DT_NEEDED tags
generated from shared objects or DLLs placed on the command line.
4-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
HIDE

The HIDE command makes defined global symbols in the symbol table anonymous.

Syntax

HIDE pattern [,pattern] *

where:

pattern Is a string, optionally including wildcard characters, that matches zero or
more defined global symbols. If pattern does not match any defined
global symbol, the linker ignores the command. You cannot hide
undefined symbols.

Usage

HIDE and SHOW can be used to make certain global symbols anonymous in an output
image or partially linked object. Hiding symbols in an object file or library can be useful
as a means of protecting intellectual property, as shown in Example 4-5. This example
produces a partially linked object with all global symbols hidden, except those
beginning with os_.

Example 4-5

steer.txt

HIDE * ; Hides all global symbols
SHOW os_* ; Shows all symbols beginning with ’os_’

Link this example with the command:

armlink --partial input_object.o --edit steer.txt -o partial_object.o

This example can be linked with other objects, provided they do not contain references
to the hidden symbols. When symbols are hidden in the output object, SHOW commands
in subsequent link steps have no effect on them. The hidden references are removed
from the output symbol table.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-19

Accessing Image Symbols
SHOW

The SHOW command makes global symbols visible that were previously hidden with the
HIDE command. This command is useful if you want to unhide a specific symbol that has
been hidden using a HIDE command with a wildcard.

Syntax

SHOW pattern [,pattern] *

where:

pattern Is a string, optionally including wildcard characters, that matches zero or
more global symbols. If pattern does not match any global symbol, the
linker ignores the command.

Usage

The usage of SHOW is closely related to that of HIDE. See HIDE on page 4-19 for further
information.
4-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
4.5 Using $Super$$ and $Sub$$ to override symbol definitions

There are situations where an existing symbol cannot be modified because, for example,
it is located in an external library or in ROM code.

Use the $Super$$ and $Sub$$ patterns to patch an existing symbol.

For example, to patch the definition of a function foo(), use $Super$$foo() and
$Sub$$foo() as follows:

$Super$$foo Identifies the original unpatched function foo(). Use this to call the
original function directly.

$Sub$$foo Identifies the new function that will be called instead of the original
function foo(). Use this to add processing before or after the original
function.

Example 4-6 shows the legacy function foo() modified to result in a call to ExtraFunc()
and a call to foo(). For more details, see ARM ELF specification, aaelf.pdf, in
install_directory\Documentation\Specifications\....

Example 4-6

extern void ExtraFunc(void);
extern void $Super$$foo(void):

/* this function will be called instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
}

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-21

Accessing Image Symbols
4.6 Symbol versioning

The linker conforms to the Base Platform ABI for the ARM Architecture [BPABI] and
supports GNU-extended symbol versioning model.

Symbol versioning records extra information about symbols imported from, and
exported by, a dynamic shared object. The dynamic loader uses this extra information
to ensure that all the symbols required by an image are available at load time.

Symbol versioning enables shared object creators to produce new versions of symbols
for use by all new clients, whilst maintaining compatibility with clients linked against
old versions of the shared object.

This section describes:

• Version

• Default version

• Creating versioned symbols.

4.6.1 Version

Symbol versioning adds the concept of a version to the dynamic symbol table. A version
is a name that symbols are associated with. When a dynamic loader tries to resolve a
symbol reference associated with a version name, it can only match against a symbol
definition with the same version name.

Note
 A version might be associated with previous version names to show the revision history
of the shared object.

4.6.2 Default version

Whilst a shared object might have multiple versions of the same symbol, a client of the
shared object can only bind against the latest version.

This is called the default version of the symbol.

4.6.3 Creating versioned symbols

By default, the linker does not create versioned symbols for a shared object. There are
three ways to control versioned symbols:

• Embedded symbols on page 4-23

• Steering file on page 4-23

• Filename on page 4-25.
4-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
Embedded symbols

You can add specially named symbols to input objects that cause the linker to create
symbol versions. These symbols are of the form:

• name@version for a non default version of a symbol

• name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want
to export. The symbol name is broken into two parts, a symbol name name and a version
definition ver. The name is added to the dynamic symbol table and becomes part of the
interface to the shared object. ver creates a version called ver if it does not already exist
and associates name with the version called ver.

For full details on how to create version symbols, see the chapter describing:

• how to use the ARM compiler in RealView Compilation Tools v3.0 Compiler and
Libraries Guide

• how to write ARM and Thumb assembly language in RealView Compilation Tools
v3.0 Assembler Guide.

Example 4-7 places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object
symbol table:

Example 4-7 Creating versioned symbols, embedded symbols

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The linker reads these symbols and creates version definitions ver1 and ver2. The
symbol foo is associated with a non default version of ver1, and with a default version
of ver2. The symbol bar is associated with a default version of ver1.

There is no way to create associations between versions with this method.

Steering file

You can embed the commands to produce symbol versions in a script file that is
specified by the command-line option --symver_script file. Using this option
automatically enables symbol versioning.

The script file supports the same syntax as the GNU ld and Sun Solaris linkers.

Using a script file enables you to associate a version with an earlier version.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-23

Accessing Image Symbols
A steering file can be provided in addition to the embedded symbol method. If you
choose to do this then your script file must match your embedded symbols and use the
Backus Naur Format (BNF) format:

version_definition ::=

 version_name "{" symbol_association* "}" [depend_version] ";"

The version_name is a string containing the name of the version. depend_version is a
string containing the name of a version that this version_name depends on. This version
must have already been defined in the script file. Version names are not significant, but
it helps to choose readable names, for example:

symbol_association ::=

 "local:" | "global:" | symbol_name ";"

where:

• "local:" indicates that all subsequent symbol_names in this version definition are
local to the shared object and are not versioned.

• "global:" indicates that all subsequent symbol_names belong to this version
definition.

There is an implicit "global:" at the start of every version definition.

• symbol_name is the name of a global symbol in the static symbol table.

Example 4-8 shows a steering file that corresponds to the embedded symbols example
(Example 4-7 on page 4-23) with the addition of dependency information so that ver2
depends on ver1:

Example 4-8 Creating versioned symbols, steering file

ver1 {
global:

foo; bar;
local:

*;
};

ver2 {
global:

foo;
} ver1;
4-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Accessing Image Symbols
Errors & warnings

If you use a script file then the version definitions and symbols associated with them
must match. The linker warns you if it detects any mismatch.

Filename

Use the command-line option --symver_soname to turn on implicit symbol versioning.
Use this option if you need to version your symbols in order to force static binding, but
where you do not care about the version number that they are given.

Where a symbol has no defined version, the linker uses the SONAME of the file being
linked.

This option cannot be combined with embedded symbols or a script file.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-25

Accessing Image Symbols
4-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 5
Using Scatter-loading Description Files

This chapter describes how you use the ARM® linker, armlink, with scatter-loading
description files to create complex images. It contains the following sections:

• About scatter-loading on page 5-2

• Formal syntax of the scatter-loading description file on page 5-9

• Examples of specifying region and section addresses on page 5-26

• Equivalent scatter-loading descriptions for simple images on page 5-39.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-1

Using Scatter-loading Description Files
5.1 About scatter-loading

An image is made up of regions and output sections. Every region in the image can have
a different load and execution address (see Specifying the image structure on page 3-2).

To construct the memory map of an image, the linker must have:

• grouping information describing how input sections are grouped into regions

• placement information describing the addresses where image regions are to be
located in the memory maps.

The scatter-loading mechanism enables you to specify the memory map of an image to
the linker using a description in a text file. Scatter-loading gives you complete control
over the grouping and placement of image components. Scatter-loading can be used for
simple images, but it is generally only used for images that have a complex memory
map, that is, where multiple regions are scattered in the memory map at load and
execution time.

This section describes:

• Symbols defined for scatter-loading

• Specifying stack and heap on page 5-3

• When to use scatter-loading on page 5-4

• Scatter-loading command-line option on page 5-5

• Images with a simple memory map on page 5-5

• Images with a complex memory map on page 5-7.

5.1.1 Symbols defined for scatter-loading

When the linker creates an image using a scatter-loading description file, it creates some
region-related symbols. These are described in Region-related symbols on page 4-3.
The linker creates these special symbols only if your code references them.

Undefined symbols

By default, the following symbols are not defined when a scatter-loading description
file is used:

• Image$$RW$$Base

• Image$$RW$$Limit

• Image$$RO$$Base

• Image$$RO$$Limit

• Image$$ZI$$Base

• Image$$ZI$$Limit.
5-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
The default implementation of __user_initial_stackheap() uses the value of
Image$$ZI$$Limit. Because this symbol is not defined by default, you must
re-implement __user_initial_stackheap() and define a value for the start of the heap
region and the top of the stack region. However, you can use an alternative
implementation provided by the C library instead to avoid re-implementing
__user_initial_stackheap() yourself (see Specifying stack and heap).

Note
 If you re-implement __user_initial_stackheap(), this overrides all library
implementations.

If you use a scatter-loading description file but do not specify any special region names
and do not re-implement __user_initial_stackheap(), the library generates an error
message:

Error: L6915E: Library reports error: scatter-load file declares no heap or stac
k regions and __user_initial_stackheap is not defined.

For more information see the chapter describing:

• the C and C++ libraries in RealView Compilation Tools v3.0 Compiler and
Libraries Guide (for details on library memory models)

• how to develop embedded software in RealView Compilation Tools v3.0
Developer Guide.

5.1.2 Specifying stack and heap

The ARM C library provides alternative implementations of
__user_initial_stackheap(), and can select the correct one for you automatically from
information given in a scatter-loading description file.

To select the two region memory model, define two special execution regions in your
scatter-loading description file named ARM_LIB_HEAP and ARM_LIB_STACK. Both regions
have the EMPTY attribute. This causes the library to select the non-default implementation
of __user_initial_stackheap() that uses the value of the symbols:

• Image$$ARM_LIB_STACK$$Base

• Image$$ARM_LIB_STACK$$ZI$$Limit

• Image$$ARM_LIB_HEAP$$Base

• Image$$ARM_LIB_HEAP$$ZI$$Limit.

Only one ARM_LIB_STACK or ARM_LIB_HEAP region can be specified, and you must allocate
a size, for example:
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-3

Using Scatter-loading Description Files
ARM_LIB_HEAP 0x20100000 EMPTY 0x100000-0x8000 ; Heap starts at 1MB
; and grows upwards

ARM_LIB_STACK 0x20200000 EMPTY -0x8000 ; Stack space starts at the end
; of the 2MB of RAM
; And grows downwards for 32KB

You can force __user_initial_stackheap() to use a combined stack/heap region by
defining a single execution region named ARM_LIB_STACKHEAP, with the EMPTY attribute.
This causes __user_initial_stackheap() to use the value of the symbols
Image$$ARM_LIB_HEAP$$Base and Image$$ARM_LIB_STACK$$ZI$$Limit.

Note
 If you re-implement __user_initial_stackheap(), this overrides all library
implementations.

5.1.3 When to use scatter-loading

The command-line options to the linker give some control over the placement of data
and code, but complete control of placement requires more detailed instructions than
can be entered on the command line. Situations where scatter-loading descriptions are
necessary (or very useful) are:

Complex memory maps

Code and data that must be placed into many distinct areas of memory
require detailed instructions on which section goes into which memory
space.

Different types of memory

Many systems contain a variety of physical memory devices such as
flash, ROM, SDRAM, and fast SRAM. A scatter-loading description can
match the code and data with the most appropriate type of memory. For
example, interrupt code might be placed into fast SRAM to improve
interrupt response time but infrequently used configuration information
might be placed into slower flash memory.

Memory-mapped I/O

The scatter-loading description can place a data section at a precise
address in the memory map so that memory mapped peripherals can be
accessed.

Functions at a constant location

A function can be placed at the same location in memory even though the
surrounding application has been modified and recompiled.
5-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Using symbols to identify the heap and stack

Symbols can be defined for the heap and stack location when the
application is linked.

Scatter-loading is, therefore, almost always required for implementing embedded
systems because these use ROM, RAM, and memory-mapped I/O.

Note
 If you are compiling for the Cortex-M3 processor, this has a fixed memory map and so
you can use a scatter-loading description file to define both stack and heap. An example
of this is supplied as Cortex-M3.scat in the main examples directory
install_directory\RVDS\Examples.

5.1.4 Scatter-loading command-line option

The armlink command-line option for using scatter-loading is:

--scatter description_file

This instructs the linker to construct the image memory map as described in
description_file. The format of the description file is given in Formal syntax of the
scatter-loading description file on page 5-9.

For additional information on scatter-loading description files, see also:

• Examples of specifying region and section addresses on page 5-26.

• Equivalent scatter-loading descriptions for simple images on page 5-39.

• The chapter describing how to develop embedded software in RealView
Compilation Tools v3.0 Developer Guide.

5.1.5 Images with a simple memory map

The scatter-loading description in Figure 5-1 on page 5-6 loads the segments from the
object file into memory corresponding to the map shown in Figure 5-2 on page 5-6. The
maximum size specifications for the regions are optional but, if they are included, these
enable the linker to check that a region has not overflowed its boundary.

In this example, the same result can be achieved by specifying --ro-base 0x0 and
--rw-base 0x10000 as command-line options to the linker.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-5

Using Scatter-loading Description Files
Figure 5-1 Simple memory map in a scatter-loading description file

Figure 5-2 Simple scatter-loaded memory map

	
���

���������������
�

���������

���������������
�����
������������

�
�����

����
�����������������
�����
������������
������
�����
�

)�����*
"���� �����

)�����*�*� �

����� �����

$
�
���� ����*�
"���� �����

$
�
���� ����*�
����� �����

+"�����""���������
�����
����
��
,��
����� �����

����������#���*�
,��
����� �����

$
�
��*�������
����� �����

+"�����""�������������
�
��
��
,�������� �����

����������#���*
"���� �����

����������#���*

,�������� �����

)�����*�������
����� �����

������

������

������
���

������
���

������
���

�����
����������������� �������

$���

���

������
���

������
����� ��*�""

�������

'��!�-������� ���
5-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.1.6 Images with a complex memory map

The scatter-loading description in Figure 5-3 loads the segments from the program1.o
and program2.o files into memory corresponding to the map shown in Figure 5-4 on
page 5-8.

Unlike the simple memory map shown in Figure 5-2 on page 5-6, this application
cannot be specified to the linker using only the basic command-line options.

Caution
 The scatter-loading description in Figure 5-3 specifies the location for code and data for
program1.o and program2.o only. If you link an additional module, for example,
program3.o, and use this description file, the location of the code and data for program3.o
is not specified.

Unless you want to be very rigorous in the placement of code and data, it is advisable
to use the * or .ANY specifier to place leftover code and data (see Placing regions at fixed
addresses on page 5-29).

Figure 5-3 Complex memory map in a scatter-loading description file

���������	�
�

�
����
�
������	�
�

�����
����������� �!"	#�������
�����

���������
�	�

�
��

�����
����������� �!"	#�����������
�����
�

���������$�
�%

�
����
�
������$�
�%

�����
����������� �!"$#�������
�����

����&����
��

�
��

�����
����������� �!"$#�����������
�����
�

$
�
���� ����*� �*� �
�"���� �����

$
�
���� ����*� �*� �
������ �����

+"�����""���������������
��* ��
��� �!"	#����
��
,�������� �����

����������#���*�
,�������� �����

+"�����""�������������
��* ��
��� �!"	#����
��
,�������� �����

$
�
���� ����*� ��������"���� �����

+"�����""���������������
��* ��
��� �!"$#����
��
,�������� �����

+"�����""�������������
��* ��
��� �!"$#�����
��
,�������� �����

$
�
���� ����*� �
,�������� �����
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-7

Using Scatter-loading Description Files
Figure 5-4 Complex scatter-loaded memory map

�������

�������

������
���.

������
���.	

������
���.	

������
���.

������
���.	

������
���.

������
���.

�������

������
���.

������
���.	

������
���.	

�����
����������������� �������

/���

$���

���

�� ��*�""

������

������

�������

���	
5-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.2 Formal syntax of the scatter-loading description file

A scatter-loading description file is a text file that describes the memory map of the
target embedded product to the linker. The file extension for the description file is not
significant if you are using the linker from the command line. The description file
enables you to specify the:

• load address and maximum size of each load region

• attributes of each load region

• execution regions derived from each load region

• execution address and maximum size of each execution region

• input sections for each execution region.

The description file format reflects the hierarchy of load regions, execution regions, and
input sections.

Note
 How input sections are assigned to regions is completely independent of the order in
which selection patterns are written in the scatter-loading description file. The best
match between selection patterns and either file/section names or section attributes
wins. See Resolving multiple matches on page 5-22.

This section describes:

• BNF notation and syntax on page 5-10

• Overview of the syntax of scatter-loading description files on page 5-10

• Load region description on page 5-12

• Execution region description on page 5-15

• Input section description on page 5-18

• Resolving multiple matches on page 5-22

• Resolving path names on page 5-25.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-9

Using Scatter-loading Description Files
5.2.1 BNF notation and syntax

Table 5-1 summarizes the Backus Naur Format (BNF) symbols that are used to describe
a formal language.

5.2.2 Overview of the syntax of scatter-loading description files

Note
 In the BNF definitions in this section, line returns and spaces have been added to
improve readability. They are not required in the scatter-loading definition and are
ignored if present in the file.

A scatter_description is defined as one or more load_region_description patterns:

Scatter_description ::=

 load_region_description+

Table 5-1 BNF syntax

Symbol Description

" Quotation marks are used to indicate that a character that is normally part of
the BNF syntax is used as a literal character in the definition. The definition
B"+"C, for example, can only be replaced by the pattern B+C. The definition B+C
can be replaced by, for example, patterns BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is equivalent to either
B+ or C. The ::= notation is used to define a higher level construct in terms of
its components. Each component might also have a ::= definition that defines
it in terms of even simpler components. For example, A::= B and B::= C | D
means that the definition A is equivalent to the patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the definition A can
be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A::= B+ means that
the definition A can be expanded into B, BB, or BBB.

A* Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together. This is particularly useful when the |
operator is used or when a complex pattern is repeated. For example, A::=(B
C)+ (D | E) means that the definition A can be expanded into any of BCD, BCE,
BCBCD, BCBCE, BCBCBCD, or BCBCBCE.
5-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
A load_region_description is defined as a load region name, optionally followed by
attributes or size specifiers, and one or more execution region descriptions:

load_region_description ::=

 load_region_name (base_address | ("+" offset)) [attributes] [max_size]
 "{"
 execution_region_description+
 "}"

An execution_region_description is defined as an execution region name, a base
address specification, optionally followed by attributes or size specifiers, and one or
more input section descriptions:

execution_region_description ::=

 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | "–"
length]
 "{"
 input_section_description*
 "}"

An input_section_description is defined as a source module selector pattern optionally
followed by input section selectors:

input_section_selector ::=

 ("+" input_section_attr | input_section_pattern | input_symbol_pattern)

input_section_description ::=

 module_select_pattern
 ["("
 ("+" input_section_attr | input_section_pattern | input_symbol_pattern)
 ("," "+" input_section_attr | "," input_section_pattern | ","
input_symbol_pattern)*
 ")"]

Figure 5-5 on page 5-12 shows the contents and organization of a typical scatter-loading
description file.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-11

Using Scatter-loading Description Files
Figure 5-5 Components of a scatter-loading file definition

5.2.3 Load region description

A load region has:

• a name (used by the linker to identify different load regions)

• a base address (the start address for the code and data in the load view)

• attributes (optional)

• a maximum size (optional)

• a list of execution regions (used to identify the type and location of modules in the
execution view).

����� ���������� ��
���

�����
���� ���������� ��
���

����
����
�������� ��
���

����"����"��
� ���

� � ����
����
�����

 �&�
��

����� ���������� ��
���

�����
���� ���������� ��
���

����
����
�������� ��
���

�����
���� ���������� ��
���

����
����
�������� ��
���

�����
���� ���������� ��
���

����
����
�������� ��
���

���������	�
�

�

����
�
������	�
�

�����
����������� �!"	#�������
�����

���������
�	�

�
��

�����
����������� �!"	#�����������
�����
�

���������$�
�%

�

����
�
������$�
�%

�����
����������� �!"$#�������
�����

����&����
��

�
��

�����
����������� �!"$#�����������
�����
�

$��

� ����� ��
���
5-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Figure 5-6 shows the components of a typical load region description.

Figure 5-6 Components of a load region description

The syntax, in BNF, is:

load_region_description ::=

load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]
 "{"
 execution_region_description+
 "}"

where:

load_region_name The linker generates a Load$$exec_region_name$$base symbol for
each execution region. This symbol holds the load address of the
execution region (see Execution region description on page 5-15).
The load_region_name, however, is used only to identify each
region, that is, it is not used to generate Load$$region_name
symbols.

Note
 An image created for use by a debugger requires a unique base

address for each region because the debugger must load regions at
their load addresses. Overlapping load region addresses result in
part of the image being overwritten.

��"���� ���������� ��
�������
����
����� ��� �������
���� �����
���� ��
����

���������	�
�

�

����
�
������	�
�

�����
����������� �!"	#�������
�����

���������
�	�

�
��

�����
����������� �!"	#�����������
�����
�

����� ���������� ��
���
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-13

Using Scatter-loading Description Files
A loader or operating system, however, can correctly load
overlapping position-independent regions. One or more of the
position-independent regions is automatically moved to a
different address.

base_address Specifies the address where objects in the region are to be linked.
base_address must be word-aligned.

+offset Describes a base address that is offset bytes beyond the end of the
preceding load region. The value of offset must be zero modulo
four. If this is the first load region, then +offset means that the
base address begins offset bytes after zero.

attribute_list Specifies the properties of the load region contents:

ABSOLUTE Absolute address.

PI Position-independent.

RELOC Relocatable.

OVERLAY Overlaid.

NOCOMPRESS Should not be compressed.

You can specify only one of the attributes ABSOLUTE, PI, RELOC, and
OVERLAY. The default load region attribute is ABSOLUTE.

Load regions that have one of PI, RELOC, or OVERLAY attributes can
have overlapping address ranges. The linker faults overlapping
address ranges for ABSOLUTE load regions.

The OVERLAY keyword enables you to have multiple execution
regions at the same address. ARM does not provide an overlay
mechanism in RVCT. Therefore, to use multiple execution regions
at the same address, you must provide your own overlay manager.

RW data compression is enabled by default. The NOCOMPRESS
keyword enables you to specify that a load region should not be
compressed in the final image.

max_size Specifies the maximum size of the load region. If the optional
max_size value is specified, armlink generates an error if the region
has more than max_size bytes allocated to it.

execution_region_description

Specifies the execution region name, address, and contents. See
Execution region description on page 5-15.
5-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.2.4 Execution region description

An execution region has:

• a name

• a base address (either absolute or relative)

• an optional maximum size specification

• attributes that specify the properties of the execution region

• one or more input section descriptions (the modules placed into this execution
region).

Figure 5-7 shows the components of a typical execution region description.

Figure 5-7 Components of an execution region description

The syntax, in BNF, is:

execution_region_description ::=

 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | "–"
length]
 "{"
 input_section_description*
 "}"

where:

exec_region_name Names the execution region.

base_address Specifies the address where objects in the region are to be linked.
base_address must be word-aligned.

+offset Describes a base address that is offset bytes beyond the end of the
preceding execution region. The value of offset must be zero
modulo four.

If there is no preceding execution region (that is, if this is the first
execution region in the load region) then +offset means that the
base address begins offset bytes after the base of the containing
load region.

��������
���� ���������� ��
�������
����
����� ��� ������
����
�������� ��
����

���
�
������	�
�

�����
����������� �!"	#�������
�����

�����
���� ���������� ��
���
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-15

Using Scatter-loading Description Files
If the +offset form is used and the encompassing load region has
the RELOC attribute, the execution region inherits the RELOC
attribute. However, if a fixed base_address is used, future
occurrences of offset do not inherit the RELOC attribute.

attribute_list This specifies the properties of the execution region contents:

ABSOLUTE Absolute address. The execution address of
the region is specified by the base
designator.

PI Position-independent.

OVERLAY Overlaid.

FIXED Fixed address. Both the load address and
execution address of the region is specified
by the base designator (the region is a root
region). See Creating root execution regions
on page 5-27. The base designator must be
either an absolute base address, or an offset
of +0.

EMPTY Reserves an empty block of memory of a
given length in the execution region,
typically used by a heap or stack. See
Reserving an empty region on page 5-34 for
further information.

PADVALUE Defines the value of any padding. If you
specify PADVALUE, you must give a value, for
example:
EXEC 0x10000 PADVALUE 0xffffffff EMPTY
ZEROPAD 0x2000

This creates a region of size 0x2000 full of
0xffffffff.

PADVALUE must be a word in size. PADVALUE
attributes on load regions are ignored.

ZEROPAD Zero initialized sections are written in the
ELF file as a block of zeros and, therefore,
do not have to be zero-filled at runtime.

In certain situations, for example,
simulation, this is preferable to spending a
long time in a zeroing loop.

NOCOMPRESS Should not be compressed.

UNINIT Must not be zero initialized.
5-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
max_size An optional number that instructs the linker to generate an error if
the region has more than max_size bytes allocated to it.

–length If the length is given as a negative value, the base_address is taken
to be the end address of the region. Typically used with EMPTY to
represent a stack that grows down in memory. See Reserving an
empty region on page 5-34 for more information.

input_section_description

Specifies the content of the input sections. See Input section
description on page 5-18.

When specifying the properties of the execution region:

• You can specify only one of the attributes PI, OVERLAY, FIXED, and ABSOLUTE. Unless
one of the attributes PI, FIXED, or OVERLAY is specified, ABSOLUTE is the default
attribute of the execution region.

• Execution regions that use the +offset form of the base designator either inherit
the attributes of the preceding execution region, (or of the containing load region
if this is the first execution region in the load region), or have the ABSOLUTE
attribute.

• Only root execution regions can be zero initialized using the ZEROPAD attribute.
Using the ZEROPAD attribute with a non-root execution region generates a warning
and the attribute is ignored.

• The attribute RELOC cannot be explicitly specified for execution regions. The
region can only be RELOC by inheriting the attribute from a load region.

• It is not possible for an execution region that uses the +offset form of the base
designator to have its own attributes (other than the ABSOLUTE attribute that
overrides inheritance). Use the combination +0 ABSOLUTE to set a region to
ABSOLUTE without changing the start location.

• Execution regions that are specified as PI or OVERLAY (or that have inherited the
RELOC attribute) are permitted to have overlapping address ranges. The linker
faults overlapping address ranges for ABSOLUTE and FIXED execution regions.

• RW data compression is enabled by default. The NOCOMPRESS keyword enables you
to specify that an execution region must not be compressed in the final image.

• UNINIT specifies that any ZI output section in the execution region must not be
zero initialized. Use this to create execution regions containing uninitialized data
or memory-mapped I/O.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-17

Using Scatter-loading Description Files
5.2.5 Input section description

An input section description is a pattern that identifies input sections by:

• Module name (object filename, library member name, or library filename). The
module name can use wildcard characters.

• Input section name, or input section attributes such as READ-ONLY, or CODE.

• Symbol name.

Figure 5-8 shows the components of a typical input section description.

Figure 5-8 Components of an input section description

The syntax, in BNF, is:

input_section_description ::=

 module_select_pattern
 ["("
 ("+" input_section_attr | input_section_pattern | input_symbol_pattern)
 ("," "+" input_section_attr | "," input_section_pattern | ","
 input_symbol_pattern)*
 ")"]

where:

module_select_pattern

A pattern constructed from literal text. The wildcard character * matches
zero or more characters and ? matches any single character.

Matching is case-insensitive, even on hosts with case-sensitive file
naming.

Use *.o to match all objects. Use * to match all object files and libraries.

An input section matches a module selector pattern when
module_select_pattern matches one of the following:

• The name of the object file containing the section.

• The name of the library member (without leading path name).

��� �!"$#�������

����
����
�����

 �&�
�����"����"��
���

� �

����
����
�������� ��
���
5-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
• The full name of the library (including path name) the section was
extracted from. If the names contain spaces, use wildcards to
simplify searching. For example, use *libname.lib to match
C:\lib dir\libname.lib.

The special module selector pattern .ANY enables you to assign input
sections to execution regions without considering their parent module.
Use .ANY to fill up the execution regions with do not care assignments.

Note
 • Only input sections that match both module_select_pattern and at

least one input_section_attr or input_section_pattern are
included in the execution region.

If you omit (+ input_section_attr) and (input_section_pattern),
the default is +RO.

• Do not rely on input section names generated by the compiler, or
used by ARM library code. These can change between
compilations if, for example, different compiler options are used.
In addition, section naming conventions used by the compiler are
not guaranteed to remain constant between releases.

input_section_attr

An attribute selector matched against the input section attributes. Each
input_section_attr follows a +.

If you are specifying a pattern to match the input section name, the name
must be preceded by a +. You can omit any comma immediately followed
by a +.

The selectors are not case-sensitive. The following selectors are
recognized:

• RO-CODE

• RO-DATA

• RO, selects both RO-CODE and RO-DATA

• RW-DATA

• RW-CODE

• RW, selects both RW-CODE and RW-DATA

• ZI

• ENTRY, that is, a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE

• CONST for RO-DATA
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-19

Using Scatter-loading Description Files
• TEXT for RO

• DATA for RW

• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST

• LAST.

FIRST and LAST can be used to mark the first and last sections in an
execution region if the placement order is important (for example, if a
specific input section must be first in the region and an input section
containing a checksum must be last). The first occurrence of FIRST or LAST
as an input_section_attr terminates the list.

The special module selector pattern .ANY enables you to assign input
sections to execution regions without considering their parent module.
Use one or more .ANY patterns to fill up the execution regions with do not
care assignments. In most cases, using a single .ANY is equivalent to using
the * module selector.

You cannot have two * selectors in a scatter-loading description file. You
can, however, use two modified selectors, for example *A and *B, and you
can use a .ANY selector together with a * module selector. The * module
selector has higher precedence than .ANY. If the portion of the file
containing the * selector is removed, the .ANY selector then becomes
active.

The input section descriptions having the .ANY module selector pattern are
resolved after all other (non-.ANY) input section descriptions have been
resolved. All sections not assigned to an execution region are assigned to
a .ANY region.

If more than one .ANY pattern is present, the linker takes the section with
the largest size not assigned to an execution region and assigns the section
to the most specific .ANY execution region that has enough free space.
When armlink makes this choice, .ANY(.text) is judged to be more
specific than .ANY(+RO).

If several execution regions are equally specific then the section is
assigned to the execution region with the most available remaining space.

For example:

• If you have two equally specific executions regions where one has
a size limit of 0x2000 and the other has no limit, then all the sections
are assigned to the second unbounded .ANY region.
5-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
• If you have two equally specific executions regions where one has
a size limit of 0x2000 and the other has a size limit of 0x3000, then
the first sections to be placed are assigned to the second .ANY region
of size limit 0x3000 until the remaining size of the second .ANY is
reduced to 0x2000. From this point, sections are assigned alternately
between both .ANY execution regions.

input_section_pattern

A pattern that is matched, without case sensitivity, against the input
section name. It is constructed from literal text. The wildcard character *
matches 0 or more characters, and ? matches any single character.

Note
 If you use more than one input_section_pattern, ensure that there are no

duplicate patterns in different execution regions in order to avoid
ambiguity errors.

input_symbol_pattern

You can select the input section by the name of a global symbol that the
section defines. This enables you to choose individual sections with the
same name from partially linked objects.

The :gdef: prefix distinguishes a global symbol pattern from a section
pattern. For example, use :gdef:mysym to select the section that defines
mysym. The following example shows a description file in which ExecReg1
contains the section that defines global symbol mysym1, and the section
that contains global symbol mysym2:

LoadRegion 0x8000
{
 ExecReg1 +0
 {
 *(:gdef:mysym1)
 *(:gdef:mysym2)
 }
 .

.
}

Note
 If you use more than one input_symbol_pattern, ensure that there are no

duplicate patterns in different execution regions in order to avoid
ambiguity errors.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-21

Using Scatter-loading Description Files
5.2.6 Resolving multiple matches

If a section matches more than one execution region, matches are resolved as described
below. However, if a unique match cannot be found, the linker faults the scatter-loading
description. Each section is selected by a module_select_pattern and an
input_section_selector.

Examples of module_select_pattern specifications are:

• * matches any module or library

• *.o matches any object module

• math.o matches the math.o module

• *armlib* matches all ARM-supplied C libraries

• *math.lib matches any library path ending with math.lib (for example,
C:\apps\lib\math\satmath.lib).

Examples of input_section_selector specifications are:

• +RO is an input section attribute that matches all RO code and all RO data

• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and
all ZI data

• BLOCK_42 is an input section pattern that matches the assembly file area named
BLOCK_42.

Note
 The compiler produces areas that can be identified by input section patterns such

as .text, .data, .constdata, and .bss. These names, however, might change in the
future and you should avoid using them.

If you want to match a specific function or extern data from a C or C++ file, either:

— compile the function or data in a separate module and match the module
object name

— use #pragma arm section or __attribute__ to specify the name of the section
containing the code or data of interest. See the chapter describing the ARM
compiler reference in RealView Compilation Tools v3.0 Compiler and
Libraries Guide for more information on pragmas.

The following variables are used to describe multiple matches:

• m1 and m2 represent module selector patterns

• s1 and s2 represent input section selectors.
5-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
In the case of multiple matches, the linker determines the region to assign the input
section to on the basis of the module_select_pattern and input_section_selector pair
that is the most specific.

For example, if input section A matches m1,s1 for execution region R1, and A matches
m2,s2 for execution region R2, the linker:

• assigns A to R1 if m1,s1 is more specific than m2,s2

• assigns A to R2 if m2,s2 is more specific than m1,s1

• diagnoses the scatter-loading description as faulty if m1,s1 is not more specific
than m2,s2 and m2,s2 is not more specific than m1,s1.

The sequence armlink uses to determine the most specific module_select_pattern,
input_section_selector pair is as follows:

1. For the module selector patterns:

m1 is more specific than m2 if the text string m1 matches pattern m2 and the text
string m2 does not match pattern m1.

2. For the input section selectors:

• If s1 and s2 are both patterns matching section names, the same definition
as for module selector patterns is used.

• If one of s1, s2 matches the input section name and the other matches the
input section attributes, s1 and s2 are unordered and the description is
diagnosed as faulty.

• If both s1 and s2 match input section attributes, the determination of
whether s1 is more specific than s2 is defined by the relationships below:

— ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE or RW-DATA

— RO-CODE is more specific than RO

— RO-DATA is more specific than RO

— RW-CODE is more specific than RW

— RW-DATA is more specific than RW

— There are no other members of the (s1 more specific than s2)
relationship between section attributes.

3. For the module_select_pattern, input_section_selector pair, m1,s1 is more
specific than m2,s2 only if any of the following are true:

• s1 is a literal input section name (that is, it contains no pattern characters)
and s2 matches input section attributes other than +ENTRY

• m1 is more specific than m2

• s1 is more specific than s2.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-23

Using Scatter-loading Description Files
This matching strategy has the following consequences:

• Descriptions do not depend on the order they are written in the file.

• Generally, the more specific the description of an object, the more specific the
description of the input sections it contains.

• The input_section_selectors are not examined unless:

— Object selection is inconclusive.

— One selector fully names an input section and the other selects by attribute.
In this case, the explicit input section name is more specific than any
attribute, other than ENTRY, that selects exactly one input section from one
object. This is true even if the object selector associated with the input
section name is less specific than that of the attribute.

Example 5-1 shows multiple execution regions and pattern matching.

Example 5-1 Multiple execution regions and pattern matching

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO-CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO-DATA) ; The RO data goes here
 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

5-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.2.7 Resolving path names

The linker matches wildcard patterns in scatter files against any combination of forward
slashes and backslashes it finds in path names. This might be useful where the paths are
taken from environment variables or multiple sources, or where you want to use the
same scatter file to build on Windows, Sun Solaris, or Red Hat Linux.

Note
 ARM recommends that you use forward slashes in path names to ensure they are
understood on Windows, Sun Solaris, and Red Hat Linux platforms.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-25

Using Scatter-loading Description Files
5.3 Examples of specifying region and section addresses

This section describes how to use a scatter-loading description file to:

• place veneers in the memory map

• create root execution regions

• place regions at fixed addresses

• use overlays to place sections and assign sections to a root region

• use the EMPTY attribute to reserve an empty block of memory

• place ARM-supplied library code

• use preprocessing directives.

For additional examples on accessing data and functions at fixed addresses, see the
chapter describing how to develop embedded software in RealView Compilation Tools
v3.0 Developer Guide.

This section describes:

• Selecting veneer input sections in scatter-loading descriptions

• Creating root execution regions on page 5-27

• Placing regions at fixed addresses on page 5-29

• Using overlays to place sections on page 5-33

• Assigning sections to a root region on page 5-34

• Reserving an empty region on page 5-34

• Placing ARM libraries on page 5-36

• Using preprocessing directives on page 5-37.

5.3.1 Selecting veneer input sections in scatter-loading descriptions

Veneers are used to switch between ARM and Thumb® code or to perform a longer
program jump than can be specified in a single instruction (see Veneer generation on
page 3-19). Use a scatter-loading description file to place linker-generated veneer input
sections. At most, one execution region in the scatter-loading description file can have
the *(Veneer$$Code) section selector.

If it is safe to do so, the linker places veneer input sections into the region identified by
the *(Veneer$$Code) section selector. It might not be possible for a veneer input section
to be assigned to the region because of address range problems or execution region size
limitations. If the veneer cannot be added to the specified region, it is added to the
execution region containing the relocated input section that generated the veneer.
5-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Note
 Instances of *(IWV$$Code) in scatter-loading description files from earlier versions of
ARM tools are automatically translated into *(Veneer$$Code). Use *(Veneer$$Code) in
new descriptions.

5.3.2 Creating root execution regions

If you specify an initial entry point for an image, or if the linker creates an initial entry
point because you have used only one ENTRY directive, you must ensure that the entry
point is located in a root region. A root region is a region having the same load and
execution address. If the initial entry point is not in a root region, the link fails and the
linker gives an error message such as:

Entry point (0x00000000) lies within non-root region ER_ROM

To specify that a region is a root region in a scatter-loading description file you can
either:

• specify ABSOLUTE, either explicitly or by permitting it to default, as the attribute for
the execution region and use the same address for the first execution region and
the enclosing load region. To make the execution region address the same as the
load region address, either:

— specify the same numeric value for both the base designator (address) for
the execution region and the base designator (address) for the load region

— specify a +0 offset for the first execution region in the load region.

If an offset of zero (+0) is specified for all subsequent execution regions in
the load region, they will all be root regions.

See Example 5-2 on page 5-28.

• use the FIXED execution region attribute to ensure that the load address and
execution address of a specific region are the same. See Example 5-3 on
page 5-28 and Figure 5-9 on page 5-28.

You can use the FIXED attribute to place any execution region at a specific address in
ROM. See Placing regions at fixed addresses on page 5-29 for more information.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-27

Using Scatter-loading Description Files
Example 5-2 Specifying the same load and execution address

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 ; rest of scatter description...
}

Example 5-3 Using the FIXED attribute

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 ; rest of scatter description...
}

Figure 5-9 Memory Map for fixed execution regions

01��2

�����
�����������������

���
��

������

�������

���
��

01��2

���
!
$���"�
"���
 �����

(�""�����
,�#� ����� �
,����"�����*�����������
,��%%������
���

1(�3�/2

1�����&"�2
5-28 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.3.3 Placing regions at fixed addresses

You can use the FIXED attribute in an execution region scatter-loading description file to
create root regions that load and execute at fixed addresses.

FIXED is used to create multiple root regions within a single load region (and therefore
typically a single ROM device). You can use this, for example, to place a function or a
block of data, such as a constant table or a checksum, at a fixed address in ROM, so that
it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM
and a checksum at the end of ROM, some of the memory contents might be unused. Use
the * or .ANY module selector to flood fill the region between the end of the initialization
block and the start of the data block.

Note
 To make your code easier to maintain and debug, use the minimum amount of
placement specifications in scatter-loading description files and leave the detailed
placement of functions and data to the linker.

You cannot specify component objects that have been partially linked. For example, if
you partially link the objects obj1.o, obj2.o, and obj3.o together to produce obj_all.o,
the resulting component object names are discarded in the resulting object. Therefore,
you cannot refer to one of the objects by name, for example, obj1.o. You can only refer
to the combined object obj_all.o.

Placing functions and data at specific addresses

Normally, the compiler produces RO, RW, and ZI sections from a single source file.
These regions contain all the code and data from the source file. To place a single
function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files. To access an individual
object, you can:

• Place the function or data item in its own source file.

• Use the --split_sections compiler option to produce an object file for each
function (see RealView Compilation Tools v3.0 Compiler and Libraries Guide).

This option increases code size slightly (typically by a few percent) for some
functions because it reduces the potential for sharing addresses, data, and string
literals between functions. However, this can help to reduce the final image size
overall by enabling the linker to remove unused functions when you specify
armlink --remove.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-29

Using Scatter-loading Description Files
• Use #pragma arm section inside the C or C++ source code to create multiple
named sections (see Example 5-5 on page 5-31).

• Use the AREA directive from assembly language. For assembly code, the smallest
locatable unit is an AREA (see RealView Compilation Tools v3.0 Assembler Guide).

Placing the contents of individual object files

The scatter-loading description file in Example 5-4 places:

• initialization code at address 0x0 (followed by the remainder of the RO code and
all of the RO data except for the RO data in the object data.o)

• all global RW variables in RAM at 0x400000

• a table of RO-DATA from data.o fixed at address 0x1FF00.

Example 5-4 Section placement

LOADREG1 0x0 0x10000
{
 EXECREG1 0x0 0x2000 ; Root Region, containing init code
 { ; place init code at exactly 0x0
 init.o (Init, +FIRST)
 * (+RO) ; rest of code and read-only data
 }
 RAM 0x400000 ; RW & ZI data to be placed at 0x400000
 {
 * (+RW +ZI)
 }
 DATABLOCK 0x1FF00 FIXED 0xFF ; execution region fixed at 0x1FF00
 { ; maximum space available for table is 0xFF
 data.o(+RO-DATA) ; place RO data between 0x1FF00 and 0x1FFFF
 }
}

Note
 There are some situations where using FIXED and a single load region are not
appropriate. Other techniques for specifying fixed locations are:

• If your loader can handle multiple load regions, place the RO code or data in its
own load region.
5-30 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
• If you do not require the function or data to be at a fixed location in ROM, use
ABSOLUTE instead of FIXED. The loader then copies the data from the load region to
the specified address in RAM. (ABSOLUTE is the default attribute.)

• To place a data structure at the location of memory-mapped I/O, use two load
regions and specify UNINIT. (UNINIT ensures that the memory locations are not
initialized to zero.) For more details, see the chapter describing how to develop
embedded software in RealView Compilation Tools v3.0 Developer Guide.

Using the arm section pragma

Placing a code or data object in its own source file and then placing the object file
sections uses standard coding techniques. However, you can also use a pragma and
scatter-loading description file to place named sections. Create a module (adder.c, for
example) and name a section explicitly as shown in Example 5-5.

Example 5-5 Naming a section

// file adder.c
 int x1 = 5; // in .data
 int y1[100]; // in .bss
 int const z1[3] = {1,2,3}; // in .constdata
 int sub1(int x) {return x-1;} // in .text

 #pragma arm section rwdata = "foo", code ="foo"
 int x2 = 5; // in foo (data part of region)
 char *s3 = "abc"; // s3 in foo, "abc" in .constdata
 int add1(int x) {return x+1;} // in foo (.text part of region)
 #pragma arm section code, rwdata // return to default placement

Use a scatter-loading description file to specify where the named section is placed (see
Example 5-6 on page 5-32). If both code and data sections have the same name, the
code section is placed first.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-31

Using Scatter-loading Description Files
Example 5-6 Placing a section

FLASH 0x24000000 0x4000000
{
 FLASH 0x24000000 0x4000000
 {
 init.o (Init, +First) ; place area Init from init.o first
 * (+RO) ; sub1(), z1[]
 }
 32bitRAM 0x0000
 {
 vectors.o (Vect, +First)
 * (+RW,+ZI) ; x1, y1
 }
 ADDER 0x08000000
 {
 adder.o (foo) ; x2, string s3, and add1()
 }
}

5-32 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.3.4 Using overlays to place sections

You can use the OVERLAY keyword in a scatter-loading description file to place multiple
execution regions at the same address. Example 5-7 defines a static section in RAM
followed by a series of overlays. Here, only one of these sections is instantiated at
runtime.

Example 5-7 Specifying a root region

EMB_APP 0x8000
{

.

.
 STATIC_RAM 0x0 ; contains most of the RW and ZI code/data
 {
 * (+RW,+ZI)
 }
 OVERLAY_A_RAM 0x1000 OVERLAY ; start address of overlay...
 {
 module1.o (+RW,+ZI)
 }
 OVERLAY_B_RAM 0x1000 OVERLAY
 {
 module2.o (+RW,+ZI)
 }

. ; rest of scatter description...

.
}

If the length of the static area is unknown, use a zero relative offset to specify the start
address of an overlay so that it is placed immediately after the end of the static section,
for example:

OVERLAY_A_RAM +0 OVERLAY

In this case, consecutive overlay regions with the same +offset are placed at +offset
bytes from the previous non-overlay region or start of load region. Do this to avoid
unused RAM (where the static area is small) or to prevent overwriting the static area
with an overlay (where the static area is large).
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-33

Using Scatter-loading Description Files
5.3.5 Assigning sections to a root region

In RVCT v2.1 and earlier, the only library sections that had to be root were __main and
the region tables. However, with the implementation of RW data compression there are
more sections that must be placed in a root region. The linker can place all these sections
automatically with InRoot$$Sections.

Use a scatter-loading description file to specify a root section in the same way as a
named section. Example 5-8 uses the section selector InRoot$$Sections to place all
sections that must be in a root region in a region called ER_ROOT.

Example 5-8 Specifying a root region

LR_FLASH 0x0
{
 ER_ROOT 0x0 ; root region at 0x0
 {

vectors.o (Vectors, +FIRST) ; vector table
* (InRoot$$Sections) ; all library sections that must be

; in a root region
 }
 .

. ; rest of scatter description...
}

5.3.6 Reserving an empty region

You can use the EMPTY attribute in an execution region scatter-loading description to
reserve an empty block of memory for the stack.

The block of memory does not form part of the load region, but is assigned for use at
execution time. Because it is created as a dummy ZI region, the linker uses the following
symbols to access it:

• Image$$region_name$$ZI$$Base

• Image$$region_name$$ZI$$Limit

• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of
the region. This should be an absolute address and not a relative one. For example, the
execution region definition STACK 0x800000 EMPTY –0x10000 shown in Example 5-9 on
page 5-35 defines a region called STACK that starts at address 0x7F0000 and ends at
address 0x800000.
5-34 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Note
 The dummy ZI region that is created for an EMPTY execution region is not initialized to
zero at runtime.

If the address is in relative (+n) form and the length is negative, the linker generates an
error.

Example 5-9 Reserving a region for the stack

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY –0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region used to place stack
 }
 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region used to place heap
 }
 ; rest of scatter description...
}

Figure 5-10 is a diagrammatic representation of this example.

Figure 5-10 Reserving a region for the stack

$
��4

5���

6���
�������

�������

��'����

5���
����

����

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-35

Using Scatter-loading Description Files
In this example, the linker generates the symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x1000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x1000

Note
 The EMPTY attribute applies only to an execution region. The linker generates a warning
and ignores an EMPTY attribute used in a load region definition.

The linker checks that the address space used for the EMPTY region does not coincide with
any other execution region.

5.3.7 Placing ARM libraries

You can place code from the ARM standard C and C++ libraries in a scatter-loading
description file. For example:

ER 0x2000
{

*c_t__un.l (+RO)
:
}

However, ARM recommends using *armlib or *armlib* instead so that the linker can
resolve library naming in your scatter-loading file if the naming conventions change in
a future release. For example:

ER 0x2000
{

armlib (+RO) ; all ARM-supplied C libraries
:
}

Example 5-10 on page 5-37 shows how to place library code.

Note
 In Example 5-10 on page 5-37, forward slashes are used in path names to ensure they
are understood on Windows, Sun Solaris, and Red Hat Linux platforms.
5-36 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Example 5-10 Placing ARM library code

ROM1 0
{

* (InRoot$$Sections)
* (+RO)

}
ROM2 0x1000
{

armlib/h_ (+RO) ; just the ARM-supplied __ARM_*
; redistributable library functions

}
ROM3 0x2000
{

armlib/c_ (+RO) ; all ARM-supplied C library functions
}
RAM1 0x3000
{

armlib (+RO) ; all other ARM-supplied library code
; e.g. floating-point libs

}
RAM2 0x4000
{

* (+RW, +ZI)
}

5.3.8 Using preprocessing directives

Use the first line in the scatter-loading description file to specify a preprocessor that the
linker invokes to process the file. This command is of the form:

#! <preprocessor> [pre_processor_flags]

Most typically the command is #! armcc -E.

The linker can carry out simple expression evaluation with a restricted set of operators,
that is, +, -, *, /, AND, OR, and parentheses. The implementation of OR and AND follows C
operator precedence rules.

You can add preprocessing directives to the top of the scatter-loading description file.
For example:

#define ADDRESS 0x20000000
#include "include_file_1.h"

The linker parses the preprocessed scatter-loading description file where these are
treated as comments and ignored.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-37

Using Scatter-loading Description Files
Consider the following simple example:

#define AN_ADDRESS (BASE_ADDRESS+(ALIAS_NUMBER*ALIAS_SIZE))

Use the directives:

#define BASE_ADDRESS 0x8000#define ALIAS_NUMBER 0x2#define ALIAS_SIZE 0x400

If the scatter-loading description file contains:

LOAD_FLASH AN_ADDRESS ; start address

Following preprocessing, this evaluates to:

LOAD_FLASH (0x8000 + (0x2 * 0x400)) ; start address

Following evaluation, the linker parses the scatter-loading file to produce the load
region:

LOAD_FLASH 0x8808 ; start address
5-38 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.4 Equivalent scatter-loading descriptions for simple images

The command-line options --reloc, --ro-base, --rw-base, --ropi, --rwpi, and --split
create the simple image types described in Using command-line options to create simple
images on page 3-26. You can create the same image types by using the --scatter
command-line option and a file containing one of the corresponding scatter-loading
descriptions.

This section describes:

• Type 1, one load region and contiguous output regions

• Type 2, one load region and non-contiguous output regions on page 5-41

• Type 3, two load regions and non-contiguous output regions on page 5-43.

5.4.1 Type 1, one load region and contiguous output regions

An image of this type consists of a single load region in the load view and three
execution regions in the execution view. The execution regions are placed contiguously
in the memory map.

--ro-base address specifies the load and execution address of the region containing the
RO output section. Example 5-11 shows the scatter-loading description equivalent to
using --ro-base 0x040000.

Example 5-11 Single load region and contiguous execution regions

LR_1 0x040000 ; Define the load region name as LR_1, the region starts at 0x040000.
{
 ER_RO +0 ; First execution region is called ER_RO, region starts at end of previous region.
 ; However, since there was no previous region, the address is 0x040000.
 {
 * (+RO) ; All RO sections go into this region, they are placed consecutively.
 }
 ER_RW +0 ; Second execution region is called ER_RW, the region starts at the end of the
 ; previous region. The address is 0x040000 + size of ER_RO region.
 {
 * (+RW) ; All RW sections go into this region, they are placed consecutively.
 }
 ER_ZI +0 ; Last execution region is called ER_ZI, the region starts at the end of the
 ; previous region at 0x040000 + the size of the ER_RO regions + the size of
 ; the ER_RW regions.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-39

Using Scatter-loading Description Files
The description shown in Example 5-11 on page 5-39 creates an image with one load
region called LR_1, whose load address is 0x040000.

The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the
RO, RW, and ZI output sections respectively. RO, RW are root regions. ZI is created
dynamically at runtime. The execution address of ER_RO is 0x040000. All three execution
regions are placed contiguously in the memory map by using the +offset form of the
base designator for the execution region description. This enables an execution region
to be placed immediately following the end of the preceding execution region.

The --reloc option is used to make relocatable images. Used on its own, --reloc makes
an image similar to simple type 1, but the single load region has the RELOC attribute.

ropi example variant

In this variant, the execution regions are placed contiguously in the memory map.
However, --ropi marks the load and execution regions containing the RO output section
as position-independent.

Example 5-12 shows the scatter-loading description equivalent to using
--ro-base 0x010000 --ropi.

Example 5-12 Position-independent code

LR_1 0x010000 PI ; The first load region is at 0x010000.
{
 ER_RO +0 ; The PI attribute is inherited from parent.
 ; The default execution address is 0x010000, but the code can be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
 {
 * (+RW) ; The RW sections are placed next. They cannot be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

5-40 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Shown in Example 5-12 on page 5-40, ER_RO, the RO execution region, inherits the PI
attribute from the load region LR_1. The next execution region, ER_RW, is marked as
ABSOLUTE and uses the +offset form of base designator. This prevents ER_RW from
inheriting the PI attribute from ER_RO. Also, because the ER_ZI region has an offset of +0,
it inherits the ABSOLUTE attribute from the ER_RW region.

5.4.2 Type 2, one load region and non-contiguous output regions

An image of this type consists of a single load region in the load view and three
execution regions in the execution view. It is similar to images of type 1 except that the
RW execution region is not contiguous with the RO execution region.

--ro-base address1 specifies the load and execution address of the region containing the
RO output section. --rw-base address2 specifies the execution address for the RW
execution region.

Example 5-13 shows the scatter-loading description equivalent to using --ro-base
0x010000 --rw-base 0x040000.

Example 5-13 Single load region and multiple execution regions

LR_1 0x010000 ; Defines the load region name as LR_1
{
 ER_RO +0 ; The first execution region is called ER_RO and starts at end of previous region.
 ; Since there was no previous region, the address is 0x010000.
 {
 * (+RO) ; All RO sections are placed consecutively into this region.
 }
 ER_RW 0x040000 ; Second execution region is called ER_RW and starts at 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The last execution region is called ER_ZI.
 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

This description creates an image with one load region, named LR_1, with a load address
of 0x010000.

The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the
RO, RW, and ZI output sections respectively. The RO region is a root region. The
execution address of ER_RO is 0x010000.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-41

Using Scatter-loading Description Files
The ER_RW execution region is not contiguous with ER_RO. Its execution address is
0x040000.

The ER_ZI execution region is placed immediately following the end of the preceding
execution region, ER_RW.

rwpi example variant

This is similar to images of type 2 with --rw-base with the RW execution region
separate from the RO execution region. However, --rwpi marks the execution regions
containing the RW output section as position-independent.

Example 5-14 shows the scatter-loading description equivalent to using
--ro-base 0x010000 --rw-base 0x018000 --rwpi.

Example 5-14 Position-independent data

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent. The execution address
 ; is 0x010000. The code and ro data cannot be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
 {
 * (+RW) ; The RW sections are placed at 0x018000 and they can be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1.
The next execution region, ER_RW, is marked as PI. Also, because the ER_ZI region has an
offset of +0, it inherits the PI attribute from the ER_RW region.

Similar scatter-loading descriptions can also be written to correspond to the usage of
other combinations of --ropi and --rwpi with type 2 and type 3 images.
5-42 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
5.4.3 Type 3, two load regions and non-contiguous output regions

Type 3 images consist of two load regions in load view and three execution regions in
execution view. They are similar to images of type 2 except that the single load region
in type 2 is now split into two load regions.

Relocate and split load regions using the following linker options:

--reloc The combination --reloc --split makes an image similar to simple type
3, but the two load regions now have the RELOC attribute.

--ro-base address1

Specifies the load and execution address of the region containing the RO
output section.

--rw-base address2

Specifies the load and execution address for the region containing the RW
output section.

--split Splits the default single load region (that contains the RO and RW output
sections) into two load regions. One load region contains the RO output
section and one contains the RW output section.

Example 5-15 on page 5-44 shows the scatter-loading description equivalent to using
--ro-base 0x010000 --rw-base 0x040000 --split.

In this example:

• This description creates an image with two load regions, named LR_1 and LR_2,
that have load addresses 0x010000 and 0x040000.

• The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain
the RO, RW, and ZI output sections respectively. The execution address of ER_RO
is 0x010000.

• The ER_RW execution region is not contiguous with ER_RO. Its execution address is
0x040000.

• The ER_ZI execution region is placed immediately following the end of the
preceding execution region, ER_RW.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-43

Using Scatter-loading Description Files
Example 5-15 Multiple load regions

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; The address is 0x010000.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

5-44 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using Scatter-loading Description Files
Relocatable load regions example variant

This type 3 image also consists of two load regions in load view and three execution
regions in execution view. However, --reloc is used to specify that the two load regions
now have the RELOC attribute.

Example 5-16 shows the scatter-loading description equivalent to using --ro-base
0x010000 --rw-base 0x040000 --reloc --split.

Example 5-16 Relocatable load regions

LR_1 0x010000 RELOC
{
 ER_RO + 0
 {
 * (+RO)
 }
}

LR2 0x040000 RELOC
{
 ER_RW + 0
 {
 * (+RW)
 }

 ER_ZI +0
 {
 * (+ZI)
 }
}

ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-45

Using Scatter-loading Description Files
5-46 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 6
System V Shared Libraries

This chapter describes how the ARM® linker, armlink, supports System V shared
libraries. It contains the following sections:

• Introduction on page 6-2

• Using SVr4 shared libraries on page 6-3.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-1

System V Shared Libraries
6.1 Introduction

The Base Platform ABI for the ARM Architecture [BPABI] governs the format and
content of executable and shared object files generated by static linkers. It supports
platform-specific executable files using post linking and provides a base standard that
is used to derive a platform ABI. The standard defines three platform families based on
the shared object model:

• Bare metal

• DLL-like

• System V release 4 (SVr4).

The linker conforms to the BPABI and so enables you to:

• link a collection of objects and libraries into a:

— Bare metal executable image

— BPABI DLL or SVr4 shared object

— BPABI or SVr4 executable file.

• link a collection of objects against shared libraries

• partially link a collection of objects into an object that can be used as input to a
subsequent link step.

The rest of this chapter describes linker support for SVr4 shared libraries.

See Base Platform ABI for the ARM Architecture [BPABI] for more information on
BPABI DLLs.

6.1.1 Getting more information

For full information about the base standard, software interfaces, and standards
supported by ARM, see install_directory\Documentation\Specifications\....

For details of the latest published versions, see http://www.arm.com.

See also ARM Application Note 150 Building Linux Applications Using RVCT and the
GNU Tool and Libraries.

For more details on the generic System V ABI (DRAFT), see http://www.sco.com.
6-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

System V Shared Libraries
6.2 Using SVr4 shared libraries

The linker enables you to build SVr4 shared libraries and to link objects against shared
libraries.

This section describes:

• Building an ARM Linux executable

• Accessing symbols on page 6-4

• Exception tables on page 6-6

• Thread Local Storage on page 6-6

• Using a dynamic linker on page 6-7.

6.2.1 Building an ARM Linux executable

Use the --sysv command-line option to generate an SVr4 formatted ELF executable file
that can be used on ARM Linux.

Note
 If you use --sysv, the linker ignores any scatter file that you specify on the command
line.

The base of an executable is 0x8000 by default. When shared objects are given on the
command line the linker uses these to resolve references and creates a dynamic
executable.

When the linker finds a shared object on the command line, it is included in the list of
libraries to be added to the executable file (see Library searching, selection, and
scanning on page 7-3 for details).

If you are working on ARM Linux, be aware of the following:

• The Linux kernel performs all copying and zero initialization of the executable
file.

• RW data is not compressed.

• An executable is always entered in ARM state.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-3

System V Shared Libraries
Building a shared object

A shared object provides an extension of the static and dynamic linking described in
Building an ARM Linux executable on page 6-3. The base address of the load region is
set at 0 and is then relocated by the Linux dynamic linker.

If your shared object contains any exported RW data, you are required to use position
independent code and data. In this case, you must compile or assemble your files using
--apcs /fpic, and link the files into a shared object using the --fpic linker option.

Use the --shared command-line option to build an SVr4 shared object.

Note
 A shared object usually has no entry point. However, it is possible to set an entry point.
This must be done if the object you are building is the dynamic linker.

Using the Linux ABI tag

To comply with the Linux Standard Base Specification v1.2, an executable file must
contain a section named .note.ABI-tag of type SHT_NOTE, structured as a note section as
documented in the ELF specification.

You can use the command-line option --linux_abitag to specify the minimum
compatible kernel version for the executable file you are building, for example:

armlink ... --sysv --linux_abitag 2.2.5 main.o

This links main.o into a static executable that is defined as being compatible with Linux
kernel v2.2.5 or later. If you specify any shared objects on the command line that
demand a newer kernel, the kernel requirements in the output file are incremented to
match.

For full details on using the Linux ABI tag and Standard Base Specification, see
http://www.linuxbase.org.

6.2.2 Accessing symbols

The symbol tables provide a way to determine those symbols in shared objects that are
referenced by other non-shared objects included in the link stage. Where a reference to
a symbol exists, it is defined as having been imported from the shared object.
6-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

System V Shared Libraries
The linker supports symbol versions. This provides more useful information for the
symbol table:

• Symbols with local scope in a versioned shared object are not referred to from the
outside.

• A global versioned symbol has no version, and so the usual symbol matching
applies.

• A versioned symbol with the HIDDEN visibility attribute set is a deprecated
versioned symbol. The static linker ignores this.

• A versioned symbol where the HIDDEN visibility attribute is not set is the default
symbol.

Symbol versioning information is added to the symbol table when a shared object is
loaded that contains symbol versioning tables (and references to versioned symbols are
matched). You can use a version script file to specify a list of exported symbols, for
example:

armlink file_1.o file_2.o --sysv --shared -o libfoo.so --symver_script
ver_script.txt

Symbol resolution

The linker resolves symbols in shared and non-shared objects in the same way. When
an undefined reference matches a definition in a shared object, the linker imports the
reference by placing it in the dynamic symbol table.

Importing & exporting symbols

If you are using a steering file, use EXPORT to specify exported symbols.

The linker imports undefined symbol references when it finds a matching definition in
the dynamic symbol table of a shared object that you specify on the command line.
These symbols are then considered to be exported symbols.

When building a shared object, only those symbols affected by a steering file
commands, or exported using __declspec(dllexport) in the source file, are exported. If
you do not specify any steering file commands, the linker exports all global
(non-hidden) symbols by default.

A non-hidden symbol is one that has the DYNAMIC or PROTECTED visibility attribute in
assembler source, or where the C source code contains __declspec(dllimport) or
__declspec(dllexport).
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-5

System V Shared Libraries
When building an executable file, only the symbols required to execute the image
correctly on a Linux platform are exported, that is, the linker imports any symbol found
in a shared object. Steering file commands can be used to define additional symbols to
be inserted into the dynamic symbol table.

Note
 Be aware that armlink generates an error for any undefined references that remain.

See Steering file commands on page 4-12 for more details on using EXPORT.

6.2.3 Exception tables

In a static image that does not use shared libraries, the linker automatically discards
exception tables if it decides that the image cannot throw an exception.

When linking an image that uses shared objects, use the --force_so_throw
command-line option to specify that all shared objects might throw exceptions and so
force the linker to keep the exception tables, regardless of whether the image can throw
an exception or not.

Adding the PT_ARM_EXIDX program header

If you are building an SVr4 formatted ELF executable file, use the --pt_arm_exidx
command-line option to add a program header of type PT_ARM_EXIDX to an image or
shared object that has exception tables and dynamic content. This describes the location
of the unwind tables for the image. It contains fields that describe the file offset, virtual
address, and size of the table to the program loader.

The linker infers that a shared object might throw an exception if it has a PT_ARM_EXIDX
program header. It must, therefore, keep the exception tables, regardless of whether an
exception can be thrown or not.

The default is --no_pt_arm_exidx.

6.2.4 Thread Local Storage

In the current release, the linker supports Thread Local Storage (TLS) for SVr4 images
and shared libraries only. For full details on the linker implementation, see the Addenda
to, and Errata in, the ABI for the ARM Architecture [ABI-addenda].
6-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

System V Shared Libraries
6.2.5 Using a dynamic linker

A shared object or executable file contains all the information necessary for the dynamic
linker to load and run the file correctly:

• Every shared object contains a SONAME that identifies the object. You can specify
this name on the command line using the --soname name option.

• The linker identifies dependencies to other shared objects using the shared objects
specified on the command line. These shared object dependencies are encoded in
DT_NEEDED tags. In the current release, the linker orders these tags to match the
order of the libraries on the command line.

• When building a shared library using --sysv --shared the linker does not include
the ARM C libraries initialization function __cpp_initialize__aeabi_ by default.
Instead the linker sets the DT_INIT_ARRAY tags if appropriate, so that the dynamic
linker can initialize the library.

If you prefer to use the __cpp_initialize__aeabi_ function to initialize your
shared library then you must add --ref_cpp_init to the command line and set
--init=__cpp_initialize_aeabi_.

• If you specify the --fini symbol command-line option, the linker uses the
specified symbol name to define finalization code. The dynamic linker executes
this code when it unloads the executable file or shared object.

There is no assumption that a symbol named _fini marks this code.

• If you specify the --fini symbol command-line option, the linker uses the
specified symbol name to define finalization code. The dynamic linker executes
this code when it unloads the executable file or shared object.

There is no assumption that a symbol named _fini marks this code.

Use the --dynamiclinker name command-line option to specify the dynamic linker to use
to load and relocate the file at runtime. If you are working on Linux platforms, the linker
assumes that the default dynamic linker is /lib/ld-linux.so.2.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-7

System V Shared Libraries
6-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 7
Creating and Using Libraries

This chapter describes the use of libraries with the ARM® linker, armlink, and the
librarian, armar. It contains the following sections:

• About libraries on page 7-2

• Library searching, selection, and scanning on page 7-3

• The ARM librarian on page 7-7.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-1

Creating and Using Libraries
7.1 About libraries

An object file can refer to external symbols that are, for example, functions or variables.
The linker attempts to resolve these references by matching them to definitions found
in other object files and libraries. The linker recognizes a collection of ELF files stored
in an ar format file as a library.

If you use --sysv to generate an SVr4 formatted ELF executable file, the linker treats a
shared object as a library. Similarly, a shared object or DLL is treated as a library when
you are generating a BPABI-compatible executable file. However, a shared object or
DLL differs from an archive in that:

• symbols are imported from a shared object or DLL

• code or data for symbols is extracted from an archive into the file being linked.

The rest of this chapter describes archives.
7-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Creating and Using Libraries
7.2 Library searching, selection, and scanning

The differences between the way the linker adds object files to the image and the way
it adds libraries to the image are:

• Each object file in the input list is added to the output image unconditionally,
whether or not anything refers to it. At least one object must be specified.

• A member from a library is included in the output only if an object file or an
already-included library member makes a non-weak reference to it, or if the linker
is explicitly instructed to add it.

Note
 If a library member is explicitly requested in the input file list, it is loaded even if

it does not resolve any current references. In this case, an explicitly requested
member is treated as if it is an ordinary object.

Unused sections are subsequently eliminated unless --no_remove is used.

Unresolved references to weak symbols do not cause library members to be loaded.

Note
 If you specify the --no_scanlib command-line option, the linker does not search for the
default ARM libraries and uses only those libraries that are specified in the input file list
to resolve references.

Therefore, the linker creates a list of libraries as follows:

1. Any libraries explicitly specified in the input file list are added to the list.

2. The user-specified search path is examined to identify ARM standard libraries to
satisfy requests embedded in the input objects.

The best-suited library variants are chosen from the searched directories and their
subdirectories. Libraries supplied by ARM have multiple variants that are named
according to the attributes of their members.

This section describes:

• Searching for ARM libraries on page 7-4

• Searching for user libraries on page 7-5

• Scanning the libraries on page 7-5.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-3

Creating and Using Libraries
7.2.1 Searching for ARM libraries

You can specify the search paths used to find the ARM standard libraries by:

• Using the environment variable RVCT30LIB. This is the default.

• Adding the --libpath option to the armlink command line with a
comma-separated list of parent directories.

This list must end with the parent directory of the ARM library directories armlib
and cpplib. The RVCT30LIB environment variable holds this path.

Note
 The linker command-line option --libpath overrides the paths specified by the

RVCT30LIB variable.

The linker combines each parent directory, given by either --libpath or the RVCT30LIB
variable, with each subdirectory request from the input objects and identifies the place
to search for the ARM library. The names of ARM subdirectories within the parent
directories are placed in each compiled object by using a symbol of the form
Lib$$Request$$sub_dir_name.

The sequential nature of the search ensures that the linker chooses the library that
appears earlier in the list if two or more libraries define the same symbol.

Selecting ARM library variants

There are different variants of the ARM libraries based on the attributes of their member
objects. The variant of the ARM library is coded into the library name. The linker must
select the best-suited variant from each of the directories identified during the library
search.

The linker accumulates the attributes of each input object and then selects the library
variant best suited to those attributes. If more than one of the selected libraries are
equally suited, the linker retains the first library selected and rejects all others.

The final list contains all the libraries that the linker scans in order to resolve references.

For more information on library variants, see the chapter describing the C and C++
libraries in RealView Compilation Tools v3.0 Compiler and Libraries Guide.
7-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Creating and Using Libraries
7.2.2 Searching for user libraries

You can specify user libraries by:

• including them explicitly in the input file list

• adding the --userlibpath option to the armlink command line with a
comma-separated list of directories, and the names of the libraries as input files.

If you do not specify a full path name to a library on the command line, the linker tries
to locate the library in the directories specified by the --userlibpath option. For
example, if the directory /mylib contains my_lib.a and other_lib.a, add
/mylib/my_lib.a to the input file list with the command:

armlink --userlibpath /mylib my_lib.a *.o

If you add a particular member from a library this does not add the library to the list of
searchable libraries used by the linker. To load a specific member and add the library to
the list of searchable libraries include the library filename on its own as well as
specifying library(member). For example, to load strcmp.o and place mystring.lib on
the searchable library list add the following to the input file list:

mystring.lib(strcmp.o) mystring.lib

Note
 The search paths used for the ARM standard libraries specified by the RVCT30LIB
environment variable or the linker command-line option --libpath are not searched for
user libraries (see Searching for ARM libraries on page 7-4).

7.2.3 Scanning the libraries

When the linker has constructed the list of libraries, it repeatedly scans each library in
the list to resolve references.

When all the directories have been searched, and the most compatible library variants
have been selected and added to the list of libraries, each of the libraries is scanned to
load the required members:

1. For each currently unsatisfied non-weak reference, the linker searches
sequentially through the list of libraries for a matching definition. The first
definition found is marked for step 2.

The sequential nature of the search ensures that the linker chooses the library that
appears earlier in the list if two or more libraries define the same symbol. This
enables you to override function definitions from other libraries, for example, the
ARM C libraries, by adding your libraries to the input file list.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-5

Creating and Using Libraries
2. Library members marked in step 1 are loaded. As each member is loaded it might
satisfy some unresolved references, possibly including weak ones. Loading a
library might also create new unresolved weak and non-weak references.

3. The process in steps 1 and 2 continues until all non-weak references are either
resolved or cannot be resolved by any library.

If any non-weak reference remains unsatisfied at the end of the scanning operation, the
linker generates an error message.
7-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Creating and Using Libraries
7.3 The ARM librarian

The ARM librarian, armar, enables sets of ELF object files or libraries to be collected
together and maintained in libraries. Such a library can then be passed to the linker in
place of several object files. However, linking with an object library file does not
necessarily produce the same results as linking with all the object files collected into the
object library file. This is because the linker processes the input list and libraries
differently:

• Each object file in the input list appears in the output unconditionally, although
unused areas are eliminated if the armlink --remove option is specified.

• A member of a library file is only included in the output if it is referred to by an
object file or a previously processed library file.

For more information on how the linker processes its input files, see Chapter 2 The
Linker Command Syntax.

This section describes:

• Librarian command-line options

• Ordering command-line options on page 7-11

• Examples of armar usage on page 7-11.

7.3.1 Librarian command-line options

The syntax of the armar command when used to add or modify files in the library is:

armar [--help] [--create] [--diag_style arm|ide|gnu] [-c] [-d] [-m] [-q] [-r]
[-u] [--vsn] [-v] [--via option_file] [{[-a]|[-b]|[-i]} {pos_name}] library
[file_list]

The syntax of the armar command when used to extract files or library information is:

armar [--help] [--diag_style arm|ide|gnu] [-C] [--entries] [-p] [-t] [-s]
[--sizes] [-T] [--vsn] [-v] [--via option_file] [-x] [--zs] [--zt] library
[file_list]

where:

-a Places new files in library after the file pos_name.

The effect of this option is negated if you include -b (or -i) on the same
command line.

-b Places new files in library before the file pos_name.

This option takes precedence if you include -a on the same command
line.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-7

Creating and Using Libraries
-i Places new files in library before the member pos_name (equivalent to
-b).

This option takes precedence if you include -a on the same command
line.

pos_name The name of an existing library member to be used for relative
positioning. This name must be supplied with options -a, -b, and -i.

-C Instructs the librarian not to replace existing files with like-named files
when performing extractions. This option is useful when -T is also used
to prevent truncated filenames from replacing files with the same prefix.

-c Suppresses the diagnostic message normally written to standard error
when a library is created.

--create Creates a new library even if library already exists.

-d Deletes one or more files from library.

--diag_style arm|ide|gnu

Change the formatting of warning and error messages. --diag_style arm
is the default, --diag_style gnu matches the format reported by gcc, and
--diag_style ide matches the format reported by Microsoft Visual
Studio.

--entries Lists all entry points defined in library. The format for the listing is:

ENTRY at offset num in section name of member

file_list A list of files to process. Each file is fully specified by its path and name.
The path can be absolute, relative to drive and root, or relative to the
current directory.

Only the filename at the end of the path is used when comparing against
the names of files in the library. If two or more path operands end with
the same filename, the results are unspecified. You can use the wildcards
* and ? to specify files.

If one of the files is a library, armar copies all members from the input
library to the destination library. The order of entries on the command
line is preserved. Therefore, supplying a library file is logically
equivalent to supplying all of its members in the order that they are stored
in the library.

--help Gives online details of the armar command.

library Path name of the library file.
7-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Creating and Using Libraries
-m Moves files. If -a, -b, or -i with pos_name is specified, files are moved to
the new position. Otherwise, move files to the end of library.

-n Suppresses the archive symbol table. This is used when the library is not
an object library.

-p Prints the contents of files in library to stdout.

-q An alias for -r.

-r Replaces, or adds, files in library. If library does not exist, a new library
file is created and a diagnostic message is written to standard error.

If file_list is not specified and the library exists, the results are
undefined. Files that replace existing files do not change the order of the
library.

If the -u option is used, then only those files with dates of modification
later than the library files are replaced.

If the -a, -b, or -i option is used, then pos_name must be present and
specifies that new files are to be placed after (-a) or before (-b or -i)
pos_name. Otherwise the new files are placed at the end.

-t Prints a table of contents of library. The files specified by file_list are
included in the written list. If file_list is not specified, all files in the
library are included in the order of the archive.

-s Regenerates the archive symbol table.

--sizes Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes of each member
in library, for example:

Code RO Data RW data ZI Data Debug Object Name
 464 0 0 0 8612 app_1.o
3356 0 0 10244 11848 app_2.o
3820 0 0 10244 20460 TOTAL

-T Enables filename truncation of extracted files whose library names are
longer than the file system can support. By default, extracting a file with
a name that is too long is an error. A diagnostic message is written and
the file is not extracted.

-u Updates older files. When used with the -r option, files within library are
replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file within library.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-9

Creating and Using Libraries
--via option_file

Instructs the librarian to take options from option_file. See RealView
Compilation Tools v3.0 Compiler and Libraries Guide for more
information on writing via files.

-v Gives verbose output.

The output depends on what other options are used:

-d, -r or -x

Write a detailed file-by-file description of the library creation,
the constituent files, and maintenance activity.

-p Writes the name of the file to the standard output before
writing the file itself to the stdout.

-t Includes a long listing of information about the files within the
library.

-x Prints the filename preceding each extraction.

--vsn Prints the version number on standard error.

-x Extracts the files in file_list from library. The contents of library are
not changed. If no file operands are given, all files in library are
extracted. If the filename of a file extracted from the library is longer than
that supported in the destination directory, the results are undefined.

--zs Shows the symbol table.

--zt Lists member sizes and entry points in library. See --sizes and
--entries for output format.

Note
 The options -a, -b, -C, -i, -m, -T, -u, and -v are not required for normal operation.

Options relating to library order (for example, -a, -b, -i, and -m) are not relevant,
because the ARM tools cannot use a library that does not have a symbol table. If there
is a symbol table, the order is irrelevant. However, see the rules about precedence if you
include -a and -b (or -i) on the same command line.

Options relating to updating a library (-C and -u) are unlikely to be used because, in
practice, the libraries are rebuilt rather than updated.
7-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Creating and Using Libraries
7.3.2 Ordering command-line options

In general, command-line options can appear in any order. However, the effects of some
options depend on how they are combined with other related options.

Where options override previous options on the same command line, the last one found
takes precedence. Where an option does not follow this rule, this is noted in the
description. Use the --show_cmdline option to see how the librarian has processed the
command line. The commands are shown normalized, and the contents of any via files
are expanded.

Note
 In the current release of RVCT, armar command-line options must be preceded by a -.
This is a change from previous releases.

7.3.3 Examples of armar usage

Syntax examples are shown in Example 7-1 to Example 7-8 on page 7-12.

Example 7-1 Create a new library and add all object files

armar --create mylib *.o

Example 7-2 List the table of contents (verbose)

armar -tv mylib

Example 7-3 List the symbol table

armar --zs mylib

Example 7-4 Add (or replace) files

armar -r mylib obj1.o obj2.o obj3.o ...

armar -ru mylib k*.o
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-11

Creating and Using Libraries
Example 7-5 Add (or replace) files in specified position

armar -r -a obj2.o mylib obj3.o obj4.o ...

Example 7-6 Extract a group of files

armar -x mylib k*.o

Example 7-7 Delete a group of files

armar -d mylib sys_*

Example 7-8 Merge libraries and add (or replace) files

armar -r mylib my_lib.a other_lib.a obj1.o obj2.o obj3.o
7-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Chapter 8
Using fromelf

This chapter describes the ARM® fromelf software utility provided with RealView®
Compilation Tools (RVCT). It contains the following sections:

• About fromelf on page 8-2

• fromelf command syntax on page 8-3

• Examples of fromelf usage on page 8-11.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-1

Using fromelf
8.1 About fromelf

fromelf translates Executable Linkable Format (ELF) image files produced by the ARM
linker into other formats suited to ROM tools and to loading directly into memory. You
can also use fromelf to display various information about an ELF object or to generate
text files containing the information.

fromelf outputs the following image formats:

• Plain binary

• Motorola 32-bit S-record

• Intel Hex-32

• Byte Oriented (Verilog Memory Model) Hex

• ELF. You can resave as ELF. For example, you can convert a debug ELF image to
a no-debug ELF image.

fromelf can also display information about the input file, for example, disassembly
output or symbol listings, to either stdout or a text file.

8.1.1 Image structure

fromelf can translate a file from ELF to other formats. It cannot change the image
structure or addresses, other than altering the base address of Motorola S-record or Intel
Hex output with the --base option. You cannot change a scatter-loaded ELF image into
a non-scatter-loaded image in another format. Any structural or addressing information
must be provided to the linker at link time.
8-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using fromelf
8.2 fromelf command syntax

This section describes the syntax and options of the fromelf command:

fromelf [--base n] [[--diag_style arm|ide|gnu]] [[--diag_suppress taglist]]
[--expandarrays] [--fieldoffsets|[[--select select_options]]] [--help]
[--no_linkview] [memory_config] [--no_comment_section] [--no_debug]
[--debugonly] [--no_symbolversions] [[--text]| code_output_format] [--vsn]
[--output output_file] {input_file}

where:

--base n Specifies the base address of the output for Motorola S-record,
and Intel Hex file formats. This option is available only if --m32,
--m32combined, --i32, or --i32combined is specified as the output
format.

You can specify the base address as either a:

• decimal value, for example, --base 0

• hexadecimal value, for example, --base 0x8000.

All addresses encoded in the output file start at the base address n.
If you do not specify a --base option, the base address is taken
from the load region address.

Note
 If multiple load regions are present, the --base value is used for

each output file. That is, it overrides all load region addresses.

--diag_style arm|ide|gnu

Change the formatting of warning and error messages.
--diag_style arm is the default, --diag_style gnu matches the
format reported by gcc, and --diag_style ide matches the format
reported by Microsoft Visual Studio.

--diag_suppress taglist

Disables all diagnostic messages that have the specified tag(s).

This option requires a comma-separated list identifying the
number of the message to be suppressed (more than one tag can
be specified). For example, to suppress the warning messages that
have numbers 1293 and 187, use the following command:

fromelf --diag_suppress 1293,187 ...

The fromelf prefix Q can be used when suppressing messages, for
example:
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-3

Using fromelf
fromelf --diag_suppress Q1293,Q187 ...

Using the prefix letter is optional. However, if a prefix letter is
included, it must match the fromelf identification letter. If another
prefix is found, the message number is ignored.

--fieldoffsets Produces, to stdout, a list of assembly language EQU directives that
equate C++ class or C structure field names to their offsets from
the base of the class or structure. The input ELF file can be a
relocatable object or an image.

Use -o to redirect the output to a file. Use the INCLUDE command
from armasm to load the produced file and provide access to C++
classes and C structure members by name from assembly
language. See RealView Compilation Tools v3.0 Assembler Guide
for more information on armasm.

Note
 This option:

• is not available if the source file does not have debug
information

• cannot be used together with a code_output_format.

This option outputs all structure information. To output a subset of
the structures, use --select select_options.

If you do not require a file that can be input to armasm, use the
--text -a options to format the display addresses in a more
readable form. The -a option only outputs address information for
structures and static data in images because the addresses are not
known in a relocatable object.

Note
 Do not use --no_debug if a fromelf --fieldoffsets step is

required. If your image is produced without debug information,
fromelf cannot:

• translate the image into other file formats

• produce a meaningful disassembly listing.

--select select_options

Use --select select_options together with either the
--fieldoffsets or --text -a options to select only those fields that
match the patterns in the option list for output or display.
8-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using fromelf
Use special characters to select multiple fields:

• Join options in the list together with a comma (,) as in:
a*,b*,c*.

• The wildcard character * can be used to match any name.

• The wildcard character ? can be used to match any single
letter.

• Specify the fields to include by prefixing a + to the
select_options string. This is the default.

• Specify the fields to exclude by prefixing a ~ to the
select_options string.

If you are using a special character on Sun Solaris or Red Hat
Linux, you must enclose the options in quotes to prevent the shell
expanding the selection.

--help Shows help and usage information. If this option is specified,
other command-line options are ignored. Calling fromelf without
any parameters produces the same help information.

memory_config Outputs multiple files for multiple memory banks.

The format of memory_config is --widthxbanks where:

width is the width of memory in the target memory system
(8-bit, 16-bit, 32-bit, or 64-bit).

banks specifies the number of memory banks in the target
memory system.

Valid configurations are:

--8x1
--8x2
--8x4
--16x1
--16x2
--32x1
--32x2
--64x1

fromelf uses the last specified configuration if more than one
configuration is specified.

If the image has one load region, fromelf generates banks files
with the following naming conventions:

• If there is one memory bank (banks =1) the output file is
named by the -o output_file argument.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-5

Using fromelf
• If there are multiple memory banks (banks >1), fromelf
generates banks number of files starting with output_file0
and finishing with output_file banks-1. For example:
fromelf --vhx --8x2 test.axf -o test

generates two files named test0 and test1.

If the image has multiple load regions, fromelf creates a directory
named output_file and generates bank files for each load region
named load region0 to load region banks-1.

The memory width specified by width controls the size of the
chunk of information read from the image and written to a file.
The first chunk read is allocated to the first file (output_file0), the
next chunk is allocated to the next file. After a chunk is allocated
to the last file, allocation begins again with the first file (that is, the
allocation is modulo based on the number of files). For example:

For a memory_config of --8x4

byte0 -> file0
byte1 -> file1
byte2 -> file2
byte3 -> file3
byte4 -> file0
...

For a memory_config of --16x2

halfword0 -> file0
halfword1 -> file1
halfword3 -> file0
...

--no_comment_section

Use with --elf to strip the .comment section from ELF output files,
to help reduce their size. This option has no effect on output
formats other than ELF. For ELF images that are dynamically
loaded to a target and which do not need to be debuggable, the
additional use of --no_debug can further reduce the size of the ELF
image.

--no_debug Do not put debug information in the output files. This is the
default for binary images. If --no_debug is specified, it affects all
output formats. It overrides the --text -g option.

Note
 This option can have unexpected effects if --elf is not specified

on the command line. The following command produces a text file
because no output format has been specified:
8-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using fromelf
fromelf --no_debug image -o image_nodb.axf

To get ELF format output use the options:

fromelf --no_debug --elf image.axf -o image_ndb.axf

--debugonly When used with --elf, removes the content of any code or data
sections. Use this option so that the output file contains only
information required for debug, for example, debug sections,
symbol table, and string table.

Section headers are retained because they are required to act as
targets for symbols.

This option affects only ELF output files.

--no_symbolversions

Turns off the decoding of symbol version tables. See Symbol
versioning on page 4-22 and the Base Platform ABI for the ARM
Architecture [BPABI] for more information.

--no_linkview Discards the section-level view (link time view) from the ELF
image and retain only the segment-level view (load time view).
Discarding the link-view section level eliminates:

• the section header table

• the section header string table

• the string table

• the symbol table

• all debug sections.

All that is left in the output is the program header table and the
program segments. According to the ELF specification, these are
all that a program loader can rely upon being present in an ELF
file.

Note
 This option can have unexpected effects if --elf is not specified

on the command line. To get ELF format output use the options:

fromelf --no_linkview --elf image.axf -o image_nlk.axf

--expandarrays Prints data addresses, including arrays that are expanded both
inside and outside structures.

This option can only be used in conjunction with --text -a.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-7

Using fromelf
--text Prints image information in text format. You can decode an ELF
image or ELF object file using this option. This is the default, that
is, if no code output format is specified, --text is assumed.

If output_file is not specified with the -o option, the information
is displayed on stdout.

Use one or more of the following options to specify what is
displayed:

-a Prints the global and static data addresses (including
addresses for structure and union contents). This option
can only be used on files containing debug information.
Use the --select option to output a subset of the data
addresses.

If you want to view the data addresses of arrays,
expanded both inside and outside structures, use the
--expandarrays option with this text category.

-c Disassembles code.

-d Prints contents of the data sections.

-e Decodes exception table information for objects. Use
with -c when disassembling images.

-g Prints debug information.

-r Prints relocation information.

-s Prints the symbol and versioning tables.

-t Prints the string table(s).

-v Prints detailed information on each segment and
section header of the image.

-y Prints dynamic segment contents.

-z Prints the code and data sizes.

These options are only recognized when the --text output format
is selected.

code_output_format Selects the binary or ELF output file options. code_output_format
can be one of:

--bin Plain binary. You can split output from this option into
multiple files with the memory_config option.

--m32 Motorola 32-bit format (32-bit S-records). This option
generates one output file for each load region in the
image. You can specify the base address of the output
with the --base option.
8-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using fromelf
--m32combined

Motorola 32-bit format (32-bit S-records). This option
generates one output file for an image containing
multiple load regions. You can specify the base address
of the output with the --base option.

--i32 Intel Hex-32 format. This option generates one output
file for each load region in the image. You can specify
the base address of the output with the --base option.

--i32combined

Intel Hex-32 format. This option generates one output
file for an image containing multiple load regions. You
can specify the base address of the output with the
--base option.

--vhx Byte Oriented (Verilog Memory Model) Hex format.
This format is suitable for loading into the memory
models of Hardware Description Language (HDL)
simulators. You can split output from this option into
multiple files with the memory_config option.

--elf ELF format (resaves as ELF). This can be used to
convert a debug ELF image into a no-debug ELF
image.

If you use fromelf to convert an ELF image containing multiple
load regions to a binary format using any of the --bin, --m32,
--i32, or --vhx options, fromelf creates an output directory named
output_file and generates one binary output file for each load
region in the input image. fromelf places the output files in the
output_file directory.

If you convert an ELF image containing multiple load regions
using either the --m32combined or --i32combined option, fromelf
creates an output directory named output_file, generates one
binary output file for all load regions in the input image, and then
places the output file in the output_file directory.

ELF images contain multiple load regions if, for example, they are
built with a scatter-loading description file that defines more than
one load region.

--vsn Displays fromelf version information.
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-9

Using fromelf
--output output_file

Specifies the name of the output file, or the name of the output
directory if multiple output files are created (see the description of
text_output_format and code_output_format for more
information). Specifying the output file is optional with the --text
output option but is mandatory with all other outputs.

input_file Specifies the ELF file to be translated.

fromelf accepts only ARM executable ELF files and ARM object
ELF files (.o). If input_file is a scatter-loaded image that
contains more than one load region and the output format is one
of --bin, --m32, --i32, or --vhx, fromelf creates a separate file for
each load region.

If input_file is a scatter-loaded image that contains more than one
load region and the output format is either --m32combined or
--i32combined, fromelf creates a single file containing all load
regions.

8.2.1 Ordering command-line options

In general, command-line options can appear in any order. However, the effects of some
options depend on how they are combined with other related options.

Where options override previous options on the same command line, the last one found
takes precedence. Where an option does not follow this rule, this is noted in the
description. Use the --show_cmdline option to see how fromelf has processed the
command line. The commands are shown normalized, and the contents of any via files
are expanded.
8-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

Using fromelf
8.3 Examples of fromelf usage

This section contains examples of using fromelf to change image format or extract
information from an ELF file.

Note
 If you are using a wildcard character on Sun Solaris or Red Hat Linux, for example, *,
? or ~, you must enclose the options in quotes to prevent the shell expanding the
selection.

For example, enter ’*, ~*.*’ instead of *, ~*.*.

This section describes:

• Producing a plain binary file

• Disassembly

• Listing field offsets as assembly language EQUs

• Listing addresses of static data on page 8-12

• Converting debug to no debug on page 8-12.

8.3.1 Producing a plain binary file

To convert an ELF file to a plain binary (.bin) file, use:

fromelf --bin -o outfile.bin infile.axf

8.3.2 Disassembly

To produce a listing to stdout that contains the disassembled version of an ELF file, use:

fromelf -c infile.axf

To produce a plain text output file that contains the disassembled version of an ELF file
and the symbol table, use:

fromelf -c -s -o outfile.lst infile.axf

8.3.3 Listing field offsets as assembly language EQUs

To produce an output listing to stdout that contains all the field offsets from all
structures in the file inputfile.o, use:

fromelf --fieldoffsets inputfile.o

To produce an output file listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o that have a name starting with p, use:
ARM DUI 0206G Copyright © 2002-2006 ARM Limited. All rights reserved. 8-11

Using fromelf
fromelf --fieldoffsets --select p* -o outputfile.a inputfile.o

To produce an output listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o with names of tools or moretools, use:

fromelf --fieldoffsets --select tools.*, moretools.* -o outputfile.a inputfile.o

To produce an output file listing to outputfile.a that contains all the field offsets of
structure fields whose name starts with number and are within structure field top in
structure tools in the file inputfile.o, use:

fromelf --fieldoffsets --select tools.top.number* -o outputfile.a inputfile.o

8.3.4 Listing addresses of static data

To list to stdout all the global and static data variables and all the structure field
addresses, use:

fromelf --text -a --select * infile.axf

Selecting only structures

To produce a text file containing all of the structure addresses in inputfile.axf but none
of the global or static data variable information, use:

fromelf --text -a --select *.* -o strucaddress.txt infile.axf

Selecting only nested structures

To produce a text file containing addresses of the nested structures only, use:

fromelf --text -a --select *.*.* -o strucaddress.txt infile.axf

Selecting only variables

To produce a text file containing all of the global or static data variable information in
inputfile.axf but none of the structure addresses, use:

fromelf --text -a --select *, ~*.* -o strucaddress.txt infile.axf

8.3.5 Converting debug to no debug

To produce a new output file equivalent to using the --no_debug option from an ELF file
originally produced with the --debug option, use:

fromelf --no_debug --elf -o outfile.axf infile.axf
8-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0206G

	RealView Compilation Tools Linker and Utilities Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on RealView Compilation Tools
	Feedback on this book

	Introduction
	1.1 About RVCT
	1.1.1 Using the examples

	1.2 About the linker and utilities
	1.2.1 armlink
	1.2.2 fromelf
	1.2.3 armar
	1.2.4 Compatibility with legacy objects and libraries

	The Linker Command Syntax
	2.1 About armlink
	2.1.1 Input to armlink
	2.1.2 Output from armlink
	2.1.3 Ordering command-line options
	2.1.4 Specifying command-line options with an environment variable
	2.1.5 Summary of linker options

	2.2 armlink command syntax
	2.2.1 Accessing help and information
	2.2.2 Specifying an input file list
	2.2.3 Controlling linker behavior
	2.2.4 Specifying the output type and the output filename
	2.2.5 Specifying memory map information for the image
	2.2.6 Controlling debug information
	2.2.7 Controlling image contents
	2.2.8 Controlling veneer generation
	2.2.9 Specifying Byte Addressing mode
	2.2.10 Generating image-related information
	2.2.11 Controlling linker diagnostics
	2.2.12 Using a via file
	2.2.13 Miscellaneous
	2.2.14 Controlling compatibility with legacy objects

	Using the Basic Linker Functionality
	3.1 Specifying the image structure
	3.1.1 Building blocks for objects and images
	3.1.2 Load view and execution view of an image
	3.1.3 Specifying an image memory map
	3.1.4 Image entry points

	3.2 Section placement
	3.2.1 Ordering input sections by attribute
	3.2.2 Using FIRST and LAST to place sections
	3.2.3 Aligning sections
	3.2.4 Ordering execution regions containing Thumb code

	3.3 Optimizations and modifications
	3.3.1 Common debug section elimination
	3.3.2 Common group or section elimination
	3.3.3 Unused section elimination
	3.3.4 Unused function elimination
	3.3.5 Linker feedback
	3.3.6 RW data compression
	3.3.7 Veneer generation
	3.3.8 Reuse of veneers with overlay execution regions
	3.3.9 Branch inlining

	3.4 Using command-line options to create simple images
	3.4.1 Type 1, one load region and contiguous output regions
	3.4.2 Type 2, one load region and non-contiguous output regions
	3.4.3 Type 3, two load regions and non-contiguous output regions

	3.5 Using command-line options to handle C++ exceptions
	3.6 Getting information about images
	3.6.1 Column details
	3.6.2 Row details

	Accessing Image Symbols
	4.1 ARM/Thumb synonyms
	4.2 Accessing linker-defined symbols
	4.2.1 Region-related symbols
	4.2.2 Section-related symbols
	4.2.3 Importing linker-defined symbols

	4.3 Accessing symbols in another image
	4.3.1 Creating a symdefs file
	4.3.2 Reading a symdefs file
	4.3.3 Symdefs file format

	4.4 Hiding and renaming global symbols
	4.4.1 Steering file format
	4.4.2 Steering file commands

	4.5 Using $Super$$ and $Sub$$ to override symbol definitions
	4.6 Symbol versioning
	4.6.1 Version
	4.6.2 Default version
	4.6.3 Creating versioned symbols

	Using Scatter-loading Description Files
	5.1 About scatter-loading
	5.1.1 Symbols defined for scatter-loading
	5.1.2 Specifying stack and heap
	5.1.3 When to use scatter-loading
	5.1.4 Scatter-loading command-line option
	5.1.5 Images with a simple memory map
	5.1.6 Images with a complex memory map

	5.2 Formal syntax of the scatter-loading description file
	5.2.1 BNF notation and syntax
	5.2.2 Overview of the syntax of scatter-loading description files
	5.2.3 Load region description
	5.2.4 Execution region description
	5.2.5 Input section description
	5.2.6 Resolving multiple matches
	5.2.7 Resolving path names

	5.3 Examples of specifying region and section addresses
	5.3.1 Selecting veneer input sections in scatter-loading descriptions
	5.3.2 Creating root execution regions
	5.3.3 Placing regions at fixed addresses
	5.3.4 Using overlays to place sections
	5.3.5 Assigning sections to a root region
	5.3.6 Reserving an empty region
	5.3.7 Placing ARM libraries
	5.3.8 Using preprocessing directives

	5.4 Equivalent scatter-loading descriptions for simple images
	5.4.1 Type 1, one load region and contiguous output regions
	5.4.2 Type 2, one load region and non-contiguous output regions
	5.4.3 Type 3, two load regions and non-contiguous output regions

	System V Shared Libraries
	6.1 Introduction
	6.1.1 Getting more information

	6.2 Using SVr4 shared libraries
	6.2.1 Building an ARM Linux executable
	6.2.2 Accessing symbols
	6.2.3 Exception tables
	6.2.4 Thread Local Storage
	6.2.5 Using a dynamic linker

	Creating and Using Libraries
	7.1 About libraries
	7.2 Library searching, selection, and scanning
	7.2.1 Searching for ARM libraries
	7.2.2 Searching for user libraries
	7.2.3 Scanning the libraries

	7.3 The ARM librarian
	7.3.1 Librarian command-line options
	7.3.2 Ordering command-line options
	7.3.3 Examples of armar usage

	Using fromelf
	8.1 About fromelf
	8.1.1 Image structure

	8.2 fromelf command syntax
	8.2.1 Ordering command-line options

	8.3 Examples of fromelf usage
	8.3.1 Producing a plain binary file
	8.3.2 Disassembly
	8.3.3 Listing field offsets as assembly language EQUs
	8.3.4 Listing addresses of static data
	8.3.5 Converting debug to no debug

