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Preface

This preface introduces the RealView Compilation Tools Compiler User Guide. It contains the 
following sections:

• About this book on page viii

• Feedback on page xii.
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Preface 
About this book
This book provides you with information on RealView Compilation Tools (RVCT), and gives an 
overview of the command-line options and compiler-specific features that are supported by the 
ARM compiler and the NEON™ vectorizing compiler.

Intended audience

This book is written for all developers who are producing applications using RVCT. It assumes 
that you are an experienced software developer. See the RealView Compilation Tools Essentials 
Guide for an overview of the ARM development tools provided with RVCT.

Using this book

This book is organized into the following chapters and appendixes:

Chapter 1 Introduction 

Read this chapter for an overview of the ARM compiler, the conformance 
standards and the C and C++ Libraries.

Chapter 2 Getting started with the ARM Compiler 

Read this chapter for an overview of the command-line options and 
compiler-specific features. It describes how to invoke the compiler, how to pass 
options to other RVCT tools and how to control diagnostic messages.

Chapter 3 Using the NEON Vectorizing Compiler 

Read this chapter for a tutorial on the NEON vectorizing compiler. It provides you 
with an understanding of the NEON unit and explains how to take advantage of 
the automatic vectorizing features.

Chapter 4 Compiler Features 

Read this chapter for an overview of the intrinsics supported by the ARM 
compiler.

Chapter 5 Coding Practices 

Read this chapter for an overview of good programming practice for RVCT.

Chapter 6 Diagnostic Messages 

Read this chapter for an overview of the diagnostic messages produced by the 
RVCT tools.

Chapter 7 Using the Inline and Embedded Assemblers 

Read this chapter for a description of the inline and embedded assemblers 
provided by the ARM compiler.

This book assumes that the ARM software is installed in the default location. For example, on 
Windows this might be volume:\Program Files\ARM. This is assumed to be the location of 
install_directory when referring to path names, for example 
install_directory\Documentation\.... You might have to change this if you have installed your 
ARM software in a different location.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. viii
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Preface 
Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file and 
program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The underlined text 
can be entered instead of the full command or option name.

monospace italic 

Denotes arguments to commands and functions where the argument is to be 
replaced by a specific value.

monospace bold 

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes internal 
cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for emphasis in 
descriptive lists, where appropriate, and for ARM processor signal names.

Further reading

This section lists publications from both ARM and third parties that provide additional 
information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://infocenter.arm.com/help/index.jsp for current errata sheets and addenda, and the ARM 
Frequently Asked Questions (FAQs).

ARM publications

This book contains reference information that is specific to development tools supplied with 
RVCT. Other publications included in the suite are:

• RVCT Essentials Guide (ARM DUI 0202)

• RVCT Compiler Reference Guide (ARM DUI 0348)

• RVCT Libraries and Floating Point Support Guide (ARM DUI 0349)

• RVCT Linker User Guide (ARM DUI 0206)

• RVCT Linker Reference Guide (ARM DUI 0381)

• RVCT Utilities Guide (ARM DUI 0382)

• RVCT Assembler Guide (ARM DUI 0204)

• RVCT Developer Guide (ARM DUI 0203)

A glossary is provided in the RVDS Getting Started Guide.

For full information about the base standard, software interfaces, and standards supported by 
ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM products:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARM datasheet or technical reference manual for your hardware device.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. ix
ID121310 Non-Confidential



Preface 
Other publications

This book is not intended to be an introduction to the C or C++ programming languages. It does 
not try to teach programming in C or C++, and it is not a reference manual for the C or C++ 
standards. Other books provide general information about programming.

The following publications describe the C++ language:

• ISO/IEC 14882:2003, C++ Standard.

• Stroustrup, B., The C++ Programming Language (3rd edition, 1997). Addison-Wesley 
Publishing Company, Reading, Massachusetts. ISBN 0-201-88954-4.

The following books provide general C++ programming information:

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley Publishing 
Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use today.

• Vandevoorde, D and Josuttis, N.M. C++ Templates: The Complete Guide (2003). 
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN 0-201-73484-2.

• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company, Reading, 
Massachusetts. ISBN 0-201-56364-9.

This provides short, specific, guidelines for effective C++ development.

• Meyers, S., More Effective C++ (2nd edition, 1997). Addison-Wesley Publishing 
Company, Reading, Massachusetts. ISBN 0-201-92488-9.

The following publications provide general C programming information:

• ISO/IEC 9899:1999, C Standard.

The standard is available from national standards bodies (for example, AFNOR in France, 
ANSI in the USA).

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). 
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This book is co-authored by the original designer and implementor of the C language, and 
is updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (5th edition, 2002). Prentice-Hall, 
Englewood Cliffs, NJ, USA. ISBN 0-13-089592-X.

This is a very thorough reference guide to C, including useful information on ANSI C.

• Plauger, P., The Standard C Library (1991). Prentice-Hall, Englewood Cliffs, NJ, USA. 
ISBN 0-13-131509-9.

This is a comprehensive treatment of ANSI and ISO standards for the C Library.

• Koenig, A., C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN 
0-201-17928-8.

This explains how to avoid the most common traps in C programming. It provides 
informative reading at all levels of competence in C.

See http://www.dwarfstd.org for the latest information about the Debug With Arbitrary Record 
Format (DWARF) debug table standards and Executable and Linking Format (ELF) 
specifications.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. x
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Preface 
The following publications provide information about the European Telecommunications 
Standards Institute (ETSI) basic operations. They are all available from the telecommunications 
bureau of the International Telecommunications Union (ITU) at http://www.itu.int.

• ETSI Recommendation G.191: Software tools for speech and audio coding 
standardization

• ITU-T Software Tool Library 2005 User's manual, included as part of ETSI 
Recommendation G.191

• ETSI Recommendation G723.1: Dual rate speech coder for multimedia communications 
transmitting at 5.3 and 6.3 kbit/s

• ETSI Recommendation G.729: Coding of speech at 8 kbit/s using conjugate-structure 
algebraic-code-excited linear prediction (CS-ACELP).

Publications providing information about Texas Instruments compiler intrinsics are available 
from Texas Instruments at http://www.ti.com.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. xi
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Preface 
Feedback
ARM welcomes feedback on both RVCT and the documentation.

Feedback on RealView Compilation Tools

If you have any problems with RVCT, contact your supplier. To help them provide a rapid and 
useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, operating 
system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tools, including the version number and build numbers.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. xii
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Chapter 1 
Introduction

This chapter introduces the ARM® compiler provided with RVCT. It describes the 
standards of conformance and gives an overview of the runtime libraries provided with 
RVCT. It contains the following sections:

• About the ARM compiler on page 1-2

• About the NEON vectorizing compiler on page 1-3

• Source language modes on page 1-4

• The C and C++ libraries on page 1-5.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 1-1
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Introduction 
1.1 About the ARM compiler
The ARM compiler, armcc, is an optimizing C and C++ compiler that compiles Standard 
C and Standard C++ source code into machine code for ARM architecture-based 
processors. It complies with the Base Standard Application Binary Interface for the 
ARM Architecture (BSABI) and generates output objects in ELF format with support 
for DWARF 3 debug tables. It uses the Edison Design Group (EDG) front-end.

If you are upgrading to RVCT from a previous release or are new to RVCT, ensure that 
you read RVCT Essentials Guide for the most recent information.
1-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
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Introduction 
1.2 About the NEON vectorizing compiler

NEON™ is an implementation of the ARM Advanced Single Instruction, Multiple Data 
(SIMD) Extension.

RVCT provides armcc --vectorize, a vectorizing mode of the ARM compiler, that 
targets ARM processors with a NEON unit, such as the Cortex-A8 and the Cortex-A9.

Note
 To compile for Cortex-A9 targets, you must have a license for RealView Development 
Suite Professional.

Vectorizing means that the compiler generates NEON vector instructions directly from 
C or C++ code.

As an alternative to automatic compiler vectorization, RVCT also supports NEON 
intrinsics as an intermediate step for SIMD code generation between a vectorizing 
compiler and writing assembler code.

See:

• Chapter 3 Using the NEON Vectorizing Compiler

• NEON Intrinsics on page 4-9

• Appendix E Using NEON Support in the Compiler Reference Guide.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 1-3
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Introduction 
1.3 Source language modes
The ARM compiler has three distinct source language modes that you can use to 
compile different varieties of C and C++ source code:

ISO C90 The ARM compiler compiles C as defined by the 1990 C standard and 
addenda.

Use the compiler option --c90 to compile C90 code. This is the default.

ISO C99 The ARM compiler compiles C as defined by the 1999 C standard and 
addenda.

Use the compiler option --c99 to compile C99 code.

ISO C++ The ARM compiler compiles C++ as defined by the 2003 standard, 
excepting wide streams and export templates.

Use the compiler option --cpp to compile C++ code.

The compiler provides support for numerous extensions to the C and C++ languages. 
For example, some GNU compiler extensions are supported. The compiler has several 
modes where compliance to a source language is either enforced or relaxed:

Strict mode In strict mode the compiler enforces compliance with the language 
standard relevant to the source language.

To compile in strict mode, use the command-line option --strict. 

GNU mode In GNU mode all the GNU compiler extensions to the relevant source 
language are available.

To compile in GNU mode, use the compiler option --gnu.

For more information on source language modes and language compliance, see New 
features of C99 on page 5-45. In addition, see:

• Source language modes on page 1-3 in the Compiler Reference Guide

• Language extensions and language compliance on page 1-5 in the Compiler 
Reference Guide

• --c90 on page 2-22 in the Compiler Reference Guide

• --c99 on page 2-22 in the Compiler Reference Guide

• --cpp on page 2-30 in the Compiler Reference Guide

• --gnu on page 2-67 in the Compiler Reference Guide

• --strict, --no_strict on page 2-119 in the Compiler Reference Guide.
1-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
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Introduction 
1.4 The C and C++ libraries
RVCT provides the following runtime C and C++ libraries:

The ARM C libraries 

The ARM C libraries provide standard C functions, and helper functions 
used by the C and C++ libraries.

The ARM libraries comply with:

• the C Library ABI for the ARM Architecture (CLIBABI)

• the C++ ABI for the ARM Architecture (CPPABI).

See:

• The C and C++ libraries on page 1-8 in the Compiler Reference 
Guide

• ABI for the ARM Architecture compliance on page 1-4 in the 
Libraries Guide.

Rogue Wave Standard C++ Library version 2.02.03 

The Rogue Wave Standard C++ Library, as supplied by Rogue Wave 
Software, Inc., provides standard C++ functions and objects such as cout. 
It also includes data structures and algorithms known as the Standard 
Template Library (STL). 

For more information on the Rogue Wave libraries, see the Rogue Wave 
HTML documentation and the Rogue Wave web site at: 
http://www.roguewave.com

Support libraries 

The ARM C libraries provide additional components to enable support 
for C++ and to compile code for different architectures and processors.

The C and C++ libraries are provided as binaries only. There are variants of the C and 
C++ libraries for each combination of major build options, such as the byte order of the 
target system, whether interworking is selected, and whether floating-point support is 
selected.

See Chapter 2 The C and C++ Libraries in the Libraries Guide.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 1-5
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Chapter 2 
Getting started with the ARM Compiler

This chapter outlines the command-line options accepted by the ARM compiler, armcc. 
It describes how to invoke the compiler, how to pass options to other RVCT tools and 
how to control diagnostic messages. It contains the following sections:

• Using command-line options on page 2-2

• File naming conventions on page 2-12

• Header files on page 2-14

• Precompiled header files on page 2-17

• Specifying the target processor or architecture on page 2-23

• Specifying the procedure call standard (AAPCS) on page 2-24

• Using linker feedback on page 2-26

• Adding symbol versions on page 2-29.

See the Compiler Reference Guide.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 2-1
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Getting started with the ARM Compiler 
2.1 Using command-line options
You can control many aspects of compiler operation with command-line options. 

The following rules apply, depending on the type of option:

Single-letter options 

All single-letter options, or single-letter options with arguments, are 
preceded by a single dash -. You can use a space between the option and 
the argument, or the argument can immediately follow the option. For 
example:

-J directory

-Jdirectory

Keyword options 

All keyword options, or keyword options with arguments, are preceded 
by a double dash --. An = or space character is required between the 
option and the argument. For example:

--depend=file.d

--depend file.d

Compiler options that contain non-leading - or _ can use either of these characters. For 
example, --force_new_nothrow is the same as --force-new-nothrow.

To compile files with names starting with a dash, use the POSIX option -- to specify 
that all subsequent arguments are treated as filenames, not as command switches. For 
example, to compile a file named -ifile_1, use:

armcc -c -- -ifile_1

2.1.1 Invoking the ARM compiler

The command for invoking the ARM compiler is:

armcc [help-options] [source-language] [search-paths] [project-template-options] 
[PCH-options] [preprocessor-options] [C++-language] [output-format] 
[target-options] [debug-options] [code-generation-options] 
[optimization-options] [diagnostic-options] [additional-checks] [PCS-options] 
[pass-thru-options] [arm-linux-options] [source]

See Chapter 2 Compiler Command-line Options in the Compiler Reference Guide for 
more information on each of the following options:

help-options Shows the main command-line options, the version number of the 
compiler and how the compiler has processed the command line:

• --help on page 2-71
2-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
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Getting started with the ARM Compiler 
• --show_cmdline on page 2-116

• --vsn on page 2-134.

source-language Specifies the source language variants accepted by the compiler:

• --c90 on page 2-22

• --c99 on page 2-22

• --compile_all_input, --no_compile_all_input on page 2-24

• --cpp on page 2-30

• --gnu on page 2-67

• --strict, --no_strict on page 2-119

• --strict_warnings on page 2-120.

These language options can be combined. For example: 

armcc --c90 --gnu

search-paths Specifies the directories to search for included files:

• -Idir[,dir,...] on page 2-72

• -Jdir[,dir,...] on page 2-77

• --kandr_include on page 2-78

• --preinclude=filename on page 2-105

• --reduce_paths, --no_reduce_paths on page 2-109

• --sys_include on page 2-121.

See Header files on page 2-14 for more information on how these 
options work together.

project-template-options 

Controls the behavior of project templates:

• --project=filename, --no_project on page 2-107

• --reinitialize_workdir on page 2-110

• --workdir=directory on page 2-136.

PCH-options Controls the processing of PCH files:

• --create_pch=filename on page 2-34

• --pch on page 2-101

• --pch_dir=dir on page 2-101

• --pch_messages, --no_pch_messages on page 2-102

• --pch_verbose, --no_pch_verbose on page 2-102

• --use_pch=filename on page 2-129.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 2-3
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Getting started with the ARM Compiler 
preprocessor-options 

Specifies preprocessor behavior, including preprocessor output 
and macro definitions:

• -C on page 2-22

• --code_gen, --no_code_gen on page 2-23

• -Dname[(parm-list)][=def] on page 2-35

• -E on page 2-52

• -M on page 2-88

• -Uname on page 2-127.

C++-language Specifies options specific to C++ compilation:

• --anachronisms, --no_anachronisms on page 2-3

• --dep_name, --no_dep_name on page 2-39

• --export_all_vtbl, --no_export_all_vtbl on page 2-55

• --force_new_nothrow, --no_force_new_nothrow on 
page 2-57

• --friend_injection, --no_friend_injection on page 2-66

• --guiding_decls, --no_guiding_decls on page 2-70

• --implicit_include, --no_implicit_include on page 2-73

• --implicit_include_searches, 
--no_implicit_include_searches on page 2-73

• --implicit_typename, --no_implicit_typename on page 2-74

• --nonstd_qualifier_deduction, 
--no_nonstd_qualifier_deduction on page 2-94

• --old_specializations, --no_old_specializations on 
page 2-98

• --parse_templates, --no_parse_templates on page 2-100

• --pending_instantiations=n on page 2-103

• --rtti, --no_rtti on page 2-114

• --using_std, --no_using_std on page 2-130

• --vfe, --no_vfe on page 2-132.

output-format Specifies the format for the compiler output. You can use these 
options to generate object files, assembly language output listing 
files, and make file dependency files:

• --asm on page 2-16

• -c on page 2-21

• --default_extension=ext on page 2-38

• --depend=filename on page 2-40
2-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
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Getting started with the ARM Compiler 
• --depend_format=string on page 2-41

• --depend_system_headers, --no_depend_system_headers 
on page 2-42

• --info=totals on page 2-74

• --interleave on page 2-76

• --list on page 2-82

• --md on page 2-89

• -o filename on page 2-95

• -S on page 2-114

• --split_sections on page 2-118.

target-options Specifies the target processor or architecture and the target 
instruction set in use at startup:

• --arm on page 2-8

• --compatible=name on page 2-23

• --cpu=list on page 2-30

• --cpu=name on page 2-30

• --fpu=list on page 2-62

• --fpu=name on page 2-62

• --thumb on page 2-122.

See Specifying the target processor or architecture on page 2-23.

half-precision floating-point option 

Enables the use of half-precision floating-point numbers as an 
optional extension to the VFPv3 architecture:

• --fp16_format=format on page 2-59.

debug-options Controls the format and generation of debug tables:

• --debug, --no_debug on page 2-37

• --debug_macros, --no_debug_macros on page 2-37

• --dwarf2 on page 2-51

• --dwarf3 on page 2-51

• -g on page 2-66

• --remove_unneeded_entities, 
--no_remove_unneeded_entities on page 2-111.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 2-5
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code-generation-options 

Specifies the code generation options for the ARM compiler, 
including endianness, symbol visibility, and alignment criteria:

• --alternative_tokens, --no_alternative_tokens on page 2-3

• --bigend on page 2-17

• --bss_threshold=num on page 2-20

• --dllexport_all, --no_dllexport_all on page 2-50

• --dllimport_runtime, --no_dllimport_runtime on page 2-50

• --dollar, --no_dollar on page 2-51

• --enum_is_int on page 2-53

• --exceptions, --no_exceptions on page 2-54

• --exceptions_unwind, --no_exceptions_unwind on 
page 2-54

• --export_all_vtbl, --no_export_all_vtbl on page 2-55

• --export_defs_implicitly, --no_export_defs_implicitly on 
page 2-55

• --extended_initializers, --no_extended_initializers on 
page 2-56

• --hide_all, --no_hide_all on page 2-71

• --littleend on page 2-85

• --locale=lang_country on page 2-86

• --loose_implicit_cast on page 2-87

• --message_locale=lang_country[.codepage] on page 2-90

• --min_array_alignment=opt on page 2-91

• --multibyte_chars, --no_multibyte_chars on page 2-92

• --narrow_volatile_bitfields on page 2-94

• --pointer_alignment=num on page 2-104

• --restrict, --no_restrict on page 2-112

• --signed_bitfields, --unsigned_bitfields on page 2-116

• --signed_chars, --unsigned_chars on page 2-117

• --split_ldm on page 2-117

• --unaligned_access, --no_unaligned_access on page 2-128

• --vectorize, --no_vectorize on page 2-131

• --vla, --no_vla on page 2-133

• --wchar16 on page 2-135

• --wchar32 on page 2-135.
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optimization-options 

Controls the level and type of code optimization:

• --autoinline, --no_autoinline on page 2-17

• --data_reorder, --no_data_reorder on page 2-36

• --forceinline on page 2-58

• --fpmode=model on page 2-59

• --inline, --no_inline on page 2-75

• --library_interface=lib on page 2-79

• --library_type=lib on page 2-81

• --lower_ropi, --no_lower_ropi on page 2-87

• --lower_rwpi, --no_lower_rwpi on page 2-87

• --multifile, --no_multifile on page 2-92

• -Onum on page 2-96

• -Ospace on page 2-99

• -Otime on page 2-99

• --retain=option on page 2-113.

Note
 Optimization criteria can limit the debug information generated 

by the compiler.

diagnostic-options 

Controls the diagnostic messages output by the compiler:

• --brief_diagnostics, --no_brief_diagnostics on page 2-19

• --diag_error=tag[,tag,...] on page 2-44

• --diag_remark=tag[,tag,... ] on page 2-45

• --diag_style={arm|ide|gnu} on page 2-46

• --diag_suppress=tag[,tag,...] on page 2-47

• --diag_suppress=optimizations on page 2-47

• --diag_warning=tag[,tag,...] on page 2-48

• --diag_warning=optimizations on page 2-49

• --errors=filename on page 2-53

• --remarks on page 2-111

• -W on page 2-134

• --wrap_diagnostics, --no_wrap_diagnostics on page 2-137.

See Chapter 6 Diagnostic Messages.
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command-line option file 

Specifies a file containing additional command-line options:

• --via=filename on page 2-132.

multiple compilations 

Specifies the feedback file that contains information about a 
previous build:

• --feedback=filename on page 2-56

• --profile=filename on page 2-107.

PCS-options Specifies the procedure call standard to use:

• --apcs=qualifer...qualifier on page 2-4.

See Specifying the procedure call standard (AAPCS) on 
page 2-24.

pass-thru-options Instructs the compiler to pass options to other RVCT tools:

• -Aopt on page 2-2

• -Lopt on page 2-79.

arm-linux-options Specifies options to configure RVCT for use with ARM Linux, 
and to build applications and shared libraries targeting ARM 
Linux:

• --arm_linux_configure on page 2-12

• --arm_linux_config_file=path on page 2-10 

• --configure_gcc=path on page 2-27

• --configure_gld=path on page 2-28

• --configure_sysroot=path on page 2-29

• --configure_cpp_headers=path on page 2-24

• --configure_extra_includes=paths on page 2-25

• --configure_extra_libraries=paths on page 2-26

• --arm_linux on page 2-9

• --arm_linux_paths on page 2-13

• --shared on page 2-115

• --translate_gcc on page 2-124

• --translate_g++ on page 2-122

• --translate_gld on page 2-125.

source Provides the filenames of one or more text files containing C or 
C++ source code. By default, the compiler looks for source files, 
and creates output files, in the current directory.
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If a source file is an assembly file, that is, one with an extension 
of .s, the compiler activates the ARM assembler to process the 
source file.

This option is not used for arm-linux-options. It is mandatory for 
all other options.

The ARM compiler accepts one or more input files, for example:

armcc -c [options] ifile_1 ... ifile_n

Specifying a dash - for an input file causes the compiler to read from stdin. To specify 
that all subsequent arguments are treated as filenames, not as command switches, use 
the POSIX option --. See Using command-line options on page 2-2.

Default behavior

The compiler startup configuration is determined by the compiler according to the 
specified command-line options and the filename extensions. Command-line options 
override the default configuration determined by the filename extension. The compiler 
startup language can be C or C++ and the instruction set can be ARM or Thumb.

When you compile multiple files with a single command, all files must be of the same 
type, either C or C++. The compiler cannot switch the language based on the file 
extension. The following example produces an error, because the specified source files 
have different languages:

armcc -c test1.c test2.cpp

If you specify files with conflicting file extensions you can force the compiler to 
compile both files for C or for C++, regardless of file extension. For example:

armcc -c --cpp test1.c test2.cpp

Where an unrecognized extension begins with .c, for example, filename.cmd, an error 
message is generated.

Support for processing PreCompiled Header (PCH) files is not available when you 
specify multiple source files in a single compilation. If you request PCH processing and 
specify more than one primary source file, the compiler issues an error message, and 
aborts the compilation.

See Precompiled header files on page 2-17.
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2.1.2 Ordering command-line options

In general, command-line options can appear in any order in a single compiler 
invocation. However, the effects of some options depend on the order they appear in the 
command line and how they are combined with other related options, for example, 
optimization options prefixed by -O, or PCH options. See Precompiled header files on 
page 2-17.

The compiler enables you to use multiple options even where these might conflict. This 
means that you can append new options to an existing command line, for example, in a 
make file or via file.

Where options override previous options on the same command line, the last one found 
always takes precedence. For example:

armcc -O1 -O2 -Ospace -Otime ...

is executed by the compiler as:

armcc -O2 -Otime

To see how the compiler has processed the command line, use the --show_cmdline 
option. This shows nondefault options that the compiler used. The contents of any via 
files are expanded. In the example used here, although the compiler executes armcc -O2 
-Otime, the output from --show_cmdline does not include -O2. This is because -O2 is the 
default optimization level, and --show_cmdline does not show options that apply by 
default.

2.1.3 Specifying command-line options with an environment variable

You can specify command-line options by setting the value of the RVCT40_CCOPT 
environment variable. The syntax is identical to the command line syntax. The compiler 
reads the value of RVCT40_CCOPT and inserts it at the front of the command string. This 
means that options specified in RVCT40_CCOPT can be overridden by arguments on the 
command-line.

2.1.4 Autocompleting command-line options

You can optionally request the autocompletion of command-line options. To do this, 
place a dot (.) after the characters to be autocompleted. Autocompletion only applies to 
keyword options.

Arguments must be separated from the dot by an equals (=) character or space character. 
You cannot use autocompletion for the arguments to an option.

You must include sufficient characters to make the autocompleted option unique. For 
example, use --diag_su.=223 to specify --diag_suppress=223 on the command line.
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See Using command-line options on page 2-2.

2.1.5 Reading compiler options from a file

When the operating system restricts the command line length, you can include 
additional command-line options in a file with the compiler option:

--via filename

The compiler opens the specified file and reads additional command-line options from 
it.

See Appendix A Via File Syntax in the Compiler Reference Guide.

2.1.6 Specifying stdin input

Use minus (–) as the source filename to instruct the compiler to take input from stdin. 
The default compiler mode is C.

To terminate input, enter:

• Ctrl-Z then Return on Microsoft Windows systems

• Ctrl-D on Red Hat Linux systems.

An assembly listing for the keyboard input is sent to the output stream after input has 
been terminated if both the following are true:

• no output file is specified

• no preprocessor-only option is specified, for example -E.

If you specify an output file with the -o option, an object file is written. If you specify 
the -E option, the preprocessor output is sent to the output stream. If you specify the -o- 
option, the output is sent to stdout.
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2.2 File naming conventions
The ARM compiler uses filename suffixes to identify the classes of file involved in 
compilation and in the link stage. The filename suffixes recognized by the compiler are 
described in Table 2-1.

Table 2-1 Filename suffixes recognized by the ARM compiler

Suffix Description Usage notes

.c C source file Implies --c90

.cpp

.c++

.cxx

.cc

.CC

C++ source file Implies --cpp

The compiler uses the suffixes .cc and .CC to identify files 
for implicit inclusion. See Implicit inclusion on page 5-15 
in the Compiler Reference Guide.

.d Dependency list 
file

.d is the default output filename suffix for files output 
using the --md option.

.h C or C++ header 
file

--cpp --arm

.o

.obj

ARM, Thumb, 
or mixed ARM 
and Thumb 
object file in 
ELF format.

.s ARM, Thumb, 
or mixed ARM 
and Thumb 
assembly 
language source 
file.

For files in the input file list suffixed with .s, the compiler 
invokes the assembler, armasm, to assemble the file.

.s is the default output filename suffix for files output 
using either the option -S or --asm.

.lst Error and 
warning list file

.lst is the default output filename suffix for files output 
using the --list option.

.pch Precompiled 
header file

.pch is the default output filename suffix for files output 
using the --pch option.

.txt Text file .txt is the default output filename suffix for files output 
using the -S or --asm option in combination with the 
--interleave option.
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2.2.1 Portability

To assist portability between hosts, use the following guidelines: 

• Ensure that filenames do not contain spaces. If you have to use path names or 
filenames containing spaces, enclose the path and filename in double (") or single 
(') quotes.

• Make embedded path names relative rather than absolute.

• Use forward slashes (/) in embedded path names, not backslashes (\).

2.2.2 Output files

By default, the output files created by an ARM compiler are located in the current 
directory. Object files are written in ARM Executable and Linkable Format (ELF). The 
ELF documentation is available in install_directory\Documentation\Specifications\.
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2.3 Header files
Several factors affect the way the ARM compiler searches for #include header files and 
source files. These include: 

• the value of the environment variable RVCT40INC

• the -I and -J compiler options

• the --kandr_include and --sys_include compiler options

• whether the filename is an absolute filename or a relative filename

• whether the filename is between angle brackets or double quotes.

See:

• -Idir[,dir,...] on page 2-72 in the Compiler Reference Guide

• -Jdir[,dir,...] on page 2-77 in the Compiler Reference Guide

• --kandr_include on page 2-78 in the Compiler Reference Guide

• --sys_include on page 2-121 in the Compiler Reference Guide

• Command-line options on page 2-2 in the Compiler Reference Guide.

2.3.1 The current place

By default, the ARM compiler uses Berkeley UNIX search rules, so source files and 
#include header files are searched for relative to the current place. This is the directory 
containing the source or header file currently being processed by the compiler.

When a file is found relative to an element of the search path, the directory containing 
that file becomes the new current place. When the compiler has finished processing that 
file, it restores the previous current place. At each instant there is a stack of current 
places corresponding to the stack of nested #include directives. For example, if the 
current place is the include directory ...\include, and the compiler is seeking the 
include file sys\defs.h, it locates ...\include\sys\defs.h if it exists.

When the compiler begins to process defs.h, the current place becomes 
...\include\sys. Any file included by defs.h that is not specified with an absolute path 
name, is searched for relative to ...\include\sys. 

The original current place ...\include is restored only when the compiler has finished 
processing defs.h.

You can disable the stacking of current places by using the compiler option 
--kandr_include. This option makes the compiler use the search rule originally 
described by Kernighan and Ritchie in The C Programming Language. Under this rule 
each nonrooted user #include is searched for relative to the directory containing the 
source file that is being compiled. See --kandr_include on page 2-78 in the Compiler 
Reference Guide.
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2.3.2 The RVCT40INC environment variable

The RVCT40INC environment variable points to the location of the included header and 
source files provided with RVCT. Do not change this environment variable. If you want 
to include files from other locations, use the -I and -J command-line options as 
required.

When compiling, directories specified with RVCT40INC are searched immediately after 
directories specified by the -I option have been searched. If you use the -J option, 
RVCT40INC is ignored.

2.3.3 The search path

Table 2-2 shows how the command-line options affect the search path used by the 
compiler when it searches for included header and source files.

In Table 2-2:

RVCT40INCdirs 

List of directories specified by the RVCT40INC environment variable, if set.

CP The current place.

Idirs and Jdirs 

Directories specified by the -Idirs and -Jdirs compiler options.

Table 2-2 Include file search paths

Compiler option <include> search 
order "include" search order

Neither -I nor -J RVCT40INCdirs CP, RVCT40INCdirs

-I RVCT40INCdirs, Idirs CP, Idirs, RVCT40INCdirs

-J Jdirs CP, and Jdirs

Both -I and -J Jdirs, Idirs CP, Idirs, Jdirs

--sys_include No effect Removes CP from the search path

--kandr_include No effect Uses Kernighan and Ritchie search rules
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2.3.4 The TMP and TMPDIR environment variables

On Windows platforms, the environment variable TMP is used to specify the directory to 
be used for temporary files. If TMP is not defined, or if it is set to the name of a directory 
that does not exist, temporary files are created in the current working directory.

On Red Hat Linux platforms, the environment variable TMPDIR is used to specify the 
directory to be used for temporary files. If TMPDIR is not set, a default temporary 
directory, usually /tmp or /var/tmp, is used.

TMP and TMPDIR are typically set up by a system administrator. However, it is permissible 
for you to change them.
2-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
Non-Confidential, ID101213



Getting started with the ARM Compiler 
2.4 Precompiled header files
When you compile your source files, the included header files are also compiled. If a 
header file is included in more than one source file, it is recompiled when each source 
file is compiled. Also, you might include header files that introduce many lines of code, 
but the primary source files that include them are relatively small. Therefore, it is often 
desirable to avoid recompiling a set of header files by precompiling them. These are 
referred to as PreCompiled Header (PCH) files.

By default, when the compiler creates a PCH file, it:

• takes the name of the primary source file and replaces the suffix with .pch

• creates the file in the same directory as the primary source file.

Note
 Support for PCH processing is not available when you specify multiple source files in 
a single compilation. If you request PCH processing and specify more than one primary 
source file, the compiler issues an error message, and aborts the compilation.

Note
 Do not assume that if a PCH file is available, it is used by the compiler. In some cases, 
system configuration issues (for example, Address Space Randomisation on RHE3 and 
Vista) mean that the compiler might not always be able to use the PCH file.

The ARM compiler can precompile header files automatically, or enable you to control 
the precompilation. See:

• Automatic PCH processing

• Manual PCH processing on page 2-20

• Controlling the output of messages during PCH processing on page 2-21

• Performance issues on page 2-21.

2.4.1 Automatic PCH processing

When you use the --pch command-line option, automatic PCH processing is enabled. 
This means that the compiler automatically looks for a qualifying PCH file, and reads 
it if found. Otherwise, the compiler creates one for use on a subsequent compilation.

When the compiler creates a PCH file, it takes the name of the primary source file and 
replaces the suffix with .pch. The PCH file is created in the directory of the primary 
source file, unless you specify the --pch_dir option.

See Ordering command-line options on page 2-10.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 2-17
ID101213 Non-Confidential, 



Getting started with the ARM Compiler 
The header stop point

The PCH file contains a snapshot of all the code that precedes a header stop point. 
Typically, the header stop point is the first token in the primary source file that does not 
belong to a preprocessing directive. In the following example, the header stop point is 
int and the PCH file contains a snapshot that reflects the inclusion of xxx.h and yyy.h:

#include "xxx.h"
#include "yyy.h"
int i;

Note
 You can manually specify the header stop point with #pragma hdrstop. You must place 
this before the first token that does not belong to a preprocessing directive. In this 
example, place it before int. See Controlling PCH processing on page 2-21.

Conditions that affect PCH file generation

If the first non-preprocessor token, or a #pragma hdrstop, appears within a #if block, the 
header stop point is the outermost enclosing #if. For example:

#include "xxx.h"
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h"
#endif
#if TEST
int i;
#endif

In this example, the first token that does not belong to a preprocessing directive is int, 
but the header stop point is the start of the #if block containing it. The PCH file reflects 
the inclusion of xxx.h and, conditionally, the definition of YYY_H and inclusion of yyy.h. 
It does not contain the state produced by #if TEST.

A PCH file is produced only if the header stop point and the code preceding it, mainly, 
the header files, meet the following requirements:

• The header stop point must appear at file scope. It must not be within an unclosed 
scope established by a header file. For example, a PCH file is not created in this 
case:

// xxx.h
class A
{

// xxx.c
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#include "xxx.h"
int i;

}; 

• The header stop point must not be inside a declaration that is started within a 
header file. Also, in C++, it must not be part of a declaration list of a linkage 
specification. For example, in the following case the header stop point is int, but 
because it is not the start of a new declaration, no PCH file is created:

// yyy.h
static
// yyy.c
#include "yyy.h"
int i; 

• The header stop point must not be inside a #if block or a #define that is started 
within a header file.

• The processing that precedes the header stop point must not have produced any 
errors.

Note
 Warnings and other diagnostics are not reproduced when the PCH file is reused.

• No references to predefined macros __DATE__ or __TIME__ must appear.

• No instances, the #line preprocessing directive must appear.

• #pragma no_pch must not appear.

• The code preceding the header stop point must have introduced a sufficient 
number of declarations to justify the overhead associated with precompiled 
headers.

More than one PCH file might apply to a given compilation. If so, the largest is used, 
that is, the one representing the most preprocessing directives from the primary source 
file. For instance, a primary source file might begin with:

#include "xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h, the latter PCH file 
is selected, assuming that both apply to the current compilation. Additionally, after the 
PCH file for the first two headers is read in and the third is compiled, a new PCH file 
for all three headers might be created.
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In automatic PCH processing mode the compiler indicates that a PCH file is obsolete, 
and deletes it, under the following circumstances:

• if the PCH file is based on at least one out-of-date header file but is otherwise 
applicable for the current compilation

• if the PCH file has the same base name as the source file being compiled, for 
example, xxx.pch and xxx.c, but is not applicable for the current compilation, for 
example, because you have used different command-line options.

These describe some common cases. You must delete other PCH files as required.

2.4.2 Manual PCH processing

You can specify the filename and location of PCH files, and the parts of a header file 
that are subject to PCH processing.

Specifying a PCH filename and location

You can specify the filename and location of the PCH file using the following 
command-line options:

• --create_pch=filename

• --use_pch=filename

• --pch_dir=directory

If you use either --create_pch or --use_pch with the --pch_dir option, the indicated 
filename is appended to the directory name, unless the filename is an absolute path 
name.

Ordering PCH command-line options

The compiler cannot use these three options together on the same command line. If 
more than one of these options is specified, the following rule applies:

• --use_pch takes precedence over --pch

• --create_pch takes precedence over all other PCH options.

Most of the features of automatic PCH processing apply to one or other of these modes. 
For example, header stop points and PCH file applicability are determined in the same 
way.
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Controlling PCH processing

You can specify that parts of a header file are subject to PCH processing using the 
following pragmas:

• Insert a manual header stop point using the #pragma hdrstop directive in the 
primary source file before the first token that does not belong to a preprocessing 
directive.

This enables you to specify where the set of header files that is subject to 
precompilation ends. For example,

#include "xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "zzz.h"

In this example, the PCH file includes the processing state for xxx.h and yyy.h but 
not for zzz.h. This is useful if you decide that the information following the 
#pragma hdrstop does not justify the creation of another PCH file.

• Use the #pragma no_pch directive to suppress PCH processing for a source file.

Note
 You can use these pragmas even if you are using automatic PCH processing.

See Pragmas on page 4-14.

2.4.3 Controlling the output of messages during PCH processing

When the compiler creates or uses a PCH file, it displays the following message:

test.c: creating precompiled header file test.pch

You can suppress this message by using the command-line option --no_pch_messages.

When you use the --pch_verbose option, the compiler displays a message for each PCH 
file that is considered, but cannot be used, giving the reason why it cannot be used.

2.4.4 Performance issues

Typically, the overhead of creating and reading a PCH file is small, even for reasonably 
large header files, and even if the created PCH file is not used. If the file is used, there 
is typically a significant decrease in compilation time. However, PCH files can range in 
size from about 250KB to several megabytes or more, so you might not want to create 
many PCH files.
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PCH processing might not always be appropriate, for example, where you have an 
arbitrary set of files with non-uniform initial sequences of preprocessing directives.

The benefits of PCH processing occur when several source files can share the same PCH 
file. The more sharing, the less disk space is consumed. Sharing minimizes the 
disadvantage of large PCH files, without giving up the advantage of a significant 
decrease in compilation times.

Therefore, to take full advantage of header file precompilation, you might have to 
re-order the #include sections of your source files, or group #include directives within 
a commonly used header file.

Different environments and different projects might have differing requirements. Be 
aware, however, that making the best use of PCH support might require some 
experimentation and probably some minor changes to source code.
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2.5 Specifying the target processor or architecture
RVCT includes support for all ARM architectures from ARMv4 onwards, including 
ARM NEON™ technology. All architecture names before ARMv4 are now obsolete and 
no longer supported.

Specifying a target processor or architecture enables the compiler to take advantage of 
extra features specific to the selected processor or architecture. Use the --cpu and --fpu 
options to enable these features.

You can also specify the startup instruction set by using the --arm or --thumb option.

See:

• NEON technology

• Selecting the target CPU on page 5-3

• Chapter 5 Interworking ARM and Thumb in the Developer Guide.

See also, in the Compiler Reference Guide:

• --arm on page 2-8

• --cpu=list on page 2-30

• --cpu=name on page 2-30

• --fpu=list on page 2-62

• --fpu=name on page 2-62

• --thumb on page 2-122.

2.5.1 NEON technology

The ARM Advanced Single Instruction Multiple Data (SIMD) Extension, also known 
as NEON technology, is a 64/128-bit hybrid SIMD architecture developed by ARM to 
accelerate the performance of multimedia and signal processing applications. NEON is 
implemented as part of the processor, but has its own execution pipelines and a register 
bank that is distinct from the ARM register bank. Key features include aligned and 
unaligned data access, support for integer, fixed-point and single-precision floating 
point data types, tight coupling to the ARM core, and a large register file with multiple 
views. NEON instructions are available in both ARM and Thumb-2.

The ARM compiler provides support for Cortex™ processors equipped with a NEON 
unit. To generate NEON instructions you must specify a Cortex processor that includes 
NEON technology on the command line, for example, --cpu=Cortex-A8. There is no 
NEON support for architectures before ARMv7.

See Appendix E Using NEON Support in the Compiler Reference Guide.
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2.6 Specifying the procedure call standard (AAPCS)
The Procedure Call Standard for the ARM Architecture (AAPCS) forms part of the 
Base Standard Application Binary Interface for the ARM Architecture (BSABI) 
specification. By writing code that adheres to the AAPCS, you can ensure that 
separately compiled and assembled modules can work together.

See:

• Interworking qualifiers

• Position independence qualifiers

• Specifying the target processor or architecture on page 2-23

• Procedure Call Standard for the ARM Architecture specification, aapcs.pdf, in 
install_directory\Documentation\Specifications\....

2.6.1 Interworking qualifiers

These --apcs qualifiers control interworking.

See:

• --apcs=qualifer...qualifier on page 2-4 in the Compiler Reference Guide

• Chapter 5 Interworking ARM and Thumb in the Developer Guide

• Chapter 3 Using the Basic Linker Functionality in the Linker User Guide.

2.6.2 Position independence qualifiers

These --apcs qualifiers control position independence. They also affect the creation of 
reentrant and thread-safe code.

See:

• --apcs=qualifer...qualifier on page 2-4 in the Compiler Reference Guide

• Restrictions on position independent code and data on page 2-25

• Writing reentrant and thread-safe code on page 2-4 in the Libraries Guide

• Chapter 4 BPABI and SysV Shared Libraries and Executables in the Linker 
Reference Guide.
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Restrictions on position independent code and data

There are restrictions when you compile code with /ropi, or /rwpi, or /fpic. The main 
restrictions are:

• The use of --apcs /ropi is not supported when compiling C++. You can compile 
only the C subset of C++ with /ropi.

• Some constructs that are legal C do not work when compiled for --apcs=/ropi or 
--apcs=/rwpi, for example:

int i;               // rw
int *p1 = &i;        // this static initialization does not work
                     // with --apcs=/rwpi --no_lower_rwpi
extern const int ci; // ro
const int *p2 = &ci; // this static initialization does not work
                     // with --apcs=/ropi

However, to enable these static initializations to work, use the --lower_rwpi and 
--lower_ropi options.

To compile this code, type:

armcc --apcs=/rwpi/ropi --lower_ropi

You do not have to specify --lower_rwpi, because this is the default.

• The use of --apcs=/fpic is supported when compiling C++. Here, virtual table 
functions and typeinfo are placed in read-write areas so that they can be accessed 
relative to the location of the PC.

• If you use --apcs=/fpic , the compiler exports only functions and data marked 
__declspec(dllexport).

• If you use --no_hide_all, the compiler uses STV_DEFAULT visibility for all 
extern variables and functions if they do not use __declspec(dll*). The compiler 
disables auto-inlining of functions with STV_DEFAULT visibility.

For example, use --no_hide_all and --apcs /fpic together when building a 
System V or ARM Linux shared library.

See __declspec attributes on page 4-24 in the Compiler Reference Guide for more 
information on the __declspec keyword.

See Symbol visibility on page 4-5 in the Linker Reference Guide for more information 
on symbol visibility.
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2.7 Using linker feedback
The linker provides a feedback feature that enables:

• efficient elimination of unused functions

• reduction of compilation required for interworking.

2.7.1 Eliminating unused functions

Unused function code might occur in the following situations:

• Where you have legacy functions that are no longer used in your source code. 
Rather than manually remove the unused function code from your source code, 
you can use linker feedback to remove the unused object code automatically from 
the final image.

• When a function is inlined. If an inlined function is not declared as static, the 
out-of-line function code is still present in the object file, but there is no longer a 
call to that code.

To eliminate unused functions from your object files:

1. Compile your source code.

2. Use the linker option --feedback=filename to create a feedback file. By default, 
the type of feedback generated is for the elimination of unused functions.

3. Use the compiler option --feedback=filename to feed the feedback file to the 
compiler.

The compiler uses the feedback file generated by the linker to compile the source code 
in a way that enables the linker to subsequently discard the unused functions.

Note
 To obtain maximum benefit from linker feedback, do a full compile and link at least 
twice. A single compile and link using feedback from a previous build is normally 
sufficient to obtain some benefit.

You can specify the --feedback=filename option even when no feedback file exists. This 
enables you to use the same build or make file regardless of whether a feedback file 
exists, for example:

armcc -c --feedback=unused.txt test.c -o test.o
armlink --feedback=unused.txt test.o -o test.axf
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The first time you build the application, it compiles normally but the compiler warns 
you that it cannot read the specified feedback file because it does not exist. The link 
command then creates the feedback file and builds the image. Each subsequent 
compilation step uses the feedback file from the previous link step to remove any 
unused functions that are identified.

See:

• --feedback=filename on page 2-56 in the Compiler Reference Guide

• --feedback_type=type on page 2-39 in the Linker Reference Guide

• Feedback on page 3-17 in the Linker User Guide.

2.7.2 Reduction of compilation required for interworking

Note
 Reduction of compilation required for interworking is only applicable to ARMv4T 
architectures. ARMv5T and later processors can interwork without penalty.

The linker detects when an ARM function is being called from a Thumb state, and when 
a Thumb function is being called from an ARM state. You can use feedback from the 
linker to avoid compiling functions for interworking that are never used in an 
interworking context.

To reduce compilation required for interworking:

1. Compile your source code.

2. Use the linker options --feedback=filename and --feedback_type=iw to create a 
feedback file that reports functions requiring interworking support.

3. Use the compiler option --feedback=filename to feed the feedback file to the 
compiler.

The compiler uses the feedback file generated by the linker to compile the source code 
in a way that enables the compiler to subsequently avoid compiling functions for 
interworking if those functions are not used in an interworking context.

Note
 Always ensure that you perform a full clean build immediately prior to using the linker 
feedback file. This minimizes the risk of the feedback file becoming out of date with the 
source code it was generated from.

See:

• --feedback=filename on page 2-56 in the Compiler Reference Guide
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• --feedback_type=type on page 2-39 in the Linker Reference Guide

• Feedback on page 3-17 in the Linker User Guide.
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2.8 Adding symbol versions
The compiler and linker support the GNU-extended symbol versioning model. 

To create a function with a symbol version in C or C++ code, you must use the 
assembler label GNU extension to rename the function symbol into a symbol that has 
the name function@@ver for a default ver of function, or function@ver for a non default 
ver of function.

For example, to define a default version:

int new_function(void) __asm__("versioned_fun@@ver2");
int new_function(void)
{
    return 2;
}

To define a non default version:

int old_function(void) __asm__("versioned_fun@ver1");
int old_function(void)
{
    return 1;
}

See:

• Assembler labels on page 3-20 in the Compiler Reference Guide

• Symbol versioning on page 4-19 in the Linker User Guide.
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Chapter 3 
Using the NEON Vectorizing Compiler

This chapter provides you with an understanding of the NEON™ unit and explains how 
to take advantage of the automatic vectorizing features. It contains the following 
sections:

• The NEON unit on page 3-2

• Writing code for NEON on page 3-3

• Working with automatic vectorization on page 3-5

• Improving performance on page 3-7

• Examples on page 3-18.
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3.1 The NEON unit
The NEON unit provides 32 vector registers that each hold 16 bytes of information. 
These 16 byte registers can then be operated on in parallel in the NEON unit. For 
example, in one vector add instruction you can add eight 16-bit integers to eight other 
16 bit integers to produce eight 16-bit results.

The NEON unit supports 8-bit, 16-bit and 32-bit integer operations, and some 64-bit 
operations, in addition to 32-bit floating point operations.

Note
 Vectorization of floating-point code does not always occur automatically. For example, 
loops that require reassociation only vectorize when compiled with --fpmode fast. 
Compiling with --fpmode fast enables the compiler to perform some transformations 
that could affect the result. (See --fpmode=model on page 2-59 in the Compiler 
Reference Guide.)

The NEON unit is classified as a vector SIMD unit that operates on multiple elements, 
in a vector register, with one instruction.

For example, array A is a 16-bit integer array with 8 elements.

Array B has these 8 elements:

To add these arrays together, fetch each vector into a vector register and use one vector 
SIMD instruction to obtain the result.

Table 3-1 Array A

1 2 3 4 5 6 7 8

Table 3-2 Array B

80 70 60 50 40 30 20 10

Table 3-3 Result

81 72 63 54 45 36 27 18
3-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
Non-Confidential, ID101213



Using the NEON Vectorizing Compiler 
3.2 Writing code for NEON
This section gives an overview of the ways you can write code for the NEON unit. There 
are several ways to get code running on NEON:

• Write in assembly language, or use embedded assembly language in C, and use 
the NEON instructions directly.

• Write in C or C++ with the NEON C language extensions.

• Call a library routine that has been optimized to use NEON instructions.

• Use automatic vectorization to get loops vectorized for NEON.

3.2.1 NEON C extensions

The NEON C extensions are a set of new data types and intrinsic functions defined by 
ARM to enable access to the NEON unit from C. Most of the vector functions map 
directly to vector instructions available in the NEON unit and are compiled inline by the 
NEON enhanced ARM C compiler. With these extensions, performance can be 
achieved at the C level that is comparable to that obtained with assembly language 
coding.

See Appendix E Using NEON Support in the Compiler Reference Guide.

3.2.2 Automatic vectorization

By coding in vectorizable loops instead of writing in explicit NEON instructions, code 
portability is preserved between processors. Performance levels similar to that of hand 
coded vectorization are achieved with less effort.

Example 3-1 provides an example of command-line options to invoke automatic 
vectorization on the Cortex-A8 processor.

Example 3-1  Automatic vectorization

armcc --vectorize --cpu=Cortex-A8 -O3 -Otime -c file.c

Note
 You can also compile with -O2 -Otime, however, this does not give the maximum code 
performance.
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3.2.3 Performance goals

Most applications require tuning to gain the best performance from vectorization. There 
is always some overhead so the theoretical maximum performance cannot be reached. 
For example, the NEON unit can process four single-precision floats at one time. This 
means that the theoretical maximum performance for a floating-point application is a 
factor of four over the original scalar nonvectorized code. Given typical overheads, a 
reasonable goal for a whole floating-point application is to aim for a 50% improvement 
on performance over the scalar code. For large applications that are not completely 
vectorizable, achieving a 25% improvement on performance over the scalar code is a 
reasonable goal, although this is highly application dependent..

See Improving performance on page 3-7.
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3.3 Working with automatic vectorization
This section gives an overview of automatic vectorization and also describes the factors 
affecting the vectorization process and performance of the generated code.

3.3.1 Overview of automatic vectorization

Automatic vectorization involves the high-level analysis of loops in your code. This is 
the most efficient way to map the majority of typical code onto the functionality of the 
NEON unit. For most code, the gains that can be made with algorithm-dependent 
parallelism on a smaller scale are very small relative to the cost of automatic analysis of 
such opportunities. For this reason, the NEON unit is designed as a target for loop-based 
parallelism.

Vectorization is carried out in a way that ensures that the optimized code gives the same 
results as the non vectorized code. In certain cases vectorization of a loop is not carried 
out so that the possibility of an incorrect result is avoided. This can lead to sub-optimal 
code, and you might have to manually tune your code to make it more suitable for 
automatic vectorization. See Improving performance on page 3-7.

3.3.2 Vectorization concepts

This section describes some concepts that are commonly used when considering 
vectorization of code.

Data references

Data references in your code can be classified as one of three types:

Scalar A single location that does not change through all the iterations of the 
loop.

Index An integer quantity that increments by a constant amount each pass 
through the loop.

Vector A range of memory locations with a constant stride between consecutive 
elements.

Example 3-2 on page 3-6 shows the classification of variables in the loop:

i,j index variables

a,b vectors

x scalar
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Example 3-2 Categorization of a vectorizable loop

float *a, *b;
int i, j, n;
...
for (i = 0; i < n; i++)
{

*(a+j) = x +b[i];
j += 2;

};

To vectorize, the compiler has to identify variables with a vector access pattern. It also 
has to ensure that there are no data dependencies between different iterations of the 
loop.

Stride patterns and data accesses

The stride pattern of data accesses in a loop is the pattern of accesses to data elements 
between sequential loop iterations. For example, a loop that linearly accesses each 
element of an array has a stride of one. Another example, a loop that accesses an array 
with a constant offset between each element used, is described as having a constant 
stride. In Example 3-2, b is accessed with a stride of 1, and a is accessed with a stride of 
2.

3.3.3 Factors affecting vectorization performance

The automatic vectorization process and performance of the generated code is affected 
by the following:

The way loops are organized 

For best performance, the innermost loop in a loop nest must access 
arrays with a stride of one.

The way the data is structured 

The data type dictates how many data elements can be held in a NEON 
register, and therefore, how many operations can be performed in 
parallel.

The iteration counts of loops 

Longer iteration counts are generally better, because the loop overhead is 
amortized over more iterations. Tiny iteration counts, such as two or three 
elements, can be faster to process with non vector instructions. 
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The data type of arrays 

For example, NEON does not improve performance when double 
precision floating point arrays are used.

The use of memory hierarchy 

Most current processors are relatively unbalanced between memory 
bandwidth and processor capacity. For example, performing relatively 
few arithmetic operations on large data sets retrieved from main memory 
is limited by the memory bandwidth of the system.

3.3.4 Improving performance

Most applications require some tuning on the part of the programmer to get the best 
NEON results. This section describes the different types of loops. It explains how 
vectorization works successfully with some loops but does not work with others. It also 
explains how you can modify code to achieve the best performance from the vectorized 
code.

General performance issues

Using the command-line options -O3 and -Otime ensures that the code achieves 
significant performance benefits in addition to those of vectorization.

When optimizing for performance, you must give consideration to the high-level 
algorithm structure, data element size, array configurations, strict iterative loops, 
reduction operations and data dependency issues. Optimizing for performance requires 
an understanding of where in the program most of the time is spent. To gain maximum 
performance benefits you might have to use profiling and benchmarking of the code 
under realistic conditions.

Automatic vectorization can often be impeded by any earlier manual optimization of the 
code, for example, manual loop unrolling in the source code or complex array accesses. 
For optimal results, the best way is to write the code using simple loops, therefore 
enabling the compiler to perform all the optimization. For hand-optimized legacy code, 
you might find it easier to rewrite critical portions based on the original algorithm using 
simple loops.

See the following in the Compiler Reference Guide:

• --vectorize, --no_vectorize on page 2-131 in the Compiler Reference Guide

• -Onum on page 2-96 in the Compiler Reference Guide

• -Otime on page 2-99 in the Compiler Reference Guide.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 3-7
ID101213 Non-Confidential, 



Using the NEON Vectorizing Compiler 
Data dependencies

A loop that has results from one iteration feeding back into a future iteration of the same 
loop is said to have a data dependency conflict. The conflicting values might be array 
elements or a scalar such as an accumulated sum.

Loops containing data dependency conflicts might not be completely optimized. To 
detect data dependencies involving arrays and/or pointers requires extensive analysis of 
the arrays used in each loop nest, and examination of the offset and stride of accesses to 
elements along each dimension of arrays that are both used and stored in a loop. If there 
is a possibility of the usage and storage of arrays overlapping on different iterations of 
a loop, then there is a data dependency problem. A loop cannot be safely vectorized if 
the vector order of operations can change the results. In these cases, the compiler detects 
the problem and leaves the loop in its original form or carries out a partial vectorization 
of the loop. This type of data dependency must be avoided in your code to achieve the 
best performance.

In the loop shown in the Example 3-3, the reference to a[i-2] at the top of the loop 
conflicts with the store into a[i] at the bottom. Performing vectorization on this loop 
gives a different result, and so it is left in its original form.

Example 3-3  Non vectorizable data dependency

float a[99], b[99], t;
int i;
for (i = 3; i < 99; i++)
{

t = a[i-1] + a[i-2];
b[i] = t + 3.0 + a[i];
a[i] = sqrt(b[i]) - 5.0;

};

Information from other array subscripts is used as part of the analysis of dependencies. 
The loop in Example 3-4 on page 3-9 vectorizes because the non vector subscripts of 
the references to array a can never be equal, because n is not equal to n+1, and so gives 
no feedback between iterations. The references to array a use two different pieces of the 
array and so, do not share data.
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Example 3-4  Vectorizable data dependency

float a[99][99], b[99], c[99];
int i, n, m;
...
for (i = 1; i < m; i++) a[n][i] = a[n+1][i-1] * b[i] + c[i];

Scalar variables

A scalar variable that is used but not set, in a NEON loop is replicated in each position 
in a vector register and the result used in the vector calculation.

A scalar that is set and then used in a loop is promoted to a vector. These variables 
generally hold temporary scalar values in a loop that now has to hold temporary vector 
values. In Example 3-5, x is a used scalar and y is a promoted scalar.

Example 3-5  Vectorizable loop

float a[99], b[99], x, y;
int i, n;
...
for (i = 0; i < n; i++)
{

y = x + b[i];
a[i] = y + 1/y;

};

A scalar that is used and then set in a loop is called a carry-around scalar. These 
variables are a problem for vectorization because the value computed in one pass of the 
loop is carried forward into the next pass. In Example 3-6 x is a carry-around scalar.

Example 3-6  Non vectorizable loop

float a[99], b[99], x;
int i, n;
...
for (i = 0; i < n; i++)
{

a[i] = x + b[i];
x = a[i] + 1/x;

};
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Reduction operations

A special category of scalar usages in a loop is reduction operations. This category 
involves the reduction of a vector of values down to a scalar result. The most common 
reduction is the summation of all elements of a vector. Other reductions include: dot 
product of two vectors, maximum value in a vector, minimum value in a vector, product 
of all vector elements and location of a maximum or minimum element in a vector.

Example 3-7 shows a dot product reduction where x is a reduction scalar.

Example 3-7  Dot product reduction

float a[99], b[99], x;
int i, n;
...
for (i = 0; i < n; i++) x += a[i] * b[i];

Reduction operations are worth vectorizing because they occur so often. In general, 
reduction operations are vectorized by creating a vector of partial reductions that are 
then reduced into the final resulting scalar.

Using pointers

When accessing arrays, the compiler can often prove that memory accesses do not 
overlap. When using pointers, this is less likely to be possible, and either requires a 
runtime test, or requires you to use restrict.

The compiler is able to vectorize loops containing pointers if it can determine that the 
loop is safe. Both array references and pointer references in loops are analyzed to see if 
there is any vector access to memory. In some cases, the compiler creates a run-time 
test, and executes a vector version or scalar version of the loop depending on the result 
of the test.

Often, function arguments are passed as pointers. If several pointer variables are passed 
to a function, it is possible that pointing to overlapping sections of memory can occur. 
Often, at runtime, this is not the case but the compiler always follows the safe method 
and avoids optimizing loops that involve pointers appearing on both the left and right 
sides of an assignment operator. For example, consider the function in Example 3-8 on 
page 3-11.
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Example 3-8  Conditional vectorization of pointers

void func (int *pa, int *pb, int x)
{

int i;
for (i = 0; i < 100; i++) *(pa + i) = *(pb + i) + x;

};

In this example, if pa and pb overlap in memory in a way that causes results from one 
loop pass to feed back to a subsequent loop pass, then vectorization of the loop can give 
incorrect results. If the function is called with the following arguments, vectorization 
might be ambiguous:

int *a;

func (a, a-1);

The compiler performs a runtime test to see if pointer aliasing occurs. If pointer aliasing 
does not occur, it executes a vectorized version of the code. If pointer aliasing occurs, 
the original non vectorized code executes instead. This leads to a small cost in runtime 
efficiency and code size.

In practice, it is very rare for data dependence to exist because of function arguments. 
Programs that pass overlapping pointers are very hard to understand and debug, apart 
from any vectorization concerns.

See restrict on page 3-8 in the Compiler Reference Guide. In Example 3-8, adding 
restrict to pa is sufficient to avoid the runtime test.

Indirect addressing

Indirect addressing occurs when an array is accessed by a vector of values. If the array 
is being fetched from memory, the operation is called a gather. If the array is being 
stored into memory, the operation is called a scatter. In Example 3-9, a is being 
scattered, and b is being gathered.

Example 3-9 Non vectorizable indirect addressing

float a[99], b[99];
int ia[99], ib[99], i, n, j;
...
for (i = 0; i < n; i++) a[ia[i]] = b[j + ib[i]];
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Indirect addressing is not vectorizable with the NEON unit because it can only deal with 
vectors that are stored consecutively in memory. If there is indirect addressing and 
significant calculations in a loop, it might be more efficient for you to move the indirect 
addressing into a separate non vector loop. This enables the calculations to vectorize 
efficiently.

Loop structure

The overall structure of a loop is important for obtaining the best performance from 
vectorization. Generally, it is best to write simple loops with iteration counts that are 
fixed at the start of the loop, and do not contain complex conditional statements or 
conditional exits. You might have to rewrite your loops to improve the vectorization 
performance of the code.

Exits from loops

Example 3-10 is also unable to vectorize because it contains an exit from the loop. In 
cases like this, you must rewrite the loop if possible for vectorization to succeed.

Example 3-10  Non vectorizable loop

int a[99], b[99], c[99], i, n;
...
for (i = 0; i < n; i++)
{

a[i] = b[i] + c[i];
if (a[i] > 5) break;

};

Loop iteration count

Loops must have a fixed iteration count at the start of the loop. Example 3-11 shows the 
iteration count is n and this is not changed through the course of the loop.

Example 3-11  Vectorizable loop

int a[99], b[99], c[99],i, n;
...
for (i = 0; i < n; i++) a[i] = b[i] + c[i];

Example 3-12 on page 3-13 has no fixed iteration count and is unable to vectorize 
automatically.
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Example 3-12  Non vectorizable loop

int a[99], b[99], c[99], i, n;
...
while (i < n)
{

a[i] = b[i] + c[i];
i += a[i];

};

The NEON unit can operate on elements in groups of 2, 4, 8, or 16. Where the iteration 
count at the start of the loop is known, the compiler might add a runtime test to check 
if the iteration count is not a multiple of the lanes that can be used for the appropriate 
data type in a NEON register. This increases the code size because additional non 
vectorized code is generated to execute any additional loop iterations.

If you know that your iteration count is one of those supported by NEON, you can 
indicate this to the compiler. The most efficient way to do this is to divide the number 
of iterations by four in the caller and multiply by four in the function that you intend to 
vectorize. If you cannot modify all of the calling functions, you can use an appropriate 
expression for your loop limit test to indicate that the loop iteration is a suitable 
multiple. For example, to indicate that your loop is a multiple of four iterations, use:

for(i = 0; i < (n >> 2 << 2); i++)

or:

for(i = 0; i < (n & ~3); i++)

This reduces the size of the generated code and can give a performance improvement.

Writing loops to use all parts of a structure together is important for vectorization. Each 
part of the structure needs to be accessed within the same loop.

Example 3-13 Non vectorizable loops

for (...) { buffer[i].a = ....; }
for (...) { buffer[i].b = ....; }
for (...) { buffer[i].c = ....; }
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Example 3-14 Vectorizable loop

for (...)
{

buffer[i].a = ....;
buffer[i].b = ....;
buffer[i].c = ....;

}

Function calls and inlining

Calls to non-inline functions within a loop inhibit vectorization.

Splitting complex operations into several functions to aid clarity is common practice. In 
order for these functions to be considered for vectorization, they must be marked with 
the __inline or __forceinline keywords. These functions are then expanded inline for 
vectorization. See __inline on page 4-9 and __forceinline on page 4-6 in the Compiler 
Reference Guide.

Conditional statements

For efficient vectorization, loops must contain mostly assignments statements and limit 
the use of if and switch statements.

Simple conditions that do not change between iterations of the loop are described as 
being loop invariant. These can be moved before the loop by the compiler so that they 
do not have to be executed on each loop iteration. More complex conditional operations 
are vectorized by computing all pathways in vector mode and merging the results. If 
there is significant computation being performed conditionally, then a substantial 
amount of time is wasted.

Example 3-15 shows an acceptable use of conditional statements.

Example 3-15  Vectorizable condition

float a[99], b[99], c[i];
int i, n;
...
for (i = 0; i < n; i++)
{

if (c[i] > 0) a[i] = b[i] - 5.0;
else a[i] = b[i] * 2.0;

};
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Structures

NEON structure loads require that all members of a structure are of the same length. 
Therefore, the compiler does not attempt to use vector loads for the code shown in 
Example 3-16.

Example 3-16 Non vectorizable code caused by inconsistent data types

struct foo
{

short a;
int b;
short c;

} n[10];

The code in Example 3-16 could be rewritten for vectorization by using the same data 
type throughout the structure. For example, if b is to be an integer data type, consider 
replacing a and c with integer data types.

Padding in structures prohibits vectorization. In Example 3-17, there is no benefit in 
aligning every a component, because the NEON unit can load unaligned structures 
without penalty. 

Example 3-17 Non vectorizable code caused by alignment padding

struct aligned_data
{

char a;
char b;
char c;
char not_used;

} n[10];

The code in Example 3-17 could be rewritten for vectorization by removing the 
not_used padding.

Example of improving performance by tuning source code

The compiler can provide diagnostic information to indicate where vectorization 
optimizations are successfully applied and where it failed to apply vectorization. See 
--diag_suppress=optimizations on page 2-47 and --diag_warning=optimizations on 
page 2-49 in the Compiler Reference Guide.
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Example 3-18 shows two functions that implement a simple sum operation on an array. 
This code does not vectorize.

Example 3-18 Non vectorizable code

int addition(int a, int b)
{

return a + b;
}
void add_int(int *pa, int *pb, unsigned int n, int x)
{

unsigned int i;
for(i = 0; i < n; i++) *(pa + i) = addition(*(pb + i),x);

}

Using the --diag_warning=optimizations option produces an optimization warning 
message for the addition() function.

Adding the __inline qualifier to the definition of addition() enables this code to 
vectorize but it is still not optimal. Using the --diag_warning=optimizations option 
again, produces optimization warning messages to indicate that the loop vectorizes but 
there might be a potential pointer aliasing problem.

The compiler must generate a runtime test for aliasing and output both vectorized and 
scalar copies of the code. Example 3-19 shows how this can be improved using the 
restrict keyword if you know that the pointers are not aliased. 

Example 3-19 Using restrict to improve vectorization performance

__inline int addition(int a, int b)
{

return a + b;
}
void add_int(int * __restrict pa, int * __restrict pb, unsigned int n, int x)
{

unsigned int i;
for(i = 0; i < n; i++) *(pa + i) = addition(*(pb + i),x);

}

The final improvement that can be made is to the number of loop iterations. In 
Example 3-19, the number of iterations is not fixed and might not be a multiple that can 
fit exactly into a NEON register. This means that the compiler must test for remaining 
iterations to execute using non vectored code. If you know that your iteration count is 
3-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
Non-Confidential, ID101213



Using the NEON Vectorizing Compiler 
one of those supported by NEON, you can indicate this to the compiler. Example 3-20 
shows the final improvement that can be made to obtain the best performance from 
vectorization.

Example 3-20 Code tuned for best vectorization performance

__inline int addition(int a, int b)
{

return a + b;
}
void add_int(int * __restrict pa, int * __restrict pb, unsigned int n, int x)
{

unsigned int i;
for(i = 0; i < (n & ~3); i++) *(pa + i) = addition(*(pb + i),x); 
/* n is a multiple of 4 */

}

Using __promise to improve vectorization

The __promise(expr) intrinsic is a promise to the compiler that a given expression is 
nonzero. This enables the compiler to improve vectorization by optimizing away code 
that, based on the promise you have made, is redundant.

The disassembled output of Example 3-21 shows the difference that __promise makes, 
reducing the disassembly to a simple vectorized loop by the removal of a scalar fix-up 
loop.

Example 3-21 Using __promise(expr) to improve vectorization code

void f(int *x, int n)
{

int i;
__promise((n > 0) && ((n&7)==0));
for (i=0; i<n;i++) x[i]++;

}

Example 3-20 is a similar example that can benefit from the use of __promise().
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3.4 Examples
The following are examples of vectorizable code. See Example 3-22 and Example 3-23 
on page 3-20.

The compiler options required to build these examples are -O3 -Otime --vectorize 
-DNDEBUG --cpu=Cortex-A8 (or another processor that has NEON technology, such as 
Cortex-A9). 

The use of __promise enables the compiler to generate smaller and faster code. See 
Using __promise to improve vectorization on page 3-17. The code works and vectorizes 
without __promise, but is then larger and slower.  

Example 3-22 Vectorization code

/*
* Vectorizable example code.
* Copyright 2006 ARM. All rights reserved.
*
* Includes embedded assembly to initialize cpu; link using '--entry=init_cpu'.
*
* Build using:
*   armcc --vectorize -c vector_example.c --cpu Cortex-A8 -Otime -O3 -DNDEBUG
*   armlink -o vector_example.axf vector_example.o --entry=init_cpu
*/
#include <stdio.h>
#include <assert.h> /* for __promise() */
void fir(short *__restrict y, const short *x, const short *h, int n_out, int n_coefs)
{

int n;
/* I promise ’n_out is always a positive multiple of 8’ */
__promise(0 < n_out && (n_out % 8) == 0);
for (n = 0; n < n_out; n++)
{

int k, sum = 0;
/* I promise ’n_coefs is always a positive multiple of 4’ */
__promise(0 < n_coefs && (n_coefs % 4) == 0);
for (k = 0; k < n_coefs; k++)
{

sum += h[k] * x[n - n_coefs + 1 + k];
}
y[n] = ((sum>>15) + 1) >> 1;

}
}
int main()
{

static const short x[128] =
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{
0x0000, 0x0647, 0x0c8b, 0x12c8, 0x18f8, 0x1f19, 0x2528, 0x2b1f,
0x30fb, 0x36ba, 0x3c56, 0x41ce, 0x471c, 0x4c3f, 0x5133, 0x55f5,
0x5a82, 0x5ed7, 0x62f2, 0x66cf, 0x6a6d, 0x6dca, 0x70e2, 0x73b5,
0x7641, 0x7884, 0x7a7d, 0x7c29, 0x7d8a, 0x7e9d, 0x7f62, 0x7fd8,
0x8000, 0x7fd8, 0x7f62, 0x7e9d, 0x7d8a, 0x7c29, 0x7a7d, 0x7884,
0x7641, 0x73b5, 0x70e2, 0x6dca, 0x6a6d, 0x66cf, 0x62f2, 0x5ed7,
0x5a82, 0x55f5, 0x5133, 0x4c3f, 0x471c, 0x41ce, 0x3c56, 0x36ba,
0x30fb, 0x2b1f, 0x2528, 0x1f19, 0x18f8, 0x12c8, 0x0c8b, 0x0647,
0x0000, 0xf9b9, 0xf375, 0xed38, 0xe708, 0xe0e7, 0xdad8, 0xd4e1,
0xcf05, 0xc946, 0xc3aa, 0xbe32, 0xb8e4, 0xb3c1, 0xaecd, 0xaa0b,
0xa57e, 0xa129, 0x9d0e, 0x9931, 0x9593, 0x9236, 0x8f1e, 0x8c4b,
0x89bf, 0x877c, 0x8583, 0x83d7, 0x8276, 0x8163, 0x809e, 0x8028,
0x8000, 0x8028, 0x809e, 0x8163, 0x8276, 0x83d7, 0x8583, 0x877c,
0x89bf, 0x8c4b, 0x8f1e, 0x9236, 0x9593, 0x9931, 0x9d0e, 0xa129,
0xa57e, 0xaa0b, 0xaecd, 0xb3c1, 0xb8e4, 0xbe32, 0xc3aa, 0xc946,
0xcf05, 0xd4e1, 0xdad8, 0xe0e7, 0xe708, 0xed38, 0xf375, 0xf9b9,

};
static const short coeffs[8] =
{

0x0800, 0x1000, 0x2000, 0x4000,
0x4000, 0x2000, 0x1000, 0x0800

};
int i, ok = 1;
short y[128];
static const short expected[128] =
{

0x1474, 0x1a37, 0x1fe9, 0x2588, 0x2b10, 0x307d, 0x35cc, 0x3afa,
0x4003, 0x44e5, 0x499d, 0x4e27, 0x5281, 0x56a9, 0x5a9a, 0x5e54,
0x61d4, 0x6517, 0x681c, 0x6ae1, 0x6d63, 0x6fa3, 0x719d, 0x7352,
0x74bf, 0x6de5, 0x66c1, 0x5755, 0x379e, 0x379e, 0x5755, 0x66c1,
0x6de5, 0x74bf, 0x7352, 0x719d, 0x6fa3, 0x6d63, 0x6ae1, 0x681c,
0x6517, 0x61d4, 0x5e54, 0x5a9a, 0x56a9, 0x5281, 0x4e27, 0x499d,
0x44e5, 0x4003, 0x3afa, 0x35cc, 0x307d, 0x2b10, 0x2588, 0x1fe9,
0x1a37, 0x1474, 0x0ea5, 0x08cd, 0x02f0, 0xfd10, 0xf733, 0xf15b,
0xeb8c, 0xe5c9, 0xe017, 0xda78, 0xd4f0, 0xcf83, 0xca34, 0xc506,
0xbffd, 0xbb1b, 0xb663, 0xb1d9, 0xad7f, 0xa957, 0xa566, 0xa1ac,
0x9e2c, 0x9ae9, 0x97e4, 0x951f, 0x929d, 0x905d, 0x8e63, 0x8cae,
0x8b41, 0x8a1b, 0x893f, 0x88ab, 0x8862, 0x8862, 0x88ab, 0x893f,
0x8a1b, 0x8b41, 0x8cae, 0x8e63, 0x905d, 0x929d, 0x951f, 0x97e4,
0x9ae9, 0x9e2c, 0xa1ac, 0xa566, 0xa957, 0xad7f, 0xb1d9, 0xb663,
0xbb1b, 0xbffd, 0xc506, 0xca34, 0xcf83, 0xd4f0, 0xda78, 0xe017,
0xe5c9, 0xebcc, 0xf229, 0xf96a, 0x02e9, 0x0dd8, 0x1937, 0x24ce,

};
fir(y, x + 7, coeffs, 128, 8);
for (i = 0; i < sizeof(y)/sizeof(*y); ++i)
{

if (y[i] != expected[i])
{

printf("mismatch: y[%d] = 0x%04x; expected[%d] = 0x%04x\n", i, y[i], i, expected[i]);
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ok = 0;
break;

}
}
if (ok) printf("** TEST PASSED OK **\n");
return ok ? 0 : 1;

}
#ifdef __TARGET_ARCH_7_A
__asm void init_cpu() {

// Set up CPU state
MRC p15,0,r4,c1,c0,0
ORR r4,r4,#0x00400000   // enable unaligned mode (U=1)
BIC r4,r4,#0x00000002   // disable alignment faults (A=0)
// MMU not enabled: no page tables
MCR p15,0,r4,c1,c0,0

#ifdef __BIG_ENDIAN
SETEND BE

#endif
MRC p15,0,r4,c1,c0,2    // Enable VFP access in the CAR -
ORR r4,r4,#0x00f00000   // must be done before any VFP instructions
MCR p15,0,r4,c1,c0,2
MOV r4,#0x40000000      // Set EN bit in FPEXC
MSR FPEXC,r4
IMPORT __main
B __main

}
#endif

Example 3-23 DSP vectorization code

/*
* DSP Vectorizable example code.
* Copyright 2006 ARM. All rights reserved.
*
* Includes embedded assembly to initialize cpu; link using '--entry=init_cpu'.
*
* Build using:
*   armcc -c dsp_vector_example.c --cpu Cortex-A8 -Otime -O3 --vectorize -DNDEBUG
*   armlink -o dsp_vector_example.axf dsp_vector_example.o --entry=init_cpu
*/
#include <stdio.h>
#include <dspfns.h>
#include <assert.h> /* for __promise() */
void fn(short *__restrict r, int n, const short *__restrict a, const short *__restrict b)
{

int i;
/* I promise ’n is always a positive multiple of 8’ */
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__promise(0 < n && (n % 8) == 0);
for (i = 0; i < n; ++i)
{

r[i] = add(a[i], b[i]);
}

}
int main()
{

static const short x[128] =
{

0x0000, 0x0647, 0x0c8b, 0x12c8, 0x18f8, 0x1f19, 0x2528, 0x2b1f,
0x30fb, 0x36ba, 0x3c56, 0x41ce, 0x471c, 0x4c3f, 0x5133, 0x55f5,
0x5a82, 0x5ed7, 0x62f2, 0x66cf, 0x6a6d, 0x6dca, 0x70e2, 0x73b5,
0x7641, 0x7884, 0x7a7d, 0x7c29, 0x7d8a, 0x7e9d, 0x7f62, 0x7fd8,
0x8000, 0x7fd8, 0x7f62, 0x7e9d, 0x7d8a, 0x7c29, 0x7a7d, 0x7884,
0x7641, 0x73b5, 0x70e2, 0x6dca, 0x6a6d, 0x66cf, 0x62f2, 0x5ed7,
0x5a82, 0x55f5, 0x5133, 0x4c3f, 0x471c, 0x41ce, 0x3c56, 0x36ba,
0x30fb, 0x2b1f, 0x2528, 0x1f19, 0x18f8, 0x12c8, 0x0c8b, 0x0647,
0x0000, 0xf9b9, 0xf375, 0xed38, 0xe708, 0xe0e7, 0xdad8, 0xd4e1,
0xcf05, 0xc946, 0xc3aa, 0xbe32, 0xb8e4, 0xb3c1, 0xaecd, 0xaa0b,
0xa57e, 0xa129, 0x9d0e, 0x9931, 0x9593, 0x9236, 0x8f1e, 0x8c4b,
0x89bf, 0x877c, 0x8583, 0x83d7, 0x8276, 0x8163, 0x809e, 0x8028,
0x8000, 0x8028, 0x809e, 0x8163, 0x8276, 0x83d7, 0x8583, 0x877c,
0x89bf, 0x8c4b, 0x8f1e, 0x9236, 0x9593, 0x9931, 0x9d0e, 0xa129,
0xa57e, 0xaa0b, 0xaecd, 0xb3c1, 0xb8e4, 0xbe32, 0xc3aa, 0xc946,
0xcf05, 0xd4e1, 0xdad8, 0xe0e7, 0xe708, 0xed38, 0xf375, 0xf9b9,

};
static const short y[128] =
{

0x8000, 0x7fd8, 0x7f62, 0x7e9d, 0x7d8a, 0x7c29, 0x7a7d, 0x7884,
0x7641, 0x73b5, 0x70e2, 0x6dca, 0x6a6d, 0x66cf, 0x62f2, 0x5ed7,
0x5a82, 0x55f5, 0x5133, 0x4c3f, 0x471c, 0x41ce, 0x3c56, 0x36ba,
0x30fb, 0x2b1f, 0x2528, 0x1f19, 0x18f8, 0x12c8, 0x0c8b, 0x0647,
0x0000, 0xf9b9, 0xf375, 0xed38, 0xe708, 0xe0e7, 0xdad8, 0xd4e1,
0xcf05, 0xc946, 0xc3aa, 0xbe32, 0xb8e4, 0xb3c1, 0xaecd, 0xaa0b,
0xa57e, 0xa129, 0x9d0e, 0x9931, 0x9593, 0x9236, 0x8f1e, 0x8c4b,
0x89bf, 0x877c, 0x8583, 0x83d7, 0x8276, 0x8163, 0x809e, 0x8028,
0x8000, 0x8028, 0x809e, 0x8163, 0x8276, 0x83d7, 0x8583, 0x877c,
0x89bf, 0x8c4b, 0x8f1e, 0x9236, 0x9593, 0x9931, 0x9d0e, 0xa129,
0xa57e, 0xaa0b, 0xaecd, 0xb3c1, 0xb8e4, 0xbe32, 0xc3aa, 0xc946,
0xcf05, 0xd4e1, 0xdad8, 0xe0e7, 0xe708, 0xed38, 0xf375, 0xf9b9,
0x0000, 0x0647, 0x0c8b, 0x12c8, 0x18f8, 0x1f19, 0x2528, 0x2b1f,
0x30fb, 0x36ba, 0x3c56, 0x41ce, 0x471c, 0x4c3f, 0x5133, 0x55f5,
0x5a82, 0x5ed7, 0x62f2, 0x66cf, 0x6a6d, 0x6dca, 0x70e2, 0x73b5,
0x7641, 0x7884, 0x7a7d, 0x7c29, 0x7d8a, 0x7e9d, 0x7f62, 0x7fd8,

};
short r[128];
static const short expected[128] =
{

0x8000, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
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0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
0x8000, 0x7991, 0x72d7, 0x6bd5, 0x6492, 0x5d10, 0x5555, 0x4d65,
0x4546, 0x3cfb, 0x348c, 0x2bfc, 0x2351, 0x1a90, 0x11bf, 0x08e2,
0x0000, 0xf71e, 0xee41, 0xe570, 0xdcaf, 0xd404, 0xcb74, 0xc305,
0xbaba, 0xb29b, 0xaaab, 0xa2f0, 0x9b6e, 0x942b, 0x8d29, 0x866f,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x866f, 0x8d29, 0x942b, 0x9b6e, 0xa2f0, 0xaaab, 0xb29b,
0xbaba, 0xc305, 0xcb74, 0xd404, 0xdcaf, 0xe570, 0xee41, 0xf71e,
0x0000, 0x08e2, 0x11bf, 0x1a90, 0x2351, 0x2bfc, 0x348c, 0x3cfb,
0x4546, 0x4d65, 0x5555, 0x5d10, 0x6492, 0x6bd5, 0x72d7, 0x7991,

};
int i, ok = 1;
fn(r, sizeof(r)/sizeof(*r), x, y);

for (i = 0; i < sizeof(r)/sizeof(*r); ++i)
{

if (r[i] != expected[i])
{

printf("mismatch: r[%d] = 0x%04x; expected[%d] = 0x%04x\n", i, r[i], i, expected[i]);
ok = 0;
break;

}
}
if (ok) printf("** TEST PASSED OK **\n");

return ok ? 0 : 1;
}
#ifdef __TARGET_ARCH_7_A
__asm void init_cpu()
{

// Set up CPU state
MRC p15,0,r4,c1,c0,0
ORR r4,r4,#0x00400000   // enable unaligned mode (U=1)
BIC r4,r4,#0x00000002   // disable alignment faults (A=0)
// MMU not enabled: no page tables
MCR p15,0,r4,c1,c0,0

#ifdef __BIG_ENDIAN
SETEND BE

#endif
MRC p15,0,r4,c1,c0,2    // Enable VFP access in the CAR -
ORR r4,r4,#0x00f00000   // must be done before any VFP instructions
MCR p15,0,r4,c1,c0,2
MOV r4,#0x40000000      // Set EN bit in FPEXC
MSR FPEXC,r4
IMPORT __main
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B __main
}
#endif
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Chapter 4 
Compiler Features

This chapter gives an overview of ARM-specific features of the compiler. It includes the 
following sections:

• Intrinsics on page 4-2

• Pragmas on page 4-14

• Bit-banding on page 4-16

• Thread-local storage on page 4-20

• Eight-byte alignment features on page 4-21
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4.1 Intrinsics
The compiler supports several families of intrinsics, including:

• Instruction intrinsics for realizing ARM, Thumb, and NEON instructions from 
your C and C++ code

• Intrinsics realizing the ETSI basic operations

• Intrinsics emulating intrinsics found on the TI C55x compiler

• NEON™ intrinsics for use with the NEON vectorizing compiler.

This section describes these families of intrinsics.

4.1.1 About intrinsics

C and C++ are suited to a wide variety of tasks but do not provide inbuilt support for 
specific areas of application, for example, Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific 
operations that have to be performed frequently. Often, however, these operations 
cannot be efficiently implemented in C or C++. A typical example is the saturated add 
of two 32-bit signed two’s complement integers, commonly used in DSP programming. 
Example 4-1 shows its implementation in C.

Example 4-1 C implementation of saturated add operation

#include <limits.h>
int L_add(const int a, const int b)
{

int c;
c = a + b;
if (((a ^ b) & INT_MIN) == 0)
{

if ((c ^ a) & INT_MIN)
{

c = (a < 0) ? INT_MIN : INT_MAX;
}

}
return c;

}

Intrinsic functions provide a way of easily incorporating domain-specific operations in 
C and C++ source code without resorting to complex implementations, for example, in 
embedded assembler or inline assembler. An intrinsic function has the appearance of a 
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function call in C or C++, but is replaced during compilation by a specific sequence of 
low-level instructions. When implemented using an intrinsic, for example, the saturated 
add function of Example 4-1 on page 4-2 has the form:

#include <dspfns.h> /* Include ETSI intrinsics */
...
int a, b, result;
...
result = L_add(a, b); /* Saturated add of a and b */

The use of intrinsics offers the following performance benefits:

• The low-level instructions substituted for an intrinsic might be more efficient than 
corresponding implementations in C or C++, resulting in both reduced instruction 
and cycle counts. To implement the intrinsic, the compiler automatically 
generates the best sequence of instructions for the specified target architecture. 
For example, the L_add intrinsic maps directly to the ARM v5TE assembly 
language instruction qadd:

QADD r0, r0, r1 /* Assuming r0 = a, r1 = b on entry */

• More information is given to the compiler than the underlying C and C++ 
language is able to convey. This enables the compiler to perform optimizations 
and to generate instructions sequences that it could not otherwise have performed. 

These performance benefits can be significant for real-time processing applications. 
However, care is required because the use of intrinsics can decrease code portability.

4.1.2 Instruction intrinsics

The ARM compiler provides a range of instruction intrinsics for realizing ARM 
assembly language instructions from within your C or C++ code. Collectively, these 
intrinsics enable you to emulate inline assembly code using a combination of C code 
and instruction intrinsics.

Generic intrinsics

The Compiler Reference Guide describes the following generic intrinsics that are ARM 
language extensions to the ISO C and C++ standards:

• __breakpoint on page 4-75

• __current_pc on page 4-78

• __current_sp on page 4-78

• __nop on page 4-89

• __return_address on page 4-95

• __semihost on page 4-97.
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See also GNU builtin functions on page 4-195 in the Compiler Reference Guide.

Implementations of these intrinsics are available across all architectures.

Intrinsics for controlling IRQ and FIQ interrupts

The Compiler Reference Guide describes the following intrinsics that enable you to 
control IRQ and FIQ interrupts:

• __disable_irq on page 4-80

• __enable_irq on page 4-82

• __disable_fiq on page 4-79

• __enable_fiq on page 4-82.

You cannot use these intrinsics to change any other CPSR bits, including the mode, state, 
and imprecise data abort setting. This means that the intrinsics can be used only if the 
processor is already in a privileged mode, because the control bits of the CPSR and SPSR 
cannot be changed in User mode.

These intrinsics are available for all processor architectures in both ARM and Thumb 
state:

• If you are compiling for processors that support ARMv6 (or later), a CPS 
instruction is generated inline for these functions, for example:

    CPSID  i

• If you are compiling for processors that support ARMv4 or ARMv5 in ARM 
state, the compiler inlines a sequence of MRS and MSR instructions, for example:

    MRS  r0, CPSR
    ORR  r0, r0, #0x80
    MSR  CPSR_c, r0

• If you are compiling for processors that support ARMv4 or ARMv5 in Thumb 
state, the compiler calls a helper function, for example:

    BL    __ARM_disable_irq

For more information on these instructions, see the Assembler Guide.

Intrinsics for inserting optimization barriers

The ARM compiler can perform a range of optimizations, including re-ordering 
instructions and merging some operations. In some cases, such as system level 
programming where memory is being accessed concurrently by multiple processes, it 
might be necessary to disable instruction re-ordering and force memory to be updated.
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The following optimization barrier intrinsics do not generate code, but they can result 
in slightly increased code size and additional memory accesses. In the Compiler 
Reference Guide, see:

• __schedule_barrier on page 4-96

• __force_stores on page 4-84

• __memory_changed on page 4-88.

Note
 On some systems the memory barrier intrinsics might not be sufficient to ensure 
memory consistency. For example, the __memory_changed() intrinsic forces values held 
in registers to be written out to memory. However, if the destination for the data is held 
in a region that can be buffered it might wait in a write buffer. In this case you might 
also have to write to CP15 or use a memory barrier instruction to drain the write buffer. 
Refer to the Technical Reference Manual for your ARM processor for more 
information.

Intrinsics for inserting native instructions

The following intrinsics enable you to insert ARM processor instructions into the 
instruction stream generated by the compiler. In the Compiler Reference Guide, see:

• __cdp on page 4-76

• __clrex on page 4-77

• __ldrex on page 4-84

• __ldrt on page 4-87

• __pld on page 4-89

• __pli on page 4-91

• __rbit on page 4-94

• __rev on page 4-94

• __ror on page 4-96

• __sev on page 4-98

• __strex on page 4-101

• __strt on page 4-103

• __swp on page 4-105

• __wfe on page 4-107

• __wfi on page 4-107

• __yield on page 4-108.
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Intrinsics for Digital Signal Processing

The following intrinsics described in the Compiler Reference Guide assist in the 
implementation of DSP algorithms:

• __clz on page 4-77

• __fabs on page 4-83

• __fabsf on page 4-84

• __qadd on page 4-92

• __qdbl on page 4-93

• __qsub on page 4-93

• __sqrt on page 4-99

• __sqrtf on page 4-100

• __ssat on page 4-100

• __usat on page 4-106.

See also ARMv6 SIMD intrinsics on page 4-109 in the Compiler Reference Guide.

These intrinsics introduce the appropriate target instructions for:

• ARM architectures from ARM v5TE onwards

• Thumb-2 architectures except 'M' variants.

Not every instruction has its own intrinsic. The compiler can combine several 
instrinsics, or combinations of intrinsics and C operators to generate more powerful 
instructions. For example, the ARM5TE QDADD instruction is realized by a combination 
of __qadd and __qdbl.

4.1.3 ETSI basic operations

The European Telecommunications Standard Institute (ETSI) has produced several 
recommendations for the coding of speech, for example, the G.723.1 and G.729 
recommendations. These recommendations include source code and test sequences for 
reference implementations of the codecs.

Model implementations of speech codecs supplied by the ETSI are based on a collection 
of C functions known as the ETSI basic operations. The ETSI basic operations include 
16-bit, 32-bit and 40-bit operations for saturated arithmetic, 16-bit and 32-bit logical 
operations, and 16-bit and 32-bit operations for data type conversion.

Note
 Version 2.0 of the ETSI collection of basic operations, as described in the ITU-T 
Software Tool Library 2005 User's manual, introduces new 16-bit, 32-bit and 40 
bit-operations. These operations are not supported in RVCT.
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The ETSI basic operations serve as a set of primitives for developers publishing codec 
algorithms, rather than as a library for use by developers implementing codecs in C or 
C++. RVCT provides support for the ETSI basic operations through the header file 
dspfns.h.

ETSI operations in RVCT

The dspfns.h header file contains definitions of the ETSI basic operations as a 
combination of C code and intrinsics. RVCT supports the original ETSI family of basic 
operations described in the ETSI G.729 recommendation Coding of speech at 8 kbit/s 
using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP), 
including:

• 16-bit and 32-bit saturated arithmetic operations, such as add and sub. For 
example, add(v1, v2) adds two 16-bit numbers v1 and v2 together, with overflow 
control and saturation, returning a 16-bit result.

• 16-bit and 32-bit multiplication operations, such as mult and L_mult. For example, 
mult(v1, v2) multiplies two 16-bit numbers v1 and v2 together, returning a scaled 
16-bit result.

• 16-bit arithmetic shift operations, such as shl and shr. For example, the saturating 
left shift operation shl(v1, v2) arithmetically shifts the 16-bit input v1 left v2 
positions. A negative shift count shifts v1 right v2 positions.

• 16-bit data conversion operations, such as extract_l, extract_h, and round. For 
example, round(L_v1) rounds the lower 16 bits of the 32-bit input L_v1 into the 
most significant 16 bits with saturation.

Note
 Beware that both the dspfns.h header file and the ISO C99 header file math.h both 

define (different versions of) the function round(). Take care to avoid this 
potential conflict.

See the header file dspfns.h for a complete list of the ETSI basic operations supported 
in RVCT.

In addition, see:

• ETSI Recommendation G.191: Software tools for speech and audio coding 
standardization

• ITU-T Software Tool Library 2005 User's manual, included as part of ETSI 
Recommendation G.191
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• ETSI Recommendation G723.1: Dual rate speech coder for multimedia 
communications transmitting at 5.3 and 6.3 kbit/s

• ETSI Recommendation G.729: Coding of speech at 8 kbit/s using 
conjugate-structure algebraic-code-excited linear prediction (CS-ACELP).

These documents are available from ITU-T, the telecommunications bureau of the ITU, 
at http://www.itu.int.

Overflow and carry

The implementation of the ETSI basic operations in dspfns.h exposes the status flags 
Overflow and Carry. These flags are available as global variables for use in your own C 
or C++ programs. For example:

#include <dspfns.h> /* include ETSI intrinsics */
#include <stdio.h>
...
const int BUFLEN=255;
int a[BUFLEN], b[BUFLEN], c[BUFLEN];
...
Overflow = 0; /* clear overflow flag */
for (i = 0; i < BUFLEN; ++i) {

c[i] = L_add(a[i], b[i]); /* saturated add of a[i] and b[i] */
}
if (Overflow)
{

fprintf(stderr, "Overflow on saturated addition\n");
}

Generally, saturating functions have a sticky effect on overflow. That is, the overflow 
flag remains set until it is explicitly cleared. For more information, see the header file 
dspfns.h.

4.1.4 TI C55x intrinsics

The Texas Instruments (TI) C55x compiler recognizes a number of intrinsics for the 
optimization of C code. RVCT supports the emulation of selected TI C55x intrinsics 
through the header file, c55x.h. TI C55x intrinsics that are emulated in c55x.h include:

• Intrinsics for addition, subtraction, negation and absolute value, such as _sadd and 
_ssub. For example, _sadd(v1, v2) returns the 16-bit saturated sum of v1 and v2.

• Intrinsics for multiplication and shifting, such as _smpy and _sshl. For example, 
_smpy(v1, v2) returns the saturated fractional-mode product of v1 and v2.
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• Intrinsics for rounding, saturation, bitcount and extremum, such as _round and 
_count. For example, _round(v1) returns the value v1 rounded by adding 215 using 
unsaturated arithmetic, clearing the lower 16 bits.

The following TI C55x intrinsics are not supported in c55x.h:

• Associative variants of intrinsics for addition and multiply-and-accumulate. This 
includes all TI C55x intrinsics prefixed with _a_, for example, _a_sadd and 
_a_smac.

• Rounding variants of intrinsics for multiplication and shifting, for example, 
_smacr and _smasr.

• All long long variants of intrinsics. This includes all TI C55x intrinsics prefixed 
with _ll, for example, _llsadd and _llshl. long long variants of intrinsics are not 
supported in RVCT because they operate on 40-bit data.

• All arithmetic intrinsics with side effects. For example, the TI C55x intrinsics 
_firs and _lms are not defined in c55x.h.

• Intrinsics for ETSI support functions, such as L_add_c and L_sub_c.

Note
 An exception is the ETSI support function for saturating division, divs. This 

intrinsic is supported in c55x.h.

See the header file c55x.h for a complete list of the TI C55x intrinsics emulated in 
RVCT.

For more information on TI compiler intrinsics see http://www.ti.com.

4.1.5 NEON Intrinsics

The ARM compiler provides NEON intrinsics to provide an intermediate step for SIMD 
code generation between a vectorizing compiler and writing assembler code. This 
feature makes it easier to write code that takes advantage of the NEON architecture 
when compared to writing assembler directly.

The NEON intrinsics are defined in the header file arm_neon.h. The header file defines 
both the intrinsics and a set of vector types. See Appendix E Using NEON Support in 
the Compiler Reference Guide for more information about NEON intrinsics.

Example 4-2 on page 4-10 shows a short example using NEON intrinsics. To build the 
example:

1. Compile the C file neon_example.c with the following options: 
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armcc -c --debug --cpu=Cortex-A8 neon_example.c

2. Link the image using the command:

armlink neon_example.o -o neon_example.axf

3. Use a compatible debugger, for example RealView Debugger, to load and run the 
image.

Example 4-2  NEON intrinsics

/* neon_example.c - Neon intrinsics example program */
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <arm_neon.h>
/* fill array with increasing integers beginning with 0 */
void fill_array(int16_t *array, int size)
{    int i;

for (i = 0; i < size; i++)
{

array[i] = i;
}

}
/* return the sum of all elements in an array. This works by calculating 4 
totals (one for each lane) and adding those at the end to get the final total */
int sum_array(int16_t *array, int size)
{

/* initialize the accumulator vector to zero */
int16x4_t acc = vdup_n_s16(0);
int32x2_t acc1;
int64x1_t acc2;
/* this implementation assumes the size of the array is a multiple of 4 */
assert((size % 4) == 0);
/* counting backwards gives better code */
for (; size != 0; size -= 4)
{

int16x4_t vec;
/* load 4 values in parallel from the array */
vec = vld1_s16(array);
/* increment the array pointer to the next element */
array += 4;
/* add the vector to the accumulator vector */
acc = vadd_s16(acc, vec);

}
/* calculate the total */
acc1 = vpaddl_s16(acc);
acc2 = vpaddl_s32(acc1);
/* return the total as an integer */
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return (int)vget_lane_s64(acc2, 0);
}
/* main function */
int main()
{

int16_t my_array[100];
fill_array(my_array, 100);
printf("Sum was %d\n", sum_array(my_array, 100));
return 0;

}

For more information about NEON see:

• NEON technology on page 2-23

• The Assembler Guide.
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4.2 Named register variables
The compiler enables you to access registers of an ARM architecture-based processor 
using named register variables.

Named register variables are declared by combining the register keyword with the 
__asm keyword. The __asm keyword takes one parameter, a character string, that names 
the register. For example, the declaration:

register int R0 __asm("r0");

declares R0 as a named register variable for the register r0. See Named register variables 
on page 4-192 in the Compiler Reference Guide for more information on the registers 
of ARM architecture-based processors that can be accessed using named register 
variables.

You can declare named register variables as global variables. You can declare some, but 
not all, named register variables as local variables. In general, do not declare Vector 
Floating-Point (VFP) registers and core registers as local variables. Do not declare 
caller-save registers, such as R0, as local variables. (Caller-save registers are registers 
that the caller must save the values of, if it wants the values after the subroutine 
completes.) Your program might still compile if you declare these locally, but you risk 
unexpected runtime behavior if you do this.

A typical use of named register variables is to access bits in the Application Program 
Status Register (APSR) (see The Application Program Status Register (APSR) on 
page 2-7 in the Assembler Guide). Example 3-3 shows the use of named register 
variables to set the saturation flag Q in the APSR.

Example 4-3 Setting bits in the APSR using a named register variable

#ifndef __BIG_ENDIAN // bitfield layout of APSR is sensitive to endianness
typedef union
{

struct
{

int mode:5;
int T:1;
int F:1;
int I:1;
int _dnm:19;
int Q:1;
int V:1;
int C:1;
int Z:1;
int N:1;
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} b;
unsigned int word;

} PSR;
#else /* __BIG_ENDIAN */
typedef union
{

struct 
{

int N:1;
int Z:1;
int C:1;
int V:1;
int Q:1;
int _dnm:19;
int I:1;
int F:1;
int T:1;
int mode:5;

} b;
unsigned int word;

} PSR;
#endif /* __BIG_ENDIAN */
register PSR apsr __asm("apsr");
void set_Q(void)
{

apsr.b.Q = 1;
}
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4.3 Pragmas
The ARM compiler recognizes the following forms of pragma:

#pragma no_feature-name

#pragma feature_name

Note
 Pragmas override related command-line options. For example, #pragma arm overrides 
the --thumb command-line option.

For more information see the relevant section in the Compiler Reference Guide:

Pragmas for saving and restoring the pragma state 

The following pragmas enable you to save and restore the pragma state:

• #pragma pop on page 4-70

• #pragma push on page 4-70.

Pragmas controlling optimization goals 

These pragmas enable you to assign optimization goals to individual 
functions. The pragmas must be placed outside of a function. The 
following pragmas control these optimizations:

• #pragma Onum on page 4-67

• #pragma Ospace on page 4-68

• #pragma Otime on page 4-68.

Pragmas controlling code generation 

The following pragmas control how code is generated:

• #pragma arm on page 4-59

• #pragma thumb on page 4-73

• #pragma exceptions_unwind, #pragma no_exceptions_unwind on 
page 4-64.

Pragmas controlling loop unrolling: 

The following pragmas control how loops are unrolled:

• #pragma unroll [(n)] on page 4-71

• #pragma unroll_completely on page 4-72.

Pragmas controlling PreCompiled Header (PCH) processing 

The following pragmas control PCH processing:

• #pragma hdrstop on page 4-64
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• #pragma no_pch on page 4-67.

Pragmas controlling anonymous structures and unions 

The following pragma controls the use of anonymous structures and 
unions:

• #pragma anon_unions, #pragma no_anon_unions on page 4-58.

Pragmas controlling diagnostic messages 

The following pragmas control the output of the diagnostic messages that 
have a -D postfix in the message number:

• #pragma diag_default tag[,tag,...] on page 4-61

• #pragma diag_error tag[,tag,...] on page 4-62

• #pragma diag_remark tag[,tag,...] on page 4-62

• #pragma diag_suppress tag[,tag,...] on page 4-63

• #pragma diag_warning tag[, tag, ...] on page 4-64.

Miscellaneous pragmas 

• #pragma arm section [section_sort_list] on page 4-59

• #pragma import(__use_full_stdio) on page 4-65

• #pragma inline, #pragma no_inline on page 4-66

• #pragma once on page 4-67

• #pragma pack(n) on page 4-68

• #pragma softfp_linkage, #pragma no_softfp_linkage on page 4-70

• #pragma import symbol_name on page 4-65.
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4.4 Bit-banding
This section describes how the bit-banding feature is supported by the compiler.

Note
 Bit-banding is a feature of the Cortex-M3 processor and some derivatives. This 
functionality is not available on other ARM processors.

For more information on architectural support for bit-banding, see the Technical 
Reference Manual for your processor.

Bit-banding is supported in the following ways:

• __attribute__((bitband)) language extension

•  --bitband command-line option.

4.4.1 Using __attribute__((bitband))

__attribute__((bitband)) is a type attribute that is used to bit-band type definitions of 
structures. See Example 4-4 and Example 4-5 on page 4-17.

Example 4-4 Unplaced object

/* foo.c */

typedef struct {
int i : 1;
int j : 2;
int k : 3;

} BB __attribute__((bitband));

BB value; // Unplaced object

void update_value(void)
{

value.i = 1;
value.j = 0;

}

/* end of foo.c */
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In Example 4-4 on page 4-16 the unplaced bit-banded objects must be relocated into the 
bit-band region. You can do this by either using an appropriate scatter-loading 
description file or by using the --rw_base linker command-line option. See the Linker 
Reference Guide for more information.

Alternatively, you can use __attribute__((at())) to place bit-banded objects at a 
particular address in the bit-band region. See Example 4-5.

Example 4-5 Placed object

/* foo.c */

typedef struct {
int i : 1;
int j : 2;
int k : 3;

} BB __attribute__((bitband));

BB value __attribute__((at(0x20000040))); // Placed object

void update_value(void)
{

value.i = 1;
value.j = 0;

}

/* end of foo.c */

See __attribute__((bitband)) on page 4-43 and __attribute__((at(address))) on 
page 4-48 in the Compiler Reference Guide for more information.

4.4.2 Using --bitband on the command-line

The --bitband command-line option bit-bands all non const global structure objects.

When --bitband is applied to foo.c in Example 4-6 on page 4-18, the write to value.i 
is bit-banded, that is, value 0x00000001 is written to the bit-band alias word that value.i 
maps to in the bit-band region.

Accesses to value.j and value.k are not bit-banded.
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Example 4-6 Using --bitband command-line option

/* foo.c */

typedef struct {
int i : 1;
int j : 2;
int k : 3;

} BB;

BB value __attribute__((at(0x20000040))); // Placed object

void update_value(void)
{

value.i = 1;
value.j = 0;

}

/* end of foo.c */

armcc supports the bit-banding of objects accessed through absolute addresses. When 
--bitband is applied to foo.c in Example 4-7, the access to rts is bit-banded.

Example 4-7 Bit-banding of objects accessed through absolute addresses

/* foo.c */

typedef struct {
int rts : 1;
int cts : 1;
unsigned int data;

} uart;

#define com2 (*((volatile uart *)0x20002000))
void put_com2(int n) 
{
com2.rts = 1;
com2.data = n;

}

/* end of foo.c */

See --bitband on page 2-18 in the Compiler Reference Guide for more information.
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4.4.3 Restrictions

The following restrictions apply:

• Bit-banding can only be used with struct types. Any union type or other 
aggregate type with a union as a member cannot be bit-banded.

• Members of structs cannot be bit-banded individually.

• Bit-banded accesses are generated only for single-bit bitfields.

• Bit-banded accesses are not generated for const objects, pointers, and local 
objects.
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4.5 Thread-local storage
Thread-Local Storage (TLS) is a class of static storage that, like the stack, is private to 
each thread of execution. Each thread in a process is given a location where it can store 
thread-specific data. Variables are allocated so that there is one instance of the variable 
for each existing thread.

Before each thread terminates, it releases its dynamic memory and any pointers to 
thread-local variables in that thread become invalid.

See __declspec(thread) on page 4-30 in the Compiler Reference Guide.
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4.6 Eight-byte alignment features
The ARM compiler has the following eight-byte alignment features:

• The Procedure Call Standard for the ARM Architecture (AAPCS) requires that 
the stack is eight-byte aligned at all external interfaces. The ARM compiler and 
C libraries preserve the eight-byte alignment of the stack. In addition, the default 
C library memory model maintains eight-byte alignment of the heap.

• Code is compiled in a way that requires and preserves the eight byte alignment 
constraints at external interfaces.

• If you have assembly files, or legacy objects, or libraries in your project, it is your 
responsibility to check that they preserve eight-byte stack alignment, and correct 
them if required. See the Assembler Guide and the Linker User Guide.

• In RVCT v2.0 and later, double and long long data types are eight-byte aligned. 
This enables efficient use of the LDRD and STRD instructions in ARMv5TE and later.

• The default implementations of malloc(), realloc(), and calloc() maintain an 
eight-byte aligned heap.

• The default implementation of alloca() returns an eight-byte aligned block of 
memory. See alloca() on page 2-68 in the Libraries Guide for more information 
on this C library extension.
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Chapter 5 
Coding Practices

The ARM compiler armcc is a mature, industrial-strength ISO C and C++ compiler 
capable of producing highly optimized, high quality machine code. By using 
programming practices and techniques that work well on RISC processors such as 
ARM cores, however, you can increase the portability, efficiency and robustness of your 
C and C++ source code. This chapter describes some of these programming practices, 
together with some programming techniques that are specific to ARM processors. 

This chapter includes the following sections:

• Optimizing code on page 5-2

• Code metrics on page 5-10

• Functions on page 5-13

• Function inlining on page 5-18

• Aligning data on page 5-25

• Using floating-point arithmetic on page 5-31

• Trapping and identifying division-by-zero errors on page 5-40

• New features of C99 on page 5-45.
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5.1 Optimizing code
The ARM compiler is highly optimizing, for small code size and high performance. The 
compiler performs optimizations common to other optimizing compilers, for example, 
data-flow optimizations such as common sub-expression elimination and loop 
optimizations such as loop combining and distribution. In addition, the compiler 
performs a range of optimizations specific to ARM architecture-based processors.

Even though the compiler is highly optimizing, you can often significantly improve the 
performance of your C or C++ code by selecting correct optimization criteria, target 
processor and architecture, and inlining options.

5.1.1 Optimizing for size versus speed

The compiler provides two options for optimizing for code size and performance:

-Ospace This option causes the compiler to optimize mainly for code size. This is 
the default option.

-Otime This option causes the compiler to optimize mainly for speed.

For best results, you must build your application using the most appropriate 
command-line option.

Note
 These command-line options instruct the compiler to use optimizations that deliver the 
effect wanted in the vast majority of cases. However, it is not guaranteed that -Otime 
always generates faster code, or that -Ospace always generates smaller code.

See:

• -Ospace on page 2-99 in the Compiler Reference Guide

• -Otime on page 2-99 in the Compiler Reference Guide.

5.1.2 Optimization levels and the debug view

The precise optimizations performed by the compiler depend both on the level of 
optimization chosen, and whether you are optimizing for performance or code size.

The compiler supports the following optimization levels:

-O0 Minimum optimization. The compiler performs simple optimizations 
that do not impair the debug view.

When debugging is enabled, this option gives the best possible debug 
view.
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-O1 Restricted optimization.

When debugging is enabled, this option gives a generally satisfactory 
debug view with good code density.

-O2 High optimization. This is the default optimization level.

When debugging is enabled, this option might give a less satisfactory 
debug view.

-O3 Maximum optimization. This is the most aggressive form of optimization 
available. Specifying this option enables multifile compilation by default 
where multiple files are specified on the command line.

When debugging is enabled, this option typically gives a poor debug 
view.

Because optimization affects the mapping of object code to source code, the choice of 
optimization level and -Ospace/-Otime generally impacts the debug view. When 
debugging is enabled using --debug, explicitly specify the most appropriate 
optimization level using the -Onum command-line option.

The option -O0 is the best option to use if a simple debug view is needed. Selecting -O0 
typically increases the size of the ELF image by 7-15%. To reduce the size of your 
debug tables, use the --no_debug_macros option.

See:

• --debug, --no_debug on page 2-37 in the Compiler Reference Guide

• --debug_macros, --no_debug_macros on page 2-37 in the Compiler Reference 
Guide

• --dwarf2 on page 2-51 in the Compiler Reference Guide

• --dwarf3 on page 2-51 in the Compiler Reference Guide

• -Onum on page 2-96 in the Compiler Reference Guide.

5.1.3 Selecting the target CPU

Each new version of the ARM architecture typically supports extra instructions, extra 
modes of operation, pipeline differences, and register renaming.

• Where a compiled program is to run on a specific ARM architecture-based 
processor, it is best to select the target processor using the --cpu command-line 
option. This enables the compiler to make full use of instructions that are 
supported by the processor, and also to perform processor-specific optimizations 
such as instruction scheduling.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 5-3
ID101213 Non-Confidential, 



Coding Practices 
• Where a compiled program is to run on different ARM processors, you must 
choose the lowest common denominator architecture appropriate for your 
application using the --cpu command-line option. For example, to compile code 
for processors supporting the ARM v6 architecture, use the command-line option 
--cpu 6.

Note
 You can list all the processors and architectures supported by the compiler using the 
command-line option --cpu list.

See:

• Specifying the target processor or architecture on page 2-23

• --cpu=list on page 2-30 in the Compiler Reference Guide

• --cpu=name on page 2-30 in the Compiler Reference Guide.

5.1.4 Optimizing loops

Loops are a common construct in most programs. Because a significant amount of 
execution time is often spent in loops, it is worthwhile paying attention to time-critical 
loops.

Loop termination

The loop termination condition can cause significant overhead if written without 
caution. Where possible:

• always write count-down-to-zero loops and use simple termination conditions

• always use a counter of type unsigned int, and test for not equal to zero. 

Table 5-1 shows two sample implementations of a routine to calculate n! that together 
illustrate loop termination overhead. The first implementation calculates n! using an 
incrementing loop, while the second routine calculates n! using a decrementing loop.

Table 5-1 C code for incrementing and decrementing loops

Incrementing loop Decrementing loop

int fact1(int n)
{

int i, fact = 1;
for (i = 1; i <= n; i++)

fact *= i;
return (fact);

}

int fact2(int n)
{

unsigned int i, fact = 1;
for (i = n; i != 0; i--)

fact *= i;
return (fact);

}
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Table 5-2 shows the corresponding disassembly of the machine code produced by the 
compiler for each of the sample implementations of Table 5-1 on page 5-4, where the C 
code for both implementations has been compiled using the options -O2 -Otime.

Comparing the disassemblies of Table 5-2 shows that the ADD/CMP instruction pair in the 
incrementing loop disassembly has been replaced with a single SUBS instruction in the 
decrementing loop disassembly. This is because a compare with zero can be optimized 
away.

In addition to saving an instruction in the loop, the variable n does not have to be saved 
across the loop, so the use of a register is also saved in the decrementing loop 
disassembly. This eases register allocation.

The technique of initializing the loop counter to the number of iterations required, and 
then decrementing down to zero, also applies to while and do statements.

Loop unrolling

Small loops can be unrolled for higher performance, with the disadvantage of increased 
code size. When a loop is unrolled, a loop counter needs to be updated less often and 
fewer branches are executed. If the loop iterates only a few times, it can be fully 
unrolled, so that the loop overhead completely disappears. The ARM compiler unrolls 
loops automatically at -O3 -Otime. Otherwise, any unrolling must be done in source 
code.

Note
 Manual unrolling of loops might hinder the automatic re-rolling of loops and other loop 
optimizations by the compiler.

Table 5-2 C Disassembly for incrementing and decrementing loops

Incrementing loop Decrementing loop

fact1 PROC
MOV      r2, r0
MOV      r0, #1
CMP      r2, #1
MOV      r1, r0
BXLT     lr

|L1.20|
MUL      r0, r1, r0
ADD      r1, r1, #1
CMP      r1, r2
BLE      |L1.20|
BX       lr
ENDP

fact2 PROC
MOVS     r1, r0
MOV      r0, #1
BXEQ     lr

|L1.12|
MUL      r0, r1, r0
SUBS     r1, r1, #1
BNE      |L1.12|
BX       lr

ENDP
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 5-5
ID101213 Non-Confidential, 



Coding Practices 
The advantages and disadvantages of loop unrolling can be illustrated using the two 
sample routines shown in Table 5-3. Both routines efficiently test a single bit by 
extracting the lowest bit and counting it, after which the bit is shifted out.

The first implementation uses a loop to count bits. The second routine is the first 
unrolled four times, with an optimization applied by combining the four shifts of n into 
one. Unrolling frequently provides new opportunities for optimization.

Table 5-3 C code for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

int countbit1(unsigned int n)
{

int bits = 0;
while (n != 0)
{

if (n & 1) bits++;
n >>= 1;

}
return bits;

}

int countbit2(unsigned int n)
{

int bits = 0;
while (n != 0)
{

if (n & 1) bits++;
if (n & 2) bits++;
if (n & 4) bits++;
if (n & 8) bits++;
n >>= 4;

}
return bits;

}
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Table 5-4 shows the corresponding disassembly of the machine code produced by the 
compiler for each of the sample implementations of Table 5-3 on page 5-6, where the C 
code for each implementation has been compiled using the option -O2.

On the ARM7, checking a single bit takes six cycles in the disassembly of the 
bit-counting loop shown in the leftmost column. The code size is only nine instructions. 
The unrolled version of the bit-counting loop checks four bits at a time, taking on 
average only three cycles per bit. However, the cost is the larger code size of fifteen 
instructions.

5.1.5 Using volatile

Occasionally, you might encounter problems when compiling code at the higher 
optimization levels -O2 and -O3. For example, you might get stuck in a loop when 
polling hardware or multi-threaded code might exhibit strange behavior. In such cases 
it is likely that you have to declare some of your variables as volatile.

Declaring a variable as volatile tells the compiler that the variable can be modified at 
any time externally to the implementation, for example, by the operating system or by 
hardware. Because the value of a volatile-qualified variable can change at any time, the 
physical address of the variable in memory must always be accessed whenever the 
variable is referenced in code. This means the compiler cannot perform optimizations 
on the variable, for example, caching it in a local register to avoid memory accesses.

Table 5-4 Disassembly for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

countbit1 PROC
MOV      r1, #0
B        |L1.20|

|L1.8|
TST      r0, #1
ADDNE    r1, r1, #1
LSR      r0, r0, #1

|L1.20|
CMP      r0, #0
BNE      |L1.8|
MOV      r0, r1
BX       lr

ENDP

countbit2 PROC
MOV      r1, r0
MOV      r0, #0
B        |L1.48|

|L1.12|
TST      r1, #1
ADDNE    r0, r0, #1
TST      r1, #2
ADDNE    r0, r0, #1
TST      r1, #4
ADDNE    r0, r0, #1
TST      r1, #8
ADDNE    r0, r0, #1
LSR      r1, r1, #4

|L1.48|
CMP      r1, #0
BNE      |L1.12|
BX       lr

ENDP
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In contrast, when a variable is not declared as volatile, the compiler can assume its 
value cannot be modified outside the implementation. Therefore, the compiler can 
perform optimizations on the variable.

The use of the volatile keyword is illustrated in the two sample routines of Table 5-5, 
both of which loop reading a buffer until a status flag buffer_full is set to true. Both 
routines assume that the state of buffer_full can change asynchronously with program 
flow. 

The first routine shows a naive implementation of the loop. Notice that the variable 
buffer_full is not qualified as volatile in this implementation. In contrast, the second 
routine shows the same loop where buffer_full is correctly qualified as volatile in the 
implementation.

Table 5-5 C code for nonvolatile and volatile buffer loops

Nonvolatile version of buffer loop Volatile version of buffer loop

int buffer_full;
int read_stream(void)
{

int count = 0;
while (!buffer_full)
{

count++;
}
return count;

}

volatile int buffer_full;
int read_stream(void)
{

int count = 0;
while (!buffer_full)
{

count++;
}
return count;

}
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Table 5-6 shows the corresponding disassembly of the machine code produced by the 
compiler for each of the sample implementations of Table 5-1 on page 5-4, where the C 
code for each implementation has been compiled using the option -O2.

In the disassembly of the nonvolatile version of the buffer loop in Table 5-6, the 
statement LDR r0, [r0, #0] loads the value of buffer_full into register r0 outside the 
loop labeled |L1.8|. Because buffer_full is not declared as volatile, the compiler 
assumes that its value cannot be modified outside the program. Having already read the 
value of buffer_full into r0, the compiler omits reloading the variable when 
optimizations are enabled, because its value cannot change. The result is the infinite 
loop labeled |L1.8|.

In contrast, in the disassembly of the volatile version of the buffer loop, the compiler 
assumes the value of buffer_full can change outside the program and performs no 
optimizations. Consequently, the value of buffer_full is loaded into register r0 inside 
the loop labeled |L1.4|. As a result, the loop |L1.4| is implemented correctly in 
assembly code.

To avoid optimization problems caused by changes to program state external to the 
implementation, you must declare variables as volatile whenever their values can 
change unexpectedly in ways unknown to the implementation. In practice, you must 
declare a variable as volatile whenever you are:

• accessing memory mapped peripherals 

• sharing global variables between multiple threads 

• accessing global variables in an interrupt routine.

Table 5-6 Disassembly for nonvolatile and volatile buffer loop

Nonvolatile version of buffer loop Volatile version of buffer loop

read_stream PROC
LDR      r1, |L1.28|
MOV      r0, #0
LDR      r1, [r1, #0]

|L1.12|
CMP      r1, #0
ADDEQ    r0, r0, #1
BEQ      |L1.12|  ; infinite loop
BX       lr
ENDP

|L1.28|
DCD      ||.data||
AREA ||.data||, DATA, ALIGN=2

buffer_full
DCD      0x00000000

read_stream PROC
LDR      r1, |L1.28|
MOV      r0, #0

|L1.8|
LDR      r2, [r1, #0];  ; buffer_full
CMP      r2, #0
ADDEQ    r0, r0, #1
BEQ      |L1.8|
BX       lr
ENDP

|L1.28|
DCD      ||.data||
AREA ||.data||, DATA, ALIGN=2
buffer_full

DCD      0x00000000
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5.2 Code metrics
Code metrics provide a means of objectively evaluating code quality. The ARM 
compiler, linker, and profiler provide several facilities for generating simple code 
metrics and improving code quality. In particular, you can:

• measure code and data sizes

• generate static callgraphs

• measure stack use

• reduce debug information in objects and libraries.

See the ARM Profiler User Guide for information about the ARM Profiler.

5.2.1 Measuring code and data sizes

You can measure the code and data sizes of your application using a range of options. 
See:

• --info=totals on page 2-74 in the Compiler Reference Guide

• --info=topic[,topic,...] on page 2-36 in the Utilities Guide

• --callgraph, --no_callgraph on page 2-18 in the Linker Reference Guide

• --map, --no_map on page 2-59 in the Linker Reference Guide

• --symbols, --no_symbols on page 2-89 in the Linker Reference Guide

• --xref, --no_xref on page 2-101 in the Linker Reference Guide.

5.2.2 Measuring stack use

C and C++ both use the stack intensively. For example, the stack is used to hold:

• the return address of functions

• registers that must be preserved, as determined by the AAPCS

• local variables, including local arrays, structures, and, in C++, classes.

In general, there is no way to automatically measure stack use. However, it is possible 
to manually estimate the extent of stack utilization. This can be done in several ways:

• Link with --callgraph to produce a static callgraph. This shows information on 
all functions, including stack use.

• Link with --info=stack or --info=summarystack to list the stack usage of all global 
symbols.

• Use your debugger to set a watchpoint on the last available location in the stack 
and see if the watchpoint is ever hit.
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• Use your debugger to:

1. Allocate space for the stack that is much larger than you expect to require.

2. Fill the stack with a known value, for example, zero or 0xDEADDEAD. 

3. Run your application, or a fixed portion of it. Aim to use as much of the 
stack as possible in the test run. For example, be sure to execute as many 
branches of your code as possible, and to generate interrupts where 
appropriate, so that they are included in the stack trace.

4. Examine, after your application has finished executing, the stack area of 
memory to see how many of the known values (zeros or 0xDEADDEAD) 
have been overwritten. The stack shows garbage in the part of the stack that 
has been used and zeros or 0xDEADDEAD values in the remainder.

5. Count the number of known entries and multiply by eight. This shows how 
far the stack has grown in memory in bytes. 

• For RVISS, use a map file to define a region of memory where access is not 
permitted. Place this region directly below your stack in memory. If the stack 
overflows into the forbidden region, a data abort occurs that can be trapped by 
your debugger.

See:

• Measuring code and data sizes on page 5-10

• --callgraph, --no_callgraph on page 2-18 of the Linker Reference Guide.

5.2.3 Reducing debug information in objects and libraries

It is often useful to reduce the amount of debug information in objects and libraries. 
Reducing the level of debug information: 

• Reduces the size of objects and libraries, thereby reducing the amount of disk 
space needed to store them.

• Speeds up link time. In the compilation cycle, most of the link time is consumed 
by reading in all the debug sections and eliminating the duplicates.

• Minimizes the size of the final image. This facilitates the fast loading and 
processing of debug symbols by a debugger.

There are several ways to reduce the amount of debug information being generated per 
source file. For example, you can:

• Avoid conditional use of #define in header files. This might make it more difficult 
for the linker to eliminate duplicate information.
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• Modify your C or C++ source files so that header files are #included in the same 
order.

• Partition header information into smaller blocks. That is, use a larger number of 
smaller header files rather than a smaller number of larger header files. This helps 
the linker to eliminate more of the common blocks.

• Only include a header file in a C or C++ source file if it is really needed.

• Guard against the multiple inclusion of header files. For example, if you have a 
header file foo.h, then add: 

#ifndef foo_h
#define foo_h
...
// rest of header file as before
...
#endif /* foo_h */

You can use the compiler option --remarks to warn about unguarded header files.

• Compile your code with the --no_debug_macros command-line option to discard 
preprocessor macro definitions from debug tables.

See:

• --debug_macros, --no_debug_macros on page 2-37 in the Compiler Reference 
Guide

• --remarks on page 2-111 in the Compiler Reference Guide.
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5.3 Functions
To enable the compiler to perform optimizations more efficiently, it is a good idea in 
general to keep functions small and simple. There are several ways of achieving this 
goal. For example, you can:

• minimize the number of parameters passed to and from functions

• return multiple values from a function through the registers using 
__value_in_regs

• where possible, qualify functions as __pure.

5.3.1 Minimizing parameter passing overhead

There are several ways in which you can minimize the overhead of passing parameters 
to functions. For example:

• Ensure that functions take four or fewer arguments if each argument is a word or 
less in size. In C++, ensure that nonstatic member functions take three or fewer 
arguments, because of the implicit this pointer argument that is usually passed in 
R0.

• Ensure that a function does a significant amount of work if it requires more than 
four arguments, so that the cost of passing the stacked arguments is outweighed.

• Put related arguments in a structure, and pass a pointer to the structure in any 
function call. This reduces the number of parameters and increases readability.

• Minimize the number of long long parameters, because these take two argument 
words that have to be aligned on an even register index. 

• Minimize the number of double parameters if software floating-point is enabled.

• Avoid functions with a variable number of parameters. Functions taking a 
variable number of arguments effectively pass all their arguments on the stack.

5.3.2 __value_in_regs

In C and C++, one way of returning multiple values from a function is to use a structure. 
Normally, structures are returned on the stack, with all the associated expense this 
entails.

To reduce memory traffic and reduce code size, the compiler enables you to return 
multiple values from a function through the registers. Up to four words can be returned 
from a function in a struct by qualifying the function with __value_in_regs. For 
example:
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typedef struct s_coord { int x; int y; } coord;
coord reflect(int x1, int y1) __value_in_regs;

You can use __value_in_regs anywhere where you have to return multiple values from 
a function. Examples include:

• returning multiple values from C and C++ functions

• returning multiple values from embedded assembly language functions

• making supervisor calls

• re-implementing __user_initial_stackheap.

See __value_in_regs on page 4-20 in the Compiler Reference Guide for more 
information about __value_in_regs.

5.3.3 __pure

A pure function is a function that always returns the same result if it is called with the 
same arguments. 

By definition, it is sufficient to evaluate any particular call to a pure function only once. 
Because the result of a call to the function is guaranteed to be the same for any identical 
call, each subsequent call to the function in code can be replaced with the result of the 
original call.

To instruct the compiler that a function is pure, declare the function as __pure.

The use of the __pure keyword is illustrated in the two sample routines of Table 5-7 on 
page 5-15. Both routines call a function fact to calculate the sum of n! and n!. The fact 
function depends only on its input argument n to compute n!. Therefore fact is a pure 
function.
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The first routine shows a naive implementation of the function fact, where fact is not 
declared __pure. In the second implementation, the function fact is qualified as __pure 
to indicate to the compiler that it is a pure function.

Table 5-8 shows the corresponding disassembly of the machine code produced by the 
compiler for each of the sample implementations of Table 5-7, where the C code for 
each implementation has been compiled using the option -O2.

In the disassembly of the function foo in Table 4-8 where fact is not qualified as __pure, 
the function fact is called twice, because the compiler does not know the function is a 
candidate for CSE. In contrast, in the disassembly of foo in Table 4-8 where fact is 
qualified as __pure, fact is called only once, instead of twice, because the compiler has 
been able to perform CSE when adding fact(n) + fact(n).

Table 5-7 C code for pure and impure functions

A pure function not declared __pure A pure function declared __pure

int fact(int n)
{

int f = 1;
while (n > 0)

f *= n--;
return f;

} 
int foo(int n)
{

return fact(n)+fact(n);
}

int fact(int n) __pure
{

int f = 1;
while (n > 0)

f *= n--;
return f;

}
int foo(int n)
{

return fact(n)+fact(n);
}

Table 5-8 Disassembly for pure and impure functions

A pure function not declared __pure A pure function declared __pure

fact PROC
...

foo PROC
MOV      r3, r0
PUSH     {lr}
BL       fact
MOV      r2, r0
MOV      r0, r3
BL       fact
ADD      r0, r0, r2
POP      {pc}
ENDP

fact PROC
...

foo PROC
PUSH     {lr}
BL       fact
LSL      r0,r0,#1
POP      {pc}
ENDP
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By definition, pure functions cannot have side effects. For example, a pure function 
cannot read or write global state by using global variables or indirecting through 
pointers, because accessing global state can violate the rule that the function must return 
the same value each time when called twice with the same parameters. Therefore, you 
must use __pure carefully in your programs. Where functions can be declared __pure, 
however, the compiler can often perform powerful optimizations, such as CSEs.

See __pure on page 4-13 in the Compiler Reference Guide for more information about 
pure functions.

5.3.4 Placing ARM function qualifiers

Many ARM keyword extensions modify the behavior or calling sequence of a function. 
For example, __pure, __irq, __swi, __swi_indirect, __softfp, and __value_in_regs all 
behave in this way.

These function modifiers all have a common syntax. A function modifier such as __pure 
can qualify a function declaration either:

• Before the function declaration. For example:

__pure int foo(int);

• After the closing parenthesis on the parameter list. For example:

int foo(int) __pure;

For simple function declarations, each syntax is unambiguous. However, for a function 
whose return type or arguments are function pointers, the prefix syntax is imprecise. For 
example, the following function returns a function pointer, but it is not clear whether 
__pure modifies the function itself or its returned pointer type:

__pure int (*foo(int)) (int); /* declares 'foo' as a (pure?) function that
returns a pointer to a (pure?) function.
It is ambiguous which of the two function
types is pure. */

In fact, the single __pure keyword at the front of the declaration of foo modifies both foo 
itself and the function pointer type returned by foo. 

In contrast, the postfix syntax because it enables a clear distinction between whether 
__pure applies to the argument, the return type, or the base function, when declaring a 
function whose argument and return types are function pointers. For example:

int (*foo1(int) __pure) (int); /* foo1 is a pure function returning
a pointer to a normal function */

int (*foo2(int)) (int) __pure; /* foo2 is a function returning
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a pointer to a pure function */
int (*foo3(int) __pure) (int) __pure; /* foo3 is a pure function returning

a pointer to a pure function */

In this example:

• foo1 and foo3 are modified themselves

• foo2 and foo3 return a pointer to a modified function

• the functions foo3 and foo are identical.

Because the postfix syntax is more precise than the prefix syntax, it is recommended 
that, where possible, you make use of the postfix syntax when qualifying functions with 
ARM function modifiers.
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5.4 Function inlining
Function inlining offers a trade-off between code size and performance. By default, the 
compiler decides for itself whether to inline code or not. As a general rule, the compiler 
makes sensible decisions about inlining with a view to producing code of minimal size. 
This is because code size for embedded systems is of fundamental importance.

In most circumstances, the decision to inline a particular function is best left to the 
compiler. However, you can give the compiler a hint that a function is required to be 
inlined by using the appropriate inline keyword. The compiler also offers a range of 
other facilities for modifying its behavior with respect to inlining. There are several 
factors you must take into account when deciding whether to use these facilities, or 
more generally, whether to inline a function at all.

Functions that are qualified with __inline, inline, or __forceinline are called inline 
functions. In C++, member functions that are defined inside a class, struct, or union, are 
also inline functions.

Note
 Be aware that profile guided optimizations can affect function inlining. See 
--profile=filename on page 2-107 in the Compiler Reference Guide.

5.4.1 How the compiler decides to inline

When inlining is enabled, the compiler uses a complex decision tree to decide when a 
function is inlined. The compiler uses the following simplified algorithm to determine 
if a function is to be inlined:

1. If the function is qualified with __forceinline, then the function is inlined if it is 
possible to do so.

2. If the function is qualified with __inline and the option --forceinline is selected, 
then the function is inlined if it is possible to do so.

If the function is qualified with __inline and the option --forceinline is not 
selected, then the function is inlined if it is practical to do so.

3. If the optimization level is -O2 or higher, or --autoinline is selected, then the 
function is inlined if it is practical to inline the function, and if it is possible to do 
so.

When deciding if it is practical to inline a function, the compiler takes into account 
several other criteria, including whether you select -Ospace or -Otime. Select -Otime to 
increase the likelihood that a function is inlined. See When is it practical for the 
compiler to inline? on page 5-19.
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You cannot override any decision made by the compiler about when it is practical to 
inline a function. For example, you cannot force a function to be inlined if the compiler 
thinks it is not sensible.

5.4.2 When is it practical for the compiler to inline?

The compiler decides for itself when it is practical to inline a function or not, depending 
on a number of conditions, including:

• the size of the function, and how many times it is called

• the current optimization level

• whether it is optimizing for speed (-Otime) or size (-Ospace)

• whether the function has external or static linkage 

• how many parameters the function has

• whether the return value of the function is used.

Ultimately, the compiler can decide not to inline a function, even if the function is 
qualified with __forceinline. As a general rule:

• smaller functions stand a better chance of being inlined

• compiling with -Otime increases the likelihood that a function is inlined

• large functions are not normally inlined because this can adversely affect code 
density and performance.

5.4.3 Managing inlining

You can force the compiler to attempt to inline a function using the __forceinline 
keyword. The compiler places the function inline, unless doing so causes problems. For 
example, a recursive function is inlined into itself only once. To force the compiler to 
attempt to inline all functions marked with __inline, compile your code with the 
--forceinline command-line option.

At the highest levels of optimization (-O2 and -O3), the compiler is able to automatically 
inline functions if it is sensible to do so, even if you do not explicitly give a hint. See 
Marking functions as static on page 5-23.

You can control the automatic inlining of functions at the highest optimization levels 
using the --no_autoinline and --autoinline command-line options. In general, when 
automatic inlining is enabled, the compiler inlines anything that it is sensible to inline. 
When automatic inlining is disabled, only functions marked as __inline are candidates 
for inlining.
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You can control whether inlining is performed at all using the --no_inline and --inline 
keywords. By default, inlining of functions is enabled. If you disable inlining of 
functions using the --no_inline command-line option, then the compiler attempts to 
inline only those functions that are explicitly qualified with __forceinline.

See:

• --autoinline, --no_autoinline on page 2-17 in the Compiler Reference Guide

• --forceinline on page 2-58 in the Compiler Reference Guide

• --inline, --no_inline on page 2-75 in the Compiler Reference Guide

• __forceinline on page 4-6 in the Compiler Reference Guide

• __inline on page 4-9 in the Compiler Reference Guide.

5.4.4 Automatic inlining

At -O2 and -O3 levels of optimization, the compiler considers inlining calls to functions 
that are defined, but are not inline functions. This works best for static functions, 
because if all uses of a static function can be inlined, no out-of-line copy is required. It 
is best to mark all non-inline functions as static if they are not used outside the 
translation unit where they are defined. A translation unit is the preprocessed output of 
a source file together with all of the headers and source files included as a result of the 
#include directive. Typically, you do not want to place definitions of non-inline 
functions in header files.

If you are compiling with the --multifile option, enabled by default at -O3 level, or 
--ltcg, it is possible for the compiler to perform automatic inlining for calls to functions 
that are defined in other translation units. 

For --multifile, both translation units must be compiled in the same invocation of the 
compiler. For --ltcg, they are required only to be linked together.

--no_inline disables automatic inlining.

5.4.5 Differences in behavior between C++, C90, C99, and GNU C90 compiler modes

The effect of inlining differs in some areas, depending on what language the compiler 
is compiling for.

__forceinline behaves like __inline, except that the compiler tries harder to do the 
inlining.

C++ and C90 mode

The inline keyword is not available in C90.
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The effect of __inline in C90, and __inline and inline in C++, is identical.

When declaring an extern function to be inline, you must define it in every translation 
unit that it is used in. You must ensure that you use the same definition in each 
translation unit.

The requirement of defining the function in every translation unit applies even though 
it has external linkage.

If an inline function is used by more than one file, its definition is typically placed in a 
header file. 

Placing definitions of non-inline functions in header files is not recommended, because 
this can result in the creation of a separate function in each translation unit. If the 
non-inline function is an extern function, this leads to duplicate symbols at link time. If 
the non-inline function is static, this can lead to unwanted code duplication.

Member functions defined within a C++ structure, class, or union declaration, are 
implicitly inline. They are treated as if they are declared with the inline or __inline 
keyword.

Inline functions have extern linkage unless they are explicitly declared static. If an 
inline function is declared to be static, any out-of-line copies of the function must be 
unique to their translation unit, so declaring an inline function to be static could lead to 
unwanted code duplication.

The compiler generates a regular call to an out-of-line copy of a function when it cannot 
inline the function, and when it decides not to inline it.

The requirement of defining a function in every translation unit it is used in means that 
the compiler is not required to emit out-of-line copies of all extern inline functions. 
When the compiler does emit out-of-line copies of an extern inline function, it uses 
Common Groups, so that the linker eliminates duplicates, keeping at most one copy in 
the same out-of-line function from different object files. (See Common group or section 
elimination on page 3-13 in the Linker User Guide). 

C99 mode

The rules for C99 inline functions with external linkage differ to those of C++. C99 
distinguishes between inline definitions and external definitions. Within a given 
translation unit where the inline function is defined, if the inline function is always 
declared with inline and never with extern, it is an inline definition. Otherwise, it is an 
external definition. These inline definitions are not used to generate out-of-line copies, 
even when --no_inline is used.
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Each use of an inline function might be inlined using a definition from the same 
translation unit (that might be an inline definition or an external definition), or it might 
become a call to an external definition. If an inline function is used, it must have exactly 
one external definition in some translation unit. This is the same rule that applies to 
using any external function. In practise, if all uses of an inline function are inlined, no 
error occurs if the external definition is missing. If you use --no_inline, only external 
definitions are used.

Typically, you put inline functions with external linkage into header files as inline 
definitions, using inline, not extern. There is also an external definition in a source file. 
For example:

Example 5-1 Function inlining in C99

/* example_header.h */
inline int my_function (int i)
{

return i + 42; // inline definition
}

/* file1.c */
#include “example_header.h”

... // uses of my_function()

/* file2.c */
#include “example_header.h”

... // uses of my_function()

/* myfile.c */
#include “example_header.h”
extern inline int my_function(int); // causes external definition.

This is the same strategy that is typically used for C++, but in C++, there is no special 
external definition, and no requirement for it.

The definitions of inline functions can be different in different translation units. 
However, in typical use, like Function inlining in C99, they are identical.

When compiling with --multifile or --ltcg, calls in one translation unit might be 
inlined using the external definition in another translation unit.

C99 places some restrictions on inline definitions. They cannot define modifiable local 
static objects. They cannot reference identifiers with static linkage.

In C99 mode, as with all other modes, the effects of __inline and inline are identical.
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Inline functions with static linkage have the same behavior in C99 as in C++.

GNU C90 mode

The GNU C90 rules for inlining differ from the rules in other compiler modes. See the 
GNU documentation at http://gcc.gnu.org.

5.4.6 Linker inlining

The linker is able to replace calls to some very short functions with the body of the 
function. See --inline, --no_inline on page 2-47 in the Linker Reference Guide.

5.4.7 Debugging data and the --no_inline and --inline command-line options

The debug view generated for uses of inline functions is generally good. However, it is 
sometimes useful to avoid inlining functions because in some situations, debugging is 
clearer if they are not inlined. You can enable and disable the inlining of functions using 
the --no_inline and --inline command-line options. See --inline, --no_inline on 
page 2-75 in the Compiler Reference Guide.

5.4.8 Marking functions as static

At the optimization levels -O2 and -O3, the compiler is able to automatically inline a 
function if it is practical to do so, even when the function is not declared as __inline or 
inline. 

Note
 To control the automatic inlining of functions at higher optimization levels, use the 
--no_autoinline and --autoinline command-line options.

Unless a function is explicitly declared as static (or __inline), the compiler has to 
retain the out-of-line version of it in the object file in case it is called from some other 
module. The linker is unable to remove unused out-of-line functions from an object 
unless you place them in their own sections using one of the following methods:

• --split_sections on page 2-118 in the Compiler Reference Guide

• __attribute__((section("name"))) on page 4-52 in the Compiler Reference Guide

• #pragma arm section [section_sort_list] on page 4-59 in the Compiler Reference 
Guide 

• linker feedback.
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If you fail to declare functions that are never called from outside a module as static, 
your code can be adversely affected. In particular, you might have:

• A larger code size, because out-of-line versions of functions are retained in the 
image.

When a function is automatically inlined, both the in-line version and an 
out-of-line version of the function might end up in the final image, unless the 
function is declared as static. This might possibly increase code size. 

• An unnecessarily complicated debug view, because there are both inline versions 
and out-of-line versions of functions to display.

Retaining both inline and out-of-line copies of a function in code can sometimes 
be confusing when setting breakpoints or single-stepping in a debug view. The 
debugger has to display both in-line and out-of-line versions in its interleaved 
source view, so that you can see what is happening when stepping through either 
the in-line or out-of-line version.

Because of these problems, declare non-inline functions as static when you are sure 
that they can never be called from another module. 

5.4.9 Setting breakpoints on inline functions in ROM images 

When you set a breakpoint on an inline function, the RealView Debugger attempts to 
set a breakpoint on each inlined instance of the function. If you are using RealView ICE 
to debug an image in ROM, and the number of inline instances is greater than the 
number of available hardware breakpoints, the debugger might not be able to set the 
additional breakpoints. In this case the debugger reports an error. 

See:

• --autoinline, --no_autoinline on page 2-17 in the Compiler Reference Guide

• --forceinline on page 2-58 in the Compiler Reference Guide

• --inline, --no_inline on page 2-75 in the Compiler Reference Guide

• __forceinline on page 4-6 in the Compiler Reference Guide

• __inline on page 4-9 in the Compiler Reference Guide.
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5.5 Aligning data
The various C data types are aligned on specific byte boundaries to maximize storage 
potential and to provide for fast, efficient memory access with the ARM instruction set. 
For example, the ARM architecture can access a four-byte variable using only one 
instruction when the object is stored at an address divisible by four, so four-byte objects 
are located on four-byte boundaries.

By default, the compiler stores data objects as shown in Table 5-9.

Data alignment becomes relevant when the compiler locates variables to physical 
memory addresses. For example, in the following structure, a three-byte gap is required 
between bmem and cmem.

struct example_st {
int amem;
char bmem;
int cmem;

};

ARM and Thumb processors are designed to efficiently access naturally-aligned data, 
that is, doublewords that lie on addresses that are multiples of four, words that lie on 
addresses that are multiples of four, halfwords that lie on addresses that are multiples of 
two, and single bytes that lie at any byte address. Such data is located on its natural size 
boundary.

Table 5-9 Compiler storage of data objects by byte alignment

Type Bytes Alignment

char 1 Located at any byte address.

short 2 Located at any address that is evenly divisible by 2.

float, int, 
long, 
pointer

4 Located at an address that is evenly divisible by 4.

long long

double

8 Located at an address that is evenly divisible by 4.
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5.5.1 Types of data alignment

All accesses to data in memory can be classified into the following categories:

• Natural alignment, for example, on a word boundary at 0x1000. The ARM 
compiler normally aligns variables and pads structures so that these items are 
accessed efficiently using LDR and STR instructions. 

• Known but non-natural alignment, for example, a word at address 0x1001. This 
type of alignment commonly occurs when structures are packed to remove 
unnecessary padding. In C and C++, the __packed qualifier or the #pragma pack(n) 
pragma is used to signify that a structure is packed.

• Unknown alignment, for example, a word at an arbitrary address. This type of 
alignment commonly occurs when defining a pointer that can point to a word at 
any address. In C and C++, the __packed qualifier or the #pragma pack(n) pragma 
is used to signify that a pointer can access a word on a non-natural alignment 
boundary.

See The __packed qualifier and unaligned data access on page 5-27 for more 
information about the __packed qualifier, packed structures, and unaligned pointers. 

See #pragma pack(n) on page 4-68 in the Compiler Reference Guide for information 
about #pragma pack(n).

5.5.2 Unaligned data access

It can be necessary to access unaligned data in memory, for example, when porting 
legacy code from a CISC architecture where instructions are available to directly access 
unaligned data in memory.

On ARMv4 and ARMv5 architectures, and on the ARMv6 architecture depending on 
how it is configured, care needs to be taken when accessing unaligned data in memory, 
lest unexpected results are returned. For example, when a conventional pointer is used 
to read a word in C or C++ source code, the ARM compiler generates assembly 
language code that reads the word using an LDR instruction. This works as expected 
when the address is a multiple of four, for example if it lies on a word boundary. 
However, if the address is not a multiple of four, the LDR returns a rotated result rather 
than performing a true unaligned word load. Generally, this rotation is not what the 
programmer expects.

On ARMv6 and later architectures, unaligned access is fully supported.
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5.5.3 The __packed qualifier and unaligned data access

The __packed qualifier sets the alignment of any valid type to one. This enables objects 
of packed type to be read or written using unaligned accesses.

Examples of objects that can be packed include:

• structures

• unions

• pointers.

See __packed on page 4-11 in the Compiler Reference Guide for more information on 
the __packed qualifier.

Unaligned fields in structures

For efficiency, fields in a structure are located on their natural size boundary. This 
means that the compiler often inserts padding between fields to ensure they are aligned. 

When space is at a premium, the __packed qualifier can be used to create structures 
without padding between fields. Structures can be packed in two ways:

• The entire struct can be declared as __packed. For example: 

__packed struct mystruct
{

char c;
short s;

} // not recommended

Each field of the structure inherits the __packed qualifier.

Declaring an entire struct as __packed typically incurs a penalty both in code size 
and performance. See __packed structures versus individually __packed fields on 
page 5-28.

• Individual non-aligned fields within the struct can be declared as __packed. For 
example: 

struct mystruct
{

char c;
__packed short s; // recommended

}

This is the recommended approach to packing structures. See __packed structures 
versus individually __packed fields on page 5-28.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 5-27
ID101213 Non-Confidential, 



Coding Practices 
Note
 The same principles apply to unions. You can declare either an entire union as __packed, 
or use the __packed attribute to identify components of the union that are unaligned in 
memory.

Reading from and writing to structures qualified with __packed requires unaligned 
accesses and can therefore incur a performance penalty. See __packed structures versus 
individually __packed fields.

Unaligned pointers

By default, the ARM compiler expects conventional C pointers to point to an aligned 
word in memory, because this enables the compiler to generate more efficient code. 

If you want to define a pointer that can point to a word at any address, then you must 
specify this using the __packed qualifier when defining the pointer. For example:

 __packed int *pi; // pointer to unaligned int

When a pointer is declared as __packed, the ARM compiler generates code that correctly 
accesses the dereferenced value of the pointer, regardless of its alignment. The 
generated code consists of a sequence of byte accesses, or variable 
alignment-dependent shifting and masking instructions, rather than a simple LDR 
instruction. Consequently, declaring a pointer as __packed incurs a performance and 
code size penalty. 

Unaligned LDR instructions for accessing halfwords

In some circumstances the compiler might intentionally generate unaligned LDR 
instructions. In particular, the compiler can do this to load halfwords from memory, 
even where the architecture supports dedicated halfword load instructions.

For example, to access an unaligned short within a __packed structure, the compiler 
might load the required halfword into the top half of a register and then shift it down to 
the bottom half. This operation requires only one memory access, whereas performing 
the same operation using LDRB instructions requires two memory accesses, plus 
instructions to merge the two bytes. 

5.5.4 __packed structures versus individually __packed fields

When optimizing a struct that is packed, the compiler tries to deduce the alignment of 
each field, to improve access. However, it is not always possible for the compiler to 
deduce the alignment of each field in a __packed struct. In contrast, when individual 
fields in a struct are declared as __packed, fast access is guaranteed to naturally aligned 
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members within the struct. Therefore, when the use of a packed structure is required, 
it is recommended that you always pack individual fields of the structure, rather than 
the entire structure itself.

Note
 Declaring individual non-aligned fields of a struct as __packed also has the advantage 
of making it clearer to the programmer which fields of the struct are non-aligned. 

The differences between not packing a struct, packing an entire struct, and packing 
individual fields of a struct are illustrated by the three implementations of a struct 
shown in Table 5-10.

In the first implementation, the struct is not packed. In the second implementation, the 
entire structure mystruct is qualified as __packed. In the third implementation, the 
__packed attribute is removed from the mystruct structure, and individual non-aligned 
fields are declared as __packed.

Table 5-11 on page 5-30 shows the corresponding disassembly of the machine code 
produced by the compiler for each of the sample implementations of Table 5-10, where 
the C code for each implementation has been compiled using the option -O2.

Note
 The -Ospace and -Otime compiler options control whether accesses to unaligned 
elements are made inline or through a function call. Using -Otime results in inline 
unaligned accesses, while using -Ospace results in unaligned accesses made through 
function calls.

Table 5-10 C code for an unpacked struct, a packed struct, and a struct with
individually packed fields

Unpacked struct __packed struct __packed fields

struct foo
{

char one;
short two;
char three;
int four;

} c;

__packed struct foo
{

char one;
short two;
char three;
int four;

} c;

struct foo
{

char one;
__packed short two;
char three;
int four;

} c;
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In the disassembly of the unpacked struct in Table 5-11, the compiler always accesses 
data on aligned word or halfword addresses. The compiler is able to do this because the 
struct is padded so that every member of the struct lies on its natural size boundary.

In the disassembly of the __packed struct in Table 5-11, the fields one and three are 
aligned on their natural size boundaries by default, and so the compiler makes aligned 
accesses. The compiler always carries out aligned word or halfword accesses for fields 
it can identify are aligned. For the unaligned field two, the compiler uses multiple 
aligned memory accesses (LDR/STR/LDM/STM), combined with fixed shifting and masking, 
to access the correct bytes in memory. The compiler calls the AEABI runtime routine 
__aeabi_uread4 for reading an unsigned word at an unknown alignment to access the 
field four, because it is not able to determine that the field lies on its natural size 
boundary.

In the disassembly of the struct with individually packed fields in Table 5-11, the fields 
one, two, and three are accessed in the same way as in the case where the entire struct 
is qualified as __packed. In contrast to the situation where the entire struct is packed, 
however, the compiler makes a word-aligned access to the field four, because the 
presence of the __packed short within the structure helps the compiler to determine that 
the field four lies on its natural size boundary.

Table 5-11 Disassembly for an unpacked struct, a packed struct, and a struct with
individually packed fields

Unpacked struct __packed struct __packed fields

; r0 contains address of c
; char one
LDRB r1, [r0, #0]
; short two
LDRSH r2, [r0, #2]
; char three
LDRB r3, [r0, #4]
; int four
LDR r12, [r0, #8]

; r0 contains address of c
; char one
LDRB r1, [r0, #0]
; short two
LDRB r2, [r0, #1]
LDRSB r12, [r0, #2]
ORR r2, r12, r2, LSL #8
; char three
LDRB r3, [r0, #3]
; int four
ADD r0, r0, #4
BL __aeabi_uread4

; r0 contains address of c
; char one
LDRB r1, [r0, #0]
; short two
LDRB r2, [r0, #1]
LDRSB r12, [r0, #2]
ORR r2, r12, r2, LSL #8
; char three
LDRB r3, [r0, #3]
; int four
LDR r12, [r0, #4]
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5.6 Using floating-point arithmetic
The ARM compiler provides many features for managing floating-point arithmetic both 
in software and in hardware. For example, you can specify software or hardware support 
for floating-point, particular hardware architectures, and the level of conformance to 
IEEE floating-point standards. 

The selection of floating-point options determines various trade-offs between 
floating-point performance, system cost, and system flexibility. To obtain the best 
trade-off between performance, cost, and flexibility, you have to make sensible choices 
in your selection of floating-point options.

5.6.1 Support for floating-point operations

The ARM processor core does not contain floating-point hardware. Floating-point 
arithmetic must be supported separately, either:

• In software, through the floating-point library fplib. This library provides 
functions that can be called to implement floating-point operations using no 
additional hardware. See The software floating-point library, fplib on page 4-2 in 
the Libraries Guide.

• In hardware, using a hardware VFP coprocessor with the ARM processor core to 
provide the required floating-point operations. VFP is a coprocessor architecture 
that implements IEEE floating-point and supports single and double precision, 
but not extended precision.

Note
 In practice, floating-point arithmetic in the VFP is implemented using a 

combination of hardware, that executes the common cases, and software, that 
deals with the uncommon cases, and cases causing exceptions. See VFP support 
on page 5-34.

The differences between software and hardware support for floating-point arithmetic 
are illustrated with Example 5-2, that shows a function implementing floating-point 
arithmetic operations in C.

Example 5-2  Floating-point operations

float foo(float num1, float num2)
{

float temp, temp2;
temp = num1 + num2;
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temp2 = num2 * num2;
return temp2-temp;

}

When the C code of Example 5-2 on page 5-31 is compiled with the command-line 
option --cpu 5TE --fpu softvfp, the compiler produces machine code with the 
disassembly of Example 5-3. In this example, floating-point arithmetic is performed in 
software through calls to library routines such as __aeabi_fmul.

Example 5-3  Support for floating-point operations in software

||foo|| PROC
PUSH     {r4-r6, lr}
MOV      r4, r1
BL       __aeabi_fadd
MOV      r5, r0
MOV      r1, r4
MOV      r0, r4
BL       __aeabi_fmul
MOV      r1, r5
POP      {r4-r6, lr}
B        __aeabi_fsub
ENDP

When the C code of Example 5-2 on page 5-31 is compiled with the command-line 
option --fpu vfp, the compiler produces machine code with the disassembly of 
Example 5-4. In this example, floating-point arithmetic is performed in hardware 
through floating-point arithmetic instructions such as VMUL.F32.

Example 5-4 Support for floating-point operations in hardware

||foo|| PROC
VADD.F32 s2, s0, s1
VMUL.F32 s0, s1, s1
VSUB.F32 s0, s0, s2
BX       lr
ENDP

In practice, code that makes use of hardware support for floating-point arithmetic is 
more compact and offers better performance than code that performs floating-point 
arithmetic in software. However, hardware support for floating-point arithmetic 
requires a VFP coprocessor.
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By default, if a VFP coprocessor is present, VFP instructions are generated. If there is 
no VFP coprocessor, the compiler generates code that makes calls to the software 
floating-point library fplib to carry out floating-point operations. fplib is available as 
part of the standard distribution of the RealView Development Suite of C libraries.

5.6.2 VFP architectures

VFP is a floating-point architecture that provides both single and double precision 
operations. Many operations can take place in either scalar form or in vector form. 
Several versions of the architecture are supported, including:

• VFPv2, implemented in:

— the VFP10 revision 1, as provided by the ARM10200E

— the VFP9-S, available as a separately licensable option for 
ARM926E/946E/966E

— the VFP11, as provided in the ARM1136JF-S, ARM1176JZF-S, and 
ARM11 MPCore.

• VFPv3, implemented on ARM architecture v7 and later, for example, the 
Cortex-A8. VFPv3 is backwards compatible with VFPv2 except that it cannot 
trap floating point exceptions. It requires no software support code. VFPv3 has 32 
double-precision registers.

• VFPv3 optionally extended with half-precision extensions. These extensions 
provide conversion functions between half-precision floating-point numbers and 
single-precision floating-point numbers, in both directions. They can be 
implemented with any Advanced SIMD and VFP implementation that supports 
single-precision floating-point numbers. 

• VFPv3-D16 is an implementation of VFPv3 that provides 16 double-precision 
registers. It is implemented on ARM architecture v7 processors that support VFP 
without NEON.

• VFPv3U is an implementation of VFPv3 that can trap floating-point exceptions. 
It requires software support code.

Note
 Particular implementations of the VFP architecture might provide additional 
implementation-specific functionality. For example, the VFP coprocessor hardware 
might include extra registers for describing exceptional conditions. This extra 
functionality is known as sub-architecture functionality. For more information about 
sub-architecture functionality, see ARM Application Note 133 - Using VFP with RVDS. 
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You can find this application note in the vfpsupport sub-directory of the Examples 
directory of your RealView Development Suite distribution at 
install_directory\RVDS\Examples\...\vfpsupport.

5.6.3 VFP support

ARM VFP coprocessors are optimized to process well-defined floating-point code in 
hardware. Arithmetic operations that occur too rarely, or that are too complex, are not 
handled in hardware. Instead, processing of these cases must be handled in software. 
This approach minimizes the amount of coprocessor hardware required and reduces 
costs.

Code provided to handle cases the VFP hardware is unable to process is known as VFP 
support code. When the VFP hardware is unable to deal with a situation directly, it 
bounces the case to VFP support code for more processing. For example, VFP support 
code might be called to process any of the following:

• floating-point operations involving NaNs

• floating-point operations involving denormals.

• floating-point overflow

• floating-point underflow

• inexact results

• division-by-zero errors

• invalid operations.

When support code is in place, the VFP supports a fully IEEE 754-compliant 
floating-point model.

Using VFP support

For convenience, an implementation of VFP support code that can be used in your 
system is provided with your installation of RVCT. The support code comprises:

• The libraries vfpsupport.l and vfpsupport.b for emulating VFP operations 
bounced by the hardware.

These files are located in the \lib\armlib subdirectory of your RVCT installation.

• C source code and assembly language source code implementing top-level, 
second-level and user-level interrupt handlers.

These files can be found in the vfpsupport subdirectory of the Examples directory 
of your RealView Development Suite distribution at 
install_directory\RVDS\Examples\...\vfpsupport.
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These files might require modification to integrate VFP support with your 
operating system.

• C source code and assembly language source code for accessing subarchitecture 
functionality of VFP coprocessors.

These files are located in the vfpsupport subdirectory of the Examples directory of 
your RealView Development Suite distribution at 
install_directory\RVDS\Examples\...\vfpsupport.

When the VFP coprocessor bounces an instruction, an Undefined Instruction exception 
is signaled to the processor and the VFP support code is entered through the Undefined 
Instruction vector. The top-level and second-level interrupt handlers perform some 
initial processing of the signal, for example, ensuring that the exception is not caused 
by an illegal instruction. The user-level interrupt handler then calls the appropriate 
library function in the library vfpsupport.l or vfpsupport.b to emulate the VFP 
operation in software.

Note
 You do not have to use VFP support code:

• when no trapping of uncommon or exceptional cases is required

• when the VFP coprocessor is operating in RunFast mode

• when the hardware coprocessor is a VFPv3-based system.

For more information on using the VFP support code supplied with your installation of 
RVCT see ARM Application Note 133 - Using VFP with RVDS. You can find this 
application note in the vfpsupport subdirectory of the Examples directory of your 
RealView Development Suite distribution at 
install_directory\RVDS\Examples\...\vfpsupport.

5.6.4 Half-precision floating-point number support

Half-precision floating-point numbers are provided as an optional extension to the 
VFPv3 architecture. If the VFPv3 coprocessor is not available, or if a VFPv3 
coprocessor is used that does not have this extension, they are supported through the 
floating-point library fplib. 

Half-precision floating-point numbers can only be used when selected with the 
fp16_format command-line option. See --fp16_format=format on page 2-59 in the 
Compiler Reference Guide.

The half-precision floating-point formats available are ieee and alternative. In both 
formats, the basic layout of the 16-bit number is the same. See Figure 5-1 on page 5-36.
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Figure 5-1 Half-precision floating-point format

Where:

S (bit[15]): Sign bit
E (bits[14:10]): Biased exponent
T (bits[9:0]): Mantissa.

The meanings of these fields depend on the format that is selected.

IEEE half-precision

IF E==31:
IF T==0: Value = Signed infinity
IF T!=0: Value = Nan

T[9] determines Quiet or Signalling:
0: Quiet NaN
1: Signalling NaN

IF 0<E<31:
Value = (-1)Sx2(E-15)x(1+2-10T)

IF E==0:
IF T==0: Value = Signed zero
IF T!=0: Value = (-1)Sx2(-14)x(0+2-10T)

Alternative half-precision

IF 0<E<32:
Value = (-1)Sx2(E-15)x(1+2-10T)

IF E==0:
IF T==0: Value = Signed zero
IF T!=0: Value = (-1)Sx2(-14)x(0+2-10T)

Usage restrictions

The following restrictions apply when you use the __fp16 type:

• When used in a C or C++ expression, an __fp16 type is promoted to single 
precision. Subsequent promotion to double precision can occur if required by one 
of the operands.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S E T
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• A single precision value can be converted to __fp16. A double precision value is 
converted to single precision and then to __fp16, that could involve double 
rounding. This reflects the lack of direct double-to-16-bit conversion in the ARM 
architecture.

• When using fpmode=fast, no floating-point exceptions are raised when converting 
to and from half-precision floating-point format.

• Function formal arguments cannot be of type __fp16. However, pointers to 
variables of type __fp16 can be used as function formal argument types.

• __fp16 values can be passed as actual function arguments. In this case, they are 
converted to single-precision values.

• __fp16 cannot be specified as the return type of a function. However, a pointer to 
an __fp16 type can be used as a return type.

• An __fp16 value is converted to a single-precision or double-precision value when 
used as a return value for a function that returns a float or double.

Name mangling

The C++ name mangling for the half-precision data type is specified in the C++ generic 
ABI. See the C++ ABI for the ARM Architecture.

5.6.5 Floating-point computations and linkage

It is important to understand the difference between floating-point computations and 
floating-point linkage. Floating-point computations are performed by hardware 
coprocessor instructions, or by library functions. Floating-point linkage is concerned 
with how arguments are passed between functions that use floating-point variables.

The types of floating-point linkage are:

• software floating-point linkage

• hardware floating-point linkage.

Software floating-point linkage means that the parameters and return value for a 
function are passed using the ARM integer registers r0 to r3 and the stack.

Hardware floating-point linkage uses the VFP coprocessor registers to pass the 
arguments and return value. For information on the VFP coprocessor registers, see the 
ARM Procedure Call Standard for the ARM Architecture (ARM IHI0042).
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 5-37
ID101213 Non-Confidential, 



Coding Practices 
The benefit of using software floating-point linkage is that the resulting code can be run 
on a core with or without a VFP coprocessor. It is not dependent on the presence of a 
VFP hardware coprocessor, and it can be used with or without a VFP coprocessor 
present.

The benefit of using hardware floating-point linkage is that it is more efficient than 
software floating-point linkage, but you must have a VFP coprocessor. 

Table 5-12 shows the compiler options available for the type of floating-point linkage 
and the type of floating-point computations you require.

softvfp specifies software floating-point linkage. When software floating-point linkage 
is used, either:

• the calling function and the called function must be compiled using one of the 
options --softvfp, --fpu softvfp+vfpv2, --fpu softvfp+vfpv3, --fpu 
softvfp+vfpv3_fp16, softvfp+vfpv3_d16, or softvfp+vfpv3_d16_fp16

• the calling function and the called function must be declared using the __softfp 
keyword.

Each of the options --fpu softvfp, --fpu softvfp+vfpv2,--fpu softvfp+vfpv3, --fpu 
softvfp+vfpv3_fp16, --fpu softvfpv3_d16, and --fpu softvfpv3_d16_fp16 specify 
software floating-point linkage across the whole file. In contrast, the __softfp keyword 
enables software floating-point linkage to be specified on a function by function basis.

Table 5-12 Compiler options for floating-point linkage and computations

Linkage Computations

Compiler optionsHardware 
floating-point 
linkage

Software 
floating-point 
linkage

Hardware 
floating-point 
coprocessor

Software 
floating-point 
library (fplib)

No Yes No Yes --fpu=softvfp

No Yes Yes No --fpu=softvfp+vfpv2
--fpu=softvfp+vfpv3
--fpu=softvfp+vfpv3_fp16
--fpu=softvfp+vfpv3_d16
--fpu=softvfp+vfp3_d16_fp16

Yes No Yes No --fpu=vfp
--fpu=vfpv2
--fpu=vfpv3
--fpu=vfpv3_fp16
--fpu=vfpv3_dp16
--fpu=vfpv3_d16_fp16
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Note
 Rather than having separate compiler options to select the type of floating-point linkage 
you require and the type of floating-point computations you require, you use one 
compiler option, --fpu, to select both. (See Table 5-12 on page 5-38.) For example, 
--fpu=softvfp+vfpv2 selects software floating-point linkage, and a hardware 
coprocessor for the computations. Whenever you use softvfp, you are specifying 
software floating-point linkage.

See:

• --fpu=name on page 2-62 in the Compiler Reference Guide

• __softfp on page 4-15 in the Compiler Reference Guide

• #pragma softfp_linkage, #pragma no_softfp_linkage on page 4-70 in the 
Compiler Reference Guide.
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5.7 Trapping and identifying division-by-zero errors
It is important to eliminate any division-by-zero errors in code, particularly for 
embedded systems that might not be able to recover easily. For ARM processor cores, 
division-by-zero errors fall into the following categories:

• integer division-by-zero errors

• (software) floating point division-by-zero errors.

Different techniques are required in both cases for trapping and identifying these errors.

5.7.1 Integer division

Integer division-by-zero errors can be trapped and identified by re-implementing the 
appropriate C library helper functions.

The default behavior when division by zero occurs is that when the signal function is 
used, or __rt_raise or __aeabi_idiv0 are re-implemented, __aeabi_idiv0 is called. 
Otherwise, the division function returns zero.

__aeabi_idiv0 raises SIGFPE with an additional argument, DIVBYZERO.

Trapping division-by-zero errors in code

You can trap integer division-by-zero errors in the following ways: 

• Re-implement the C library helper function __aeabi_idiv0 so that division by zero 
returns some standard result, for example zero.

Integer division is implemented in code through the C library helper functions 
__aeabi_idiv and __aeabi_uidiv. Both functions check for division by zero.

When integer division by zero is detected, a branch to __aeabi_idiv0 is made. To 
trap the division by zero, therefore, you have only to place a breakpoint on 
__aeabi_idiv0. 

See the Run-time ABI for the ARM Architecture for more information on the 
AEABI functions __aeabi_idiv, __aeabi_uidiv, and __aeabi_idiv0. This can be 
found at http://www.arm.com/products/DevTools/ABI.html.

• Re-implement the C library helper function __rt_raise to deal with the signal.

By default, integer division by zero raises a signal. To intercept divide by zero, 
therefore, you can re-implement __rt_raise. This function has prototype:

void __rt_raise(int signal, int type)

When a divide-by-zero error occurs, __aeabi_idiv0 calls __rt_raise(2, 2). 
Therefore, in your implementation of __rt_raise, you must check (signal == 2) 
&& (type == 2) to determine if division by zero has occurred. 
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See:

— Integer and floating point functions on page 2-25 in the Libraries Guide

— Exploiting the C library on page 2-26 in the Libraries Guide

— Tailoring error signaling, error handling, and program exit on page 2-59 in 
the Libraries Guide

— __rt_raise() on page 2-62 in the Libraries Guide.

• Use the signal function to install a handler for SIGFPE. This method is more 
portable than the other methods described, but less efficient.

Identifying division-by-zero errors in code

On entry into __aeabi_idiv0, the link register LR contains the address of the instruction 
after the call to the __aeabi_uidiv division routine in your application code. To identify 
the offending line in your source code, you can look up the line of C code in the 
debugger at the address given by LR. 

Examining parameters

If you want to examine parameters and save them for postmortem debugging, you can 
trap __aeabi_idiv0. You can intervene in all calls to __aeabi_idiv0 by using the $Super$$ 
and $Sub$$ mechanism: 

$Super$$ Prefix __aeabi_idiv0 with $Super$$ to identify the original unpatched 
function __aeabi_idiv0. Use this to call the original function directly.

$Sub$$ Prefix __aeabi_idiv0 with $Sub$$ to identify the new function to be called 
in place of the original version of __aeabi_idiv0. Use this to add 
processing before or after the original function __aeabi_idiv0. 

Example 5-5 illustrates the use of the $Super$$ and $Sub$$ mechanism to intercept 
__aeabi_div0. See Using $Super$$ and $Sub$$ to override symbol definitions on 
page 4-18 in the Linker User Guide.

Example 5-5  Intercepting __aeabi_div0 using $Super$$ and $Sub$$

extern void $Super$$__aeabi_idiv0(void);
/* this function is called instead of the original __aeabi_idiv0() */
void $Sub$$__aeabi_idiv0()
{

// insert code to process a divide by zero
...
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// call the original __aeabi_idiv0 function
$Super$$__aeabi_idiv0();

}

5.7.2 (Software) Floating-point division

Floating-point division-by-zero errors in software can be trapped and identified using a 
combination of intrinsics and C library helper functions.

Trapping division-by-zero errors in code

To trap floating-point division-by-zero errors in your code, use the intrinsic:

__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_DIVBYZERO);

This traps any division-by-zero errors in code, and untraps all other exceptions, as 
illustrated in Example 5-6.

Example 5-6 Division by zero error

#include <stdio.h>
#include <fenv.h>

int main(void)
{
 float a, b, c;

// Trap the Invalid Operation exception and untrap all other exceptions:
__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_DIVBYZERO);
c = 0;
a = b / c;
printf("b / c = %f, ", a); // trap division-by-zero error
return 0;

}

Identifying division by zero errors in code

The C library helper function _fp_trapveneer is called whenever an exception occurs. 
On entry into this function, the state of the registers is unchanged from when the 
exception occurred. Therefore, to find the address of the function in your application 
code that contains the arithmetic operation that resulted in the exception, place a 
breakpoint on the function _fp_trapveneer and look at LR.

For example, suppose the C code of Example 5-6 is compiled from the command line 
using the string:
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armcc --fpmode ieee_full

When the assembly language code produced by the compiler is disassembled, RealView 
Debugger produces the output shown in Example 5-7.

Example 5-7 Disassembly of division by zero error

main:
00008080 E92D4010  PUSH     {r4,lr}
00008084 E3A01C02  MOV      r1,#0x200
00008088 E3A00C9F  MOV      r0,#0x9f00
0000808C EB000F1A  BL       __ieee_status              <0xbcfc>
00008090 E59F0020  LDR      r0,0x80b8 
00008094 E3A01000  MOV      r1,#0
00008098 EB000DEA  BL       _fdiv                      <0xb848>
0000809C EB000DBD  BL       _f2d                       <0xb798>
000080A0 E1A02000  MOV      r2,r0
000080A4 E1A03001  MOV      r3,r1
000080A8 E28F000C  ADR      r0,{pc}+0x14 ; 0x80bc
000080AC EB000006  BL       __0printf                  <0x80cc>
000080B0 E3A00000  MOV      r0,#0
000080B4 E8BD8010  POP      {r4,pc}
000080B8 40A00000  <Data>   0x00 0x00 0xA0 '@'
000080BC 202F2062  <Data>   'b' ' ' '/' ' '
000080C0 203D2063  <Data>   'c' ' ' '=' ' '
000080C4 202C6625  <Data>   '%' 'f' ',' ' '
000080C8 00000000  <Data>   0x00 0x00 0x00 0x00

Placing a breakpoint on _fp_trapveneer and executing the disassembly in the debug 
monitor produces:

> go
Stopped at 0x0000BF6C due to SW Instruction BreakpointStopped at 0x0000BF6C: 
TRAPV_S\_fp_trapveneer

Then, inspection of the registers shows:

r0: 0x40A00000 r1: 0x00000000 r2: 0x00000000 r3: 0x00000000
r4: 0x0000C1DC r5: 0x0000C1CC r6: 0x00000000 r7: 0x00000000
r8: 0x00000000 r9: 0x00000000 r10: 0x0000C0D4 r11: 0x00000000
r12: 0x08000004 SP: 0x07FFFFF8 LR: 0x0000809C PC: 0x0000BF6C
CPSR: nzcvIFtSVC

The address contained in the link register LR is set to 0x809c, the address of the 
instruction after the instruction BL _fdiv that resulted in the exception.
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Examining parameters

To save parameters for post-mortem debugging you must intercept _fp_trapveneer. To 
intervene in all calls to _fp_trapveneer, use the $Super$$ and $Sub$$ mechanism. For 
example:

AREA foo, CODE
IMPORT |$Super$$_fp_trapveneer|
EXPORT |$Sub$$_fp_trapveneer|

|$Sub$$_fp_trapveneer|
;; Add code to save whatever registers you require here
;; Take care not to corrupt any needed registers

B |$Super$$_fp_trapveneer|
END

See:

• Integer division on page 5-40

• Using $Super$$ and $Sub$$ to override symbol definitions on page 4-18 in the 
Linker User Guide.
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5.8 New features of C99
The 1999 C standard introduces a range of new features into C, including:

• New language features, including new keywords and identifiers, together with 
extended syntax for the existing C90 language

• New library features, including new libraries, and new macros and functions for 
existing C90 libraries.

A selection of new features in C99 that are of interest to developers using them for the 
first time are described in the following sections.

Note
 C90 is compatible with Standard C++ in the sense that the language specified by the 
standard is a subset of C++, except for a few special cases. New features in the C99 
standard mean that C99 is no longer compatible with C++ in this sense. 

5.8.1 Language features

The C99 standard introduces several new language features, including:

• Some features similar to extensions to C90 offered in the GNU compiler, for 
example, macros with a variable number of arguments.

Note
 The implementations of extensions to C90 in the GNU compiler are not always 

compatible with the implementations of similar features in C99.

• Some features available in C++, such as // comments and the ability to mix 
declarations and code.

• Some entirely new features, for example complex numbers, restricted pointers 
and designated initializers.

A selection of new language features of C99 that might be of particular interest are 
described in the following sections.

// comments

You can use // to indicate the start of a one-line comment, like in C++. See // comments 
on page 3-5 in the Compiler Reference Guide.
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Compound literals

ISO C99 supports compound literals. A compound literal looks like a cast followed by 
an initializer. Its value is an object of the type specified in the cast, containing the 
elements specified in the initializer. It is an lvalue. For example:

int y[] = (int []) {1, 2, 3}; 
int z[] = (int [3]) {1};

Designated initializers

In C90, there is no way to initialize specific members of arrays, structures, or unions. 
C99 supports the initialization of specific members of an array, structure, or union by 
either name or subscript through the use of designated initializers. For example:

typedef struct
{

char *name;
int rank;

} data;
data vars[10] = { [0].name = "foo", [0].rank = 1,

[1].name = "bar", [1].rank = 2,
[2].name = "baz", 
[3].name = "gazonk" };

Members of an aggregate that are not explicitly initialized are initialized to zero by 
default.

Hex floats

C99 supports floating-point numbers that can be written in hexadecimal format. For 
example:

float hex_floats(void)
{
    return 0x1.fp3; // 1 15/16 * 2^3
}

In hexadecimal format the exponent is a decimal number that indicates the power of two 
by which the significant part is multiplied. Therefore 0x1.fp3 = 1.9375 * 8 = 1.55e1.

Flexible array members

In a struct with more than one member, the last member of the struct can have 
incomplete array type. Such a member is called a flexible array member of the struct.
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Note
 When a struct has a flexible array member, the entire struct itself has incomplete type.

Flexible array members enable you to mimic dynamic type specification in C in the 
sense that you can defer the specification of the array size to runtime. For example:

extern const int n;
typedef struct
{

int len;
char p[];

} str;
void foo(void){

size_t str_size = sizeof(str); // equivalent to offsetoff(str, p)
str *s = malloc(str_size + (sizeof(char) * n));

}

__func__ predefined identifier

The __func__ predefined identifier provides a means of obtaining the name of the 
current function. For example, the function:

void foo(void)
{

printf("This function is called '%s'.\n", __func__);
}

prints:

This function is called 'foo'.

inline functions

The C99 keyword inline hints to the compiler that invocations of a function qualified 
with inline are to be expanded inline. For example:

inline int max(int a, int b)
{

return (a > b) ? a : b;
}

The compiler inlines a function qualified with inline only if it is reasonable to do so. It 
is free to ignore the hint if inlining the function adversely affects performance. See 
Function inlining on page 5-18.
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Note
 The semantics of inline in C99 are different to the semantics of inline in Standard C++.

long long data type

C99 supports the integral data type long long. This type is 64 bits wide in RVCT. For 
example:

long long int j = 25902068371200; // length of light day, meters
unsigned long long int i = 94607304725808000ULL; // length of light year, meters

See long long on page 3-8 in the Compiler Reference Guide.

Macros with a variable number of arguments 

You can declare a macro in C99 that accepts a variable number of arguments. The 
syntax for defining such a macro is similar to that of a function. For example:

#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
void Variadic_Macros_0()
{
    debug ("a test string is printed out along with %x %x %x\n", 12, 14, 20);
}

Mixed declarations and code

C99 enables you to mix declarations and code within compound statements, like in 
C++. For example:

void foo(float i)
{

i = (i > 0) ? -i : i;
float j = sqrt(i); // illegal in C90

}

New block scopes for selection and iteration statements

In a for loop, the first expression can be a declaration, like in C++. The scope of the 
declaration extends to the body of the loop only. For example:

extern int max;
for (int n = max - 1; n >= 0; n--)
{

// body of loop
}
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is equivalent to:

extern int max;
{

int n = max - 1;
for (; n >= 0; n--)
{

// body of loop }
}

Note
 Unlike in C++, you cannot introduce new declarations in a for-test, if-test or 
switch-expression.

_Pragma preprocessing operator

C90 does not permit a #pragma directive to be produced as the result of a macro 
expansion. The C99 _Pragma operator enables you to embed a preprocessor macro in a 
pragma directive. For example:

# define RWDATA(X) PRAGMA(arm section rwdata=#X)
# define PRAGMA(X) _Pragma(#X)
RWDATA(foo) // same as #pragma arm section rwdata="foo"
int y = 1; // y is placed in section "foo"

Restricted pointers

The C99 keyword restrict enables you to ensure that different object pointer types and 
function parameter arrays do not point to overlapping regions of memory. This enables 
the compiler to perform optimizations that might otherwise be prevented because of 
possible aliasing.

In the following example, pointer a does not, and cannot, point to the same region of 
memory as pointer b:

void copy_array(int n, int *restrict a, int *restrict b)
{
    while (n-- > 0)
        *a++ = *b++;
}
void test(void)
{
    extern int array[100];
    copy_array(50, array + 50, array);    // valid
    copy_array(50, array + 1, array);     // undefined behavior
}
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Pointers qualified with restrict can however point to different arrays, or to different 
regions within an array.

5.8.2 Library features

The C99 standard introduces several new library features of interest to programmers, 
including:

• Some features similar to extensions to the C90 standard libraries offered in UNIX 
standard libraries, for example, the snprintf family of functions.

• Some entirely new library features, for example, the standardized floating-point 
environment offered in <fenv.h>.

A selection of new library features of C99 that might be of particular interest are 
described in the following sections.

Additional math library functions in <math.h>

C99 supports additional macros, types, and functions in the standard header <math.h> 
that are not found in the corresponding C90 standard header.

New macros found in C99 that are not found in C90 include:

INFINITY // positive infinity
NAN // IEEE not-a-number

New generic function macros found in C99 that are not found in C90 include:

#define isinf(x) // non-zero only if x is positive or negative infinity
#define isnan(x) // non-zero only if x is NaN
#define isless(x, y) // 1 only if x < y and x and y are not NaN, and 0 otherwise
#define isunordered(x, y) // 1 only if either x or y is NaN, and 0 otherwise

New mathematical functions found in C99 that are not found in C90 include:

double acosh(double x); // hyperbolic arccosine of x
double asinh(double x); // hyperbolic arcsine of x
double atanh(double x); // hyperbolic arctangent of x
double erf(double x); // returns the error function of x
double round(double x); // returns x rounded to the nearest integer
double tgamma(double x); // returns the gamma function of x

C99 supports the new mathematical functions for all real floating-point types.

Single precision versions of all existing <math.h> functions are also supported.
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Complex numbers

In C99 mode, the compiler supports complex and imaginary numbers. In GNU mode, 
the compiler supports complex numbers only.

For example:

#include <stdio.h>
#include <complex.h>

int main(void)
{

complex float z = 64.0 + 64.0*I;
printf(“z = %f + %fI\n”, creal(z), cimag(z));
return 0;

}

The complex types are:

• float complex

• double complex

• long double complex.

Boolean type and <stdbool.h>

C99 introduces the native type _Bool. The associated standard header <stdbool.h> 
introduces the macros bool, true and false for Boolean tests. For example:

#include <stdbool.h>
bool foo(FILE *str)
{

bool err = false;
...
if (!fflush(str))
{

err = true;
}
...
return err;

}

Note
 The C99 semantics for bool are intended to match those of C++.
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Extended integer types and functions in <inttypes.h> and <stdint.h>

In C90, the long data type can serve both as the largest integral type, and as a 32-bit 
container. C99 removes this ambiguity through the new standard library header files 
<inttypes.h> and <stdint.h>.

The header file <stdint.h> introduces the new types:

• intmax_t and uintmax_t, that are maximum width signed and unsigned integer 
types

• intptr_t and unintptr_t, that are integer types capable of holding signed and 
unsigned object pointers.

The header file <inttypes.h> provides library functions for manipulating values of type 
intmax_t, including:

intmax_t imaxabs(intmax_t x); // absolute value of x
imaxdiv_t imaxdiv(intmax_t x, intmax_t y) // returns the quotient and remainder

// of x / y

Floating-point environment access in <fenv.h>

The C99 standard header file <fenv.h> provides access to an IEEE 754-compliant 
floating-point environment for numerical programming. The library introduces two 
types and numerous macros and functions for managing and controlling floating-point 
state.

The new types supported are:

• fenv_t, representing the entire floating-point environment

• fexcept_t, representing the floating-point state.

New macros supported include:

• FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW and FE_UNDERFLOW for 
managing floating-point exceptions

• FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, FE_UPWARD for managing rounding in 
the represented rounding direction

• FE_DFL_ENV, representing the default floating-point environment.

New functions include:

int feclearexcept(int ex); // clear floating-point exceptions selected by ex
int feraiseexcept(int ex); // raise floating point exceptions selected by ex
int fetestexcept(int ex); // test floating point exceptions selected by x
int fegetround(void); // return the current rounding mode
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int fesetround(int mode); // set the current rounding mode given by mode
int fegetenv(fenv_t *penv); return the floating-point environment in penv
int fesetenv(const fenv_t *penv); // set the floating-point environment to penv

snprintf family of functions in <stdio.h> 

Using the sprintf family of functions found in the C90 standard header <stdio.h> can 
be dangerous. In the statement:

sprintf(buffer, size, "Error %d: Cannot open file '%s'", errno, filename);

the variable size specifies the minimum number of characters to be inserted into buffer. 
Consequently, more characters can be output than might fit in the memory allocated to 
the string.

The snprintf functions found in the C99 version of <stdio.h> are safe versions of the 
sprintf functions that prevent buffer overrun. In the statement:

snprintf(buffer, size, "Error %d: Cannot open file '%s'", errno, filename);

the variable size specifies the maximum number of characters that can be inserted into 
buffer. The buffer can never be overrun, provided its size is always greater than the size 
specified by size.

Type-generic math macros in <tgmath.h>

The new standard header <tgmath.h> defines several families of mathematical functions 
that are type generic in the sense that they are overloaded on floating-point types. For 
example, the trigonometric function cos works as if it has the overloaded declaration:

extern float cos(float x);
extern double cos(double x);
extern long double cos(long double x);
...

A statement such as:

p = cos(0.78539f); // p = cos(pi / 4)

calls the single-precision version of the cos function, as determined by the type of the 
literal 0.78539f.

Note
 Type-generic families of mathematical functions can be defined in C++ using the 
operator overloading mechanism. The semantics of type-generic families of functions 
defined using operator overloading in C++ are different from the semantics of the 
corresponding families of type-generic functions defined in <tgmath.h>.
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Wide character I/O functions in <wchar.h>

Wide character I/O functions have been introduced in C99. These enable you to read 
and write wide characters from a file in much the same way as normal characters. The 
ARM C Library supports all of the C99 functions defined in wchar.h. See section 7.24 
of ISO/IEC 9899:TC2.
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Chapter 6 
Diagnostic Messages

The ARM compiler issues messages about potential portability problems and other 
hazards. This section describes compiler options that you can use to:

• Turn off specific messages. For example, you can turn off warnings if you are in 
the early stages of porting a program written in old-style C. In general, however, 
it is better to check the code than to switch off messages.

• Change the severity of specific messages.

This section includes the following subsections:

• Redirecting diagnostics on page 6-2

• Severity of diagnostic messages on page 6-3

• Controlling the output of diagnostic messages on page 6-4

• Changing the severity of diagnostic messages on page 6-5

• Suppressing diagnostic messages on page 6-6

• Prefix letters in diagnostic messages on page 6-7

• Suppressing warning messages with -W on page 6-8

• Exit status codes and termination messages on page 6-9

• Data flow warnings on page 6-10.
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6.1 Redirecting diagnostics
Use the --errors=filename option to redirect compiler diagnostic output to a file. 
Diagnostics that relate to the command options are not redirected.

See Controlling the output of diagnostic messages on page 6-4.
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6.2 Severity of diagnostic messages
Diagnostic messages have an associated severity, as described in Table 6-1.

Table 6-1 Severity of diagnostic messages

Severity Description

Internal fault Internal faults indicate an internal problem with the compiler. 
Contact your supplier with the information listed in Feedback on 
RealView Compilation Tools on page xiii.

Error Errors indicate problems that cause the compilation to stop. These 
errors include command line errors, internal errors, missing include 
files, and violations in the syntactic or semantic rules of the C or C++ 
language. If multiple source files are specified, then no further 
source files are compiled.

Warning Warnings indicate unusual conditions in your code that might 
indicate a problem. Compilation continues, and object code is 
generated unless any further problems with an Error severity are 
detected.

Remark Remarks indicate common, but sometimes unconventional, use of C 
or C++. These diagnostics are not displayed by default. Compilation 
continues, and object code is generated unless any further problems 
with an Error severity are detected.
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6.3 Controlling the output of diagnostic messages
These options enable you to control the output of diagnostic messages:

--no_brief_diagnostics, --brief_diagnostics

Enables or disables a mode where a shorter form of the diagnostic output 
is used. When enabled, the original source line is not displayed and the 
error message text is not wrapped when it is too long to fit on a single line. 
The default is --no_brief_diagnostics.

--diag_style={arm|ide|gnu}

Specifies the style used to display diagnostic messages.

--errors=filename

Redirects the output of diagnostic messages from stderr to the specified 
errors file filename. This option is useful on systems where output 
redirection of files is not well supported.

--remarks Causes the compiler to issue remark messages, such as warning of 
padding in structures. Remarks are not issued by default.

--no_wrap_diagnostics, --wrap_diagnostics

Enables or disables the wrapping of error message text when it is too long 
to fit on a single line.

See Command-line options on page 2-2 in the Compiler Reference Guide.
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6.4 Changing the severity of diagnostic messages
These options enable you to change the diagnostic severity of all remarks and warnings, 
and a limited number of errors:

--diag_error=tag[, tag, ...]

Sets the diagnostic messages that have the specified tag(s) to Error 
severity.

--diag_remark=tag[, tag, ...]

Sets the diagnostic messages that have the specified tag(s) to Remark 
severity.

--diag_warning=tag[, tag, ...]

Sets the diagnostic messages that have the specified tag(s) to Warning 
severity.

These options require a comma-separated list of the error messages that you want to 
change. For example, you might want to change a warning message with the number 
#1293 to Remark severity, because remarks are not displayed by default.

To do this, use the following command:

armcc --diag_remark=1293 ...

Note
 These options also have pragma equivalents. See Pragmas on page 4-14.

The following diagnostic messages can be changed:

• Messages with the number format #nnnn-D.

• Warning messages with the number format CnnnnW.
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6.5 Suppressing diagnostic messages
To suppress all diagnostic messages that have the specified tag(s) use the following 
option: --diag_suppress=tag[, tag, ...]

See also:

• Pragmas on page 4-14

• --diag_suppress=tag[,tag,...] on page 2-47 in the Compiler Reference Guide.
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6.6 Prefix letters in diagnostic messages
The RVCT tools automatically insert an identification letter to diagnostic messages, as 
described in Table 6-2. Using these prefix letters enables the RVCT tools to use 
overlapping message ranges.

The following rules apply:

• All the RVCT tools act on a message number without a prefix.

• A message number with a prefix is only acted on by the tool with the matching 
prefix.

• A tool does not act on a message with a non-matching prefix.

Thus, the compiler prefix C can be used with --diag_error, --diag_remark, and 
--diag_warning, or when suppressing messages, for example:

armcc --diag_suppress=C1287,C3017 ...

Use the prefix letters to control options that are passed from the compiler to other tools, 
for example, include the prefix letter L to specify linker message numbers.

Table 6-2 Identifying diagnostic messages

Prefix letter RVCT tool

C armcc

A armasm

L armlink or armar

Q fromelf
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6.7 Suppressing warning messages with -W
The -W option suppresses all warnings.
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6.8 Exit status codes and termination messages
If the compiler detects any warnings or errors during compilation, the compiler writes 
the messages to stderr. At the end of the messages, a summary message is displayed 
that gives the total number of each type of message of the form:

filename: n warnings, n errors

where n indicates the number of warnings or errors detected.

Note
 Remarks are not displayed by default. To display remarks, use the --remarks compiler 
option. No summary message is displayed if only remark messages are generated.

This section also includes:

• Response to signals

• Exit status.

6.8.1 Response to signals

The signals SIGINT (caused by a user interrupt, like ^C) and SIGTERM (caused by a 
UNIX kill command) are trapped by the compiler and cause abnormal termination.

6.8.2 Exit status

On completion, the compiler returns a value greater than zero if an error is detected. If 
no error is detected, a value of zero is returned.

See Severity of diagnostic messages on page 6-3 for more information on how the 
compiler handles the different levels of diagnostic messages.
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 6-9
ID101213 Non-Confidential, 



Diagnostic Messages 
6.9 Data flow warnings
The compiler performs data flow analysis as part of its optimization process. This 
information can be used to identify potential problems in your code, for example, to 
issue warnings about the use of uninitialized variables.

The data flow analysis can only warn about local variables that are held in processor 
registers, not global variables held in memory or variables or structures that are placed 
on the stack.

Be aware that:

• Data flow warnings are issued by default (in RVCT v2.0 and earlier, data flow 
warnings are issued only if the -fa option is specified).

• Data flow analysis is disabled at -O0 (even if the -fa option is specified).

The results of this analysis vary with the level of optimization used. This means that 
higher optimization levels might produce a number of warnings that do not appear at 
lower levels. For example, the following source code results in the compiler generating 
the warning C3017W: i may be used before being set, at -O2:

int f(void)
{

int i;
return i++;

}

The data flow analysis cannot reliably identify faulty code and any C3017W warnings 
issued by the compiler are intended only as an indication of possible problems. For a 
full analysis of your code, suppress this warning with --diag_suppress=C3017 and then 
use any appropriate third-party analysis tool, for example Lint.
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Chapter 7 
Using the Inline and Embedded Assemblers

This chapter describes the optimizing inline assembler and non-optimizing embedded 
assembler of the ARM compiler, armcc. It contains the following sections:

• Inline assembler on page 7-2

• Embedded assembler on page 7-17

• Legacy inline assembler that accesses sp, lr, or pc on page 7-27

• Differences between inline and embedded assembly code on page 7-29.
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7.1 Inline assembler
The ARM compiler provides an inline assembler that enables you to write optimized 
assembly language routines, and access features of the target processor not available 
from C or C++.

The following subsections are included:

• Inline assembler support

• Inline assembler syntax on page 7-3

• Restrictions on inline assembly operations on page 7-5

• Virtual registers on page 7-8

• Constants on page 7-9

• Instruction expansion on page 7-9

• Condition flags on page 7-10

• Operands on page 7-10

• Function calls and branches on page 7-12

• Labels on page 7-15

• Differences from previous versions of the ARM C/C++ compilers on page 7-15.

See also:

• Chapter 4 Mixing C, C++, and Assembly Language in the Developer Guide for 
information on how to use the inline assembler in C and C++ source code, and 
restrictions on inline assembly language

• the Assembler Guide for more information on writing assembly language for the 
ARM processors.

7.1.1 Inline assembler support

The inline assembler supports ARM assembly language only. It does not support:

• Thumb assembly language

• Thumb-2 assembly language

• ARMv7 instructions

• VFP instructions

• NEON instructions.

You can use the embedded assembler for Thumb and Thumb-2 support.

Most ARMv6 instructions are supported by the inline assembler, including the 
complete set of ARMv6 SIMD instructions. ARMv6 instructions that the inline 
assembler does not support are SETEND and some of the system extensions.
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Most ARMv5 instructions are supported by the inline assembler, including generic 
coprocessor instructions. ARMv5 instructions that the inline assembler does not 
support are BX, BLX, and BXJ.

7.1.2 Inline assembler syntax

The ARM compiler supports an extended inline assembler syntax, introduced by the asm 
keyword (C++), or the __asm keyword (C and C++). The syntax for these keywords is 
described in the following sections:

• Inline assembly with the __asm keyword

• Inline assembly with the asm keyword

• Rules for using __asm and asm on page 7-4.

You can use an asm or __asm statement anywhere a statement is expected.

Inline assembly with the __asm keyword

The inline assembler is invoked with the assembler specifier, and is followed by a list 
of assembler instructions inside braces or parentheses. You can specify inline assembler 
code using the following formats:

• On a single line, for example:

__asm("instruction[;instruction]"); // Must be a single string
__asm{instruction[;instruction]}

You cannot include comments.

• On multiple lines, for example:

__asm
{
    ...
    instruction
    ...
}

You can use C or C++ comments anywhere in an inline assembly language block.

Also, see Rules for using __asm and asm on page 7-4.

Inline assembly with the asm keyword

When compiling C++, the ARM compiler supports the asm syntax proposed in the ISO 
C++ Standard. You can specify inline assembler code using the following formats:

• On a single line, for example:
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asm("instruction[;instruction]"); // Must be a single string
asm{instruction[;instruction]}

You cannot include comments.

• On multiple lines, for example:

asm
{
    ...
    instruction
    ...
}

You can use C or C++ comments anywhere in an inline assembly language block.

Rules for using __asm and asm

Follow these rules when using the __asm and asm keywords:

• If you include multiple instructions on the same line, you must separate them with 
a semicolon (;). If you use double quotes, you must enclose all the instructions 
within a single set of double quotes (").

• If an instruction requires more than one line, you must specify the line 
continuation with the backslash character (\).

• For the multiple line format, you can use C or C++ comments anywhere in the 
inline assembly language block. However, you cannot embed comments in a line 
that contains multiple instructions.

• The comma (,) is used as a separator in assembly language, so C expressions with 
the comma operator must be enclosed in parentheses to distinguish them:

__asm
{

ADD x, y, (f(), z)
}

• An asm statement must be inside a C++ function. An asm statement can be used 
anywhere a C++ statement is expected.

• Register names in the inline assembler are treated as C or C++ variables. They do 
not necessarily relate to the physical register of the same name (see Virtual 
registers on page 7-8). If you do not declare the register as a C or C++ variable, 
the compiler generates a warning.

• Do not save and restore registers in inline assembler. The compiler does this for 
you. Also, the inline assembler does not provide direct access to the physical 
registers. See Virtual registers on page 7-8.
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If registers other than CPSR and SPSR are read without being written to, an error 
message is issued. For example:

int f(int x)
{
    __asm
    {
        STMFD sp!, {r0}    // save r0 - illegal: read before write
        ADD r0, x, 1
        EOR x, r0, x
        LDMFD sp!, {r0}    // restore r0 - not needed.
    }
    return x;
}

The function must be written as:

int f(int x)
{
    int r0;
    __asm
    {
        ADD r0, x, 1
        EOR x, r0, x
    }
    return x;
}

See Restrictions on inline assembly operations.

7.1.3 Restrictions on inline assembly operations

There are a number of restrictions on the operations that can be performed in inline 
assembly code. These restrictions provide a measure of safety, and ensure that the 
assumptions in compiled C and C++ code are not violated in the assembled assembly 
code.

Miscellaneous restrictions

The inline assembler has the following restrictions:

• The inline assembler is a high-level assembler, and the code it generates might not 
always be exactly what you write. Do not use it to generate more efficient code 
than the compiler generates. Use embedded assembler or the ARM assembler 
armasm for this purpose.

• Some low-level features that are available in the ARM assembler armasm, such as 
branching and writing to PC, are not supported.
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• Label expressions are not supported.

• You cannot get the address of the current instruction using dot notation (.) or {PC}.

• The & operator cannot be used to denote hexadecimal constants. Use the 0x prefix 
instead. For example:

__asm { AND x, y, 0xF00 }

• The notation to specify the actual rotation of an 8-bit constant is not available in 
inline assembly language. This means that where an 8-bit shifted constant is used, 
the C flag must be regarded as corrupted if the NZCV flags are updated.

• You must not modify the stack. This is not necessary because the compiler 
automatically stacks and restores any working registers as required. The compiler 
does not permit you to explicitly stack and restore work registers.

Registers

Registers such as r0-r3, sp, lr, and the NZCV flags in the CPSR must be used with 
caution. If you use C or C++ expressions, these might be used as temporary registers 
and NZCV flags might be corrupted by the compiler when evaluating the expression. 
See Virtual registers on page 7-8.

The pc, lr, and sp registers cannot be explicitly read or modified using inline assembly 
code because there is no direct access to any physical registers. However, you can use 
the following intrinsics described in the Compiler Reference Guide to access these 
registers:

• __current_pc on page 4-78

• __current_sp on page 4-78

• __return_address on page 4-95.

Processor modes

You can change processor modes or modify coprocessor states, but the compiler does 
not recognize these changes. If you change processor mode, you must not use C or C++ 
expressions until you change back to the original mode, otherwise the compiler corrupts 
the registers for the new processor mode.

Similarly, if you change the state of a floating-point coprocessor by executing 
floating-point instructions, you must not use floating-point expressions until the 
original state has been restored.
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Thumb instruction set

The inline assembler is not available when compiling C or C++ for Thumb state, and 
the inline assembler does not assemble Thumb instructions. Instead, the compiler 
switches to ARM state automatically.

If you want to include inline assembly in a source file that contains code to be compiled 
for Thumb, enclose the functions containing inline assembler code between #pragma arm 
and #pragma thumb statements. For example:

... // Thumb code
#pragma arm // ARM code. Switch code generation to the ARM instruction set so

// that the inline assembler is available.

int add(int i, int j)
{

int res;
__asm
{

ADD   res, i, j // add here
}
return res;

}
#pragma thumb // Thumb code. Switch back to the Thumb instruction set.

// The inline assembler is no longer available.

You must also compile your code using the --apcs /interwork compiler option.

See:

• Interworking qualifiers on page 2-24

• Pragmas on page 4-58 in the Compiler Reference Guide.

VFP coprocessor

The inline assembler does not provide direct support for VFP instructions. However, 
you can specify them using the generic coprocessor instructions.

Inline assembly code must not be used to change VFP vector mode. Inline assembly can 
contain floating-point expression operands that can be evaluated using 
compiler-generated VFP code. Therefore, it is important that only the compiler 
modifies the state of the VFP.

Unsupported instructions

The following instructions are not supported in the inline assembler:

• BKPT, BX, BXJ, and BLX instructions
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Note
 You can insert a BKPT instruction in C and C++ code by using the __breakpoint() 

intrinsic.

• LDR Rn, =expression pseudo-instruction. Use MOV Rn, expression instead. (This 
can generate a load from a literal pool.)

• LDRT, LDRBT, STRT, and STRBT instructions

• MUL, MLA, UMULL, UMLAL, SMULL, and SMLAL flag setting instructions

• MOV or MVN flag-setting instructions where the second operand is a constant

• user-mode LDM instructions

• ADR and ADRL pseudo-instructions.

See __breakpoint on page 4-75 in the Compiler Reference Guide.

7.1.4 Virtual registers

The inline assembler provides no direct access to the physical registers of an ARM 
processor. If an ARM register name is used as an operand in an inline assembler 
instruction it becomes a reference to a virtual register, with the same name, and not the 
physical ARM register.

The compiler allocates physical registers to each virtual register as appropriate during 
optimization and code generation. However, the physical register used in the assembled 
code might be different to that specified in the instruction. You can explicitly define 
these virtual registers as normal C or C++ variables. If they are not defined then the 
compiler supplies implicit definitions for the virtual registers.

The compiler-defined virtual registers have function local scope, that is, within a single 
function, multiple asm statements or declarations that reference the same virtual register 
name access the same virtual register.

No virtual registers are created for the sp (r13), lr (r14), and pc (r15) registers, and they 
cannot be read or directly modified in inline assembly code. See Legacy inline 
assembler that accesses sp, lr, or pc on page 7-27 for information on how you can 
modify your source code.

There is no virtual Processor Status Register (PSR). Any references to the PSR are 
always to the physical PSR.
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Existing inline assembler code that conforms to previously documented guidelines 
continues to perform the same function as in previous versions of the compiler, although 
the actual registers used in each instruction might be different.

The initial value in each virtual register is unpredictable. You must write to virtual 
registers before reading them. The compiler generates an error if you attempt to read a 
virtual register before writing to it, for example, if you attempt to read the virtual 
register associated with the variable r1.

You must also explicitly declare the names of the variables in your C or C++ code. It is 
better to use C or C++ variables as instruction operands. The compiler generates a 
warning the first time a virtual or physical register name is used, and only once for each 
translation unit. For example, if you specify register r3, a warning is displayed.

7.1.5 Constants

The constant expression specifier # is optional. If it is used, the expression following it 
must be a constant.

7.1.6 Instruction expansion

An ARM instruction in inline assembly code might be expanded into several 
instructions in the compiled object. The expansion depends on the instruction, the 
number of operands specified in the instruction, and the type and value of each operand.

Instructions using constants

The constant in an instruction with a constant operand is not limited to the values 
permitted by the instruction. Instead, the compiler translates the instruction into a 
sequence of instructions with the same effect. For example:

ADD r0,r0,#1023

might be translated into:

ADD r0,r0,#1024
SUB r0,r0,#1

With the exception of coprocessor instructions, all ARM instructions with a constant 
operand support instruction expansion. In addition, the MUL instruction can be expanded 
into a sequence of adds and shifts when the third operand is a constant.

The effect of updating the CPSR by an expanded instruction is:

• arithmetic instructions set the NZCV flags correctly
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• logical instructions:

— set the NZ flags correctly

— do not change the V flag

— corrupt the C flag.

Load and store instructions

The LDM, STM, LDRD, and STRD instructions might be replaced by equivalent ARM 
instructions. In this case the compiler outputs a warning message informing you that it 
might expand instructions.

Inline assembly code must be written in such a way that it does not depend on the 
number of expected instructions or on the expected execution time for each specified 
instruction.

Instructions that normally place constraints on pairs of operand registers, such as LDRD 
and STRD, are replaced by a sequence of instructions with equivalent functionality and 
without the constraints. However, these might be recombined into LDRD and STRD 
instructions.

All LDM and STM instructions are expanded into a sequence of LDR and STR instructions 
with equivalent effect. However, the compiler might subsequently recombine the 
separate instructions into an LDM or STM during optimization.

7.1.7 Condition flags

An inline assembly instruction might explicitly or implicitly attempt to update the 
processor condition flags. Inline assembly instructions that involve only virtual register 
operands or simple expression operands (see Operands) have predictable behavior. The 
condition flags are set by the instruction if either an implicit or an explicit update is 
specified. The condition flags are unchanged if no update is specified. If any of the 
instruction operands are not simple operands, then the condition flags might be 
corrupted unless the instruction updates them. In general, the compiler cannot easily 
diagnose potential corruption of the condition flags. However, for operands that require 
the construction and subsequent destruction of C++ temporaries the compiler gives a 
warning if the instruction attempts to update the condition flags. This is because the 
destruction might corrupt the condition flags.

7.1.8 Operands

Operands can be one of several types:
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Virtual registers

Registers specified in inline assembly instructions always denote virtual registers and 
not the physical ARM integer registers. Virtual registers require no declaration, and the 
size of the virtual registers is the same as the physical registers. However, the physical 
register used in the assembled code might be different to that specified in the instruction. 
See Virtual registers on page 7-8.

Expression operands

Function arguments, C or C++ variables, and other C or C++ expressions can be 
specified as register operands in an inline assembly instruction.

The type of an expression used in place of an ARM integer register must be either an 
integral type (that is, char, short, int or long), excluding long long, or a pointer type. 
No sign extension is performed on char or short types. You must perform sign extension 
explicitly for these types. The compiler might add code to evaluate these expressions 
and allocate them to registers.

When an operand is used as a destination, the expression must be a modifiable lvalue if 
used as an operand where the register is modified. For example, a destination register or 
a base register with a base-register update.

For an instruction containing more than one expression operand, the order that 
expression operands are evaluated is unspecified.

An expression operand of a conditional instruction is only evaluated if the conditions 
for the instruction are met.

A C or C++ expression that is used as an inline assembler operand might result in the 
instruction being expanded into several instructions. This happens if the value of the 
expression does not meet the constraints set out for the instruction operands in the ARM 
Architecture Reference Manual.

If an expression used as an operand creates a temporary that requires destruction, then 
the destruction occurs after the inline assembly instruction is executed. This is 
analogous to the C++ rules for destruction of temporaries.

A simple expression operand is one of the following:

• a variable value

• the address of a variable

• the dereferencing of a pointer variable

• a compile-time constant.
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Any expression containing one of the following is not a simple expression operand:

• an implicit function call, such as for division, or explicit function call

• the construction of a C++ temporary

• an arithmetic or logical operation.

Register lists

A register list can contain a maximum of 16 operands. These operands can be virtual 
registers or expression register operands.

The order that virtual registers and expression operands are specified in a register list is 
significant. The register list operands are read or written in left-to-right order. The first 
operand uses the lowest address, and subsequent operands use addresses formed by 
incrementing the previous address by four. This new behavior is in contrast to the usual 
operation of the LDM or STM instructions where the lowest numbered physical register is 
always stored to the lowest memory address. This difference in behavior is a 
consequence of the virtualization of registers.

An expression operand or virtual register can appear more than once in a register list 
and is used each time it is specified.

The base register is updated, if specified. The update overwrites any value loaded into 
the base register during a memory load operation.

Operating on User mode registers when in a privileged mode, by specifying ^ after a 
register list, is not supported by the inline assembler.

Intermediate operands

A C or C++ constant expression of an integral type might be used as an immediate value 
in an inline assembly instruction.

A constant expression that is used to specify an immediate shift must have a value that 
lies in the range defined in the ARM Architecture Reference Manual, as appropriate for 
the shift operation.

A constant expression that is used to specify an immediate offset for a memory or 
coprocessor data transfer instruction must have a value with suitable alignment.

7.1.9 Function calls and branches

The BL and SVC instructions of the inline assembler enable you to specify three optional 
lists following the normal instruction fields. These instructions have the following 
format:
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SVC{cond} svc_num, {input_param_list}, {output_value_list}, {corrupt_reg_list}
BL{cond} function, {input_param_list}, {output_value_list}, {corrupt_reg_list}

Note
 The SVC instruction used to be named SWI. The inline assembler still accepts SWI in place 
of SVC.

The lists are described in the following sections:

• No lists specified

• Input parameter list

• Output value list on page 7-14

• Corrupted register list on page 7-14.

Note
 • The BX, BLX, and BXJ instructions are not supported in the inline assembler.

• It is not possible to specify the lr, sp, or pc registers in any of the input, output, or 
corrupted register lists.

• The sp register must not be changed by any SVC instruction or function call.

No lists specified

If you do not specify any lists, then:

• r0-r3 are used as input parameters

• r0 is used for the output value

• r12 and r14 can be corrupted.

Input parameter list

This list specifies the expressions or variables that are the input parameters to the 
function call or SVC instruction, and the physical registers that contain the expressions 
or variables. They are specified as assignments to physical registers or as physical 
register names. A single list can contain both types of input register specification.

The inline assembler ensures that the correct values are present in the specified physical 
registers before the BL or SVC instruction is entered. A physical register name that is 
specified without assignment ensures that the value in the virtual register of the same 
name is present in the physical register. This ensures backwards compatibility with 
existing inline assembler code.

For example, the instruction:
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BL foo, { r0=expression1, r1=expression2, r2 }

generates the following pseudocode:

MOV (physical) r0, expression1
MOV (physical) r1, expression2
MOV (physical) r2, (virtual) r2
BL foo

Output value list

This list specifies the physical registers that contain the output values from the BL or SVC 
and where they must be stored. The output values are specified as assignments from 
physical registers to modifiable lvalue expressions or as single physical register names.

The inline assembler takes the values from the specified physical registers and assigns 
them into the specified expressions. A physical register name specified without 
assignment causes the virtual register of the same name to be updated with the value 
from the physical register.

For example, the instruction:

BL foo, { }, { result1=r0, r1 }

generates the following pseudocode:

BL foo
MOV result1, (physical) r0
MOV (virtual) r1, (physical) r1

Corrupted register list

This list specifies the physical registers that are corrupted by the called function. If the 
condition flags are modified by the called function then you must specify the PSR in the 
corrupted register list.

The BL and SVC instructions always corrupt lr.

If this list is omitted then for BL and SVC, the registers r0-r3, pc, lr and the PSR are 
corrupted.

The branch instruction, B, must only be used to jump to labels within a single C or C++ 
function.
7-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0205J
Non-Confidential, ID101213



Using the Inline and Embedded Assemblers 
7.1.10 Labels

Labels defined in inline assembly code can be used as targets for branches or C and C++ 
goto statements. Labels defined in C and C++ can be used as targets by branch 
instructions in inline assembly code, in the form:

BL{cond} label

7.1.11 Differences from previous versions of the ARM C/C++ compilers

There are significant differences between the inline assembler in the ARM compiler and 
the inline assembler in previous versions of the ARM C and C++ compilers. This 
section highlights the main differences. For more information on using existing 
assembly code for the inline assembler see the RealView Compilation Tools Developer 
Guide.

ARMv6 instructions

Of all the ARMv6 instructions, the inline assembler supports the ARMv6 media 
instructions only.

Virtual registers

Inline assembly code for the compiler always specifies virtual registers. The compiler 
chooses the physical registers to be used for each instruction during code-generation, 
and enables the compiler to optimize fully the assembly code and surrounding C or C++ 
code.

The pc (r15), lr (r14), and sp (r13) registers cannot be accessed at all. An error message 
is generated when these registers are accessed.

The initial values of virtual registers are undefined. Therefore, you must write to virtual 
registers before reading them. The compiler warns you if code reads a virtual register 
before writing to it. The compiler also generates these warnings for legacy code that 
relies on particular values in physical registers at the beginning of inline assembly code, 
for example:

int add(int i, int j)
{
    int res;
    __asm

{
        ADD res, r0, r1   // relies on i passed in r0 and j passed in r1
    }
    return res;
}

ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 7-15
ID101213 Non-Confidential, 



Using the Inline and Embedded Assemblers 
This code generates warning and error messages.

The errors are generated because virtual registers r0 and r1 are read before writing to 
them. The warnings are generated because r0 and r1 must be defined as C or C++ 
variables. The corrected code is:

int add(int i, int j)
{
    int res;
    __asm

{
        ADD res, i, j
    }
    return res;
}

Instruction expansion

The inline assembler in the compiler expands the instructions LDM, STM, LDRD, and STRD 
into a sequence of single-register memory operations that perform the equivalent 
functionality.

It is possible that the compiler optimizes the sequence of single-register memory 
operation instructions back into a multiple-register memory operation.

Register lists

The order of operands in a register list for an LDM or STM instruction is significant. They 
are used in the order given, that is left-to-right, and the first operand references the 
lowest generated memory address. This is in contrast to the behavior in previous 
compilers where the lowest numbered register always referenced the lowest memory 
address generated by the instruction.

This has changed because you can now use expression operands in register lists 
alongside virtual registers. The compiler gives a warning message if it encounters a 
register list that contains only virtual registers, and where the result of the new ordering 
is different to that from previous ARM C and C++ compilers.

Thumb instructions

The inline assembler in the compiler does not support the Thumb® instruction set. It 
does not assemble Thumb instructions, and cannot be used at all when compiling C or 
C++ for Thumb state, unless you use the #pragma arm and #pragma thumb pragmas (see 
Thumb instruction set on page 7-7).
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7.2 Embedded assembler
The ARM compiler enables you to include assembly code out-of-line, in one or more C 
or C++ function definitions. Embedded assembler provides unrestricted, low-level 
access to the target processor, enables you to use the C and C++ preprocessor directives, 
and gives easy access to structure member offsets.

See the Assembler Guide for more information on writing assembly language for the 
ARM processors.

7.2.1 Embedded assembler syntax

An embedded assembly function definition is marked by the __asm (C and C++) or asm 
(C++) function qualifiers, and can be used on:

• member functions

• non-member functions

• template functions

• template class member functions.

Functions declared with __asm or asm can have arguments, and return a type. They are 
called from C and C++ in the same way as normal C and C++ functions. The syntax of 
an embedded assembly function is:

__asm return-type function-name(parameter-list)
{    

// ARM/Thumb/Thumb-2 assembler code
instruction{;comment is optional} 
... 
instruction

}

The initial state of the embedded assembler (ARM or Thumb) is determined by the 
initial state of the compiler, as specified on the command line. This means that:

• if the compiler starts in ARM state, the embedded assembler uses --arm

• if the compiler starts in Thumb state, the embedded assembler uses --thumb.

The embedded assembler state at the start of each function is as set by the invocation of 
the compiler, as modified by #pragma arm and #pragma thumb pragmas.

You can change the state of the embedded assembler within a function by using explicit 
ARM, THUMB, or CODE16 directives in the embedded assembler function. Such a directive 
within an __asm function does not affect the ARM or Thumb state of subsequent __asm 
functions.

If you are compiling for a Thumb-2 capable processor, you can use Thumb-2 
instructions when in Thumb state. 
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Note
 Argument names are permitted in the parameter list, but they cannot be used in the body 
of the embedded assembly function. For example, the following function uses integer i 
in the body of the function, but this is not valid in assembly:

__asm int f(int i)
{
    ADD i, i, #1 // error
}

You can use, for example, r0 instead of i.

See the chapter on mixing C, C++, and assembly language in Developer Guide for more 
information on embedded assembly language in C and C++ sources.

Embedded assembler example

Example 7-1 shows a string copy routine as an embedded assembler routine.

Example 7-1 String copy with embedded assembler

#include <stdio.h>
__asm void my_strcpy(const char *src, char *dst)
{
loop
      LDRB  r2, [r0], #1
      STRB  r2, [r1], #1
      CMP   r2, #0
      BNE   loop
      BX  lr
}
int main(void)
{
    const char *a = "Hello world!";
    char b[20];
    my_strcpy (a, b);
    printf("Original string: '%s'\n", a);
    printf("Copied   string: '%s'\n", b);

return 0;
}
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7.2.2 Restrictions on embedded assembly

The following restrictions apply to embedded assembly functions:

• After preprocessing, __asm functions can only contain assembly code, with the 
exception of the following identifiers (see Keywords for related base classes on 
page 7-22 and Keywords for member function classes on page 7-23):

__cpp(expr)
__offsetof_base(D, B)
__mcall_is_virtual(D, f)
__mcall_is_in_vbase(D, f)
__mcall_offsetof_base(D, f)
__mcall_this_offset(D, f)
__vcall_offsetof_vfunc(D, f)

• No return instructions are generated by the compiler for an __asm function. If you 
want to return from an __asm function, then you must include the return 
instructions, in assembly code, in the body of the function.

Note
 This makes it possible to fall through to the next function, because the embedded 

assembler guarantees to emit the __asm functions in the order you have defined 
them. However, inlined and template functions behave differently (see 
Generation of embedded assembly functions on page 7-20).

• __asm functions do not change the AAPCS rules that apply. This means that all 
calls between an __asm function and a normal C or C++ function must adhere to 
the AAPCS, even though there are no restrictions on the assembly code that an 
__asm function can use (for example, change state).

7.2.3 Differences between expressions in embedded assembly and C or C++

Be aware of the following differences between embedded assembly and C or C++:

• Assembler expressions are always unsigned. The same expression might have 
different values between assembler and C or C++. For example:

MOV r0, #(-33554432 / 2) // result is 0x7f000000
MOV r0, #__cpp(-33554432 / 2) // result is 0xff000000

• Assembler numbers with leading zeros are still decimal. For example:

MOV r0, #0700 // decimal 700
MOV r0, #__cpp(0700) // octal 0700 == decimal 448

• Assembler operator precedence differs from C and C++. For example:
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MOV r0, #(0x23 :AND: 0xf + 1) // ((0x23 & 0xf) + 1) => 4
MOV r0, #__cpp(0x23 & 0xf + 1) // (0x23 & (0xf + 1)) => 0

• Assembler strings are not null-terminated:

DCB "Hello world!" // 12 bytes (no trailing null)
DCB __cpp("Hello world!") // 13 bytes (trailing null)

Note
 The assembler rules apply outside __cpp, and the C or C++ rules apply inside __cpp. See 
The __cpp keyword on page 7-21.

7.2.4 Generation of embedded assembly functions

The bodies of all the __asm functions in a translation unit are assembled as if they are 
concatenated into a single file that is then passed to the ARM assembler. The order of 
__asm functions in the assembly file that is passed to the assembler is guaranteed to be 
the same order as in the source file, except for functions that are generated using a 
template instantiation.

Note
 This means that it is possible for control to pass from one __asm function to another by 
falling off the end of the first function into the next __asm function in the file, if the return 
instruction is omitted.

When you invoke armcc, the object file produced by the assembler is combined with the 
object file of the compiler by a partial link that produces a single object file.

The compiler generates an AREA directive for each __asm function, as in Example 7-2:

Example 7-2  __asm function

#include <cstddef>
struct X
{

int x,y;
void addto_y(int);

};
__asm void X::addto_y(int)
{
    LDR      r2, [r0, #__cpp(offsetof(X, y))]
    ADD      r1, r2, r1
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    STR      r1, [r0, #__cpp(offsetof(X, y))]
    BX       lr
}

For this function, the compiler generates:

    AREA ||.emb_text||, CODE, READONLY
    EXPORT |_ZN1X7addto_yEi|
#line num "file"
|_ZN1X7addto_yEi| PROC
    LDR r2, [r0, #4]
    ADD r1, r2, r1
    STR r1, [r0, #4]
    BX lr
    ENDP
    END

The use of offsetof must be inside the __cpp() because it is the normal offsetof macro 
from the cstddef header file.

Ordinary __asm functions are put in an ELF section with the name .emb_text. That is, 
embedded assembly functions are never inlined. However, implicitly instantiated 
template functions and out-of-line copies of inline functions are placed in an area with 
a name that is derived from the name of the function, and an extra attribute that marks 
them as common. This ensures that the special semantics of these kinds of functions is 
maintained.

Note
 Because of the special naming of the area for out-of-line copies of inline functions and 
template functions, these functions are not in the order of definition, but in an arbitrary 
order. Therefore, you cannot assume that a code execution falls out of an inline or 
template function and into another __asm function.

7.2.5 The __cpp keyword

You can use the __cpp keyword to access C or C++ compile-time constant expressions, 
including the addresses of data or functions with external linkage, from the assembly 
code. The expression inside the __cpp must be a constant expression suitable for use as 
a C++ static initialization. See 3.6.2 Initialization of non-local objects and 5.19 
Constant expressions in ISO/IEC 14882:2003.

Example 7-3 on page 7-22 shows a constant replacing the use of __cpp(expr):
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Example 7-3  __cpp(expr)

LDR r0, =__cpp(&some_variable)
LDR r1, =__cpp(some_function)
BL  __cpp(some_function)
MOV r0, #__cpp(some_constant_expr)

Names in the __cpp expression are looked up in the C++ context of the __asm function. 
Any names in the result of a __cpp expression are mangled as required and automatically 
have IMPORT statements generated for them.

7.2.6 Manual overload resolution

Example 7-4 shows the use of C++ casts to do overload resolution for non-virtual 
function calls:

Example 7-4  C++ casts

void g(int);
void g(long);
struct T
{
    int mf(int);
    int mf(int,int);
};
__asm void  f(T*, int, int)
{
    BL __cpp(static_cast<int (T::*)(int, int)>(&T::mf)) // calls T::mf(int, int)
    BL __cpp(static_cast<void (*)(int)>(g)) // calls g(int)
    BX lr
}

7.2.7 Keywords for related base classes

The following keyword enables you to determine the offset from the beginning of an 
object to a base class sub-object within it:

__offsetof_base(D, B) 

B must be an unambiguous, non-virtual base class of D.
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Returns the offset from the beginning of a D object to the start of the B base 
subobject within it. The result might be zero. Example 7-5 shows the 
offset (in bytes) that must be added to a D* p to implement the equivalent 
of static_cast<B*>(p).

Example 7-5 static_cast<B*>(p)

__asm B* my_static_base_cast(D* /*p*/)
{
    if __offsetof_base(D, B) <> 0 // optimize zero offset case
        ADD r0, r0, #__offsetof_base(D, B)
    endif
    BX lr
}

These keywords are converted into integer or logical constants in the assembler source. 
You can only use them in __asm functions, but not in a __cpp expression.

7.2.8 Keywords for member function classes

The following keywords facilitate the calling of virtual and non-virtual member 
functions from an __asm function. The keywords beginning with __mcall can be used for 
both virtual and non-virtual functions. The keywords beginning with __vcall can be 
used only with virtual functions. The keywords do not particularly help in calling static 
member functions.

For examples of how to use these keywords, see Calling non-static member functions 
on page 7-25.

__mcall_is_virtual(D, f) 

Results in {TRUE} if f is a virtual member function found in D, or a base 
class of D, otherwise {FALSE}. If it returns {TRUE} the call can be done 
using virtual dispatch, otherwise the call must be done directly.

__mcall_is_in_vbase(D, f) 

Results in {TRUE} if f is a non-static member function found in a virtual 
base class of D, otherwise {FALSE}. If it returns {TRUE} the this adjustment 
must be done using __mcall_offsetof_vbase(D, f), otherwise it must be 
done with __mcall_this_offset(D, f).
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__mcall_offsetof_vbase(D, f) 

Where D class type and f is a non-static member function defined in a 
virtual base class of D, in other words __mcall_is_in_vbase(D,f) returns 
true.

This returns at which negative offset in the vtable of the vtable slot that 
holds the base offset (from the beginning of a D object to the start of the 
base in which f is defined).

This is the this adjustment necessary when making a call to f with a 
pointer to a D.

Note
 The offset returns a positive number that then has to be subtracted from 

the vtable pointer.

__mcall_this_offset(D, f) 

Where D class type and f is a non-static member function defined in D or 
a non-virtual base class of D.

This returns the offset from the beginning of a D object to the start of the 
base in which f is defined. This is the this adjustment necessary when 
making a call to f with a pointer to a D. It is either zero if f is found in D 
or the same as __offsetof_base(D,B), where B is a non-virtual base class 
of D that contains f.

If __mcall_this_offset(D,f) is used when f is found in a virtual base 
class of D it returns an arbitrary value designed to cause an assembly error 
if used. This is so that such invalid uses of __mcall_this_offset can occur 
in sections of assembly code that are to be skipped.

__vcall_offsetof_vfunc(D, f) 

Where D is a class and f is a virtual function defined in D, or a base class 
of D.

The function returns the negative offset of the slot in the vtable that holds 
the base offset. The base offset is calculated as the distance between a D 
object to the start of the base in which f is defined.

If __vcall_offsetof_vfunc(D, f) is used when f is not a virtual member 
function it returns an arbitrary value designed to cause an assembly error 
if used.
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7.2.9 Calling non-static member functions

You can use keywords beginning with __mcall and __vcall to call nonvirtual and virtual 
functions from __asm functions. See Keywords for member function classes on 
page 7-23. There is no __mcall_is_static to detect static member functions because 
static member functions have different parameters (that is, no this) and, therefore, call 
sites are likely to already be specific to calling a static member function.

Calling a nonvirtual member function

Example 7-6 shows the following code can be used to call a non-virtual function in 
either a virtual or non-virtual base:

Example 7-6 Calling a nonvirtual function

// rp contains a D* and we want to do the equivalent of rp->f() where f is a
// nonvirtual function
// all arguments other than the this pointer are already setup
// assumes f does not return a struct
if __mcall_is_in_vbase(D, f)
LDR r12, [rp] // fetch vtable pointer
LDR r0, [r12, #-__mcall_offsetof_vbase(D, f)] // fetch the vbase offset
ADD r0, r0, rp // do this adjustment

else
ADD r0, rp, #__mcall_this_offset(D, f) // set up and adjust this

// pointer for D*
endif

BL __cpp(&D::f) // call D::f

Calling a virtual member function

Example 7-7 shows code that can be used to call a virtual function in either a virtual or 
non-virtual base:

Example 7-7 Calling a virtual function

// rp contains a D* and we want to do the equivalent of rp->f() where f is a
// virtual function
// all arguments other than the this pointer are already setup
// assumes f does not return a struct
if __mcall_is_in_vbase(D, f)
    LDR r12, [rp]                                 // fetch vtable pointer

LDR r0, [r12, #-__mcall_offsetof_vbase(D, f)] // fetch the base offset
    ADD r0, r0, rp                                // do this adjustment
ARM DUI 0205J Copyright © 2002-2010 ARM. All rights reserved. 7-25
ID101213 Non-Confidential, 



Using the Inline and Embedded Assemblers 
LDR r12, [r0] // fetch vbase vtable pointer
else
    MOV r0, rp                                    // set up this pointer for D*
    LDR r12, [rp]                                 // fetch vtable pointer
    ADD r0, r0, #__mcall_this_offset(D, f)        // do this adjustment
endif
    MOV lr, pc                                    // prepare lr
    LDR pc, [r12, #__vcall_offsetof_vfunc(D, f)]  // calls rp->f()
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7.3 Legacy inline assembler that accesses sp, lr, or pc
The compilers in ARM Developer Suite (ADS) v1.2 and earlier enabled accesses to sp 
(r13), lr (r14), and pc (r15) from inline assembly code (see Inline assembler on 
page 7-2). Example 7-8 shows how legacy inline assembly code might use lr.

Example 7-8 Legacy inline assembly code using lr

void func()
{
    int var;
    __asm
    {
        mov  var, lr  /* get the return address of func() */
    }
}

There is no guarantee that lr contains the return address of a function if your legacy 
code uses it in inline assembly. For example, there are certain build options or 
optimizations that might use lr for another purpose. The compiler in RVCT v2.0 and 
later reports an error similar to the following if lr, sp or pc is used in this way:

If you have to access these registers from within a C or C++ source file, you can:

• use embedded assembly (see Embedded assembler on page 7-17).

• use the following intrinsics in inline assembly:

__current_pc() To access the pc register.

__current_sp() To access the sp register.

__return_address() To access the lr register.

See also:

• Accessing sp (r13), lr (r14), and pc (r15) in legacy code

• Instruction intrinsics on page 4-75 in the Compiler Reference Guide.

7.3.1 Accessing sp (r13), lr (r14), and pc (r15) in legacy code

The following methods enable you to access the sp, lr, and pc registers correctly in your 
source code:

Method 1 Use the compiler intrinsics in inline assembly, for example:
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void printReg()
{
    unsigned int spReg, lrReg, pcReg;
    __asm

{
        MOV spReg, __current_sp()
        MOV pcReg, __current_pc()
        MOV lrReg, __return_address()
    }
    printf("SP = 0x%X\n",spReg);
    printf("PC = 0x%X\n",pcReg);
    printf("LR = 0x%X\n",lrReg);
}

Method 2 Use embedded assembly to access physical ARM registers from within a 
C or C++ source file, for example:

__asm void func()
{
    MOV r0, lr
    ...
    BX lr
}

This enables the return address of a function to be captured and 
displayed, for example, for debugging purposes, to show the call tree.

See Embedded assembler on page 7-17.

Note
 The compiler might also inline a function into its caller function. If a function is inlined, 
then the return address is the return address of the function that calls the inlined 
function. Also, a function might be tail called.

See __return_address on page 4-95 in the Compiler Reference Guide.
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7.4 Differences between inline and embedded assembly code
There are differences between the way inline and embedded assembly is compiled:

• Inline assembly code uses a high-level of processor abstraction, and is integrated 
with the C and C++ code during code generation. Therefore, the compiler 
optimizes the C and C++ code, and the assembly code together.

• Unlike inline assembly code, embedded assembly code is assembled separately 
from the C and C++ code to produce a compiled object that is then combined with 
the object from the compilation of the C or C++ source.

• Inline assembly code can be inlined by the compiler, but embedded assembly 
code cannot be inlined, either implicitly or explicitly.

Table 7-1 summarizes the main differences between inline assembler and embedded 
assembler.

Table 7-1 Differences between inline and embedded assembler

Feature Embedded assembler Inline assembler

Instruction set ARM and Thumb. ARM only.

ARM assembler directives All supported. None supported.

ARMv6 instructions All supported. Supports most instructions, with some 
exceptions, for example SETEND and 
some of the system extensions. The 
complete set of ARMv6 SIMD 
instructions is supported.

ARMv7 instructions All supported. Not supported.

C/C++ expressions Constant expressions only. Full C/C++ expressions.

Optimization of assembly code No optimization. Full optimization.

Inlining Never. Possible.

Register access Specified physical registers 
are used. You can also use 
PC, LR and SP.

Uses virtual registers (see Virtual 
registers on page 7-8). Using sp (r13), lr 
(r14), and pc (r15) gives an error. See 
Legacy inline assembler that accesses 
sp, lr, or pc on page 7-27.

Return instructions You must add them in your 
code.

Generated automatically. (The BX, BXJ, 
and BLX instructions are not supported.)

BKPT instruction Supported directly. Not supported.
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See also Differences between expressions in embedded assembly and C or C++ on 
page 7-19.
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