
RealView® Compilation Tools
Version 4.0

Developer Guide
Copyright © 2002-2010 ARM. All rights reserved.
ARM DUI 0203J (ID101213)

RealView Compilation Tools
Developer Guide

Copyright © 2002-2010 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned
herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Change History

Date Issue Confidentiality Change

August 2002 A Non-Confidential Release 1.2

January 2003 B Non-Confidential Release 2.0

September 2003 C Non-Confidential Release 2.0.1 for ARM® RealView® Developer Suite

January 2004 D Non-Confidential Release 2.1 for RealView Developer Suite

December 2004 E Non-Confidential Release 2.2 for RealView Developer Suite

May 2005 F Non-Confidential Release 2.2 SP1 for RealView Developer Suite

March 2006 G Non-Confidential Release 3.0 for RealView Development Suite

March 2007 H Non-Confidential Release 3.1 for RealView Development Suite

September 2008 I Non-Confidential Release 4.0 for RealView Development Suite

23 January 2009 I Non-Confidential Update 1 for RealView Development Suite v4.0

10 December 2010 J Non-Confidential Update 2 for RealView Development Suite v4.0
ii Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. iii
ID101213 Non-Confidential,

iv Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Contents
RealView Compilation Tools
Developer Guide

Preface
About this book .. viii
Feedback .. xii

Chapter 1 Introduction
1.1 About RealView Compilation Tools ... 1-2
1.2 Using the examples .. 1-3

Chapter 2 Developing for ARM Processors
2.1 About the ARM architectures .. 2-2
2.2 ARM architecture v4T ... 2-8
2.3 ARM architecture v5TE ... 2-10
2.4 ARM architecture v6 ... 2-12
2.5 ARM architecture v6-M ... 2-16
2.6 ARM architecture v7-A .. 2-18
2.7 ARM architecture v7-R .. 2-20
2.8 ARM architecture v7-M ... 2-22

Chapter 3 Embedded Software Development
3.1 About embedded software development .. 3-2
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. v
ID101213 Non-Confidential,

3.2 Default compilation tool behavior ... 3-4
3.3 Tailoring the C library to your target hardware ... 3-9
3.4 Tailoring the image memory map to your target hardware 3-11
3.5 Reset and initialization .. 3-16
3.6 Target hardware and the memory map .. 3-22

Chapter 4 Mixing C, C++, and Assembly Language
4.1 Using instruction intrinsics, inline and embedded assembler 4-2
4.2 Accessing C global variables from assembly code 4-4
4.3 Using C header files from C++ ... 4-5
4.4 Calling between C, C++, and ARM assembly language 4-7

Chapter 5 Interworking ARM and Thumb
5.1 About interworking .. 5-2
5.2 Assembly language interworking .. 5-4
5.3 C and C++ interworking .. 5-5
5.4 Interworking examples .. 5-7

Chapter 6 Handling Processor Exceptions
6.1 About processor exceptions ... 6-2
6.2 ARMv6 and earlier, ARMv7-A and ARMv7-R profiles 6-3
6.3 ARMv6-M and ARMv7-M profiles ... 6-29

Chapter 7 Debug Communications Channel
7.1 About the Debug Communications Channel .. 7-2
7.2 DCC communication between target and host debug tools 7-3
7.3 Access from Thumb state ... 7-6

Chapter 8 Semihosting
8.1 About semihosting .. 8-2
8.2 Semihosting implementation .. 8-6
8.3 Semihosting operations .. 8-8
8.4 Debug agent interaction SVCs ... 8-24
vi Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Preface

This preface introduces the ARM® RealView® Compilation Tools Developer Guide. It
contains the following sections:

• About this book on page viii

• Feedback on page xii.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. vii
ID101213 Non-Confidential,

Preface
About this book

This book contains information that helps you to develop code for the ARM family of
processors. The chapters in this book, and the examples used, assume that you are using
the latest release of the ARM RealView Compilation Tools to develop your code.

Intended audience

This book is written for all developers who are producing applications using RealView
Compilation Tools. It assumes that you are an experienced software developer, and that
you are familiar with the ARM tools described in the RealView Compilation Tools
Essentials Guide.

Using this book

This book is organized into the following chapters:

 Chapter 1 Introduction

Read this chapter for an introduction to RealView Compilation Tools.

Chapter 2 Developing for ARM Processors

Read this chapter for information on the key features for each type of
architecture and to identify some of the main points to be aware of when
using the RealView Compilation Tools.

Chapter 3 Embedded Software Development

Read this chapter for information about how to develop embedded
applications with RealView Compilation Tools. It describes the default
RealView Compilation Tools behavior in the absence of a target system,
and how to tailor the C library and image memory map to your target
system.

Chapter 5 Interworking ARM and Thumb

Read this chapter for information about how to change between ARM
state and Thumb® state when writing code for processors that implement
the Thumb instruction set.

Chapter 4 Mixing C, C++, and Assembly Language

Read this chapter for information about how to write a mixture of C, C++,
and ARM assembly language code for the ARM architecture. It also
describes how to use the ARM instruction intrinsics, inline assembler,
and embedded assembler in C and C++ files.
viii Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Preface
Chapter 6 Handling Processor Exceptions

Read this chapter for information about how to handle the various types
of exception supported by ARM processors.

Chapter 7 Debug Communications Channel

Read this chapter for a description of how to use the Debug
Communications Channel (DCC).

Chapter 8 Semihosting

Read this chapter for information about the semihosting mechanism.
Semihosting enables code running on an ARM target to use the I/O
facilities on a host computer that is running an ARM debugger.

This book assumes that the ARM software is installed in the default location. For
example, on Windows this might be volume:\Program Files\ARM. This is assumed to be
the location of install_directory when referring to path names. For example
install_directory\Documentation\.... You might have to change this if you have
installed your ARM software in a different location.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. ix
ID101213 Non-Confidential,

Preface
Further reading

This section lists publications from both ARM and third parties that provide additional
information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://infocenter.arm.com/help/index.jsp for current errata sheets and addenda, and
the ARM Frequently Asked Questions (FAQs).

ARM publications

This book contains general information on developing applications for the ARM family
of processors. Other publications included in the suite are:

• RVCT Essentials Guide (ARM DUI 0202)

• RVCT Compiler User Guide (ARM DUI 0205)

• RVCT Compiler Reference Guide (ARM DUI 0348)

• RVCT Libraries and Floating Point Support Guide (ARM DUI 0349)

• RVCT Linker User Guide (ARM DUI 0206)

• RVCT Linker Reference Guide (ARM DUI 0381)

• RVCT Utilities Guide (ARM DUI 0382)

• RVCT Assembler Guide (ARM DUI 0204).

For full information about the base standard, software interfaces, and standards
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM
products:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM
DDI 0406)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM datasheet or technical reference manual for your hardware device.
x Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Preface
Other publications

For an introduction to ARM architecture, see Andrew N. Sloss, Dominic Symes and
Chris Wright, ARM System Developer's Guide: Designing and Optimizing System
Software (2004). Morgan Kaufmann, ISBN 1-558-60874-5.

For an essential handbook for system-on-chip designers using ARM processors and
engineers working with the ARM architecture, see Steve Furber, ARM system-on-chip
architecture (2nd edition, 2000). Addison Wesley, ISBN 0-201-67519-6.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. xi
ID101213 Non-Confidential,

Preface
Feedback

ARM welcomes feedback on both RealView Compilation Tools, and its documentation.

Feedback on RealView Compilation Tools

If you have any problems with RealView Compilation Tools, contact your supplier. To
help them provide a rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page numbers to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
xii Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 1
Introduction

This chapter introduces the ARM® RealView® Compilation Tools.

It contains the following sections:

• About RealView Compilation Tools on page 1-2

• Using the examples on page 1-3.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 1-1
ID101213 Non-Confidential,

Introduction
1.1 About RealView Compilation Tools

RealView Compilation Tools consists of a suite of applications, together with
supporting documentation and examples, that enable you to write applications for the
ARM family of processors. You can use RealView Compilation Tools to build C, C++,
and ARM assembly language programs.

This book contains information that helps you to develop code for ARM processors.
The chapters in this book, and the examples used, assume that you are using the latest
release of RealView Compilation Tools to develop your code.

If you are upgrading to RealView Compilation Tools from a previous release, ensure
that you read the RealView Compilation Tools Essentials Guide for information about
new features and enhancements in this release.

If you are new to RealView Compilation Tools, read the RealView Compilation Tools
Essentials Guide for an overview of the ARM tools and an introduction to using them
as part of your development project.

For information about previous releases of RealView Compilation Tools, see Appendix
A in the RealView Compilation Tools Essentials Guide.

See ARM publications on page x for a list of the other books in the RealView
Compilation Tools documentation suite that give information on the ARM assembler,
ARM compiler, ARM linker, and supporting software.
1-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Introduction
1.2 Using the examples

This book uses the examples provided with RealView Development Suite. These can be
found in the examples directory install_directory\RVDS\Examples. See the RealView
Development Suite Getting Started Guide for a summary of the examples provided.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 1-3
ID101213 Non-Confidential,

Introduction
1-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 2
Developing for ARM Processors

This chapter describes the key features for each version of the architecture and identifies
some of the main points to be aware of when using the ARM RealView Compilation
Tools.

It contains the following sections:

• About the ARM architectures on page 2-2

• ARM architecture v4T on page 2-8

• ARM architecture v5TE on page 2-10

• ARM architecture v6 on page 2-12

• ARM architecture v6-M on page 2-16

• ARM architecture v7-A on page 2-18

• ARM architecture v7-R on page 2-20

• ARM architecture v7-M on page 2-22.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-1
ID101213 Non-Confidential,

Developing for ARM Processors
2.1 About the ARM architectures

This section gives an overview of the various ARM architectures and associated
features to be aware of when developing code for specific processors.

ARM architectures provide support for the 32-bit ARM and 16-bit Thumb® instruction
set architectures along with architecture extensions to provide support for Tightly
Coupled Memory (TCM), memory management, Single Instruction Multiple Data
(SIMD), and NEON™ technologies.

The ARM architecture is constantly improving to meet the increasing demands of
leading edge applications developers, while retaining the backwards compatibility
necessary to protect investment in software development.

For more information, see the Technical Reference Manual for your processor or the
ARM Architecture Reference Manual.

Table 2-1 gives an overview of some key features for the ARM processors.

Table 2-1 Key features

Processor Architecture
Tightly
Coupled
Memory

Memory
Management

Thumb-2

ARM7TDMI® ARMv4T - - -

ARM920T™ ARMv4T - MMU -

ARM922T™ ARMv4T - MMU -

ARM926EJ-S™ ARMv5TEJ Yes MMU -

ARM946E-S™ ARMv5TE Yes MPU -

ARM966E-S™ ARMv5TE Yes - -

ARM11™ MPCore™ ARMv6K - MMU -

ARM1136J-S™/ARM1136JF-S™ ARMv6K Yes MMU -

ARM1156T2-S™/ARM1156T2F-S™ ARMv6T2 Yes MPU Yes

ARM1176JZ-S™/ARM1176JZF-S™ ARMv6Z Yes MMU -

ARM11™ MPCore™ ARMv6K - MMU -

Cortex™-M0 ARMv6-M - - -

Cortex™-M1 ARMv6-M Yes - -
2-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
2.1.1 Multiprocessing systems

The ARM architecture v6K introduces the first MPCore processor supporting up to four
CPUs and associated hardware. Applications have to be specifically designed to run on
multiprocessing systems to optimize performance. For example, a CPU can be
dedicated to a particular task in a single threaded application or used for parallel
processing in a multi threaded environment. An efficient multiprocessing system
consumes less power, produces less heat and is more responsive than a system with one
CPU but is more complex and therefore more difficult to debug.

Some points for consideration when designing a multiprocessing system:

• synchronize using LDREX/STREX to create a mutex or semaphore to protect critical
sections and non-shareable resources

• enforce cache coherency for symmetrical multiprocessing

• execute repetitive tasks in separate threads

• split a large task into several threads executing in parallel

• set up a primary CPU using the CP15 CPU ID register for initialization tasks

• prioritize interrupts

• use bit masking for interrupt pre-emption

• configure the cycle counts that trigger a timer or watchdog.

Cortex-M3 ARMv7-M - MPU (optional) Thumb-2 only

Cortex-M4 ARMv7E-M - MPU (optional) Thumb-2 only

Cortex-A5 ARMv7-A - MMU Yes

Cortex-A8 ARMv7-A - MMU Yes

Cortex-A9 ARMv7-A - MMU Yes

Cortex-R4 and Cortex-R4F ARMv7-R Variable MPU Yes

Table 2-1 Key features (continued)

Processor Architecture
Tightly
Coupled
Memory

Memory
Management

Thumb-2
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-3
ID101213 Non-Confidential,

Developing for ARM Processors
Note
 These tasks are generally handled by an OS.

2.1.2 Tightly coupled memory

TCM is a contiguous area of memory that is always valid if the TCM is enabled. TCM
is used as part of the physical memory map of the system, and does not have to be
backed by a level of external memory with the same physical addresses. For this reason,
the TCM behaves differently from the caches for regions of memory that are marked as
being write-through cacheable. In such regions, no external writes occur in the event of
a write to memory locations contained in the TCM.

The purpose of TCM is to provide low-latency memory that the processor can use
without the unpredictability that is a feature of caches. You can use TCM to hold critical
routines, such as interrupt handling routines or real-time tasks where the indeterminacy
of a cache is highly undesirable. In addition, you can use it to hold scratch pad data, data
types whose locality properties are not well suited to caching, and critical data
structures such as interrupt stacks.

For a full architectural description of a TCM, see the ARM Architecture Reference
Manual and the Technical Reference Manual for your processor.

2.1.3 Memory management

The ARM memory management options are:

MMU The Memory Management Unit (MMU) allows fine-grained control of a
memory system. Most of the detailed control is provided through
translation tables held in memory. Entries in these tables define the
properties for different regions of memory. These include:

• virtual-to-physical address mapping

• memory access permissions

• memory types.

MPU The Memory Protection Unit (MPU) provides a considerably simpler
alternative to the MMU. This allows both hardware and software to be
simplified in systems that do not require all facilities of the MMU. You
can use the MPU to partition external memory into separate contiguous
regions with different sizes and attributes. You can also control access
permissions and memory characteristics for different regions of memory.

An MPU does not require external memory for translation tables and it
must be enabled before the caches can be enabled.
2-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
For a full architectural description of an MMU or MPU, see the ARM Architecture
Reference Manual and the Technical Reference Manual for your processor.

2.1.4 Thumb-2

Thumb-2 technology is available in the ARMv6T2 and later architectures. Thumb-2 is
a major enhancement to the 16-bit Thumb instruction set. It adds 32-bit instructions that
can be freely intermixed with 16-bit instructions in a program. The additional 32-bit
instructions enable Thumb-2 to cover the functionality of the ARM instruction set. The
32-bit instructions enable Thumb-2 to combine the code density of earlier versions of
Thumb, with performance of the ARM instruction set.

The most important difference between the Thumb-2 instruction set and the ARM
instruction set is that most 32-bit Thumb instructions are unconditional, whereas most
ARM instructions can be conditional. Thumb-2 introduces a conditional execution
instruction, IT, that is a logical if-then-else operation that you can apply to subsequent
instructions to make them conditional.

For more information on the instruction set, see the ARM Architecture Reference
Manual and the Technical Reference Manual for your processor.

2.1.5 Floating-point build options

The following guidelines can be used to help you select the most suitable floating-point
build options to use for your application.

ARM and Thumb floating-point (ARMv6 and earlier)

There are several options for compiling code that carries out floating-point operations
in ARM state code and Thumb state code:

ARM only Choose the option --fpu vfpv2 to have the compiler generate ARM code
only for functions containing floating-point operations.

When the option --fpu vfpv2 is selected, the compiler generates ARM
code for any function containing floating-point operations, regardless of
whether the compiler is compiling for ARM or compiling for Thumb.

Functions containing floating-point operations and that are compiled for
Thumb are compiled to ARM code, because Thumb code cannot contain
VFP instructions or access VFP registers. This uses hardware VFP
linkage.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-5
ID101213 Non-Confidential,

Developing for ARM Processors
When compiling for ARM only, use --fpu=vfp and not
--fpu=softvfp+vfp. Software linkage adds an overhead in transfer values
between VFP and ARM that slows down the transfers and requires
additional instructions.

Mixed ARM/Thumb

Choose the option --fpu softvfp+vfpv2 to have the compiler generate
mixed ARM/Thumb code.

When the option --fpu softvfp+vfpv2 is selected, all functions are
compiled using software floating-point linkage. This means that
floating-point arguments are passed to and returned from functions in
integer registers.

The Thumb instruction set does not contain VFP instructions and
therefore cannot access VFP registers. Therefore, for Thumb code, when
--fpu=softvfp+vfpv2 is used, the compiler generates calls to library
functions to perform the VFP operations. These library functions have to
use software linkage because the Thumb code cannot access the VFP
registers that are required to use hardware linkage.

The RVCT libraries include versions of the software floating point
functions that are compiled for ARM, and use VFP instructions to be
used with --fpu=softvfp+vfpv2. These library functions give improved
performance and reduced code size compared to the full software floating
point functions.

The option that provides the best code size or performance depends on the code being
compiled. When compiling for ARM, it is best to experiment with the options --fpu
softvfp+vfpv2 and --fpu vfpv2 to determine which provides the required code size and
performance attributes.

If you have a mix of ARM and Thumb then you might want to experiment with the --fpu
option to get the best results.

ARM and Thumb-2 floating-point (ARMv7, RealView Development Suite
v3.0 and later)

Mixed ARM/Thumb-2

Choose the option --fpu softvfp+vfpv3 to have the compiler generate
mixed ARM/Thumb code.

When the option --fpu softvfp+vfpv3 is selected, all functions are
compiled using software floating-point linkage. This means that
floating-point arguments are passed to and returned from functions in
ARM integer registers.
2-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
Software floating-point linkage enables you to link with generic libraries
and legacy code that are themselves built with software floating-point
linkage.

ARM only Choose the options --arm --fpu vfpv3 to have the compiler generate
ARM code only. This uses hardware VFP linkage.

Thumb-2 only

Choose the options --thumb --fpu vfpv3 to have the compiler generate
Thumb-2 code only for your entire program. Thumb-2 supports VFP
instructions. Therefore, there is no need to switch to ARM state to
perform VFP operations. This uses hardware VFP linkage.

Note
 This option is available only for ARMv7 processors with VFPv3, for

example the Cortex-A8, where VFP is directly accessible from both the
ARM and Thumb-2 instruction set.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-7
ID101213 Non-Confidential,

Developing for ARM Processors
2.2 ARM architecture v4T

This section gives an overview of the RealView tools support for ARMv4T. This variant
of the ARM architecture provides 16-bit Thumb instructions, a subset of the 32-bit
ARM instruction set. It supports both ARM and Thumb instruction sets.

2.2.1 Key features

When compiling code for ARMv4T, the compiler supports the additional Thumb
instructions for greater code density but with the following limitations:

• Thumb code usually uses more instructions for a given task, making ARM code
best for maximizing performance of time-critical code

• ARM state and associated ARM instructions are required for exception handling.

2.2.2 Alignment support

All load and store instructions must specify addresses that are aligned on a natural
alignment boundary. For example:

• LDR and STR addresses must be aligned on a word boundary

• LDRH and STRH addresses must be aligned on a halfword boundary

• LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in
unpredictable behavior. To control this you must inform the compiler, using __packed,
when you want to access an unaligned address so that it can generate safe code. See
__packed on page 4-11 in the Compiler Reference Guide.

Note
 Unaligned accesses, where permitted, are treated as rotated aligned accesses.

Table 2-2 Useful command-line options

Command-line option Description

--cpu=4T ARMv4 with Thumb.

--cpu=name Where name is a specific ARM processor. For example ARM7TDMI.

--apcs=qualifier Where qualifier denotes one or more qualifiers for interworking and position independence.
For example --apcs=/interwork.
2-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
2.2.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv4T supports the following endian modes:

LE little-endian format

BE-32 legacy big-endian format.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-9
ID101213 Non-Confidential,

Developing for ARM Processors
2.3 ARM architecture v5TE

This section gives an overview of the RealView tools support for ARMv5TE. This
variant of the ARM architecture provides enhanced arithmetic support for Digital
Signal Processing (DSP) algorithms. It supports both ARM and Thumb instruction sets.

2.3.1 Key features

When compiling code for ARMv5TE, the compiler:

• Supports improved interworking between ARM and Thumb, for example BLX.

• Performs instruction scheduling for the specified processor. Instructions are
re-ordered to minimize interlocks and improve performance.

• Uses multiply and multiply-accumulate instructions that act on 16-bit data items.

• Uses instruction intrinsics to generate addition and subtraction instructions that
perform saturated signed arithmetic. Saturated arithmetic produces the maximum
positive or negative value instead of wrapping the result if the calculation
overflows the normal integer range.

• Uses load (LDRD) and store (STRD) instructions that act on two words of data.

• Uses a preload data instruction PLD.

2.3.2 Alignment support

All load and store instructions must specify addresses that are aligned on a natural
alignment boundary. For example:

• LDR and STR addresses must be aligned on a word boundary

• LDRH and STRH addresses must be aligned on a halfword boundary

Table 2-3 Useful command-line options

Command-line option Description

--cpu=5TE ARMv5 with Thumb, interworking, DSP multiply, and double-word instructions

--cpu=5TEJ ARMv5 with Thumb, interworking, DSP multiply, double-word instructions, and Jazelle®
extensionsa

--cpu=name Where name is a specific ARM processor. For example:

• ARM926EJ-S for ARMv5 with Thumb, Jazelle extensions, physically mapped caches
and MMU.

a. The ARM compiler cannot generate Jazelle bytecodes.
2-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
• LDRD and STRD addresses must be aligned on a doubleword boundary

• LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in
unpredictable behavior. To control this you must inform the compiler, using __packed,
when you want to access an unaligned address so that it can generate safe code. See
__packed on page 4-11 in the Compiler Reference Guide.

All LDR and STR instructions, except LDRD and STRD, must specify addresses that are
word-aligned, otherwise the instruction generates an abort.

Note
 Unaligned accesses, where permitted, are treated as rotated aligned accesses.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide.

2.3.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv5TE supports the following endian modes:

LE little-endian format

BE-32 legacy big-endian format.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-11
ID101213 Non-Confidential,

Developing for ARM Processors
2.4 ARM architecture v6

This section gives an overview of the RealView tools support for ARMv6. This variant
of the ARM architecture extends the original ARM instruction set to support
multi-processing and adds some extra memory model features. It supports both ARM
and Thumb instruction sets.

2.4.1 Key features

When compiling code for ARMv6, the compiler:

• Performs instruction scheduling for the specified processor. Instructions are
re-ordered to minimize interlocks and improve performance.

• Generates explicit SXTB, SXTH, UXTB, UXTH byte or halfword extend instructions
where appropriate.

• Generates the endian reversal instructions REV, REV16 and REVSH if it can deduce
that a C expression performs an endian reversal.

• Generates additional Thumb instructions available in ARMv6, for example CPS,
CPY, REV, REV16, REVSH, SETEND, SXTB, SXTH, UXTB, UXTH.

• Uses some functions that are optimized specifically for ARMv6, for example,
memcpy().

The compiler cannot generate SIMD instructions, because these do not map well onto
C expressions. You must use assembly language or intrinsics for SIMD code generation.

Some enhanced instructions are available to improve exception handling:

• SRS and RFE instructions to save and restore the Link Register (LR) and the Saved
Program Status Register (SPSR)

Table 2-4 Useful command-line options

Option Description

--cpu=6 ARMv6 with Thumb, interworking, DSP multiply, doubleword instructions, unaligned and
mixed-endian support, Jazelle, and media extensions

--cpu=6Z ARMv6 with security extensions

--cpu=6T2 ARMv6 with Thumb-2

--cpu=name Where name is a specific ARM processor. For example:

• ARM1136J-S to generate code for the ARM1136J-S with software VFP support

• ARM1136JF-S to generate code for the ARM1136J-S with hardware VFP
2-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
• CPS simplifies changing state, and modifying the I and F bits in the Current
Program Status Register (CPSR)

• architectural support for vectored interrupts with a vectored interrupt controller

• low-latency interrupt mode

• ARM1156T2-S can enter exceptions in Thumb state using Thumb-2 code.

2.4.2 Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to
packed structures, by allowing LDR and STR instructions to load from and store to words
that are not aligned on natural word boundaries. Structures remain unpacked unless
explicitly qualified with __packed. Table 2-5 shows the effect of one-byte alignment
when compiling for ARMv6 and earlier architectures.

Code compiled for ARMv6 only runs correctly if you enable unaligned data access
support on your processor. You can control alignment by using the U and the A bits in the
CP15 register c1, or by typing the UBITINIT input to the processor HIGH.

Code that uses the behavior of pre-ARMv6 unaligned data accesses can be generated by
using the compiler option --no_unaligned_access.

Note
 Unaligned data accesses are not available in BE-32 endian mode.

LDRD and STRD might be word aligned.

See also
• Technical Reference Manual for your processor

Table 2-5 One-byte alignment

__packed struct
{

int i;
char ch;
short sh;

} foo;

Compiling for pre-ARMv6:
MOV R4,R0
BL __aeabi_uread4
LDRB R1, [R4,#4]
LDRSB R2,[R4,#5]
LDRB R12,[R4,#6]
ORR R2,R12,R2 LSL#8

Compiling for ARMv6 and later:
LDR R0, [R4,#0]
LDRB R1,[R4,#4]
LDRSH R2,[R4,#5]
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-13
ID101213 Non-Confidential,

Developing for ARM Processors
• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide.

2.4.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv6 supports the following endian modes:

LE little-endian format

BE8 big-endian format

BE-32 legacy big-endian format.

Mixed endian systems are also possible by using SETEND and REV instructions.

Compiling for ARMv6 endian mode BE8

By default, the compiler generates BE8 big-endian code when compiling for ARMv6
and big-endian. The compiler sets a flag in the code that labels the code as BE8.
Therefore, to enable BE8 support in the ARM processor you normally have to set the
E-bit in the CPSR.

It is possible to link legacy code with ARMv6 code for running on an ARMv6 based
processor. However, in this case the linker switches the byte order of the legacy code
into BE8 mode. The resulting image is in BE8 mode.

Compiling for ARMv6 legacy endian mode BE32

To use the pre-ARMv6 or legacy BE32 mode you must tie the BIGENDINIT input into the
processor HIGH, or set the B bit of CP15 register c1.

Note
 You must link BE32-compatible code using the linker option --be32. Otherwise, the
ARMv6 attributes causes a BE8 image to be produced.

For more information see:

• Alignment support on page 2-13

• --bigend on page 2-17 in the Compiler Reference Guide

• --littleend on page 2-85 in the Compiler Reference Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide
2-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
• --be8 on page 2-15 in the Linker Reference Guide

• --be32 on page 2-16 in the Linker Reference Guide.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-15
ID101213 Non-Confidential,

Developing for ARM Processors
2.5 ARM architecture v6-M

This section gives an overview of the RealView tools support for ARMv6-M.
Microcontroller profiles implement a programmers' model designed for fast interrupt
processing, with hardware stacking of registers and support for writing interrupt
handlers in high-level languages. It is intended for deeply embedded applications that
require a small processor integrated into an FPGA and supports the Thumb instruction
set and a small number of 32-bit Thumb-2 instructions.

2.5.1 Key features

Key features for ARMv6-M:

• The compiler supports the extension of the Thumb instruction set using Thumb-2
technology. For example, BL, DMB, DSB, ISB, MRS and MSR.

2.5.2 Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to
packed structures, by allowing LDR and STR instructions to load from and store to words
that are not aligned on natural word boundaries.

Unaligned data accesses are converted into two or three aligned accesses, depending on
the size and alignment of the unaligned access. This stalls any subsequent accesses until
the unaligned access has completed. You can control alignment by using the DCode and
System bus interfaces.

See also
• Cortex-M1 Technical Reference Manual

• Cortex-M0 Technical Reference Manual

• Aligning data on page 5-25 in the Compiler User Guide

Table 2-6 Useful command-line options

Command-line option Description

--cpu=6-M ARMv6 microcontroller profile with Thumb only, and processor state instructions

--cpu=6S-M ARMv6 microcontroller profile with Thumb only, plus processor state instructions and OS
extensions

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-M1 for ARMv6 with Thumb only, plus processor state instructions, OS
extensions and BE8 and LE data endianness support.
2-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide.

2.5.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv6-M supports the following endian modes:

LE little-endian format

BE8 big-endian format.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-17
ID101213 Non-Confidential,

Developing for ARM Processors
2.6 ARM architecture v7-A

This section gives an overview of the RealView tools support for ARMv7-A.
Application profiles implement a traditional ARM architecture with multiple modes
and support a virtual memory system architecture based on an MMU. These profiles
support both ARM and Thumb instruction sets.

2.6.1 Key features

Key features for ARMv7-A:

• Supports the advanced SIMD extensions

• Supports the Thumb Execution Environment (ThumbEE).

2.6.2 Alignment support

The data alignment behavior supported by the ARM architecture is significantly
different between ARMv4 and ARMv7. An ARMv7 implementation must support
unaligned data accesses. You can control the alignment requirements of load and store
instructions by using the A bit in the CP15 register c1.

Note
 ARMv7 architectures do not support pre-ARMv6 alignment.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

Table 2-7 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only, and without hardware dividea

--cpu=7-A ARMv7 application profile supporting virtual MMU-based memory systems, with ARM,
Thumb, Thumb-2, and Thumb-2EE instruction sets, NEON™ support, and 32-bit SIMD
support

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-A8 for ARMv7 with ARM, Thumb, Thumb-2, hardware VFP, NEON support,
and 32-bit SIMD support.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A,
ARMv7-R, and ARMv7-M architectures.
2-18 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide.

2.6.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv7-A supports the following endian modes:

LE little-endian format

BE8 big-endian format used by ARMv6 and ARMv7.

The ARMv7 does not support the legacy BE-32 mode. If you have legacy code for
ARMv7 processors that contain instructions with a big-endian byte order, then you must
perform byte order reversal. See the ARM Architecture Reference Manual.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-19
ID101213 Non-Confidential,

Developing for ARM Processors
2.7 ARM architecture v7-R

This section gives an overview of the RealView tools support for ARMv7-R. Real-time
profiles implement a traditional ARM architecture with multiple modes and support a
protected memory system architecture based on an MPU. The ARMv7-R architecture
supports both ARM and Thumb instruction sets.

2.7.1 Key features

Key features for ARMv7-R:

• Supports the SDIV and UDIV instructions.

2.7.2 Alignment support

The data alignment behavior supported by the ARM architecture has changed
significantly between ARMv4 and ARMv7. An ARMv7 implementation provides
hardware support for some unaligned data accesses using LDR, STR, LDRH, and STRH. Other
data accesses must maintain alignment using LDM, STM, LDRD, STRD, LDC, STC, LDREX, STREX,
and SWP.

You can control the alignment requirements of load and store instructions by using the
A bit in the CP15 register c1.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler
Reference Guide.

Table 2-8 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only but without hardware dividea

--cpu=7-R ARMv7 real-time profile with ARM, Thumb, Thumb-2 optional, VFP, 32-bit SIMD
support, and hardware divide

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-R4F for ARMv7 with ARM, Thumb, Thumb-2, hardware VFP, hardware
divide and SIMD support.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A,
ARMv7-R, and ARMv7-M architectures.
2-20 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
2.7.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv7-R supports the following endian modes:

LE little-endian format

BE8 big-endian format.

The ARMv7 does not support the legacy BE-32 mode. If you have legacy code for ARM
v7 processors that contain instructions with a big-endian byte order, then you must
perform byte order reversal.

The ARMv7-R supports optional byte order reversal hardware as a static option from
reset. See the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-21
ID101213 Non-Confidential,

Developing for ARM Processors
2.8 ARM architecture v7-M

This section gives an overview of the RealView tools support for ARMv7-M.
Microcontroller profiles implement a programmers' model designed for fast interrupt
processing, with hardware stacking of registers and support for writing interrupt
handlers in high-level languages. It implements a variant of the ARMv7 protected
memory system architecture and supports the Thumb-2 instruction set only.

2.8.1 Key features

Key features for ARMv7-M:

• Supports the SDIV and UDIV instructions.

• Uses interrupt intrinsics to generate CPSIE or CPSID instructions that change the
current pre-emption priority (see Table 2-10). For example, when you use a
__disable_irq intrinsic, the compiler generates a CPSID i instruction, which sets
PRIMASK to 1. This raises the execution priority to 0 and prevents exceptions with
a configurable priority from entering. See the ARMv7-M Architecture Reference
Manual.

Table 2-9 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only and without hardware dividea

--cpu=7-M ARMv7 microcontroller profile with Thumb-2 only and hardware divide

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-M3 for ARMv7 with Thumb-2 only, hardware divide, ARMv6 style BE8 and
LE data endianness support, and unaligned accesses.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A,
ARMv7-R, and ARMv7-M architectures.

Table 2-10 Interrupt intrinsics

Intrinsic Opcode PRIMASK FAULTMASK

__enable_irq CPSIE i 0

__disable_irq CPSID i 1

__enable_fiq CPSIE f 0

__disable_fiq CPSID f 1
2-22 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Developing for ARM Processors
2.8.2 Alignment support

The data alignment behavior supported by the ARM architecture has changed
significantly between ARMv4 and ARMv7. An ARMv7 implementation must support
unaligned data accesses. You can control the alignment requirements of load and store
instructions by using the A bit in the CP15 register c1.

Note
 ARMv7 architectures do not support pre-ARMv6 alignment.

2.8.3 Endian support

You can produce either little-endian or big-endian code using the compiler
command-line options --littleend and --bigend respectively.

ARMv7-M supports the following endian modes:

LE little-endian format

BE8 big-endian format.

The ARMv7 architecture does not support the legacy BE-32 mode. If you have legacy
code for ARM v7 processors that contain instructions with a big-endian byte order, then
you must perform byte order reversal. See the ARM Architecture Reference Manual.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-23
ID101213 Non-Confidential,

Developing for ARM Processors
2-24 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 3
Embedded Software Development

This chapter describes how to develop embedded applications with the ARM RealView
Compilation Tools, with or without a target system present.

It contains the following sections:

• About embedded software development on page 3-2

• Default compilation tool behavior on page 3-4

• Tailoring the C library to your target hardware on page 3-9

• Tailoring the image memory map to your target hardware on page 3-11

• Reset and initialization on page 3-16

• Target hardware and the memory map on page 3-22.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-1
ID101213 Non-Confidential,

Embedded Software Development
3.1 About embedded software development

Most embedded applications are initially developed in a prototype environment with
resources that differ from those available in the final product. Therefore, it is important
to consider the processes involved in moving an embedded application from one that
relies on the facilities of the development or debugging environment to a system that
runs standalone on target hardware.

When developing embedded software using RealView Compilation Tools, you must
consider the following:

• Understand the default compilation tool behavior so that you appreciate the steps
necessary to move from a default build to a fully standalone application.

• Some C library functionality executes by using debug environment resources. If
used, you must re-implement this functionality to make use of target hardware.

• RealView Compilation Tools has no inherent knowledge of the memory map of
any given target. You must tailor the image memory map to the memory layout of
the target hardware.

• An embedded application must perform some initialization before the main
application can be run. A complete initialization sequence requires code that you
implement in addition to RealView Compilation Tools C library initialization
routines.

3.1.1 Example code

To illustrate the topics described in this chapter, associated example projects are
provided in the examples directory, ...\RVDS\Examples\...\emb_sw_dev\. Each build is
in a separate directory, and provides an example of the techniques described in
successive sections of this chapter. Specific information regarding each build can be
found in the readme.txt files.

Build 1 Build 1 is a default build of the Dhrystone benchmark and adheres to the
default RealView Compilation Tools behavior.

See Default compilation tool behavior on page 3-4 for more information.

Build 2 This example adapts build 1 to make use of the Versatile board for clock
timing and string I/O.

See Tailoring the C library to your target hardware on page 3-9 for more
information.

Build 3 This example implements a scatter-loading description file to tailor the
stack and heap placement.
3-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
See Tailoring the image memory map to your target hardware on
page 3-11 for more information.

Build 4 This example can be run standalone on a Versatile board. A vector table
and reset handler is implemented. See Reset and initialization on
page 3-16 for more information.

Build 5 This example is equivalent to build 4, but with all target memory map
information located in the scatter-loading description file.

See Target hardware and the memory map on page 3-22 for more
information.

The Dhrystone benchmarking program provides the code base for the example projects.
The examples are tailored to run on a Versatile board. However, the principles can be
applied to any target hardware. For more information on board connections and settings,
see the Getting Started section in the User Guide for your board.

Note
 The focus of this chapter is not specifically the Dhrystone program, but the steps that
must be taken to enable it to run on a fully standalone system. For further information
on the use of Dhrystone as a benchmarking tool, see Application Note 93 -
Benchmarking with ARMulator®. You can find the ARM Application Notes in the
Documentation area of the ARM website at http://www.arm.com.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-3
ID101213 Non-Confidential,

Embedded Software Development
3.2 Default compilation tool behavior

When you start work on software for an embedded application, you might not be aware
of the full technical specifications of the target hardware. For example, you might not
know the details of target peripheral devices, the memory map, or even the processor
itself.

To enable you to proceed with software development before such details are known, the
compilation tools have a default behavior that enables you to start building and
debugging application code immediately. It is useful to be aware of this default
behavior, so that you appreciate the steps necessary to move from a default build to a
full standalone application.

In the ARM C library, support for some ISO C functionality is provided by the host
debugging environment at the device driver level. The mechanism that provides this
functionality is known as semihosting. When semihosting is executed, the debug agent
identifies it and suspends program execution. The semihosting operation is then
serviced by the debug agent before code execution is resumed. Therefore, the task
performed by the host itself is transparent to the program.

See Chapter 8 Semihosting for more information.

3.2.1 C library structure

Conceptually, the C library can be divided into functions that are part of the ISO C
standard and functions that provide support to the ISO C standard.

For example, Figure 3-1 on page 3-5 shows the C library implementing the function
printf() by writing to the debugger console window. This implementation is provided
by calling _sys_write(), a support function that executes a semihosting call, resulting in
the default behavior using the debugger instead of target peripherals.
3-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
Figure 3-1 C library structure

3.2.2 Default memory map

In an image where you have not described the memory map, the linker places code and
data according to a default memory map, as shown in Figure 3-2 on page 3-6.

Note
 The processors based on ARMv6-M and ARMv7-M architectures have fixed memory
maps. This makes porting software easier between different systems based on these
processors. See the Cortex-M1 Technical Reference Manual and Cortex-M3 Technical
Reference Manual for more information.

The default memory map is described as follows:

• The image is linked to load and run at address 0x8000. All Read Only (RO)
sections are placed first, followed by Read-Write (RW) sections, then Zero
Initialized (ZI) sections.

• The heap follows directly on from the top of the ZI section, so the exact location
is decided at link time.

ISO C

input/
output

error
handling

stack and
heap
setup

other

Semihosting Support
Debug
Agent

C Library

Functions called by
your application,
for example, printf()

Device driver level.
Use semihosting,
for example, _sys_write()

Implemented by
the debugging
environment
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-5
ID101213 Non-Confidential,

Embedded Software Development
• The stack base location is provided by a semihosting operation during application
startup. The value returned by this semihosting operation depends on the debug
environment.

Figure 3-2 Default memory map

The linker observes a set of rules, shown in Figure 3-3 on page 3-7, to decide where in
memory code and data is located. Generally, the linker sorts the input sections by
attribute, by name, and then by position in the input list. See The image structure on
page 3-2 and Section placement on page 3-10 in the Linker User Guide for more
information.

ZI

RW

RO

STACK

HEAP

From
Semihosting

Decided at
link time

call

0x8000
3-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
Figure 3-3 Linker placement rules

For full control of placement of code and data you must use the scatter-loading
mechanism. See Tailoring the image memory map to your target hardware on page 3-11
for more information.

3.2.3 Application startup

In most embedded systems, an initialization sequence executes to set up the system
before the main task is executed. Figure 3-4 on page 3-8 shows the default RealView
Compilation Tools initialization sequence.

ZI

RW

RO

DATA

CODE

B

A

section A
from file2.o

section A
from file1.o
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-7
ID101213 Non-Confidential,

Embedded Software Development
Figure 3-4 Default initialization sequence

 __main is responsible for setting up the memory and __rt_entry is responsible for
setting up the run-time environment.

__main performs code and data copying, decompression, and zero initialization of the ZI
data. It then branches to __rt_entry to set up the stack and heap, initialize the library
functions and static data, and call any top level C++ constructors. __rt_entry then
branches to main(), the entry to your application. When the main application has
finished executing, __rt_entry shuts down the library, then hands control back to the
debugger.

The function label main() has a special significance. The presence of a main() function
forces the linker to link in the initialization code in __main and __rt_entry. Without a
function labeled main() the initialization sequence is not linked in, and as a result, some
standard C library functionality is not supported. See --startup=symbol, --no_startup on
page 2-83 in the Linker Reference Guide for more information on using alternative C
libraries with a startup symbol different to __main.

C Library

__main

copy code

zero uninitialized data

User Code

main()

causes the linker to link in
library initialization code

__rt_entry
set up application stack
and heap

initialize library functions
call top-level
constructors (C++)

Exit from application

Image
entry point

.copy or decompress RW
data

.

.

.

.

..

.

3-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
3.3 Tailoring the C library to your target hardware

By default, the C library uses semihosting to provide device driver level functionality,
enabling a host computer to act as an input and an output device. This is useful because
development hardware often does not have all the input and output facilities of the final
system.

You can provide your own implementation of C library functions that make use of target
hardware, and that are automatically linked in to your image in favor of the C library
implementations. This process, known as retargeting the C library, is shown in
Figure 3-5.

Figure 3-5 Retargeting the C library

For example, you might have a peripheral I/O device such as an LCD screen, and you
might want to override the library implementation of fputc(), that writes to the
debugger console, with one that outputs to the LCD. Because this implementation of
fputc() is linked in to the final image, the entire printf() family of functions prints out
to the LCD.

ISO C

Input/
Output

Semihosting
Support

ISO C

Input/
Output

Retarget

Debug
Agent

C Library User
Code

Target
Hardware
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-9
ID101213 Non-Confidential,

Embedded Software Development
Example 3-1 shows an example implementation of fputc(). The example redirects the
input character parameter of fputc() to a serial output function sendchar() that is
assumed to be implemented in a separate source file. In this way, fputc() acts as an
abstraction layer between target dependent output and the C library standard output
functions.

Example 3-1 Implementation of fputc()

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{ /* e.g. write a character to an LCD screen */
 char tempch = ch;
 sendchar(&tempch);
 return ch;
}

In a standalone application, you are unlikely to support semihosting operations.
Therefore, you must remove all calls to semihosting functions or re-implement them
with non semihosting functions. See Building an application for a non semihosting
environment on page 2-21 in the Libraries and Floating Point Support Guide for more
information.

For a full list of C library functions that use semihosting, see Chapter 8 Semihosting.
3-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
3.4 Tailoring the image memory map to your target hardware

In your final embedded system, without semihosting functionality, you are unlikely to
use the default memory map. Your target hardware usually has several memory devices
located at different address ranges. To make the best use of these devices, you must have
separate views of memory at load and run-time.

Scatter-loading enables you to describe the load and run-time memory locations of code
and data in a textual description file known as a scatter-loading description file. This
file is passed to the linker on the command line using the --scatter option. For example:

armlink --scatter scatter.scat file1.o file2.o

Scatter-loading defines two types of memory regions:

• Load regions containing application code and data at reset and load-time.

• Execution regions containing code and data when the application is executing.
One or more execution regions are created from each load region during
application startup.

A single code or data section can only be placed in a single execution region. It cannot
be split.

During startup, the C library initialization code in __main carries out the necessary
copying of code/data and zeroing of data to move from the image load view to the
execute view.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-11
ID101213 Non-Confidential,

Embedded Software Development
3.4.1 Scatter-loading description file

The scatter-loading description file syntax reflects the functionality provided by
scatter-loading itself. Figure 3-6 shows the file syntax.

Figure 3-6 Scatter-loading description file syntax

A region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, a maximum length and various attributes can be added.

The contents of the region depend on the type of region:

• Load regions must contain at least one execution region. In practice, there are
usually several execution regions for each load region.

• Execution regions must contain at least one code or data section, unless a region
is declared with the EMPTY attribute. Non-EMPTY regions usually contain object or
library code. The wildcard (*) syntax can be used to group all sections of a given
attribute not specified elsewhere in the scatter-loading description file.

See Images with a simple memory map on page 5-6 in the Linker User Guide for more
examples and information on different memory maps.

See Chapter 3 Formal syntax of the scatter-loading description file in the Linker
Reference Guide for more information on the formal syntax.

MY_REGION 0x0000 0x2000
{
 contents of region
}

name of region start address

optional length
parameter
3-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
3.4.2 Root regions

A root region is an execution region with an execution address that is the same as its
load address. Each scatter-loading description file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for
creating execution regions cannot itself be copied to another location. As a result, the
following sections must be included in a root region:

• __main.o and __scatter*.o containing the code that copies code and data

• __dc*.o that performs decompression

• Region$$Table section containing the addresses of the code and data to be copied
or decompressed.

Because these sections are defined as read-only, they are grouped by the * (+RO)
wildcard syntax. As a result, if * (+RO) is specified in a non-root region, these sections
must be explicitly declared in a root region using InRoot$$Sections.

See Assigning sections to a root region on page 5-40 in the Linker User Guide for more
information.

3.4.3 Placing the stack and heap

The scatter-loading mechanism provides a method for specifying the placement of code
and statically allocated data in your image. The application stack and heap are set up
during C library initialization. You can tailor stack and heap placement by using the
specially named ARM_LIB_HEAP, ARM_LIB_STACK, or ARM_LIB_STACKHEAP execution regions.
Alternatively you can re-implement the __user_initial_stackheap() function if you are
not using a scatter-loading description file.

See Specifying stack and heap using the scatter-loading description file on page 5-4 in
the Linker User Guide for more information.

Run-time memory models

RealView Compilation Tools provides the following run-time memory models:

One-region model

The application stack and heap grow towards each other in the same
region of memory. See Figure 3-7 on page 3-14. In this run-time memory
model, the heap is checked against the value of the stack pointer when
new heap space is allocated, for example, when malloc() is called.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-13
ID101213 Non-Confidential,

Embedded Software Development
Figure 3-7 One-region model

Example 3-2 One-region model routine

LOAD_FLASH ...
{

...
ARM_LIB_STACKHEAP 0x20000 EMPTY 0x20000 ; Heap and stack growing towards
{ } ; each other in the same region
...

}

Two-region model

The stack and heap are placed in separate regions of memory. For
example, you might have a small block of fast RAM that you want to
reserve for stack use only. For a two-region model you must import
__use_two_region_memory.

In this run-time memory model, the heap is checked against the heap limit
when new heap space is allocated.

STACK

HEAP 0x20000

0x40000
SB

HB
3-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
Figure 3-8 Two-region model

Example 3-3 Two-region model routine

LOAD_FLASH ...
{

...
ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
{ } ;
ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
{ }
...

}

In both run-time memory models, the stack grows unchecked.

See Tailoring the runtime memory model on page 2-69 in the Libraries and Floating
Point Support Guide for more information.

HEAP 0x28000000

0x28080000

STACK 0x40000SB

HB

HL
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-15
ID101213 Non-Confidential,

Embedded Software Development
3.5 Reset and initialization

This chapter has so far assumed that execution begins at __main, the entry point to the C
library initialization routine. In fact, any embedded application on your target hardware
performs some system-level initialization at startup. This section describes this in more
detail.

Figure 3-9 shows a possible initialization sequence for an embedded system based on
an ARM architecture. If you use a scatter-loading description file to tailor stack and
heap placement the linker creates the __user_initial_stackheap() function using linker
defined symbols for these region names. See Specifying stack and heap using the
scatter-loading description file on page 5-4 in the Linker User Guide for more
information. Alternatively you can create your own implementation.

Figure 3-9 Initialization sequence

The reset handler is a short module coded in assembler that executes immediately on
system startup. As a minimum, your reset handler initializes stack pointers for the
modes that your application is running in. For processors with local memory systems,
such as caches, TCMs, MMUs, and MPUs, some configuration must be done at this
stage in the initialization process. After executing, the reset handler typically branches
to __main to begin the C library initialization sequence.

C Library User Code

__user_initial_stackheap()
set up application stack
and heap

main()
causes the linker to link in
library initialization code

$Sub$$main()
enable caches and
interrupts

reset handler
initialize stack pointers
configure MMU/MPU
setup cache/enable TCM

1

2

3

4

5

6

__rt_entry

initialize library functions
call top-level constructors
(C++)

 Exit from application

..

.
.

.

.

...
__main

copy code
copy/decompress RW
data. zero uninitialized data

..
Image
Entry Point
3-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
There are some components of system initialization, for example, the enabling of
interrupts, that are generally performed after the C library initialization code has
finished executing. The block of code labeled $Sub$$main() performs these tasks
immediately before the main application begins executing. See Using $Super$$ and
$Sub$$ to override symbol definitions on page 4-18 in the Linker User Guide for more
information.

3.5.1 The vector table

All ARM systems have a vector table. The vector table does not form part of the
initialization sequence, but it must be present for any exception to be serviced. It must
be placed at a specific address, usually 0x0. To do this you can use the scatter-loading
+FIRST directive, see Example 3-4.

Example 3-4 Placing the vector table at a specific address

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

The vector table for the microcontroller profiles is very different to most ARM
architectures. For an example of the vector table for your processor, see:

• The vector table on page 6-4 for ARMv6 and earlier, ARMv7-A and ARMv7-R
profiles

• The vector table on page 6-31 for ARMv6-M and ARMv7-M profiles.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-17
ID101213 Non-Confidential,

Embedded Software Development
3.5.2 ROM and RAM remapping

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

You must consider what sort of memory your system has at address 0x0, the address of
the first instruction executed.

Note
 This section assumes that an ARM processor begins fetching instructions at 0x0. This is
the norm for systems based on ARM processors. However, some ARM processors can
be configured to begin fetching instructions from 0xFFFF0000.

There has to be a valid instruction at 0x0 at startup, so you must have nonvolatile
memory located at 0x0 at the moment of reset. One way to achieve this is to have ROM
located at 0x0. However, there are some drawbacks to this configuration.

Example 3-5 shows another solution implementing ROM/RAM remapping on reset.
The constants shown in this example are specific to the Versatile board, but the same
method is applicable to any platform that implements remapping in a similar way.
Scatter-loading description files must describe the memory map after remapping.

Example 3-5 ROM/RAM remapping

; --- System memory locations
Versatile_ctl_reg EQU 0x101E0000 ; Address of control register
DEVCHIP_Remap_bit EQU 0x100 ; Bit 8 is remap bit of control register
 ENTRY
; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
 LDR pc, =Instruct_2
Instruct_2
; Remap by setting remap bit of the control register
; Clear the DEVCHIP_Remap_bit by writing 1 to bit 8 of the control register
 LDR R1, =Versatile_ctl_reg
 LDR R0, [R1]
 ORR R0, R0, #DEVCHIP_Remap_bit
 STR R0, [R1]
; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM
; The copying is done later by the C library code inside __main
; Reset_Handler follows on from here
3-18 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
3.5.3 Local memory setup considerations

Many ARM processors have on-chip memory management systems, such as MMUs or
MPUs. These devices are normally set up and enabled during system startup. Therefore,
the initialization sequence of processors with local memory systems requires special
consideration.

As described in this chapter, C library initialization code in __main is responsible for
setting up the execution time memory map of the image. Therefore, the run-time
memory view of the processor must be set up before branching to __main. This means
that any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main, normally before MMU/MPU
setup, because you generally want to scatter-load code and data into TCMs. You must
be careful that you do not have to access memory that is masked by the TCMs when
they are enabled.

You also risk problems with cache coherency if caches are enabled before branching to
__main. Code in __main copies code regions from their load address to their execution
address, essentially treating instructions as data. As a result, some instructions can be
cached in the data cache, in which case they are not visible to the instruction path.

To avoid these coherency problems, enable caches after the C library initialization
sequence finishes executing.

3.5.4 Stack pointer initialization

As a minimum, your reset handler must assign initial values to the stack pointers of any
execution modes that are used by your application.

In Example 3-6, the stacks are located at stack_base. This symbol can be a hard-coded
address, or it can be defined in a separate assembler source file and located by a
scatter-loading description file. Information about how this is done is given in
Specifying stack and heap using the scatter-loading description file on page 5-4 in the
Linker User Guide.

Example 3-6 Initializing stack pointers

; ***
; This example does not apply to ARMv6-M and ARMv7-M profiles
; ***
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
stack_base DCD 0x18000
;

ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-19
ID101213 Non-Confidential,

Embedded Software Development
Reset_Handler
; stack_base could be defined above, or located in a scatter file
LDR R0, stack_base ;
; Enter each mode in turn and set up the stack pointer
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV sp, R0
SUB R0, R0, #Len_FIQ_Stack
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV sp, R0
SUB R0, R0, #Len_IRQ_Stack
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV sp, R0
; Leave processor in SVC mode

Example 3-6 on page 3-19 allocates 256 bytes of stack for FIQ and interrupt request
(IRQ) mode, but you can do the same for any other execution mode. To set up the stack
pointers, enter each mode with interrupts disabled, and assign the appropriate value to
the stack pointer.

The stack pointer value set up in the reset handler is automatically passed as a parameter
to __user_initial_stackheap() by C library initialization code. Therefore, this value
must not be modified by __user_initial_stackheap().

3.5.5 Hardware initialization

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

In general, it is beneficial to separate all system initialization code from the main
application. However, some components of system initialization, for example, enabling
of caches and interrupts, must occur after executing C library initialization code.

You can make use of the $Sub and $Super function wrapper symbols to insert a routine
that is executed immediately before entering the main application. This mechanism
enables you to extend functions without altering the source code.

Example 3-7 on page 3-21 shows how $Sub and $Super can be used in this way. The
linker replaces the function call to main() with a call to $Sub$$main(). From there you
can call a routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().
3-20 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Embedded Software Development
Note
 See Using $Super$$ and $Sub$$ to override symbol definitions on page 4-18 in the
Linker User Guide for more information.

Example 3-7 Use of $Sub and $Super

extern void $Super$$main(void);
void $Sub$$main(void)
{
 cache_enable(); // enables caches
 int_enable(); // enables interrupts
 $Super$$main(); // calls original main()
}

3.5.6 Execution mode considerations

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

You must consider in what mode the main application is to run. Your choice affects how
you implement system initialization.

Much of the functionality that you are likely to implement at startup, both in the reset
handler and $Sub$$main, can only be done while executing in privileged modes, for
example, on-chip memory manipulation, and enabling interrupts.

If you want to run your application in a privileged mode, this is not an issue. Ensure that
you change to the appropriate mode before exiting your reset handler.

If you want to run your application in User mode, however, you can only change to User
mode after completing the necessary tasks in a privileged mode. The most likely place
to do this is in $Sub$$main().

Note
 __user_initial_stackheap() must set up the application mode stack. Because of this,
you must exit your reset handler in system mode, which uses the User mode registers.
__user_initial_stackheap() then executes in system mode, and so the application stack
and heap are still set up when User mode is entered.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 3-21
ID101213 Non-Confidential,

Embedded Software Development
3.6 Target hardware and the memory map

The previous sections in this chapter describe the placement of code and data in a
scatter-loading description file. However, the location of target hardware peripherals
and the stack and heap limits are assumed to be hard-coded in source or header files. It
is better to locate all information about the memory map of a target in your description
file, and remove all references to absolute addresses from your source code.

Conventionally, addresses of peripheral registers are hard-coded in project source or
header files. You can also declare structures that map on to peripheral registers, and
place these structures in the scatter-loading description file.

For example, a target might have a timer peripheral with two memory mapped 32-bit
registers. Example 3-8 shows a C structure that maps to these registers.

Example 3-8 Mapping to a peripheral register

__attribute__ ((zero_init)) struct
{
 volatile unsigned ctrl; /* timer control */
 volatile unsigned tmr; /* timer value */
} timer_regs;

To place this structure at a specific address in the memory map, you can create an
execution region containing the module that defines the structure. Example 3-9 shows
an execution region called TIMER which locates the timer_regs structure at 0x40000000.

It is important that the contents of these registers are not zero initialized during
application startup, because this is likely to change the state of your system. Marking
an execution region with the UNINIT attribute prevents ZI data in that region from being
zero initialized by __main.

Example 3-9 Placing the mapped structure

ROM_LOAD 0x24000000 0x04000000
{
; ...
TIMER 0x40000000 UNINIT
 {
 timer_regs.o (+ZI)
 }
 ; ...
}

3-22 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 4
Mixing C, C++, and Assembly Language

This chapter describes how to write a mixture of C, C++, and assembly language code
for the ARM® architecture. It also describes how to use the ARM instruction intrinsics,
inline and embedded assemblers in C and C++ files.

It contains the following sections:

• Using instruction intrinsics, inline and embedded assembler on page 4-2

• Accessing C global variables from assembly code on page 4-4

• Using C header files from C++ on page 4-5

• Calling between C, C++, and ARM assembly language on page 4-7.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-1
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
4.1 Using instruction intrinsics, inline and embedded assembler

Instruction intrinsics, inline and embedded assembler are built into the ARM compiler
to enable the use of target processor features that cannot normally be accessed directly
from C or C++. For example:

• saturating arithmetic

• custom coprocessors

• the Program Status Register (PSR).

Instruction intrinsics

Instruction intrinsics provide a way of easily incorporating target
processor features in C and C++ source code without resorting to
complex implementations in assembly language. They have the
appearance of a function call in C or C++, but are replaced during
compilation by assembly language instructions.

Note
 Instruction intrinsics are specific to the ARM instruction set and are

therefore not portable to other architecture.

Inline assembler

The inline assembler supports interworking with C and C++. Any register
operand can be an arbitrary C or C++ expression. The inline assembler
also expands complex instructions and optimizes the assembly language
code.

Note
 The output object code might not correspond exactly to your input

because of compiler optimization.

Embedded assembler

The embedded assembler enables you to use the full ARM assembler
instruction set, including assembler directives. Embedded assembly code
is assembled separately from the C and C++ code. A compiled object is
produced that is then combined with the object from the compilation of
the C and C++ source.
4-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
Table 4-1 summarizes the main differences between instruction intrinsics, inline and
embedded assembler.

For more information, see:

• Intrinsics on page 4-2 in the Compiler User Guide

• Instruction intrinsics on page 4-75 in the Compiler Reference Guide

• Chapter 7 Using the Inline and Embedded Assemblers in the Compiler User
Guide

• Saturating instructions on page 4-93 in the Assembler Guide

Table 4-1 Differences

Feature Instruction Intrinsics Inline assembler Embedded assembler

Instruction set ARM and Thumb®. ARM only. ARM and Thumb.

ARM assembler directives None supported. None supported. All supported.

C/C++ expressions Full C/C++ expressions. Full C/C++ expressions. Constant expressions only.

Optimization of assembly code Full optimization. Full optimization. No optimization.

Inlining Automatically inlined. Automatically inlined. Can be inlined by linker if
it is the right size and linker
inlining is enabled.

Register access Physical registers,
including PC, LR and SP.

Virtual registers except
PC, LR and SP.

Physical registers,
including PC, LR and SP.

Return instructions Generated automatically. Generated automatically.
BX, BXJ, and BLX
instructions are not
supported.

You must add them in your
code.

BKPT instruction Supported. Not supported. Supported.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-3
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
4.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a
global variable, use the IMPORT directive to do the import and then load the address into
a register. You can access the global variable with load and store instructions, depending
on its type.

For unsigned variables, for example, use:

• LDRB/STRB for char

• LDRH/STRH for short

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and
STM instructions. Individual members of structures can be accessed by a load or store
instruction of the appropriate type. You must know the offset of a member from the start
of the structure in order to access it.

Example 4-1 loads the address of the integer global variable globvar into R1, loads the
value contained in that address into R0, adds 2 to it, then stores the new value back into
globvar.

Example 4-1 Accessing global variables

 PRESERVE8
 AREA globals,CODE,READONLY
 EXPORT asmsubroutine
 IMPORT globvar
asmsubroutine
 LDR R1, =globvar ; read address of globvar into R1

LDR R0, [R1] ; load value of globvar
 ADD R0, R0, #2
 STR R0, [R1] ; store new value into globvar
 BX lr
 END

For information about the instructions available in ARM or Thumb code, see Chapter 4
ARM and Thumb Instructions in the Assembler Guide.
4-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
4.3 Using C header files from C++

C header files must be wrapped in extern "C" directives before they are included from
C++.

4.3.1 Including system C header files

Standard system C header files already contain the appropriate extern "C" directives so
you do not have to take any special steps to include such files. Different #include
syntaxes determine what namespace to use and therefore the type of access you have.

For example:

#include <stdio.h>
int main()
{
 ... // C++ code
 return 0;
}

If you include headers using this syntax, all library names are placed in the global
namespace.

The C++ standard specifies that the functionality of the C header files is available
through C++ specific header files. These files are installed in
install_directory\RVCT\Data\...\include\platform, together with the standard C
header files, and can be referenced in the usual way. For example:

#include <cstdio>

In ARM C++, these headers #include the C headers. If you include headers using this
syntax, all C++ standard library names are defined in the namespace std, including the
C library names. This means that you must qualify all the library names by using one of
the following methods:

• specify the standard namespace, for example:

std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

• use the compiler option --using_std.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-5
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
4.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern
"C" statement. You can do this in the following ways:

• when the file is #included, as shown in Example 4-2

• by adding the extern "C" statement to the header file, as shown in Example 4-3.

Example 4-2 Directive before include file

// C++ code
extern "C" {
#include "my-header1.h"
#include "my-header2.h"
}
int main()
{
 // ...
 return 0;
}

Example 4-3 Directive in file header

/* C header file */
#ifdef __cplusplus /* Insert start of extern C construct */
extern "C" {
#endif
/* Body of header file */
#ifdef __cplusplus /* Insert end of extern C construct. */
} /* The C header file can now be */
#endif /* included in either C or C++ code. */
4-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
4.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code
from C++, and to call C++ code from C and assembly language. It also describes calling
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you
comply with the Procedure Call Standard for the ARM Architecture (AAPCS). For
more information, see the AAPCS specification, aapcs.pdf, in
install_directory\Documentation\Specifications\...

Note
 The information in this section is implementation dependent and might change in future
releases.

4.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language.
For more information, see the Compiler User Guide.

The embedded assembler and compliance with the Base Standard Application Binary
Interface for the ARM Architecture (BSABI) make mixed language programming easier
to implement. These assist you with:

• name mangling, using the __cpp keyword

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not Plain Old Data Structures (PODS).

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, nonmember functions can be declared as extern "C" to specify that they
have C linkage. In this release of RealView® Compilation Tools, having C linkage
means that the symbol defining the function is not mangled. C linkage can be used
to implement a function in one language and call it from another.

Note
 Functions that are declared extern "C" cannot be overloaded.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-7
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
• Assembly language modules must conform to the appropriate AAPCS standard
for the memory model used by the application.

The following rules apply to calling C++ functions from C and assembly language:

• To call a global C++ function, declare it extern "C" to give it C linkage.

• Member functions, both static and non static, always have mangled names. Using
the __cpp keyword of the embedded assembler means that you do not have to find
the mangled names manually.

• C++ inline functions cannot be called from C unless you ensure that the C++
compiler generates an out-of-line copy of the function. For example, taking the
address of the function results in an out-of-line copy.

• Nonstatic member functions receive the implicit this parameter as a first
argument in R0, or as a second argument in R1 if the function returns a non int-like
structure. Static member functions do not receive an implicit this parameter.

4.4.2 Information specific to C++

The following information applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with one exception:

• Nonstatic member functions are called with the implicit this parameter as the first
argument, or as the second argument if the called function returns a non int-like
struct. This might change in future implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and
additions:

• C++ objects of type struct or class have the same layout that is expected from
ARM C if they have no base classes or virtual functions. If such a struct has
neither a user-defined copy assignment operator nor a user-defined destructor, it
is a plain old data structure.

• References are represented as pointers.

• No distinction is made between pointers to C functions and pointers to C++
nonmember functions.
4-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
Symbol name mangling

The linker unmangles symbol names in messages.

C names must be declared as extern "C" in C++ programs. This is done already for the
ARM ISO C headers. See Using C header files from C++ on page 4-5 for more
information.

4.4.3 Examples of calling between languages

The following sections contain code examples that demonstrate how to mix language
calls:

• Calling assembly language from C on page 4-10

• Calling C from assembly language on page 4-11

• Calling C from C++ on page 4-12

• Calling assembly language from C++ on page 4-13

• Calling C++ from C on page 4-14

• Calling C++ from assembly language on page 4-15

• Calling C++ from C or assembly language on page 4-17

• Passing a reference between C and C++ on page 4-16.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-9
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
Calling assembly language from C

Example 4-4 and Example 4-5 show a C program that uses a call to an assembly
language subroutine to copy one string over the top of another string.

Example 4-4 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{ const char *srcstr = "First string - source ";
 char dststr[] = "Second string - destination ";
/* dststr is an array since we’re going to change it */
 printf("Before copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 strcopy(dststr,srcstr);
 printf("After copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 return (0);
}

Example 4-5 Assembly language string copy subroutine

 PRESERVE8
 AREA SCopy, CODE, READONLY
 EXPORT strcopy
strcopy ; R0 points to destination string.
 ; R1 points to source string.
 LDRB R2, [R1],#1 ; Load byte and update address.
 STRB R2, [R0],#1 ; Store byte and update address.
 CMP R2, #0 ; Check for null terminator.
 BNE strcopy ; Keep going if not.
 BX lr ; Return.
 END

Example 4-4 is located in the examples directory, in ...\asm as strtest.c and scopy.s.

Follow these steps to build the example from the command line:

1. Type armasm --debug scopy.s to build the assembly language source.

2. Type armcc -c --debug strtest.c to build the C source.

3. Type armlink strtest.o scopy.o -o strtest to link the object files.
4-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
4. Run the image using a compatible debugger with an appropriate debug target.

Calling C from assembly language

Example 4-6 and Example 4-7 show how to call C from assembly language.

Example 4-6 Defining the function in C

int g(int a, int b, int c, int d, int e)
{
 return a + b + c + d + e;
}

Example 4-7 Assembly language call

 ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }
 PRESERVE8
 EXPORT f
 AREA f, CODE, READONLY
 IMPORT g ; i is in R0
 STR lr, [sp, #-4]! ; preserve lr
 ADD R1, R0, R0 ; compute 2*i (2nd param)
 ADD R2, R1, R0 ; compute 3*i (3rd param)
 ADD R3, R1, R2 ; compute 5*i
 STR R3, [sp, #-4]! ; 5th param on stack
 ADD R3, R1, R1 ; compute 4*i (4th param)
 BL g ; branch to C function
 ADD sp, sp, #4 ; remove 5th param
 LDR pc, [sp], #4 ; return
 END
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-11
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
Calling C from C++

Example 4-8 and Example 4-9 show how to call C from C++.

Example 4-8 Calling a C function from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cfunc(S *);
// declare the C function to be called from C++
int f(){
 S s(2); // initialize 's'
 cfunc(&s); // call 'cfunc' so it can change 's'
 return s.i * 3;
}

Example 4-9 Defining the function in C

struct S {
 int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
 p->i += 5;
}

4-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
Calling assembly language from C++

Example 4-10 and Example 4-11 show how to call assembly language from C++.

Example 4-10 Calling assembly language from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void asmfunc(S *); // declare the Asm function
 // to be called
int f() {
 S s(2); // initialize 's'
 asmfunc(&s); // call 'asmfunc' so it
 // can change 's'
 return s.i * 3;
}

Example 4-11 Defining the assembly language function

 PRESERVE8
 AREA Asm, CODE
 EXPORT asmfunc
asmfunc ; the definition of the Asm
 LDR R1, [R0] ; function to be called from C++
 ADD R1, R1, #5
 STR R1, [R0]
 BX lr
 END
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-13
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
Calling C++ from C

Example 4-12 and Example 4-13 show how to call C++ from C.

Example 4-12 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cppfunc(S *p) {
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C.
 p->i += 5;
}

Example 4-13 Declaring and calling the function in C

struct S {
 int i;
};
extern void cppfunc(struct S *p);
/* Declaration of the C++ function to be called from C */
int f(void) {
 struct S s;
 s.i = 2; /* initialize 's' */
 cppfunc(&s); /* call 'cppfunc' so it */
 /* can change 's' */
 return s.i * 3;
}

4-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
Calling C++ from assembly language

Example 4-14 and Example 4-15 show how to call C++ from assembly language.

Example 4-14 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C.
 p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch with
Link (BL) instruction to call it:

Example 4-15 Defining assembly language function

 AREA Asm, CODE
 IMPORT cppfunc ; import the name of the C++
 ; function to be called from Asm
 EXPORT f
f
 STMFD sp!,{lr}
 MOV R0,#2
 STR R0,[sp,#-4]! ; initialize struct
 MOV R0,sp ; argument is pointer to struct
 BL cppfunc ; call 'cppfunc' so it can change the struct

LDR R0, [sp], #4
 ADD R0, R0, R0,LSL #1
 LDMFD sp!,{pc}
 END
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-15
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
Passing a reference between C and C++

Example 4-16 and Example 4-17 show how to pass a reference between C and C++.

Example 4-16 Defining the C++ function

extern "C" int cfunc(const int&);
// Declaration of the C function to be called from C++
extern "C" int cppfunc(const int& r) {
// Definition of the C++ function to be called from C.
 return 7 * r;
}
int f() {
 int i = 3;
 return cfunc(i); // passes a pointer to 'i'
}

Example 4-17 Defining the C function

extern int cppfunc(const int*);
/* declaration of the C++ function to be called from C */
int cfunc(const int *p) {
/* definition of the C function to be called from C++ */
 int k = *p + 4;
 return cppfunc(&k);
}

4-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Mixing C, C++, and Assembly Language
Calling C++ from C or assembly language

The code in Example 4-18, Example 4-19 and Example 4-20 demonstrates how to call
a non static, non virtual C++ member function from C or assembly language. Use the
assembler output from the compiler to locate the mangled name of the function.

Example 4-18 Calling a C++ member function

struct T {
 T(int i) : t(i) { }
 int t;
 int f(int i);
};
int T::f(int i) { return i + t; }
// Definition of the C++ function to be called from C.
extern "C" int cfunc(T*);
// Declaration of the C function to be called from C++.
int f() {
 T t(5); // create an object of type T
 return cfunc(&t);
}

Example 4-19 Defining the C function

struct T;
extern int _ZN1T1fEi(struct T*, int);
 /* the mangled name of the C++ */
 /* function to be called */
int cfunc(struct T* t) {
/* Definition of the C function to be called from C++. */
 return 3 * _ZN1T1fEi(t, 2); /* like '3 * t->f(2)' */
}

Example 4-20 Implementing the function in assembly language

 EXPORT cfunc
 AREA foo, CODE
 IMPORT _ZN1T1fEi
cfunc
 STMFD sp!,{lr} ; R0 already contains the object pointer
 MOV R1, #2
 BL _ZN1T1fEi
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-17
ID101213 Non-Confidential,

Mixing C, C++, and Assembly Language
 ADD R0, R0, R0, LSL #1 ; multiply by 3
 LDMFD sp!,{pc}
 END

Alternatively, you can implement Example 4-18 on page 4-17 and Example 4-20 on
page 4-17 using embedded assembly, as shown in Example 4-21. In this example, the
__cpp keyword is used to reference the function. Therefore, you do not have to know the
mangled name of the function.

Example 4-21 Implementing the function in embedded assembly

struct T {
 T(int i) : t(i) { }
 int t;
 int f(int i);
};
int T::f(int i) { return i + t; }
// Definition of asm function called from C++
__asm int asm_func(T*) {
 STMFD sp!, {lr}
 MOV R1, #2;
 BL __cpp(T::f);
 ADD R0, R0, R0, LSL #1 ; multiply by 3
 LDMFD sp!, {pc}
}
int f() {
 T t(5); // create an object of type T
 return asm_func(&t);
}

4-18 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 5
Interworking ARM and Thumb

This chapter explains how to change between ARM® state and Thumb® state when
writing code for processors that implement the ARM and Thumb instruction sets.

Note
 This chapter does not apply to ARMv6-M and ARMv7-M.

It contains the following sections:

• About interworking on page 5-2

• Assembly language interworking on page 5-4

• C and C++ interworking on page 5-5

• Interworking examples on page 5-7.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-1
ID101213 Non-Confidential,

Interworking ARM and Thumb
5.1 About interworking

Interworking enables you to mix ARM and Thumb code so that:

• ARM routines return to a Thumb state caller

• Thumb routines return to an ARM state caller.

This means that, if you compile or assemble code for interworking, your code can call
a routine in a different module without considering which instruction set it uses. The
ARM compiler and ARM assembler both use the --apcs=/interwork command-line
option to enable interworking.

You can freely mix code compiled or assembled for ARM and Thumb, provided that the
code conforms to the AAPCS. See the specification, in
install_directory\Documentation\Specifications\...\PDF\aapcs.pdf.

An error is generated if the linker detects:

• a direct ARM or Thumb interworking call where the callee routine is not built for
interworking

• assembly language source files using incompatible AAPCS options.

The ARM linker detects when an interworking function is being called from a different
state. Call and return instructions are changed, and small code segments called veneers,
are inserted to change processor state where necessary. See Veneers on page 3-23 in the
Linker User Guide for more information.

The ARM architecture v5T and later provide methods to change processor state without
using any extra instructions. There is almost no cost associated with interworking on
ARMv5T and later processors.

Note
 Compiling for ARMv5T and later architectures, automatically assumes interworking
and always produces code that is interworking safe. However, assembly code built for
ARMv5T does not imply interworking, so you must build assembly code with the
--apcs=/interwork assembler option.
5-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Interworking ARM and Thumb
5.1.1 When to use interworking

When you write code for an ARM processor that supports Thumb instructions, you
probably build most of your application to run in Thumb state. This gives the best code
density. With 8-bit or 16-bit wide memory, it also gives the best performance. However,
you might want parts of your application to run in ARM state for reasons such as:

Speed Some parts of an application might be speed critical. These sections
might be more efficient running in ARM state than in Thumb state.

Some systems include a small amount of fast 32-bit memory. ARM code
can be run from this without the overhead of fetching each instruction
from 8-bit or 16-bit memory.

Functionality

Thumb instructions are less flexible than their equivalent ARM
instructions. Some operations are not possible in Thumb state. A state
change to ARM is required to carry out the following operations:

• accesses to CPSR to enable or disable interrupts, and to change
mode, see CPS on page 4-138 in the Assembler Guide

• accesses to coprocessors

• execution of Digital Signal Processor (DSP) math instructions that
can not be performed in C language.

Exception handling

The processor automatically enters ARM state when a processor
exception occurs. This means that the first part of an exception handler
must be coded with ARM instructions, even if it reenters Thumb state to
carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from
the handler to the main application.

Standalone Thumb programs

An ARM processor that supports Thumb instructions always starts in
ARM state. To run simple Thumb assembly language programs, add an
ARM header that carries out a state change to Thumb state and then calls
the main Thumb routine. See Assembly language interworking on
page 5-7 for an example.

Note
 Changing to ARM state for speed or functionality reasons is mainly a concern on
processors that support Thumb without Thumb-2. The Thumb-2 instruction set
provides almost exactly the same functionality as the ARM instruction set.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-3
ID101213 Non-Confidential,

Interworking ARM and Thumb
5.2 Assembly language interworking

The --apcs=/interwork command-line option enables the ARM assembler to assemble
code that can be called from another processor state:

armasm --thumb --apcs=/interwork
armasm --arm --apcs=/interwork

In an assembly language source file, you can have several areas. These correspond to
ARM Executable and Linkable Format (ELF) sections. Each area can contain ARM
instructions, Thumb instructions, or both.

You can use the linker to fix up calls to, and returns from, routines that use a different
instruction set from the caller. To do this, use BL to call the routine, see Example 5-3 on
page 5-8.

If you prefer, you can write your code to make the instruction set changes explicitly. In
some circumstances you can write smaller or faster code by doing this. You can use BX,
BLX, LDR, LDM, and POP instructions to perform the processor state changes, see
Example 5-2 on page 5-7. See B, BL, BX, BLX, and BXJ on page 4-115 in the Assembler
Guide for more information.

The ARM assembler can assemble both Thumb code and ARM code. By default, it
assembles ARM code unless it is invoked with the --thumb option.

Because all ARM processors that support Thumb start in ARM state, you must use the
BX instruction to branch and exchange to Thumb state, and then use the following
assembler directives to instruct the assembler to switch assembly mode.

The ARM and THUMB directives instruct the assembler to assemble instructions from the
appropriate instruction set, see ARM, THUMB, THUMBX, CODE16 and CODE32 on
page 7-63 in the Assembler Guide.
5-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Interworking ARM and Thumb
5.3 C and C++ interworking

The --apcs=/interwork command-line option enables the ARM compiler to compile C
and C++ code that can be called from another processor state:

armcc --thumb --apcs=/interwork
armcc --arm --apcs=/interwork

In a leaf function, which is a function whose body contains no function calls, the
compiler generates the return instruction BX lr.

In a non-leaf function built for ARMv4T in Thumb state, the compiler must replace, for
example, the single return instruction:

 POP {R4-R7,pc}

with the sequence:

 POP {R4-R7}
 POP {R3}
 BX R3

This has a small impact on performance.

The --apcs=/interwork option also sets the interwork attribute for the code area the
modules are compiled into. The linker detects this attribute and inserts the appropriate
veneers. To find the amount of space taken by the veneers you can use the linker
command-line option --info=veneers.

It is recommended that you compile all source modules for interworking, unless you are
sure they are never going to be used with interworking.

Note
 ARM code compiled for interworking can only be used on ARMv4T and later, because
earlier processors do not implement the BX instruction.

5.3.1 Pointers to functions in Thumb state

If you have a Thumb function, that is a function consisting of Thumb code, and that runs
in Thumb state, then any pointer to that function must have the least significant bit set.
This ensures that interworking works correctly.

When the linker relocates the value of a label referring to a Thumb instruction, it
automatically sets the least significant bit of the relocated value. The linker cannot do
this if you use absolute addresses to Thumb functions. Therefore, if you have to use an
absolute address to a Thumb function in your code, you must add one to the address,
see Example 5-1 on page 5-6.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-5
ID101213 Non-Confidential,

Interworking ARM and Thumb
Example 5-1 Absolute addresses to Thumb functions

typedef int (*FN)();
myfunc() {
 FN fnptrs[] = {
 (FN)(0x8084 + 1), // Valid Thumb address
 (FN)(0x8074) // Invalid Thumb address
 };
 FN* myfunctions = fnptrs;
 myfunctions[0](); // Call OK
 myfunctions[1](); // Call fails
}

5.3.2 Using two versions of the same function

You can have two functions with the same name, one compiled for ARM and the other
for Thumb.

The linker enables multiple definitions of a symbol to coexist in an image, only if each
definition is associated with a different processor state. The linker applies the following
rules when a reference is made to a symbol with ARM/Thumb synonyms:

• B, BL, or BLX instructions to a symbol from ARM state resolve to the ARM
definition

• B, BL, or BLX instructions to a symbol from Thumb state resolve to the Thumb
definition.

Any other reference to the symbol resolves to the first definition encountered by the
linker. The linker produces a warning that specifies the chosen symbol.
5-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Interworking ARM and Thumb
5.4 Interworking examples

The following are examples of interworking:

• Example 5-2 shows assembly language interworking

• Example 5-3 on page 5-8 shows assembly language interworking using veneers

• Example 5-4 on page 5-10 shows C and C++ language interworking

• Example 5-5 on page 5-11 shows C, C++, and assembly language interworking
using veneers.

There are also some interworking examples provided with RealView Development
Suite. For more information, see the readme.txt files in
install_directory\RVDS\Examples\...\interwork.

Example 5-2 Assembly language interworking

This example implements a short header section (SECTION 1) followed by an ADR
instruction to get the address of the label THUMBProg, and sets the least significant bit of
the address. The BX instruction changes the state to Thumb state.

In SECTION2, the Thumb code adds the contents of two registers together, using an ADR
instruction to get the address of the label ARMProg, leaving the least significant bit clear.
The BX instruction changes the state back to ARM state.

In SECTION3 the ARM code adds together the contents of two registers and ends.

 ; ********
 ; addreg.s
 ; ********

PRESERVE8
 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.
; SECTION1
start
 ADR R0, ThumbProg:OR:1 ; Generate branch target address
 ; and set bit 0, hence arrive
 ; at target in Thumb state.
 BX R0 ; Branch exchange to ThumbProg.
; SECTION2
 THUMB ; Subsequent instructions are Thumb code.
ThumbProg
 MOVS R2, #2 ; Load R2 with value 2.
 MOVS R3, #3 ; Load R3 with value 3.
 ADDS R2, R2, R3 ; R2 = R2 + R3
 ADR R0, ARMProg
 BX R0 ; Branch exchange to ARMProg.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-7
ID101213 Non-Confidential,

Interworking ARM and Thumb
; SECTION3
 ARM ; Subsequent instructions are ARM code.
ARMProg
 MOV R4, #4
 MOV R5, #5
 ADD R4, R4, R5
; SECTION 4
stop MOV R0, #0x18 ; angel_SWIreason_ReportException
 LDR R1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting
 END ; Mark end of this file.

Follow these steps to build and link the modules:

1. To assemble the source file for interworking, type:

armasm --debug --apcs=/interwork addreg.s

2. To link the object files, type:

armlink addreg.o -o addreg.axf

Alternatively, to view the size of the interworking veneers, type:

armlink addreg.o -o addreg.axf --info=veneers

3. Run the image using a compatible debugger with an appropriate debug target.

Example 5-3 Assembly language interworking using veneers

This example shows interworking of source code in assembly code to set registers R0 to
R2 to the values 1, 2, and 3 respectively. Registers R0 and R2 are set by the ARM code.
R1 is set by the Thumb code. The linker automatically adds an interworking veneer. To
use veneers:

• you must assemble the code with the --apcs=/interwork option

• use a BX lr instruction to return, instead of MOV pc,lr.

 ; *****
 ; arm.s
 ; *****

 PRESERVE8
 AREA Arm,CODE,READONLY ; Name this block of code.
 IMPORT ThumbProg
 ENTRY ; Mark 1st instruction to call.
ARMProg
 MOV R0,#1 ; Set R0 to show in ARM code.
 BL ThumbProg ; Call Thumb subroutine.
5-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Interworking ARM and Thumb
 MOV R2,#3 ; Set R2 to show returned to ARM.
 ; Terminate execution.
 MOV R0, #0x18 ; angel_SWIreason_ReportException
 LDR R1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting (formerly SWI)
 END

 ; *******
 ; thumb.s
 ; *******

 AREA Thumb,CODE,READONLY ; Name this block of code.
 THUMB ; Subsequent instructions are Thumb.
 EXPORT ThumbProg
ThumbProg
 MOVS R1, #2 ; Set R1 to show reached Thumb code.
 BX lr ; Return to the ARM function.
 END ; Mark end of this file.

Follow these steps to build and link the modules:

1. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

2. To assemble the Thumb code for interworking, type:

armasm --thumb --debug --apcs=/interwork thumb.s

3. To link the object files, type:

armlink arm.o thumb.o -o count.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o count.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-9
ID101213 Non-Confidential,

Interworking ARM and Thumb
Example 5-4 C and C++ language interworking

This example shows a Thumb routine that carries out an interworking call to an ARM
subroutine. The ARM subroutine makes an interworking call to printf() in the Thumb
library.

 /*********************
 * thumbmain.c *
 **********************/

 #include <stdio.h>

 extern void arm_function(void);

 int main(void)
 {
 printf("Hello from Thumb\n");
 arm_function();
 printf("And goodbye from Thumb\n");
 return (0);
 }

/*********************
 * armsub.c *
 **********************/
 #include <stdio.h>

 void arm_function(void)
 {
 printf("Hello and Goodbye from ARM\n");
 }

Follow these steps to build and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb -c --debug --apcs=/interwork thumbmain.c -o thumbmain.o

2. To compile the ARM code for interworking, type:

armcc -c --debug --apcs=/interwork armsub.c -o armsub.o

3. To link the object files, type:

armlink thumbmain.o armsub.o -o thumbtoarm.axf

Alternatively, to view the size of the interworking veneers, type:

armlink armsub.o thumbmain.o -o thumbtoarm.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
5-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Interworking ARM and Thumb
Example 5-5 C, C++, and assembly language interworking using veneers

This example shows interworking between Thumb code in C and ARM code in
assembly language.

 /**********************
 * thumb.c *
 **********************/

 #include <stdio.h>
 extern int arm_function(int);
 int main(void)
 {
 int i = 1;
 printf("i = %d\n", i);
 printf("And i+4 = %d\n", arm_function(i));
 return (0);
 }

 ; *****
 ; arm.s
 ; *****

 PRESERVE8
 AREA Arm,CODE,READONLY ; Name this block of code.
 EXPORT arm_function
arm_function
 ADD R0,R0,#4 ; Add 4 to first parameter.
 BX lr ; Return
 END

Follow these steps to build and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb --debug -c --apcs=/interwork thumb.c

2. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

3. To link the object files, type:

armlink arm.o thumb.o -o add.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o add.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 5-11
ID101213 Non-Confidential,

Interworking ARM and Thumb
5-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 6
Handling Processor Exceptions

This chapter describes how to handle the different types of exception supported by the
ARM® architecture.

It contains the following sections:

• About processor exceptions on page 6-2

• ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 6-3

• ARMv6-M and ARMv7-M profiles on page 6-29.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-1
ID101213 Non-Confidential,

Handling Processor Exceptions
6.1 About processor exceptions

During the normal flow of execution through a program, the Program Counter (PC)
increases sequentially through the address space, with branches to nearby labels or
branch with links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to enable the
processor to handle events generated by internal or external sources. Examples of such
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

Figure 6-1 shows the exception handling process.

Figure 6-1 Handling an exception

When an exception occurs, control passes through an area of memory called the vector
table. This is a reserved area usually at the bottom of the memory map. Within the table
one word is allocated to each of the various exception types. This word contains either
a branch instruction or, in the case of ARMv6-M and ARMv7-M, an address to the
relevant exception handler.

You can write the exception handlers in either ARM or Thumb®-2 code if the processor
supports the respective instruction set. For the ARMv7-M and ARMv6-M profiles, the
processor enters the exception handler that is specified in the vector table. For all other
ARM processors, you must branch from the top-level handler to the code that handles
the exception. Use a Branch and exchange (BX) if state change is required (see Chapter 5
Interworking ARM and Thumb for more information). When handling exceptions, the
current processor mode, state, and registers must be preserved so that the program can
resume when the appropriate exception handling routine completes.

Application
code

 Exception occurs

Vector
table

Handle the
exception

Save CPU and
register state

Restore CPU and
register state
6-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
6.2 ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

This section describes how to handle the different types of exception supported by ARM
architecture v6 and earlier, the ARMv7-A and ARMv7-R profiles.

Note
 The microcontroller profiles use a different exception handling model. See ARMv6-M
and ARMv7-M profiles on page 6-29 for more information.

6.2.1 Types of exception

Table 6-1 shows the different types of exception recognized by ARMv6 and earlier, the
ARMv7-A and ARMv7-R profiles. When exceptions occur simultaneously, they are
handled in a fixed order of priority. Each exception is handled in turn before returning
to the original application. It is not possible for all exceptions to occur concurrently. For
example, the Undefined instruction (Undef) and supervisor call (SVC) exceptions are
mutually exclusive because they are both triggered by executing an instruction.

On entry to an exception:

• interrupt requests (IRQs) are disabled for all exceptions

• fast interrupt requests (FIQs) are disabled for FIQ and Reset exceptions.

Table 6-1 Exception types in priority order

Priority
(1=high,
6=low)

Exception type Exception mode Description

1 Reset Supervisor Occurs when the processor reset pin is asserted. This
exception is only expected to occur for signaling
power-up, or for resetting if the processor is already
powered up. A soft reset can be done by branching to
the reset vector.

2 Data Abort Abort Occurs when a data transfer instruction attempts to
load or store data at an illegal addressa.

3 FIQ FIQ Occurs when the processor external fast interrupt
request pin is asserted (LOW) and the F bit in the
CPSR is clear.

4 IRQ IRQ Occurs when the processor external interrupt request
pin is asserted (LOW) and the I bit in the CPSR is
clear.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-3
ID101213 Non-Confidential,

Handling Processor Exceptions
Because the Data Abort exception has a higher priority than the FIQ exception, the Data
Abort is actually registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler because FIQ remain
enabled when handling a Data Abort. When the FIQ has been handled, control returns
to the Data Abort Handler. This means that the data transfer error does not escape
detection as it would if the FIQ were handled first.

6.2.2 The vector table

The vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles consists of
a branch or load PC instruction to the relevant handler. If required, you can include the
FIQ handler at the end of the vector table to ensure it is handled as efficiently as
possible, see Example 6-1. Using a literal pool means that addresses can easily be
modified later if necessary.

Example 6-1 Typical vector table using a literal pool

AREA vectors, CODE, READONLY
ENTRY

Vector_Table
LDR pc, Reset_Addr
LDR pc, Undefined_Addr
LDR pc, SVC_Addr

5 Prefetch Abort Abort Occurs when the processor attempts to execute an
instruction that was not fetched, because the address
was illegala.

6 SVC Supervisor This is a user-defined synchronous interrupt
instruction. It enables a program running in User
mode, for example, to request privileged operations
that run in Supervisor mode, such as an RTOS
function.

6 Undefined Instruction Undef Occurs if neither the processor, nor any attached
coprocessor, recognizes the currently executing
instruction.

a. An illegal virtual address is one that does not currently correspond to an address in physical memory, or one that the memory
management subsystem has determined is inaccessible to the processor in its current mode.

Table 6-1 Exception types in priority order (continued)

Priority
(1=high,
6=low)

Exception type Exception mode Description
6-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
LDR pc, Prefetch_Addr
LDR pc, Abort_Addr
NOP ;Reserved vector
LDR pc, IRQ_Addr

FIQ_Handler
; FIQ handler code - max 4kB in size

Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
 DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler

...
END

This example assumes that you have ROM at location 0x0 on reset. Alternatively, you
can use the scatter-loading mechanism to define the load and execution address of the
vector table. In that case, the C library copies the vector table for you. For more
information on scatter-loading, see Chapter 5 Using Scatter-loading Description Files
in the Linker User Guide.

Note
 The vector table for ARMv6 and earlier architectures support ARM instructions only.
ARMv6T2 and later architectures support both Thumb-2 and ARM instructions in the
vector table. This does not apply to the ARMv6-M and ARMv7-M profiles.

6.2.3 Processor modes and registers

The ARM architecture defines an unprivileged User mode containing 15 general
purpose registers, a PC, and a CPSR. In addition there are other privileged modes, each
containing a SPSR and a number of banked out registers.

Typically, an application runs in User mode, but handling exceptions requires a
privileged mode. An exception changes the processor mode, and this in turn means that
each exception handler has access to a certain subset of the banked out registers:

• its own Stack Pointer (SP)

• its own LR

• its own SPSR

• five additional general purpose registers (FIQ only).
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-5
ID101213 Non-Confidential,

Handling Processor Exceptions
Each exception handler must ensure that other registers are restored to their original
contents on exit. You can do this by saving the contents of any registers that the handler
has to use onto its stack and restore them before returning.

System mode

Corruption of the link register can be a problem when handling multiple exceptions of
the same type. See Reentrant interrupt handlers on page 6-10.

ARMv4 and later architectures include a privileged mode called System mode, to
overcome this problem. System mode shares the same registers as User mode, it can run
tasks that require privileged access, and exceptions no longer overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handlers modify the
CPSR to enter System mode. See Reentrant interrupt handlers on page 6-10 for an
example.

6.2.4 Handling an exception

This section describes the processor response to an exception, and how to return to the
main program after the exception has been handled. You must ensure that the exception
handler saves the system state when an exception occurs and restores it on return.

Processors that support Thumb state use the same basic exception handling mechanism
as processors that do not support Thumb state. An exception causes the next instruction
to be fetched from the appropriate vector table entry.

The processor response to an exception

When an exception is generated, the processor performs the following actions:

1. Copies the CPSR into the appropriate SPSR. This saves the current mode,
interrupt mask, and condition flags.

2. Switches state automatically if the current state does not match the instruction set
used in the exception vector table.

3. Changes the appropriate CPSR mode bits to:

• Change to the appropriate mode, and map in the appropriate banked out
registers for that mode.

• Disable interrupts. IRQs are disabled when any exception occurs. FIQs are
disabled when an FIQ occurs and on reset.
6-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
4. Sets the appropriate LR to the return address.

5. Sets the PC to the vector address for the exception.

Returning from an exception handler

The method used to return from an exception depends on whether the exception handler
uses stack operations or not. In both cases, to return execution to the place where the
exception occurred an exception handler must:

• restore the CPSR from the appropriate SPSR

• restore the PC using the return address from the appropriate LR.

For a simple return that does not require the destination mode registers to be restored
from the stack, the exception handler carries out these operations by performing a data
processing instruction with:

• the S flag set

• the PC as the destination register.

The return instruction required depends on the type of exception.

Note
 You do not have to return from the reset handler because the reset handler executes your
main code directly.

If the exception handler entry code uses the stack to store registers that must be
preserved while it handles the exception, it can return using a load multiple instruction
with the ^ qualifier. For example, an exception handler can return in one instruction
using:

 LDMFD sp!,{R0-R12,pc}^

To do this, the exception handler must save the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing
instructions.

The ^ qualifier specifies that the CPSR is restored from the SPSR. It must be used only
from a privileged mode. See the description of how to implement stacks with LDM and
STM in the Assembler Guide for more information.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-7
ID101213 Non-Confidential,

Handling Processor Exceptions
Note
 You cannot use any 16-bit Thumb instruction to return from exceptions because these
are unable to restore the CPSR.

6.2.5 Reset handlers

The operations carried out by the Reset handler depend on the system that the software
is being developed for.

For example, it might:

• Set up exception vectors. See The vector table on page 6-4 for more information.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 3 Embedded Software Development for more information.

6.2.6 Data Abort handler

If there is no MMU, the Data Abort handler must report the error and quit. If there is an
MMU, the handler must deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT-8 because lr_ABT points two
instructions beyond the instruction that caused the abort.

The following types of instruction can cause this abort:

Single Register Load or Store

The response depends on the processor type:

• If the abort takes place on an ARM7™, including the ARM7TDMI®,
the address register has been updated and the change must be
undone.

• If the abort takes place on an ARM9™ or later processor, the address
is restored by the processor to the value it had before the instruction
started. No code is required to undo the change.
6-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple

The response depends on the processor type:

• If the abort takes place on an ARM7 processor, and writeback is
enabled, the base register is updated as if the whole transfer had
taken place.

In the case of an LDM with the base register in the register list, the
processor replaces the overwritten value with the modified base
value so that recovery is possible. The original base address can
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9 or later processor and
writeback is enabled, the base register is restored to the value it had
before the instruction started.

In each of the three cases the MMU can load the required virtual memory into physical
memory. The MMU Fault Address Register (FAR) contains the address that caused the
abort. When this is done, the handler can return and try to execute the instruction again.

You can find an example of a Data Abort handler in the examples directory, in
...\databort.

6.2.7 Interrupt handlers

This section describes how to write interrupt handlers.

Levels of external interrupt

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which
are level-sensitive active LOW signals into the processor. For an interrupt to be taken,
the appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in the following ways:

• FIQs are handled first when multiple interrupts occur.

• Handling an FIQ causes IRQs and subsequent FIQs to be disabled, preventing
them from being handled until after the FIQ handler enables them. This is usually
done by restoring the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table so that the FIQ handler can be placed
directly at the vector location and run sequentially from that address. This removes the
requirement for a branch and its associated delay, and also means that if the system has
a cache, the vector table and FIQ handler might all be locked down in one block within
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-9
ID101213 Non-Confidential,

Handling Processor Exceptions
it. This is important because FIQs are designed to handle interrupts as quickly as
possible. The five extra FIQ mode banked registers enable status to be held between
calls to the handler, again increasing execution speed.

Note
 An interrupt handler must contain code to clear the source of the interrupt.

Reentrant interrupt handlers

If an interrupt handler enables interrupts before calling a subroutine and another
interrupt occurs, the return address of the subroutine stored in the IRQ mode LR is
corrupted when the second IRQ is taken. This is because the processor automatically
saves the return address into the IRQ mode LR for the new interrupt overwriting the
return address for the subroutine. This results in an infinite loop when the subroutine in
the original interrupt tries to return.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save
the state for the new processor mode before branching to a nested subroutine or C
function. It must also ensure that the stack is eight-byte aligned for the new processor
mode before calling AAPCS-compliant compiled C code that might use LDRD or STRD
instructions or eight-byte aligned stack-allocated data. There is more information about
stack alignment issues in the ABI for the ARM Architecture Advisory Note 1- SP must
be 8-byte aligned on entry to AAPCS-conforming functions (ARM IHI 0046A).

Using the __irq keyword in C does not cause the SPSR to be saved and restored, as
required by reentrant interrupt handlers, so you must write your top level interrupt
handler in assembly language.

In ARMv4 or later you can switch to System mode if you require privileged access. See
System mode on page 6-6 for more information.

Note
 This method works for both IRQ and FIQ interrupts. However, because FIQ interrupts
are meant to be handled as quickly as possible there is normally only one interrupt
source, so it might not be necessary to provide for reentrancy.

The steps required to enable interrupts safely in an IRQ handler are:

1. Construct the return address and save it on the IRQ stack.

2. Save the work registers, non callee-saved registers and IRQ mode SPSR.

3. Clear the source of the interrupt.
6-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
4. Switch to System mode, keeping IRQs disabled.

5. Check that the stack is eight-byte aligned and adjust if necessary.

6. Save the User mode LR and the adjustment, 0 or 4 for Architectures v4 or v5TE,
used on the User mode SP.

7. Enable interrupts and call the C interrupt handler function.

8. When the C interrupt handler returns, disable interrupts.

9. Restore the User mode LR and the stack adjustment value.

10. Readjust the stack if necessary.

11. Switch to IRQ mode.

12. Restore other registers and IRQ mode SPSR.

13. Return from the IRQ.

Example 6-2 and Example 6-3 on page 6-12 shows how this works for System mode.

Example 6-2 Reentrant interrupt handler for ARMv4/v5TE

PRESERVE8
AREA INTERRUPT, CODE, READONLY
IMPORT C_irq_handler
IMPORT identify_and_clear_source

IRQ_Handler
 SUB lr, lr, #4 ; construct the return address

PUSH {lr} ; and push the adjusted lr_IRQ
 MRS lr, SPSR ; copy spsr_IRQ to lr

PUSH {R0-R4,R12,lr} ; save AAPCS regs and spsr_IRQ
BL identify_and_clear_source
MSR CPSR_c, #0x9F ; switch to SYS mode, IRQ is

 ; still disabled. USR mode
 ; registers are now current.
 AND R1, sp, #4 ; test alignment of the stack
 SUB sp, sp, R1 ; remove any misalignment (0 or 4)

PUSH {R1,lr} ; store the adjustment and lr_USR
 MSR CPSR_c, #0x1F ; enable IRQ
 BL C_irq_handler
 MSR CPSR_c, #0x9F ; disable IRQ, remain in SYS mode

POP {R1,lr} ; restore stack adjustment and lr_USR
 ADD sp, sp, R1 ; add the stack adjustment (0 or 4)
 MSR CPSR_c, #0x92 ; switch to IRQ mode and keep IRQ
 ; disabled. FIQ is still enabled.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-11
ID101213 Non-Confidential,

Handling Processor Exceptions
POP {R0-R4,R12,lr} ; restore registers and
 MSR SPSR_cxsf, lr ; spsr_IRQ
 LDM sp!, {pc}^ ; return from IRQ.
 END

Example 6-3 Reentrant Interrupt for ARMv6 (non vectored interrupts)

PRESERVE8
AREA INTERRUPT, CODE, READONLY
IMPORT C_irq_handler
IMPORT identify_and_clear_source

IRQ_Handler
SUB lr, lr, #4
SRSDB sp!,#31 ; Save LR_irq and SPSR_irq to System mode stack
CPS #031 ; Switch to System mode
PUSH {R0-R3,R12} ; Store other AAPCS registers
AND R1, sp, #4
SUB sp, sp, R1
PUSH {R1, lr}
BL identify_and_clear_source
CPSIE i ; Enable IRQ
BL C_irq_handler
CPSID i ; Disable IRQ
POP {R1,lr}
ADD sp, sp, R1
POP {R0-R3, R12} ; Restore registers
RFEIA sp! ; Return using RFE from System mode stack
END

These examples assume that FIQ remains permanently enabled.

Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute
quickly. The following sections give some examples:

• Single-channel DMA transfer on page 6-13

• Dual-channel DMA transfer on page 6-13

• Interrupt prioritization on page 6-14

• Context switch on page 6-16.
6-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Single-channel DMA transfer

Example 6-4 shows an interrupt handler that performs interrupt driven I/O to memory
transfers, soft DMA. The code is an FIQ handler. It uses the banked FIQ registers to
maintain state between interrupts. This code is best situated at location 0x1C.

In the example code:

R8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read.
Reading this register clears the interrupt.

R9 Points to the memory location to where that data is being transferred.

R10 Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-4 FIQ handler

 LDR R11, [R8, #IOData] ; Load port data from the IO device.
 STR R11, [R9], #4 ; Store it to memory: update the pointer.
 CMP R9, R10 ; Reached the end ?
 SUBLSS pc, lr, #4 ; No, so return.
 ; Insert transfer complete
 ; code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 6-5 on page 6-14 is similar to Example 6-4, except that there are two channels
being handled. The code is an FIQ handler. It uses the banked FIQ registers to maintain
state between interrupts. It is best situated at location 0x1C.

In the example code:

R8 Points to the base address of the I/O device from which data is
read.

IOStat Is the offset from the base address to a register indicating which of
two ports caused the interrupt.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-13
ID101213 Non-Confidential,

Handling Processor Exceptions
IOPort1Active Is a bit mask indicating if the first port caused the interrupt.
Otherwise it is assumed that the second port caused the interrupt.

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data
register clears the interrupt for the corresponding port.

R9 Points to the memory location to which data from the first port is
being transferred.

R10 Points to the memory location to which data from the second port
is being transferred.

R11, R12 Point to the last address to transfer to. This is R11 for the first port,
R12 for the second.

The entire sequence to handle a normal transfer takes nine instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-5 FIQ handler

 LDR sp, [R8, #IOStat] ; Load status register to find which port
; caused the interrupt.

 TST sp, #IOPort1Active
 LDREQ sp, [R8, #IOPort1] ; Load port 1 data.
 LDRNE sp, [R8, #IOPort2] ; Load port 2 data.
 STREQ sp, [R9], #4 ; Store to buffer 1.
 STRNE sp, [R10], #4 ; Store to buffer 2.
 CMP R9, R11 ; Reached the end?
 CMPLE R10, R12 ; On either channel?

SUBSNE pc, lr, #4 ; Return
 ; Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the conditional load instructions and the conditional store
instructions.

Interrupt prioritization

Example 6-6 on page 6-15 dispatches up to 32 interrupt sources to their appropriate
handlers. Because it is designed for use with the normal interrupt vector, IRQ, it is
branched to from location 0x18.

External Vectored Interrupt Controller (VIC) hardware is used to prioritize the interrupt
and present the high-priority active interrupt in an I/O register.
6-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active
interrupt.

R13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered, with all registers preserved on the
stack, after two more instructions.

In addition, the last three instructions of each handler are executed with interrupts
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts describes multiple-source
prioritization of interrupts using software, as opposed to using the VIC hardware as
described here.

Example 6-6 Dispatching interrupts to handlers

 ; first save the critical state
 SUB lr, lr, #4 ; Adjust the return address
 ; before we save it.
 STMDB sp!, {lr} ; Stack return address
 MRS lr, SPSR ; get the SPSR ...

PUSH {R12,lr} ; ... and stack that plus a
 ; working register too.
 ; Now get the priority level of the
 ; highest priority active interrupt.
 MOV R12, #IntBase ; Get the interrupt controller's
 ; base address.
 LDR R12, [R12, #IntLevel] ; Get the interrupt level (0 to 31).
 ; Now read-modify-write the CPSR

; to enable interrupts.
 MRS lr, APSR ; Read the status register.
 BIC lr, lr, #0x80 ; Clear the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, lr ; Write it back to re-enable
 ; interrupts and
 LDR pc, [pc, R12, LSL #2] ; jump to the correct handler.
 ; PC base address points to this
 ; instruction + 8
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-15
ID101213 Non-Confidential,

Handling Processor Exceptions
 NOP ; pad so the PC indexes this table.
 ; Table of handler start addresses
 DCD Priority0Handler
 DCD Priority1Handler
 DCD Priority2Handler
; ...
 Priority0Handler

PUSH {R0-R11} ; Save other working registers.
 ; Insert handler code here.
; ...

POP {R0-R11} ; Restore working registers (not R12).
 ; Now read-modify-write the CPSR

; to disable interrupts.
 MRS R12, APSR ; Read the status register.
 ORR R12, R12, #0x80 ; Set the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, R12 ; Write it back to disable interrupts.
 ; Now that interrupt disabled, can safely

; restore SPSR then return.
POP {r12,lr} ; Restore R12 and get SPSR.

 MSR SPSR_cxsf, lr ; Restore status register from R14.
 LDM sp!, {pc}^ ; Return from handler.
Priority1Handler
; ...

Context switch

Example 6-7 on page 6-17 performs a context switch on the User mode process. The
code is based around a list of pointers to Process Control Blocks (PCBs) of processes
that are ready to run.

Figure 6-2 on page 6-17 shows the layout of the PCBs that the example expects.
6-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Figure 6-2 PCB layout

The pointer to the PCB of the next process to run is pointed to by R12, and the end of the
list has a zero pointer. Register R13 is a pointer to the PCB, and is preserved between
time slices, so that on entry it points to the PCB of the currently running process.

Example 6-7 Context switch on the User mode process

 STM sp,{R0-lr}^ ; Dump user registers above R13.
 MRS R0, SPSR ; Pick up the user status
 STMDB sp, {R0, lr} ; and dump with return address below.
 LDR sp, [R12], #4 ; Load next process info pointer.
 CMP sp, #0 ; If it is zero, it is invalid

LDMDBNE sp, {R0, lr} ; Pick up status and return address.
 MSRNE SPSR_cxsf, R0 ; Restore the status.
 LDMNE sp, {R0 - lr}^ ; Get the rest of the registers
 NOP
 SUBSNE pc, lr, #4 ; and return and restore CPSR.
 ; Insert "no next process code" here.

6.2.8 SVC handlers

An exception handler might have to determine whether the processor was in ARM or
Thumb state when the exception occurred.

SVC handlers, especially, might have to read the processor state. This is done by
examining the SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

r8
r7
r6
r5
r4
r3
r2
r1
r0
lr

spsr

r9
r10
r11
r12
r13
r14

PCB
pointer

User mode
registers
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-17
ID101213 Non-Confidential,

Handling Processor Exceptions
Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs
from Thumb state, you must consider the following:

• The instruction address is at lr–2, rather than lr–4.

• The instruction itself is 16-bit, and so requires a halfword load, see Figure 6-3.

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

Figure 6-3 Thumb SVC instruction

Example 6-8 shows ARM code that handles an SVC exception. The range of SVC
numbers accessible from Thumb state can be increased by calling SVCs dynamically.

Example 6-8 SVC handler

PRESERVE8
AREA SVC_Area, CODE, READONLY
EXPORT SVC_Handler

 IMPORT C_SVC_Handler
T_bit EQU 0x20 ; Thumb bit (5) of CPSR/SPSR.
SVC_Handler

STMFD sp!, {r0-r3, r12, lr} ; Store registers
MOV r1, sp ; Set pointer to parameters
MRS r0, spsr ; Get spsr
STMFD sp!, {r0, r3} ; Store spsr onto stack and another

; register to maintain 8-byte-aligned stack
TST r0, #T_bit ; Occurred in Thumb state?
LDRNEH r0, [lr,#-2] ; Yes: Load halfword and...
BICNE r0, r0, #0xFF00 ; ...extract comment field
LDREQ r0, [lr,#-4] ; No: Load word and...
BICEQ r0, r0, #0xFF000000 ; ...extract comment field

; r0 now contains SVC number
; r1 now contains pointer to stacked registers

BL C_SVC_Handler ; Call main part of handler
LDMFD sp!, {r0, r3} ; Get spsr from stack
MSR SPSR_cxsf, r0 ; Restore spsr
LDMFD sp!, {r0-r3, r12, pc}^ ; Restore registers and return
END

15 14 13 12 11 10 9 8 7 0

comment field

8_bit_immediate1 1 11 1 110
6-18 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Determining the SVC to be called

When the SVC handler is entered, it must establish which SVC is being called. This
information can be stored in bits 0-23 of the instruction itself, as shown in Figure 6-4,
or passed in an integer register, usually one of R0-R3.

Figure 6-4 ARM SVC instruction

The top-level SVC handler can load the SVC instruction relative to the LR. Do this in
assembly language, C/C++ inline, or embedded assembler.

The handler must first load the SVC instruction that caused the exception into a register.
At this point, the SVC LR holds the address of the instruction that follows the SVC
instruction, so the SVC is loaded into the register, in this case R0, using:

 LDR R0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required
operation. The SVC number is extracted by clearing the top eight bits of the opcode:

 BIC R0, R0, #0xFF000000

Example 6-9 shows how you can put these instructions together to form a top-level SVC
handler. For an example of a handler that deals with SVC instructions in both ARM state
and Thumb state, see Example 6-8 on page 6-18.

Example 6-9 Top-level SVC handler

 PRESERVE8
 AREA TopLevelSVC, CODE, READONLY ; Name this block of code.
 EXPORT SVC_Handler
SVC_Handler

PUSH {R0-R12,lr} ; Store registers.
 LDR R0,[lr,#-4] ; Calculate address of SVC instruction

; and load it into R0.
 BIC R0,R0,#0xFF000000 ; Mask off top 8 bits of instruction

; to give SVC number.
 ;
 ; Use value in R0 to determine which SVC routine to execute.

31 28 27 26 25 24 23 0
cond 24_bit_immediate1 1 1 1

comment field
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-19
ID101213 Non-Confidential,

Handling Processor Exceptions
 ;
 LDM sp!, {R0-R12,pc}^ ; Restore registers and return.
 END

SVC handlers in assembly language

The easiest way to call the handler for the requested SVC number is to use a jump table.
If R0 contains the SVC number, the code in Example 6-10 can be inserted into the
top-level handler given in Example 6-9 on page 6-19, following on from the BIC
instruction.

Example 6-10 SVC jump table

AREA SVC_Area, CODE, READONLY
PRESERVE8
IMPORT SVCOutOfRange
IMPORT MaxSVC

 CMP R0,#MaxSVC ; Range check
 LDRLS pc, [pc,R0,LSL #2]
 B SVCOutOfRange
SVCJumpTable
 DCD SVCnum0
 DCD SVCnum1
 ; DCD for each of other SVC routines
SVCnum0 ; SVC number 0 code
 B EndofSVC
SVCnum1 ; SVC number 1 code
 B EndofSVC
 ; Rest of SVC handling code
EndofSVC
 ; Return execution to top level
 ; SVC handler so as to restore
 ; registers and return to program.

END

SVC handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the
routines that handle each SVC can be written in either assembly language or in C. See
Using SVCs in Supervisor mode on page 6-22 for a description of restrictions.
6-20 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
The top-level handler uses a BL instruction to jump to the appropriate C function.
Because the SVC number is loaded into R0 by the assembly routine, this is passed to the
C function as the first parameter. The function can use this value in, for example, a
switch() statement, see Example 6-11.

To call this C function you can add the following line to the SVC_Handler routine in
Example 6-9 on page 6-19:

 BL C_SVC_Handler ; Call C routine to handle the SVC

Example 6-11 SVC handler in C function

void C_SVC_handler (unsigned number)
{
 switch (number)
 {
 case 0 : /* SVC number 0 code */

...
 break;
 case 1 : /* SVC number 1 code */

...
 break;

...
 default : /* Unknown SVC - report error */
 }
}

The Supervisor mode stack space might be limited, so avoid using functions that require
a large amount of stack space.

 MOV R1, sp ; Second parameter to C routine...
 ; ...is pointer to register values.
 BL C_SVC_Handler ; Call C routine to handle the SVC.

You can pass values in and out of an SVC handler written in C, provided that the
top-level handler passes the stack pointer value into the C function as the second
parameter, in R1, and the C function is updated to access it:

void C_SVC_handler(unsigned number, unsigned *reg)

The C function can now access the values contained in the registers at the time the SVC
instruction was encountered in the main application code, see Figure 6-5 on page 6-22.
It can read from them:
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-21
ID101213 Non-Confidential,

Handling Processor Exceptions
 value_in_reg_0 = reg [0];
 value_in_reg_1 = reg [1];
 value_in_reg_2 = reg [2];
 value_in_reg_3 = reg [3];

and also write back to them:

 reg [0] = updated_value_0;
 reg [1] = updated_value_1;
 reg [2] = updated_value_2;
 reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then
restored into the register by the top-level handler.

Figure 6-5 Accessing the Supervisor mode stack

Using SVCs in Supervisor mode

When an SVC instruction is executed:

1. The processor enters Supervisor mode.

2. The CPSR is stored into the SVC SPSR.

3. The return address is stored in the SVC LR, see The processor response to an
exception on page 6-6.

If the processor is already in Supervisor mode, the SVC LR and SPSR are corrupted.

If you call an SVC while in Supervisor mode you must store SVC LR and SPSR to
ensure that the original values of the LR and the SPSR are not lost. For example, if the
handler routine for a particular SVC number calls another SVC, you must ensure that
the handler routine stores both SVC LR and SPSR on the stack. This guarantees that
each invocation of the handler saves the information required to return to the instruction
following the SVC that invoked it. Example 6-12 on page 6-23 shows how to do this.

lr_SVC

r0

r1

r2

r3

Previous sp_SVC

sp_SVC

r12

reg[3]

reg[0]
6-22 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Example 6-12 SVC Handler

 AREA SVC_Area, CODE, READONLY
 PRESERVE8
 EXPORT SVC_Handler
 IMPORT C_SVC_Handler
T_bit EQU 0x20
SVC_Handler

PUSH {R0-R3,R12,lr} ; Store registers.
 MOV R1, sp ; Set pointer to parameters.
 MRS R0, SPSR ; Get SPSR.

PUSH {R0,R3} ; Store SPSR onto stack and another register to maintain
 ; 8-byte-aligned stack. Only required for nested SVCs.

TST R0,#0x20 ; Occurred in Thumb state?
LDRHNE R0,[lr,#-2] ; Yes: load halfword and...
BICNE R0,R0,#0xFF00 ; ...extract comment field.
LDREQ R0,[lr,#-4] ; No: load word and...
BICEQ R0,R0,#0xFF000000 ; ...extract comment field.

; R0 now contains SVC number
 ; R1 now contains pointer to stacked registers
 BL C_SVC_Handler ; Call C routine to handle the SVC.

POP {R0,R3} ; Get SPSR from stack.
 MSR SPSR_cf, R0 ; Restore SPSR.
 LDM sp!, {R0-R3,R12,pc}^ ; Restore registers and return.
 END

Nested SVCs in C and C++

You can write nested SVCs in C or C++. Code generated by the ARM compiler stores
and reloads lr_SVC as necessary.

Calling SVCs from an application

You can call an SVC from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SVC.
For example:

 MOV R0, #65 ; load R0 with the value 65
 SVC 0x0 ; Call SVC 0x0 with parameter value in R0

The SVC instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SVC as an __SVC function, and call it. For example:
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-23
ID101213 Non-Confidential,

Handling Processor Exceptions
 __svc(0) void my_svc(int);
 .
 .
 .
 my_svc(65);

This enables an SVC to be compiled inline, without additional calling overhead,
provided that:

• any arguments are passed in R0-R3 only

• any results are returned in R0-R3 only.

The parameters are passed to the SVC as if the SVC were a real function call. However,
if there are between two and four return values, you must tell the compiler that the return
values are being returned in a structure, and use the __value_in_regs directive. This is
because a struct-valued function is usually treated as if it were a void function whose
first argument is the address where the result structure must be placed.

Example 6-13 and Example 6-14 on page 6-25 show an SVC handler that provides SVC
numbers 0x0, 0x1, 0x2 and 0x3. SVC 0x0 and SVC 0x1 each take two integer parameters and
return a single result. SVC 0x2 takes four parameters and returns a single result. SVC 0x3
takes four parameters and returns four results. This example is in the examples
directory, in ...\svc\main.c. and ...\svc\svc.h.

Example 6-13 main.c

#include <stdio.h>
#include "svc.h"
unsigned *svc_vec = (unsigned *)0x08;
extern void SVC_Handler(void);
int main(void)
{
 int result1, result2;
 struct four_results res_3;
 Install_Handler((unsigned) SVC_Handler, svc_vec);
 printf("result1 = multiply_two(2,4) = %d\n", result1 = multiply_two(2,4));
 printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply_two(3,6));
 printf("add_two(result1, result2) = %d\n", add_two(result1, result2));
 printf("add_multiply_two(2,4,3,6) = %d\n", add_multiply_two(2,4,3,6));
 res_3 = many_operations(12, 4, 3, 1);
 printf("res_3.a = %d\n", res_3.a);
 printf("res_3.b = %d\n", res_3.b);
 printf("res_3.c = %d\n", res_3.c);
 printf("res_3.d = %d\n", res_3.d);
 return 0;
}

6-24 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Example 6-14 svc.h

__svc(0) int multiply_two(int, int);
__svc(1) int add_two(int, int);
__svc(2) int add_multiply_two(int, int, int, int);
struct four_results
{
 int a;
 int b;
 int c;
 int d;
};
__svc(3) __value_in_regs struct four_results
 many_operations(int, int, int, int);

Calling SVCs dynamically from an application

In some circumstances it might be necessary to call an SVC whose number is not known
until run-time. This situation might occur, for example, when there are a number of
related operations that can be performed on an object, and each operation has its own
SVC. In this case, the methods described in the previous sections are not appropriate.

There are several ways of dealing with this, for example:

• Construct the SVC instruction from the SVC number, store it somewhere, then
execute it.

• Use a generic SVC that takes, as an extra argument, a code for the actual operation
to be performed on its arguments. The generic SVC decodes the operation and
performs it.

The second mechanism can be implemented in assembly language by passing the
required operation number in a register, typically R0 or R12. You can then rewrite the
SVC handler to act on the value in the appropriate register.

Because some value has to be passed to the SVC in the comment field, it is possible for
a combination of these two methods to be used.

For example, an operating system might make use of only a single SVC instruction and
employ a register to pass the number of the required operation. This leaves the rest of
the SVC space available for application-specific SVCs. You can use this method if the
overhead of extracting the operation number from the instruction is too great in a
particular application. This is how the ARM and Thumb semihosted instructions are
implemented.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-25
ID101213 Non-Confidential,

Handling Processor Exceptions
Example 6-15 shows how __svc can be used to map a C function call onto a semihosting
call. It is derived from retarget.c in the examples directory, in
...\emb_sw_dev\source\retarget.c.

Example 6-15 Mapping a C function onto a semihosting call

#ifdef __thumb
/* Thumb Semihosting */
#define SemiSVC 0xAB
#else
/* ARM Semihosting */
#define SemiSVC 0x123456
#endif
/* Semihosting call to write a character */
__svc(SemiSVC) void Semihosting(unsigned op, char *c);
#define WriteC(c) Semihosting (0x3,c)
void write_a_character(int ch)
{
 char tempch = ch;
 WriteC(&tempch);
}

The compiler includes a mechanism to support the use of R12 to pass the value of the
required operation. Under the AAPCS, R12 is the ip register and has a dedicated role
only during function calls. At other times, you can use it as a scratch register. The
arguments to the generic SVC are passed in registers R0-R3 and values are optionally
returned in R0-R3 as described earlier, see Calling SVCs from an application on
page 6-23. The operation number passed in R12 can be the number of the SVC to be
called by the generic SVC. However, this is not required.

Example 6-16 shows a C fragment that uses a generic, or indirect SVC.

Example 6-16 Using indirect SVC

__svc_indirect(0x80)
 unsigned SVC_ManipulateObject(unsigned operationNumber,
 unsigned object,unsigned parameter);
unsigned DoSelectedManipulation(unsigned object,
 unsigned parameter, unsigned operation)
{ return SVC_ManipulateObject(operation, object, parameter);
}

This produces the following code:
6-26 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
DoSelectedManipulation
PUSH {R4,lr}

 MOV R12,R2
 SVC #0x80
 POP {R4,pc}
 END

It is also possible to pass the SVC number in R0 from C using the __svc mechanism. For
example, if SVC 0x0 is used as the generic SVC, operation 0 is a character read, and
operation 1 is a character write, you can set up the following:

__svc (0) char __ReadCharacter (unsigned op);
__svc (0) void __WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly way by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use R0 in this way, then only three registers are available for passing
parameters to the SVC. Usually, if you have to pass more parameters to a subroutine in
addition to R0-R3, you can do this using the stack. However, stacked parameters are not
easily accessible to an SVC handler, because they typically exist on the User mode stack
rather than the Supervisor mode stack employed by the SVC handler.

Alternatively, one of the registers, typically R1, can be used to point to a block of
memory storing the other parameters.

6.2.9 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can report the error and quit.
Otherwise the address that caused the abort must be restored into physical memory.
lr_ABT points to the instruction at the address following the one that caused the abort,
so the address to be restored is at lr_ABT-4. The virtual memory fault for that address
can be dealt with and the instruction fetch retried. The handler therefore returns to the
same instruction rather than the following one, for example:

 SUBS pc,lr,#4

6.2.10 Undefined instruction handlers

An undefined instruction exception is generated in the following cases:

• if the processor does not recognize an instruction

• if the processor recognizes an instruction as a coprocessor instruction, but no
coprocessor recognizes it.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-27
ID101213 Non-Confidential,

Handling Processor Exceptions
It might be that the instruction is intended for a coprocessor, but that the relevant
coprocessor, for example VFP, is not attached to the system, or is disabled. However, a
software emulator for such a coprocessor might be available.

Such an emulator must:

1. Attach itself to the undefined instruction vector and store the old contents.

2. Examine the undefined instruction to see if it has to be emulated. This is similar
to the way in which an SVC handler extracts the number of an SVC, but rather
than extracting the bottom 24 bits, the emulator must extract bits [27:24].

These bits determine whether the instruction is a coprocessor operation in the
following way:

• If bits [27:24] = b1110 or b110x, the instruction is a coprocessor
instruction.

• If bits [8:11] show that this coprocessor emulator has to handle the
instruction, the emulator must process the instruction and return to the user
program.

3. Otherwise the emulator must pass the exception onto the original handler, or the
next emulator in the chain, using the vector stored when the emulator was
installed.

When a chain of emulators is exhausted, the undefined instruction handler must report
an error and quit.

Note
 The pre-ARMv6T2 Thumb instruction set does not have coprocessor instructions, so
there is no requirement for the undefined instruction handler to emulate such
instructions.
6-28 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
6.3 ARMv6-M and ARMv7-M profiles

This section describes how to handle the different types of exception supported by the
microcontroller profiles, for example Cortex™-M1 and Cortex-M3.

The microcontroller profiles support:

• two operation modes, Thread mode and Handler mode

• two execution modes, Privileged mode and User mode.

Thread mode is entered on reset and normally on return from an exception. When in
thread mode, code can be executed in either Privileged or User mode.

Handler mode is entered as a result of an exception. All code is executed as Privileged.
The processor automatically switches to Privileged mode when exceptions occur.

Privileged mode has full access rights.

User mode has limited access rights. The limitations include:

• restrictions on instruction use, for example which fields can be used in MSR
instructions

• restrictions on the use of certain coprocessor registers

• restrictions on access to memory and peripherals based on system design

• restrictions on access to memory and peripherals imposed by the MPU
configuration.

You can change from Privileged Thread to User Thread mode by clearing
CONTROL[0] using an MSR instruction. However, you cannot directly change to
privileged mode from user mode without going through an exception, for example an
SVC, see Supervisor calls on page 6-37.

6.3.1 Main and Process Stacks

The microcontroller profiles support two different stacks, a main stack and a process
stack. It has two stack pointers, one for each stack. Only one stack pointer is visible at
a time, depending on the stack in use.

The main stack is used at reset, and on entry to an exception handler. To use the process
stack it must be selected. You can do this while in Thread Mode, by writing to
CONTROL[1] using an MSR instruction.

Note
 Your initialization or context switching code must initialize the process stack pointer.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-29
ID101213 Non-Confidential,

Handling Processor Exceptions
6.3.2 Types of exception

Table 6-2 shows the different types of exceptions recognized by the microcontroller
profiles. When an exception occurs simultaneously, they are handled in a fixed order of
priority. Each exception is handled in turn before returning to the original application.

Exceptions with a lower priority number have a higher priority status. For example, if a
processor is in Handler mode, an exception is taken if it has a lower priority number than
the exception currently being handled. Any exception with the same priority number or
higher is pended.

When an exception handler terminates:

• If there are no exceptions pending, the processor returns to Thread mode, and
execution returns to the application program.

Table 6-2 Exception types in priority order

Position Exception Priority Disable Description

1 Reset –3 No

2 NMI –2 No Non-Maskable Interrupt (NMI)

3 HardFault –1 No All faults not covered by other exceptions

4 MemManage configurable Can be Memory protection errors (ARMv7-M only)

5 BusFault configurable Can be Other memory faults (ARMv7-M only)

6 UsageFault configurable Can be Instruction execution faults other than memory faults
(ARMv7-M only)

7-10 Reserved - -

11 SVCall configurable Can be Synchronous SVC call caused by execution of SVC
instruction

12 Debug
Monitor

configurable Can be Synchronous debug event (ARMv7-M only)

13 Reserved - -

14 PendSV configurable Can be Asynchronous SVC call

15 SysTick configurable Can be System timer tick

16 and
above

External
Interrupt

configurable Can be External interrupt
6-30 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
• If there are any exceptions pending, execution passes to the handler of the pending
exception with the lowest priority number. If there are two pending exceptions
with the same lowest priority number, the exception with the lowest exception
number is handled first.

6.3.3 The vector table

The vector table for the microcontroller profiles consists of addresses to the relevant
handlers. The handler for exception number n is held at (vectorbaseaddress + 4 * n).

In ARMv7-M processors you can specify the vectorbaseaddress in the Vector Table
Offset Register (VTOR) to relocate the vector table. The default location on reset is 0x0
(CODE space). For ARMv6-M, the vector table base address is fixed at 0x0. See Types
of exception on page 6-30 for the values of n for each exception. The word at
vectorbaseaddress holds the reset value of the main stack pointer.

Note
 The least significant bit, bit[0] of each address in the vector table must be set or a
HardFault exception is generated. The RealView tools normally enable this for you if
Thumb symbol names are used in the table.

Vector Table Offset Register (ARMv7-M only)

The Vector Table Offset Register locates the vector table in CODE or SRAM space.
When setting a different location, the offset must be aligned based on the number of
exceptions in the table. This means that the minimal alignment is 32 words that you can
use for up to 16 interrupts. For more interrupts, you must adjust the alignment by
rounding up to the next power of two. For example, if you require 21 interrupts, the
alignment must be on a 64-word boundary because table size is 37 words, next power
of two is 64.

Writing the exception table

The easiest way to populate the vector table is to use a scatter-loading description file
to place a C array of function pointers at memory address 0x0. You can use the C array
to configure the initial stack pointer, image entry point and the addresses of the
exception handlers, see Example 6-17 on page 6-32.

Note
 Some features shown in Example 6-17 on page 6-32 are not available in ARMv6-M. To
maintain alignment you must reserve the space by entering 0 in the vector table.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-31
ID101213 Non-Confidential,

Handling Processor Exceptions
For more information on scatter-loading, see Chapter 5 Using Scatter-loading
Description Files in the Linker User Guide.

Example 6-17 Example C structure for exception handlers

/* Filename: exceptions.c */
typedef void(* const ExecFuncPtr)(void);
/* Place table in separate section */
#pragma arm section rodata="exceptions_area"
ExecFuncPtr exception_table[] = {
 (ExecFuncPtr)&Image$$ARM_LIB_STACKHEAP$$ZI$$Limit,

/* Initial Stack Pointer, from linker-generated symbol */
 (ExecFuncPtr)&__main, /* Initial PC, set to entry point */
 &NMIException,
 &HardFaultException,
 &MemManageException, /* ARMv7-M only (0 for ARMv6-M) */
 &BusFaultException, /* ARMv7-M only (0 for ARMv6-M) */
 &UsageFaultException, /* ARMv7-M only (0 for ARMv6-M) */
 0, 0, 0, 0, /* Reserved */
 &SVCHandler, /* Only available with OS extensions */
 &DebugMonitor, /* ARMv7-M only (0 for ARMv6-M) */
 0, /* Reserved */
 &PendSVC, /* Only available with OS extensions */
 (ExecFuncPtr)&SysTickHandler, /* Only available with OS extensions */

 /* Configurable interrupts start here...*/
 &InterruptHandler,
 &InterruptHandler,
 &InterruptHandler
 /*
 :
 */
};
#pragma arm section
6-32 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
6.3.4 The Nested Vectored Interrupt Controller

Depending on the implementation, the Nested Vectored Interrupt Controller (NVIC)
can support:

ARMv6-M 1, 8, 16, or 32 external interrupts with 4 different priority levels.

ARMv7-M up to 240 external interrupts with up to 256 different priority levels that
can be dynamically reprioritized. The NVIC also supports the
tail-chaining of interrupts.

The microcontroller profiles support both level and pulse interrupt sources. The
processor state is saved automatically in hardware on interrupt entry and is restored on
interrupt exit.

The use of an NVIC in the microcontroller profiles means that the vector table is very
different from other ARM processors consisting of addresses not instructions. The
initial stack pointer and the address of the reset handler must be located at 0x0 and 0x4
respectively. These addresses are loaded into the SP and PC registers by the processor
at reset.

6.3.5 Handling an exception

On microcontroller profiles, exception prioritization, nesting of exceptions, and saving
of corruptible registers are handled entirely by the processor to provide very efficient
handling and minimize interrupt latency. Interrupts are automatically enabled on entry
to every exception handler which means that you must remove any top-level reentrancy
code from projects written for other processors. If you require interrupts to be disabled
then you must handle this in your code and ensure that they are enabled on return from
an exception.

Note
 Exception handlers must clear the interrupt source.

Microcontroller profiles have no FIQ input. Any peripheral that signals an FIQ on
projects from other processors must be moved to a high-priority external interrupt. It
might be necessary to check that the handler for this kind of interrupt does not expect
to use the banked FIQ registers, because microcontroller profiles do not have banked
registers, and you must stack R8-R12 as for any other normal IRQ handler.

Microcontroller profiles also provide a high priority Non Maskable Interrupt (NMI)
which you cannot disable.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-33
ID101213 Non-Confidential,

Handling Processor Exceptions
Simple C exception handler

Exception handlers for microcontroller profiles are not required to save or restore the
system state and can be written as ordinary, ABI-compliant C functions. However, it is
recommended that you use the __irq keyword to identify the function as an interrupt
routine, see Example 6-18.

Example 6-18 Simple C exception handler

__irq void SysTickHandler(void)
{

printf("----- SysTick Interrupt -----");
}

8 byte stack alignment

The Application Binary Interface (ABI) for the ARM Architecture requires that the
stack must be 8-byte aligned on all external interfaces, such as calls between functions
in different source files. However, code does not have to maintain 8-byte stack
alignment internally, for example in leaf functions. This means that when an IRQ occurs
the stack might not be correctly 8-byte aligned.

ARMv7-M processors can automatically align the stack pointer when an exception
occurs. You can enable this behavior by setting STKALIGN (bit 9) in the Configuration
Control Register at address 0xE000ED14.

ARMv6-M processors always enable this behavior however, it is recommended that you
manually set STKALIGN (bit 9) so that your image is forward compatible with
ARMv7-M processors.

Note
 If you are using a revision 0 Cortex-M3 processor STKALIGN is not supported,
therefore the adjustment is not performed in hardware and needs to be done by software.
The compiler can generate code in your IRQ handlers that correctly aligns the stack. To
do this you must prefix your IRQ handlers with __irq and use the --cpu=Cortex-M3-rev0
compiler switch, not --cpu=Cortex-M3.
6-34 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
6.3.6 Configuring the System Control Space registers

The System Control Space (SCS) registers are located at 0xE000E000. A structure can be
used to represent such a large number of individual registers and related offsets, see
Example 6-19. You can then position the structure in the correct memory location using
a scatter-loading description file, using a similar method to the vector table.

You can find samples of this code for both the Cortex-M1 and Cortex-M3 processors in
the examples directory, install_directory\RVDS\Examples\..\Example3.

Example 6-19 SCS register structure and definition

typedef volatile struct {
int MasterCtrl;
int IntCtrlType;

int zReserved008_00c[2]; /* Reserved space */

struct {
int Ctrl;
int Reload;
int Value;
int Calibration;

} SysTick;

int zReserved020_0fc[(0x100-0x20)/4]; /* Reserved space */
/* Offset 0x0100
* Additional space allocated to ensure alignment
*/

struct {
int Enable[32];
int Disable[32];
int Set[32];
int Clear[32];
int Active[64]; /* ARMv7-M only */
int Priority[64];

} NVIC;

int zReserved0x500_0xcfc[(0xd00-0x500)/4]; /* Reserved space */
/* Offset 0x0d00 */

int CPUID;
int IRQcontrolState;
int ExceptionTableOffset;
int AIRC;
int SysCtrl; /* ARMv7-M only */
int ConfigCtrl; /* ARMv7-M only */
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-35
ID101213 Non-Confidential,

Handling Processor Exceptions
int SystemPriority[3]; /* ARMv7-M only */

int zReserved0xd40_0xd90[(0xd90-0xd40)/4]; /* Reserved space */
/* Offset 0x0d90 */

struct {
int Type; /* ARMv7-M only */
int Ctrl; /* ARMv7-M only */
int RegionNumber; /* ARMv7-M only */
int RegionBaseAddr; /* ARMv7-M only */
int RegionAttrSize; /* ARMv7-M only */

} MPU; /* ARMv7-M only */
} SCS_t;

/*
 * System Control Space (SCS) Registers
 * in separate section so it can be placed correctly using scatter file
 */
#pragma arm section zidata="scs_registers"
SCS_t SCS;
#pragma arm section

Note
 The contents of the SCS registers might be different for your implementation. For
example, there might be no SysTick registers if the Operating System extension is not
implemented.

6.3.7 Configuring individual IRQs

Each IRQ has an individual enable bit in the Interrupt Set Enable Registers, part of the
NVIC registers. To enable or disable an IRQ, you must set the corresponding bit in the
Interrupt Set Enable Register to either 1 or 0 respectively. See the reference manual for
the device you are using for specific information about the Interrupt Set Enable
Register.

Example 6-20 on page 6-37 shows a typical function that enables an IRQ for the SCS
structure shown in Example 6-19 on page 6-35.
6-36 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
Example 6-20 IRQ Enable Function

void NVIC_enableISR(unsigned isr)
{

/* The isr argument is the number of the interrupt to enable. */
SCS.NVIC.Enable[(isr/32)] = 1<<(isr % 32);

}

Note
 Some registers in the NVIC region can only be accessed from Privileged mode.

You can assign a priority level to each individual interrupt using the Interrupt Priority
Registers apart from Hard Fault, Non Maskable Interrupt (NMI), and reset which have
fixed priorities.

6.3.8 Supervisor calls

As with previous ARM processors, there is an SVC instruction that generates an SVC.
SVCs are normally used to request privileged operations or access to system resources
from an operating system.

The SVC instruction has a number embedded within it, often referred to as the SVC
number. On most ARM processors, this is used to indicate the service that is being
requested. On microcontroller profiles, the processor saves the argument registers to the
stack on the initial exception entry.

A late-arriving exception, taken before the first instruction of the SVC handler executes,
might corrupt the copy of the arguments still held in R0 to R3. This means that the stack
copy of the arguments must be used by the SVC handler. Any return value must also be
passed back to the caller by modifying the stacked register values. In order to do this, a
short piece of assembly code must be implemented at the start of the SVC handler. This
identifies where the registers are saved, extracts the SVC number from the instruction,
and passes the number, and a pointer to the arguments, to the main body of the handler
written in C.

Example 6-21 on page 6-38 shows an example SVC handler. This code tests the
EXC_RETURN value set by the processor to determine which stack pointer was in use
when the SVC was called. This can be useful for reentrant SVCs, but is unnecessary on
most systems because in a typical system design, SVCs are only called from user code
that uses the process stack. In such cases, the assembly code can consist of a single MSR
instruction followed by a tail calling branch (B instruction) to the C body of the handler.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-37
ID101213 Non-Confidential,

Handling Processor Exceptions
Example 6-21 Example SVC Handler

__asm void SVCHandler(void)
{

IMPORT SVCHandler_main
TST lr, #4
ITE EQ
MRSEQ R0, MSP
MRSNE R0, PSP
B SVCHandler_main

}
void SVCHandler_main(unsigned int * svc_args)
{

unsigned int svc_number;
/*
* Stack contains:
* R0, R1, R2, R3, R12, R14, the return address and xPSR
* First argument (R0) is svc_args[0]
*/
svc_number = ((char *)svc_args[6])[-2];
switch(svc_number)
{

case SVC_00:
/* Handle SVC 00 */
break;

case SVC_01:
/* Handle SVC 01 */
break;

default:
/* Unknown SVC */
break;

}
}

Example 6-22 shows how you can make different declarations for a number of SVCs.
__svc is a compiler keyword that replaces a function call with an SVC instruction
containing the specified number.

Example 6-22 Example of calling an SVC from C code

#define SVC_00 0x00
#define SVC_01 0x01
void __svc(SVC_00) svc_zero(const char *string);
void __svc(SVC_01) svc_one(const char *string);
int call_system_func(void)
{

6-38 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Handling Processor Exceptions
svc_zero("String to pass to SVC handler zero");
svc_one("String to pass to a different OS function");

}

6.3.9 System timer

The SCS includes a system timer, SysTick, that an operating system can use to ease
porting from another platform. Software can poll SysTick, or you can configure it to
generate an interrupt. The SysTick interrupt has its own entry in the vector table and
therefore can have its own handler.

Table 6-3 describes the four registers that you use to configure SysTick.

Configuring SysTick

To configure SysTick, load the interval required between SysTick events to the SysTick
Reload Value register. The timer interrupt, or COUNTFLAG bit in the SysTick Control
and Status register, is activated on the transition from 1 to 0, therefore it activates every
n+1 clock ticks. If you require a period of 100, write 99 to the SysTick Reload Value
register. The SysTick Reload Value register supports values between 0x1 and
0x00FFFFFF.

If you want to use SysTick to generate an event at a timed interval, for example 1ms,
you can use the SysTick Calibration Value Register to scale your value for the Reload
register. The SysTick Calibration Value Register is a read-only register that contains the
number of pulses for a period of 10ms, in the TENMS field, bits[23:0].

This register also has a SKEW bit. Bit[30] == 1 indicates that the calibration for 10ms
in the TENMS section is not exactly 10ms due to clock frequency. Bit[31] == 1
indicates that the reference clock is provided.

Table 6-3

Name Address Description

SysTick Control and Status 0xE000E010 Basic control of SysTick: enable, clock source, interrupt, or poll

SysTick Reload Value 0xE000E014 Value to load Current Value register when 0 is reached

SysTick Current Value 0xE000E018 The current value of the count down

SysTick Calibration Value 0xE000E01C Contains the current value of the count down
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-39
ID101213 Non-Confidential,

Handling Processor Exceptions
Note
 For Cortex-M1 processors, the TENMS field reads as zero because the calibration value
is unknown.

The Control and Status Register can poll the timer either by reading COUNTFLAG,
bit[16] and the SysTick generating an interrupt.

By default, SysTick is configured for polling mode. In this mode, user code polls
COUNTFLAG, to ascertain if the SysTick event had occurred. This is indicated by
COUNTFLAG being set. Reading the Control and Status register clears COUNTFLAG.
To configure SysTick to generate an interrupt, set TICKINT, bit[1] of the SysTick
Control and Status register, to 1. You must also enable the appropriate interrupt in the
NVIC, and select the clock source using CLKSOURCE, bit[2]. Setting this to 1 selects
the processor clock, and 0 selects the external reference clock.

Note
 For ARMv6-M processors, the CLKSOURCE field reads as One because SysTick
always uses the processor clock.

You can enable the timer by setting bit[0] of the SysTick Status and Control register.
6-40 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 7
Debug Communications Channel

This chapter explains how to use the Debug Communications Channel (DCC).

It contains the following sections:

• About the Debug Communications Channel on page 7-2

• DCC communication between target and host debug tools on page 7-3

• Access from Thumb state on page 7-6.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 7-1
ID101213 Non-Confidential,

Debug Communications Channel
7.1 About the Debug Communications Channel

The EmbeddedICE® logic in ARM® processors contains a debug communications
channel. This enables data to be passed between the target and the host debug tools. This
chapter describes how the DCC can be accessed by a program running on the target, and
by the host debugger.

To illustrate the use of the DCC as described in this chapter, see the example code in the
examples directory, install_directory\RVDS\Examples\...\dcc\. More information can
be found in readme.txt.

Note
 The latest release of ARM RealView® Debugger provides support for a DCC viewer.
You can run the executable image in RealView Debugger and use the DCC viewer to
send and receive data from your target.
7-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Debug Communications Channel
7.2 DCC communication between target and host debug tools

The target accesses the DCC as coprocessor 14 on the processor using the ARM
instructions MCR and MRC. Figure 7-1 shows three DCC registers to control and transfer
data between the target and host debug tools.

Read register

For the target to read data sent from the host debug tools.

Write register

For the target to write messages to the host debug tools.

Control register

To provide handshaking information for the target and the host debug
tools.

For pre-ARMv6 processors:

Bit 1 (W bit) Clear when the target can send data.

Bit 0 (R bit) Set when there is data for the target to read.

For ARMv6 and later processors:

Bit 29 (W bit) Clear when the target can send data.

Bit 30 (R bit) Set when there is data for the target to read.

Figure 7-1 DCC communication between target and host debug tools

Note
 For information on accessing DCC registers, see the Technical Reference Manual for
your processor.

S
can chain 2

Write register

Read register

Control register JTAG
RealView

ICE

DCC Host debug tools

Target code
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 7-3
ID101213 Non-Confidential,

Debug Communications Channel
7.2.1 Interrupt-driven debug communications

Example 7-1 shows a code snippet that demonstrates a simple DCC routine. Text sent
from the debug tools is echoed back from the target with a change of case. Build an
executable image from this example (in install_directory\RVDS\Examples\...\dcc\)
and run it on your target using the JTAG port. You can use the Comms Channel view in
RealView Debugger to communicate with your target. See the RealView Debugger User
Guide for more information.

Example 7-1 DCC communication between target and host debug tools

 AREA DCC, CODE, READONLY
ENTRY

; Declare assembly time substitution variables SCReg, DReg, TestFull, and
; TestEmpty
…

pollin
MRC p14,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST r3, $TestFull
BEQ pollin ; If R bit clear then loop

read
MRC p14,0,r0,$DReg,0 ; read word into r0

char_masks
MOV r4, #0x20 ; EOR mask to invert case of a char by flipping bit 6
MOV r5, #0xC0 ; AND mask to clear all but top 2 bits of each char

changeCase
TST r0, r5 ; Check whether character value is >0x3F
EORNE r0, r0, r4 ; If character value >0x3F, flip bit 6

; of the character to invert case
MOV r5, r5, LSL #0x8 ; Shift the character mask left by 1 char
MOVS r4, r4, LSL #0x8 ; Shift the case inverter pattern left by 1 char
BNE changeCase ; If the inverter pattern is non-zero there are

; more chars, so branch to do the next one
pollout

MRC p14,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST r3, $TestEmpty
BNE pollout ; if W set, register still full

write
7-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Debug Communications Channel
MCR p14,0,r0,$DReg,0 ; Write word from r0
B pollin ; Loop for more words to read
END

You can convert this type of polled example to an interrupt-driven example if COMMRX and
COMMTX signals from the Embedded ICE logic are connected to your interrupt controller.
The read and write code can then be used in an interrupt handler. See Interrupt handlers
on page 6-9 for information on writing interrupt handlers.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 7-5
ID101213 Non-Confidential,

Debug Communications Channel
7.3 Access from Thumb state

On processors with architecture earlier than the ARM architecture v6T2, you cannot use
the debug communications channel while the processor is in Thumb® state, because
there are no Thumb coprocessor instructions.

There are three possible ways around this:

• You can write each polling routine in a SVC handler, which can then be invoked
while in either ARM or Thumb state. Entering the SVC handler immediately puts
the processor into ARM state where the coprocessor instructions are available.
See Chapter 6 Handling Processor Exceptions for more information on SVCs.

• Thumb code can make interworking calls to ARM subroutines that implement the
polling. See Chapter 5 Interworking ARM and Thumb for more information on
mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The
interrupt handler runs in ARM instruction set state, so the coprocessor
instructions can be accessed directly.
7-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Chapter 8
Semihosting

This chapter describes the semihosting mechanism.

It contains the following sections:

• About semihosting on page 8-2

• Semihosting implementation on page 8-6

• Semihosting operations on page 8-8

• Debug agent interaction SVCs on page 8-24.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-1
ID101213 Non-Confidential,

Semihosting
8.1 About semihosting

Semihosting enables code running on an ARM® target to use the I/O facilities on a host
computer that is running RealView® Debugger. Examples of these facilities include
keyboard input, screen output, and disk I/O.

8.1.1 What is semihosting?

Semihosting is a mechanism for ARM targets to communicate input/output requests
from application code to a host computer running a debugger. For example, you can use
this mechanism to enable functions in the C library, such as printf() and scanf(), to use
the screen and keyboard of the host instead of having a screen and keyboard on the
target system.

This is useful because development hardware often does not have all the input and
output facilities of the final system. Semihosting enables the host computer to provide
these facilities.

Semihosting is implemented by a set of defined software instructions, for example,
SVCs, that generate exceptions from program control. The application invokes the
appropriate semihosting call and the debug agent then handles the exception. The debug
agent provides the required communication with the host.

The semihosting interface is common across all debug agents provided by ARM.
Semihosted operations work when you are using RealView ARMulator® ISS,
Instruction Set System Model (ISSM), Real Time System Model (RTSM), RealView ICE
or RealMonitor without any requirement for porting, see Figure 8-1 on page 8-3.

In many cases, semihosting is invoked by code within library functions. The application
can also invoke the semihosting operation directly. See Chapter 2 The C and C++
Libraries in the Libraries and Floating Point Support Guide for more information on
support for semihosting in the ARM C library.
8-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Figure 8-1 Semihosting overview

Note
 ARM processors prior to ARMv7 use the SVC instructions, formerly known as SWI
instructions, to make semihosting calls. However, if you are compiling for an
ARMv6-M or ARMv7-M, for example a Cortex™-M1 or Cortex-M3 processor,
semihosting is implemented using the BKPT instruction.

8.1.2 The semihosting interface

The ARM and Thumb® SVC instructions contain a field that encodes the SVC number
used by the application code. The system SVC handler can decode this number.

Note
 If you are compiling for the ARMv6-M or ARMv7-M, the Thumb BKPT instruction is
used instead of the Thumb SVC instruction. Both BKPT and SVC take an 8-bit immediate
value. In all other respects, semihosting is the same for all supported ARM processors.

printf("hello\n");

SVC

Application Code

C Library Code

SVC handled by
debug agent

hello

Communication with
debugger running
on host

Text displayed
on host screen

debugger

Target

Host

printf()
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-3
ID101213 Non-Confidential,

Semihosting
Semihosting operations are requested using a single SVC number, leaving the other
numbers available for use by the application or operating system. The SVC number
used for semihosting depends on the target architecture or processor:

SVC 0x123456 In ARM state for all architectures.

SVC 0xAB In ARM state and Thumb state, excluding ARMv6-M and ARMv7-M.
This behavior is not guaranteed on all debug targets from ARM or from
third parties.

BKPT 0xAB For ARMv6-M and ARMv7-M, Thumb state only.

See also Changing the semihosting operation numbers on page 8-5.

The SVC number indicates to the debug agent that the SVC instruction is a semihosting
request. To distinguish between operations, the operation type is passed in R0. All other
parameters are passed in a block that is pointed to by R1.

The result is returned in R0, either as an explicit return value or as a pointer to a data
block. Even if no result is returned, assume that R0 is corrupted.

The available semihosting operation numbers passed in R0 are allocated as follows:

0x00-0x31 Used by ARM.

0x32-0xFF Reserved for future use by ARM.

0x100-0x1FF Reserved for user applications. These are not used by ARM.

If you are writing your own SVC operations, however, you are advised to
use a different SVC number rather than using the semihosted SVC
number and these operation type numbers.

0x200-0xFFFFFFFF

Undefined and currently unused. It is recommended that you do not use
these.

In the following sections, the number in parentheses after the operation name is the
value placed into R0, for example SYS_OPEN (0x01).

If you are calling SVCs from assembly language code ARM recommends that you use
the operation names defined in semihost.h. This is installed as part of the RealView
ARMulator Extension Kit. You can define the operation names with an EQU directive.
For example:

SYS_OPEN EQU 0x01
SYS_CLOSE EQU 0x02
8-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Changing the semihosting operation numbers

It is strongly recommended that you do not change the semihosting operation numbers.
If you do, you must:

• change all the code in your system, including library code, to use the new number

• reconfigure your debugger to use the new number.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-5
ID101213 Non-Confidential,

Semihosting
8.2 Semihosting implementation

The functionality provided by semihosting is generally the same on all debug agents.
However, the implementation of semihosting differs between hosts.

This section describes the semihosting implementation on different debug agents.

8.2.1 RealView ARMulator ISS

When a semihosting request is encountered, RealView ARMulator ISS traps the SVC
directly and the instruction in the SVC entry in the vector table is not executed.

To turn the support for semihosting off in RealView ARMulator ISS, change
Default_Semihost in the default.ami file to No_Semihost.

See the RealView ARMulator ISS User Guide for more information.

8.2.2 RealView ICE

When using the RealView ICE DLL, semihosting is handled with either a real SVC
exception handler, or by emulating a handler using breakpoints. See the RealView ICE
and RealView Trace User Guide, for more information about semihosting with
RealView ICE.

8.2.3 Instruction Set System Model

When a semihosting request is encountered, ISSM traps the request directly and the
instruction in the SVC entry in the vector table is not executed. See your debugger
documentation for more information about semihosting with ISSM.

To turn the support for semihosting off in ISSM, configure the target in your debugger
or change the appropriate entry in the default.smc file:

...Name="semihosting-enable" Type="Bool">1</param>
8-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
8.2.4 RealMonitor

RealMonitor implements an SVC handler that must be integrated with your system to
enable semihosting support.

When the target executes a semihosted SVC instruction, the RealMonitor SVC handler
carries out the required communication with the host.

For more information see the documentation supplied with RealMonitor.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-7
ID101213 Non-Confidential,

Semihosting
8.3 Semihosting operations

This section lists the semihosting operations that enable debug I/O facilities between a
host computer and an ARM target.

8.3.1 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor mode and disables all interrupts by setting both
interrupt mask bits in the new CPSR. With RealView ICE or RealMonitor, the User stack
pointer, R13_USR is copied to the Supervisor mode stack pointer, R13_SVC and the I and F
bits in the current CPSR are set, disabling normal and fast interrupts.

Note
 If debugging with RealView ARMulator ISS:

• R0 is set to zero indicating that no function is available for returning to User mode

• the User mode stack pointer is not copied to the Supervisor mode stack pointer.

Entry

Register R1 is not used. The CPSR can specify User or Supervisor mode.

Return

On exit, R0 contains the address of a function to be called to return to User mode. The
function has the following prototype:

void ReturnToUSR(void)

If EnterSVC is called in User mode, this routine returns the caller to User mode and
restores the interrupt flags. Otherwise, the action of this routine is undefined.

If entered in User mode, the Supervisor mode stack is lost as a result of copying the user
stack pointer. The return to User routine restores R13_SVC to the Supervisor mode stack
value, but this stack must not be used by applications.

After executing the SVC, the current link register is R14_SVC, not R14_USR. If the value of
R14_USR is required after the call, it must be pushed onto the stack before the call and
popped afterwards, as for a BL function call.
8-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
8.3.2 angel_SWIreason_ReportException (0x18)

This SVC can be called by an application to report an exception to the debugger directly.
The most common use is to report that execution has completed, using
ADP_Stopped_ApplicationExit.

Entry

On entry R1 is set to one of the values listed in Table 8-1 and Table 8-2 on page 8-10.
These values are defined in angel_reasons.h.

The hardware exceptions are generated if the debugger variable vector_catch is set to
catch that exception type, and the debug agent is capable of reporting that exception
type.

Table 8-1 Hardware vector reason codes

Name
Hexadecimal

value

ADP_Stopped_BranchThroughZero 0x20000

ADP_Stopped_UndefinedInstr 0x20001

ADP_Stopped_SoftwareInterrupt 0x20002

ADP_Stopped_PrefetchAbort 0x20003

ADP_Stopped_DataAbort 0x20004

ADP_Stopped_AddressException 0x20005

ADP_Stopped_IRQ 0x20006

ADP_Stopped_FIQ 0x20007
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-9
ID101213 Non-Confidential,

Semihosting
Exception handlers can use these SVCs at the end of handler chains as the default
action, to indicate that the exception has not been handled.

In Table 8-2, a * next to a value indicates that the value is not supported by the ARM
debugger. The debugger reports an Unhandled ADP_Stopped exception for these values.

Return

No return is expected from these calls. However, it is possible for the debugger to
request that the application continue by performing an RDI_Execute request or
equivalent. In this case, execution continues with the registers as they were on entry to
the SVC, or as subsequently modified by the debugger.

Table 8-2 Software reason codes

Name
Hexadecimal

value

ADP_Stopped_BreakPoint 0x20020

ADP_Stopped_WatchPoint 0x20021

ADP_Stopped_StepComplete 0x20022

ADP_Stopped_RunTimeErrorUnknown *0x20023

ADP_Stopped_InternalError *0x20024

ADP_Stopped_UserInterruption 0x20025

ADP_Stopped_ApplicationExit 0x20026

ADP_Stopped_StackOverflow *0x20027

ADP_Stopped_DivisionByZero *0x20028

ADP_Stopped_OSSpecific *0x20029
8-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
8.3.3 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with
SYS_OPEN.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 contains a handle for an open file.

Return

On exit, R0 contains:

• 0 if the call is successful

• –1 if the call is not successful.

8.3.4 SYS_CLOCK (0x10)

Returns the number of centiseconds since the execution started.

Values returned by this SVC can be of limited use for some benchmarking purposes
because of communication overhead or other agent-specific factors. For example, with
RealView ICE the request is passed back to the host for execution. This can lead to
unpredictable delays in transmission and process scheduling.

Use this function to calculate time intervals, by calculating differences between
intervals with and without the code sequence to be timed.

Some systems enable more accurate timing, see SYS_ELAPSED (0x30) on page 8-12
and SYS_TICKFREQ (0x31) on page 8-20.

Entry

Register R1 must contain zero. There are no other parameters.

Return

On exit, R0 contains:

• the number of centiseconds since some arbitrary start point, if the call is
successful

• –1 if the call is not successful, for example, because of a communications error.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-11
ID101213 Non-Confidential,

Semihosting
8.3.5 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since execution started. Use SYS_TICKFREQ to
determine the tick frequency.

Entry

On entry, R1 points to a two-word data block to be used for returning the number of
elapsed ticks:

word 1 the least significant word in the doubleword value

word 2 the most significant word.

Return

On exit:

• R0 contains –1 if R1 does point to a doubleword containing the number of elapsed
ticks. RealView ICE does not support this SVC and always return –1 in R0.

• R1 points to a doubleword, low-order word first, that contains the number of
elapsed ticks.

8.3.6 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host
implementation of the semihosting SVCs. The errno variable can be set by a number of
C library semihosted functions, including:

• SYS_REMOVE

• SYS_OPEN

• SYS_CLOSE

• SYS_READ

• SYS_WRITE

• SYS_SEEK.

Whether errno is set or not, and to what value, is entirely host-specific, except where
the ISO C standard defines the behavior.

Entry

There are no parameters. Register R1 must be zero.
8-12 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Return

On exit, R0 contains the value of the C library errno variable.

8.3.7 SYS_FLEN (0x0C)

Returns the length of a specified file.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 A handle for a previously opened, seekable file object.

Return

On exit, R0 contains:

• the current length of the file object, if the call is successful

• –1 if an error occurs.

8.3.8 SYS_GET_CMDLINE (0x15)

Returns the command line used to call the executable, that is, argc and argv.

Entry

On entry, R1 points to a two-word data block to be used for returning the command string
and its length:

word 1 a pointer to a buffer of at least the size specified in word two

word 2 the length of the buffer in bytes.

Return

On exit:

• Register R1 points to a two-word data block:

word 1 a pointer to null-terminated string of the command line

word 2 the length of the string.

The debug agent might impose limits on the maximum length of the string that
can be transferred. However, the agent must be able to transfer a command line of
at least 80 bytes.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-13
ID101213 Non-Confidential,

Semihosting
• Register R0 contains an error code:

— 0 if the call is successful

— –1 if the call is not successful, for example, because of a communications
error.

8.3.9 SYS_HEAPINFO (0x16)

Returns the system stack and heap parameters. The values returned are typically those
used by the C library during initialization. For RealView ARMulator ISS, the values
returned are those provided in peripherals.ami. For RealView ICE, the values returned
are the image location and the top of memory.

The C library can override these values. See the Tailoring storage management on
page 2-65 in the Libraries and Floating Point Support Guide for more information
about memory management in the C library.

The host debugger determines the actual values to return by using the top_of_memory
debugger variable.

Entry

On entry, R1 contains the address of a pointer to a four-word data block. The contents of
the data block are filled by the function. See Example 8-1 for the structure of the data
block and return values.

Example 8-1

struct block {
 int heap_base;
 int heap_limit;
 int stack_base;
 int stack_limit;
};
struct block *mem_block, info;
mem_block = &info;
AngelSWI(SYS_HEAPINFO, (unsigned) &mem_block);

Note
 If word one of the data block has the value zero, the C library replaces the zero with
Image$$ZI$$Limit. This value corresponds to the top of the data region in the memory
map.
8-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Return

On exit, R1 contains the address of the pointer to the structure.

If one of the values in the structure is 0, the system was unable to calculate the real
value.

8.3.10 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or
not. This call is passed a parameter block containing the error code to examine.

Entry

On entry, R1 contains a pointer to a one-word data block:

word 1 The required status word to check.

Return

On exit, R0 contains:

• 0 if the status word is not an error indication

• a nonzero value if the status word is an error indication.

8.3.11 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 A handle for a previously opened file object.

Return

On exit, R0 contains:

• 1 if the handle identifies an interactive device

• 0 if the handle identifies a file

• a value other than 1 or 0 if an error occurs.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-15
ID101213 Non-Confidential,

Semihosting
8.3.12 SYS_OPEN (0x01)

Opens a file on the host system. The file path is specified either as relative to the current
directory of the host process, or absolute, using the path conventions of the host
operating system.

ARM targets interpret the special path name :tt as meaning the console input stream,
for an open-read or the console output stream, for an open-write. Opening these streams
is performed as part of the standard startup code for those applications that reference the
C stdio streams.

Entry

On entry, R1 contains a pointer to a three-word argument block:

word 1 A pointer to a null-terminated string containing a file or device name.

word 2 An integer that specifies the file opening mode. Table 8-3 gives the valid
values for the integer, and their corresponding ISO C fopen() mode.

word 3 An integer that gives the length of the string pointed to by word 1.

The length does not include the terminating null character that must be
present.

Return

On exit, R0 contains:

• a nonzero handle if the call is successful

• –1 if the call is not successful.

8.3.13 SYS_READ (0x06)

Reads the contents of a file into a buffer. The file position is specified either:

• explicitly by a SYS_SEEK

• implicitly one byte beyond the previous SYS_READ or SYS_WRITE request.

Table 8-3 Value of mode

mode 0 1 2 3 4 5 6 7 8 9 10 11

ISO C fopen modea r rb r+ r+b w wb w+ w+b a ab a+ a+b

a. The non-ANSI option t is not supported.
8-16 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
The file position is at the start of the file when the file is opened, and is lost when the
file is closed. Perform the file operation as a single action whenever possible. For
example, do not split a read of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, R1 contains a pointer to a four-word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN

word 2 points to a buffer

word 3 contains the number of bytes to read to the buffer from the file.

Return

On exit:

• R0 contains zero if the call is successful.

• If R0 contains the same value as word 3, the call has failed and EOF is assumed.

• If R0 contains a smaller value than word 3, the call was partially successful. No
error is assumed, but the buffer has not been filled.

If the handle is for an interactive device, that is, SYS_ISTTY returns –1. A nonzero return
from SYS_READ indicates that the line read did not fill the buffer.

8.3.14 SYS_READC (0x07)

Reads a byte from the console.

Entry

Register R1 must contain zero. There are no other parameters or values possible.

Return

On exit, R0 contains the byte read from the console.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-17
ID101213 Non-Confidential,

Semihosting
8.3.15 SYS_REMOVE (0x0E)

Caution
 Deletes a specified file on the host filing system.

Entry

On entry, R1 contains a pointer to a two-word argument block:

word 1 points to a null-terminated string that gives the path name of the file to be
deleted

word 2 the length of the string.

Return

On exit, R0 contains:

• 0 if the delete is successful

• a nonzero, host-specific error code if the delete fails.

8.3.16 SYS_RENAME (0x0F)

Renames a specified file.

Entry

On entry, R1 contains a pointer to a four-word data block:

word 1 a pointer to the name of the old file

word 2 the length of the old filename

word 3 a pointer to the new filename

word 4 the length of the new filename.

Both strings are null-terminated.

Return

On exit, R0 contains:

• 0 if the rename is successful

• a nonzero, host-specific error code if the rename fails.
8-18 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
8.3.17 SYS_SEEK (0x0A)

Seeks to a specified position in a file using an offset specified from the start of the file.
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, R1 contains a pointer to a two-word data block:

word 1 a handle for a seekable file object

word 2 the absolute byte position to search to.

Return

On exit, R0 contains:

• 0 if the request is successful

• A negative value if the request is not successful. SYS_ERRNO can be used to read the
value of the host errno variable describing the error.

Note
 The effect of seeking outside the current extent of the file object is undefined.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-19
ID101213 Non-Confidential,

Semihosting
8.3.18 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This enables you to execute a
system command such as dir, ls, or pwd. The terminal I/O is on the host, and is not
visible to the target.

Caution
 The command passed to the host is executed on the host. Ensure that any command
passed has no unintended consequences.

Entry

On entry, R1 contains a pointer to a two-word argument block:

word 1 points to a string to be passed to the host command-line interpreter

word 2 the length of the string.

Return

On exit, R0 contains the return status.

8.3.19 SYS_TICKFREQ (0x31)

Returns the tick frequency.

Entry

Register R1 must contain 0 on entry to this routine.

Return

On exit, R0 contains either:

• The number of ticks per second

• –1 if the target does not know the value of one tick. RealView ICE does not
support this SVC and always return –1 in R0.

8.3.20 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970. This is real-world time,
regardless of any RealView ARMulator ISS, ISSM, RTSM, or RealView ICE
configuration.
8-20 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Entry

There are no parameters.

Return

On exit, R0 contains the number of seconds.

8.3.21 SYS_TMPNAM (0x0D)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, R1 contains a pointer to a three-word argument block:

word 1 A pointer to a buffer.

word 2 A target identifier for this filename. Its value must be an integer in the
range 0 to 255.

word 3 Contains the length of the buffer. The length must be at least the value of
L_tmpnam on the host system.

Return

On exit, R0 contains:

• 0 if the call is successful

• –1 if an error occurs.

The buffer pointed to by R1 contains the filename, prefixed with a suitable directory
name.

If you use the same target identifier again, the same filename is returned.

Note
 The returned string must be null-terminated.

8.3.22 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file
position is specified either:

• explicitly, by a SYS_SEEK

• implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-21
ID101213 Non-Confidential,

Semihosting
The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

Perform the file operation as a single action whenever possible. For example, do not
split a write of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, R1 contains a pointer to a three-word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN

word 2 points to the memory containing the data to be written

word 3 contains the number of bytes to be written from the buffer to the file.

Return

On exit, R0 contains:

• 0 if the call is successful

• the number of bytes that are not written, if there is an error.

8.3.23 SYS_WRITEC (0x03)

Writes a character byte, pointed to by R1, to the debug channel. When executed under
an ARM debugger, the character appears on the host debugger console.

Entry

On entry, R1 contains a pointer to the character.

Return

None. Register R0 is corrupted.

8.3.24 SYS_WRITE0 (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM
debugger, the characters appear on the host debugger console.

Entry

On entry, R1 contains a pointer to the first byte of the string.
8-22 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

Semihosting
Return

None. Register R0 is corrupted.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 8-23
ID101213 Non-Confidential,

Semihosting
8.4 Debug agent interaction SVCs

In addition to the C library semihosted functions described in Semihosting operations
on page 8-8, the following SVCs support interaction with the debug agent:

• angel_SWIreason_EnterSVC (0x17) on page 8-8

• angel_SWIreason_ReportException (0x18) on page 8-9.
8-24 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213

	RealView Compilation Tools Developer Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on RealView Compilation Tools
	Feedback on this book

	Introduction
	1.1 About RealView Compilation Tools
	1.2 Using the examples

	Developing for ARM Processors
	2.1 About the ARM architectures
	2.1.1 Multiprocessing systems
	2.1.2 Tightly coupled memory
	2.1.3 Memory management
	2.1.4 Thumb-2
	2.1.5 Floating-point build options

	2.2 ARM architecture v4T
	2.2.1 Key features
	2.2.2 Alignment support
	2.2.3 Endian support

	2.3 ARM architecture v5TE
	2.3.1 Key features
	2.3.2 Alignment support
	2.3.3 Endian support

	2.4 ARM architecture v6
	2.4.1 Key features
	2.4.2 Alignment support
	2.4.3 Endian support

	2.5 ARM architecture v6-M
	2.5.1 Key features
	2.5.2 Alignment support
	2.5.3 Endian support

	2.6 ARM architecture v7-A
	2.6.1 Key features
	2.6.2 Alignment support
	2.6.3 Endian support

	2.7 ARM architecture v7-R
	2.7.1 Key features
	2.7.2 Alignment support
	2.7.3 Endian support

	2.8 ARM architecture v7-M
	2.8.1 Key features
	2.8.2 Alignment support
	2.8.3 Endian support

	Embedded Software Development
	3.1 About embedded software development
	3.1.1 Example code

	3.2 Default compilation tool behavior
	3.2.1 C library structure
	3.2.2 Default memory map
	3.2.3 Application startup

	3.3 Tailoring the C library to your target hardware
	3.4 Tailoring the image memory map to your target hardware
	3.4.1 Scatter-loading description file
	3.4.2 Root regions
	3.4.3 Placing the stack and heap

	3.5 Reset and initialization
	3.5.1 The vector table
	3.5.2 ROM and RAM remapping
	3.5.3 Local memory setup considerations
	3.5.4 Stack pointer initialization
	3.5.5 Hardware initialization
	3.5.6 Execution mode considerations

	3.6 Target hardware and the memory map

	Mixing C, C++, and Assembly Language
	4.1 Using instruction intrinsics, inline and embedded assembler
	4.2 Accessing C global variables from assembly code
	4.3 Using C header files from C++
	4.3.1 Including system C header files
	4.3.2 Including your own C header files

	4.4 Calling between C, C++, and ARM assembly language
	4.4.1 General rules for calling between languages
	4.4.2 Information specific to C++
	4.4.3 Examples of calling between languages

	Interworking ARM and Thumb
	5.1 About interworking
	5.1.1 When to use interworking

	5.2 Assembly language interworking
	5.3 C and C++ interworking
	5.3.1 Pointers to functions in Thumb state
	5.3.2 Using two versions of the same function

	5.4 Interworking examples

	Handling Processor Exceptions
	6.1 About processor exceptions
	6.2 ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	6.2.1 Types of exception
	6.2.2 The vector table
	6.2.3 Processor modes and registers
	6.2.4 Handling an exception
	6.2.5 Reset handlers
	6.2.6 Data Abort handler
	6.2.7 Interrupt handlers
	6.2.8 SVC handlers
	6.2.9 Prefetch Abort handler
	6.2.10 Undefined instruction handlers

	6.3 ARMv6-M and ARMv7-M profiles
	6.3.1 Main and Process Stacks
	6.3.2 Types of exception
	6.3.3 The vector table
	6.3.4 The Nested Vectored Interrupt Controller
	6.3.5 Handling an exception
	6.3.6 Configuring the System Control Space registers
	6.3.7 Configuring individual IRQs
	6.3.8 Supervisor calls
	6.3.9 System timer

	Debug Communications Channel
	7.1 About the Debug Communications Channel
	7.2 DCC communication between target and host debug tools
	7.2.1 Interrupt-driven debug communications

	7.3 Access from Thumb state

	Semihosting
	8.1 About semihosting
	8.1.1 What is semihosting?
	8.1.2 The semihosting interface

	8.2 Semihosting implementation
	8.2.1 RealView ARMulator ISS
	8.2.2 RealView ICE
	8.2.3 Instruction Set System Model
	8.2.4 RealMonitor

	8.3 Semihosting operations
	8.3.1 angel_SWIreason_EnterSVC (0x17)
	8.3.2 angel_SWIreason_ReportException (0x18)
	8.3.3 SYS_CLOSE (0x02)
	8.3.4 SYS_CLOCK (0x10)
	8.3.5 SYS_ELAPSED (0x30)
	8.3.6 SYS_ERRNO (0x13)
	8.3.7 SYS_FLEN (0x0C)
	8.3.8 SYS_GET_CMDLINE (0x15)
	8.3.9 SYS_HEAPINFO (0x16)
	8.3.10 SYS_ISERROR (0x08)
	8.3.11 SYS_ISTTY (0x09)
	8.3.12 SYS_OPEN (0x01)
	8.3.13 SYS_READ (0x06)
	8.3.14 SYS_READC (0x07)
	8.3.15 SYS_REMOVE (0x0E)
	8.3.16 SYS_RENAME (0x0F)
	8.3.17 SYS_SEEK (0x0A)
	8.3.18 SYS_SYSTEM (0x12)
	8.3.19 SYS_TICKFREQ (0x31)
	8.3.20 SYS_TIME (0x11)
	8.3.21 SYS_TMPNAM (0x0D)
	8.3.22 SYS_WRITE (0x05)
	8.3.23 SYS_WRITEC (0x03)
	8.3.24 SYS_WRITE0 (0x04)

	8.4 Debug agent interaction SVCs

