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Preface

This preface introduces the ARM® RealView® Compilation Tools Developer Guide. It 
contains the following sections:

• About this book on page viii

• Feedback on page xii.
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Preface 
About this book

This book contains information that helps you to develop code for the ARM family of 
processors. The chapters in this book, and the examples used, assume that you are using 
the latest release of the ARM RealView Compilation Tools to develop your code.

Intended audience

This book is written for all developers who are producing applications using RealView 
Compilation Tools. It assumes that you are an experienced software developer, and that 
you are familiar with the ARM tools described in the RealView Compilation Tools 
Essentials Guide.

Using this book

This book is organized into the following chapters:

 Chapter 1 Introduction 

Read this chapter for an introduction to RealView Compilation Tools.

Chapter 2 Developing for ARM Processors 

Read this chapter for information on the key features for each type of 
architecture and to identify some of the main points to be aware of when 
using the RealView Compilation Tools.

Chapter 3 Embedded Software Development 

Read this chapter for information about how to develop embedded 
applications with RealView Compilation Tools. It describes the default 
RealView Compilation Tools behavior in the absence of a target system, 
and how to tailor the C library and image memory map to your target 
system.

Chapter 5 Interworking ARM and Thumb 

Read this chapter for information about how to change between ARM 
state and Thumb® state when writing code for processors that implement 
the Thumb instruction set.

Chapter 4 Mixing C, C++, and Assembly Language 

Read this chapter for information about how to write a mixture of C, C++, 
and ARM assembly language code for the ARM architecture. It also 
describes how to use the ARM instruction intrinsics, inline assembler, 
and embedded assembler in C and C++ files.
viii Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Preface 
Chapter 6 Handling Processor Exceptions 

Read this chapter for information about how to handle the various types 
of exception supported by ARM processors.

Chapter 7 Debug Communications Channel 

Read this chapter for a description of how to use the Debug 
Communications Channel (DCC).

Chapter 8 Semihosting 

Read this chapter for information about the semihosting mechanism. 
Semihosting enables code running on an ARM target to use the I/O 
facilities on a host computer that is running an ARM debugger.

This book assumes that the ARM software is installed in the default location. For 
example, on Windows this might be volume:\Program Files\ARM. This is assumed to be 
the location of install_directory when referring to path names. For example 
install_directory\Documentation\.... You might have to change this if you have 
installed your ARM software in a different location.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or option 
name.

monospace italic 

Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

monospace bold 

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate, and for ARM processor 
signal names.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. ix
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Preface 
Further reading

This section lists publications from both ARM and third parties that provide additional 
information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://infocenter.arm.com/help/index.jsp for current errata sheets and addenda, and 
the ARM Frequently Asked Questions (FAQs).

ARM publications

This book contains general information on developing applications for the ARM family 
of processors. Other publications included in the suite are:

• RVCT Essentials Guide (ARM DUI 0202)

• RVCT Compiler User Guide (ARM DUI 0205)

• RVCT Compiler Reference Guide (ARM DUI 0348)

• RVCT Libraries and Floating Point Support Guide (ARM DUI 0349)

• RVCT Linker User Guide (ARM DUI 0206)

• RVCT Linker Reference Guide (ARM DUI 0381)

• RVCT Utilities Guide (ARM DUI 0382)

• RVCT Assembler Guide (ARM DUI 0204).

For full information about the base standard, software interfaces, and standards 
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM 
products:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM 
DDI 0406)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM datasheet or technical reference manual for your hardware device.
x Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Preface 
Other publications

For an introduction to ARM architecture, see Andrew N. Sloss, Dominic Symes and 
Chris Wright, ARM System Developer's Guide: Designing and Optimizing System 
Software (2004). Morgan Kaufmann, ISBN 1-558-60874-5.

For an essential handbook for system-on-chip designers using ARM processors and 
engineers working with the ARM architecture, see Steve Furber, ARM system-on-chip 
architecture (2nd edition, 2000). Addison Wesley, ISBN 0-201-67519-6.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. xi
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Preface 
Feedback

ARM welcomes feedback on both RealView Compilation Tools, and its documentation.

Feedback on RealView Compilation Tools

If you have any problems with RealView Compilation Tools, contact your supplier. To 
help them provide a rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page numbers to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
xii Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213



Chapter 1 
Introduction

This chapter introduces the ARM® RealView® Compilation Tools. 

It contains the following sections:

• About RealView Compilation Tools on page 1-2

• Using the examples on page 1-3.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 1-1
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Introduction 
1.1 About RealView Compilation Tools

RealView Compilation Tools consists of a suite of applications, together with 
supporting documentation and examples, that enable you to write applications for the 
ARM family of processors. You can use RealView Compilation Tools to build C, C++, 
and ARM assembly language programs.

This book contains information that helps you to develop code for ARM processors. 
The chapters in this book, and the examples used, assume that you are using the latest 
release of RealView Compilation Tools to develop your code.

If you are upgrading to RealView Compilation Tools from a previous release, ensure 
that you read the RealView Compilation Tools Essentials Guide for information about 
new features and enhancements in this release.

If you are new to RealView Compilation Tools, read the RealView Compilation Tools 
Essentials Guide for an overview of the ARM tools and an introduction to using them 
as part of your development project.

For information about previous releases of RealView Compilation Tools, see Appendix 
A in the RealView Compilation Tools Essentials Guide.

See ARM publications on page x for a list of the other books in the RealView 
Compilation Tools documentation suite that give information on the ARM assembler, 
ARM compiler, ARM linker, and supporting software.
1-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Introduction 
1.2 Using the examples

This book uses the examples provided with RealView Development Suite. These can be 
found in the examples directory install_directory\RVDS\Examples. See the RealView 
Development Suite Getting Started Guide for a summary of the examples provided.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 1-3
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Chapter 2 
Developing for ARM Processors

This chapter describes the key features for each version of the architecture and identifies 
some of the main points to be aware of when using the ARM RealView Compilation 
Tools.

It contains the following sections:

• About the ARM architectures on page 2-2

• ARM architecture v4T on page 2-8

• ARM architecture v5TE on page 2-10

• ARM architecture v6 on page 2-12

• ARM architecture v6-M on page 2-16

• ARM architecture v7-A on page 2-18

• ARM architecture v7-R on page 2-20

• ARM architecture v7-M on page 2-22.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-1
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Developing for ARM Processors 
2.1 About the ARM architectures

This section gives an overview of the various ARM architectures and associated 
features to be aware of when developing code for specific processors.

ARM architectures provide support for the 32-bit ARM and 16-bit Thumb® instruction 
set architectures along with architecture extensions to provide support for Tightly 
Coupled Memory (TCM), memory management, Single Instruction Multiple Data 
(SIMD), and NEON™ technologies.

The ARM architecture is constantly improving to meet the increasing demands of 
leading edge applications developers, while retaining the backwards compatibility 
necessary to protect investment in software development.

For more information, see the Technical Reference Manual for your processor or the 
ARM Architecture Reference Manual.

Table 2-1 gives an overview of some key features for the ARM processors.

Table 2-1 Key features

Processor Architecture
Tightly 
Coupled 
Memory

Memory 
Management 

Thumb-2

ARM7TDMI® ARMv4T - - -

ARM920T™ ARMv4T - MMU -

ARM922T™ ARMv4T - MMU -

ARM926EJ-S™ ARMv5TEJ Yes MMU -

ARM946E-S™ ARMv5TE Yes MPU -

ARM966E-S™ ARMv5TE Yes - -

ARM11™ MPCore™ ARMv6K - MMU -

ARM1136J-S™/ARM1136JF-S™ ARMv6K Yes MMU -

ARM1156T2-S™/ARM1156T2F-S™ ARMv6T2 Yes MPU Yes

ARM1176JZ-S™/ARM1176JZF-S™ ARMv6Z Yes MMU -

ARM11™ MPCore™ ARMv6K - MMU -

Cortex™-M0 ARMv6-M - - -

Cortex™-M1 ARMv6-M Yes - -
2-2 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Developing for ARM Processors 
2.1.1 Multiprocessing systems

The ARM architecture v6K introduces the first MPCore processor supporting up to four 
CPUs and associated hardware. Applications have to be specifically designed to run on 
multiprocessing systems to optimize performance. For example, a CPU can be 
dedicated to a particular task in a single threaded application or used for parallel 
processing in a multi threaded environment. An efficient multiprocessing system 
consumes less power, produces less heat and is more responsive than a system with one 
CPU but is more complex and therefore more difficult to debug.

Some points for consideration when designing a multiprocessing system:

• synchronize using LDREX/STREX to create a mutex or semaphore to protect critical 
sections and non-shareable resources

• enforce cache coherency for symmetrical multiprocessing

• execute repetitive tasks in separate threads

• split a large task into several threads executing in parallel

• set up a primary CPU using the CP15 CPU ID register for initialization tasks

• prioritize interrupts

• use bit masking for interrupt pre-emption

• configure the cycle counts that trigger a timer or watchdog.

Cortex-M3 ARMv7-M - MPU (optional) Thumb-2 only

Cortex-M4 ARMv7E-M - MPU (optional) Thumb-2 only

Cortex-A5 ARMv7-A - MMU Yes

Cortex-A8 ARMv7-A - MMU Yes

Cortex-A9 ARMv7-A - MMU Yes

Cortex-R4 and Cortex-R4F ARMv7-R Variable MPU Yes

Table 2-1 Key features (continued)

Processor Architecture
Tightly 
Coupled 
Memory

Memory 
Management 

Thumb-2
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-3
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Developing for ARM Processors 
Note
 These tasks are generally handled by an OS.

2.1.2 Tightly coupled memory

TCM is a contiguous area of memory that is always valid if the TCM is enabled. TCM 
is used as part of the physical memory map of the system, and does not have to be 
backed by a level of external memory with the same physical addresses. For this reason, 
the TCM behaves differently from the caches for regions of memory that are marked as 
being write-through cacheable. In such regions, no external writes occur in the event of 
a write to memory locations contained in the TCM.

The purpose of TCM is to provide low-latency memory that the processor can use 
without the unpredictability that is a feature of caches. You can use TCM to hold critical 
routines, such as interrupt handling routines or real-time tasks where the indeterminacy 
of a cache is highly undesirable. In addition, you can use it to hold scratch pad data, data 
types whose locality properties are not well suited to caching, and critical data 
structures such as interrupt stacks.

For a full architectural description of a TCM, see the ARM Architecture Reference 
Manual and the Technical Reference Manual for your processor.

2.1.3 Memory management

The ARM memory management options are:

MMU The Memory Management Unit (MMU) allows fine-grained control of a 
memory system. Most of the detailed control is provided through 
translation tables held in memory. Entries in these tables define the 
properties for different regions of memory. These include:

• virtual-to-physical address mapping

• memory access permissions

• memory types.

MPU The Memory Protection Unit (MPU) provides a considerably simpler 
alternative to the MMU. This allows both hardware and software to be 
simplified in systems that do not require all facilities of the MMU. You 
can use the MPU to partition external memory into separate contiguous 
regions with different sizes and attributes. You can also control access 
permissions and memory characteristics for different regions of memory.

An MPU does not require external memory for translation tables and it 
must be enabled before the caches can be enabled.
2-4 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Developing for ARM Processors 
For a full architectural description of an MMU or MPU, see the ARM Architecture 
Reference Manual and the Technical Reference Manual for your processor.

2.1.4 Thumb-2

Thumb-2 technology is available in the ARMv6T2 and later architectures. Thumb-2 is 
a major enhancement to the 16-bit Thumb instruction set. It adds 32-bit instructions that 
can be freely intermixed with 16-bit instructions in a program. The additional 32-bit 
instructions enable Thumb-2 to cover the functionality of the ARM instruction set. The 
32-bit instructions enable Thumb-2 to combine the code density of earlier versions of 
Thumb, with performance of the ARM instruction set.

The most important difference between the Thumb-2 instruction set and the ARM 
instruction set is that most 32-bit Thumb instructions are unconditional, whereas most 
ARM instructions can be conditional. Thumb-2 introduces a conditional execution 
instruction, IT, that is a logical if-then-else operation that you can apply to subsequent 
instructions to make them conditional.

For more information on the instruction set, see the ARM Architecture Reference 
Manual and the Technical Reference Manual for your processor.

2.1.5 Floating-point build options

The following guidelines can be used to help you select the most suitable floating-point 
build options to use for your application.

ARM and Thumb floating-point (ARMv6 and earlier)

There are several options for compiling code that carries out floating-point operations 
in ARM state code and Thumb state code:

ARM only Choose the option --fpu vfpv2 to have the compiler generate ARM code 
only for functions containing floating-point operations.

When the option --fpu vfpv2 is selected, the compiler generates ARM 
code for any function containing floating-point operations, regardless of 
whether the compiler is compiling for ARM or compiling for Thumb. 

Functions containing floating-point operations and that are compiled for 
Thumb are compiled to ARM code, because Thumb code cannot contain 
VFP instructions or access VFP registers. This uses hardware VFP 
linkage.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-5
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Developing for ARM Processors 
When compiling for ARM only, use --fpu=vfp and not 
--fpu=softvfp+vfp. Software linkage adds an overhead in transfer values 
between VFP and ARM that slows down the transfers and requires 
additional instructions.

Mixed ARM/Thumb 

Choose the option --fpu softvfp+vfpv2 to have the compiler generate 
mixed ARM/Thumb code.

When the option --fpu softvfp+vfpv2 is selected, all functions are 
compiled using software floating-point linkage. This means that 
floating-point arguments are passed to and returned from functions in 
integer registers.

The Thumb instruction set does not contain VFP instructions and 
therefore cannot access VFP registers. Therefore, for Thumb code, when 
--fpu=softvfp+vfpv2 is used, the compiler generates calls to library 
functions to perform the VFP operations. These library functions have to 
use software linkage because the Thumb code cannot access the VFP 
registers that are required to use hardware linkage.

The RVCT libraries include versions of the software floating point 
functions that are compiled for ARM, and use VFP instructions to be 
used with --fpu=softvfp+vfpv2. These library functions give improved 
performance and reduced code size compared to the full software floating 
point functions.

The option that provides the best code size or performance depends on the code being 
compiled. When compiling for ARM, it is best to experiment with the options --fpu 
softvfp+vfpv2 and --fpu vfpv2 to determine which provides the required code size and 
performance attributes. 

If you have a mix of ARM and Thumb then you might want to experiment with the --fpu 
option to get the best results.

ARM and Thumb-2 floating-point (ARMv7, RealView Development Suite 
v3.0 and later)

Mixed ARM/Thumb-2 

Choose the option --fpu softvfp+vfpv3 to have the compiler generate 
mixed ARM/Thumb code.

When the option --fpu softvfp+vfpv3 is selected, all functions are 
compiled using software floating-point linkage. This means that 
floating-point arguments are passed to and returned from functions in 
ARM integer registers.
2-6 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Developing for ARM Processors 
Software floating-point linkage enables you to link with generic libraries 
and legacy code that are themselves built with software floating-point 
linkage.

ARM only Choose the options --arm --fpu vfpv3 to have the compiler generate 
ARM code only. This uses hardware VFP linkage.

Thumb-2 only 

Choose the options --thumb --fpu vfpv3 to have the compiler generate 
Thumb-2 code only for your entire program. Thumb-2 supports VFP 
instructions. Therefore, there is no need to switch to ARM state to 
perform VFP operations. This uses hardware VFP linkage.

Note
 This option is available only for ARMv7 processors with VFPv3, for 

example the Cortex-A8, where VFP is directly accessible from both the 
ARM and Thumb-2 instruction set.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-7
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Developing for ARM Processors 
2.2 ARM architecture v4T

This section gives an overview of the RealView tools support for ARMv4T. This variant 
of the ARM architecture provides 16-bit Thumb instructions, a subset of the 32-bit 
ARM instruction set. It supports both ARM and Thumb instruction sets.

2.2.1 Key features

When compiling code for ARMv4T, the compiler supports the additional Thumb 
instructions for greater code density but with the following limitations:

• Thumb code usually uses more instructions for a given task, making ARM code 
best for maximizing performance of time-critical code

• ARM state and associated ARM instructions are required for exception handling.

2.2.2 Alignment support

All load and store instructions must specify addresses that are aligned on a natural 
alignment boundary. For example:

• LDR and STR addresses must be aligned on a word boundary

• LDRH and STRH addresses must be aligned on a halfword boundary

• LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in 
unpredictable behavior. To control this you must inform the compiler, using __packed, 
when you want to access an unaligned address so that it can generate safe code. See 
__packed on page 4-11 in the Compiler Reference Guide.

Note
 Unaligned accesses, where permitted, are treated as rotated aligned accesses.

Table 2-2 Useful command-line options

Command-line option Description

--cpu=4T ARMv4 with Thumb.

--cpu=name Where name is a specific ARM processor. For example ARM7TDMI.

--apcs=qualifier Where qualifier denotes one or more qualifiers for interworking and position independence.
For example --apcs=/interwork.
2-8 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Developing for ARM Processors 
2.2.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv4T supports the following endian modes:

LE little-endian format

BE-32 legacy big-endian format.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 2-9
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Developing for ARM Processors 
2.3 ARM architecture v5TE

This section gives an overview of the RealView tools support for ARMv5TE. This 
variant of the ARM architecture provides enhanced arithmetic support for Digital 
Signal Processing (DSP) algorithms. It supports both ARM and Thumb instruction sets.

2.3.1 Key features

When compiling code for ARMv5TE, the compiler:

• Supports improved interworking between ARM and Thumb, for example BLX.

• Performs instruction scheduling for the specified processor. Instructions are 
re-ordered to minimize interlocks and improve performance.

• Uses multiply and multiply-accumulate instructions that act on 16-bit data items.

• Uses instruction intrinsics to generate addition and subtraction instructions that 
perform saturated signed arithmetic. Saturated arithmetic produces the maximum 
positive or negative value instead of wrapping the result if the calculation 
overflows the normal integer range.

• Uses load (LDRD) and store (STRD) instructions that act on two words of data.

• Uses a preload data instruction PLD.

2.3.2 Alignment support

All load and store instructions must specify addresses that are aligned on a natural 
alignment boundary. For example:

• LDR and STR addresses must be aligned on a word boundary

• LDRH and STRH addresses must be aligned on a halfword boundary

Table 2-3 Useful command-line options

Command-line option Description

--cpu=5TE ARMv5 with Thumb, interworking, DSP multiply, and double-word instructions

--cpu=5TEJ ARMv5 with Thumb, interworking, DSP multiply, double-word instructions, and Jazelle® 
extensionsa

--cpu=name Where name is a specific ARM processor. For example:

• ARM926EJ-S for ARMv5 with Thumb, Jazelle extensions, physically mapped caches 
and MMU.

a. The ARM compiler cannot generate Jazelle bytecodes.
2-10 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
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Developing for ARM Processors 
• LDRD and STRD addresses must be aligned on a doubleword boundary

• LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in 
unpredictable behavior. To control this you must inform the compiler, using __packed, 
when you want to access an unaligned address so that it can generate safe code. See 
__packed on page 4-11 in the Compiler Reference Guide.

All LDR and STR instructions, except LDRD and STRD, must specify addresses that are 
word-aligned, otherwise the instruction generates an abort.

Note
 Unaligned accesses, where permitted, are treated as rotated aligned accesses.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide.

2.3.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv5TE supports the following endian modes:

LE little-endian format

BE-32 legacy big-endian format.
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2.4 ARM architecture v6

This section gives an overview of the RealView tools support for ARMv6. This variant 
of the ARM architecture extends the original ARM instruction set to support 
multi-processing and adds some extra memory model features. It supports both ARM 
and Thumb instruction sets.

2.4.1 Key features

When compiling code for ARMv6, the compiler:

• Performs instruction scheduling for the specified processor. Instructions are 
re-ordered to minimize interlocks and improve performance.

• Generates explicit SXTB, SXTH, UXTB, UXTH byte or halfword extend instructions 
where appropriate.

• Generates the endian reversal instructions REV, REV16 and REVSH if it can deduce 
that a C expression performs an endian reversal.

• Generates additional Thumb instructions available in ARMv6, for example CPS, 
CPY, REV, REV16, REVSH, SETEND, SXTB, SXTH, UXTB, UXTH.

• Uses some functions that are optimized specifically for ARMv6, for example, 
memcpy().

The compiler cannot generate SIMD instructions, because these do not map well onto 
C expressions. You must use assembly language or intrinsics for SIMD code generation.

Some enhanced instructions are available to improve exception handling:

• SRS and RFE instructions to save and restore the Link Register (LR) and the Saved 
Program Status Register (SPSR)

Table 2-4 Useful command-line options

Option Description

--cpu=6 ARMv6 with Thumb, interworking, DSP multiply, doubleword instructions, unaligned and 
mixed-endian support, Jazelle, and media extensions

--cpu=6Z ARMv6 with security extensions

--cpu=6T2 ARMv6 with Thumb-2

--cpu=name Where name is a specific ARM processor. For example:

• ARM1136J-S to generate code for the ARM1136J-S with software VFP support

• ARM1136JF-S to generate code for the ARM1136J-S with hardware VFP
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• CPS simplifies changing state, and modifying the I and F bits in the Current 
Program Status Register (CPSR)

• architectural support for vectored interrupts with a vectored interrupt controller

• low-latency interrupt mode

• ARM1156T2-S can enter exceptions in Thumb state using Thumb-2 code.

2.4.2 Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to 
packed structures, by allowing LDR and STR instructions to load from and store to words 
that are not aligned on natural word boundaries. Structures remain unpacked unless 
explicitly qualified with __packed. Table 2-5 shows the effect of one-byte alignment 
when compiling for ARMv6 and earlier architectures.

Code compiled for ARMv6 only runs correctly if you enable unaligned data access 
support on your processor. You can control alignment by using the U and the A bits in the 
CP15 register c1, or by typing the UBITINIT input to the processor HIGH.

Code that uses the behavior of pre-ARMv6 unaligned data accesses can be generated by 
using the compiler option --no_unaligned_access.

Note
 Unaligned data accesses are not available in BE-32 endian mode.

LDRD and STRD might be word aligned.

See also
• Technical Reference Manual for your processor

Table 2-5 One-byte alignment

__packed struct
{

int i;
char ch;
short sh;

} foo;

Compiling for pre-ARMv6:
MOV R4,R0
BL __aeabi_uread4 
LDRB R1, [R4,#4]
LDRSB R2,[R4,#5]
LDRB R12,[R4,#6]
ORR R2,R12,R2 LSL#8

Compiling for ARMv6 and later:
LDR R0, [R4,#0]
LDRB  R1,[R4,#4]
LDRSH R2,[R4,#5]
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• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide.

2.4.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv6 supports the following endian modes:

LE little-endian format

BE8 big-endian format

BE-32 legacy big-endian format.

Mixed endian systems are also possible by using SETEND and REV instructions.

Compiling for ARMv6 endian mode BE8

By default, the compiler generates BE8 big-endian code when compiling for ARMv6 
and big-endian. The compiler sets a flag in the code that labels the code as BE8. 
Therefore, to enable BE8 support in the ARM processor you normally have to set the 
E-bit in the CPSR.

It is possible to link legacy code with ARMv6 code for running on an ARMv6 based 
processor. However, in this case the linker switches the byte order of the legacy code 
into BE8 mode. The resulting image is in BE8 mode. 

Compiling for ARMv6 legacy endian mode BE32

To use the pre-ARMv6 or legacy BE32 mode you must tie the BIGENDINIT input into the 
processor HIGH, or set the B bit of CP15 register c1.

Note
 You must link BE32-compatible code using the linker option --be32. Otherwise, the 
ARMv6 attributes causes a BE8 image to be produced. 

For more information see:

• Alignment support on page 2-13

• --bigend on page 2-17 in the Compiler Reference Guide

• --littleend on page 2-85 in the Compiler Reference Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide
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• --be8 on page 2-15 in the Linker Reference Guide

• --be32 on page 2-16 in the Linker Reference Guide.
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2.5 ARM architecture v6-M

This section gives an overview of the RealView tools support for ARMv6-M. 
Microcontroller profiles implement a programmers' model designed for fast interrupt 
processing, with hardware stacking of registers and support for writing interrupt 
handlers in high-level languages. It is intended for deeply embedded applications that 
require a small processor integrated into an FPGA and supports the Thumb instruction 
set and a small number of 32-bit Thumb-2 instructions.

2.5.1 Key features

Key features for ARMv6-M:

• The compiler supports the extension of the Thumb instruction set using Thumb-2 
technology. For example, BL, DMB, DSB, ISB, MRS and MSR.

2.5.2 Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to 
packed structures, by allowing LDR and STR instructions to load from and store to words 
that are not aligned on natural word boundaries.

Unaligned data accesses are converted into two or three aligned accesses, depending on 
the size and alignment of the unaligned access. This stalls any subsequent accesses until 
the unaligned access has completed. You can control alignment by using the DCode and 
System bus interfaces.

See also
• Cortex-M1 Technical Reference Manual

• Cortex-M0 Technical Reference Manual

• Aligning data on page 5-25 in the Compiler User Guide

Table 2-6 Useful command-line options

Command-line option Description

--cpu=6-M ARMv6 microcontroller profile with Thumb only, and processor state instructions

--cpu=6S-M ARMv6 microcontroller profile with Thumb only, plus processor state instructions and OS 
extensions

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-M1 for ARMv6 with Thumb only, plus processor state instructions, OS 
extensions and BE8 and LE data endianness support.
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• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide.

2.5.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv6-M supports the following endian modes:

LE little-endian format

BE8 big-endian format.
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2.6 ARM architecture v7-A

This section gives an overview of the RealView tools support for ARMv7-A. 
Application profiles implement a traditional ARM architecture with multiple modes 
and support a virtual memory system architecture based on an MMU. These profiles 
support both ARM and Thumb instruction sets.

2.6.1 Key features

Key features for ARMv7-A:

• Supports the advanced SIMD extensions

• Supports the Thumb Execution Environment (ThumbEE).

2.6.2 Alignment support

The data alignment behavior supported by the ARM architecture is significantly 
different between ARMv4 and ARMv7. An ARMv7 implementation must support 
unaligned data accesses. You can control the alignment requirements of load and store 
instructions by using the A bit in the CP15 register c1.

Note
 ARMv7 architectures do not support pre-ARMv6 alignment.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

Table 2-7 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only, and without hardware dividea

--cpu=7-A ARMv7 application profile supporting virtual MMU-based memory systems, with ARM, 
Thumb, Thumb-2, and Thumb-2EE instruction sets, NEON™ support, and 32-bit SIMD 
support

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-A8 for ARMv7 with ARM, Thumb, Thumb-2, hardware VFP, NEON support, 
and 32-bit SIMD support.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, 
ARMv7-R, and ARMv7-M architectures.
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• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide.

2.6.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv7-A supports the following endian modes:

LE little-endian format

BE8 big-endian format used by ARMv6 and ARMv7.

The ARMv7 does not support the legacy BE-32 mode. If you have legacy code for 
ARMv7 processors that contain instructions with a big-endian byte order, then you must 
perform byte order reversal. See the ARM Architecture Reference Manual.
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2.7 ARM architecture v7-R

This section gives an overview of the RealView tools support for ARMv7-R. Real-time 
profiles implement a traditional ARM architecture with multiple modes and support a 
protected memory system architecture based on an MPU. The ARMv7-R architecture 
supports both ARM and Thumb instruction sets.

2.7.1 Key features

Key features for ARMv7-R:

• Supports the SDIV and UDIV instructions.

2.7.2 Alignment support

The data alignment behavior supported by the ARM architecture has changed 
significantly between ARMv4 and ARMv7. An ARMv7 implementation provides 
hardware support for some unaligned data accesses using LDR, STR, LDRH, and STRH. Other 
data accesses must maintain alignment using LDM, STM, LDRD, STRD, LDC, STC, LDREX, STREX, 
and SWP.

You can control the alignment requirements of load and store instructions by using the 
A bit in the CP15 register c1.

See also
• Technical Reference Manual for your processor

• Aligning data on page 5-25 in the Compiler User Guide

• --unaligned_access, --no_unaligned_access on page 2-128 in the Compiler 
Reference Guide.

Table 2-8 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only but without hardware dividea

--cpu=7-R ARMv7 real-time profile with ARM, Thumb, Thumb-2 optional, VFP, 32-bit SIMD 
support, and hardware divide

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-R4F for ARMv7 with ARM, Thumb, Thumb-2, hardware VFP, hardware 
divide and SIMD support.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, 
ARMv7-R, and ARMv7-M architectures.
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2.7.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv7-R supports the following endian modes:

LE little-endian format

BE8 big-endian format.

The ARMv7 does not support the legacy BE-32 mode. If you have legacy code for ARM 
v7 processors that contain instructions with a big-endian byte order, then you must 
perform byte order reversal.

The ARMv7-R supports optional byte order reversal hardware as a static option from 
reset. See the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.
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2.8 ARM architecture v7-M

This section gives an overview of the RealView tools support for ARMv7-M. 
Microcontroller profiles implement a programmers' model designed for fast interrupt 
processing, with hardware stacking of registers and support for writing interrupt 
handlers in high-level languages. It implements a variant of the ARMv7 protected 
memory system architecture and supports the Thumb-2 instruction set only.

2.8.1 Key features

Key features for ARMv7-M:

• Supports the SDIV and UDIV instructions.

• Uses interrupt intrinsics to generate CPSIE or CPSID instructions that change the 
current pre-emption priority (see Table 2-10). For example, when you use a 
__disable_irq intrinsic, the compiler generates a CPSID i instruction, which sets 
PRIMASK to 1. This raises the execution priority to 0 and prevents exceptions with 
a configurable priority from entering. See the ARMv7-M Architecture Reference 
Manual.

Table 2-9 Useful command-line options

Command-line option Description

--cpu=7 ARMv7 with Thumb-2 only and without hardware dividea

--cpu=7-M ARMv7 microcontroller profile with Thumb-2 only and hardware divide

--cpu=name Where name is a specific ARM processor. For example:

• Cortex-M3 for ARMv7 with Thumb-2 only, hardware divide, ARMv6 style BE8 and 
LE data endianness support, and unaligned accesses.

a. ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, 
ARMv7-R, and ARMv7-M architectures.

Table 2-10 Interrupt intrinsics

Intrinsic Opcode PRIMASK FAULTMASK

__enable_irq CPSIE i 0

__disable_irq CPSID i 1

__enable_fiq CPSIE f 0

__disable_fiq CPSID f 1
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2.8.2 Alignment support

The data alignment behavior supported by the ARM architecture has changed 
significantly between ARMv4 and ARMv7. An ARMv7 implementation must support 
unaligned data accesses. You can control the alignment requirements of load and store 
instructions by using the A bit in the CP15 register c1.

Note
 ARMv7 architectures do not support pre-ARMv6 alignment.

2.8.3 Endian support

You can produce either little-endian or big-endian code using the compiler 
command-line options --littleend and --bigend respectively.

ARMv7-M supports the following endian modes:

LE little-endian format

BE8 big-endian format.

The ARMv7 architecture does not support the legacy BE-32 mode. If you have legacy 
code for ARM v7 processors that contain instructions with a big-endian byte order, then 
you must perform byte order reversal. See the ARM Architecture Reference Manual.
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Chapter 3 
Embedded Software Development

This chapter describes how to develop embedded applications with the ARM RealView 
Compilation Tools, with or without a target system present.

It contains the following sections:

• About embedded software development on page 3-2

• Default compilation tool behavior on page 3-4

• Tailoring the C library to your target hardware on page 3-9

• Tailoring the image memory map to your target hardware on page 3-11

• Reset and initialization on page 3-16

• Target hardware and the memory map on page 3-22.
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3.1 About embedded software development

Most embedded applications are initially developed in a prototype environment with 
resources that differ from those available in the final product. Therefore, it is important 
to consider the processes involved in moving an embedded application from one that 
relies on the facilities of the development or debugging environment to a system that 
runs standalone on target hardware.

When developing embedded software using RealView Compilation Tools, you must 
consider the following:

• Understand the default compilation tool behavior so that you appreciate the steps 
necessary to move from a default build to a fully standalone application.

• Some C library functionality executes by using debug environment resources. If 
used, you must re-implement this functionality to make use of target hardware.

• RealView Compilation Tools has no inherent knowledge of the memory map of 
any given target. You must tailor the image memory map to the memory layout of 
the target hardware.

• An embedded application must perform some initialization before the main 
application can be run. A complete initialization sequence requires code that you 
implement in addition to RealView Compilation Tools C library initialization 
routines.

3.1.1 Example code

To illustrate the topics described in this chapter, associated example projects are 
provided in the examples directory, ...\RVDS\Examples\...\emb_sw_dev\. Each build is 
in a separate directory, and provides an example of the techniques described in 
successive sections of this chapter. Specific information regarding each build can be 
found in the readme.txt files.

Build 1 Build 1 is a default build of the Dhrystone benchmark and adheres to the 
default RealView Compilation Tools behavior.

See Default compilation tool behavior on page 3-4 for more information.

Build 2 This example adapts build 1 to make use of the Versatile board for clock 
timing and string I/O.

See Tailoring the C library to your target hardware on page 3-9 for more 
information.

Build 3 This example implements a scatter-loading description file to tailor the 
stack and heap placement.
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See Tailoring the image memory map to your target hardware on 
page 3-11 for more information.

Build 4 This example can be run standalone on a Versatile board. A vector table 
and reset handler is implemented. See Reset and initialization on 
page 3-16 for more information.

Build 5 This example is equivalent to build 4, but with all target memory map 
information located in the scatter-loading description file.

See Target hardware and the memory map on page 3-22 for more 
information.

The Dhrystone benchmarking program provides the code base for the example projects. 
The examples are tailored to run on a Versatile board. However, the principles can be 
applied to any target hardware. For more information on board connections and settings, 
see the Getting Started section in the User Guide for your board.

Note
 The focus of this chapter is not specifically the Dhrystone program, but the steps that 
must be taken to enable it to run on a fully standalone system. For further information 
on the use of Dhrystone as a benchmarking tool, see Application Note 93 - 
Benchmarking with ARMulator®. You can find the ARM Application Notes in the 
Documentation area of the ARM website at http://www.arm.com.
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3.2 Default compilation tool behavior

When you start work on software for an embedded application, you might not be aware 
of the full technical specifications of the target hardware. For example, you might not 
know the details of target peripheral devices, the memory map, or even the processor 
itself.

To enable you to proceed with software development before such details are known, the 
compilation tools have a default behavior that enables you to start building and 
debugging application code immediately. It is useful to be aware of this default 
behavior, so that you appreciate the steps necessary to move from a default build to a 
full standalone application.

In the ARM C library, support for some ISO C functionality is provided by the host 
debugging environment at the device driver level. The mechanism that provides this 
functionality is known as semihosting. When semihosting is executed, the debug agent 
identifies it and suspends program execution. The semihosting operation is then 
serviced by the debug agent before code execution is resumed. Therefore, the task 
performed by the host itself is transparent to the program.

See Chapter 8 Semihosting for more information.

3.2.1 C library structure

Conceptually, the C library can be divided into functions that are part of the ISO C 
standard and functions that provide support to the ISO C standard.

For example, Figure 3-1 on page 3-5 shows the C library implementing the function 
printf() by writing to the debugger console window. This implementation is provided 
by calling _sys_write(), a support function that executes a semihosting call, resulting in 
the default behavior using the debugger instead of target peripherals.
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Figure 3-1 C library structure

3.2.2 Default memory map

In an image where you have not described the memory map, the linker places code and 
data according to a default memory map, as shown in Figure 3-2 on page 3-6.

Note
 The processors based on ARMv6-M and ARMv7-M architectures have fixed memory 
maps. This makes porting software easier between different systems based on these 
processors. See the Cortex-M1 Technical Reference Manual and Cortex-M3 Technical 
Reference Manual for more information.

The default memory map is described as follows:

• The image is linked to load and run at address 0x8000. All Read Only (RO) 
sections are placed first, followed by Read-Write (RW) sections, then Zero 
Initialized (ZI) sections.

• The heap follows directly on from the top of the ZI section, so the exact location 
is decided at link time.
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• The stack base location is provided by a semihosting operation during application 
startup. The value returned by this semihosting operation depends on the debug 
environment.

Figure 3-2 Default memory map

The linker observes a set of rules, shown in Figure 3-3 on page 3-7, to decide where in 
memory code and data is located. Generally, the linker sorts the input sections by 
attribute, by name, and then by position in the input list. See The image structure on 
page 3-2 and Section placement on page 3-10 in the Linker User Guide for more 
information.
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Figure 3-3 Linker placement rules

For full control of placement of code and data you must use the scatter-loading 
mechanism. See Tailoring the image memory map to your target hardware on page 3-11 
for more information.

3.2.3 Application startup

In most embedded systems, an initialization sequence executes to set up the system 
before the main task is executed. Figure 3-4 on page 3-8 shows the default RealView 
Compilation Tools initialization sequence.
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Figure 3-4 Default initialization sequence

 __main is responsible for setting up the memory and __rt_entry is responsible for 
setting up the run-time environment.

__main performs code and data copying, decompression, and zero initialization of the ZI 
data. It then branches to __rt_entry to set up the stack and heap, initialize the library 
functions and static data, and call any top level C++ constructors. __rt_entry then 
branches to main(), the entry to your application. When the main application has 
finished executing, __rt_entry shuts down the library, then hands control back to the 
debugger.

The function label main() has a special significance. The presence of a main() function 
forces the linker to link in the initialization code in __main and __rt_entry. Without a 
function labeled main() the initialization sequence is not linked in, and as a result, some 
standard C library functionality is not supported. See --startup=symbol, --no_startup on 
page 2-83 in the Linker Reference Guide for more information on using alternative C 
libraries with a startup symbol different to __main.
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3.3 Tailoring the C library to your target hardware

By default, the C library uses semihosting to provide device driver level functionality, 
enabling a host computer to act as an input and an output device. This is useful because 
development hardware often does not have all the input and output facilities of the final 
system.

You can provide your own implementation of C library functions that make use of target 
hardware, and that are automatically linked in to your image in favor of the C library 
implementations. This process, known as retargeting the C library, is shown in 
Figure 3-5.

Figure 3-5 Retargeting the C library

For example, you might have a peripheral I/O device such as an LCD screen, and you 
might want to override the library implementation of fputc(), that writes to the 
debugger console, with one that outputs to the LCD. Because this implementation of 
fputc() is linked in to the final image, the entire printf() family of functions prints out 
to the LCD.
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Example 3-1 shows an example implementation of fputc(). The example redirects the 
input character parameter of fputc() to a serial output function sendchar() that is 
assumed to be implemented in a separate source file. In this way, fputc() acts as an 
abstraction layer between target dependent output and the C library standard output 
functions.

Example 3-1 Implementation of fputc()

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{   /* e.g. write a character to an LCD screen */
    char tempch = ch;
    sendchar(&tempch);
    return ch;
}

In a standalone application, you are unlikely to support semihosting operations. 
Therefore, you must remove all calls to semihosting functions or re-implement them 
with non semihosting functions. See Building an application for a non semihosting 
environment on page 2-21 in the Libraries and Floating Point Support Guide for more 
information.

For a full list of C library functions that use semihosting, see Chapter 8 Semihosting.
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3.4 Tailoring the image memory map to your target hardware

In your final embedded system, without semihosting functionality, you are unlikely to 
use the default memory map. Your target hardware usually has several memory devices 
located at different address ranges. To make the best use of these devices, you must have 
separate views of memory at load and run-time.

Scatter-loading enables you to describe the load and run-time memory locations of code 
and data in a textual description file known as a scatter-loading description file. This 
file is passed to the linker on the command line using the --scatter option. For example:

armlink --scatter scatter.scat file1.o file2.o

Scatter-loading defines two types of memory regions:

• Load regions containing application code and data at reset and load-time.

• Execution regions containing code and data when the application is executing. 
One or more execution regions are created from each load region during 
application startup.

A single code or data section can only be placed in a single execution region. It cannot 
be split.

During startup, the C library initialization code in __main carries out the necessary 
copying of code/data and zeroing of data to move from the image load view to the 
execute view.
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3.4.1 Scatter-loading description file

The scatter-loading description file syntax reflects the functionality provided by 
scatter-loading itself. Figure 3-6 shows the file syntax.

Figure 3-6 Scatter-loading description file syntax

A region is defined by a header tag that contains, as a minimum, a name for the region 
and a start address. Optionally, a maximum length and various attributes can be added. 

The contents of the region depend on the type of region:

• Load regions must contain at least one execution region. In practice, there are 
usually several execution regions for each load region.

• Execution regions must contain at least one code or data section, unless a region 
is declared with the EMPTY attribute. Non-EMPTY regions usually contain object or 
library code. The wildcard (*) syntax can be used to group all sections of a given 
attribute not specified elsewhere in the scatter-loading description file.

See Images with a simple memory map on page 5-6 in the Linker User Guide for more 
examples and information on different memory maps.

See Chapter 3 Formal syntax of the scatter-loading description file in the Linker 
Reference Guide for more information on the formal syntax.

MY_REGION        0x0000 0x2000
{
    contents of region
}

name of region start address

optional length
parameter
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3.4.2 Root regions

A root region is an execution region with an execution address that is the same as its 
load address. Each scatter-loading description file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for 
creating execution regions cannot itself be copied to another location. As a result, the 
following sections must be included in a root region:

• __main.o and __scatter*.o containing the code that copies code and data

• __dc*.o that performs decompression

• Region$$Table section containing the addresses of the code and data to be copied 
or decompressed.

Because these sections are defined as read-only, they are grouped by the * (+RO) 
wildcard syntax. As a result, if * (+RO) is specified in a non-root region, these sections 
must be explicitly declared in a root region using InRoot$$Sections.

See Assigning sections to a root region on page 5-40 in the Linker User Guide for more 
information.

3.4.3 Placing the stack and heap

The scatter-loading mechanism provides a method for specifying the placement of code 
and statically allocated data in your image. The application stack and heap are set up 
during C library initialization. You can tailor stack and heap placement by using the 
specially named ARM_LIB_HEAP, ARM_LIB_STACK, or ARM_LIB_STACKHEAP execution regions. 
Alternatively you can re-implement the __user_initial_stackheap() function if you are 
not using a scatter-loading description file.

See Specifying stack and heap using the scatter-loading description file on page 5-4 in 
the Linker User Guide for more information.

Run-time memory models

RealView Compilation Tools provides the following run-time memory models:

One-region model 

The application stack and heap grow towards each other in the same 
region of memory. See Figure 3-7 on page 3-14. In this run-time memory 
model, the heap is checked against the value of the stack pointer when 
new heap space is allocated, for example, when malloc() is called.
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Figure 3-7 One-region model

Example 3-2 One-region model routine

LOAD_FLASH ...
{

...
ARM_LIB_STACKHEAP 0x20000 EMPTY 0x20000 ; Heap and stack growing towards
{ } ; each other in the same region
...

}

Two-region model 

The stack and heap are placed in separate regions of memory. For 
example, you might have a small block of fast RAM that you want to 
reserve for stack use only. For a two-region model you must import 
__use_two_region_memory.

In this run-time memory model, the heap is checked against the heap limit 
when new heap space is allocated.

STACK

HEAP 0x20000

0x40000
SB

HB
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Figure 3-8 Two-region model

Example 3-3 Two-region model routine

LOAD_FLASH ...
{

...
ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
{ } ; 
ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
{ }
...

}

In both run-time memory models, the stack grows unchecked.

See Tailoring the runtime memory model on page 2-69 in the Libraries and Floating 
Point Support Guide for more information.

HEAP 0x28000000

0x28080000

STACK 0x40000SB

HB

HL
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3.5 Reset and initialization

This chapter has so far assumed that execution begins at __main, the entry point to the C 
library initialization routine. In fact, any embedded application on your target hardware 
performs some system-level initialization at startup. This section describes this in more 
detail.

Figure 3-9 shows a possible initialization sequence for an embedded system based on 
an ARM architecture. If you use a scatter-loading description file to tailor stack and 
heap placement the linker creates the __user_initial_stackheap() function using linker 
defined symbols for these region names. See Specifying stack and heap using the 
scatter-loading description file on page 5-4 in the Linker User Guide for more 
information. Alternatively you can create your own implementation.

Figure 3-9 Initialization sequence

The reset handler is a short module coded in assembler that executes immediately on 
system startup. As a minimum, your reset handler initializes stack pointers for the 
modes that your application is running in. For processors with local memory systems, 
such as caches, TCMs, MMUs, and MPUs, some configuration must be done at this 
stage in the initialization process. After executing, the reset handler typically branches 
to __main to begin the C library initialization sequence.

C Library User Code

__user_initial_stackheap()
set up application stack 
and heap

main()
causes the linker to link in 
library initialization code

$Sub$$main()
enable caches and 
interrupts

reset handler
initialize stack pointers
configure MMU/MPU
setup cache/enable TCM

1

2

3

4

5

6

__rt_entry

initialize library functions
call top-level constructors 
(C++)

          Exit from application

..

.
.

.

.

...
__main

copy code
copy/decompress RW 
data. zero uninitialized data

..
Image 
Entry Point
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There are some components of system initialization, for example, the enabling of 
interrupts, that are generally performed after the C library initialization code has 
finished executing. The block of code labeled $Sub$$main() performs these tasks 
immediately before the main application begins executing. See Using $Super$$ and 
$Sub$$ to override symbol definitions on page 4-18 in the Linker User Guide for more 
information.

3.5.1 The vector table

All ARM systems have a vector table. The vector table does not form part of the 
initialization sequence, but it must be present for any exception to be serviced. It must 
be placed at a specific address, usually 0x0. To do this you can use the scatter-loading 
+FIRST directive, see Example 3-4.

Example 3-4 Placing the vector table at a specific address

ROM_LOAD 0x0000 0x4000
{
  ROM_EXEC 0x0000 0x4000      ; root region
  {
    vectors.o (Vect, +FIRST)  ; Vector table
    * (InRoot$$Sections)      ; All library sections that must be in a
                              ; root region, for example, __main.o,
                              ; __scatter*.o, __dc*.o, and * Region$$Table
  }
  RAM 0x10000 0x8000
  {
    * (+RO, +RW, +ZI)         ; all other sections
  }
}

The vector table for the microcontroller profiles is very different to most ARM 
architectures. For an example of the vector table for your processor, see:

• The vector table on page 6-4 for ARMv6 and earlier, ARMv7-A and ARMv7-R 
profiles

• The vector table on page 6-31 for ARMv6-M and ARMv7-M profiles.
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3.5.2 ROM and RAM remapping

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

You must consider what sort of memory your system has at address 0x0, the address of 
the first instruction executed.

Note
 This section assumes that an ARM processor begins fetching instructions at 0x0. This is 
the norm for systems based on ARM processors. However, some ARM processors can 
be configured to begin fetching instructions from 0xFFFF0000.

There has to be a valid instruction at 0x0 at startup, so you must have nonvolatile 
memory located at 0x0 at the moment of reset. One way to achieve this is to have ROM 
located at 0x0. However, there are some drawbacks to this configuration.

Example 3-5 shows another solution implementing ROM/RAM remapping on reset. 
The constants shown in this example are specific to the Versatile board, but the same 
method is applicable to any platform that implements remapping in a similar way. 
Scatter-loading description files must describe the memory map after remapping.

Example 3-5 ROM/RAM remapping

; --- System memory locations
Versatile_ctl_reg     EQU 0x101E0000 ; Address of control register
DEVCHIP_Remap_bit EQU 0x100 ; Bit 8 is remap bit of control register
    ENTRY
; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
        LDR     pc, =Instruct_2
Instruct_2 
; Remap by setting remap bit of the control register
; Clear the DEVCHIP_Remap_bit by writing 1 to bit 8 of the control register
        LDR     R1, =Versatile_ctl_reg
        LDR     R0, [R1]
        ORR     R0, R0, #DEVCHIP_Remap_bit
        STR     R0, [R1]
; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM
; The copying is done later by the C library code inside __main
; Reset_Handler follows on from here
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3.5.3 Local memory setup considerations

Many ARM processors have on-chip memory management systems, such as MMUs or 
MPUs. These devices are normally set up and enabled during system startup. Therefore, 
the initialization sequence of processors with local memory systems requires special 
consideration.

As described in this chapter, C library initialization code in __main is responsible for 
setting up the execution time memory map of the image. Therefore, the run-time 
memory view of the processor must be set up before branching to __main. This means 
that any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main, normally before MMU/MPU 
setup, because you generally want to scatter-load code and data into TCMs. You must 
be careful that you do not have to access memory that is masked by the TCMs when 
they are enabled.

You also risk problems with cache coherency if caches are enabled before branching to 
__main. Code in __main copies code regions from their load address to their execution 
address, essentially treating instructions as data. As a result, some instructions can be 
cached in the data cache, in which case they are not visible to the instruction path. 

To avoid these coherency problems, enable caches after the C library initialization 
sequence finishes executing.

3.5.4 Stack pointer initialization

As a minimum, your reset handler must assign initial values to the stack pointers of any 
execution modes that are used by your application.

In Example 3-6, the stacks are located at stack_base. This symbol can be a hard-coded 
address, or it can be defined in a separate assembler source file and located by a 
scatter-loading description file. Information about how this is done is given in 
Specifying stack and heap using the scatter-loading description file on page 5-4 in the 
Linker User Guide.

Example 3-6 Initializing stack pointers

; ***************************************************************
; This example does not apply to ARMv6-M and ARMv7-M profiles
; ***************************************************************
Len_FIQ_Stack    EQU     256
Len_IRQ_Stack    EQU     256
stack_base      DCD      0x18000
;
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Reset_Handler 
; stack_base could be defined above, or located in a scatter file
LDR     R0, stack_base ;
; Enter each mode in turn and set up the stack pointer
MSR     CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV     sp, R0
SUB     R0, R0, #Len_FIQ_Stack
MSR     CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV     sp, R0
SUB     R0, R0, #Len_IRQ_Stack
MSR     CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MOV     sp, R0
; Leave processor in SVC mode

Example 3-6 on page 3-19 allocates 256 bytes of stack for FIQ and interrupt request 
(IRQ) mode, but you can do the same for any other execution mode. To set up the stack 
pointers, enter each mode with interrupts disabled, and assign the appropriate value to 
the stack pointer.

The stack pointer value set up in the reset handler is automatically passed as a parameter 
to __user_initial_stackheap() by C library initialization code. Therefore, this value 
must not be modified by __user_initial_stackheap().

3.5.5 Hardware initialization

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

In general, it is beneficial to separate all system initialization code from the main 
application. However, some components of system initialization, for example, enabling 
of caches and interrupts, must occur after executing C library initialization code.

You can make use of the $Sub and $Super function wrapper symbols to insert a routine 
that is executed immediately before entering the main application. This mechanism 
enables you to extend functions without altering the source code.

Example 3-7 on page 3-21 shows how $Sub and $Super can be used in this way. The 
linker replaces the function call to main() with a call to $Sub$$main(). From there you 
can call a routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main(). 
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Note
 See Using $Super$$ and $Sub$$ to override symbol definitions on page 4-18 in the 
Linker User Guide for more information.

Example 3-7 Use of $Sub and $Super

extern void $Super$$main(void);
void $Sub$$main(void)
{
    cache_enable();    // enables caches
    int_enable(); // enables interrupts 
    $Super$$main();    // calls original main()
}

3.5.6 Execution mode considerations

Note
 This section does not apply to ARMv6-M and ARMv7-M profiles.

You must consider in what mode the main application is to run. Your choice affects how 
you implement system initialization. 

Much of the functionality that you are likely to implement at startup, both in the reset 
handler and $Sub$$main, can only be done while executing in privileged modes, for 
example, on-chip memory manipulation, and enabling interrupts. 

If you want to run your application in a privileged mode, this is not an issue. Ensure that 
you change to the appropriate mode before exiting your reset handler. 

If you want to run your application in User mode, however, you can only change to User 
mode after completing the necessary tasks in a privileged mode. The most likely place 
to do this is in $Sub$$main().

Note
 __user_initial_stackheap() must set up the application mode stack. Because of this, 
you must exit your reset handler in system mode, which uses the User mode registers. 
__user_initial_stackheap() then executes in system mode, and so the application stack 
and heap are still set up when User mode is entered. 
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3.6 Target hardware and the memory map

The previous sections in this chapter describe the placement of code and data in a 
scatter-loading description file. However, the location of target hardware peripherals 
and the stack and heap limits are assumed to be hard-coded in source or header files. It 
is better to locate all information about the memory map of a target in your description 
file, and remove all references to absolute addresses from your source code.

Conventionally, addresses of peripheral registers are hard-coded in project source or 
header files. You can also declare structures that map on to peripheral registers, and 
place these structures in the scatter-loading description file.

For example, a target might have a timer peripheral with two memory mapped 32-bit 
registers. Example 3-8 shows a C structure that maps to these registers.

Example 3-8 Mapping to a peripheral register

__attribute__ ((zero_init)) struct
{
    volatile unsigned ctrl;           /* timer control */
    volatile unsigned tmr;            /* timer value   */
} timer_regs;

To place this structure at a specific address in the memory map, you can create an 
execution region containing the module that defines the structure. Example 3-9 shows 
an execution region called TIMER which locates the timer_regs structure at 0x40000000.

It is important that the contents of these registers are not zero initialized during 
application startup, because this is likely to change the state of your system. Marking 
an execution region with the UNINIT attribute prevents ZI data in that region from being 
zero initialized by __main.

Example 3-9 Placing the mapped structure

ROM_LOAD 0x24000000 0x04000000
{
; ...
TIMER 0x40000000 UNINIT
    {
        timer_regs.o (+ZI)
    }
    ; ...
}
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Chapter 4 
Mixing C, C++, and Assembly Language

This chapter describes how to write a mixture of C, C++, and assembly language code 
for the ARM® architecture. It also describes how to use the ARM instruction intrinsics, 
inline and embedded assemblers in C and C++ files.

It contains the following sections:

• Using instruction intrinsics, inline and embedded assembler on page 4-2

• Accessing C global variables from assembly code on page 4-4

• Using C header files from C++ on page 4-5

• Calling between C, C++, and ARM assembly language on page 4-7.
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4.1 Using instruction intrinsics, inline and embedded assembler

Instruction intrinsics, inline and embedded assembler are built into the ARM compiler 
to enable the use of target processor features that cannot normally be accessed directly 
from C or C++. For example:

• saturating arithmetic

• custom coprocessors

• the Program Status Register (PSR).

Instruction intrinsics 

Instruction intrinsics provide a way of easily incorporating target 
processor features in C and C++ source code without resorting to 
complex implementations in assembly language. They have the 
appearance of a function call in C or C++, but are replaced during 
compilation by assembly language instructions.

Note
 Instruction intrinsics are specific to the ARM instruction set and are 

therefore not portable to other architecture.

Inline assembler 

The inline assembler supports interworking with C and C++. Any register 
operand can be an arbitrary C or C++ expression. The inline assembler 
also expands complex instructions and optimizes the assembly language 
code.

Note
 The output object code might not correspond exactly to your input 

because of compiler optimization.

Embedded assembler 

The embedded assembler enables you to use the full ARM assembler 
instruction set, including assembler directives. Embedded assembly code 
is assembled separately from the C and C++ code. A compiled object is 
produced that is then combined with the object from the compilation of 
the C and C++ source.
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Table 4-1 summarizes the main differences between instruction intrinsics, inline and 
embedded assembler.

For more information, see:

• Intrinsics on page 4-2 in the Compiler User Guide

• Instruction intrinsics on page 4-75 in the Compiler Reference Guide

• Chapter 7 Using the Inline and Embedded Assemblers in the Compiler User 
Guide

• Saturating instructions on page 4-93 in the Assembler Guide

Table 4-1 Differences

Feature Instruction Intrinsics Inline assembler Embedded assembler

Instruction set ARM and Thumb®. ARM only. ARM and Thumb.

ARM assembler directives None supported. None supported. All supported.

C/C++ expressions Full C/C++ expressions. Full C/C++ expressions. Constant expressions only.

Optimization of assembly code Full optimization. Full optimization. No optimization.

Inlining Automatically inlined. Automatically inlined. Can be inlined by linker if 
it is the right size and linker 
inlining is enabled.

Register access Physical registers, 
including PC, LR and SP.

Virtual registers except 
PC, LR and SP.

Physical registers, 
including PC, LR and SP.

Return instructions Generated automatically. Generated automatically. 
BX, BXJ, and BLX 
instructions are not 
supported.

You must add them in your 
code.

BKPT instruction Supported. Not supported. Supported.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 4-3
ID101213 Non-Confidential, 



Mixing C, C++, and Assembly Language 
4.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a 
global variable, use the IMPORT directive to do the import and then load the address into 
a register. You can access the global variable with load and store instructions, depending 
on its type. 

For unsigned variables, for example, use:

• LDRB/STRB for char

• LDRH/STRH for short

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and 
STM instructions. Individual members of structures can be accessed by a load or store 
instruction of the appropriate type. You must know the offset of a member from the start 
of the structure in order to access it.

Example 4-1 loads the address of the integer global variable globvar into R1, loads the 
value contained in that address into R0, adds 2 to it, then stores the new value back into 
globvar.

Example 4-1 Accessing global variables

    PRESERVE8
    AREA     globals,CODE,READONLY
    EXPORT    asmsubroutine
    IMPORT    globvar
asmsubroutine
    LDR  R1, =globvar   ; read address of globvar into R1

LDR  R0, [R1] ; load value of globvar
    ADD  R0, R0, #2
    STR  R0, [R1] ; store new value into globvar
    BX   lr
    END

For information about the instructions available in ARM or Thumb code, see Chapter 4 
ARM and Thumb Instructions in the Assembler Guide.
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4.3 Using C header files from C++

C header files must be wrapped in extern "C" directives before they are included from 
C++.

4.3.1 Including system C header files

Standard system C header files already contain the appropriate extern "C" directives so 
you do not have to take any special steps to include such files. Different #include 
syntaxes determine what namespace to use and therefore the type of access you have.

For example:

#include <stdio.h>
int main()
{
    ...       // C++ code
    return 0;
}

If you include headers using this syntax, all library names are placed in the global 
namespace.

The C++ standard specifies that the functionality of the C header files is available 
through C++ specific header files. These files are installed in 
install_directory\RVCT\Data\...\include\platform, together with the standard C 
header files, and can be referenced in the usual way. For example:

#include <cstdio>

In ARM C++, these headers #include the C headers. If you include headers using this 
syntax, all C++ standard library names are defined in the namespace std, including the 
C library names. This means that you must qualify all the library names by using one of 
the following methods:

• specify the standard namespace, for example:

std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

• use the compiler option --using_std.
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4.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern 
"C" statement. You can do this in the following ways:

• when the file is #included, as shown in Example 4-2

• by adding the extern "C" statement to the header file, as shown in Example 4-3.

Example 4-2 Directive before include file

// C++ code
extern "C" {
#include "my-header1.h"
#include "my-header2.h"
}
int main()
{
    // ...
    return 0;
}

Example 4-3 Directive in file header

/* C header file */
#ifdef __cplusplus    /* Insert start of extern C construct */
extern "C" {
#endif
/* Body of header file */
#ifdef __cplusplus  /* Insert end of extern C construct. */
}                   /* The C header file can now be */
#endif              /* included in either C or C++ code. */
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4.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code 
from C++, and to call C++ code from C and assembly language. It also describes calling 
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you 
comply with the Procedure Call Standard for the ARM Architecture (AAPCS). For 
more information, see the AAPCS specification, aapcs.pdf, in 
install_directory\Documentation\Specifications\...

Note
 The information in this section is implementation dependent and might change in future 
releases.

4.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language. 
For more information, see the Compiler User Guide.

The embedded assembler and compliance with the Base Standard Application Binary 
Interface for the ARM Architecture (BSABI) make mixed language programming easier 
to implement. These assist you with:

• name mangling, using the __cpp keyword

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not Plain Old Data Structures (PODS).

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, nonmember functions can be declared as extern "C" to specify that they 
have C linkage. In this release of RealView® Compilation Tools, having C linkage 
means that the symbol defining the function is not mangled. C linkage can be used 
to implement a function in one language and call it from another. 

Note
 Functions that are declared extern "C" cannot be overloaded.
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• Assembly language modules must conform to the appropriate AAPCS standard 
for the memory model used by the application.

The following rules apply to calling C++ functions from C and assembly language:

• To call a global C++ function, declare it extern "C" to give it C linkage.

• Member functions, both static and non static, always have mangled names. Using 
the __cpp keyword of the embedded assembler means that you do not have to find 
the mangled names manually.

• C++ inline functions cannot be called from C unless you ensure that the C++ 
compiler generates an out-of-line copy of the function. For example, taking the 
address of the function results in an out-of-line copy.

• Nonstatic member functions receive the implicit this parameter as a first 
argument in R0, or as a second argument in R1 if the function returns a non int-like 
structure. Static member functions do not receive an implicit this parameter.

4.4.2 Information specific to C++

The following information applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with one exception: 

• Nonstatic member functions are called with the implicit this parameter as the first 
argument, or as the second argument if the called function returns a non int-like 
struct. This might change in future implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and 
additions: 

• C++ objects of type struct or class have the same layout that is expected from 
ARM C if they have no base classes or virtual functions. If such a struct has 
neither a user-defined copy assignment operator nor a user-defined destructor, it 
is a plain old data structure.

• References are represented as pointers.

• No distinction is made between pointers to C functions and pointers to C++ 
nonmember functions.
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Symbol name mangling

The linker unmangles symbol names in messages.

C names must be declared as extern "C" in C++ programs. This is done already for the 
ARM ISO C headers. See Using C header files from C++ on page 4-5 for more 
information.

4.4.3 Examples of calling between languages

The following sections contain code examples that demonstrate how to mix language 
calls: 

• Calling assembly language from C on page 4-10

• Calling C from assembly language on page 4-11

• Calling C from C++ on page 4-12

• Calling assembly language from C++ on page 4-13

• Calling C++ from C on page 4-14

• Calling C++ from assembly language on page 4-15

• Calling C++ from C or assembly language on page 4-17

• Passing a reference between C and C++ on page 4-16.
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Calling assembly language from C

Example 4-4 and Example 4-5 show a C program that uses a call to an assembly 
language subroutine to copy one string over the top of another string.

Example 4-4 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{   const char *srcstr = "First string - source ";
    char dststr[] = "Second string - destination ";
/* dststr is an array since we’re going to change it */
    printf("Before copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    strcopy(dststr,srcstr);
    printf("After copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    return (0);
}

Example 4-5 Assembly language string copy subroutine

    PRESERVE8
    AREA    SCopy, CODE, READONLY
    EXPORT strcopy
strcopy               ; R0 points to destination string.
                      ; R1 points to source string.
    LDRB R2, [R1],#1  ; Load byte and update address.
    STRB R2, [R0],#1  ; Store byte and update address.
    CMP  R2, #0       ; Check for null terminator.
    BNE  strcopy      ; Keep going if not.
    BX   lr           ; Return.
    END

Example 4-4 is located in the examples directory, in ...\asm as strtest.c and scopy.s.

Follow these steps to build the example from the command line:

1. Type armasm --debug scopy.s to build the assembly language source.

2. Type armcc -c --debug strtest.c to build the C source.

3. Type armlink strtest.o scopy.o -o strtest to link the object files.
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4. Run the image using a compatible debugger with an appropriate debug target.

Calling C from assembly language

Example 4-6 and Example 4-7 show how to call C from assembly language.

Example 4-6 Defining the function in C

int g(int a, int b, int c, int d, int e) 
{
    return a + b + c + d + e;
}

Example 4-7 Assembly language call

    ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }
    PRESERVE8
    EXPORT f
    AREA f, CODE, READONLY
    IMPORT g           ; i is in R0
    STR lr, [sp, #-4]! ; preserve lr
    ADD R1, R0, R0     ; compute 2*i (2nd param)
    ADD R2, R1, R0     ; compute 3*i (3rd param)
    ADD R3, R1, R2     ; compute 5*i
    STR R3, [sp, #-4]! ; 5th param on stack
    ADD R3, R1, R1     ; compute 4*i (4th param)
    BL g               ; branch to C function
    ADD sp, sp, #4     ; remove 5th param
    LDR pc, [sp], #4   ; return
    END
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Calling C from C++

Example 4-8 and Example 4-9 show how to call C from C++.

Example 4-8 Calling a C function from C++

struct S {            // has no base classes 
                      // or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cfunc(S *); 
// declare the C function to be called from C++
int f(){
    S s(2);           // initialize 's'
    cfunc(&s);        // call 'cfunc' so it can change 's'
    return s.i * 3;
}

Example 4-9 Defining the function in C

struct S {
    int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
    p->i += 5;
}
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Calling assembly language from C++

Example 4-10 and Example 4-11 show how to call assembly language from C++.

Example 4-10 Calling assembly language from C++

struct S {        // has no base classes
                  // or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void asmfunc(S *);   // declare the Asm function
                                // to be called
int f() {
    S s(2);                     // initialize 's'
    asmfunc(&s);                // call 'asmfunc' so it
                                // can change 's'
    return s.i * 3;
}

Example 4-11 Defining the assembly language function

    PRESERVE8
    AREA Asm, CODE
    EXPORT asmfunc
asmfunc                ; the definition of the Asm
    LDR R1, [R0]       ; function to be called from C++
    ADD R1, R1, #5
    STR R1, [R0]
    BX  lr
    END
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Calling C++ from C

Example 4-12 and Example 4-13 show how to call C++ from C.

Example 4-12 Defining the function to be called in C++

struct S {        // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cppfunc(S *p) {    
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C.
    p->i += 5;
} 

Example 4-13 Declaring and calling the function in C

struct S {
    int i;
};
extern void cppfunc(struct S *p); 
/* Declaration of the C++ function to be called from C */
int f(void) {
    struct S s;
    s.i = 2;                /* initialize 's' */
    cppfunc(&s);            /* call 'cppfunc' so it */
                            /* can change 's' */
    return s.i * 3;
}

4-14 Copyright © 2002-2010 ARM. All rights reserved. ARM DUI 0203J
Non-Confidential, ID101213



Mixing C, C++, and Assembly Language 
Calling C++ from assembly language

Example 4-14 and Example 4-15 show how to call C++ from assembly language.

Example 4-14 Defining the function to be called in C++

struct S {           // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C.
    p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch with 
Link (BL) instruction to call it:

Example 4-15 Defining assembly language function

    AREA Asm, CODE
    IMPORT cppfunc         ; import the name of the C++
                           ; function to be called from Asm
    EXPORT   f
f
    STMFD  sp!,{lr}
    MOV    R0,#2
    STR    R0,[sp,#-4]!    ; initialize struct
    MOV    R0,sp           ; argument is pointer to struct
    BL     cppfunc         ; call 'cppfunc' so it can change the struct

LDR    R0, [sp], #4
    ADD    R0, R0, R0,LSL #1
    LDMFD  sp!,{pc}
    END
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Passing a reference between C and C++

Example 4-16 and Example 4-17 show how to pass a reference between C and C++.

Example 4-16 Defining the C++ function

extern "C" int cfunc(const int&); 
// Declaration of the C function to be called from C++
extern "C" int cppfunc(const int& r) {
// Definition of the C++ function to be called from C.
    return 7 * r;
}
int f() {
    int i = 3;
    return cfunc(i);    // passes a pointer to 'i'
}

Example 4-17 Defining the C function

extern int cppfunc(const int*);    
/* declaration of the C++ function to be called from C */
int cfunc(const int *p) {       
/* definition of the C function to be called from C++ */
    int k = *p + 4;
    return cppfunc(&k);
}
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Calling C++ from C or assembly language

The code in Example 4-18, Example 4-19 and Example 4-20 demonstrates how to call 
a non static, non virtual C++ member function from C or assembly language. Use the 
assembler output from the compiler to locate the mangled name of the function.

Example 4-18 Calling a C++ member function

struct T {
    T(int i) : t(i) { }
    int t;
    int f(int i);
};
int T::f(int i) { return i + t; }   
// Definition of the C++ function to be called from C.
extern "C" int cfunc(T*);    
// Declaration of the C function to be called from C++.
int f() {
    T t(5);                    // create an object of type T
    return cfunc(&t);
}

Example 4-19 Defining the C function

struct T;
extern int _ZN1T1fEi(struct T*, int);
    /* the mangled name of the C++ */
    /* function to be called */
int cfunc(struct T* t) {   
/* Definition of the C function to be called from C++. */
    return 3 * _ZN1T1fEi(t, 2);    /* like '3 * t->f(2)' */
}

Example 4-20 Implementing the function in assembly language

    EXPORT cfunc
    AREA foo, CODE
    IMPORT  _ZN1T1fEi
cfunc
    STMFD   sp!,{lr}         ; R0 already contains the object pointer
    MOV R1, #2
    BL _ZN1T1fEi
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    ADD R0, R0, R0, LSL #1   ; multiply by 3
    LDMFD sp!,{pc}
    END

Alternatively, you can implement Example 4-18 on page 4-17 and Example 4-20 on 
page 4-17 using embedded assembly, as shown in Example 4-21. In this example, the 
__cpp keyword is used to reference the function. Therefore, you do not have to know the 
mangled name of the function.

Example 4-21 Implementing the function in embedded assembly

struct T {
    T(int i) : t(i) { }
    int t;
    int f(int i);
};
int T::f(int i) { return i + t; }
// Definition of asm function called from C++
__asm int asm_func(T*) {
    STMFD sp!, {lr}
    MOV R1, #2;
    BL __cpp(T::f);
    ADD R0, R0, R0, LSL #1 ; multiply by 3
    LDMFD sp!, {pc}
}
int f() {
    T t(5); // create an object of type T
    return asm_func(&t);
}
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Chapter 5 
Interworking ARM and Thumb

This chapter explains how to change between ARM® state and Thumb® state when 
writing code for processors that implement the ARM and Thumb instruction sets.

Note
 This chapter does not apply to ARMv6-M and ARMv7-M.

It contains the following sections:

• About interworking on page 5-2

• Assembly language interworking on page 5-4

• C and C++ interworking on page 5-5

• Interworking examples on page 5-7.
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5.1 About interworking

Interworking enables you to mix ARM and Thumb code so that:

• ARM routines return to a Thumb state caller

• Thumb routines return to an ARM state caller.

This means that, if you compile or assemble code for interworking, your code can call 
a routine in a different module without considering which instruction set it uses. The 
ARM compiler and ARM assembler both use the --apcs=/interwork command-line 
option to enable interworking.

You can freely mix code compiled or assembled for ARM and Thumb, provided that the 
code conforms to the AAPCS. See the specification, in 
install_directory\Documentation\Specifications\...\PDF\aapcs.pdf.

An error is generated if the linker detects:

• a direct ARM or Thumb interworking call where the callee routine is not built for 
interworking

• assembly language source files using incompatible AAPCS options.

The ARM linker detects when an interworking function is being called from a different 
state. Call and return instructions are changed, and small code segments called veneers, 
are inserted to change processor state where necessary. See Veneers on page 3-23 in the 
Linker User Guide for more information.

The ARM architecture v5T and later provide methods to change processor state without 
using any extra instructions. There is almost no cost associated with interworking on 
ARMv5T and later processors.

Note
 Compiling for ARMv5T and later architectures, automatically assumes interworking 
and always produces code that is interworking safe. However, assembly code built for 
ARMv5T does not imply interworking, so you must build assembly code with the 
--apcs=/interwork assembler option.
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5.1.1 When to use interworking

When you write code for an ARM processor that supports Thumb instructions, you 
probably build most of your application to run in Thumb state. This gives the best code 
density. With 8-bit or 16-bit wide memory, it also gives the best performance. However, 
you might want parts of your application to run in ARM state for reasons such as: 

Speed Some parts of an application might be speed critical. These sections 
might be more efficient running in ARM state than in Thumb state. 

Some systems include a small amount of fast 32-bit memory. ARM code 
can be run from this without the overhead of fetching each instruction 
from 8-bit or 16-bit memory.

Functionality 

Thumb instructions are less flexible than their equivalent ARM 
instructions. Some operations are not possible in Thumb state. A state 
change to ARM is required to carry out the following operations:

• accesses to CPSR to enable or disable interrupts, and to change 
mode, see CPS on page 4-138 in the Assembler Guide

• accesses to coprocessors

• execution of Digital Signal Processor (DSP) math instructions that 
can not be performed in C language.

Exception handling 

The processor automatically enters ARM state when a processor 
exception occurs. This means that the first part of an exception handler 
must be coded with ARM instructions, even if it reenters Thumb state to 
carry out the main processing of the exception. At the end of such 
processing, the processor must be returned to ARM state to return from 
the handler to the main application.

Standalone Thumb programs 

An ARM processor that supports Thumb instructions always starts in 
ARM state. To run simple Thumb assembly language programs, add an 
ARM header that carries out a state change to Thumb state and then calls 
the main Thumb routine. See Assembly language interworking on 
page 5-7 for an example.

Note
 Changing to ARM state for speed or functionality reasons is mainly a concern on 
processors that support Thumb without Thumb-2. The Thumb-2 instruction set 
provides almost exactly the same functionality as the ARM instruction set.
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5.2 Assembly language interworking

The --apcs=/interwork command-line option enables the ARM assembler to assemble 
code that can be called from another processor state:

armasm --thumb --apcs=/interwork
armasm --arm --apcs=/interwork

In an assembly language source file, you can have several areas. These correspond to 
ARM Executable and Linkable Format (ELF) sections. Each area can contain ARM 
instructions, Thumb instructions, or both.

You can use the linker to fix up calls to, and returns from, routines that use a different 
instruction set from the caller. To do this, use BL to call the routine, see Example 5-3 on 
page 5-8.

If you prefer, you can write your code to make the instruction set changes explicitly. In 
some circumstances you can write smaller or faster code by doing this. You can use BX, 
BLX, LDR, LDM, and POP instructions to perform the processor state changes, see 
Example 5-2 on page 5-7. See B, BL, BX, BLX, and BXJ on page 4-115 in the Assembler 
Guide for more information.

The ARM assembler can assemble both Thumb code and ARM code. By default, it 
assembles ARM code unless it is invoked with the --thumb option.

Because all ARM processors that support Thumb start in ARM state, you must use the 
BX instruction to branch and exchange to Thumb state, and then use the following 
assembler directives to instruct the assembler to switch assembly mode.

The ARM and THUMB directives instruct the assembler to assemble instructions from the 
appropriate instruction set, see ARM, THUMB, THUMBX, CODE16 and CODE32 on 
page 7-63 in the Assembler Guide.
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5.3 C and C++ interworking

The --apcs=/interwork command-line option enables the ARM compiler to compile C 
and C++ code that can be called from another processor state:

armcc --thumb --apcs=/interwork
armcc --arm --apcs=/interwork

In a leaf function, which is a function whose body contains no function calls, the 
compiler generates the return instruction BX lr.

In a non-leaf function built for ARMv4T in Thumb state, the compiler must replace, for 
example, the single return instruction:

     POP  {R4-R7,pc}

with the sequence:

     POP  {R4-R7}
     POP  {R3}
     BX   R3

This has a small impact on performance.

The --apcs=/interwork option also sets the interwork attribute for the code area the 
modules are compiled into. The linker detects this attribute and inserts the appropriate 
veneers. To find the amount of space taken by the veneers you can use the linker 
command-line option --info=veneers.

It is recommended that you compile all source modules for interworking, unless you are 
sure they are never going to be used with interworking.

Note
 ARM code compiled for interworking can only be used on ARMv4T and later, because 
earlier processors do not implement the BX instruction.

5.3.1 Pointers to functions in Thumb state

If you have a Thumb function, that is a function consisting of Thumb code, and that runs 
in Thumb state, then any pointer to that function must have the least significant bit set. 
This ensures that interworking works correctly.

When the linker relocates the value of a label referring to a Thumb instruction, it 
automatically sets the least significant bit of the relocated value. The linker cannot do 
this if you use absolute addresses to Thumb functions. Therefore, if you have to use an 
absolute address to a Thumb function in your code, you must add one to the address, 
see Example 5-1 on page 5-6.
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Example 5-1 Absolute addresses to Thumb functions

typedef int (*FN)();
myfunc() {
    FN fnptrs[] = {
        (FN)(0x8084 + 1),  // Valid Thumb address
        (FN)(0x8074)       // Invalid Thumb address
    };
    FN* myfunctions = fnptrs;
    myfunctions[0]();    // Call OK
    myfunctions[1]();    // Call fails
}

5.3.2 Using two versions of the same function

You can have two functions with the same name, one compiled for ARM and the other 
for Thumb.

The linker enables multiple definitions of a symbol to coexist in an image, only if each 
definition is associated with a different processor state. The linker applies the following 
rules when a reference is made to a symbol with ARM/Thumb synonyms:

• B, BL, or BLX instructions to a symbol from ARM state resolve to the ARM 
definition

• B, BL, or BLX instructions to a symbol from Thumb state resolve to the Thumb 
definition.

Any other reference to the symbol resolves to the first definition encountered by the 
linker. The linker produces a warning that specifies the chosen symbol.
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5.4 Interworking examples

The following are examples of interworking:

• Example 5-2 shows assembly language interworking

• Example 5-3 on page 5-8 shows assembly language interworking using veneers

• Example 5-4 on page 5-10 shows C and C++ language interworking

• Example 5-5 on page 5-11 shows C, C++, and assembly language interworking 
using veneers.

There are also some interworking examples provided with RealView Development 
Suite. For more information, see the readme.txt files in 
install_directory\RVDS\Examples\...\interwork.

Example 5-2 Assembly language interworking

This example implements a short header section (SECTION 1) followed by an ADR 
instruction to get the address of the label THUMBProg, and sets the least significant bit of 
the address. The BX instruction changes the state to Thumb state.

In SECTION2, the Thumb code adds the contents of two registers together, using an ADR 
instruction to get the address of the label ARMProg, leaving the least significant bit clear. 
The BX instruction changes the state back to ARM state.

In SECTION3 the ARM code adds together the contents of two registers and ends.

 ; ********
     ; addreg.s
     ; ********

PRESERVE8
     AREA     AddReg,CODE,READONLY  ; Name this block of code.
     ENTRY                          ; Mark first instruction to call.
; SECTION1
start
     ADR R0, ThumbProg:OR:1  ; Generate branch target address
                                    ; and set bit 0, hence arrive
                                    ; at target in Thumb state.
     BX  R0                         ; Branch exchange to ThumbProg.
; SECTION2
     THUMB                          ; Subsequent instructions are Thumb code.
ThumbProg
     MOVS R2, #2                    ; Load R2 with value 2.
     MOVS R3, #3                    ; Load R3 with value 3.
     ADDS R2, R2, R3                ; R2 = R2 + R3
     ADR R0, ARMProg
     BX  R0                         ; Branch exchange to ARMProg.
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; SECTION3
     ARM                            ; Subsequent instructions are ARM code.
ARMProg
     MOV R4, #4
     MOV R5, #5
     ADD R4, R4, R5
; SECTION 4
stop MOV R0, #0x18                  ; angel_SWIreason_ReportException
     LDR R1, =0x20026               ; ADP_Stopped_ApplicationExit
     SVC 0x123456                   ; ARM semihosting
     END                            ; Mark end of this file.

Follow these steps to build and link the modules: 

1. To assemble the source file for interworking, type:

armasm --debug --apcs=/interwork addreg.s

2. To link the object files, type:

armlink addreg.o -o addreg.axf

Alternatively, to view the size of the interworking veneers, type:

armlink addreg.o -o addreg.axf --info=veneers

3. Run the image using a compatible debugger with an appropriate debug target.

Example 5-3 Assembly language interworking using veneers

This example shows interworking of source code in assembly code to set registers R0 to 
R2 to the values 1, 2, and 3 respectively. Registers R0 and R2 are set by the ARM code. 
R1 is set by the Thumb code. The linker automatically adds an interworking veneer. To 
use veneers:

• you must assemble the code with the --apcs=/interwork option

• use a BX lr instruction to return, instead of MOV pc,lr.

     ; *****
     ; arm.s
     ; *****

     PRESERVE8
     AREA     Arm,CODE,READONLY   ; Name this block of code.
     IMPORT ThumbProg
     ENTRY                        ; Mark 1st instruction to call.
ARMProg
     MOV  R0,#1                   ; Set R0 to show in ARM code.
     BL   ThumbProg               ; Call Thumb subroutine.
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     MOV R2,#3 ; Set R2 to show returned to ARM.
                                  ; Terminate execution.
     MOV  R0, #0x18               ; angel_SWIreason_ReportException
     LDR  R1, =0x20026            ; ADP_Stopped_ApplicationExit
     SVC 0x123456                 ; ARM semihosting (formerly SWI)
     END

     ; *******
     ; thumb.s
     ; *******

     AREA  Thumb,CODE,READONLY    ; Name this block of code.
     THUMB                        ; Subsequent instructions are Thumb.
     EXPORT ThumbProg
ThumbProg
     MOVS  R1, #2                 ; Set R1 to show reached Thumb code.
     BX   lr                      ; Return to the ARM function.
     END                          ; Mark end of this file.

Follow these steps to build and link the modules: 

1. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

2. To assemble the Thumb code for interworking, type:

armasm --thumb --debug --apcs=/interwork thumb.s

3. To link the object files, type:

armlink arm.o thumb.o -o count.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o count.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
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Example 5-4 C and C++ language interworking

This example shows a Thumb routine that carries out an interworking call to an ARM 
subroutine. The ARM subroutine makes an interworking call to printf() in the Thumb 
library.

     /*********************
     *       thumbmain.c  *
     **********************/

     #include <stdio.h>

     extern void arm_function(void);

     int main(void)
     {
          printf("Hello from Thumb\n");
          arm_function();
          printf("And goodbye from Thumb\n");
          return (0);
     }

/*********************
     *        armsub.c    *
     **********************/
     #include <stdio.h>

     void arm_function(void)
     {
          printf("Hello and Goodbye from ARM\n");
     }

Follow these steps to build and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb -c --debug --apcs=/interwork thumbmain.c -o thumbmain.o

2. To compile the ARM code for interworking, type:

armcc -c --debug --apcs=/interwork armsub.c -o armsub.o

3. To link the object files, type:

armlink thumbmain.o armsub.o -o thumbtoarm.axf

Alternatively, to view the size of the interworking veneers, type:

armlink armsub.o thumbmain.o -o thumbtoarm.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
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Example 5-5 C, C++, and assembly language interworking using veneers

This example shows interworking between Thumb code in C and ARM code in 
assembly language.

     /**********************
     *       thumb.c      *
     **********************/

     #include <stdio.h>
     extern int arm_function(int);
     int main(void)
     {
          int i = 1;
          printf("i = %d\n", i);
          printf("And i+4 = %d\n", arm_function(i));
          return (0);
     }

     ; *****
     ; arm.s
     ; *****

     PRESERVE8
     AREA  Arm,CODE,READONLY ; Name this block of code.
     EXPORT arm_function
arm_function
     ADD   R0,R0,#4           ; Add 4 to first parameter.
     BX    lr                 ; Return
     END

Follow these steps to build and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb --debug -c --apcs=/interwork thumb.c

2. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

3. To link the object files, type:

armlink arm.o thumb.o -o add.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o add.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.
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Chapter 6 
Handling Processor Exceptions

This chapter describes how to handle the different types of exception supported by the 
ARM® architecture.

It contains the following sections:

• About processor exceptions on page 6-2

• ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 6-3

• ARMv6-M and ARMv7-M profiles on page 6-29.
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6.1 About processor exceptions

During the normal flow of execution through a program, the Program Counter (PC) 
increases sequentially through the address space, with branches to nearby labels or 
branch with links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to enable the 
processor to handle events generated by internal or external sources. Examples of such 
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

Figure 6-1 shows the exception handling process.

Figure 6-1 Handling an exception

When an exception occurs, control passes through an area of memory called the vector 
table. This is a reserved area usually at the bottom of the memory map. Within the table 
one word is allocated to each of the various exception types. This word contains either 
a branch instruction or, in the case of ARMv6-M and ARMv7-M, an address to the 
relevant exception handler.

You can write the exception handlers in either ARM or Thumb®-2 code if the processor 
supports the respective instruction set. For the ARMv7-M and ARMv6-M profiles, the 
processor enters the exception handler that is specified in the vector table. For all other 
ARM processors, you must branch from the top-level handler to the code that handles 
the exception. Use a Branch and exchange (BX) if state change is required (see Chapter 5 
Interworking ARM and Thumb for more information). When handling exceptions, the 
current processor mode, state, and registers must be preserved so that the program can 
resume when the appropriate exception handling routine completes.
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6.2 ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

This section describes how to handle the different types of exception supported by ARM 
architecture v6 and earlier, the ARMv7-A and ARMv7-R profiles.

Note
 The microcontroller profiles use a different exception handling model. See ARMv6-M 
and ARMv7-M profiles on page 6-29 for more information.

6.2.1 Types of exception

Table 6-1 shows the different types of exception recognized by ARMv6 and earlier, the 
ARMv7-A and ARMv7-R profiles. When exceptions occur simultaneously, they are 
handled in a fixed order of priority. Each exception is handled in turn before returning 
to the original application. It is not possible for all exceptions to occur concurrently. For 
example, the Undefined instruction (Undef) and supervisor call (SVC) exceptions are 
mutually exclusive because they are both triggered by executing an instruction.

On entry to an exception:

• interrupt requests (IRQs) are disabled for all exceptions

• fast interrupt requests (FIQs) are disabled for FIQ and Reset exceptions.

Table 6-1 Exception types in priority order

Priority
(1=high, 
6=low)

Exception type Exception mode Description

1 Reset Supervisor Occurs when the processor reset pin is asserted. This 
exception is only expected to occur for signaling 
power-up, or for resetting if the processor is already 
powered up. A soft reset can be done by branching to 
the reset vector.

2 Data Abort Abort Occurs when a data transfer instruction attempts to 
load or store data at an illegal addressa.

3 FIQ FIQ Occurs when the processor external fast interrupt 
request pin is asserted (LOW) and the F bit in the 
CPSR is clear.

4 IRQ IRQ Occurs when the processor external interrupt request 
pin is asserted (LOW) and the I bit in the CPSR is 
clear.
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Because the Data Abort exception has a higher priority than the FIQ exception, the Data 
Abort is actually registered before the FIQ is handled. The Data Abort handler is 
entered, but control is then passed immediately to the FIQ handler because FIQ remain 
enabled when handling a Data Abort. When the FIQ has been handled, control returns 
to the Data Abort Handler. This means that the data transfer error does not escape 
detection as it would if the FIQ were handled first.

6.2.2 The vector table

The vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles consists of 
a branch or load PC instruction to the relevant handler. If required, you can include the 
FIQ handler at the end of the vector table to ensure it is handled as efficiently as 
possible, see Example 6-1. Using a literal pool means that addresses can easily be 
modified later if necessary.

Example 6-1 Typical vector table using a literal pool

AREA vectors, CODE, READONLY
ENTRY

Vector_Table
LDR pc, Reset_Addr
LDR pc, Undefined_Addr
LDR pc, SVC_Addr

5 Prefetch Abort Abort Occurs when the processor attempts to execute an 
instruction that was not fetched, because the address 
was illegala.

6 SVC Supervisor This is a user-defined synchronous interrupt 
instruction. It enables a program running in User 
mode, for example, to request privileged operations 
that run in Supervisor mode, such as an RTOS 
function.

6 Undefined Instruction Undef Occurs if neither the processor, nor any attached 
coprocessor, recognizes the currently executing 
instruction.

a. An illegal virtual address is one that does not currently correspond to an address in physical memory, or one that the memory 
management subsystem has determined is inaccessible to the processor in its current mode.

Table 6-1 Exception types in priority order (continued)

Priority
(1=high, 
6=low)

Exception type Exception mode Description
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LDR pc, Prefetch_Addr
LDR pc, Abort_Addr
NOP ;Reserved vector
LDR pc, IRQ_Addr

FIQ_Handler
; FIQ handler code - max 4kB in size

Reset_Addr      DCD Reset_Handler
Undefined_Addr  DCD Undefined_Handler
SVC_Addr        DCD SVC_Handler
Prefetch_Addr   DCD Prefetch_Handler
Abort_Addr      DCD Abort_Handler
                DCD 0                ;Reserved vector
IRQ_Addr        DCD IRQ_Handler

...
END

This example assumes that you have ROM at location 0x0 on reset. Alternatively, you 
can use the scatter-loading mechanism to define the load and execution address of the 
vector table. In that case, the C library copies the vector table for you. For more 
information on scatter-loading, see Chapter 5 Using Scatter-loading Description Files 
in the Linker User Guide.

Note
 The vector table for ARMv6 and earlier architectures support ARM instructions only. 
ARMv6T2 and later architectures support both Thumb-2 and ARM instructions in the 
vector table. This does not apply to the ARMv6-M and ARMv7-M profiles.

6.2.3 Processor modes and registers

The ARM architecture defines an unprivileged User mode containing 15 general 
purpose registers, a PC, and a CPSR. In addition there are other privileged modes, each 
containing a SPSR and a number of banked out registers.

Typically, an application runs in User mode, but handling exceptions requires a 
privileged mode. An exception changes the processor mode, and this in turn means that 
each exception handler has access to a certain subset of the banked out registers: 

• its own Stack Pointer (SP)

• its own LR

• its own SPSR

• five additional general purpose registers (FIQ only).
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Each exception handler must ensure that other registers are restored to their original 
contents on exit. You can do this by saving the contents of any registers that the handler 
has to use onto its stack and restore them before returning.

System mode

Corruption of the link register can be a problem when handling multiple exceptions of 
the same type. See Reentrant interrupt handlers on page 6-10.

ARMv4 and later architectures include a privileged mode called System mode, to 
overcome this problem. System mode shares the same registers as User mode, it can run 
tasks that require privileged access, and exceptions no longer overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handlers modify the 
CPSR to enter System mode. See Reentrant interrupt handlers on page 6-10 for an 
example.

6.2.4 Handling an exception

This section describes the processor response to an exception, and how to return to the 
main program after the exception has been handled. You must ensure that the exception 
handler saves the system state when an exception occurs and restores it on return.

Processors that support Thumb state use the same basic exception handling mechanism 
as processors that do not support Thumb state. An exception causes the next instruction 
to be fetched from the appropriate vector table entry.

The processor response to an exception

When an exception is generated, the processor performs the following actions: 

1. Copies the CPSR into the appropriate SPSR. This saves the current mode, 
interrupt mask, and condition flags.

2. Switches state automatically if the current state does not match the instruction set 
used in the exception vector table.

3. Changes the appropriate CPSR mode bits to:

• Change to the appropriate mode, and map in the appropriate banked out 
registers for that mode.

• Disable interrupts. IRQs are disabled when any exception occurs. FIQs are 
disabled when an FIQ occurs and on reset.
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4. Sets the appropriate LR to the return address.

5. Sets the PC to the vector address for the exception.

Returning from an exception handler

The method used to return from an exception depends on whether the exception handler 
uses stack operations or not. In both cases, to return execution to the place where the 
exception occurred an exception handler must: 

• restore the CPSR from the appropriate SPSR

• restore the PC using the return address from the appropriate LR.

For a simple return that does not require the destination mode registers to be restored 
from the stack, the exception handler carries out these operations by performing a data 
processing instruction with:

• the S flag set

• the PC as the destination register.

The return instruction required depends on the type of exception.

Note
 You do not have to return from the reset handler because the reset handler executes your 
main code directly.

If the exception handler entry code uses the stack to store registers that must be 
preserved while it handles the exception, it can return using a load multiple instruction 
with the ^ qualifier. For example, an exception handler can return in one instruction 
using:

    LDMFD sp!,{R0-R12,pc}^

To do this, the exception handler must save the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing 
instructions.

The ^ qualifier specifies that the CPSR is restored from the SPSR. It must be used only 
from a privileged mode. See the description of how to implement stacks with LDM and 
STM in the Assembler Guide for more information.
ARM DUI 0203J Copyright © 2002-2010 ARM. All rights reserved. 6-7
ID101213 Non-Confidential, 



Handling Processor Exceptions 
Note
 You cannot use any 16-bit Thumb instruction to return from exceptions because these 
are unable to restore the CPSR.

6.2.5 Reset handlers

The operations carried out by the Reset handler depend on the system that the software 
is being developed for.

For example, it might: 

• Set up exception vectors. See The vector table on page 6-4 for more information.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 3 Embedded Software Development for more information.

6.2.6 Data Abort handler

If there is no MMU, the Data Abort handler must report the error and quit. If there is an 
MMU, the handler must deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT-8 because lr_ABT points two 
instructions beyond the instruction that caused the abort.

The following types of instruction can cause this abort:

Single Register Load or Store 

The response depends on the processor type: 

• If the abort takes place on an ARM7™, including the ARM7TDMI®, 
the address register has been updated and the change must be 
undone.

• If the abort takes place on an ARM9™ or later processor, the address 
is restored by the processor to the value it had before the instruction 
started. No code is required to undo the change.
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Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple 

The response depends on the processor type: 

• If the abort takes place on an ARM7 processor, and writeback is 
enabled, the base register is updated as if the whole transfer had 
taken place. 

In the case of an LDM with the base register in the register list, the 
processor replaces the overwritten value with the modified base 
value so that recovery is possible. The original base address can 
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9 or later processor and 
writeback is enabled, the base register is restored to the value it had 
before the instruction started.

In each of the three cases the MMU can load the required virtual memory into physical 
memory. The MMU Fault Address Register (FAR) contains the address that caused the 
abort. When this is done, the handler can return and try to execute the instruction again.

You can find an example of a Data Abort handler in the examples directory, in 
...\databort.

6.2.7 Interrupt handlers

This section describes how to write interrupt handlers.

Levels of external interrupt

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which 
are level-sensitive active LOW signals into the processor. For an interrupt to be taken, 
the appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in the following ways:

• FIQs are handled first when multiple interrupts occur.

• Handling an FIQ causes IRQs and subsequent FIQs to be disabled, preventing 
them from being handled until after the FIQ handler enables them. This is usually 
done by restoring the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table so that the FIQ handler can be placed 
directly at the vector location and run sequentially from that address. This removes the 
requirement for a branch and its associated delay, and also means that if the system has 
a cache, the vector table and FIQ handler might all be locked down in one block within 
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it. This is important because FIQs are designed to handle interrupts as quickly as 
possible. The five extra FIQ mode banked registers enable status to be held between 
calls to the handler, again increasing execution speed.

Note
 An interrupt handler must contain code to clear the source of the interrupt.

Reentrant interrupt handlers

If an interrupt handler enables interrupts before calling a subroutine and another 
interrupt occurs, the return address of the subroutine stored in the IRQ mode LR is 
corrupted when the second IRQ is taken. This is because the processor automatically 
saves the return address into the IRQ mode LR for the new interrupt overwriting the 
return address for the subroutine. This results in an infinite loop when the subroutine in 
the original interrupt tries to return.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save 
the state for the new processor mode before branching to a nested subroutine or C 
function. It must also ensure that the stack is eight-byte aligned for the new processor 
mode before calling AAPCS-compliant compiled C code that might use LDRD or STRD 
instructions or eight-byte aligned stack-allocated data. There is more information about 
stack alignment issues in the ABI for the ARM Architecture Advisory Note 1- SP must 
be 8-byte aligned on entry to AAPCS-conforming functions (ARM IHI 0046A).

Using the __irq keyword in C does not cause the SPSR to be saved and restored, as 
required by reentrant interrupt handlers, so you must write your top level interrupt 
handler in assembly language.

In ARMv4 or later you can switch to System mode if you require privileged access. See 
System mode on page 6-6 for more information.

Note
 This method works for both IRQ and FIQ interrupts. However, because FIQ interrupts 
are meant to be handled as quickly as possible there is normally only one interrupt 
source, so it might not be necessary to provide for reentrancy.

The steps required to enable interrupts safely in an IRQ handler are:

1. Construct the return address and save it on the IRQ stack.

2. Save the work registers, non callee-saved registers and IRQ mode SPSR.

3. Clear the source of the interrupt.
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4. Switch to System mode, keeping IRQs disabled.

5. Check that the stack is eight-byte aligned and adjust if necessary.

6. Save the User mode LR and the adjustment, 0 or 4 for Architectures v4 or v5TE, 
used on the User mode SP.

7. Enable interrupts and call the C interrupt handler function.

8. When the C interrupt handler returns, disable interrupts.

9. Restore the User mode LR and the stack adjustment value.

10. Readjust the stack if necessary.

11. Switch to IRQ mode.

12. Restore other registers and IRQ mode SPSR.

13. Return from the IRQ.

Example 6-2 and Example 6-3 on page 6-12 shows how this works for System mode.

Example 6-2 Reentrant interrupt handler for ARMv4/v5TE

PRESERVE8
AREA INTERRUPT, CODE, READONLY
IMPORT C_irq_handler
IMPORT identify_and_clear_source

IRQ_Handler
    SUB     lr, lr, #4             ; construct the return address

PUSH {lr} ; and push the adjusted lr_IRQ
    MRS     lr, SPSR              ; copy spsr_IRQ to lr

PUSH {R0-R4,R12,lr} ; save AAPCS regs and spsr_IRQ
BL identify_and_clear_source
MSR     CPSR_c, #0x9F  ; switch to SYS mode, IRQ is

                                   ; still disabled. USR mode
                                   ; registers are now current.
    AND     R1, sp, #4             ; test alignment of the stack
    SUB     sp, sp, R1             ; remove any misalignment (0 or 4)

PUSH {R1,lr} ; store the adjustment and lr_USR
    MSR     CPSR_c, #0x1F  ; enable IRQ
    BL      C_irq_handler
    MSR     CPSR_c, #0x9F  ; disable IRQ, remain in SYS mode

POP {R1,lr} ; restore stack adjustment and lr_USR
    ADD     sp, sp, R1             ; add the stack adjustment (0 or 4)
    MSR     CPSR_c, #0x92          ; switch to IRQ mode and keep IRQ
                                   ; disabled. FIQ is still enabled.
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POP {R0-R4,R12,lr} ; restore registers and
    MSR     SPSR_cxsf, lr  ; spsr_IRQ
    LDM  sp!, {pc}^             ; return from IRQ.
    END

Example 6-3 Reentrant Interrupt for ARMv6 ( non vectored interrupts)

PRESERVE8
AREA INTERRUPT, CODE, READONLY
IMPORT C_irq_handler
IMPORT identify_and_clear_source

IRQ_Handler
SUB lr, lr, #4
SRSDB    sp!,#31 ; Save LR_irq and SPSR_irq to System mode stack
CPS #031 ; Switch to System mode
PUSH    {R0-R3,R12} ; Store other AAPCS registers
AND R1, sp, #4
SUB sp, sp, R1
PUSH {R1, lr}
BL identify_and_clear_source
CPSIE i ; Enable IRQ
BL C_irq_handler
CPSID i ; Disable IRQ
POP  {R1,lr}
ADD sp, sp, R1
POP  {R0-R3, R12} ; Restore registers
RFEIA  sp! ; Return using RFE from System mode stack
END

These examples assume that FIQ remains permanently enabled.

Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute 
quickly. The following sections give some examples:

• Single-channel DMA transfer on page 6-13

• Dual-channel DMA transfer on page 6-13

• Interrupt prioritization on page 6-14

• Context switch on page 6-16.
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Single-channel DMA transfer

Example 6-4 shows an interrupt handler that performs interrupt driven I/O to memory 
transfers, soft DMA. The code is an FIQ handler. It uses the banked FIQ registers to 
maintain state between interrupts. This code is best situated at location 0x1C. 

In the example code:

R8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read. 
Reading this register clears the interrupt.

R9 Points to the memory location to where that data is being transferred.

R10 Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 6-4 FIQ handler

    LDR     R11, [R8, #IOData]     ; Load port data from the IO device.
    STR     R11, [R9], #4          ; Store it to memory: update the pointer.
    CMP     R9, R10                ; Reached the end ?
    SUBLSS  pc, lr, #4             ; No, so return.
                                   ; Insert transfer complete
                                   ; code here.

Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 6-5 on page 6-14 is similar to Example 6-4, except that there are two channels 
being handled. The code is an FIQ handler. It uses the banked FIQ registers to maintain 
state between interrupts. It is best situated at location 0x1C. 

In the example code:

R8 Points to the base address of the I/O device from which data is 
read.

IOStat Is the offset from the base address to a register indicating which of 
two ports caused the interrupt.
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IOPort1Active Is a bit mask indicating if the first port caused the interrupt. 
Otherwise it is assumed that the second port caused the interrupt.

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data 
register clears the interrupt for the corresponding port.

R9 Points to the memory location to which data from the first port is 
being transferred.

R10 Points to the memory location to which data from the second port 
is being transferred.

R11, R12 Point to the last address to transfer to. This is R11 for the first port, 
R12 for the second.

The entire sequence to handle a normal transfer takes nine instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 6-5 FIQ handler

    LDR     sp, [R8, #IOStat]      ; Load status register to find which port
; caused the interrupt.

    TST sp, #IOPort1Active
    LDREQ sp, [R8, #IOPort1]     ; Load port 1 data.
    LDRNE sp, [R8, #IOPort2]     ; Load port 2 data.
    STREQ sp, [R9], #4           ; Store to buffer 1.
    STRNE sp, [R10], #4          ; Store to buffer 2.
    CMP     R9, R11 ; Reached the end?
    CMPLE   R10, R12 ; On either channel?

SUBSNE  pc, lr, #4  ; Return
                           ; Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the conditional load instructions and the conditional store 
instructions.

Interrupt prioritization

Example 6-6 on page 6-15 dispatches up to 32 interrupt sources to their appropriate 
handlers. Because it is designed for use with the normal interrupt vector, IRQ, it is 
branched to from location 0x18.

External Vectored Interrupt Controller (VIC) hardware is used to prioritize the interrupt 
and present the high-priority active interrupt in an I/O register.
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In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active 
interrupt.

R13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered, with all registers preserved on the 
stack, after two more instructions.

In addition, the last three instructions of each handler are executed with interrupts 
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts describes multiple-source 
prioritization of interrupts using software, as opposed to using the VIC hardware as 
described here.

Example 6-6 Dispatching interrupts to handlers

    ; first save the critical state
    SUB     lr, lr, #4              ; Adjust the return address
                                    ; before we save it.
    STMDB  sp!, {lr}               ; Stack return address
    MRS     lr, SPSR      ; get the SPSR ...

PUSH {R12,lr} ; ... and stack that plus a
                                    ; working register too.
                                    ; Now get the priority level of the
                                    ; highest priority active interrupt.
    MOV     R12, #IntBase  ; Get the interrupt controller's
                                    ; base address.
    LDR     R12, [R12, #IntLevel]   ; Get the interrupt level (0 to 31).
    ; Now read-modify-write the CPSR

; to enable interrupts.
    MRS     lr, APSR ; Read the status register.
    BIC     lr, lr, #0x80        ; Clear the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, lr ; Write it back to re-enable
                                    ; interrupts and
    LDR     pc, [pc, R12, LSL #2]   ; jump to the correct handler.
                                    ; PC base address points to this
                                    ; instruction + 8
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    NOP                             ; pad so the PC indexes this table.
                                    ; Table of handler start addresses
    DCD     Priority0Handler
    DCD     Priority1Handler
    DCD     Priority2Handler
; ...
    Priority0Handler

PUSH {R0-R11} ; Save other working registers.
                                    ; Insert handler code here.
; ...

POP {R0-R11} ; Restore working registers (not R12).
    ; Now read-modify-write the CPSR

; to disable interrupts.
    MRS     R12, APSR               ; Read the status register.
    ORR     R12, R12, #0x80         ; Set the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, R12             ; Write it back to disable interrupts.
    ; Now that interrupt disabled, can safely

; restore SPSR then return.
POP {r12,lr} ; Restore R12 and get SPSR.

    MSR     SPSR_cxsf, lr  ; Restore status register from R14.
    LDM  sp!, {pc}^              ; Return from handler.
Priority1Handler
; ...

Context switch

Example 6-7 on page 6-17 performs a context switch on the User mode process. The 
code is based around a list of pointers to Process Control Blocks (PCBs) of processes 
that are ready to run.

Figure 6-2 on page 6-17 shows the layout of the PCBs that the example expects.
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Figure 6-2 PCB layout

The pointer to the PCB of the next process to run is pointed to by R12, and the end of the 
list has a zero pointer. Register R13 is a pointer to the PCB, and is preserved between 
time slices, so that on entry it points to the PCB of the currently running process.

Example 6-7 Context switch on the User mode process

 STM sp,{R0-lr}^ ; Dump user registers above R13.
    MRS     R0, SPSR                ; Pick up the user status
    STMDB   sp, {R0, lr}           ; and dump with return address below.
    LDR     sp, [R12], #4          ; Load next process info pointer.
    CMP     sp, #0                 ; If it is zero, it is invalid

LDMDBNE sp, {R0, lr}           ; Pick up status and return address.
    MSRNE   SPSR_cxsf, R0           ; Restore the status.
    LDMNE  sp, {R0 - lr}^        ; Get the rest of the registers
    NOP
    SUBSNE pc, lr, #4              ; and return and restore CPSR.
                    ; Insert "no next process code" here.

6.2.8 SVC handlers

An exception handler might have to determine whether the processor was in ARM or 
Thumb state when the exception occurred.

SVC handlers, especially, might have to read the processor state. This is done by 
examining the SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

r8
r7
r6
r5
r4
r3
r2
r1
r0
lr

spsr

r9
r10
r11
r12
r13
r14

PCB 
pointer

User mode 
registers
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Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs 
from Thumb state, you must consider the following:

• The instruction address is at lr–2, rather than lr–4.

• The instruction itself is 16-bit, and so requires a halfword load, see Figure 6-3.

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

Figure 6-3 Thumb SVC instruction

Example 6-8 shows ARM code that handles an SVC exception. The range of SVC 
numbers accessible from Thumb state can be increased by calling SVCs dynamically.

Example 6-8 SVC handler

PRESERVE8
AREA SVC_Area, CODE, READONLY
EXPORT SVC_Handler

    IMPORT C_SVC_Handler
T_bit   EQU    0x20 ; Thumb bit (5) of CPSR/SPSR.
SVC_Handler

STMFD   sp!, {r0-r3, r12, lr}  ; Store registers
MOV     r1, sp                 ; Set pointer to parameters
MRS     r0, spsr               ; Get spsr
STMFD   sp!, {r0, r3}          ; Store spsr onto stack and another

; register to maintain 8-byte-aligned stack
TST     r0, #T_bit             ; Occurred in Thumb state?
LDRNEH  r0, [lr,#-2]           ; Yes: Load halfword and...
BICNE   r0, r0, #0xFF00        ; ...extract comment field
LDREQ   r0, [lr,#-4]           ; No: Load word and...
BICEQ   r0, r0, #0xFF000000    ; ...extract comment field

; r0 now contains SVC number
; r1 now contains pointer to stacked registers

BL      C_SVC_Handler          ; Call main part of handler
LDMFD   sp!, {r0, r3}          ; Get spsr from stack
MSR     SPSR_cxsf, r0               ; Restore spsr
LDMFD   sp!, {r0-r3, r12, pc}^ ; Restore registers and return
END

15 14 13 12 11 10 9 8 7 0

comment field

8_bit_immediate1 1 11 1 110
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Determining the SVC to be called

When the SVC handler is entered, it must establish which SVC is being called. This 
information can be stored in bits 0-23 of the instruction itself, as shown in Figure 6-4, 
or passed in an integer register, usually one of R0-R3.

Figure 6-4 ARM SVC instruction

The top-level SVC handler can load the SVC instruction relative to the LR. Do this in 
assembly language, C/C++ inline, or embedded assembler.

The handler must first load the SVC instruction that caused the exception into a register. 
At this point, the SVC LR holds the address of the instruction that follows the SVC 
instruction, so the SVC is loaded into the register, in this case R0, using:

    LDR R0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required 
operation. The SVC number is extracted by clearing the top eight bits of the opcode:

    BIC R0, R0, #0xFF000000

Example 6-9 shows how you can put these instructions together to form a top-level SVC 
handler. For an example of a handler that deals with SVC instructions in both ARM state 
and Thumb state, see Example 6-8 on page 6-18.

Example 6-9 Top-level SVC handler

    PRESERVE8
    AREA TopLevelSVC, CODE, READONLY  ; Name this block of code.
    EXPORT     SVC_Handler
SVC_Handler

PUSH     {R0-R12,lr} ; Store registers.
    LDR        R0,[lr,#-4]            ; Calculate address of SVC instruction

; and load it into R0.
    BIC        R0,R0,#0xFF000000      ; Mask off top 8 bits of instruction

; to give SVC number.
    ;
    ; Use value in R0 to determine which SVC routine to execute.

31 28 27 26 25 24 23 0
cond 24_bit_immediate1 1 1 1

comment field
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    ;
    LDM sp!, {R0-R12,pc}^    ; Restore registers and return.
    END

SVC handlers in assembly language

The easiest way to call the handler for the requested SVC number is to use a jump table. 
If R0 contains the SVC number, the code in Example 6-10 can be inserted into the 
top-level handler given in Example 6-9 on page 6-19, following on from the BIC 
instruction.

Example 6-10 SVC jump table

AREA SVC_Area, CODE, READONLY
PRESERVE8
IMPORT SVCOutOfRange
IMPORT MaxSVC

    CMP    R0,#MaxSVC          ; Range check
    LDRLS  pc, [pc,R0,LSL #2]
    B      SVCOutOfRange
SVCJumpTable
    DCD    SVCnum0
    DCD    SVCnum1
                    ; DCD for each of other SVC routines
SVCnum0             ; SVC number 0 code
    B    EndofSVC
SVCnum1             ; SVC number 1 code
    B    EndofSVC
                    ; Rest of SVC handling code
EndofSVC
                    ; Return execution to top level 
                    ; SVC handler so as to restore
                    ; registers and return to program.

END

SVC handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the 
routines that handle each SVC can be written in either assembly language or in C. See 
Using SVCs in Supervisor mode on page 6-22 for a description of restrictions.
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The top-level handler uses a BL instruction to jump to the appropriate C function. 
Because the SVC number is loaded into R0 by the assembly routine, this is passed to the 
C function as the first parameter. The function can use this value in, for example, a 
switch() statement, see Example 6-11.

To call this C function you can add the following line to the SVC_Handler routine in 
Example 6-9 on page 6-19:

    BL    C_SVC_Handler     ; Call C routine to handle the SVC

Example 6-11 SVC handler in C function

void C_SVC_handler (unsigned number)
{
    switch (number)
    {
        case 0 :                 /* SVC number 0 code */

...
            break;
        case 1 :                 /* SVC number 1 code */

...
            break;

...
        default :                /* Unknown SVC - report error */
    }
}

The Supervisor mode stack space might be limited, so avoid using functions that require 
a large amount of stack space.

    MOV     R1, sp        ; Second parameter to C routine...
                          ; ...is pointer to register values.
    BL    C_SVC_Handler   ; Call C routine to handle the SVC.

You can pass values in and out of an SVC handler written in C, provided that the 
top-level handler passes the stack pointer value into the C function as the second 
parameter, in R1, and the C function is updated to access it:

void C_SVC_handler(unsigned number, unsigned *reg)

The C function can now access the values contained in the registers at the time the SVC 
instruction was encountered in the main application code, see Figure 6-5 on page 6-22. 
It can read from them:
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    value_in_reg_0 = reg [0];
    value_in_reg_1 = reg [1];
    value_in_reg_2 = reg [2];
    value_in_reg_3 = reg [3];

and also write back to them: 

    reg [0] = updated_value_0;
    reg [1] = updated_value_1;
    reg [2] = updated_value_2;
    reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then 
restored into the register by the top-level handler.

Figure 6-5 Accessing the Supervisor mode stack

Using SVCs in Supervisor mode

When an SVC instruction is executed:

1. The processor enters Supervisor mode.

2. The CPSR is stored into the SVC SPSR.

3. The return address is stored in the SVC LR, see The processor response to an 
exception on page 6-6.

If the processor is already in Supervisor mode, the SVC LR and SPSR are corrupted.

If you call an SVC while in Supervisor mode you must store SVC LR and SPSR to 
ensure that the original values of the LR and the SPSR are not lost. For example, if the 
handler routine for a particular SVC number calls another SVC, you must ensure that 
the handler routine stores both SVC LR and SPSR on the stack. This guarantees that 
each invocation of the handler saves the information required to return to the instruction 
following the SVC that invoked it. Example 6-12 on page 6-23 shows how to do this.

lr_SVC

r0

r1

r2

r3

Previous sp_SVC

sp_SVC

r12

reg[3]

reg[0]
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Example 6-12 SVC Handler

 AREA SVC_Area, CODE, READONLY
    PRESERVE8
    EXPORT SVC_Handler
    IMPORT C_SVC_Handler
T_bit EQU 0x20
SVC_Handler

PUSH     {R0-R3,R12,lr} ; Store registers.
    MOV      R1, sp               ; Set pointer to parameters.
    MRS      R0, SPSR  ; Get SPSR.

PUSH     {R0,R3} ; Store SPSR onto stack and another register to maintain
                                  ; 8-byte-aligned stack. Only required for nested SVCs.

TST      R0,#0x20  ; Occurred in Thumb state?
LDRHNE R0,[lr,#-2]      ; Yes: load halfword and...
BICNE R0,R0,#0xFF00  ; ...extract comment field.
LDREQ R0,[lr,#-4]  ; No: load word and...
BICEQ R0,R0,#0xFF000000 ; ...extract comment field.

; R0 now contains SVC number
        ; R1 now contains pointer to stacked registers
    BL       C_SVC_Handler        ; Call C routine to handle the SVC.

POP      {R0,R3} ; Get SPSR from stack.
    MSR SPSR_cf, R0          ; Restore SPSR.
    LDM sp!, {R0-R3,R12,pc}^ ; Restore registers and return.
    END

Nested SVCs in C and C++

You can write nested SVCs in C or C++. Code generated by the ARM compiler stores 
and reloads lr_SVC as necessary.

Calling SVCs from an application

You can call an SVC from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SVC. 
For example:

    MOV    R0, #65    ; load R0 with the value 65
    SVC    0x0        ; Call SVC 0x0 with parameter value in R0

The SVC instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SVC as an __SVC function, and call it. For example:
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    __svc(0) void my_svc(int);
    .
    .
    .
    my_svc(65);

This enables an SVC to be compiled inline, without additional calling overhead, 
provided that:

• any arguments are passed in R0-R3 only

• any results are returned in R0-R3 only.

The parameters are passed to the SVC as if the SVC were a real function call. However, 
if there are between two and four return values, you must tell the compiler that the return 
values are being returned in a structure, and use the __value_in_regs directive. This is 
because a struct-valued function is usually treated as if it were a void function whose 
first argument is the address where the result structure must be placed.

Example 6-13 and Example 6-14 on page 6-25 show an SVC handler that provides SVC 
numbers 0x0, 0x1, 0x2 and 0x3. SVC 0x0 and SVC 0x1 each take two integer parameters and 
return a single result. SVC 0x2 takes four parameters and returns a single result. SVC 0x3 
takes four parameters and returns four results. This example is in the examples 
directory, in ...\svc\main.c. and ...\svc\svc.h.

Example 6-13 main.c

#include <stdio.h>
#include "svc.h"
unsigned *svc_vec = (unsigned *)0x08;
extern void SVC_Handler(void);
int main( void )
{
    int result1, result2;
    struct four_results res_3;
    Install_Handler( (unsigned) SVC_Handler, svc_vec );
    printf("result1 = multiply_two(2,4) = %d\n", result1 = multiply_two(2,4));
    printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply_two(3,6));
    printf("add_two( result1, result2 ) = %d\n", add_two( result1, result2 ));
    printf("add_multiply_two(2,4,3,6) = %d\n", add_multiply_two(2,4,3,6));
    res_3 = many_operations( 12, 4, 3, 1 );
    printf("res_3.a = %d\n", res_3.a );
    printf("res_3.b = %d\n", res_3.b );
    printf("res_3.c = %d\n", res_3.c );
    printf("res_3.d = %d\n", res_3.d );
    return 0;
}
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Example 6-14 svc.h

__svc(0) int multiply_two(int, int);
__svc(1) int add_two(int, int);
__svc(2) int add_multiply_two(int, int, int, int);
struct four_results
{
    int a;
    int b;
    int c;
    int d;
};
__svc(3) __value_in_regs struct four_results
    many_operations(int, int, int, int);

Calling SVCs dynamically from an application

In some circumstances it might be necessary to call an SVC whose number is not known 
until run-time. This situation might occur, for example, when there are a number of 
related operations that can be performed on an object, and each operation has its own 
SVC. In this case, the methods described in the previous sections are not appropriate.

There are several ways of dealing with this, for example:

• Construct the SVC instruction from the SVC number, store it somewhere, then 
execute it.

• Use a generic SVC that takes, as an extra argument, a code for the actual operation 
to be performed on its arguments. The generic SVC decodes the operation and 
performs it.

The second mechanism can be implemented in assembly language by passing the 
required operation number in a register, typically R0 or R12. You can then rewrite the 
SVC handler to act on the value in the appropriate register.

Because some value has to be passed to the SVC in the comment field, it is possible for 
a combination of these two methods to be used.

For example, an operating system might make use of only a single SVC instruction and 
employ a register to pass the number of the required operation. This leaves the rest of 
the SVC space available for application-specific SVCs. You can use this method if the 
overhead of extracting the operation number from the instruction is too great in a 
particular application. This is how the ARM and Thumb semihosted instructions are 
implemented.
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Example 6-15 shows how __svc can be used to map a C function call onto a semihosting 
call. It is derived from retarget.c in the examples directory, in 
...\emb_sw_dev\source\retarget.c.

Example 6-15 Mapping a C function onto a semihosting call

#ifdef __thumb
/* Thumb Semihosting */
#define SemiSVC 0xAB
#else
/* ARM Semihosting */
#define SemiSVC 0x123456
#endif
/* Semihosting call to write a character */ 
__svc(SemiSVC) void Semihosting(unsigned op, char *c);
#define WriteC(c) Semihosting (0x3,c)
void write_a_character(int ch)
{
    char tempch = ch;
    WriteC( &tempch );
}

The compiler includes a mechanism to support the use of R12 to pass the value of the 
required operation. Under the AAPCS, R12 is the ip register and has a dedicated role 
only during function calls. At other times, you can use it as a scratch register. The 
arguments to the generic SVC are passed in registers R0-R3 and values are optionally 
returned in R0-R3 as described earlier, see Calling SVCs from an application on 
page 6-23. The operation number passed in R12 can be the number of the SVC to be 
called by the generic SVC. However, this is not required.

Example 6-16 shows a C fragment that uses a generic, or indirect SVC.

Example 6-16 Using indirect SVC

__svc_indirect(0x80)
    unsigned SVC_ManipulateObject(unsigned operationNumber,
                                  unsigned object,unsigned parameter);
unsigned DoSelectedManipulation(unsigned object,
                                unsigned parameter, unsigned operation)
{ return SVC_ManipulateObject(operation, object, parameter);
}

This produces the following code:
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DoSelectedManipulation
PUSH     {R4,lr}

        MOV      R12,R2
        SVC      #0x80
        POP  {R4,pc}
        END

It is also possible to pass the SVC number in R0 from C using the __svc mechanism. For 
example, if SVC 0x0 is used as the generic SVC, operation 0 is a character read, and 
operation 1 is a character write, you can set up the following:

__svc (0) char __ReadCharacter (unsigned op);
__svc (0) void __WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly way by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use R0 in this way, then only three registers are available for passing 
parameters to the SVC. Usually, if you have to pass more parameters to a subroutine in 
addition to R0-R3, you can do this using the stack. However, stacked parameters are not 
easily accessible to an SVC handler, because they typically exist on the User mode stack 
rather than the Supervisor mode stack employed by the SVC handler.

Alternatively, one of the registers, typically R1, can be used to point to a block of 
memory storing the other parameters.

6.2.9 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can report the error and quit. 
Otherwise the address that caused the abort must be restored into physical memory. 
lr_ABT points to the instruction at the address following the one that caused the abort, 
so the address to be restored is at lr_ABT-4. The virtual memory fault for that address 
can be dealt with and the instruction fetch retried. The handler therefore returns to the 
same instruction rather than the following one, for example:

    SUBS    pc,lr,#4

6.2.10 Undefined instruction handlers

An undefined instruction exception is generated in the following cases:

• if the processor does not recognize an instruction

• if the processor recognizes an instruction as a coprocessor instruction, but no 
coprocessor recognizes it.
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It might be that the instruction is intended for a coprocessor, but that the relevant 
coprocessor, for example VFP, is not attached to the system, or is disabled. However, a 
software emulator for such a coprocessor might be available.

Such an emulator must:

1. Attach itself to the undefined instruction vector and store the old contents.

2. Examine the undefined instruction to see if it has to be emulated. This is similar 
to the way in which an SVC handler extracts the number of an SVC, but rather 
than extracting the bottom 24 bits, the emulator must extract bits [27:24]. 

These bits determine whether the instruction is a coprocessor operation in the 
following way:

• If bits [27:24] = b1110 or b110x, the instruction is a coprocessor 
instruction.

• If bits [8:11] show that this coprocessor emulator has to handle the 
instruction, the emulator must process the instruction and return to the user 
program.

3. Otherwise the emulator must pass the exception onto the original handler, or the 
next emulator in the chain, using the vector stored when the emulator was 
installed.

When a chain of emulators is exhausted, the undefined instruction handler must report 
an error and quit.

Note
 The pre-ARMv6T2 Thumb instruction set does not have coprocessor instructions, so 
there is no requirement for the undefined instruction handler to emulate such 
instructions.
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6.3 ARMv6-M and ARMv7-M profiles

This section describes how to handle the different types of exception supported by the 
microcontroller profiles, for example Cortex™-M1 and Cortex-M3.

The microcontroller profiles support:

• two operation modes, Thread mode and Handler mode

• two execution modes, Privileged mode and User mode.

Thread mode is entered on reset and normally on return from an exception. When in 
thread mode, code can be executed in either Privileged or User mode.

Handler mode is entered as a result of an exception. All code is executed as Privileged. 
The processor automatically switches to Privileged mode when exceptions occur.

Privileged mode has full access rights.

User mode has limited access rights. The limitations include:

• restrictions on instruction use, for example which fields can be used in MSR 
instructions

• restrictions on the use of certain coprocessor registers

• restrictions on access to memory and peripherals based on system design

• restrictions on access to memory and peripherals imposed by the MPU 
configuration.

You can change from Privileged Thread to User Thread mode by clearing 
CONTROL[0] using an MSR instruction. However, you cannot directly change to 
privileged mode from user mode without going through an exception, for example an 
SVC, see Supervisor calls on page 6-37.

6.3.1 Main and Process Stacks

The microcontroller profiles support two different stacks, a main stack and a process 
stack. It has two stack pointers, one for each stack. Only one stack pointer is visible at 
a time, depending on the stack in use.

The main stack is used at reset, and on entry to an exception handler. To use the process 
stack it must be selected. You can do this while in Thread Mode, by writing to 
CONTROL[1] using an MSR instruction.

Note
 Your initialization or context switching code must initialize the process stack pointer.
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6.3.2 Types of exception

Table 6-2 shows the different types of exceptions recognized by the microcontroller 
profiles. When an exception occurs simultaneously, they are handled in a fixed order of 
priority. Each exception is handled in turn before returning to the original application.

Exceptions with a lower priority number have a higher priority status. For example, if a 
processor is in Handler mode, an exception is taken if it has a lower priority number than 
the exception currently being handled. Any exception with the same priority number or 
higher is pended.

When an exception handler terminates:

• If there are no exceptions pending, the processor returns to Thread mode, and 
execution returns to the application program.

Table 6-2 Exception types in priority order

Position Exception Priority Disable Description

1 Reset –3 No

2 NMI –2 No Non-Maskable Interrupt (NMI)

3 HardFault –1 No All faults not covered by other exceptions

4 MemManage configurable Can be Memory protection errors (ARMv7-M only)

5 BusFault configurable Can be Other memory faults (ARMv7-M only)

6 UsageFault configurable Can be Instruction execution faults other than memory faults 
(ARMv7-M only)

7-10 Reserved - -

11 SVCall configurable Can be Synchronous SVC call caused by execution of SVC 
instruction

12 Debug 
Monitor

configurable Can be Synchronous debug event (ARMv7-M only)

13 Reserved - -

14 PendSV configurable Can be Asynchronous SVC call

15 SysTick configurable Can be System timer tick

16 and 
above

External 
Interrupt

configurable Can be External interrupt
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• If there are any exceptions pending, execution passes to the handler of the pending 
exception with the lowest priority number. If there are two pending exceptions 
with the same lowest priority number, the exception with the lowest exception 
number is handled first.

6.3.3 The vector table

The vector table for the microcontroller profiles consists of addresses to the relevant 
handlers. The handler for exception number n is held at (vectorbaseaddress + 4 * n). 

In ARMv7-M processors you can specify the vectorbaseaddress in the Vector Table 
Offset Register (VTOR) to relocate the vector table. The default location on reset is 0x0 
(CODE space). For ARMv6-M, the vector table base address is fixed at 0x0. See Types 
of exception on page 6-30 for the values of n for each exception. The word at 
vectorbaseaddress holds the reset value of the main stack pointer.

Note
 The least significant bit, bit[0] of each address in the vector table must be set or a 
HardFault exception is generated. The RealView tools normally enable this for you if 
Thumb symbol names are used in the table.

Vector Table Offset Register (ARMv7-M only)

The Vector Table Offset Register locates the vector table in CODE or SRAM space. 
When setting a different location, the offset must be aligned based on the number of 
exceptions in the table. This means that the minimal alignment is 32 words that you can 
use for up to 16 interrupts. For more interrupts, you must adjust the alignment by 
rounding up to the next power of two. For example, if you require 21 interrupts, the 
alignment must be on a 64-word boundary because table size is 37 words, next power 
of two is 64.

Writing the exception table

The easiest way to populate the vector table is to use a scatter-loading description file 
to place a C array of function pointers at memory address 0x0. You can use the C array 
to configure the initial stack pointer, image entry point and the addresses of the 
exception handlers, see Example 6-17 on page 6-32.

Note
 Some features shown in Example 6-17 on page 6-32 are not available in ARMv6-M. To 
maintain alignment you must reserve the space by entering 0 in the vector table.
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For more information on scatter-loading, see Chapter 5 Using Scatter-loading 
Description Files in the Linker User Guide.

Example 6-17 Example C structure for exception handlers

/* Filename: exceptions.c */
typedef void(* const ExecFuncPtr)(void);
/* Place table in separate section */
#pragma arm section rodata="exceptions_area" 
ExecFuncPtr exception_table[] = {
    (ExecFuncPtr)&Image$$ARM_LIB_STACKHEAP$$ZI$$Limit, 

/* Initial Stack Pointer, from linker-generated symbol */
    (ExecFuncPtr)&__main,   /* Initial PC, set to entry point */
    &NMIException,
    &HardFaultException,
    &MemManageException, /* ARMv7-M only (0 for ARMv6-M) */
    &BusFaultException, /* ARMv7-M only (0 for ARMv6-M) */
    &UsageFaultException, /* ARMv7-M only (0 for ARMv6-M) */
    0, 0, 0, 0,             /* Reserved */
    &SVCHandler, /* Only available with OS extensions */
    &DebugMonitor, /* ARMv7-M only (0 for ARMv6-M) */
    0,                      /* Reserved */
    &PendSVC, /* Only available with OS extensions */
    (ExecFuncPtr)&SysTickHandler, /* Only available with OS extensions */

    /* Configurable interrupts start here...*/
    &InterruptHandler,
    &InterruptHandler,
    &InterruptHandler
    /*
    :
    */
};
#pragma arm section
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6.3.4 The Nested Vectored Interrupt Controller

Depending on the implementation, the Nested Vectored Interrupt Controller (NVIC) 
can support:

ARMv6-M 1, 8, 16, or 32 external interrupts with 4 different priority levels.

ARMv7-M up to 240 external interrupts with up to 256 different priority levels that 
can be dynamically reprioritized. The NVIC also supports the 
tail-chaining of interrupts.

The microcontroller profiles support both level and pulse interrupt sources. The 
processor state is saved automatically in hardware on interrupt entry and is restored on 
interrupt exit. 

The use of an NVIC in the microcontroller profiles means that the vector table is very 
different from other ARM processors consisting of addresses not instructions. The 
initial stack pointer and the address of the reset handler must be located at 0x0 and 0x4 
respectively. These addresses are loaded into the SP and PC registers by the processor 
at reset.

6.3.5 Handling an exception

On microcontroller profiles, exception prioritization, nesting of exceptions, and saving 
of corruptible registers are handled entirely by the processor to provide very efficient 
handling and minimize interrupt latency. Interrupts are automatically enabled on entry 
to every exception handler which means that you must remove any top-level reentrancy 
code from projects written for other processors. If you require interrupts to be disabled 
then you must handle this in your code and ensure that they are enabled on return from 
an exception.

Note
 Exception handlers must clear the interrupt source.

Microcontroller profiles have no FIQ input. Any peripheral that signals an FIQ on 
projects from other processors must be moved to a high-priority external interrupt. It 
might be necessary to check that the handler for this kind of interrupt does not expect 
to use the banked FIQ registers, because microcontroller profiles do not have banked 
registers, and you must stack R8-R12 as for any other normal IRQ handler.

Microcontroller profiles also provide a high priority Non Maskable Interrupt (NMI) 
which you cannot disable.
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Simple C exception handler

Exception handlers for microcontroller profiles are not required to save or restore the 
system state and can be written as ordinary, ABI-compliant C functions. However, it is 
recommended that you use the __irq keyword to identify the function as an interrupt 
routine, see Example 6-18.

Example 6-18 Simple C exception handler

__irq void SysTickHandler(void)
{

printf("----- SysTick Interrupt -----");
}

8 byte stack alignment

The Application Binary Interface (ABI) for the ARM Architecture requires that the 
stack must be 8-byte aligned on all external interfaces, such as calls between functions 
in different source files. However, code does not have to maintain 8-byte stack 
alignment internally, for example in leaf functions. This means that when an IRQ occurs 
the stack might not be correctly 8-byte aligned.

ARMv7-M processors can automatically align the stack pointer when an exception 
occurs. You can enable this behavior by setting STKALIGN (bit 9) in the Configuration 
Control Register at address 0xE000ED14.

ARMv6-M processors always enable this behavior however, it is recommended that you 
manually set STKALIGN (bit 9) so that your image is forward compatible with 
ARMv7-M processors.

Note
 If you are using a revision 0 Cortex-M3 processor STKALIGN is not supported, 
therefore the adjustment is not performed in hardware and needs to be done by software. 
The compiler can generate code in your IRQ handlers that correctly aligns the stack. To 
do this you must prefix your IRQ handlers with __irq and use the --cpu=Cortex-M3-rev0 
compiler switch, not --cpu=Cortex-M3.
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6.3.6 Configuring the System Control Space registers

The System Control Space (SCS) registers are located at 0xE000E000. A structure can be 
used to represent such a large number of individual registers and related offsets, see 
Example 6-19. You can then position the structure in the correct memory location using 
a scatter-loading description file, using a similar method to the vector table.

You can find samples of this code for both the Cortex-M1 and Cortex-M3 processors in 
the examples directory, install_directory\RVDS\Examples\..\Example3.

Example 6-19 SCS register structure and definition

typedef volatile struct {
int MasterCtrl;
int IntCtrlType;

int zReserved008_00c[2];                    /* Reserved space */

struct {
int Ctrl;
int Reload;
int Value;
int Calibration;

} SysTick;

int zReserved020_0fc[(0x100-0x20)/4];      /* Reserved space */
/* Offset 0x0100
* Additional space allocated to ensure alignment
*/

struct {
int Enable[32];
int Disable[32];
int Set[32];
int Clear[32];
int Active[64];  /* ARMv7-M only */
int Priority[64];

} NVIC;

int zReserved0x500_0xcfc[(0xd00-0x500)/4];      /* Reserved space */
/* Offset 0x0d00 */

int CPUID;
int IRQcontrolState;
int ExceptionTableOffset;
int AIRC;
int SysCtrl; /* ARMv7-M only */
int ConfigCtrl; /* ARMv7-M only */
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int SystemPriority[3]; /* ARMv7-M only */

int zReserved0xd40_0xd90[(0xd90-0xd40)/4];      /* Reserved space */
/* Offset 0x0d90 */

struct {
int Type; /* ARMv7-M only */
int Ctrl; /* ARMv7-M only */
int RegionNumber; /* ARMv7-M only */
int RegionBaseAddr;  /* ARMv7-M only */
int RegionAttrSize; /* ARMv7-M only */

} MPU; /* ARMv7-M only */
} SCS_t;

/*
 * System Control Space (SCS) Registers
 * in separate section so it can be placed correctly using scatter file
 */
#pragma arm section zidata="scs_registers"
SCS_t SCS;
#pragma arm section

Note
 The contents of the SCS registers might be different for your implementation. For 
example, there might be no SysTick registers if the Operating System extension is not 
implemented.

6.3.7 Configuring individual IRQs

Each IRQ has an individual enable bit in the Interrupt Set Enable Registers, part of the 
NVIC registers. To enable or disable an IRQ, you must set the corresponding bit in the 
Interrupt Set Enable Register to either 1 or 0 respectively. See the reference manual for 
the device you are using for specific information about the Interrupt Set Enable 
Register.

Example 6-20 on page 6-37 shows a typical function that enables an IRQ for the SCS 
structure shown in Example 6-19 on page 6-35.
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Example 6-20 IRQ Enable Function

void NVIC_enableISR(unsigned isr)
{

/* The isr argument is the number of the interrupt to enable. */
SCS.NVIC.Enable[ (isr/32) ] = 1<<(isr % 32);

}

Note
 Some registers in the NVIC region can only be accessed from Privileged mode.

You can assign a priority level to each individual interrupt using the Interrupt Priority 
Registers apart from Hard Fault, Non Maskable Interrupt (NMI), and reset which have 
fixed priorities.

6.3.8 Supervisor calls

As with previous ARM processors, there is an SVC instruction that generates an SVC. 
SVCs are normally used to request privileged operations or access to system resources 
from an operating system.

The SVC instruction has a number embedded within it, often referred to as the SVC 
number. On most ARM processors, this is used to indicate the service that is being 
requested. On microcontroller profiles, the processor saves the argument registers to the 
stack on the initial exception entry.

A late-arriving exception, taken before the first instruction of the SVC handler executes, 
might corrupt the copy of the arguments still held in R0 to R3. This means that the stack 
copy of the arguments must be used by the SVC handler. Any return value must also be 
passed back to the caller by modifying the stacked register values. In order to do this, a 
short piece of assembly code must be implemented at the start of the SVC handler. This 
identifies where the registers are saved, extracts the SVC number from the instruction, 
and passes the number, and a pointer to the arguments, to the main body of the handler 
written in C.

Example 6-21 on page 6-38 shows an example SVC handler. This code tests the 
EXC_RETURN value set by the processor to determine which stack pointer was in use 
when the SVC was called. This can be useful for reentrant SVCs, but is unnecessary on 
most systems because in a typical system design, SVCs are only called from user code 
that uses the process stack. In such cases, the assembly code can consist of a single MSR 
instruction followed by a tail calling branch (B instruction) to the C body of the handler.
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Example 6-21 Example SVC Handler

__asm void SVCHandler(void)
{

IMPORT SVCHandler_main
TST lr, #4
ITE EQ
MRSEQ R0, MSP
MRSNE R0, PSP
B SVCHandler_main

}
void SVCHandler_main(unsigned int * svc_args)
{

unsigned int svc_number;
/*
* Stack contains:
* R0, R1, R2, R3, R12, R14, the return address and xPSR
* First argument (R0) is svc_args[0]
*/
svc_number = ((char *)svc_args[6])[-2];
switch(svc_number)
{

case SVC_00:
/* Handle SVC 00 */
break;

case SVC_01:
/* Handle SVC 01 */
break;

default:
/* Unknown SVC */
break;

}
}

Example 6-22 shows how you can make different declarations for a number of SVCs. 
__svc is a compiler keyword that replaces a function call with an SVC instruction 
containing the specified number. 

Example 6-22 Example of calling an SVC from C code

#define SVC_00 0x00
#define SVC_01 0x01
void __svc(SVC_00) svc_zero(const char *string);
void __svc(SVC_01) svc_one(const char *string);
int call_system_func(void)
{
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svc_zero("String to pass to SVC handler zero");
svc_one("String to pass to a different OS function");

}

6.3.9 System timer

The SCS includes a system timer, SysTick, that an operating system can use to ease 
porting from another platform. Software can poll SysTick, or you can configure it to 
generate an interrupt. The SysTick interrupt has its own entry in the vector table and 
therefore can have its own handler.

Table 6-3 describes the four registers that you use to configure SysTick.

Configuring SysTick

To configure SysTick, load the interval required between SysTick events to the SysTick 
Reload Value register. The timer interrupt, or COUNTFLAG bit in the SysTick Control 
and Status register, is activated on the transition from 1 to 0, therefore it activates every 
n+1 clock ticks. If you require a period of 100, write 99 to the SysTick Reload Value 
register. The SysTick Reload Value register supports values between 0x1 and 
0x00FFFFFF.

If you want to use SysTick to generate an event at a timed interval, for example 1ms, 
you can use the SysTick Calibration Value Register to scale your value for the Reload 
register. The SysTick Calibration Value Register is a read-only register that contains the 
number of pulses for a period of 10ms, in the TENMS field, bits[23:0].

This register also has a SKEW bit. Bit[30] == 1 indicates that the calibration for 10ms 
in the TENMS section is not exactly 10ms due to clock frequency. Bit[31] == 1 
indicates that the reference clock is provided.

Table 6-3

Name Address Description

SysTick Control and Status 0xE000E010 Basic control of SysTick: enable, clock source, interrupt, or poll

SysTick Reload Value 0xE000E014 Value to load Current Value register when 0 is reached

SysTick Current Value 0xE000E018 The current value of the count down

SysTick Calibration Value 0xE000E01C Contains the current value of the count down
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Note
 For Cortex-M1 processors, the TENMS field reads as zero because the calibration value 
is unknown.

The Control and Status Register can poll the timer either by reading COUNTFLAG, 
bit[16] and the SysTick generating an interrupt.

By default, SysTick is configured for polling mode. In this mode, user code polls 
COUNTFLAG, to ascertain if the SysTick event had occurred. This is indicated by 
COUNTFLAG being set. Reading the Control and Status register clears COUNTFLAG. 
To configure SysTick to generate an interrupt, set TICKINT, bit[1] of the SysTick 
Control and Status register, to 1. You must also enable the appropriate interrupt in the 
NVIC, and select the clock source using CLKSOURCE, bit[2]. Setting this to 1 selects 
the processor clock, and 0 selects the external reference clock.

Note
 For ARMv6-M processors, the CLKSOURCE field reads as One because SysTick 
always uses the processor clock.

You can enable the timer by setting bit[0] of the SysTick Status and Control register.
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Chapter 7 
Debug Communications Channel

This chapter explains how to use the Debug Communications Channel (DCC).

It contains the following sections:

• About the Debug Communications Channel on page 7-2

• DCC communication between target and host debug tools on page 7-3

• Access from Thumb state on page 7-6.
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7.1 About the Debug Communications Channel

The EmbeddedICE® logic in ARM® processors contains a debug communications 
channel. This enables data to be passed between the target and the host debug tools. This 
chapter describes how the DCC can be accessed by a program running on the target, and 
by the host debugger.

To illustrate the use of the DCC as described in this chapter, see the example code in the 
examples directory, install_directory\RVDS\Examples\...\dcc\. More information can 
be found in readme.txt.

Note
 The latest release of ARM RealView® Debugger provides support for a DCC viewer. 
You can run the executable image in RealView Debugger and use the DCC viewer to 
send and receive data from your target.
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7.2 DCC communication between target and host debug tools

The target accesses the DCC as coprocessor 14 on the processor using the ARM 
instructions MCR and MRC. Figure 7-1 shows three DCC registers to control and transfer 
data between the target and host debug tools.

Read register 

For the target to read data sent from the host debug tools.

Write register 

For the target to write messages to the host debug tools.

Control register 

To provide handshaking information for the target and the host debug 
tools.

For pre-ARMv6 processors:

Bit 1 (W bit) Clear when the target can send data.

Bit 0 (R bit) Set when there is data for the target to read.

For ARMv6 and later processors:

Bit 29 (W bit) Clear when the target can send data.

Bit 30 (R bit) Set when there is data for the target to read.

Figure 7-1 DCC communication between target and host debug tools

Note
 For information on accessing DCC registers, see the Technical Reference Manual for 
your processor.

S
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Write register
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7.2.1 Interrupt-driven debug communications

Example 7-1 shows a code snippet that demonstrates a simple DCC routine. Text sent 
from the debug tools is echoed back from the target with a change of case. Build an 
executable image from this example (in install_directory\RVDS\Examples\...\dcc\) 
and run it on your target using the JTAG port. You can use the Comms Channel view in 
RealView Debugger to communicate with your target. See the RealView Debugger User 
Guide for more information.

Example 7-1 DCC communication between target and host debug tools

 AREA DCC, CODE, READONLY
ENTRY

; Declare assembly time substitution variables SCReg, DReg, TestFull, and
; TestEmpty
…

pollin  
MRC   p14,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST   r3, $TestFull
BEQ   pollin ; If R bit clear then loop

read
MRC   p14,0,r0,$DReg,0 ; read word into r0 

char_masks
MOV   r4, #0x20 ; EOR mask to invert case of a char by flipping bit 6
MOV   r5, #0xC0      ; AND mask to clear all but top 2 bits of each char

changeCase
TST   r0, r5 ; Check whether character value is >0x3F
EORNE r0, r0, r4 ; If character value >0x3F, flip bit 6

; of the character to invert case
MOV   r5, r5, LSL #0x8 ; Shift the character mask left by 1 char
MOVS  r4, r4, LSL #0x8 ; Shift the case inverter pattern left by 1 char
BNE   changeCase ; If the inverter pattern is non-zero there are

; more chars, so branch to do the next one
pollout

MRC   p14,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST   r3, $TestEmpty
BNE   pollout    ; if W set, register still full

write
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MCR p14,0,r0,$DReg,0 ; Write word from r0
B     pollin         ; Loop for more words to read
END

You can convert this type of polled example to an interrupt-driven example if COMMRX and 
COMMTX signals from the Embedded ICE logic are connected to your interrupt controller. 
The read and write code can then be used in an interrupt handler. See Interrupt handlers 
on page 6-9 for information on writing interrupt handlers.
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7.3 Access from Thumb state

On processors with architecture earlier than the ARM architecture v6T2, you cannot use 
the debug communications channel while the processor is in Thumb® state, because 
there are no Thumb coprocessor instructions.

There are three possible ways around this:

• You can write each polling routine in a SVC handler, which can then be invoked 
while in either ARM or Thumb state. Entering the SVC handler immediately puts 
the processor into ARM state where the coprocessor instructions are available. 
See Chapter 6 Handling Processor Exceptions for more information on SVCs.

• Thumb code can make interworking calls to ARM subroutines that implement the 
polling. See Chapter 5 Interworking ARM and Thumb for more information on 
mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The 
interrupt handler runs in ARM instruction set state, so the coprocessor 
instructions can be accessed directly.
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Chapter 8 
Semihosting

This chapter describes the semihosting mechanism.

It contains the following sections:

• About semihosting on page 8-2

• Semihosting implementation on page 8-6

• Semihosting operations on page 8-8

• Debug agent interaction SVCs on page 8-24.
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8.1 About semihosting

Semihosting enables code running on an ARM® target to use the I/O facilities on a host 
computer that is running RealView® Debugger. Examples of these facilities include 
keyboard input, screen output, and disk I/O.

8.1.1 What is semihosting?

Semihosting is a mechanism for ARM targets to communicate input/output requests 
from application code to a host computer running a debugger. For example, you can use 
this mechanism to enable functions in the C library, such as printf() and scanf(), to use 
the screen and keyboard of the host instead of having a screen and keyboard on the 
target system.

This is useful because development hardware often does not have all the input and 
output facilities of the final system. Semihosting enables the host computer to provide 
these facilities.

Semihosting is implemented by a set of defined software instructions, for example, 
SVCs, that generate exceptions from program control. The application invokes the 
appropriate semihosting call and the debug agent then handles the exception. The debug 
agent provides the required communication with the host.

The semihosting interface is common across all debug agents provided by ARM. 
Semihosted operations work when you are using RealView ARMulator® ISS, 
Instruction Set System Model (ISSM), Real Time System Model (RTSM), RealView ICE 
or RealMonitor without any requirement for porting, see Figure 8-1 on page 8-3.

In many cases, semihosting is invoked by code within library functions. The application 
can also invoke the semihosting operation directly. See Chapter 2 The C and C++ 
Libraries in the Libraries and Floating Point Support Guide for more information on 
support for semihosting in the ARM C library.
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Figure 8-1 Semihosting overview

Note
 ARM processors prior to ARMv7 use the SVC instructions, formerly known as SWI 
instructions, to make semihosting calls. However, if you are compiling for an 
ARMv6-M or ARMv7-M, for example a Cortex™-M1 or Cortex-M3 processor, 
semihosting is implemented using the BKPT instruction.

8.1.2 The semihosting interface

The ARM and Thumb® SVC instructions contain a field that encodes the SVC number 
used by the application code. The system SVC handler can decode this number.

Note
 If you are compiling for the ARMv6-M or ARMv7-M, the Thumb BKPT instruction is 
used instead of the Thumb SVC instruction. Both BKPT and SVC take an 8-bit immediate 
value. In all other respects, semihosting is the same for all supported ARM processors.
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Semihosting operations are requested using a single SVC number, leaving the other 
numbers available for use by the application or operating system. The SVC number 
used for semihosting depends on the target architecture or processor:

SVC 0x123456 In ARM state for all architectures.

SVC 0xAB In ARM state and Thumb state, excluding ARMv6-M and ARMv7-M. 
This behavior is not guaranteed on all debug targets from ARM or from 
third parties.

BKPT 0xAB For ARMv6-M and ARMv7-M, Thumb state only.

See also Changing the semihosting operation numbers on page 8-5.

The SVC number indicates to the debug agent that the SVC instruction is a semihosting 
request. To distinguish between operations, the operation type is passed in R0. All other 
parameters are passed in a block that is pointed to by R1. 

The result is returned in R0, either as an explicit return value or as a pointer to a data 
block. Even if no result is returned, assume that R0 is corrupted.

The available semihosting operation numbers passed in R0 are allocated as follows:

0x00-0x31 Used by ARM.

0x32-0xFF Reserved for future use by ARM.

0x100-0x1FF Reserved for user applications. These are not used by ARM.

If you are writing your own SVC operations, however, you are advised to 
use a different SVC number rather than using the semihosted SVC 
number and these operation type numbers.

0x200-0xFFFFFFFF 

Undefined and currently unused. It is recommended that you do not use 
these.

In the following sections, the number in parentheses after the operation name is the 
value placed into R0, for example SYS_OPEN (0x01).

If you are calling SVCs from assembly language code ARM recommends that you use 
the operation names defined in semihost.h. This is installed as part of the RealView 
ARMulator Extension Kit. You can define the operation names with an EQU directive. 
For example:

SYS_OPEN    EQU 0x01
SYS_CLOSE   EQU 0x02
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Changing the semihosting operation numbers

It is strongly recommended that you do not change the semihosting operation numbers. 
If you do, you must:

• change all the code in your system, including library code, to use the new number

• reconfigure your debugger to use the new number.
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8.2 Semihosting implementation

The functionality provided by semihosting is generally the same on all debug agents. 
However, the implementation of semihosting differs between hosts.

This section describes the semihosting implementation on different debug agents.

8.2.1 RealView ARMulator ISS

When a semihosting request is encountered, RealView ARMulator ISS traps the SVC 
directly and the instruction in the SVC entry in the vector table is not executed.

To turn the support for semihosting off in RealView ARMulator ISS, change 
Default_Semihost in the default.ami file to No_Semihost.

See the RealView ARMulator ISS User Guide for more information.

8.2.2 RealView ICE

When using the RealView ICE DLL, semihosting is handled with either a real SVC 
exception handler, or by emulating a handler using breakpoints. See the RealView ICE 
and RealView Trace User Guide, for more information about semihosting with 
RealView ICE.

8.2.3 Instruction Set System Model

When a semihosting request is encountered, ISSM traps the request directly and the 
instruction in the SVC entry in the vector table is not executed. See your debugger 
documentation for more information about semihosting with ISSM.

To turn the support for semihosting off in ISSM, configure the target in your debugger 
or change the appropriate entry in the default.smc file:

...Name="semihosting-enable" Type="Bool">1</param>
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8.2.4 RealMonitor

RealMonitor implements an SVC handler that must be integrated with your system to 
enable semihosting support.

When the target executes a semihosted SVC instruction, the RealMonitor SVC handler 
carries out the required communication with the host.

For more information see the documentation supplied with RealMonitor.
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8.3 Semihosting operations

This section lists the semihosting operations that enable debug I/O facilities between a 
host computer and an ARM target.

8.3.1 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor mode and disables all interrupts by setting both 
interrupt mask bits in the new CPSR. With RealView ICE or RealMonitor, the User stack 
pointer, R13_USR is copied to the Supervisor mode stack pointer, R13_SVC and the I and F 
bits in the current CPSR are set, disabling normal and fast interrupts.

Note
 If debugging with RealView ARMulator ISS:

• R0 is set to zero indicating that no function is available for returning to User mode

• the User mode stack pointer is not copied to the Supervisor mode stack pointer.

Entry

Register R1 is not used. The CPSR can specify User or Supervisor mode.

Return

On exit, R0 contains the address of a function to be called to return to User mode. The 
function has the following prototype:

void ReturnToUSR(void)

If EnterSVC is called in User mode, this routine returns the caller to User mode and 
restores the interrupt flags. Otherwise, the action of this routine is undefined.

If entered in User mode, the Supervisor mode stack is lost as a result of copying the user 
stack pointer. The return to User routine restores R13_SVC to the Supervisor mode stack 
value, but this stack must not be used by applications.

After executing the SVC, the current link register is R14_SVC, not R14_USR. If the value of 
R14_USR is required after the call, it must be pushed onto the stack before the call and 
popped afterwards, as for a BL function call.
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8.3.2 angel_SWIreason_ReportException (0x18)

This SVC can be called by an application to report an exception to the debugger directly. 
The most common use is to report that execution has completed, using 
ADP_Stopped_ApplicationExit.

Entry

On entry R1 is set to one of the values listed in Table 8-1 and Table 8-2 on page 8-10. 
These values are defined in angel_reasons.h. 

The hardware exceptions are generated if the debugger variable vector_catch is set to 
catch that exception type, and the debug agent is capable of reporting that exception 
type.

Table 8-1 Hardware vector reason codes

Name
Hexadecimal

value

ADP_Stopped_BranchThroughZero 0x20000

ADP_Stopped_UndefinedInstr 0x20001

ADP_Stopped_SoftwareInterrupt 0x20002

ADP_Stopped_PrefetchAbort 0x20003

ADP_Stopped_DataAbort 0x20004

ADP_Stopped_AddressException 0x20005

ADP_Stopped_IRQ 0x20006

ADP_Stopped_FIQ 0x20007
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Exception handlers can use these SVCs at the end of handler chains as the default 
action, to indicate that the exception has not been handled.

In Table 8-2, a * next to a value indicates that the value is not supported by the ARM 
debugger. The debugger reports an Unhandled ADP_Stopped exception for these values.

Return

No return is expected from these calls. However, it is possible for the debugger to 
request that the application continue by performing an RDI_Execute request or 
equivalent. In this case, execution continues with the registers as they were on entry to 
the SVC, or as subsequently modified by the debugger.

Table 8-2 Software reason codes

Name
Hexadecimal

value

ADP_Stopped_BreakPoint 0x20020

ADP_Stopped_WatchPoint 0x20021

ADP_Stopped_StepComplete 0x20022

ADP_Stopped_RunTimeErrorUnknown *0x20023

ADP_Stopped_InternalError *0x20024

ADP_Stopped_UserInterruption 0x20025

ADP_Stopped_ApplicationExit 0x20026

ADP_Stopped_StackOverflow *0x20027

ADP_Stopped_DivisionByZero *0x20028

ADP_Stopped_OSSpecific *0x20029
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8.3.3 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with 
SYS_OPEN.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 contains a handle for an open file.

Return

On exit, R0 contains:

• 0 if the call is successful

• –1 if the call is not successful.

8.3.4 SYS_CLOCK (0x10)

Returns the number of centiseconds since the execution started. 

Values returned by this SVC can be of limited use for some benchmarking purposes 
because of communication overhead or other agent-specific factors. For example, with 
RealView ICE the request is passed back to the host for execution. This can lead to 
unpredictable delays in transmission and process scheduling.

Use this function to calculate time intervals, by calculating differences between 
intervals with and without the code sequence to be timed.

Some systems enable more accurate timing, see SYS_ELAPSED (0x30) on page 8-12 
and SYS_TICKFREQ (0x31) on page 8-20.

Entry

Register R1 must contain zero. There are no other parameters. 

Return

On exit, R0 contains:

• the number of centiseconds since some arbitrary start point, if the call is 
successful

• –1 if the call is not successful, for example, because of a communications error.
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8.3.5 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since execution started. Use SYS_TICKFREQ to 
determine the tick frequency. 

Entry

On entry, R1 points to a two-word data block to be used for returning the number of 
elapsed ticks:

word 1 the least significant word in the doubleword value

word 2 the most significant word.

Return

On exit:

• R0 contains –1 if R1 does point to a doubleword containing the number of elapsed 
ticks. RealView ICE does not support this SVC and always return –1 in R0.

• R1 points to a doubleword, low-order word first, that contains the number of 
elapsed ticks.

8.3.6 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host 
implementation of the semihosting SVCs. The errno variable can be set by a number of 
C library semihosted functions, including:

• SYS_REMOVE

• SYS_OPEN

• SYS_CLOSE

• SYS_READ

• SYS_WRITE

• SYS_SEEK.

Whether errno is set or not, and to what value, is entirely host-specific, except where 
the ISO C standard defines the behavior.

Entry

There are no parameters. Register R1 must be zero.
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Return

On exit, R0 contains the value of the C library errno variable.

8.3.7 SYS_FLEN (0x0C)

Returns the length of a specified file.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 A handle for a previously opened, seekable file object.

Return

On exit, R0 contains:

• the current length of the file object, if the call is successful

• –1 if an error occurs.

8.3.8 SYS_GET_CMDLINE (0x15)

Returns the command line used to call the executable, that is, argc and argv.

Entry

On entry, R1 points to a two-word data block to be used for returning the command string 
and its length:

word 1 a pointer to a buffer of at least the size specified in word two

word 2 the length of the buffer in bytes.

Return

On exit:

• Register R1 points to a two-word data block:

word 1 a pointer to null-terminated string of the command line

word 2 the length of the string.

The debug agent might impose limits on the maximum length of the string that 
can be transferred. However, the agent must be able to transfer a command line of 
at least 80 bytes. 
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• Register R0 contains an error code:

— 0 if the call is successful

— –1 if the call is not successful, for example, because of a communications 
error.

8.3.9 SYS_HEAPINFO (0x16)

Returns the system stack and heap parameters. The values returned are typically those 
used by the C library during initialization. For RealView ARMulator ISS, the values 
returned are those provided in peripherals.ami. For RealView ICE, the values returned 
are the image location and the top of memory.

The C library can override these values. See the Tailoring storage management on 
page 2-65 in the Libraries and Floating Point Support Guide for more information 
about memory management in the C library.

The host debugger determines the actual values to return by using the top_of_memory 
debugger variable.

Entry

On entry, R1 contains the address of a pointer to a four-word data block. The contents of 
the data block are filled by the function. See Example 8-1 for the structure of the data 
block and return values.

Example 8-1

struct block {
    int heap_base;
    int heap_limit;
    int stack_base;
    int stack_limit;
};
struct block *mem_block, info;
mem_block = &info;
AngelSWI(SYS_HEAPINFO, (unsigned) &mem_block);

Note
 If word one of the data block has the value zero, the C library replaces the zero with 
Image$$ZI$$Limit. This value corresponds to the top of the data region in the memory 
map.
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Return

On exit, R1 contains the address of the pointer to the structure. 

If one of the values in the structure is 0, the system was unable to calculate the real 
value.

8.3.10 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or 
not. This call is passed a parameter block containing the error code to examine.

Entry

On entry, R1 contains a pointer to a one-word data block:

word 1 The required status word to check.

Return

On exit, R0 contains:

• 0 if the status word is not an error indication

• a nonzero value if the status word is an error indication.

8.3.11 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry

On entry, R1 contains a pointer to a one-word argument block:

word 1 A handle for a previously opened file object.

Return

On exit, R0 contains:

• 1 if the handle identifies an interactive device

• 0 if the handle identifies a file

• a value other than 1 or 0 if an error occurs.
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8.3.12 SYS_OPEN (0x01)

Opens a file on the host system. The file path is specified either as relative to the current 
directory of the host process, or absolute, using the path conventions of the host 
operating system.

ARM targets interpret the special path name :tt as meaning the console input stream, 
for an open-read or the console output stream, for an open-write. Opening these streams 
is performed as part of the standard startup code for those applications that reference the 
C stdio streams.

Entry

On entry, R1 contains a pointer to a three-word argument block:

word 1 A pointer to a null-terminated string containing a file or device name.

word 2 An integer that specifies the file opening mode. Table 8-3 gives the valid 
values for the integer, and their corresponding ISO C fopen() mode.

word 3 An integer that gives the length of the string pointed to by word 1. 

The length does not include the terminating null character that must be 
present.

Return

On exit, R0 contains:

• a nonzero handle if the call is successful

• –1 if the call is not successful.

8.3.13 SYS_READ (0x06)

Reads the contents of a file into a buffer. The file position is specified either:

• explicitly by a SYS_SEEK

• implicitly one byte beyond the previous SYS_READ or SYS_WRITE request.

Table 8-3 Value of mode

mode 0 1 2 3 4 5 6 7 8 9 10 11

ISO C fopen modea r rb r+ r+b w wb w+ w+b a ab a+ a+b

a. The non-ANSI option t is not supported.
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The file position is at the start of the file when the file is opened, and is lost when the 
file is closed. Perform the file operation as a single action whenever possible. For 
example, do not split a read of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, R1 contains a pointer to a four-word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN

word 2 points to a buffer

word 3 contains the number of bytes to read to the buffer from the file.

Return

On exit:

• R0 contains zero if the call is successful.

• If R0 contains the same value as word 3, the call has failed and EOF is assumed.

• If R0 contains a smaller value than word 3, the call was partially successful. No 
error is assumed, but the buffer has not been filled.

If the handle is for an interactive device, that is, SYS_ISTTY returns –1. A nonzero return 
from SYS_READ indicates that the line read did not fill the buffer.

8.3.14 SYS_READC (0x07)

Reads a byte from the console.

Entry

Register R1 must contain zero. There are no other parameters or values possible. 

Return

On exit, R0 contains the byte read from the console.
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8.3.15 SYS_REMOVE (0x0E)

Caution
 Deletes a specified file on the host filing system.

Entry

On entry, R1 contains a pointer to a two-word argument block:

word 1 points to a null-terminated string that gives the path name of the file to be 
deleted

word 2 the length of the string.

Return

On exit, R0 contains:

• 0 if the delete is successful

• a nonzero, host-specific error code if the delete fails.

8.3.16 SYS_RENAME (0x0F)

Renames a specified file.

Entry

On entry, R1 contains a pointer to a four-word data block:

word 1 a pointer to the name of the old file

word 2 the length of the old filename

word 3 a pointer to the new filename

word 4 the length of the new filename.

Both strings are null-terminated.

Return

On exit, R0 contains:

• 0 if the rename is successful

• a nonzero, host-specific error code if the rename fails.
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8.3.17 SYS_SEEK (0x0A)

Seeks to a specified position in a file using an offset specified from the start of the file. 
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, R1 contains a pointer to a two-word data block:

word 1 a handle for a seekable file object

word 2 the absolute byte position to search to.

Return

On exit, R0 contains:

• 0 if the request is successful

• A negative value if the request is not successful. SYS_ERRNO can be used to read the 
value of the host errno variable describing the error.

Note
 The effect of seeking outside the current extent of the file object is undefined.
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8.3.18 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This enables you to execute a 
system command such as dir, ls, or pwd. The terminal I/O is on the host, and is not 
visible to the target.

Caution
 The command passed to the host is executed on the host. Ensure that any command 
passed has no unintended consequences.

Entry

On entry, R1 contains a pointer to a two-word argument block:

word 1 points to a string to be passed to the host command-line interpreter

word 2 the length of the string.

Return

On exit, R0 contains the return status.

8.3.19 SYS_TICKFREQ (0x31)

Returns the tick frequency.

Entry

Register R1 must contain 0 on entry to this routine.

Return

On exit, R0 contains either:

• The number of ticks per second

• –1 if the target does not know the value of one tick. RealView ICE does not 
support this SVC and always return –1 in R0.

8.3.20 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970. This is real-world time, 
regardless of any RealView ARMulator ISS, ISSM, RTSM, or RealView ICE 
configuration.
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Entry

There are no parameters.

Return

On exit, R0 contains the number of seconds.

8.3.21 SYS_TMPNAM (0x0D)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, R1 contains a pointer to a three-word argument block:

word 1 A pointer to a buffer.

word 2 A target identifier for this filename. Its value must be an integer in the 
range 0 to 255.

word 3 Contains the length of the buffer. The length must be at least the value of 
L_tmpnam on the host system.

Return

On exit, R0 contains:

• 0 if the call is successful

• –1 if an error occurs.

The buffer pointed to by R1 contains the filename, prefixed with a suitable directory 
name.

If you use the same target identifier again, the same filename is returned.

Note
 The returned string must be null-terminated.

8.3.22 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file 
position is specified either:

• explicitly, by a SYS_SEEK

• implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.
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The file position is at the start of the file when the file is opened, and is lost when the 
file is closed.

Perform the file operation as a single action whenever possible. For example, do not 
split a write of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, R1 contains a pointer to a three-word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN

word 2 points to the memory containing the data to be written

word 3 contains the number of bytes to be written from the buffer to the file.

Return

On exit, R0 contains:

• 0 if the call is successful

• the number of bytes that are not written, if there is an error.

8.3.23 SYS_WRITEC (0x03)

Writes a character byte, pointed to by R1, to the debug channel. When executed under 
an ARM debugger, the character appears on the host debugger console.

Entry

On entry, R1 contains a pointer to the character.

Return

None. Register R0 is corrupted.

8.3.24 SYS_WRITE0 (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM 
debugger, the characters appear on the host debugger console.

Entry

On entry, R1 contains a pointer to the first byte of the string. 
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Return

None. Register R0 is corrupted.
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8.4 Debug agent interaction SVCs

In addition to the C library semihosted functions described in Semihosting operations 
on page 8-8, the following SVCs support interaction with the debug agent:

• angel_SWIreason_EnterSVC (0x17) on page 8-8

• angel_SWIreason_ReportException (0x18) on page 8-9.
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