
RealView® ICE and RealView Trace
Version 3.1

User Guide
Copyright © 2002, 2004-2007 ARM Limited. All rights reserved.
ARM DUI 0155G

RealView ICE and RealView Trace
User Guide

Copyright © 2002, 2004-2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Change history

Date Issue Confidentiality Change

December 2002 A Non-confidential First release

January 2004 B Non-confidential Updated for RealView ICE v1.1

August 2004 C Non-confidential Updated for RealView ICE v1.2

May 2005 D Non-confidential Updated for RealView ICE v1.4

November 2005 E Non-confidential Updated for RealView ICE v1.5

June 2006 F Non-confidential Updated for RealView ICE v3.0

May 2007 G Non-confidential Updated for RealView ICE v3.1
ii Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. iii

iv Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Contents
RealView ICE and RealView Trace User Guide

Preface
About this document .. xvi
Feedback ... xxi

Chapter 1 Introduction
1.1 About RealView ICE and RealView Trace .. 1-2
1.2 Availability and compatibility ... 1-4
1.3 Introduction to EmbeddedICE logic and debug extensions 1-5
1.4 Introduction to the RealView ICE components .. 1-8
1.5 Introduction to GDB debugging with RealView ICE 1-11

Chapter 2 Getting Started
2.1 System requirements .. 2-2
2.2 Connecting the RealView ICE hardware ... 2-5
2.3 Using RealView ICE and RealView Trace .. 2-11

Chapter 3 Configuring RealView ICE Networking
3.1 Determining the correct network settings .. 3-2
3.2 Starting and exiting the RealView ICE Config IP application 3-3
3.3 Configuring the network settings ... 3-4
3.4 Restarting your RealView ICE run control unit .. 3-12
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. v

Contents
Chapter 4 Configuring a RealView ICE Connection
4.1 Changes to RealView Debugger .. 4-2
4.2 Using the RVConfig dialog ... 4-3
4.3 Connecting RealView Debugger to a target using RealView ICE 4-30
4.4 Using the Debug tab of the RealView Debugger Register pane 4-31

Chapter 5 Debugging with RealView ICE
5.1 Post-mortem debugging ... 5-2
5.2 Semihosting .. 5-4
5.3 Breakpoints ... 5-8
5.4 Cached data ... 5-14
5.5 Debugging applications in ROM ... 5-15

Chapter 6 Using RealView Trace
6.1 About RealView Trace .. 6-2
6.2 System requirements .. 6-5
6.3 Installing RealView Trace ... 6-6
6.4 Connecting the RealView Trace hardware ... 6-7
6.5 Configuring RealView Debugger for trace capture 6-11

Chapter 7 Managing the RealView ICE Software
7.1 Starting the RVI Update application ... 7-2
7.2 Connecting to a RealView ICE unit .. 7-3
7.3 Viewing software version numbers ... 7-8
7.4 Installing an update or patch .. 7-10
7.5 Restarting the RealView ICE run control unit ... 7-16

Chapter 8 Configuring RealView ICE for GDB
8.1 About using RealView ICE for debugging with GDB 8-2
8.2 Methods of connecting from remote GDB sessions 8-5
8.3 Preparing RealView ICE for remote GDB connections 8-16
8.4 Loading and booting a complete system .. 8-20
8.5 Multiprocessor debugging with GDB and RealView ICE 8-22
8.6 The Eclipse Plug-in ... 8-23

Chapter 9 System Design Guidelines
9.1 About the system design guidelines ... 9-2
9.2 System design .. 9-3
9.3 ASIC guidelines .. 9-10
9.4 PCB guidelines ... 9-12
9.5 JTAG signal integrity and maximum cable lengths 9-15
9.6 Compatibility with EmbeddedICE interface target connectors 9-17

Appendix A JTAG Interface Connections
A.1 JTAG interface pinouts ... A-2
vi Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Contents
A.2 JTAG interface signals .. A-3
A.3 JTAG port timing characteristics ... A-6

Appendix B User I/O Connections
B.1 The RealView ICE User I/O connector .. B-2

Appendix C RealView Trace Interface Connections
C.1 RealView Trace front panel components ... C-2
C.2 Trace signals .. C-8

Appendix D Designing the Target Board for Tracing
D.1 Overview of high-speed design .. D-2
D.2 Termination .. D-4
D.3 Probe dimensions and keep out areas .. D-7
D.4 Signal requirements ... D-10
D.5 Probe modeling .. D-12

Appendix E Hardware Variants
E.1 RealView ICE hardware .. E-2

Appendix F Serial Wire Debug
F.1 Serial Wire Debug ... F-2

Glossary
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. vii

Contents
viii Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

List of Tables
RealView ICE and RealView Trace User Guide

Change history .. ii
Table 8-1 RealView ICE TCP/IP ports .. 8-3
Table A-1 JTAG signals ... A-3
Table A-2 RealView ICE JTAG A timing requirements .. A-7
Table A-3 RealView ICE JTAG B timing requirements .. A-7
Table B-1 User I/O pin connections ... B-2
Table C-1 Connector signals .. C-4
Table C-2 TRACECLK frequencies .. C-8
Table C-3 Data setup and hold ... C-9
Table D-1 Probe switch settings ... D-8
Table D-2 Signals seen at the Mictor connector ... D-10
Table E-1 Diagnostic table ... E-5
Table F-1 SWD interface pinout .. F-2
Table F-2 SWD timing requirements ... F-3
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ix

List of Tables
x Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

List of Figures
RealView ICE and RealView Trace User Guide

Key to timing diagram conventions .. xix
Figure 1-1 Ports for connecting to the host computer .. 1-8
Figure 1-2 Ports for connecting to the target hardware .. 1-9
Figure 2-1 Connecting the RealView ICE hardware ... 2-6
Figure 3-1 The RealView ICE Config IP application ... 3-3
Figure 3-2 Error message when another program is browsing ... 3-5
Figure 3-3 Error message when no USB devices present ... 3-6
Figure 3-4 Error when other connections are active ... 3-6
Figure 3-5 The identification LEDs ... 3-7
Figure 3-6 The Configure RealView ICE device dialog box ... 3-8
Figure 3-7 The Configure new RealView ICE device dialog box .. 3-9
Figure 4-1 RVConfig dialog box ... 4-4
Figure 4-2 RVConfig application ... 4-5
Figure 4-3 Choose a file to open dialog .. 4-5
Figure 4-4 RVConfig dialog box ... 4-6
Figure 4-5 The RVConfig dialog box showing available units .. 4-7
Figure 4-6 The Identification LEDs ... 4-7
Figure 4-7 Error message when another program is browsing ... 4-8
Figure 4-8 Error message when no USB devices present ... 4-9
Figure 4-9 Displaying the scan chain controls .. 4-10
Figure 4-10 Auto Detect Scanchain .. 4-11
Figure 4-11 Error shown when unpowered devices are detected .. 4-12
Figure 4-12 Error shown when no devices are detected .. 4-12
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xi

List of Figures
Figure 4-13 Error shown when there is no communication with RealView ICE 4-13
Figure 4-14 The Add Device dialog box ... 4-14
Figure 4-15 The Device Properties dialog box ... 4-16
Figure 4-16 The scan chain JTAG Clock Speed controls .. 4-18
Figure 4-17 Displaying the device controls .. 4-20
Figure 4-18 Displaying the advanced controls ... 4-25
Figure 4-19 Recommended settings for an ARM Emulator board ... 4-27
Figure 4-20 Displaying the connection controls ... 4-28
Figure 4-21 Warning when disconnecting with unsaved configuration changes 4-29
Figure 6-1 Trace system .. 6-2
Figure 6-2 The RealView Trace data capture unit ... 6-3
Figure 6-3 RealView Trace panel layout .. 6-3
Figure 6-4 Positioning of 16mm plastic spacers .. 6-8
Figure 6-5 Profile view of connected units ... 6-8
Figure 6-6 RealView ICE connector on probe .. 6-9
Figure 6-7 RealView Trace connections using an Ethernet cable ... 6-10
Figure 7-1 RVI Update application ... 7-2
Figure 7-2 RVI Update application showing available units ... 7-3
Figure 7-3 The identification LEDs ... 7-4
Figure 7-4 RVI Update application showing installed components .. 7-5
Figure 7-5 Error message when another program is browsing .. 7-6
Figure 7-6 Error message when no USB devices present ... 7-6
Figure 7-7 Error when other connections are active .. 7-7
Figure 7-8 Version information ... 7-8
Figure 7-9 Selecting the component file to install .. 7-10
Figure 7-10 Confirming that you want to install the component file ... 7-11
Figure 7-11 Error message .. 7-11
Figure 7-12 Error when using an incompatible version of hardware .. 7-12
Figure 7-13 Progress during an installation ... 7-12
Figure 7-14 Progress when rebooting during an installation .. 7-12
Figure 7-15 Message showing a successful installation .. 7-13
Figure 7-16 Progress during probe update .. 7-13
Figure 7-17 Error when installing a patch to uninstalled software .. 7-14
Figure 7-18 Message when installing a patch that has no new components 7-15
Figure 7-19 Error before data has been written to compact flash .. 7-15
Figure 7-20 Error during writing to compact flash .. 7-15
Figure 8-1 RVI-GDB connections ... 8-7
Figure 8-2 Target-GDB connections .. 8-9
Figure 8-3 Target-GDB-Virtual Ethernet connections .. 8-11
Figure 8-4 GDBserver connections .. 8-12
Figure 8-5 GDB-NFS connections ... 8-14
Figure 8-6 Debug dialog ... 8-24
Figure 8-7 Connection option field ... 8-25
Figure 9-1 Basic JTAG port synchronizer .. 9-4
Figure 9-2 Timing diagram for the Basic JTAG synchronizer in Figure 9-1 9-4
Figure 9-3 JTAG port synchronizer for single rising-edge D-type ASIC design rules 9-5
Figure 9-4 Timing diagram for the D-type JTAG synchronizer in Figure 9-3 on page 9-5 9-6
xii Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

List of Figures
Figure 9-5 Example reset circuit logic .. 9-8
Figure 9-6 Example reset circuit using power supply monitor ICs .. 9-9
Figure 9-7 TAP Controllers serially chained within an ASIC ... 9-11
Figure 9-8 Typical PCB connections .. 9-12
Figure 9-9 Target interface logic levels .. 9-13
Figure A-1 JTAG interface pinout ... A-2
Figure A-2 JTAG port timing diagram ... A-6
Figure B-1 User I/O pin connections ... B-2
Figure C-1 RealView Trace panel layout ... C-2
Figure C-2 Pin surface mount receptacles on trace probe connector .. C-4
Figure C-3 Pin surface mount receptacles on logic input connector .. C-7
Figure C-4 Clock waveforms .. C-8
Figure C-5 Data waveforms ... C-9
Figure D-1 Track impedance .. D-6
Figure D-2 Probe dimensions .. D-7
Figure D-3 Delayed clock probe showing location of switches .. D-8
Figure D-4 Setup and hold ... D-10
Figure E-1 RVI v3.1 host computer ports end panel ... E-2
Figure E-2 Pre-v3.0 host computer ports end panel ... E-3
Figure E-3 RVI v3.1 target hardware ports end panel .. E-3
Figure E-4 Replaced target hardware ports end panel ... E-4
Figure E-5 Lead-free LVDS probe LEDs and dimensions .. E-4
Figure F-1 SWD timing diagrams ... F-3
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xiii

List of Figures
xiv Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Preface

This preface introduces the RealView ICE and RealView Trace User Guide. It explains
the structure of the user guide and lists other sources of information that relate to:

• RealView® ICE v3.1 firmware and host software

• RealView Trace v1.0

• RealView Debugger.

This preface contains the following sections:

• About this document on page xvi

• Feedback on page xxi.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xv

Preface
About this document

This document describes the ARM® RealView ICE (RVI) run control unit, the RealView
Trace data capture unit, and the software that enables you to use them.

Intended audience

This document is written for those who are using RealView ICE and RealView Trace
with RealView Development Suite (RVDS) or RealView Debugger with the ARM
Developer Suite™ (ADS). It is assumed that you are a software engineer with some
experience of the ARM architecture, or a hardware engineer designing a product that is
compatible with RealView ICE.

Parts of this document assume that you have some knowledge of Joint Test Action
Group (JTAG) technology. If you require more information on JTAG, see IEEE
Standard 1149.1-2001, available from the Institute of Electrical and Electronic
Engineers (IEEE). For more information, see the IEEE website at http://www.ieee.org.

Organization

This document is organized into the following chapters and appendices:

Chapter 1 Introduction

Read this chapter for a description of:

• what is provided in the RealView ICE and RealView Trace
products

• the purpose of the EmbeddedICE logic within the CPU.

Chapter 2 Getting Started

This chapter provides information on how to start working with
RealView ICE. It includes the hardware and software system
requirements, and how to connect up the hardware.

Chapter 3 Configuring RealView ICE Networking

This chapter describes how to configure the network settings for your
RealView ICE run control unit. If you are using a TCP/IP connection, you
must configure the network settings before you can use the unit for
debugging. If you are using a USB connection, you do not have to
configure the network settings.

Chapter 4 Configuring a RealView ICE Connection

This chapter describes how to configure a connection that is made using
a RealView ICE run control unit.
xvi Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Preface
Read this chapter in conjunction with the RealView Debugger user
documentation.

Chapter 5 Debugging with RealView ICE

This chapter describes how to:

• change the behavior of RealView ICE using internal variables

• implement breakpoints

• access the EmbeddedICE logic directly.

You must read this chapter in conjunction with the RealView Debugger
documentation suite.

Chapter 6 Using RealView Trace

This chapter describes RealView Trace and tells you how to connect the
parts of RealView Trace and RealView ICE together. It also tells you
where to find information on using RealView Trace with RealView
Debugger.

Chapter 7 Managing the RealView ICE Software

This chapter describes how to manage and update the software that is
installed on the RealView ICE run control unit.

Chapter 8 Configuring RealView ICE for GDB

This chapter provides information on the basic steps required to
configure the RealView ICE unit to a state where you can begin
debugging your image using the GNU Debugger (GDB). This chapter
also introduces the Eclipse Plug-in, which allows software developers to
use the Eclipse IDE as a project manager to create, build, debug, and
manage C, C++ and assembly language projects for ARM targets.

Chapter 9 System Design Guidelines

This chapter provides information about designing ARM
architecture-based ASICs and PCBs that can be debugged using
RealView ICE.

It includes:

• suggested clocking and reset circuit diagrams

• information on how to chain Test Access Port (TAP) controllers

• suggested physical connector types and pinouts

• a description of logic voltage level adaptation

• information on how power consumption varies with supply
voltage.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xvii

Preface
Appendix A JTAG Interface Connections

This appendix describes and illustrates the JTAG pin connections.

Appendix B User I/O Connections

This appendix describes and illustrates the additional input and output
connections provided in RealView ICE.

Appendix C RealView Trace Interface Connections

This appendix describes and illustrates the RealView Trace pin
connections.

Appendix D Designing the Target Board for Tracing

This appendix describes the properties of a target board that can be
connected to RealView Trace.

Appendix E Hardware Variants

This appendix describes the RealView® ICE v3.0 hardware unit.

Appendix F Serial Wire Debug

This appendix describes the serial wire debug (SWD) connection to the
Debug Access Port (DAP).

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. Can also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references, and citations.

monospace Denotes text that can be entered at the keyboard, such as commands, file
names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands or functions where the argument is to
be replaced by a specific value.
xviii Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Preface
monospace bold

Denotes language keywords when used outside example code.

Timing diagram conventions

The following diagram shows the components used in the timing diagrams contained in
this manual. Any variations are clearly labeled when they occur.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Further reading

This section lists publications by ARM® Limited, and by third parties, that are related
to this product.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked
Questions list.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xix

Preface
ARM publications

This document contains information that is specific to RealView ICE. The following
documents also relate specifically to RealView ICE:

• ARM RealView ICE Installation Guide (ARM DSI 0017)

• The RealView ICE readme.html file, supplied on the RealView ICE distribution
CD, and installed beneath the Product subdirectory of the host software.

Also see the following books in the RealView Debugger documentation suite:

• RealView Debugger Essentials Guide (ARM DUI 0181)

• RealView Debugger User Guide (ARM DUI 0153)

• RealView Debugger Target Configuration Guide (ARM DUI 0182)

• RealView Debugger Command Line Reference Guide (ARM DUI 0175)

• RealView Debugger Trace User Guide (ARM DUI 0322).

• RealView Debugger RTOS Guide (ARM DUI 0323).

The following documentation provides general information on the ARM architecture,
processors, associated devices, and software interfaces:

• ARM Reference Peripheral Specification (ARM DDI 0062).

See the relevant datasheet or Technical Reference Manual for information relating to
your hardware.

See the following book for a description of the Debug Communications Channel
(DCC):

• RealView Compilation Tools Developer Guide (ARM DUI 0203).

Other publications

The following publications might also be useful to you:

• IEEE Standard Test Access Port and Boundary Scan Architecture
(IEEE Std. 1149.1-2001) describes the JTAG ports with which RealView ICE
communicates

• Steve Furber, ARM system-on-chip architecture (2nd edition, 2000). Addison
Wesley, ISBN 0-201-67519-6.

For more information about CEVA-Oak, CEVA-TeakLite, and CEVA-Teak DSP
processors from CEVA, Inc. see http://www.ceva-dsp.com.
xx Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Preface
Feedback

ARM Limited welcomes feedback on RealView ICE and RealView Trace, and on the
documentation.

Feedback on RealView ICE and RealView Trace

If you have any problems with RealView ICE and RealView Trace, contact your
supplier. To help us provide a rapid and useful response, give:

• the versions of RealView ICE software and firmware that you are using

• details of the platforms you are using, including both the host and target hardware
types and operating system

• where appropriate, a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• if possible, sample output illustrating the problem.

Feedback on this document

If you have any comments on this document, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. xxi

Preface
xxii Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 1
Introduction

This chapter introduces RealView® ICE v3.1, RealView Trace v1.0 and GDB
debugging, and describes the software components. It contains the following sections:

• About RealView ICE and RealView Trace on page 1-2

• Availability and compatibility on page 1-4

• Introduction to EmbeddedICE logic and debug extensions on page 1-5

• Introduction to the RealView ICE components on page 1-8.

• Introduction to GDB debugging with RealView ICE on page 1-11
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About RealView ICE and RealView Trace

RealView ICE v3.1 is an EmbeddedICE® logic debug solution from ARM® Limited. It
enables you to debug software running on:

• ARM processor cores that include the EmbeddedICE logic.

• the following Digital Signal Processor (DSP) cores:

— CEVA-Oak, CEVA-TeakLite (revisions B and C), and CEVA-Teak
(revisions A and B) from CEVA, Inc. (previously known as DSP Group).

RealView ICE provides the software and hardware interface between a debugger
running on a Windows or Red Hat Linux host computer, and a Joint Test Action Group
(JTAG) IEEE Standard 1149.1-2001 port on the target hardware.

The RealView Trace unit works in conjunction with ARM RealView ICE to provide
real-time trace functionality for software running on System-on-Chip (SoC) devices
with deeply embedded processor cores that contain the Embedded Trace Macrocell™
(ETM™) logic.

Note
 RealView Trace v1.0 is only available for Windows platforms.

You can use RealView ICE and RealView Trace with systems that contain one or more
ARM processor cores. RealView ICE also supports the Embedded Trace Buffer™
(ETB™) for capturing small amounts of trace information at high core clock speeds. See
Chapter 6 Using RealView Trace for more information.

1.1.1 RealView ICE product contents

The RealView ICE product comprises:

• A run control unit that connects to your target board over a JTAG interface and to
your PC using either USB or Ethernet.

• Mains cables and a power supply that powers the run control unit.

• An Ethernet cable.

• A USB cable.

• Two alternative cables that connect the RealView ICE run control unit to the target
JTAG connector:

— a short 20-way ribbon cable
1-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
— a long 40-way ribbon cable and a Low Voltage Differential Signaling
(LVDS) 40-way to 20-way probe.

• A 20-way to 14-way adaptor, for targets that use a 14-way Insulation
Displacement Connector (IDC) box header.

Caution
 Before using this adaptor, see Using nonstandard connectors on page 2-9.

• Software on CD-ROM that enables a debugger to communicate with the run
control unit, and to configure and manage the run control unit.

• Documentation, including:

— a software Installation Guide, supplied as a CD insert

— a printed copy of this User Guide

— online versions of this User Guide in Dynatext (Windows only) and PDF
formats

— online help

— a packing list

— a registration card.

1.1.2 RealView Trace product contents

The RealView Trace product (purchased separately) additionally comprises:

• the RealView Trace capture unit

• a cable to connect the RealView Trace capture unit to a trace port

• a logic grabber cable

• spacers for attachment to the RealView ICE unit.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Availability and compatibility

RealView ICE and RealView Trace are available from ARM Limited and its resellers.

Contact ARM Limited directly regarding OEM licenses.

RealView ICE v3.1 and RealView Trace v1.0 are compatible with RVDS v3.1.

The RealView ICE software for the host computer is compatible with the following
operating systems:

• Windows XP Professional (service pack 2, or later)

• Red Hat Enterprise Linux 4.

Note
 RealView Trace is only available for Windows platforms.

RealView ICE provides:

• The ability to access the target.

• Tools to configure RealView Debugger so that it can connect to the target through
RealView ICE. RealView Debugger provides the user interface items, such as
register windows and disassemblers, that make it possible to debug your
application.

For more information on compatibility with target hardware, see the documentation
supplied with your hardware.
1-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
1.3 Introduction to EmbeddedICE logic and debug extensions

The EmbeddedICE logic and the ARM processor debug extensions enable RealView
ICE to debug software running on an ARM processor. This section describes the basic
principles of this operation:

• Debug extensions to the ARM core

• The EmbeddedICE logic on page 1-6

• How the EmbeddedICE debug architecture differs from a debug monitor on
page 1-6.

Note
 To determine whether a specific ARM processor has support for JTAG debugging, see
its datasheet or technical reference manual.

For information on RealView Trace, see Chapter 6 Using RealView Trace.

1.3.1 Debug extensions to the ARM core

The debug extensions consist of several scan chains around the processor core, and
some additional signals that are used to control the behavior of the core for debug
purposes. The most significant of these additional signals are:

BREAKPT This core signal enables external hardware to halt processor execution for
debug purposes. When HIGH during an instruction fetch, the instruction
is tagged as breakpointed, and the core stops if this instruction reaches the
execute stage of the pipeline.

DBGRQ This core signal is a level-sensitive input that causes the CPU core to
enter debug state when the current instruction has completed.

DBGACK This core signal is an output from the CPU core that goes HIGH when the
core is in debug state so that external devices can determine the current
state of the core.

RealView ICE uses these, and other signals, through the debug interface of the
processor core, for example by writing to the control register of the EmbeddedICE
logic. For more details, see the section that describes the debug interface support of the
ARM datasheet or technical reference manual for your core (for example, the
ARM7TDMI (Rev 4) Technical Reference Manual).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-5

Introduction
1.3.2 The EmbeddedICE logic

The EmbeddedICE logic is the integrated on-chip logic that provides JTAG debug
support for ARM cores. EmbeddedICE-RT is a superset of EmbeddedICE that includes
extensions supporting real-time debug, including setting breakpoints on a running
target.

The EmbeddedICE logic is accessed through the TAP controller on the ARM core using
the JTAG interface. See Chapter 9 System Design Guidelines for details of designing
this into your own target.

The EmbeddedICE logic consists of:

• two or more breakpoint units

• a control register

• a status register

• a set of registers implementing the DCC link.

You can program one or both of the breakpoint units to halt the execution of instructions
by the ARM CPU core. Execution is halted when a match occurs between the values in
the breakpoint registers and the values currently appearing on the address bus, data bus,
and selected control signals.

You can mask any bit to prevent it from affecting the comparison. Both breakpoint units
can be configured to be a data breakpoint (monitoring data accesses) or an instruction
breakpoint (monitoring instruction fetches).

For more information, see the relevant section of the appropriate ARM datasheet or
technical reference manual.

1.3.3 How the EmbeddedICE debug architecture differs from a debug monitor

A debug monitor is an application that runs on your target hardware in conjunction with
your application, and requires target resources (for example, memory, access to
exception vectors, and timers) to be available.

The EmbeddedICE debug architecture requires almost no resources. Rather than being
an application on the board, it works by using:

• additional debug hardware within the core, to enable the host to communicate
with the target

• an external run control unit that buffers and translates the core signals into
something that is usable by a host computer.
1-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
The EmbeddedICE debug architecture enables debugging to be as non-intrusive as
possible:

• the target being debugged requires very little special hardware to support
debugging

• in most cases you do not have to set aside memory for debugging in the system
being debugged and you do not have to incorporate special software into the
application

• execution of the system being debugged is only halted when a breakpoint unit is
triggered, or you request that execution is halted.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-7

Introduction
1.4 Introduction to the RealView ICE components

This section introduces the components of the RealView ICE product, and describes
how they fit together. It contains the following sections:

• The RealView ICE run control unit

• The RealView ICE firmware on page 1-9

• The RealView ICE host software on page 1-10.

See Chapter 6 Using RealView Trace for information on the RealView Trace
components.

1.4.1 The RealView ICE run control unit

The RealView ICE run control unit provides the hardware to enable a computer to
control multiple JTAG capable devices. The unit has ports at one end for connecting to
the host computer and to a power source. These ports are shown in Figure 1-1.

Figure 1-1 Ports for connecting to the host computer

The RST button is used to reset the RealView ICE unit when required, and returns
RealView ICE to its power-up state. Using the RST button in this way does not reset the
target. This button must not be confused with the Reset button mentioned in Carrying
out a real reset on page 5-16, which is located on the target board itself.

The LEDs at the bottom of the Ethernet port display information about Ethernet speed
and activity:

• The green LED shows the Ethernet speed. When Off, it indicates a speed of
10Mb/s, and when On indicates a speed of 100Mb/s.

• The yellow LED indicates that activity is taking place.

The ports at the other end of the unit connect to the target hardware. These ports are
shown in Figure 1-2 on page 1-9.

�������	
���
 ���

�����
���������

�������	
����

���
����

��������
����

���
����
���� ��!"

���
���������
���� ��!"

���
�#$$%&
��������"

��'

�����
&(����

)*
1-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
Figure 1-2 Ports for connecting to the target hardware

Cables are supplied to connect the run control unit to the host computer, and to the target
hardware.

Note
 RealView ICE v3.1 does not support the Trigger input and Trigger output signals.

If the RealView ICE unit detects an internal hardware or software failure from which it
cannot recover, the four LEDs JTAG, STAT, CFAC and LVDS (shown in Figure 1-2)
flash continuously. You must reboot RealView ICE before you can continue using it. To
do this, press the RST button.

During installation of an update or a patch, the CFAC LED lights up, which denotes that
Compact Flash Activity (CFAC) is taking place. While this is happening, you must not
disconnect power from the run control unit, and must wait until this LED has
extinguished. For more information on installing updates and patches, see Procedure
for installing an update or patch on page 7-10. The CFAC LED also lights up when a
debugger connects, and during Dynamic Host Configuration Protocol (DHCP) lease
renewal.

The RealView ICE run control unit contains an internal cooling fan that operates to
control the internal temperature when necessary. The ventilation panels on the top and
bottom of the RealView ICE run control unit and RealView Trace data capture unit must
not be obscured.

1.4.2 The RealView ICE firmware

The RealView ICE firmware is located in the RealView ICE run control unit. It receives
commands from the RealView ICE host software and translates them into JTAG
accesses. The RealView ICE firmware contains specific sections of code for each ARM
processor. These are called templates.

+'�,��+'�,

�'�'

	�'��

	�

��� +'�,��

�-�������
&(�������

���
'��..��
���(�

'��..��
�(��(�

�����
���

+'�,��
����

�/�������"

0�

����

�'�'
���

����
���

+'�,��
����

�/���1$*��!"

+'�,
���

0�

���
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-9

Introduction
You can update the RealView ICE firmware using the RealView ICE Update application
in the following ways:

• for firmware fixes, you can obtain firmware patches from the ARM website

• for firmware updates that add new functionality, such as additional templates, you
must obtain a new CD that also contains updates to the host software.

See Chapter 7 Managing the RealView ICE Software for information on using the
RealView ICE Update application.

1.4.3 The RealView ICE host software

The RealView ICE host software fits between RealView Debugger and the RealView
ICE hardware that controls the JTAG devices. It translates debugger commands, such as
start, stop, and download, into JTAG control sequences for a particular processor. The
RealView ICE software provides support for debugging on a wide range of ARM cores.
To see a list of supported cores, open the RealView ICE Update application and expand
the JTAG Templates and ARM trees. A list of templates for all supported cores is
displayed. See Chapter 7 Managing the RealView ICE Software for more information
on using the RealView ICE Update application.

The RealView ICE software can address each JTAG device individually, without
affecting other devices on the board. It uses this ability to create virtual connections for
each of the JTAG devices on the board. RealView Debugger can attach to one of these
virtual connections, and perform debugging operations with no knowledge of the other
devices on the board.

The RealView ICE software enables multiple concurrent connections. You can debug
multiprocessor systems, as described in the RealView Debugger User Guide. The
software can also perform a synchronized start or stop of processors, for debugging
multiprocessor systems where the processors interact with each other.

The RealView ICE software also supports connections across a network, so that you can
run the debugging software on several different computers.
1-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
1.5 Introduction to GDB debugging with RealView ICE

RealView ICE enables you to debug applications running on ARM architecture-based
cores using GNU Debugger (GDB). In addition to the basic debugging operations, such
as setting breakpoints and stepping, RealView ICE provides extended debugging
features—for example, you can connect to multiple cores.

RealView ICE enables you to debug applications using the following debugging modes:

• Halt-mode debugging, where the target stops while you examine it.

• Monitor-mode debugging, where the target continually runs and you monitor the
target using DCC communications.

To connect to a target from GDB, you must configure RealView ICE to recognize your
target devices. You do this by initiating an application to configure the scan chain, which
in turn connects to RVI and connects to a core in a single operation. The procedure for
configuring RealView ICE is described in Chapter 8 Configuring RealView ICE for
GDB.

In addition to configuring RealView ICE, there are other requirements that you must
consider when connecting to your target application:

• Your host workstation might require specific services to be running depending on
the requirements of your target application, for example, DHCP.

• Your application might be running as a standalone application without an
operating system, or as part of an operating system.

The methods you can use to connect to a target application, and the requirements for
each method, are described in Chapter 8 Configuring RealView ICE for GDB.

1.5.1 GDB availability and compatibility

To find the latest information on GNU Debugger (GDB) compatibility with RealView
ICE v3.1, see the ARM RealView ICE v3.1 Release Notes. Also see The GNU toolchain
for ARM architectures on page 1-12.

For more information on compatibility with target hardware, see the documentation
supplied with your hardware.

1.5.2 Supported debug host platforms

RealView ICE supports remote GDB sessions running on the following operating
systems:

• Windows XP Professional (service pack 2, or later)
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-11

Introduction
• Red Hat Enterprise Linux 4.

1.5.3 Recommended applications for debugging with GDB

The recommended applications for debugging with GDB are described in the following
sections:

• The GNU toolchain for ARM architectures

• Cygwin on Windows on page 1-13

• Using an IDE with a GNU toolchain for ARM architectures on page 1-13.

Note
 ARM Limited does not provide support for these applications. If you require support
for these applications, see the related web site.

All examples in this chapter assume that you are using GDB from a Unix shell. Also,
this chapter assumes that you are familiar with using:

• a GNU toolchain for ARM architectures (see The GNU toolchain for ARM
architectures)

• Cygwin (see Cygwin on Windows on page 1-13)

It also assumes that you already have these applications installed. See the related web
sites for details on how to obtain, install, and use them.

The GNU toolchain for ARM architectures

You must use a GNU toolchain built for ARM architecture support. You can obtain
prebuilt versions of the toolchain from either:

• CodeSourcery GNU Toolchain for ARM processors, available from:

http://www.codesourcery.com

The CodeSourcery GNU Toolchain for ARM processors commands are prefixed
with arm-none-eabi-, for example arm-none-eabi-gcc.

This toolchain is compliant with the Application Binary Interface (ABI) for the
ARM Architecture (base standard) [BSABI].

• GNU ARM toolchain, available from:

http://www.gnuarm.com

The GNU ARM toolchain commands are prefixed with arm-elf- for Windows
and arm-linux- for Red Hat Linux. For example, arm-elf-gcc and arm-linux-gcc.

This toolchain is not compliant with the ABI for the ARM Architecture.
1-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Introduction
Cygwin on Windows

On Windows you can have Cygwin, obtainable from http://www.cygwin.com.
Instructions for setting up Cygwin for use with RealView ICE are given in the document
Setting Up Cygwin on Windows, in the file CygwinSetup.pdf that accompanies this
document.

Using an IDE with a GNU toolchain for ARM architectures

Although GDB is a command-line debugger, there are Integrated Development
Environments (IDEs) that use GDB as their backend. For more information on using
IDEs in this way, see the Application Note that accompanies this release.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 1-13

Introduction
1-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 2
Getting Started

This chapter describes the system requirements for RealView® ICE, and how to connect
the RealView ICE hardware to your host computer and target system. It also describes
how to use some common parts of the RealView ICE software. It contains the following
sections:

• System requirements on page 2-2

• Connecting the RealView ICE hardware on page 2-5

• Using RealView ICE and RealView Trace on page 2-11.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-1

Getting Started
2.1 System requirements

This section describes the hardware and software requirements of RealView ICE:

• Host software requirements

• Host hardware requirements on page 2-3

• Target hardware requirements on page 2-3.

See Chapter 6 Using RealView Trace for information on the requirements for RealView
Trace.

2.1.1 Host software requirements

The RealView ICE software for the host computer runs under the following operating
systems:

• Windows XP Professional (service pack 2, or later)

• Red Hat Enterprise Linux 4.

Note
 RealView Trace is only available for Windows platforms.

RealView ICE v3.1 is compatible with RVDS v3.1.

Automatic dialup

Automatic dialup might be triggered when you use RealView ICE, because RealView
ICE uses network facilities. You might want to prevent unnecessary dialups by disabling
automatic dialup in the operating system for your host computer.
2-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Getting Started
2.1.2 Host hardware requirements

This section defines the minimum recommended hardware requirements for installing
and running the RealView ICE software on a host computer.

Disk space

If you carry out a full installation of the software, up to 100MB of hard disk space is
required.

Using the RealView ICE software on Windows

To use the RealView ICE software on Windows, you require the following:

• Pentium IBM-compatible machine

• CD-ROM drive (this can be a networked CD-ROM drive)

• an unused USB port, if direct connection to the run control unit is required

• a TCP/IP connection, if remote connection to the run control unit is required.

Using the RealView ICE software on Red Hat Linux

To use the RealView ICE software on Red Hat Linux, you require the following:

• Pentium IBM-compatible machine

• CD-ROM drive (this can be a networked CD-ROM drive)

• a TCP/IP connection.

Note
 RealView Trace is only available for Windows platforms.

2.1.3 Target hardware requirements

RealView ICE has the following target hardware requirements:

• A device interface conforming to the IEEE Std. 1149.1-2001 (JTAG)
specification.

• Electronic signals available to the interface, and within the limits of current and
voltage specified in Chapter 9 System Design Guidelines.

• One of the following IDC box headers on the target hardware:

— a 20-way header that conforms to the current ARM JTAG connection
standard (as described in Appendix A JTAG Interface Connections)
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-3

Getting Started
— a 14-way header that conforms to the previous ARM JTAG connection
standard (as used by the ARM EmbeddedICE® run control unit).

To use any other connectors, you must construct an appropriate adaptor or cable
yourself.

• A maximum cable length between the target hardware and the RealView ICE run
control unit of:

— 30cm if you are using a 20-way ribbon cable

— 3m if you are using a 40-way ribbon cable with the supplied LVDS probe.

Otherwise, one or more of the modifications described in Chapter 9 System
Design Guidelines must be used.

• One or more ARM architecture CPUs that has supporting debug logic linked into
a JTAG scan chain. This includes most ARM7™, ARM9™, ARM10™, and
ARM11™ cores. It does not include the StrongARM® and XScale processors.

You can use the RealView Update application to find out which processors are
supported by the version of RealView ICE that you are using. To do this, start the
RealView ICE Update application (see Chapter 7 Managing the RealView ICE
Software) and select Version Info... from the RVI menu.
2-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Getting Started
2.2 Connecting the RealView ICE hardware

This section explains how to set up the hardware for RealView ICE:

• What you require

• Connection instructions on page 2-6

• Using nonstandard connectors on page 2-9

• Hot plugging and unplugging the JTAG cable on page 2-9.

See Chapter 6 Using RealView Trace for information on setting up the RealView Trace
hardware.

2.2.1 What you require

To set up the hardware you require the following items from the RealView ICE product
kit:

• the RealView ICE run control unit

• the power adaptor for the run control unit

• the mains cable for the power adaptor that is appropriate for your region

• one of the following cables, to connect the run control unit to the PC or the
network:

— the USB cable, to connect the run control unit directly to the PC using the
USB port

— the RJ-45 Ethernet cable, to connect the run control unit to the network

— the Ethernet cross-over cable, to connect the run control unit directly to the
PC using the Ethernet port.

• one of the following cables, to connect the run control unit to the target hardware:

— the JTAG cable (a short 20-way ribbon cable)

— the LVDS cable and probe (a long 40-way ribbon cable, and a small PCB
with a 40-way and a 20-way IDC connector mounted on it)

You must also provide the following items:

• a host computer that conforms to the requirements given in Host software
requirements on page 2-2, and in Host hardware requirements on page 2-3

• some target hardware containing a JTAG-capable device supported by RealView
ICE (see Target hardware requirements on page 2-3).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-5

Getting Started
Figure 2-1 shows connections using both the USB and Ethernet cables, and the JTAG
20-way ribbon cable.

Figure 2-1 Connecting the RealView ICE hardware

2.2.2 Connection instructions

To connect the RealView ICE run control unit to your host computer and to the target
hardware:

1. Ensure the RealView ICE software is installed on the host computer. See the
RealView ICE Installation Guide for information on how to do this.

2. Connect the host computer to the RealView ICE run control unit, using either the
USB port or a TCP/IP network connection, as required (see Figure 2-1):

• If you are connecting using the USB port, connect one end of the supplied
USB cable to a USB port on the host computer, and the other end of the
cable to the USB port on the run control unit.

Note
 The USB drivers are installed with the RealView ICE host software.

• If you are connecting across an Ethernet network, connect the Ethernet port
of the run control unit to a socket for the Ethernet network using the
supplied RJ-45 Ethernet cable.

• If you are using the cross-over cable, connect one end of the cross-over
cable to the Ethernet port of the host computer, and the other end to the
Ethernet port of the run control unit.

���

�����	�
��
�

��������

����
����
���

���
2-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Getting Started
3. Connect the RealView ICE run control unit to the target hardware, using the
appropriate cable:

• If you want to use the highest JTAG clock speeds, or if you cannot position
the run control unit close to the target hardware, use the LVDS cable and
probe:

— plug the supplied LVDS probe into the 20-way JTAG header on the
target hardware

Note
 If there is insufficient clearance to plug the probe directly into the

header, you can use the supplied 20-way JTAG cable to connect the
probe to the header.

— connect one end of the supplied LVDS cable to the 40-way connector
on the probe

— connect the other end of the LVDS cable to the 40-way JTAG B
socket on the RealView ICE run control unit.

Note
 Cable selection is performed when the RealView ICE run control unit

boots. If you change the cable, you must reboot the unit.

• Otherwise, use the JTAG cable:

— connect one end of the supplied JTAG cable to the 20-way JTAG
header on the target hardware

— connect the other end of the cable to the 20-way JTAG A socket on the
RealView ICE run control unit.

The IDC connectors used for these cables are keyed using a small protrusion that
must be matched up with a slot in the header or socket.

Caution
 If the target hardware does not have a 20-way IDC connector that conforms to the

current ARM JTAG connection standard (as described in Appendix A JTAG
Interface Connections), see Using nonstandard connectors on page 2-9.

4. If you are using RealView Trace, you have to connect the RealView Trace unit to
the RealView ICE unit and to the target board. See Connecting the RealView
Trace hardware on page 6-7 for information on how to do this.

5. Power up the target hardware.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-7

Getting Started
6. Connect the external power supply to the RealView ICE run control unit, and to
the mains electricity.

7. Switch on the power supply. The power LED and the expansion bus power LED
both switch on.

8. The RealView ICE run control unit firmware is based on an embedded Linux
kernel. Therefore, the unit takes a short time to boot up and establish either a
network or USB connection. When the unit is booting:

• The CFAC LED lights up, and the STAT LED flashes.

As the RealView ICE run control unit boots, the STAT LED flash rate
increases.

• The unit detects which JTAG socket has a cable attached:

— If RealView ICE detects that the LVDS cable and probe are connected
to JTAG B socket, it uses them. It also switches on the LVDS LED.

— If RealView ICE detects that a JTAG cable is connected to the
JTAG A socket, the LVDS LED remains unlit.

• When the STAT LED is permanently On, the RealView ICE run control unit
has finished booting, and is ready to use.

9. If your RealView ICE unit is connected to a network, you must now run the
Config IP application to configure the network settings, as described in Chapter 3
Configuring RealView ICE Networking.

Note
 You have only to do the network configuration once.

If the RealView ICE unit is powered up with only a USB connection, it uses an IP
address of 127.0.0.0. However, if a network cable is also attached, the IP address
associated with the USB connection is the IP address that you have assigned to
the RealView ICE unit, or that it obtains from a DHCP server.

Warning
 Do not obstruct the ventilation grills on the top and bottom of the RealView ICE unit,
because doing so causes the unit to overheat.
2-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Getting Started
2.2.3 Using nonstandard connectors

RealView ICE is supplied with cables that each terminate in a 20-way IDC connector,
wired to the current ARM JTAG connection standard (see Appendix A JTAG Interface
Connections). Box headers suitable for this connector are fitted on all current ARM
target hardware, and on several third-party targets.

Some target hardware is fitted instead with a 14-way IDC box header:

• Older ARM target hardware uses the previous ARM JTAG connection standard
(as used by EmbeddedICE). This is signal-compatible with the current ARM
standard. Use the supplied adaptor card to connect to these targets.

• Some other targets instead use the Texas Instruments (TI) JTAG connection
standard. This has a different signal assignment to the ARM standards. An
adaptor to enable RealView ICE to connect to these targets is available from ARM
on request. Quote part number HBI 0068B.

Caution
 If you use the wrong 20-way to 14-way adaptor, you might damage the target hardware.

If you are not certain of the connection standard that your target hardware uses, you
must check the reference manual for the target before you connect it to the RealView
ICE run control unit. This is especially important if you are using a target that has a
14-way IDC box header, or that is not manufactured by ARM Limited.

If the target that you are using does not use an ARM style connector, or if you are
designing target hardware, contact ARM Limited for more information.

2.2.4 Hot plugging and unplugging the JTAG cable

You can plug and unplug the JTAG cable without affecting the target. This is because
the RealView ICE run control unit includes power conditioning and switching circuitry.

You might want to do this if you have a target that is operating without a RealView ICE
run control unit connected and you want to examine the target to find out why it is
behaving in a particular way. To do this, you must power up the RealView ICE run
control unit and configure the connection without disturbing the state of the target. This
requires that the RealView ICE run control unit is powered before it is connected to the
target.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-9

Getting Started
When unplugging the JTAG connector, you must be aware of the following:

• If you are using an RTCK system, make sure that no communication is taking
place between the system and the RealView ICE run control unit. Otherwise, if
the RealView ICE unit is waiting for a return clock, it might lock up. In this case,
you must power down the RealView ICE unit, and power it back up again.

• If you are not using an RTCK system, the RealView ICE software can handle this
situation. However, you must arrange to do a TAP reset using the debugger when
you next plug the RealView ICE unit into a target. See Advanced configuration
on page 4-25 for details.
2-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Getting Started
2.3 Using RealView ICE and RealView Trace

When you have connected RealView ICE to your host computer (see Connecting the
RealView ICE hardware on page 2-5), you are ready to begin using RealView ICE (and
RealView Trace if present) with RealView Debugger. See the RealView Debugger
documentation suite for information on using RealView Debugger.

When you install the RealView ICE software, it adds capabilities to RealView Debugger
to enable you to configure a RealView ICE connection using the RVConfig dialog box.
This is described in full in Chapter 4 Configuring a RealView ICE Connection.

If you have to update the RealView ICE firmware at a later date, to extend the
capabilities of the RealView ICE unit for example, you must use the RVI Update utility.
This is described in Chapter 7 Managing the RealView ICE Software.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 2-11

Getting Started
2-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 3
Configuring RealView ICE Networking

This chapter describes how to configure the network settings for your RealView® ICE
run control unit. If you have connected your run control unit to an Ethernet network or
directly to the host computer using an Ethernet cross-over cable, you must configure the
network settings before you can use the unit for debugging. You have only to configure
the network settings once.

Note
 If you have connected your run control unit directly to the host computer using a USB
cable, and you do not intend to connect it to a network, you do not have to configure the
network settings. See Connection instructions on page 2-6 for information on
connecting up the components.

To configure your RealView ICE run control unit to use the correct network settings for
your network:

1. Determining the correct network settings on page 3-2

2. Starting the RealView ICE Config IP application on page 3-3

3. Configuring the network settings on page 3-4

4. Restarting your RealView ICE run control unit on page 3-12

5. Exiting the RealView ICE Config IP application on page 3-3.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-1

Configuring RealView ICE Networking
3.1 Determining the correct network settings

Before you can configure the network settings, you must first determine the correct
network settings for your RealView ICE run control unit. To do this, you must consult
with the system administrator for your network.

The information that you require depends on whether or not your network uses DHCP:

• if your network does not use DHCP, see Not using DHCP

• if your network uses DHCP, see Using DHCP.

3.1.1 Not using DHCP

If your network does not use DHCP, you must know:

• the hostname that you want to use for your run control unit (if any)

• the IP address that you want to use for your run control unit

• the default gateway for your network (if it has one)

• the subnet mask for your network.

3.1.2 Using DHCP

If your network uses DHCP, you must know the hostname that you want to use for your
run control unit (if any).

Note
 You do not have to know the IP address for your run control unit, or the default gateway
and subnet mask for your network, because these settings are fetched from a DHCP
server on your network.
3-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE Networking
3.2 Starting and exiting the RealView ICE Config IP application

This section describes how to start and exit the RealView ICE Config IP application:

• Starting the RealView ICE Config IP application

• Exiting the RealView ICE Config IP application.

3.2.1 Starting the RealView ICE Config IP application

To start the RealView ICE Config IP application:

• On Windows, select Start → Programs → ARM → RealView ICE v3.1 →
RealView ICE Config IP.

Note
 If you are using the default Windows XP settings, select All Programs.

• On Red Hat Linux, choose the appropriate shortcut. This depends on the version
of Red Hat Linux and the desktop environment that you are using. If no desktop
shortcut is available, enter the command rviconfigip at the command line.

The RealView ICE Config IP application opens, as shown in Figure 3-1.

Figure 3-1 The RealView ICE Config IP application

3.2.2 Exiting the RealView ICE Config IP application

To exit the RealView ICE Config IP application, select Exit from the File menu.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-3

Configuring RealView ICE Networking
3.3 Configuring the network settings

The configuration process depends on the way in which the RealView ICE unit is
connected to the host computer, and whether or not you know its Ethernet address:

• If your RealView ICE unit is connected to your local network, but you do not
know its Ethernet address, you can select it from the list of available units. See
Configuring by scanning all run control units

• If you know the Ethernet address of your RealView ICE unit, you can go straight
to the Configuration dialog box and enter the address. See Configuring using an
Ethernet address on page 3-9

• If you have connected your run control unit directly to the host computer using a
cross-over cable, you must assign static IP addresses to the host computer and the
run control unit. See Configuring for connection with an Ethernet cross-over
cable on page 3-10.

Note
 If you have connected your run control unit directly to the host computer using a USB
cable, you do not have to configure the network settings.

Note
 The toolbar buttons mentioned in the following sections also have equivalent options on
the RVI menu.

3.3.1 Configuring by scanning all run control units

This section describes how to configure the network settings for your RealView ICE run
control unit by scanning for all available run control units. You can also configure your
run control unit by specifying its Ethernet address, as described in Configuring using an
Ethernet address on page 3-9.

The configuration process consists of the following steps:

1. Scanning for your RealView ICE run control unit

2. Identifying and selecting your RealView ICE run control unit on page 3-7

3. Configuring your RealView ICE run control unit on page 3-7.

Scanning for your RealView ICE run control unit

Click Scan to scan for run control units that are connected to your local network. The
Scan button becomes animated to indicate that a scan is in process. When RealView ICE
finds a unit, it adds it to the list of available units, as shown in Figure 3-1 on page 3-3.
3-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE Networking
If you want to stop scanning, click Scan. You can click Scan again at any time to force
a rescan of available RealView ICE units and update the list.

Note
 If you are using DHCP, RealView ICE scans for a DHCP server during the first minute
after rebooting. During this period, the Scan tool cannot locate the unit. If the unit is
unable to obtain its IP address from a DHCP server, it appears in the RealView ICE
Config IP dialog box with the address 127.0.0.2.

If you want the RealView ICE run control unit to try again to obtain its IP settings from
a DHCP server, you must first reboot the unit.

Note
 The number of active connections shown in the RVI Config IP dialog box might be more
than the number of active users, because each user might have multiple active
connections. For example, the RealView ICE connection and the RealView Trace
connection are both displayed as active connections, or a device might be listed under
both USB and TCP/IP if it is accessible by both methods.

Troubleshooting

This section describes problems you might encounter when attempting to connect to a
RealView ICE unit, and what you can do to solve them:

Multiple programs attempting to scan

Only one program can scan the TCP/IP network or USB ports for
available RealView ICE units. If another program is scanning, for
example the RVConfig dialog box in RealView Debugger (see Using the
RVConfig dialog on page 4-3), the RVI Config IP application displays the
error message shown in Figure 3-2.

Figure 3-2 Error message when another program is browsing

You must stop one of the programs from scanning. To do this, click Scan,
or select Stop Scan from the RVI menu in the application that you want
to stop scanning.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-5

Configuring RealView ICE Networking
USB server not accessible

If the USB server is not accessible, the error message shown in Figure 3-3
appears:

Figure 3-3 Error message when no USB devices present

This indicates a problem with your RealView ICE installation. Click OK.
If you do not want to connect to any devices over a USB connection, you
can continue using RealView ICE over only TCP/IP connections. If you
want to connect to a device using USB, you must reinstall RealView ICE.
If the error persists, there might be a problem with your operating system.

Connection times out

The default timeout for establishing a TCP/IP connection is 5 seconds. If
you repeatedly get timeouts when attempting to connect to a RealView
ICE run control unit, you can change this setting. To do this:

1. If the environment variable RVI_COMMS_CONNECT_TIMEOUT does not
already exist, then create it.

2. Set the value of this variable to the timeout that you want, in
seconds. This must be an integer in the range 0-120.

For details of how to create and set an environment variable, see the
documentation for the operating system that is supplied with your host
computer.

Other active connections

If you connect to a RealView ICE run control unit that has other active
connections, the RVI Config IP application displays the error message
shown in Figure 3-4.

Figure 3-4 Error when other connections are active
3-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE Networking
If you continue, the changes that you make might interfere with the
correct operation of these applications. Do one of the following:

• ensure that the other applications are disconnected, and then click
Yes to continue using the RealView ICE Config IP application

• click No to stop using the RealView ICE Config IP application, and
try again later.

Identifying and selecting your RealView ICE run control unit

To identify and select your RealView ICE run control unit from the list of units found,
do one of the following:

• Determine the Ethernet address of your run control unit by reading the label on
the side of the unit. Find the entry in the list that has the same Ethernet address,
and select it.

• Select an entry in the list and click the Identify tool:

— If the four LEDs JTAG, STAT, CFAC and LVDS on your interface (shown
in Figure 3-5) flash for 5 seconds, you have selected its entry.

Figure 3-5 The identification LEDs

— Otherwise, select another entry and try again.

Configuring your RealView ICE run control unit

When you have selected your RealView ICE run control unit, you must configure it to
use the network settings that you previously determined (see Determining the correct
network settings on page 3-2):

1. Click the Configure tool. The Configure RealView ICE device dialog box
appears. See Figure 3-6 on page 3-8.

+'�,��+'�,

�'�'

	�'��

	�

��� +'�,��
0�

����

�2����/������������

�2����/������������
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-7

Configuring RealView ICE Networking
Figure 3-6 The Configure RealView ICE device dialog box

2. If you are using DHCP, select DHCP. Otherwise, deselect DHCP.

3. Enter the hostname in the Host Name field. This must contain only the
alphanumeric characters (A-Z, a-z, and 0-9) and the - character, and must be no
more than 255 characters long.

4. If you are not using DHCP, enter the required details in the following fields:

• IP Address

• Default Gateway

• Subnet Mask.

Note
 If you are using DHCP, you do not have to type these settings, because they are

allocated from a DHCP server on your network.

5. Set the required Ethernet Type:

• if you know the type of network that you are using, select that type

• otherwise, select Auto-Detect.

6. Click Configure.

The RealView ICE run control unit restarts. While it is restarting, it is not present
in the list of units. When it has restarted, it re-appears in the list of units, with its
new network settings.

Note
 If the RealView ICE run control unit is using DHCP, the list of units might display

its IP Address as 127.0.0.2. This is a dummy address, which the run control unit
uses when it fails to obtain an IP address from the DHCP server.

The list of units shows the correct address if the DHCP server has assigned it.
3-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE Networking
3.3.2 Configuring using an Ethernet address

If you have a RealView ICE run control unit that does not have a valid IP address or is
on a different subnet, you must manually enter the Ethernet address during
configuration.

To configure your RealView ICE run control unit by entering an Ethernet address:

1. Open the required configuration dialog box, which depends on whether or not
your run control unit has a USB connection:

• If the device has a USB connection, select the device in the USB list and
click the Configure tool. The Configure RealView ICE device dialog box
appears, as shown in Figure 3-6 on page 3-8.

Alternatively, double-click on the device in the USB list.

• If the device does not have a USB connection, click the Config New tool.
The Configure new RealView ICE device dialog box appears, as shown in
Figure 3-7.

Figure 3-7 The Configure new RealView ICE device dialog box

2. Determine the Ethernet address of your run control unit by reading the label on
the side of the unit, and enter it into the Ethernet Address field.

If you are using the Configure new RealView ICE device dialog box and you want
to be certain that you are configuring the correct run control unit, click the
Identify tool. Verify that the identification LEDs flash (see Figure 3-5 on
page 3-7).

3. If you are using DHCP, select DHCP. Otherwise, deselect DHCP.

4. Enter the hostname in the Host Name field. This must contain only the
alphanumeric characters (A-Z, a-z, and 0-9) and the - character, and must be no
more than 255 characters long.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-9

Configuring RealView ICE Networking
5. If you are not using DHCP, enter the required details in the following fields:

• IP Address

• Default Gateway

• Subnet Mask.

Note
 If you are using DHCP, you do not have to type these settings, because they are

fetched from a DHCP server on your network.

6. Select the required Ethernet Type:

• if you know the type of network that you are using, select that type

• otherwise, select Auto-Detect.

7. Click Configure.

The RealView ICE run control unit restarts. While it is restarting, it is not present
in the list of units. When it has restarted, it re-appears in the list of units, with its
new network settings.

Note
 If the RealView ICE run control unit is using DHCP, the list of units might display

its IP Address as 127.0.0.2. This is a dummy address, which the run control unit
uses when it fails to obtain an IP address from the DHCP server.

The list of units shows the correct address if the DHCP server has assigned it.

3.3.3 Configuring for connection with an Ethernet cross-over cable

If you have connected your run control unit directly to the host computer using a
cross-over cable, you must assign static IP addresses to the host computer and the run
control unit:

1. Assign a static IP address to your host computer. If your host computer was
obtaining an IP address from a DHCP server you can use that address, but you
must now assign it statically.

2. Select your RealView ICE unit, and click the Configure tool. Alternatively,
double-click on the device in the list. The Configure RealView ICE device dialog
box appears, as shown in Figure 3-6 on page 3-8.

3. Deselect DHCP.
3-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE Networking
4. Enter a hostname in the Host Name field. This must contain only the
alphanumeric characters (A-Z, a-z, and 0-9) and the - character, and must be no
more than 255 characters long.

5. Enter the required details in the following fields:

• Default Gateway

• Subnet Mask.

These must be the same as those for the host computer.

6. Enter an IP address of the run control unit in the IP Address field. Ensure that the
host computer and the run control unit are in the same subnet. For example, if the
subnet mask is set to 255.255.255.0, and the IP address of the host computer is
192.168.0.x, you must set the IP address of the run control unit to 192.168.0.y.

7. Select the required Ethernet Type. Auto-Detect is the recommended setting.

8. Click Configure.

The RealView ICE run control unit restarts. While it is restarting, it is not present
in the list of units. When it has restarted, it re-appears in the list of units, with its
new network settings.

Note
 Software such as firewall software might interfere with the communications between
the computer and RealView ICE. You might have to temporarily disable any firewall
when using RealView ICE and re-enable it after you finish.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 3-11

Configuring RealView ICE Networking
3.4 Restarting your RealView ICE run control unit

The RealView ICE Config IP application normally restarts the networking software on
the run control unit whenever you change its settings. If necessary, select Restart from
the RVI menu to force the networking software to restart.
3-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 4
Configuring a RealView ICE Connection

When you install the RealView® ICE software, it adds various features to RealView
Debugger. This chapter describes how to use these additional features to configure a
RealView ICE connection, and how to connect RealView Debugger to a target using
RealView ICE. You can also run RVConfig as a standalone feature, and this procedure
is described.

This chapter contains the following sections:

• Changes to RealView Debugger on page 4-2

• Using the RVConfig dialog on page 4-3

• Connecting RealView Debugger to a target using RealView ICE on page 4-30

• Using the Debug tab of the RealView Debugger Register pane on page 4-31.

Note
 Certain aspects of this chapter assume that you are familiar with using RealView
Debugger to connect to a target, and to configure a connection. For details, see the
RealView Debugger documentation suite (see ARM publications on page xx),
especially the RealView Debugger Target Configuration Guide.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-1

Configuring a RealView ICE Connection
4.1 Changes to RealView Debugger

After the RealView ICE software installation, the following files are included in the
RealView Debugger \etc directory:

• a default RealView ICE configuration file, rvi.rvc

• the RealView ICE board file, RVI.brd.

The first time you start RealView Debugger after the installation, it updates the
rvdebug.brd file in your RealView Debugger home directory with the details from the
\etc\RVI.brd file. After the update, the following capabilities are added to RealView
Debugger:

• An RVConfig dialog box that you use to configure each RealView ICE run control
unit. See Using the RVConfig dialog on page 4-3.

• New tabs in the Register pane of the Code window, in addition to the Core tab
that is present for all targets. The additional tabs that appear depend on the target
that you are debugging, but might include:

— a CP15 tab that displays and sets the values of registers in coprocessor 15
(the System Control coprocessor)

— a Cache Operations tab that you can use to perform operations on the
cache for the target

— a TLB Operations tab that you can use to perform operations on the
translation look-aside buffer (TLB) for the target

— a Debug tab that controls various internal debugger settings, many of which
are specific to RealView ICE.

The CP15, Cache Operations, and TLB Operations tabs control features of the
target hardware. These features are described in the ARM datasheet or technical
reference manual for your core (see ARM publications on page xx).

The Debug tab is described in Using the Debug tab of the RealView Debugger
Register pane on page 4-31.

For more information, see the RealView Debugger User Guide.

For more specific information on target connection using RealView Debugger, see the
RealView Debugger Target Configuration Guide.
4-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
4.2 Using the RVConfig dialog

Before you can use a RealView ICE run control unit to connect RealView Debugger to
a target, you must configure the run control unit using the RVConfig dialog box. This
process involves the following steps:

1. Opening the RVConfig dialog box from RealView Debugger

2. Connecting to a RealView ICE unit on page 4-6

3. Configuring a scan chain on page 4-9

4. Configuring devices on page 4-20

5. Advanced configuration on page 4-25

6. Saving your changes on page 4-28

7. Disconnecting from a RealView ICE unit on page 4-28.

4.2.1 Opening the RVConfig dialog box from RealView Debugger

To open the RVConfig dialog box:

1. Display the Connect to Target window. See the RealView Debugger Target
Configuration Guide for more information on connecting to targets.

2. Right-click on the relevant debug configuration or target in the Connect to Target
window to display the context menu.

3. From this context menu, select the Configure... option. The RVConfig dialog box
appears, as shown in Figure 4-1 on page 4-4. The title of the dialog box includes
the full path to the RealView ICE configuration file. The path name might be
different to that shown if you have a different version of RealView Debugger
installed.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-3

Configuring a RealView ICE Connection
Figure 4-1 RVConfig dialog box

4.2.2 Opening the RVConfig dialog box — standalone method

You can also open the RVConfig dialog box to configure the run control unit, without
first having to display the Connect to Target window in RealView Debugger.

To start the RVConfig application:

1. On Windows, select Start → Programs → ARM → RealView ICE v3.1 →
RealView ICE Configuration.

Note
 If you are using the default Windows XP settings, select All Programs.

On Red Hat Linux, choose the appropriate shortcut. This depends on the version
of Red Hat Linux and the desktop environment that you are using. If no desktop
shortcut is available, enter the command rviconfig at the command line.

The RVConfig application opens, as shown in Figure 4-2 on page 4-5.
4-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Figure 4-2 RVConfig application

2. Select Open from the File menu.

The Choose a file to open dialog appears, as shown in Figure 4-3:

Figure 4-3 Choose a file to open dialog

3. Browse the list, select the appropriate .rvc file, and click Open.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-5

Configuring a RealView ICE Connection
The RVConfig dialog box appears, as shown in Figure 4-4. The title of the dialog
box includes the full path to the RealView ICE configuration file. The path name
might be different to that shown.

Figure 4-4 RVConfig dialog box

4.2.3 Connecting to a RealView ICE unit

When you start the RVConfig application, it scans for run control units that are
connected to your local network. The Scan button becomes animated to indicate that a
scan is in process. When RVConfig finds a unit, it adds it to the list of available units,
as shown in Figure 4-5 on page 4-7.
4-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Figure 4-5 The RVConfig dialog box showing available units

If you want to stop scanning, click Scan. You can click Scan again at any time to force
a rescan for available RealView ICE units and update the list.

The devices found are listed in the RealView ICE browser on the right of the dialog box.
Select the unit you want to connect to and click Connect. Alternatively, do one of the
following:

• double-click on the unit you want to connect to

• enter either the IP address or host name of the device you want to connect to in
the IP Address/Host Name field and click Connect.

If you want to be certain that you are connecting to the correct run control unit, select
an entry in the list, and click Identify:

• If the LEDs JTAG, STAT, CFAC and LVDS on your interface (see Figure 4-6)
flash for 5 seconds, you have selected the correct entry for the unit in the list.

Figure 4-6 The Identification LEDs

+'�,��+'�,

�'�'

	�'��

	�

��� +'�,��
0�

����

�2����/������������

�2����/������������
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-7

Configuring a RealView ICE Connection
• Otherwise, select another entry and try again.

Note
 Devices shown in light gray are those that have responded to browse requests but do not
have a valid IP address. You cannot connect to these devices until you have configured
the IP address. See Chapter 3 Configuring RealView ICE Networking for information
on how to do this.

This adds a Devices node to the tree diagram on the left of the RVConfig dialog box,
and selects that node. The control pane changes, ready for you to configure the scan
chain for the connected RealView ICE unit. See Configuring a scan chain on page 4-9.

Troubleshooting

This section describes problems you might encounter when attempting to connect to a
RealView ICE unit, and what you can do to solve them:

Multiple programs attempting to scan

Only one program can scan the TCP/IP network or USB ports for
available RealView ICE units. If another program is scanning, for
example the RVI Config IP dialog box (see Scanning for your RealView
ICE run control unit on page 3-4), the RVConfig application displays the
error message shown in Figure 4-7.

Figure 4-7 Error message when another program is browsing

You must stop one of the programs from scanning. To do this, click the
Scan tool to terminate the scan in the program that you want to stop
scanning.

USB server not accessible

If the USB server is not accessible, the error message shown in Figure 4-8
on page 4-9 appears:
4-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Figure 4-8 Error message when no USB devices present

This indicates a problem with your RealView ICE installation. Click OK.
If you do not want to connect to any devices over a USB connection, you
can continue using RealView ICE over only TCP/IP connections. If you
want to connect to a device using USB, you must reinstall RealView ICE.

Timeouts

The default timeout for establishing a TCP/IP connection is 5 seconds. If
you repeatedly get timeouts when attempting to connect to a RealView
ICE run control unit, you can change this setting. To do this:

1. If the environment variable RVI_COMMS_CONNECT_TIMEOUT does not
already exist, then create it.

2. Set the value of this variable to the timeout that you want, in
seconds. This must be an integer in the range 0-120.

For details of how to create and set an environment variable, see the
documentation for the operating system that is supplied with your host
computer.

4.2.4 Configuring a scan chain

This section explains how to configure a scan chain for the currently connected
RealView ICE unit. This procedure consists of the following steps:

1. Displaying the scan chain controls

2. Autoconfiguring a scan chain on page 4-10

3. Adding devices on page 4-13

4. Removing devices on page 4-15

5. Changing the order of devices on page 4-15

6. Changing the properties of a device on page 4-16

7. Setting the JTAG clock speed on page 4-17.

Displaying the scan chain controls

Before you can configure a scan chain, you must ensure that the control pane displays
the scan chain controls. To do this, select the Devices node in the tree diagram, as shown
in Figure 4-9 on page 4-10.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-9

Configuring a RealView ICE Connection
Figure 4-9 Displaying the scan chain controls

Autoconfiguring a scan chain

When autoconfiguring a scan chain, RealView ICE interrogates the scan chain and
automatically selects the correct templates for supported ARM® target devices, and adds
them to the scan chain in the correct order. This takes place at the current JTAG clock
speed (see Setting the JTAG clock speed on page 4-17):

• If you are using a fixed JTAG clock speed, but RealView ICE detects one or more
devices that require adaptive clocking, it automatically selects adaptive clocking.

• If you are using adaptive clocking, but RealView ICE does not detect any devices
that support adaptive clocking, an error message is generated. Select a fixed JTAG
clock speed.

• If the JTAG clock speed is too high, some devices on the scan chain might not be
detected. If you suspect that this is happening, decrease the JTAG clock speed.

Note
 If your target cannot be autoconfigured (which is the case for many DSPs), you must
add devices manually (see Adding devices on page 4-13).
4-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Autoconfiguring identifies the target core by reading the JTAG TAPID register. The
value of this register is usually set by the engineers that integrate the ARM core into a
design. It is not set within the ARM core itself. For more information, see the ARM
datasheet or technical reference manual for the core that you are integrating (see ARM
publications on page xx).

Warning
 Reading the JTAG TAPID register might not be sufficient for RealView ICE to uniquely
identify the device. In these circumstances, auto-configuring might involve:

• resetting the core or the board

• stopping the core

• accessing registers

• accessing memory.

In extreme cases, these actions might cause physical damage to the system being
debugged. If your system cannot tolerate this level of intrusion, you must instead add
the device manually.

To auto-configure a scan chain:

1. Ensure that the scan chain controls are displayed, as described in Displaying the
scan chain controls on page 4-9.

2. Click on Auto Configure Scan Chain. Each detected device is added to the Scan
Chain Configuration list in the control pane, and is also added to the tree diagram.
In many cases, this is all that you have to do to configure the scan chain. You must
then configure the devices themselves, as described in Configuring devices on
page 4-20.

If there are one or more devices on your scan chain, when you click on Auto
Configure Scan Chain an Auto Detect Scanchain dialog displays, and you are
prompted to confirm whether you wish to proceed. See Figure 4-10.

Figure 4-10 Auto Detect Scanchain

Caution
 If you click OK, all your devices are cleared from the scan chain configuration

window.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-11

Configuring a RealView ICE Connection
You might see one of the following errors:

• If RealView ICE detects any unpowered devices, it displays the error shown in
Figure 4-11.

Figure 4-11 Error shown when unpowered devices are detected

This error message can also display if the target is connected by the JTAG ribbon
cable if RVI is started when the LVDS probe is connected, or if the probe is
connected and used after you started RVI.

If you see this error:

— Check the JTAG connection between the RealView ICE run control unit and
the target hardware. See Connection instructions on page 2-6.

— Ensure that power is supplied to all your devices.

• If RealView ICE cannot identify any devices, it displays the error shown in
Figure 4-12.

Figure 4-12 Error shown when no devices are detected

If you see this error, try auto-configuring again with a lower JTAG clock speed.
See Setting the JTAG clock speed on page 4-17.

Note
 You might have to power-cycle your target hardware when changing the JTAG

clock speed.

• If communication cannot be made with the RealView ICE unit, it displays the
error shown in Figure 4-13 on page 4-13.
4-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Figure 4-13 Error shown when there is no communication with RealView ICE

If you see this error, then check the network or USB cable to the RealView ICE
unit.

You can use the other controls in the RVConfig dialog box to create or modify the scan
chain configuration. See:

• Adding devices

• Removing devices on page 4-15

• Changing the order of devices on page 4-15

• Changing the properties of a device on page 4-16

• Setting the JTAG clock speed on page 4-17.

Adding devices

You can manually add devices to the scan chain, if required. You might want to do this
in the following circumstances:

• You have previously autoconfigured the scan chain, and added extra devices to the
scan chain. In this case, you might also have to change the order of the devices
(see Changing the order of devices on page 4-15).

• The autoconfiguration fails. This might occur if your target includes a DSP
device.

Note
 If your target does not have a DSP, check the connection between your RealView

ICE and the target, make sure your target is switched on, and then attempt the
autoconfiguration again.

To add a device:

1. Ensure that the scan chain controls are displayed. See Displaying the scan chain
controls on page 4-9.

2. Click on Add Device. The Add Device dialog box appears, as shown in
Figure 4-14 on page 4-14. Other devices might be available depending on your
RealView ICE firmware.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-13

Configuring a RealView ICE Connection
Figure 4-14 The Add Device dialog box

3. If you have more than one device, check the order of the devices on the target. The
device nearest to TDI is last on the chain.

Note
 If you add the devices in the wrong order, you can later change the order (see

Changing the order of devices on page 4-15).

4. Specify the device to add:

• If the device appears in the list of Registered Devices:

1. Select Registered Devices.

2. Expand the relevant category. To do this, either double-click on its
name, or click on the associated + button.

3. Select the device that you want to add.

• Otherwise:

1. Select Custom Device.

2. Enter the name of the device in the Device Name field. This is used
as the name of the device node in the tree view, and can have any
value.

3. Enter the JTAG Instruction Register length (in bits) in the IR Length
field.
4-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Note
 If you enter an incorrect value for the IR length, then any connections

you attempt to make to the device fail.

5. Click on OK. The device is added to the scan chain.

6. If you have multiple devices, repeat step 4 and 5 to add each device in the order
identified at step 3.

Removing devices

To remove an unwanted device from the scan chain:

1. Ensure that the scan chain controls are displayed. See Displaying the scan chain
controls on page 4-9.

2. Select the device in the Scan Chain Configuration.

3. Click Remove Device.

Changing the order of devices

The Scan Chain Configuration shows the devices in descending order of TAP ID, as
indicated by the arrows in the Devices pane of the RVConfig dialog box (shown in
Figure 4-9 on page 4-10). The device at the top of the list is last on the chain, nearest to
TDO.

Note
 If you have previously used Multi-ICE®, be aware that the list of devices on the scan
chain is the same order as that used by Multi-ICE. This, however, is not the case if you
are using older versions of RVI.

To change the position of a device in the scan chain:

1. Ensure that the scan chain controls are displayed (see Displaying the scan chain
controls on page 4-9).

2. Select the device in the Scan Chain Configuration.

3. Then do one of the following:

• click Move Left to move the device leftwards along the scan chain

• click Move Right to move the device rightwards alongthe scan chain.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-15

Configuring a RealView ICE Connection
Note
 The ordering of CoreSight™ devices on the same DAP is not important.

Changing the properties of a device

To change the properties of a device:

1. Ensure that the scan chain controls are displayed (see Displaying the scan chain
controls on page 4-9).

2. Select the device in the Scan Chain Configuration list.

3. Click Device Properties. The Device Properties dialog box appears, as shown in
Figure 4-15.

Figure 4-15 The Device Properties dialog box

Note
 It is not possible to use an ETB without an ETM, so when you select ETB, ETM

is selected automatically.

4. Update the properties as necessary.

• The Device Name field identifies the device that you are configuring.

• The Template Version sets the version of the device template that you are
using. The RealView ICE unit stores templates for each supported device.
These templates define how to communicate with the device, and the
configuration options for that device.
4-16 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
RealView ICE can store multiple versions of templates for each device. One
version is used by default (typically the most recent), but you can use the
other versions if necessary. For example, you might use the latest version of
a template to debug a new project, but use an older version to perform a
regression test.

For details of how to change the Default Version of a template, see
Chapter 7 Managing the RealView ICE Software.

• The Options area specifies whether or not certain features are present:

— Embedded Trace Macrocell (ETM), when selected, indicates that
the device has an ETM

— Vector Floating Point (VFP), when selected, indicates that the
device has a VFP unit

— Embedded Trace Buffer (ETB), when selected, indicates that the
device has an ETB.

— Neon SIMD Extensions (Neon), when selected, indicates that the
device has NEON® SIMD extensions.

— Vector Floating Point v3 (VFPv3), when selected, indicates that the
device has a VFPv3 unit.

5. Click on OK.

Setting the JTAG clock speed

It is important to select the best JTAG clock speed for your system. Higher clock speeds
enable faster downloads, but setting the clock speed too high can result in intermittent
faults and reliability problems. If you are experiencing such problems, try reducing the
JTAG clock speed. If you are not sure which clock speed to use, try setting the default
speed, 10MHz.

Warning
 The standard JTAG cable must not be used for clock speeds exceeding 20MHz. For
reliable operation at high clock speeds, you must use the LVDS cable.

To set the JTAG clock speed:

1. Ensure that the scan chain controls are displayed (see Displaying the scan chain
controls on page 4-9).

2. Specify the clocking that you want using the JTAG Clock Speed controls, shown
in Figure 4-16 on page 4-18:
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-17

Configuring a RealView ICE Connection
Figure 4-16 The scan chain JTAG Clock Speed controls

• If you want to use fixed clocking, select the required speed. If the speed you
want to use is not available as a preset:

1. Select Other.

2. Enter the required speed with the Hz, kHz, or MHz suffix as
required.

Note
 Although RealView ICE can support JTAG clock speeds down to

13Hz, your debugging environment might become unstable at speeds
lower than 1kHz.

3. Click on Set.

• If you want to use adaptive clocking, select Adaptive. You can use adaptive
clocking if the target provides the RTCK (Returned TCK) signal. This
enables you to synchronize the JTAG clock to the processor clock outside
the core, which ensures that there are no synchronization problems over the
JTAG interface.

Note
 When using cores ending with -S, adaptive clocking does not have to be

used, as long as TCK is set low enough relative to the core clock that is
driving the JTAG synchronization logic.

Note
 If you use adaptive clocking, the maximum clock frequency is lower than

with non-adaptive clocking, because of transmission delays, gate delays,
and synchronization requirements. Do not use adaptive clocking unless the
hardware design requires it.

For a full description of the concept of adaptive clocking, see Chapter 9
System Design Guidelines.
4-18 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
4.2.5 CoreSight system configuration

CoreSight systems consist of a Debug Access Port (DAP), which comprises the
following components:

• A debug port (DP) which connects to the JTAG scan chain or Serial Wire Debug
(SWD) interface, and which provides the system interface to RVI.

• A number of Access Ports (APs) which allow access to buses on the target.

• Either Advanced High-performance Bus AP (AHB-AP for AHB access) or ARM
Peripheral Bus AP (APB-AP for APB access).

Debug components are attached to the buses, and are accessed via the APs on the DAP.
CoreSight debug components are configured with the index of the AP to which they are
attached, and the base address on the bus.

The DAP may also contain a JTAG-AP which allows the connection of JTAG devices
on internal JTAG scan chains, for example ARM 11 cores. JTAG devices must be
configured with the AP index of the JTAG-AP, the JTAG port on the AP and the pre-bits
and post-bits on that scan chain.

CoreSight components are associated with a DAP, so they are placed on the scan chain
(or SWD connection) after the DAP with which they are associated. The DAP is
represented on the scan chain by the ARMCS-DP device. CoreSight components use no
space on the scan chain, so the order in which they are placed on the chain is not
important, provided that they are placed between the DAP and the next real JTAG
device.

Reading the CoreSight ROM table

If the target system contains a valid CoreSight ROM table, this can be used to configure
the coresight devices. To do this, right-click on the ARMCS-DP and select the Read
CoreSight ROM Table option.

CoreSight autodetection

Autodetecting a CoreSight system results in the ARMCS-DP (ARM CoreSight Debug
Port) device being found. This device represents the Debug Access Port (DAP) in a
CoreSight system. The debuggable devices connected to the DAP will not be found. If
the device contains a valid CoreSight ROM table, you can determine what CoreSight
devices are available. To do this, right-click on the ARMCS-DP device and select Read
CoreSight ROM Table. See CoreSight system configuration.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-19

Configuring a RealView ICE Connection
Autodetecting Serial Wire Debug

SWD does not support a scan chain in the same way that JTAG does. Autoconfiguring
in SWD mode results in one ARMCS-DP device being found. The Read CoreSight
ROM Table option can be used as described in CoreSight autodetection on page 4-19.

4.2.6 Configuring devices

Before you can configure a device on a particular scan chain, you must ensure that the
RVConfig dialog box displays the controls for that device. To do this, select the node
for the device in the tree diagram, as shown in Figure 4-17.

Figure 4-17 Displaying the device controls
4-20 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Depending on the device that you have selected, some or all of the following controls
might appear:

• The Code Sequence settings

• Bypass memory protection when in debug on page 4-22

• Ignore bad JTAG IDCODE on page 4-22

• Use LDM or STM for memory access on page 4-22

• Software breakpoint mode on page 4-23

• Unwind vector catch on page 4-24

• Clear break HW on connect on page 4-24.

Note
 If you want to configure CoreSight systems, see the RealView Debugger User Guide.

The Code Sequence settings

The Code Sequences Enabled facility allows you to set code sequence default values
and sizes without enabling them.

Note
 Code sequences are disabled by default, so you must enable these as required.

The Code Sequence Address and the Code Sequence Size (bytes) values set the
virtual address and the size of an area of memory on the target that the RealView ICE
software can use. This area of memory must be:

• unused by the target

• readable

• writable

• non-cacheable (for cached targets)

• at least 128 bytes in size.

The RealView ICE software downloads code sequences to this area to perform various
tasks, such as cleaning the cache (see Cached data on page 5-14) and accessing certain
CP15 registers on targets such as the ARM920T™ and ARM1136JF-S. It does not
preserve the contents of this area.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-21

Configuring a RealView ICE Connection
Note
 You must ensure that the Code Sequence Address and the Code Sequence Size (bytes)
values are correctly set up before you attempt to write to any of the Cache Operations
or TLB Operations in the RealView Debugger Register pane. If you do not set these
values correctly, RealView Debugger gives one or more of the following errors:

• Error V28305 (Vehicle): Memory operation failed

• Warning: Code sequence memory area size error

• Unable to load code sequence into defined memory area.

The Code Sequence Timeout (ms) value sets a timeout for execution of the uploaded
code sequence. For most targets, a 500ms timeout is sufficient.

To change the code sequence settings, type the required value into the appropriate text
box.

Bypass memory protection when in debug

If Bypass memory protection when in debug is selected, any memory protection
provided by hardware (such as a memory management or protection unit) is bypassed
whenever the target hardware enters debug state. This enables you to access protected
memory so that you can set software breakpoints in it, or alter its contents.

Ignore bad JTAG IDCODE

By default, RealView ICE reads the device JTAG IDCODE to verify the integrity of the
JTAG connection. The JTAG standard restricts the JTAG IDCODE value to be 32 bits
long and requires the least significant bit to be a 1. If RealView ICE reads an invalid
(bad) JTAG IDCODE, it assumes that the JTAG connection is not functioning properly,
and fails the attempt to connect to the core.

If the device you want to connect to has an invalid JTAG IDCODE, set this option to
True by checking the checkbox. This instructs RealView ICE to allow connection to the
core even if it detects that the JTAG IDCODE is invalid.

Use LDM or STM for memory access

This option is available if you are using an ARM926EJ-S, ARM946E-S, or
ARM966E-S processor. Set this option to True (checked) if you want to use Load
Multiple Instructions (LDM) or Store Multiple Instructions (STM) to access target
memory. You might have to set this option to False (unchecked) if you have a peripheral
that is not fully compatible with the AMBA™ 2.0 standard, because in such cases LDM
and STM might not be compatible.
4-22 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
JTAG Timeouts Enabled

By default, JTAG timeouts are enabled. You must deselect this option to disable JTAG
timeouts when RealView ICE is connected to a core using a low clock speed and
adaptive clocking. This is because RealView ICE cannot detect the JTAG clock speed
when adaptive clocking is used, and therefore cannot scale its internal timeouts. If a
JTAG timeout occurs, the JTAG is left in an unknown state and RealView ICE cannot
operate correctly without reconnecting to the core.

Software breakpoint mode

This option allows you to configure how RealView ICE handles software breakpoints.
Select the required breakpoint mode:

AUTO This is the default mode for all templates:

• If the core being debugged supports BKPT instructions, RealView
ICE automatically uses the BKPT instruction for software
breakpoints.

• If the core being debugged does not support BKPT instructions,
RealView ICE uses the watchpoint unit resource when you set a
software breakpoint. In this case, RealView ICE automatically
frees the watchpoint unit resource when all software breakpoints
are cleared.

NONE When this mode is selected, you cannot set software breakpoints. If you
attempt to set a software breakpoint, RealView ICE gives an error
message telling you that there are no free resources to set the breakpoint.

WATCHPOINT

This option instructs RealView ICE to use one watchpoint unit to provide
software breakpoint instructions, whether or not the core being debugged
supports BKPT instructions. Select this option if the core supports BKPT
instructions but you want to use a watchpoint unit.

BKPT This option instructs RealView ICE to use the BKPT instruction to provide
software breakpoint instructions, whether or not the core supports this
instruction. Select this option if you want to make sure that no
watchpoints are used.

Allow execution with T-Bit Clear

For Cortex-M1 and Cortex-M3 cores, this option allows you to attempt to execute in
ARM state cores that only support Thumb mode.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-23

Configuring a RealView ICE Connection
Unwind vector catch

Where this option is available, it instructs RealView ICE to unwind the vector if you
have set a vector catch on a SVC, an Undefined instruction, a Prefetch Abort or a Data
abort. Unwinding the vector sets the PC to the address of the code that caused the
exception instead of leaving it at the vector address. The LR and CPSR are restored, and
RealView Debugger displays the code at this address. This enables you to more easily
examine the code that caused the exception. If you want to run the exception handling
code, you must leave this option unchecked.

Note
 This option is only activated if a vector catch occurs. If a vector catch is not set, then the
exception handler is run as normal.

Clear break HW on connect

This option is available if you are using an ARM11 processor. The ARM11 processor
does not clear the breakpoint hardware on connection. Set this option to True to instruct
RealView ICE to perform this operation each time you connect.

Post Reset State

Set Post Reset State to the required state for the target hardware:

Running The target hardware is running.

Stopped This option controls the state of a core after a reset. Is is only
available for devices that are capable of running (such as ARM
cores). Each device on the scan chain does not need to be set to
the same value, so it is valid to have one core running and another
stopped.

If you want to connect to a running target without performing a reset and without
stopping the target, you must do both of the following:

• In RealView ICE, set the Post Reset State to Running.

• In RealView Debugger, connect using the Connect (Connection Modes) of No
Reset / No Stop. For information on setting the connection mode, see the
RealView Debugger Target Configuration Guide.
4-24 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
4.2.7 Advanced configuration

The Advanced settings enable you to change the reset behavior so that it meets the
requirements of the target hardware that you are using. Before you can configure the
advanced settings, you must ensure that the control pane displays the advanced controls.
To do this, select the Advanced node in the tree diagram, as shown in Figure 4-18.

Figure 4-18 Displaying the advanced controls

To configure reset behavior:

• Set the Reset Type that the RealView ICE run control unit uses to reset the target
hardware:

nSRST Resets the hardware by holding the hardware nSRST
system reset signal LOW. This is the default.

nTRST Resets the target TAP by holding the nTRST TAP reset
signal LOW.

nSRST+nTRST Resets the hardware and the target TAP by holding both the
hardware nSRST system reset signal and the nTRST TAP
reset signal LOW.

Fake Resets the system by entering supervisor mode, and setting
the program counter to the address of the reset vector
(known as a soft reset).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-25

Configuring a RealView ICE Connection
• Set the required default reset behavior:

— Select Perform TAP Reset on First Connect to reset the target hardware
whenever you connect.

— Select Reset On Disconnect to reset the target hardware whenever you
disconnect.

• Enter appropriate values in milliseconds for the reset hold times and delays:

— nSRST Hold Time (ms) specifies how long the RealView ICE run control
unit holds the hardware nSRST system reset signal LOW

— nSRST Post Reset Delay (ms) specifies how long after the hardware
nSRST system reset before the RealView ICE run control unit enters the
Post Reset State

— nTRST Hold Time (ms) specifies how long the RealView ICE run control
unit holds the nTRST TAP reset signal LOW

— nTRST Post Reset Delay (ms) specifies how long after the nTRST TAP
reset before the RealView ICE run control unit enters the Post Reset State.

• Select TAP reset via State Transitions if you want the JTAG logic in the target
hardware to be reset by forcing transitions within its state machine. This is done
in addition to holding the nTRST TAP reset signal LOW. Select this option if
nTRST is not connected, or if the target hardware requires that you force a reset
of the JTAG logic whenever resetting.

• Select Target nSRST + nTRST Linked if the target hardware has its nSRST and
nTRST JTAG signals linked.

• LVDS Debug Interface mode. This can be set either to JTAG or SWD. If set to
SWD, this causes RVI to connect to the target using the SWD protocol instead of
JTAG. For more information on SWD, see Appendix F Serial Wire Debug. See
also Appendix E Hardware Variants for details on determining the hardware that
you’re using.

• Use SWJ Switching. If this is set, it causes the SWJ switching sequence to be sent
before connecting to the core. On cores that support SWJ switching, this causes
the core to switch its interface to the selected protocol.

• Use deprecated SWJ Sequence. If this is set, it causes RVI to use an alternative
SWJ switching sequence, used on some older SWD-compatible targets. This
option is normally clear, unless the core requires the deprecated sequence.

• Ctrl_Reg (Control register). This reset, in instances where cores have a reset
register, allows you to reset the core without using the external reset lines. If you
set the reset type to Ctrl_Reg, then this control register is used. See Control
register reset on page 5-16.
4-26 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
Note
 These settings are sent to a RealView ICE run control unit whenever you connect to the
unit from RealView Debugger. They are used as the default reset behavior for all target
hardware that you debug with that run control unit. You can override these settings when
you are debugging, as described in Using the Debug tab of the RealView Debugger
Register pane on page 4-31.

Recommended settings for an ARM Emulator board

If you are using an ARM Emulator™ board, ARM Limited recommends that you use the
default settings. These are shown in Figure 4-19.

Figure 4-19 Recommended settings for an ARM Emulator board

If these operations complete, the FPGA OK LED on the core module is lit. If an
Integrator AP board is present and its switches are set for the boot monitor to run, then
the MISC LED on the core module, if present, is lit.

Note
 The long nSRST Post Reset Delay (ms) is to allow the boot monitor to run and remap
memory.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-27

Configuring a RealView ICE Connection
4.2.8 Saving your changes

To save any changes that you have made to the configuration, select Save from the File
menu.

Changes are stored by default in the file *.rvc, which is located by default in the
RealView Debugger directory:

C:\Documents and Settings\<username>\Application Data\ARM\rvdebug\<version

number>*

There can be a number of *.rvc files in this location, and these are named with respect
to the connection name.

You can change the location of the *.rvc file using the Connection Properties window,
or save multiple copies of the file for different target configurations. For more details,
see the RealView Debugger Target Configuration Guide.

4.2.9 Disconnecting from a RealView ICE unit

You might want to disconnect from a RealView ICE unit if you want to connect to
another RealView ICE unit.

To disconnect from a RealView ICE unit:

1. Select the RealView ICE node in the tree diagram, to display the RVConfig
dialog box as shown in Figure 4-20.

Figure 4-20 Displaying the connection controls
4-28 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
2. Click Disconnect.

If you have unsaved configuration changes, a warning dialog box appears as
shown in Figure 4-21.

Figure 4-21 Warning when disconnecting with unsaved configuration changes

3. In this warning dialog box:

• Click Yes to disconnect, losing any unsaved configuration data.

• Click No to remain connected. Save your changes, then disconnect.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-29

Configuring a RealView ICE Connection
4.3 Connecting RealView Debugger to a target using RealView ICE

To connect to your target hardware using a RealView ICE run control unit, use the same
RealView Debugger features that you use for any other target. You must ensure that you
use the RealView ICE target.

When connecting, an error message appears if the software detects that there is already
a connection to the target. This might be because someone else is connected to the
target, or because a connection has been left open by software that exited incorrectly. If
the error message appears, you must:

• Click Yes if you are certain that nobody else is connected. This closes all open
connections and then connects you.

• Otherwise click No. Determine who else is connected, and ask them to
disconnect.

For more information about connecting RealView Debugger to targets, see the RealView
Debugger User Guide.

See the RealView Debugger Target Configuration Guide for details on how to configure
custom connections.
4-30 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring a RealView ICE Connection
4.4 Using the Debug tab of the RealView Debugger Register pane

When you install the RealView ICE software, it adds a Debug tab to the Register pane
of the RealView Debugger Code window. This controls various internal debugger
registers, many of which are specific to RealView ICE. To use this tab, you must first
connect RealView Debugger to your target hardware, as described in Connecting
RealView Debugger to a target using RealView ICE on page 4-30. For more specific
information on target connection using RealView Debugger, see the RealView
Debugger User Guide.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 4-31

Configuring a RealView ICE Connection
4-32 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 5
Debugging with RealView ICE

This chapter provides information about debugging with RealView® ICE. It contains the
following sections:

• Post-mortem debugging on page 5-2

• Semihosting on page 5-4

• Breakpoints on page 5-8

• Cached data on page 5-14

• Debugging applications in ROM on page 5-15.

Note
 For more general information about debugging with RealView Debugger, see the
RealView Debugger documentation suite (see ARM publications on page xx). For
information about tracing with RealView ICE, see Chapter 6 Using RealView Trace.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-1

Debugging with RealView ICE
5.1 Post-mortem debugging

This section describes how to examine the state of a system that has previously been
running but is currently not connected to RealView ICE.

Before you can examine a running target with RealView ICE, you must configure the
RealView ICE run control unit for that target. If you have a target that is operating
without a RealView ICE run control unit connected, and you want to examine it to find
out why it is behaving in a particular way, you must power up the RealView ICE run
control unit and configure the connection without disturbing the state of the target. This
requires that the RealView ICE run control unit is powered before it is connected to the
target.

The RealView ICE run control unit includes power conditioning and switching circuitry
that enables you to plug and unplug the JTAG cable without affecting the target.

Note
 The voltage reference used by the run control unit JTAG circuit is generated from the
VTref signal present on the JTAG connector. If this signal is not connected at the target,
you must modify the target or the JTAG cable to supply a suitable reference. Connecting
VTref to Vsupply is usually sufficient.

To connect to a running target:

1. Ensure that the JTAG input lines TDI, TMS, nSRST, and nTRST have pull-up
resistors (normal practice), and TCK has a pull-down resistor, so that when the
adaptor is disconnected from the target these lines are in their quiescent state.

2. Plug the power jack into the run control unit.

3. Configure the RealView ICE connection (see Using the RVConfig dialog on
page 4-3). You must do one of the following:

• load a configuration that you have previously saved

• manually configure the connection

• autoconfigure using a separate test system.

Note
 Do not use autoconfigure on the target to be debugged, because doing so might

reset the processor.

4. If the target processor does not have any CP15 registers, you must explicitly
configure the endianness, as described in the RealView Debugger Target
Configuration Guide.
5-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
Note
 Do not automatically detect the endianness of target processors that do not have

a CP15 register. Doing so might disturb the state of the processor.

5. Plug the 20-way JTAG cable into the target.

6. Start the debugger, and connect to the running target.

In RealView ICE, set the Post Reset State to Running.

In RealView Debugger, connect using the Connect (Connection Modes) of No
Reset / No Stop.

See Advanced configuration on page 4-25 and the RealView Debugger Target
Configuration Guide for more details on connection modes.

7. To get a high-level (source code) view of the problem, you must load the symbol
table for your target program into the debugger.

For RealView Debugger:

a. Open the Load File to Target dialog box.

b. Locate the target program.

c. Select Symbols Only.

d. Click Open. The Load File to Target dialog box closes.

See the RealView Debugger User Guide for more details on loading images.

8. When you have finished, unplug the JTAG connector to restart the system, if
required, then exit the debugger.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-3

Debugging with RealView ICE
5.2 Semihosting

Semihosting enables the ARM® processor target to make I/O requests to the computer
running the debugger. This means the target does not require a screen, keyboard, or disk
during the development period. These requests are made as a result of calls to C library
functions, for example, printf() and getenv(). Semihosting using RealView ICE is
described in the following sections:

• Enabling semihosting

• Adding an application SVC handler when using RealView ICE on page 5-5.

• Cortex-M3 semihosting on page 5-7

5.2.1 Enabling semihosting

When using RealView ICE, semihosting is handled by emulating a SVC exception
handler using breakpoints. You can modify this semihosting mechanism using the
following RealView Debugger internal registers:

SEMIHOSTING_ENABLED

By default, this variable is set to 1 to enable breakpoint semihosting but
you can set it to the following values:

0 Disables semihosting.

1 Enables semihosting.

SEMIHOST_VECTOR

This variable controls the location of the breakpoint set by the RealView
ICE software to detect a semihosted SVC. It is set to 8 by default, unless
you have specified that high vectors are in use.

In RealView Debugger, these internal registers are accessed using the Debug tab in the
Register pane of the Code window. See Using the Debug tab of the RealView Debugger
Register pane on page 4-31 and the RealView Debugger documentation suite for more
information (see ARM publications on page xx).

Semihosting

Semihosting involves setting a breakpoint either on the SVC vector or somewhere else
in cooperation with your own SVC handler, depending on the value of SEMIHOST_VECTOR.

Note
 Cortex-M3 does not provide vector catch on SVC. For details on Cortex-M3
semihosting see Cortex-M3 semihosting on page 5-7.
5-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
When the breakpoint is hit, RealView ICE interprets it as a semihosting request:

• the processor registers and memory are read as required to decode the request

• the request is executed on the host

• the return value is placed in register R0 and, when required, memory is modified

• the pc is modified so that the next instruction is the instruction following the SVC

• execution is resumed.

By default, the ARM C library code uses semihosting for I/O operations and for certain
system-specific settings, such as SP value.

Note
 Using RealView ICE semihosting with systems that include time-sensitive
interrupt-driven software is not recommended. The processor is halted while a
semihosting operation is performed, and interrupts are therefore missed.

The breakpoint on the SVC vector uses breakpoint resources that might be required for
other purposes.

5.2.2 Adding an application SVC handler when using RealView ICE

Many applications require their own SVC handlers in addition to semihosting SVCs. To
ensure that the application SVC handler cooperates with the RealView ICE semihosting
mechanism:

1. Install the application SVC handler into the vector table.

2. Modify the value of SEMIHOST_VECTOR to point to a location that is only reached if
your handler does not recognize the SVC, or recognizes it as a semihosting SVC.

For example, a particular SVC handler might detect if it has failed to handle a SVC and
branch to an error handler. An example of a basic exception handler is shown in
Example 5-1.

Example 5-1 Basic SVC handler

 ; r0 = 1 if SVC handled
 CMP r0, #1 ; Test if SVC has been handled.
 BNE NoSuchSVC ; Call unknown SVC handler.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12, pc}^ ; Restore registers and return.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-5

Debugging with RealView ICE
You can modify this code for use in conjunction with RealView ICE semihosting as
shown in Example 5-2.

Example 5-2 SVC handler with RealView ICE link

 ; r0 = 1 if SVC handled
 CMP r0, #1 ; Test if SVC has been handled.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12, lr} ; Restore registers.
 MOVEQS pc, lr ; Return if SVC handled.

Semi_SVC
 MOVS pc, lr

You must then set up the SEMIHOST_VECTOR with the address of Semi_SVC. The instruction
at this address is never actually executed because the RealView ICE software returns
directly to the application after processing the semihosted SVC. Using a normal SVC
return instruction ensures that the application does not crash if the semihosting
breakpoint is not set up.

If the application is linked with the semihosted ARM C library, and therefore uses the
C library startup code, you must change the contents of SEMIHOST_VECTOR before the
application installs its own handler, typically by setting a breakpoint in the main code.
This is because, if SEMIHOST_VECTOR is set to the fall-through part of the application SVC
handler before the application starts execution, the semihosted SVCs that are called by
the library initialization can trigger an unknown breakpoint error. At this point, the SVC
vector has not yet had the application handler written to it, and might still contain the
software breakpoint bit pattern. This triggers a breakpoint that the RealView ICE
software does not know about, because the SEMIHOST_VECTOR address has moved to a
place that cannot currently be reached.

Note
 If semihosting is not required by your application, including the startup code, you can
simplify this process by setting SEMIHOST_ENABLED to zero.

You must take care when moving an application that previously ran in conjunction with
the Angel debug monitor onto a RealView ICE system. On Angel debug monitor
systems, application SVC handlers are typically added by moving and adjusting the
contents of the Angel-installed SVC vector to another place, and installing the
application SVC handler into the SVC vector. This method does not apply to the
RealView ICE software because there is no instruction to move out of the SVC vector,
5-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
and no code to jump to. Therefore, when moving an application onto a RealView
ICE-based system, you must convert to the RealView ICE way of installing the
application and semihosted SVC handlers.

5.2.3 Cortex-M3 semihosting

Because Cortex-M3 does not provide vector catch on SVC, and the vector table contains
jump addresses rather than instructions, semihosting cannot be supported using an SVC
instruction.

As an alternative, semihosting is implemented using a software breakpoint which is
recognized as a semihosting break by the debugger. The specific breakpoint instruction
used is set by using the Thumb breakpoint config item.

When the semihosting break is executed, the semihosting call is processed in the normal
way. After processing, execution continues from the instruction that follows the
software breakpoint. The debugger does not stop on the breakpoint.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-7

Debugging with RealView ICE
5.3 Breakpoints

This section describes how RealView ICE implements breakpoints. It contains the
following sections:

• Hardware Breakpoints

• Software instruction breakpoints on page 5-9

• Processor exceptions on page 5-10

• Breakpoints and the program counter on page 5-10

• Interaction with RealView Debugger on page 5-11

• Problems setting breakpoints on page 5-13.

5.3.1 Hardware Breakpoints

Some processors contain dedicated hardware resources, such as ARM EmbeddedICE®
logic, for matching against specific hardware events. RealView Debugger enables you
to configure these resources to implement instruction and data breakpoints.

Note
 Data breakpoints are also sometimes referred to as watchpoints.

The resources available depend on the processor you are using. See the data sheet for
your processor for information.

Hardware breakpoints might also provide additional matching capabilities. Examples of
this include matching on an external signal, and distinguishing between privileged and
non-privileged accesses. The Set Address/Data Breakpoint dialog box displays the
capabilities of your hardware. See the chapter on breakpoints in the RealView Debugger
User Guide for information on accessing and using this dialog box.

Hardware instruction breakpoints do not require the instruction in memory to be
changed. This means that they can be used to debug code in Flash and ROM, and can
be used with self-modifying code.
5-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
5.3.2 Software instruction breakpoints

For processors that do not support hardware instruction breakpoints, or in cases where
you have used up all the available hardware breakpoint resources, you can use software
instruction breakpoints. Software breakpoints modify the instruction in memory to
create a special value that causes the processor to enter debug state when executed. The
value written to memory depends on the processor you are using. For ARM processors,
one of the following schemes is used, depending on the architecture and processor
revision:

• An undefined instruction is written to memory, and a hardware breakpoint
resource is used to spot this instruction being executed. The processor enters
debug state when the hardware breakpoint unit spots the undefined instruction
entering the execute pipeline stage.

• An ARMv5 BKPT instruction is written to memory, and a hardware breakpoint
resource is used to spot this instruction being executed. The processor enters
debug state when the hardware breakpoint unit spots the BKPT instruction entering
the execute pipeline stage.

• An ARMv5 BKPT instruction is written to memory. When this instruction is
executed, the processor automatically enters debug state.

Where a hardware breakpoint unit is used to spot software instruction breakpoints, only
a single hardware resource is used, no matter how many software instruction
breakpoints are set. If you have difficulty setting software instruction breakpoints, you
might have to free up a hardware breakpoint resource first.

Software breakpoints cannot be used to debug code in Flash or ROM, and can be
unreliable in self-modifying code.

Note
 When viewing memory or disassembly, RealView ICE reports the actual contents of
memory. Prior to running, any software breakpoints are written to memory. When the
core halts, the software breakpoints are removed from memory. On a number of cores,
it is not possible to access memory while running, and means that if you disconnect
RealView-ICE from the core while the target is running, the breakpoints are left in
memory. If the core subsequently executes one of the instructions, then (depending on
the core architecture) the core either stops at the software breakpoint or causes the core
to take an undefined exception.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-9

Debugging with RealView ICE
5.3.3 Processor exceptions

Some processors provide dedicated hardware to enter debug state when a predetermined
event occurs. Available processor events are displayed in the Processor Exceptions List
Selection dialog box. See the chapter that describes breakpoints in the RealView
Debugger User Guide for more information on this dialog box.

Most ARM cores provide hardware to enter debug state when an exception occurs. This
is called vector catch. Some ARM cores, such as ARM7, do not provide vector catch
hardware. For these cores, RealView ICE simulates vector catch using instruction
breakpoints.

Note
 If the exception vectors are in ROM, RealView ICE must use hardware breakpoints to
simulate vector catch. This reduces the number of resources available for other
purposes.

If RealView ICE uses an instruction breakpoint to simulate reset vector catch, the
breakpoint might not be hit when a reset occurs. This is because most systems remap
flash or ROM at the exception vectors during reset, and this displaces any instruction
breakpoint that might be set. The following warning is output to the RealView Debugger
console if RealView ICE simulates reset vector catch using an instruction breakpoint:

Warning: A software breakpoint is being used to simulate reset vector catch.
This may fail to be hit if the memory is remapped when a reset occurs.

The exact behavior of the ARM vector catch hardware depends on the core. ARM9 and
ARM10 processors enter debug state only when the specified exception occurs. Other
processors such as ARM11 enter debug state whenever the instruction at the exception
vector is executed, regardless of whether the exception occurs or not.

5.3.4 Breakpoints and the program counter

This section describes the value of the program counter when a breakpoint is taken for
the following events:

• Hardware data breakpoints

• Hardware instruction breakpoints on page 5-11

• Software instruction breakpoints on page 5-11

• Processor events on page 5-11.

Hardware data breakpoints

The address of the program counter after hitting a hardware data breakpoint depends on
the processor being used.
5-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
For ARM cores, a skid of either one or two instructions occurs after a data breakpoint
is hit. This means that the instruction that generated the breakpoint, and possibly the one
after that, are both executed. The program counter shown in RealView Debugger might
not be the address of the instruction that generated the breakpoint.

Hardware instruction breakpoints

The address of the program counter after hitting a hardware instruction breakpoint
depends on the processor being used.

For ARM cores, no skid occurs after hitting a hardware breakpoint. This means that the
instruction that generated the breakpoint has not been executed, and the program
counter is set to this address.

Software instruction breakpoints

The address of the program counter after hitting a software breakpoint is always the
address of the breakpoint. Unless the instruction is a BKPT instruction, the instruction
that generated the breakpoint is not yet executed.

Processor events

The address of the program counter after a processor event is hit depends on the
processor being used. For ARM processors, vector catch hardware stops with the
program counter on exception vector, before the instruction at that address is executed.

5.3.5 Interaction with RealView Debugger

This section describes how the breakpoint handling in RealView ICE interacts with the
breakpoint handling in RealView Debugger. It contains the following sections:

• Break details or break capabilities

• Memory maps on page 5-12

• Stepping on page 5-12

• Semihosting on page 5-13

• Resource allocation on page 5-13.

Break details or break capabilities

You can find out what hardware breakpoint resources are available by viewing the break
details or break capabilities in RealView Debugger (see the chapter that describes
breakpoints in the RealView Debugger User Guide for more information). All ARM
cores provide at least two hardware instruction breakpoint resources.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-11

Debugging with RealView ICE
Memory maps

RealView Debugger enables you to define a memory map to describe the layout and
type of memory in your system (see the chapter that describes memory mapping in the
RealView Debugger User Guide for detailed information). When you set a breakpoint,
areas of memory that are marked as read-only, such as Flash and ROM, automatically
use hardware instruction breakpoints. All other types of memory use software
instruction breakpoints by default.

Stepping

When you step through code, the debugger usually sets a temporary breakpoint on the
destination address. If the code is in read-only memory, or if the software breakpoint
implementation requires hardware assistance, a hardware breakpoint is used for this. If
you are unable to step, you might have to free up a hardware breakpoint resource.

Some processors, such as ARM9, provide dedicated single-step hardware. RealView
ICE uses this hardware if it is available, but steps larger than a single instruction might
revert back to using breakpoints, to improve efficiency.

Note
 For ARM7, ARM9, ARM11 or Cortex A8 processors, interrupts are disabled when
single-stepping with RealView ICE. For the ARM10 processor, and for Cortex M3,
interrupts are enabled when single-stepping with RealView ICE.

Interrupt behavior applies only to RVI single-instruction stepping. Higher-level
stepping depends on the strategy in RealView Debugger, that is, whether you’ve used
the “place Breakpoint and run” method, or the “multiple single-instruction steps”
method.

Note
 When hardware single-step is used, RealView ICE prevents the core from processing
any pending interrupts.

For more information, see the chapter on controlling image execution in RealView
Debugger User Guide.
5-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
Semihosting

RealView ICE provides an implementation of ARM semihosting (see Semihosting on
page 5-4). If the semihosting vector is at the address of the SVC vector, RealView ICE
uses SVC vector catch to detect semihosting operations (see Processor exceptions on
page 5-10 for detailed information). In all other cases, RealView ICE uses a breakpoint
at the semihosting vector to detect semihosting operations.

In both cases, the use of semihosting might use up hardware breakpoint resources,
resulting in fewer resources available for your own use. Therefore, you might want to
disable semihosting if your program does not use it.

Resource allocation

RealView ICE allocates hardware breakpoint resources as they are received, rather than
allocating all the resources at the same time when the debugging session begins.
Therefore, if you attempt to set a breakpoint when there are insufficient resources
available, RealView ICE displays an error message as soon as you try to set the
breakpoint, rather than waiting until debugging begins.

5.3.6 Problems setting breakpoints

If you have problems stepping or setting breakpoints, it might be because you have run
out of hardware breakpoint resources. To work around this, you can try freeing some
hardware breakpoint resources then repeating the action. Some examples of how you
can free hardware breakpoint resources include:

• disable any breakpoints that you do not require

• change hardware breakpoints to software breakpoints where possible

• disable any processor events that you do not require

• disable semihosting if you are not using it.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-13

Debugging with RealView ICE
5.4 Cached data

When debugging a cached processor, RealView ICE uses the strategies now described.

1. On debug entry.

• RVI forces Write-Through (WT) on cores which support this debug feature.

• RVI disables cache line fill on cores which support disabling of this feature
in debug.

• RVI disables Translation Look-aside Buffer (TLB) loads on cores which
support disabling of this feature in debug.

• If data is read from cacheable memory, it is only read into the caches if, and
only if, disable linefill is not possible.

• TLB matches and caches remain enabled.

2. On data write.

• If WT is possible, nothing cache-related is performed.

• If WT is not possible, strategy is core size- and data size-dependent:

a. RVI may write to memory with caches enabled, and then write disabled,
effectively simulating write through.

b. RVI may clean and invalidate the Dcache and disable it. (The 940T requires
that Code Sequences are enabled to do this.)

3. On restart into debug.

• On cores which support the features, forced WT is removed, linefills are
re-enabled, and TLB loads are enabled. If, and only if, data has been
written, the Icache is invalidated. If, and only if, Dcache has been disabled,
then it is re-enabled.

Data writes which could cause the cache operations described include user
accesses using RealView Debugger, downloads, and any software breakpoints
present in the system.

Note
 For the ARM940T core you must configure the Code Sequence... settings in the Debug
tab before attempting to debug with the cache(s) enabled. For more specific information
on target connection using RealView Debugger, see the RealView Debugger Target
Configuration Guide.

When the cache is enabled, the speed of semihosting decreases.
5-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
5.5 Debugging applications in ROM

This section describes some of the issues involved with debugging applications in ROM
using RealView ICE:

• Debugging from reset

• Debugging systems with ROM at the exception vector on page 5-17.

5.5.1 Debugging from reset

You can use the RealView ICE software to debug systems running in ROM. Typically,
when target hardware has an application stored in ROM, and is powered up, it begins
running the application. Therefore, when the debugger is started up on the host, the
processor on the target is stopped. At this stage, the application can be at any point in
its execution lifetime, depending on when the debugger was started.

This means that you can examine the state of the system and restart execution from the
current place. In some cases, this is sufficient. However, in many cases it is preferable
to restart execution of the application as if from power-on. There are two ways to do
this:

• Simulating a reset on page 5-16

• Carrying out a real reset on page 5-16.

When you debug code that is running from ROM, you must ensure that at least one
breakpoint unit remains available so that you can set breakpoints on code in ROM,
because you cannot use software breakpoints for this purpose. On a processor without
vector catch hardware, you must disable semihosting and vector catching as soon as
possible after starting up the debugger. This can reduce the chances of the debugger
taking these units for its own use.

You must set up any ROM breakpoints before any non-ROM breakpoints are set, so that
the breakpoint units do not become full before you attempt to set the ROM breakpoint.

Another factor in debugging a system in ROM is that the ROM image does not contain
any debug information. When debugging using the RealView ICE software, symbol or
source code information is available by loading the relevant information into the
debugger from a file on the host. For example, in RealView Debugger:

1. Open the Load File to Target dialog box.

2. Locate the ROM image.

3. Select Symbols Only.

4. Click Open. The Load File to Target dialog box closes.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-15

Debugging with RealView ICE
Simulating a reset

You can, where supported, simulate a reset from within the debugger by setting:

• the pc to the address of the reset vector

• the CPSR to change into Supervisor mode with interrupts disabled.

This simulates the state of the ARM processor at power-on or reset, but it does not
perform post-reset tasks such as resetting the memory map, or initializing any
target-specific features such as peripheral registers. It is recommended that you modify
these target-specific features to resemble their startup state before executing the
application again, if possible. You can automate this procedure using the scripting
facilities of RealView Debugger.

Control register reset

Where supported, some cores, particularly CoreSight ones such as the Cortex-M3,
include a reset register that can reset the core without using the physical reset lines. In
a multi-core system, this can be used to reset only the target core and not the complete
system. This type of reset can be selected by setting the reset type to Ctrl_Reg.

Carrying out a real reset

Depending on the design of the reset circuitry, you might be able to carry out a real reset
of the board. Two forms of reset are required on the board:

• a full power-on reset that resets everything on the board

• a Reset button that resets everything on the board except the EmbeddedICE logic.

Note
 The Reset button mentioned here must not be confused with the RST button located on
the RVI unit itself, as described in The RealView ICE run control unit on page 1-8.

If your target implements a Reset button that drives nTRST in addition to nSRST, then
the EmbeddedICE logic is reset along with the board, and the debugger might not be
able to regain synchronization. This design is not recommended. See Chapter 9 System
Design Guidelines for more information about the different forms of reset.

If a vector catch is set on the reset vector (or on the start address of the reset code) and
the recommended reset circuit is used, when the target is reset, it halts on reset as
required.

The ARM Integrator™ boards implement the required two levels of reset. The reset
switch carries out the required initialization reset, therefore enabling debug from reset.
All that is required is to set the hardware breakpoint, and then press the Reset button.
5-16 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Debugging with RealView ICE
5.5.2 Debugging systems with ROM at the exception vector

When debugging processors without vector catch hardware and with ROM rather than
RAM at the exception vector, you must disable vector catching. This prevents RealView
ICE from trying to set software breakpoints on the vector table.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 5-17

Debugging with RealView ICE
5-18 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 6
Using RealView Trace

This chapter describes RealView® Trace v1.0 and tells you how to connect the parts of
RealView Trace and RealView ICE together. It also tells you where to find information
on using RealView Trace with RealView Debugger. It contains the following sections:

• About RealView Trace on page 6-2

• System requirements on page 6-5

• Installing RealView Trace on page 6-6

• Connecting the RealView Trace hardware on page 6-7

• Configuring RealView Debugger for trace capture on page 6-11.

Note
 RealView Trace is only available for Windows platforms.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-1

Using RealView Trace
6.1 About RealView Trace

The RealView Trace data capture unit works in conjunction with the ARM® RealView
ICE run control unit. Together, they provide real-time trace functionality for software
running in leading edge System-on-Chip (SoC) devices with deeply embedded cores
that contain the Embedded Trace Macrocell (ETM) logic.

RealView Trace forms one component in the ARM real-time trace debugging system,
together with RealView ICE and RealView Debugger.

A typical system is shown in Figure 6-1.

Figure 6-1 Trace system

RealView Trace has the following features:

• It passively collects information from an ARM architecture-based SoC containing
an ETM. The ETM monitors the ARM instruction and data buses at full core
speeds.

• It collects trace information at clock speeds of up to 250MHz.

• Uploading to RealView Debugger uses Ethernet 10/100baseT or USB.

• Data port widths of 4, 8, 16, and 32 bits are supported.

• It supports a half rate trace clock that captures data on both the rising and falling
clock edges.

• The SoC voltage can be in the range of 0.9-5V.

• Trace information can be time stamped to a resolution of 10ns.

�����������
���� �!��

�����"� �
 �!��

����
 �!��

#
��$��	�%
�����	�
��&�!$%%��

���� ���

��������'���

�����	�

�
�

�����	�

��� �
6-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Using RealView Trace
6.1.1 The RealView Trace product

The RealView Trace product comprises:

• the RealView Trace data capture unit, shown in Figure 6-2.

Figure 6-2 The RealView Trace data capture unit

• a cable to connect the run control unit to a trace port

• a printed copy of this User Guide.

6.1.2 Front panel layout

The layout of the RealView Trace front panel is shown in Figure 6-3.

Figure 6-3 RealView Trace panel layout

See Appendix C RealView Trace Interface Connections for a detailed description of the
interface connections.

����
����

��������������	������
��������
�

���

��	��
��'�

	�'���3�

��� �	,�
'��,

'��,

'�

0���

�����
���

�-�������
&(�������

���
'��..��
���(�

'��..��
�(��(� ����

���

0(44
���

'����
���

'��..��
���

5$�3�!�'����
���&��
�������� #6�3�!���.��

���(��
��������
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-3

Using RealView Trace
Note
 The Trigger input, Trigger output and Logic connectors are not supported by RealView
ICE v3.1.

6.1.3 Capture rates

The ETM on the target board can output 4, 8, or 16 trace data bits. Half-rate clocking
enables data to be output from the ETM on both edges of TRACECLK. This effectively
halves the clock frequency.

Packing modes enable 2 or 4 consecutive trace samples to be written to the same
memory location within RealView Trace. This increases the trace depth. It has the
disadvantage of coarser time-stamping. Time-stamping can be disabled completely to
increase trace depth even more. The system has the capability to set the port width
automatically from the Configure ETM dialog box in RealView Debugger.

Half rate clocking and packing mode facilities provide correct operation at
TRACECLK frequencies above 150MHz. Below 150MHz, the RealView Trace
system operates without these facilities. With these facilities enabled, TRACECLK
speeds of up to 250MHz are supported.

6.1.4 Availability and compatibility

RealView Trace is available from ARM Limited and its resellers. Contact ARM Limited
directly regarding OEM licenses.

Debugger

RealView Trace can only be used with RVDS and RealView ICE.

Target board

The target board must have a device with any of the ARM-processor family, and an
ETM (v1.x, v2.x, v3.0, v3.1, v3.2 and v3.3). The board connects to the RealView Trace
unit using the connector described in Appendix C RealView Trace Interface
Connections.
6-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Using RealView Trace
6.2 System requirements

This section describes the hardware and software requirements of RealView Trace:

• Host software requirements

• Host hardware requirements

• Target hardware requirements.

6.2.1 Host software requirements

The software component of RealView Trace is supplied with RealView ICE. RVDS is
required to use RealView Trace.

Note
 RealView Trace is only available for Windows platforms.

6.2.2 Host hardware requirements

To run RealView Trace, you must have a PC running RealView Debugger and RealView
ICE, a RealView ICE run control unit, a RealView Trace data capture unit, and a
network card if you are connecting using TCP/IP.

6.2.3 Target hardware requirements

RealView Trace supports processors containing any of the ARM processor family, and
ETM v1.x, v2.x, v3.0, v3.1, v3.2 and v3.3. The board containing the processor must
have a trace port connector.

Note
 RealView ICE supports systems with multiple trace sources. In such systems, however,
you can configure only one source to output trace during the lifetime of the debug
session. For information on how to configure the trace source, see the Application Note
that accompanies this release.

Caution
 Target hardware running at high frequencies and not following the design guidelines
specified in Appendix D Designing the Target Board for Tracing might exhibit
irregularities in the trace data. Typical symptoms of this are missed triggers, trace data
synchronization failures, and memory access failures. Ensure that your target hardware
is capable of running at the selected frequency.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-5

Using RealView Trace
6.3 Installing RealView Trace

The RealView Trace software is automatically installed with the RealView ICE
installation. If you are already using RealView ICE when you purchase RealView Trace,
you receive a RealView ICE Update application along with the RealView Trace data
capture unit. See Chapter 7 Managing the RealView ICE Software for information on
installing the update.
6-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Using RealView Trace
6.4 Connecting the RealView Trace hardware

This section explains how to set up the hardware for RealView Trace.

6.4.1 What you require

To set up the hardware, you require the following from the RealView Trace product kit:

• The RealView Trace data capture unit, shown in The RealView Trace data capture
unit on page 6-3.

• Eight plastic spacers (four 16mm and four 8mm), supplied with the RealView
Trace data capture unit.

• The 60-way interface cable (a flat ribbon cable with a square Insulation
Displacement Connector (IDC) socket at each end).

• The trace probe. This is a small PCB that contains the interface circuits that buffer
the signals between the target board and the interface cable.

• A power supply unit is not supplied, because the RealView Trace unit is powered
by the RealView ICE unit.

You must also provide some target hardware containing a device supported by
RealView Trace (see Target hardware requirements on page 6-5).

6.4.2 Connection instructions

Before updating the software, you must connect up the RealView ICE and RealView
Trace hardware. To do this:

1. Ensure that the RealView ICE unit is disconnected from the power supply and
from the target board.

Warning
 Failure to remove the power from the RealView ICE unit before connecting it to

the RealView Trace unit can cause damage to the hardware and/or personal injury.

2. Remove the plastic ventilation grill from the top of the RealView ICE unit by
unclipping it.

3. Screw the four 16mm plastic spacers onto the four 8mm plastic spacers exposed
inside the RealView ICE unit, as shown in Figure 6-4 on page 6-8.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-7

Using RealView Trace
Figure 6-4 Positioning of 16mm plastic spacers

4. Using the four lengthened threaded inserts as guides, plug the RealView Trace
unit into the RealView ICE unit. Apply downward pressure directly above the two
connectors to ensure a positive fit.

5. Screw the four 8mm plastic spacers onto the four threaded inserts exposed
through the PCB inside the RealView Trace unit. This fastens the two units
together, making the assembly safe for transportation. Figure 6-5 shows a profile
view of the connected units.

Figure 6-5 Profile view of connected units

����
����

��������������	������������
�

���

�����	�
��
��#
�

�����	�
���� ��#
�

())�*'� ��

+,))�*'� ��

())�*'� ��

�����	�
��
���$�� �������$�	�

�����	�
���� ���$�� �������$�	�
6-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Using RealView Trace
6. Clip the plastic ventilation grill that you removed from the RealView ICE unit
onto the top of the RealView Trace unit.

7. Connect one end of the interface cable to the RealView Trace connector, and the
other end of the cable to the trace probe.

8. Connect one end of the JTAG cable or LVDS probe to the respective JTAG socket
on the RealView ICE run control unit. Connect the other end to the 20-way JTAG
header on the target hardware.

If your target board does not have separate trace and RealView ICE sockets, use
the RealView ICE socket on the trace probe as shown in Figure 6-6.

Figure 6-6 RealView ICE connector on probe

9. Plug the trace probe into the trace connector on the target board.

10. Connect the RealView ICE unit to a network shared by a PC running RealView
Debugger.

11. Power up the RealView ICE unit and the target board. The RealView Trace unit
is powered from the RealView ICE unit, and does not require a separate power
supply.

Warning
 Do not obstruct the ventilation grills on the top of the RealView Trace unit or the bottom
of the RealView ICE unit, because doing so causes the units to overheat.

Figure 6-7 on page 6-10 shows a typical system.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-9

Using RealView Trace

%

Figure 6-7 RealView Trace connections using an Ethernet cable

Note
 You can also use the following alternative connections:

• use a USB cable to connect the RealView ICE run control unit directly to your
host workstation

• connect one end of the JTAG cable or LVDS probe to the trace probe JTAG
socket.

-�*��
��.*���	����$��	�
�����	�
�&�!$%%��

���%���!���/

+���*��
��������� �!���"��)
�����	�
��
�
���0� ��������1��
��.

����� �!��

�����	�
��
�
�$�� �������$�	�

�����	�
���� �
�$�� �������$�	�

�����"� �� �!��

&
�'�
��� �!���"��)
�����	�
��
�
$�	�����2��#��

������&
�*� .��

��� ���	 ����*� .��

����
����

��������������	������
��������
�

���

��� ��'��!�

1��
��.
 �!��

0� ��������1��
��.
6-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Using RealView Trace
6.5 Configuring RealView Debugger for trace capture

When you have installed RealView ICE and RealView Trace, connected up the
hardware, and configured RealView ICE, you must configure RealView Debugger to
use RealView Trace.

For full details on how to capture trace with RealView Debugger, see the RealView
Debugger Trace User Guide.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 6-11

Using RealView Trace
6-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 7
Managing the RealView ICE Software

This chapter tells you how to manage and update the software that is installed on the
RealView® ICE run control unit, using the RealView ICE Update (RVI Update)
application. It contains the following sections:

• Starting the RVI Update application on page 7-2

• Connecting to a RealView ICE unit on page 7-3

• Viewing software version numbers on page 7-8

• Installing an update or patch on page 7-10

• Restarting the RealView ICE run control unit on page 7-16.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-1

Managing the RealView ICE Software
7.1 Starting the RVI Update application

To start the RVI Update application:

• On Windows, select Start → Programs → ARM → RealView ICE v3.1 →
RealView ICE Update.

Note
 If you are using the default Windows XP settings, select All Programs.

• On Red Hat Linux, select the appropriate shortcut. This depends on the version of
Red Hat Linux and the desktop environment that you are using. If no desktop
shortcut is available, enter the command rviupdate at the command line.

The RVI Update application is displayed, as shown in Figure 7-1.

Figure 7-1 RVI Update application

Note
 Prior to proceeding any further, you must ensure that you are using release v1.5 (or
above) of the software. Using an earlier version might result in an error message
appearing, as described in Procedure for installing an update or patch on page 7-10.
7-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
7.2 Connecting to a RealView ICE unit

This section describes the RVI Update features available for connecting to a RealView
ICE unit. It includes:

• Scanning for RealView ICE units

• Identifying your RealView ICE unit on page 7-4

• Viewing the installed components on page 7-5

• RVI Update tasks on page 7-5

• Disconnecting from the RealView ICE unit on page 7-5

• Exiting the RVI Update application on page 7-5

• Troubleshooting RealView ICE connections on page 7-6.

7.2.1 Scanning for RealView ICE units

When you start RVI Update, it scans for run control units that are connected to your
local network. The Scan button becomes animated to indicate that a scan is in process.
When RealView ICE finds a unit, it adds it to the list of available units, as shown in
Figure 7-2.

Figure 7-2 RVI Update application showing available units

If you want to stop scanning, click Scan. You can click Scan again at any time to force
a rescan for available RealView ICE units and update the list.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-3

Managing the RealView ICE Software
The devices found are listed in the RealView ICE browser on the right of the dialog box.
Select the unit you want to connect to and click Connect. Alternatively, do one of the
following:

• double-click on the unit you want to connect to

• enter either the IP address or host name of the device you want to connect to in
the IP Address/Host Name field and click Connect.

If you have problems connecting to a RealView ICE unit, see Troubleshooting RealView
ICE connections on page 7-6.

7.2.2 Identifying your RealView ICE unit

If you want to be certain that you are connecting to the correct run control unit, select
an entry in the list, and click Identify:

• If the four LEDs JTAG, STAT, CFAC and LVDS on your interface (shown in
Figure 7-3) flash for 5 seconds, you have selected its entry.

Figure 7-3 The identification LEDs

• Otherwise, select another entry and try again.

Note
 For TCP/IP connections, devices shown in light gray are those that have responded to
browse requests but do not have a valid IP address. You cannot connect to these devices
until you have configured the IP address. See Chapter 3 Configuring RealView ICE
Networking for information on how to do this.

Alternatively, connect using a USB cable.

+'�,��+'�,

�'�'

	�'��

	�

��� +'�,��
0�

����

�2����/������������

�2����/������������
7-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
7.2.3 Viewing the installed components

When a connection has been established, the RVI Update application displays the
components that are currently installed, as shown in Figure 7-4.

Figure 7-4 RVI Update application showing installed components

7.2.4 RVI Update tasks

When you are connected to a RealView ICE unit, you can use RVI Update to perform
the tasks described in the following sections:

• Viewing software version numbers on page 7-8

• Installing an update or patch on page 7-10.

7.2.5 Disconnecting from the RealView ICE unit

When you have finished managing the RealView ICE software, click Disconnect in the
RVI Update application to disconnect from the RealView ICE unit. You can then
connect to and manage the software on another RealView ICE run control unit if
required.

7.2.6 Exiting the RVI Update application

When you have finished managing the software on all RealView ICE run control units,
select Exit from the File menu in the RVI Update application. This disconnects from
any connected unit, and then exits the RVI Update application.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-5

Managing the RealView ICE Software
7.2.7 Troubleshooting RealView ICE connections

This section describes problems you might encounter when attempting to connect to a
RealView ICE unit, and what you can do to solve them:

Multiple programs attempting to scan

Only one program can scan the TCP/IP network for available RealView
ICE units. If another program is scanning the network, the RVI Update
application displays the error message shown in Figure 7-5.

Figure 7-5 Error message when another program is browsing

You must stop one of the programs from scanning the network. To do this,
click the Scan tool.

USB server not accessible

If the USB server is not accessible, the error message shown in Figure 7-6
appears:

Figure 7-6 Error message when no USB devices present

This indicates a problem with your RealView ICE installation. Click OK.
If you do not want to connect to any devices over a USB connection, you
can continue using RealView ICE over only TCP/IP connections. If you
want to connect to a device using USB, you must reinstall RealView ICE.
If the error persists, there might be a problem with your operating system.

Timeouts

The default timeout for establishing a TCP/IP connection is 5 seconds. If
you repeatedly get timeouts when attempting to connect to a RealView
ICE run control unit, you can change this setting. To do this:

1. If the environment variable RVI_COMMS_CONNECT_TIMEOUT does not
already exist, then create it.

2. Set the value of this variable to the timeout that you want, in
seconds. This must be an integer in the range 0-120.
7-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
For details of how to create and set an environment variable, see the
documentation for the operating system that is supplied with your host
computer.

Other active connections

If you connect to a RealView ICE run control unit that has other active
connections, the RVI Update application displays the error message
shown in Figure 7-7.

Figure 7-7 Error when other connections are active

If you continue, the changes that you make might interfere with the
correct operation of these applications. Do one of the following:

• ensure that the other applications are disconnected, and then click
Yes to continue using the RVI Update application

• click No to stop using the RVI Update application, and try again
later.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-7

Managing the RealView ICE Software
7.3 Viewing software version numbers

To view software version numbers, select Version Info... from the RVI menu in the RVI
Update application. The RVI Update dialog box displays a window giving version
information. An example is shown in Figure 7-8.

Figure 7-8 Version information

7.3.1 Version information dialog box components

In this dialog box:

• The text above the scrolling list shows the version number of the software release
that is installed, in the format:

This is release version number major.minor.patch

where:

major is the major release version number

minor is the minor release version number

patch is the patch level of the major.minor version.

• The scrolling list shows the version number of each component of the installed
software.

• The Log... button enables you to save the version information (see Saving the
version information to a file).

7.3.2 Saving the version information to a file

To save the information in the RVI Update dialog box to a file:

1. Click Log. The Select Log File Name dialog box is displayed.

2. Choose the location of the log file.
7-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
3. Click Save to save the log file.

4. Click OK to close the RVI Update version information dialog box.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-9

Managing the RealView ICE Software
7.4 Installing an update or patch

ARM® Limited periodically releases updates and patches to the software that is installed
on a RealView ICE run control unit. Each update or patch is released as a component
file with the suffix .rvi. These might extend the capabilities of RealView ICE, or might
fix an issue that has become apparent. You can obtain these files from the ARM website
at http://www.arm.com.

If you want to restore the RealView ICE firmware to its original state after installing an
upgrade, you can reinstall the original component file. You can obtain this from the
ARM website, and you can also find it on the installation CD, located in the directory
RVIfirmware.

This section includes:

• Procedure for installing an update or patch

• Troubleshooting firmware upgrade installations on page 7-14.

7.4.1 Procedure for installing an update or patch

To install an update or patch to the software on a RealView ICE run control unit:

1. In the RVI Update application, select Install Firmware Update from the RVI
menu, or click the Install Firmware tool. The Select Component File to Install
dialog box is displayed, as shown in Figure 7-9.

Figure 7-9 Selecting the component file to install

2. In this dialog box, navigate to the directory containing the component file for the
update or patch that you want to install, and select the required file.
7-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
3. Click Open. After a short delay, a dialog box appears that describes what is in the
component file, as shown in Figure 7-10.

Figure 7-10 Confirming that you want to install the component file

If you are using an older version of RVI Update (for example, a pre-v1.5 release)
when attempting to install an update file, an error message appears as shown in
Figure 7-11. Before proceeding with your intended installation, you must
upgrade your RVI Update application to the latest software.

Figure 7-11 Error message

Similarly, if you are using a version of hardware that is incompatible with the
firmware you are attempting to install, an error message similar to the one shown
in Figure 7-12 on page 7-12 appears.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-11

Managing the RealView ICE Software
Figure 7-12 Error when using an incompatible version of hardware

Note
 For more information on hardware, see Appendix E Hardware Variants.

4. In the Install update dialog box, click Continue to confirm that you want to install
the components, or Cancel to make no change to the run control unit. The
RVI Update application then uploads the component file to the run control unit.
The run control unit unpacks the component file, and installs the update or patch
that it contains. The dialog box shown in Figure 7-13 appears, showing the
progress of the installation.

Figure 7-13 Progress during an installation

The run control unit might automatically reboot itself as part of this procedure,
depending on the patch or update that you are installing. The dialog box shown in
Figure 7-14 appears, showing the progress of the reboot.

Figure 7-14 Progress when rebooting during an installation

During the installation process, the CFAC LED lights up, showing that CFAC
activity is taking place. During this time, do not disconnect power from the run
control unit. If a problem occurs during the installation, see Troubleshooting
firmware upgrade installations on page 7-14.
7-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
Note
 While an installation is taking place (see Figure 7-13 on page 7-12), the Abort

button is enabled. This means that you can safely stop the installation from
proceeding by clicking this button. If the Abort button is not enabled, for example
during rebooting (see Figure 7-14 on page 7-12), you cannot stop the reboot.

When the installation is complete, a message appears to inform you of this, as
shown in Figure 7-15.

Figure 7-15 Message showing a successful installation

7.4.2 Procedure for upgrading the LVDS probe

You can also use the RVI Update application to install an upgrade to your LVDS probe,
as it allows you to perform a once-only upgrade that is required if your LVDS probe was
released with RealView ICE v3.0, as this type of probe is not SWD-capable. This
upgrade procedure is only necessary if you want to make use of the Serial Wire Debug
(SWD) facility.

To upgrade your LVDS probe:

1. In the RVI Update application, select Upgrade LVDS Probe... from the RVI
menu.

2. You are prompted to confirm your wish to upgrade the probe. Select Yes, and the
RVI Update application begins the update process, during which you are
reminded not to disconnect the probe, nor to power off your RealView ICE unit,
until the process is completed. This is shown in Figure 7-16.

Figure 7-16 Progress during probe update

Note
 You can only perform the upgrade if you have the v3.1 firmware installed, and if

not then you must first perform a v3.1 firmware upgrade.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-13

Managing the RealView ICE Software
You must also be using an LVDS probe which is at least at v3.0, and to determine
the type of probe that you are using, see Appendix E Hardware Variants.

If your probe is not SWD-compatible, you must replace it with the lead-free type.
If so, please contact ARM Limited for more information.

7.4.3 Troubleshooting firmware upgrade installations

There are two main types of error that might occur during installation of a patch:

• Version problems

• Errors during file operation on the host on page 7-15.

Version problems

A patch targets a particular major.minor release version of the software. It might contain:

• new components that are not in the targeted software

• updates to components that are already in the targeted software.

If there is a problem installing a patch, a dialog box appears to inform you of the
problem:

• If the patch targets a version of the software that is not installed, the dialog box
shown in Figure 7-17 appears. In this case the patch is not installed, and the
software on the run control unit remains unchanged. Make sure that you have the
patch for the version of the firmware that you have installed (see Viewing software
version numbers on page 7-8).

Figure 7-17 Error when installing a patch to uninstalled software

• If the patch does not contain any new or updated components (typically because
a later patch has already been installed), the dialog box shown in Figure 7-18 on
page 7-15 appears.
7-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Managing the RealView ICE Software
Figure 7-18 Message when installing a patch that has no new components

If you see one of these dialog boxes, click OK.

Errors during file operation on the host

If an error occurs during file operation on the host, a dialog box appears to inform you
of the problem:

• If the error occurs before any data has been written to the compact flash, the
dialog box shown in Figure 7-19 appears.

Figure 7-19 Error before data has been written to compact flash

Click OK and begin the installation again.

• If some data has already been written to the compact flash when the error occurs,
the RealView ICE run control unit must reboot to clean up the failed installation
and revert to the backed up state. The dialog box shown in Figure 7-20 appears.

Figure 7-20 Error during writing to compact flash

Click OK. The RealView ICE run control unit reboots. You can then begin the
installation again.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 7-15

Managing the RealView ICE Software
7.5 Restarting the RealView ICE run control unit

To restart the RealView ICE run control unit, select Restart from the RVI menu.
RealView ICE Update reboots the run control unit, waits for the reboot to finish, then
reconnects automatically. A message is displayed telling you that RealView ICE is
rebooting.

If you do not want to reconnect, click Disconnect. The browser pane is displayed and
you can connect to a different RealView ICE unit if required.
7-16 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 8
Configuring RealView ICE for GDB

This chapter describes the basic steps required to configure the RealView® ICE unit to
a state where you can begin debugging your image using the GNU Debugger (GDB). It
includes:

• About using RealView ICE for debugging with GDB on page 8-2

• Methods of connecting from remote GDB sessions on page 8-5

• Preparing RealView ICE for remote GDB connections on page 8-16

• Loading and booting a complete system on page 8-20

• Multiprocessor debugging with GDB and RealView ICE on page 8-22

• The Eclipse Plug-in on page 8-23
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-1

Configuring RealView ICE for GDB
8.1 About using RealView ICE for debugging with GDB

RealView ICE provides functionality that extends the debugging features available in
GDB. This section includes:

• Features supported when debugging with GDB

• Features not supported when debugging with GDB on page 8-3

• RealView ICE TCP/IP ports used on page 8-3

• Building for standalone target platforms on page 8-3.

Note
 To find the latest information on GNU Debugger (GDB) compatibility with RealView
ICE v3.1, see the ARM RealView ICE v3.1 Release Notes.

For information on GDB and Command Monitor error codes, see the ARM website.

8.1.1 Features supported when debugging with GDB

RealView ICE supports connections from remote GDB sessions over TCP/IP. These
GDB connections support all non-OS specific functionality, including:

• full memory and register access

• run and stop

• software and hardware breakpoints and watchpoints

• target reset (restart)

• binary program downloading

• step-over-range

• single stepping.

Debugging modes

You can use the following debugging modes with GDB:

• Halt-mode debugging, where the target stops while you examine it.

• Monitor-mode debugging, where the target continually runs under control of
monitor software on the target. GDB communicates with the monitor using
Virtual Ethernet/TTY connections via the Debug Communications Channel
(DCC). See DCC modes on page 8-17.

See Methods of connecting from remote GDB sessions on page 8-5 for details of the
connection methods you can use with these modes.
8-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.1.2 Features not supported when debugging with GDB

When using GDB, RealView ICE does not provide support for:

• threads (in start-stop debugging)

• debugging over the RealView ICE USB port

• synchronized start/step on multi-core systems.

8.1.3 RealView ICE TCP/IP ports used

To use the RealView ICE Command Monitor and debug your target with GDB,
RealView ICE uses the TCP/IP ports described in Table 8-1.

8.1.4 Building for standalone target platforms

If you are building for a standalone target platform (that is, without an operating
system), the precompiled C library of the GNU toolchain for ARM architectures
assumes that a debug monitor is resident in ROM.

If you are not using a debug monitor, Red Hat eCos/Redboot, or any other operating
system, you must provide the following components:

• Your own I/O routines and optionally a target GDB stub.

• The crt0.S source file, which is mandatory. This source file provides the C startup
procedure that is responsible for setting up the stack and heap, and for initializing
C static and global variables.

Table 8-1 RealView ICE TCP/IP ports

Port Description

4000
series

The port range used (in a one-up series) to connect to a target from GDB, and
to perform halt-mode debugging (see Halt-mode debugging on page 8-5).

5000
series

The port range used (in a one-up series) for Monitor-mode debugging and
other Virtual Ethernet/TTY mode connections (see Monitor-mode
debugging on page 8-6, and How connections to multiple processors are
allocated on page 8-22).

Note
 To use these ports you must set the DCC mode to a non-zero value (see DCC
modes on page 8-17).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-3

Configuring RealView ICE for GDB
Note
 If you are using a debug monitor, Red Hat eCos/Redboot or other operating system, you
must provide at least these components and possibly a gdbserver.

Documentation on how to do this is readily available from the Internet.
8-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.2 Methods of connecting from remote GDB sessions

The method you use to connect to a target depends on:

• the resources required by the target application (for example, an IP stack)

• the debugging facilities available on the target (for example, a GDB stub)

• whether or not your target has an embedded OS, such as Linux, that is running
gdbserver instances.

This section includes:

• Summary of the connection methods for each debugging mode

• Connections to a target without built-in GDB support (RVI-GDB) on page 8-7

• Connections to a target with a GDB stub (Target-GDB) on page 8-9

• Connections to a target GDB stub using Virtual Ethernet/TTY mode
(Target-GDB-Virtual Ethernet) on page 8-11

• Connections to a target OS using gdbserver (GDBserver) on page 8-12

• Connections to a target OS using NFS (GDB-NFS) on page 8-14.

8.2.1 Summary of the connection methods for each debugging mode

How you connect to a target determines the debugging mode. The following sections
describe the connection methods for each debugging mode.

Halt-mode debugging

Halt-mode debugging is the simplest method of debugging a target with GDB. You
directly connect to RealView ICE, which then controls the starting and stopping of the
processor. This method of connecting is subsequently referred to as an RVI-GDB
connection.

See Connections to a target without built-in GDB support (RVI-GDB) on page 8-7 for
more details.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-5

Configuring RealView ICE for GDB
Monitor-mode debugging

Monitor-mode debugging requires that your target application communicate with GDB
using the Debug Communications Channel (DCC) of an ARM architecture-based
processor. However, if your target application includes an Ethernet facility, you do not
have to use DCC. Different DCC modes are available depending on the requirements of
your target (see DCC modes on page 8-17 for more details).

The connection methods for Monitor-mode debugging are:

Target-GDB connections

Semi-transparent connections to GDB stubs. The GDB stubs run on
individual CPU targets and communicate through the DCC of the target.
The GDB stub must be compiled into the target application. See
Connections to a target with a GDB stub (Target-GDB) on page 8-9 for
more details.

Target-GDB-Virtual Ethernet connections

An extension to Target-GDB connections for standalone applications
running an IP stack. The TCP/IP connections are bridged by the
RealView ICE unit from the target through DCC to the Ethernet port of
the RealView ICE unit. See Connections to a target GDB stub using
Virtual Ethernet/TTY mode (Target-GDB-Virtual Ethernet) on page 8-11
for more details.

GDBserver connections

An alternative to Target-GDB-Virtual Ethernet connections where the
target is running gdbserver running under an operating system (OS). See
Connections to a target OS using gdbserver (GDBserver) on page 8-12
for more details.

GDB-NFS connections

Connections to the root filesystem on the target OS that is mounted over
NFS. The RealView ICE unit acts as a bridge between the debug host and
the target OS. See Connections to a target OS using NFS (GDB-NFS) on
page 8-14 for more details.
8-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.2.2 Connections to a target without built-in GDB support (RVI-GDB)

These are connections to targets where no GDB stub has been built into the target
application, or when you want to perform halt-mode debugging. Connections of this
type use the built-in GDB protocol interpreter of RealView ICE to control the CPU
directly, and are referred to as RVI-GDB connections. When you want to examine the
internal state of the CPU (such as registers, memory, and variables), the image on the
target stops executing. After examining the required state, you must start the image
again. Figure 8-1 shows the configuration.

Note
 Because this method does not use the DCC semihosting mechanism, any prompts and
messages that are output by the application cannot be displayed.

Figure 8-1 RVI-GDB connections

RVI-GDB Scenarios

Use the RVI-GDB connection method to:

• perform run and stop debugging of a single ARM processor

• perform run and stop debugging with GDB at the same time as debugging the
application using the methods described in Connections to a target with a GDB
stub (Target-GDB) on page 8-9 and Connections to a target GDB stub using
Virtual Ethernet/TTY mode (Target-GDB-Virtual Ethernet) on page 8-11.

Note
 When the image stops, so does the handling of interrupt routines, which might not
always be desirable when debugging a real-time system.

�&��'���� �� ����
�$�� ������

����$'�����
* ��� ��	�

�&�

������
��"	%$���	��
�� ���	*)

���%��
�����	�
��
��$�	�

&�!$%���*�

�''�	 ��	���&��'���� ��
	����'�����

3���4�3��+4��� 5
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-7

Configuring RealView ICE for GDB
RVI-GDB Requirements

To use the RVI-GDB connection method, it is recommended that you compile your
target application using a GNU toolchain for ARM architectures (see The GNU
toolchain for ARM architectures on page 1-12).

Procedure for debugging applications through RVI-GDB connections

If your application does not have GDB support linked-in, you can use the GDB protocol
built into the RealView ICE unit to debug your application. However, this controls the
CPU directly, and the CPU stops whenever you want to examine its internal state.

To debug an application through an RVI-GDB connection:

1. Power up your target hardware and RealView ICE unit.

2. Configure the core using rvconfig, using either automatic or manual
configuration. Save the rvc file in a convenient location.

3. Run rvigdbconfig, specifying the rvc file that was created in step 2:
rvigdbconfig –f rvi.rvc

4. Start GDB, load the symbols if required, and connect to the first core (using port
4000 of RealView ICE in this example):

arm-elf-gdb
(gdb) file demo.elf
(gdb) target remote rvi5:4000
Remote debugging using rvi5:4000
0x00000000 in $a ()
(gdb)

GDB is now connected to the core, and an image can be loaded and debugged.

For information on connecting to more than one core, see Multicore debugging
on page 8-16.

Note
 To load and boot a complete system, use the rviload utility (see Loading and

booting a complete system on page 8-20).

5. Set up any breakpoints or other debugging features, then run the application.
Debug your application in the usual way.
8-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.2.3 Connections to a target with a GDB stub (Target-GDB)

These are connections to a target that is running an application with a GDB stub, and
are referred to as Target-GDB connections. The GDB stub enables the target application
to communicate with a host application through RealView ICE, using the DCC of an
ARM architecture-based processor. The DCC carries the GDB protocol packets
between the target and the remote GDB session over the TCP/IP ports 5000, 5001,... as
shown in Figure 8-2. See also RealView ICE TCP/IP ports used on page 8-3.

Figure 8-2 Target-GDB connections

Target-GDB Scenarios

Use the Target-GDB connection method to:

• debug a target system that does not have an OS

• debug a target system with an OS that supports GDB.

Target-GDB Requirements

To use the Target-GDB connection method, it is recommended that you compile the
DCC driver and GDB stub into your target application using a GNU toolchain for ARM
architectures (see The GNU toolchain for ARM architectures on page 1-12). You can
either:

• link the example GDB stub into your target application or operating system

• port your existing serial GDB stub to use the DCC driver.

Note
 On the GDB connection to the target, it is recommended that you enable DCC and
Virtual Ethernet/TTY mode before starting the processor (see Setting DCC parameters
on page 8-18).

������
����	����6����#� &

�&�

��"	%$���	��
�� ���	*)

���%��
�����	�
��
��$�	�

&�!$%���*�

�	��$�����7 �''�	 ��	��

�&��*�$!

2���4�2��+4��� 5
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-9

Configuring RealView ICE for GDB
Procedure for debugging applications through Target-GDB connections

If your application includes a target-resident GDB stub, it can communicate over DCC.

To debug an application using a Target-GDB connection:

1. Power up your target hardware and RealView ICE unit.

2. Configure the core using rvconfig, using either automatic or manual
configuration. Save the rvc file in a convenient location.

3. Run rvigdbconfig, specifying the rvc file that was created in step 2, and the
appropriate DCC mode, for example mode 2:
rvigdbconfig –f rvi.rvc -d 2:2

4. Start GDB, load the symbols if required, and connect to the second core (for
example) to load and run your application in the usual way. This example uses
port 4001 of RealView ICE:

arm-elf-gdb
(gdb) file demo.elf
(gdb) target remote rvi5:4001
Remote debugging using rvi5:4001
0x00000000 in $a ()
(gdb)
(gdb) load demo.elf
Loading section .vectors, size 0x30 lma 0x0
Loading section .text, size 0x1dbcc lma 0x8000
Loading section .rodata, size 0x1bcb4 lma 0x25bcc
Loading section .data, size 0xc84 lma 0x41980
Start address 0x8000, load size 238900
Transfer rate: 106177 bits/sec, 318 bytes/write.
(gdb)
(gdb) c
Continuing.

5. Start another GDB session to debug the image in the usual way, using (in this
example) port 5001, the first available port of RealView ICE:

(gdb) set remotetimeout 10
(gdb) file myprogram
(gdb) target remote rvi5:5001

See How connections to multiple processors are allocated on page 8-22.

Note
 You only have to perform steps 1 to 3 once at the start. You can perform steps 4 and 5
as often as required.
8-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.2.4 Connections to a target GDB stub using Virtual Ethernet/TTY mode
(Target-GDB-Virtual Ethernet)

If your target application requires TCP/IP communication with the debug host, you can
connect to the target using Virtual Ethernet/TTY mode. Connections of this type are
referred to as Target-GDB-Virtual Ethernet connections. This method is an extension to
that described in Connections to a target with a GDB stub (Target-GDB) on page 8-9,
and is as shown in Figure 8-3. In this method, RealView ICE provides a network
bridging facility to targets, and allows a target with only a JTAG connection to
RealView ICE to have access to the same network resources available to RealView ICE.
This works by intercepting IP packets on the network and examining them, and those
packets that are addressed to the target are then sent over DCC alongside the normal
GDB protocol. A driver is required on the target to interface the DCC channel to the
target’s protocol stack, making the bridged network connection appear as an Ethernet
device on the target. IP is the only network layer protocol supported.

Figure 8-3 Target-GDB-Virtual Ethernet connections

Note
 To reduce the load on the DCC and JTAG connection, broadcast packets are not sent to
the target.

Target-GDB-Virtual Ethernet Scenario

Use the Target-GDB-Virtual Ethernet connection method to communicate with a
standalone application that has a TCP/IP stack. For example, an application might
provide a web server that serves web pages to the host.

��	/%�/���������
��#� &

��#��6���&

�

�&�

��"	%$���	��
�� ���	*)

���%��
�����	�
��
��$�	�

&�!$%���*�

�''�	 ��	��

�&��*�$!

�	��$��
��������
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-11

Configuring RealView ICE for GDB
Target-GDB-Virtual Ethernet Requirements

To use the Target-GDB-Virtual Ethernet connection method:

• It is recommended that you compile the DCC driver and GDB stub into your
target application using a GNU toolchain for ARM architectures (see The GNU
toolchain for ARM architectures on page 1-12).

Note
 On the GDB connection to the target, you must enable DCC and Virtual

Ethernet/TTY mode before starting the processor (see Setting DCC parameters
on page 8-18).

• The target application must be running an TCP/IP stack.

• RealView ICE acts as a network bridge between the target processor and the host
PC using a virtual Ethernet link. The target must have its own IP address that is
either fixed or obtained from a DHCP server, and that appears on the virtual
Ethernet as an independent host.

8.2.5 Connections to a target OS using gdbserver (GDBserver)

If your target application requires TCP/IP communication with the debug host, you
must connect to the target using bridged Ethernet. Connections of this type are referred
to as GDBserver connections. This method is an extension to that described in
Connections to a target with a GDB stub (Target-GDB) on page 8-9, shown in
Figure 8-4. In this method, IP packets can be carried over the same link alongside the
normal GDB protocol.

Figure 8-4 GDBserver connections

��	/%�/���������
��#�

&

��#��6���&

�

�&�

��"	%$���	��
�� ���	*)

���%��
�����	�
��
��$�	�

&�!$%���*�

�	��$��
��������

�''�	 ��	��

�&�*��6��

8�
8-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
GDBserver Scenario

Use the GDBserver connection method to debug an application on a target that has an
embedded OS, such as Linux, that supports independent processes. In this case you can
run GDB server (gdbserver) instances. The GDB server can have TCP/IP connections
to the debug host that is running GDB.

GDBserver Requirements

To use the GDBserver connection method:

• On the GDB connection to the target, you must enable DCC and Virtual
Ethernet/TTY mode before starting the processor (see Setting DCC parameters
on page 8-18).

• The target OS must be running an TCP/IP stack and gdbserver.

• RealView ICE acts as a network bridge between the target processor and the host
PC using a virtual Ethernet link. The target must have its own IP address that is
either fixed or obtained from a DHCP server, and that appears on the virtual
Ethernet as an independent host.

Procedure for debugging an application using a GDBserver connection

If your application uses an IP stack, it can communicate over DCC through a bridged
Ethernet connection.

To debug an application using a GDBserver connection:

1. Power up your target hardware and RealView ICE unit.

2. Download and boot the target using the rviload utility (see Loading and booting
a complete system on page 8-20).

3. When the Linux kernel has finished booting, start the gdbserver as follows:

~ # gdbserver localhost:portnum filename

The TCP/IP port number you specify here is the port number you must use with
the GDB target remote command from subsequent GDB sessions. Also, make
sure the port number is not in use by another service.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-13

Configuring RealView ICE for GDB
8.2.6 Connections to a target OS using NFS (GDB-NFS)

This is useful for developing software on deeply embedded systems, and also for
debugging brand new targets where only the CPU and RAM are initially known to
work. Connections of this type are referred to as GDB-NFS connections. The
GDB-NFS connection method is shown in Figure 8-5.

Figure 8-5 GDB-NFS connections

For example, the minimum I/O support that Linux requires is a system console and a
root file system. You can connect the console to a GDB command-line console and, with
the appropriate driver, you can mount the root file system over NFS with RealView ICE
acting as a bridge. Alternatively, you might have a file system and kernel loaded into
memory and booted, and an NFS file system mounted to be shared later (see Loading
and booting a complete system on page 8-20).

Note
 This network connection is not as fast as an office LAN, because of the limited
bandwidth of DCC.

Procedure for debugging a target using a GDB-NFS connection

If your target has a complete operating system, you can mount a file system over NFS.
In this case, RealView ICE acts as a bridge.

To debug a target using a GDB-NFS connection:

1. Power up your target hardware and RealView ICE unit.

2. Load the Linux kernel and uBoot image using rviload. For example:

RVIv14 Utils> ./rviload --host=rvi5 -j1000000 -mVEC -a0 7fc0:uImage
1000000:u-boot.bin

��	/%�/��������� &

��#��6���&

�

�&�

��"	%$���	��
�� ���	*)

���%��&�!$%���*�

�	��$��
��������

�''�	 ��	��

8�

"	��*�*��)

2���4�2��+4��� 5

�����	�
��
��$�	�

������

������ �6	���/
8-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
Press Return. Messages appear showing u-boot loading and running the Linux
kernel.

3. Mount the directory exported by NFS using the following command:

~ # mount -t nfs -n client_IP_address:/exported_directory /mnt
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-15

Configuring RealView ICE for GDB
8.3 Preparing RealView ICE for remote GDB connections

This section describes how to prepare RealView ICE to accept remote GDB connections
and be able to communicate with a GDB session. It includes:

• About connecting to targets through RealView ICE

• DCC modes on page 8-17.

8.3.1 About connecting to targets through RealView ICE

To connect to a target from GDB, you must configure RealView ICE to recognize your
target devices. You do this by using rvigdbconfig to configure RealView ICE with the
scan chain details. GDB is then connected to the core.

The procedure is:

1. Power up your target hardware and RealView ICE unit.

2. Launch RVConfig, and configure the core by following the steps described in
Opening the RVConfig dialog box — standalone method on page 4-4.

3. Run rvigdbconfig, specifying the appropriate rvc file:

rvigdbconfig –f rvi.rvc

4. Start GDB, load the symbols if required, and connect to the first core (using port
4000 of RealView ICE in this example):

arm-elf-gdb
(gdb) file demo.elf
(gdb) target remote rvi5:4000
Remote debugging using rvi5:4000
0x00000000 in $a ()
(gdb)

GDB is now connected to the core, and an image can be loaded and debugged.

8.3.2 Multicore debugging

In instances of multicore debugging, each device on the scan chain is allocated a GDB
port to connect to the core. Ports are allocated in sequence, starting from port 4000—as
shown, for example, in step 4 of About connecting to targets through RealView ICE.
Port 4000 is connected to the first device in the scan chain, port 4001 to the second
device, and so on.

Synchronized start/step are not supported.
8-16 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.3.3 DCC modes

If your target application communicates using DCC, you must configure the DCC
mode. The DCC modes you can set are:

Mode 1: raw DCC

In this mode, the data is fed over TCP/IP ports 5000, 5001,... . Data is sent
from the host to the target 4 bytes at a time. If fewer than 4 bytes are
available, the data is padded with 0 bytes until it is 4 bytes long. Data
from the target to the host is received 4 bytes at a time, and no padding or
trimming is performed.

Note
 It is recommended that you use the Virtual Ethernet/TTY mode (mode 2).

If the Virtual Ethernet/TTY mode is unsuitable for your application, then
use mode 1 DCC. However, you must also implement a suitable
communications protocol.

Mode 2: Virtual Ethernet/TTY mode

Virtual Ethernet/TTY is used for providing virtual serial and Ethernet
connections to the target.

Virtual Ethernet/TTY mode

Virtual Ethernet/TTY mode is a RealView ICE facility that provides (as far as the debug
host and the target are concerned):

• A virtual Ethernet facility using the DCC channel and a collection of software
tools in RealView ICE and the host PC. It allows TCP/IP to be used to the target
as though the target has an Ethernet port of its own.

• A virtual serial port facility using the DCC channel and a collection of software
tools in RealView ICE and the host PC.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-17

Configuring RealView ICE for GDB
Setting DCC parameters

Ethernet bridging works by examining incoming packets at RealView ICE, then
deciding which are destined for RealView ICE itself and which are destined for the
target. To do this, RealView ICE must know the IP address, subnet mask and default
gateway parameters for the target. These parameters are normally determined through
DHCP, where the target asks for a configuration, and one is supplied by a server over
the network. In this case, RealView ICE is able to intercept the incoming DHCP packet
containing the parameters and configure itself appropriately. It is, however, possible to
configure a target with a static IP address. In this case there is no DHCP transaction to
intercept, and RealView ICE has no way of determining the target configuration. You
must set these parameters in RealView ICE for correct operation.

DCC Ethernet bridging is configured using rvigdbconfig, and you must set the
appropriate parameter when using DCC mode. For example:

rvigdbconfig –f rvi.rvc -d 1:2

sets device 1 (the first device on the scan chain) to DCC mode 2.

Additional devices are configured in a similar way. For example:

rvigdbconfig –f rvi.rvc -d 1:2 -d 2:2

configures devices 1 and 2 to mode 2.

The IP parameters for static IP configurations are set up in the following way:

rvigdbconfig –f rvi.rvc –d 1:2 –s 0:10.0.0.10:255.255.255.0:10.0.0.1

This configures device 1 to use DCC mode 2 with IP address 10.0.0.10, subnet mask
255.255.255.0, and default gateway 10.0.0.1. This format can be used to configure
multiple cores if required. For example:

rvigdbconfig –f rvi.rvc –d 1:2 –d 2:2 –s 0:10.0.0.10:255.255.255.0: 10.0.0.1 –s
1:10.0.0.11:255.255.255.0:10.0.0.1

For more details on communicating over DCC, see Procedure for debugging
applications through Target-GDB connections on page 8-10.

If using rviload, you must set VEC or VEP. (See the allowed MODE values under rviload
command syntax on page 8-20.)

Note
 When Ethernet bridging is running, normal LAN services are accessible (including
DHCP and NFS).
8-18 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
DCC and interrupts

The use of DCC interrupts has significant speed implications when using Virtual
Ethernet/TTY mode. If possible, you must tie DCC interrupts into the interrupt system
of the target and be able to enable and disable the read and write interrupt individually.

RealView ICE uses JTAG to control debug operations, and JTAG is used to send and
receive data over DCC. RealView ICE polls the target JTAG for status:

• If interrupts are used, the target is interrupted when data is written to the DCC
register or read from it. This allows the target to deal quickly with the data, and
continue normal processing.

• If interrupts are not available, the target must regularly poll the DCC register for
any new data, which means that the target wastes time checking the register for
data when none is present. Subsequent data is only discovered at the next poll.

If RealView ICE finds that there is data to be transferred into or out of DCC, it attempts
to transfer as many words as possible in one burst, up to a predefined limit. However, if
the target has not sent more data or emptied its transfer register, RealView ICE breaks
out of its burst and begins polling the execution status and DCC.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-19

Configuring RealView ICE for GDB
8.4 Loading and booting a complete system

You can load and boot a complete system without having to run GDB, RealView
Debugger, or any other supported debugger to control the RealView ICE unit. To do
this, you use the rviload utility. This section includes:

• Requirements for using the rviload utility

• rviload command syntax

• Using the rviload utility from a Cygwin bash or Red Hat Linux shell on page 8-21

8.4.1 Requirements for using the rviload utility

Before you can use the rviload utility, there must be no other active connections to the
target scan chain device from RealView Debugger, GDB, or any other active
connection.

8.4.2 rviload command syntax

The rviload utility has the following command syntax:

rviload [options]... address:file [address:file]...

The options are:

-c, --check Check memory as it is being written.

-a, --autoconfig=DELAY

Autoconfigure the scan chain and then wait DELAY (s).

-s, --jtagclock

The JTAG clock speed in Hz, 0==‘RTCK’ (default 10MHz).

-d, --devnum=DEVNUM

The JTAG scan chain device number (default 1). Device 0 refers to the
RealView ICE, so you can only specify devices greater than 0.

-H, --host=HOST

The host IP address/name of the RealView ICE.

-j, --jump=JUMPTO

Start executing from this (hex) address after loading.
8-20 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
-m, --dccmode=MODE

Enable debug communications in the particular MODE, which must be one
of the following:

DCC Raw DCC via client.

DCP Raw DCC via TCP/IP port range from 5000.

VEC Virtual Ethernet/TTY with tty channel via client.

VEP Virtual Ethernet/TTY with tty channel via port range from
5000.

The DCC mode for rviload is specified by using a three-letter mode name
such as VEP or VEC, whereas the DCC mode for rvigdbconfig is
specified by a mode number such as 0, 1 or 2.

-p, --page=PAGE

The target memory page number.

-q, --quiet Do not print any messages.

-r, --rule=RULE

Target rule code.

-h, --help Display this output.

8.4.3 Using the rviload utility from a Cygwin bash or Red Hat Linux shell

To use the rviload utility from a Cygwin bash or Red Hat Linux shell, enter:

$ rviload [option]... address:file [address:file]...
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-21

Configuring RealView ICE for GDB
8.5 Multiprocessor debugging with GDB and RealView ICE

RealView ICE is capable of simultaneously and synchronously debugging multiple
targets. However, GDB does not support multiprocessor debugging directly.

Note
 Although multiprocessor debugging is possible using GDB, it is recommended that you
debug multiple processors using higher level tools, such as RealView Debugger.

This section includes:

• How connections to multiple processors are allocated

• Considerations when debugging multiple targets with GDB

8.5.1 How connections to multiple processors are allocated

When you make connections to multiple target processors, the connections on ports
5000, 5001,... are allocated by RealView ICE—that is, redirected virtual DCC is
allocated a port for each core in a similar way to GDB halt-mode debugging. The port
range starts from port 5000, so virtual Ethernet or raw redirected DCC for the first core
appears on port 5000, the second core on port 5001, and so on.

8.5.2 Considerations when debugging multiple targets with GDB

Be aware of the following if you are debugging multiple targets with GDB:

• Multiprocessor debugging with GDB requires that you open multiple command
windows (such as Xterms). You must have one GDB session for each target
processor to which you want to connect.

• If you have multiple targets on the RealView ICE JTAG scan chain, then:

— the target processors are numbered consecutively, starting at one

— the available bandwidth over DCC is shared between all target processors

— communications to all target processors are through a single JTAG chain.
8-22 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
8.6 The Eclipse Plug-in

The Eclipse Plug-in for RealView ICE integrates the RealView development tools into
the Eclipse IDE. It allows software developers to use the Eclipse IDE as a project
manager to create, build, debug, and manage C, C++ and assembly language projects
for ARM targets. The Eclipse Plug-in provides ARM project types to simplify the
creation of ARM projects, and provides configuration panels for specifying options for
the ARM compiler, assembler, linker, debugger, and other tools.

Note
 The ARM tools mentioned are distributed separately with RealView Development Suite
(RVDS).

8.6.1 Load using an existing Eclipse target configuration

The Eclipse Plug-in allows target configurations to be setup and saved with your project
files. These configuration files are stored in the rvi sub-directory within your project.

Before running or debugging your image from Eclipse, you should close any other
connections to the device to which you intend to connect on your RealView ICE unit.
When you launch RealView ICE from Eclipse, the connection properties in RealView
ICE are automatically configured, and all control passes to RealView ICE. You must use
the RealView ICE interface to perform debug operations. To load your executable image
into RealView ICE:

1. On Windows, select Start → Programs → ARM → RealView ICE v3.1 →
Eclipse IDE.

Note
 If you are using the default Windows XP settings, select All Programs.

2. In Eclipse, ensure that your project is built and contains an executable image.

3. In the C/C++ Projects view, right-click on the ARM project that you want to
configure.

4. From the context menu, select Debug As → Debug....

The Debug dialog appears, with the Main tab’s contents displayed by default, as
shown in Figure 8-6 on page 8-24.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-23

Configuring RealView ICE for GDB
Note
 Eclipse remembers the last loaded executable image. If you wanted to reload the

executable from the same project, press F11 on the keyboard. The project is
rebuilt if necessary, and the image is loaded through RealView ICE.

Figure 8-6 Debug dialog

Note
 If you want to build and debug a new target you should, before loading another

executable image, close any other connections to the device to which you intend
to connect on your RealView ICE unit. This enables the new target configuration
to be transferred from Eclipse.

5. Select the image file that you want to debug from the appropriate RealView ICE
projects listed on the left-hand side.

To download an ELF image file automatically when you first connect, click in the
Load image to the target checkbox.

To search for and specify a particular image that you want to debug, click the
Search Project... button.

6. Select the Debugger tab, then in the Options panel select the Connection tab. By
default, the field associated with the Connection tab is blank. This is shown in
Figure 8-7 on page 8-25.
8-24 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Configuring RealView ICE for GDB
Figure 8-7 Connection option field

To populate this field, click the New button, which causes the RVConfig dialog to
display, as shown in RVConfig dialog box on page 4-4.

7. In the RVConfig dialog, select the required run control unit, and connect it as
described in Connecting to a RealView ICE unit on page 4-6. Save this
connection, then return to the Eclipse Debug dialog. The name of the run control
unit is now shown in the Connection tab’s field.

To modify an existing RealView ICE configuration, select the required
connection from the Connection tab’s field, then click the Configure button. This
causes the RVConfig dialog to display. For more information on this dialog, see
Using the RVConfig dialog on page 4-3.

Use the Delete button to remove a selected connection.

Use the Refresh button to refresh the connections listed.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 8-25

Configuring RealView ICE for GDB
Below the Connection tab’s field are a number of options that are available for you to
set:

• Use the DCC mode drop-down menu to specify the appropriate DCC mode if
your target application communicates using DCC. More details on the DCC
modes are available in DCC modes on page 8-17.

• The Settings... button provides access to the Virtual Ethernet Settings dialog. If
you are using DHCP, select the DHCP checkbox.

• The Start DCC monitor is available only when the Virtual Ethernet/TTY option
is selected from the DCC mode drop-down menu. It allows the output to appear
in the console view. If this facility is required, select the checkbox.

• The Converter drop-down menu is available only when the Start DCC monitor
checkbox is selected. It is used if you want to define a conversion type to and from
the data passing between the console and the DCC. At present, only one converter
is pre-supplied, and that is to denote No conversion.

Note
 Depending on whether you have selected a halt session or a stub session to be

performed, not all of these options are available to you.

Use the Apply button to apply any changes that you have made.

Use the Revert button to undo any changes that you have made.

Use the Close button to end end your session and to discard any changes.

Use the Debug button to perform the debug process.

8.6.2 Launching Eclipse in Red Hat Linux

If you intend to use Eclipse within Red Hat Linux, you must first source the
environment in Linux. At the command line, enter:

$ source rvi_3_1_env.posh

$ eclipse

This launches the Eclipse application.

To launch the Eclipse application from the taskbar in future, select Start Application →
ALL_PROGRAMS → ARM → RealView ICE v3.1 → Eclipse IDE.
8-26 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Chapter 9
System Design Guidelines

This chapter provides information on developing ARM® architecture-based devices and
Printed Circuit Boards (PCBs) that can be debugged using RealView® ICE. It contains
the following sections:

• About the system design guidelines on page 9-2

• System design on page 9-3

• ASIC guidelines on page 9-10

• PCB guidelines on page 9-12

• JTAG signal integrity and maximum cable lengths on page 9-15

• Compatibility with EmbeddedICE interface target connectors on page 9-17.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-1

System Design Guidelines
9.1 About the system design guidelines

This chapter describes the following:

• How to connect multiple TAP controllers in systems comprising more than one
unit. For example, connecting an ARM core plus a Digital Signal Processor
(DSP).

• Using the RealView ICE adaptive clocking feature to control the JTAG clock rate.

• Reset signals, providing examples of circuits.

• Compatibility with EmbeddedICE™ connectors.

See Appendix A JTAG Interface Connections for details of the JTAG interface
connector pinout. See Appendix D Designing the Target Board for Tracing for
information on designing a board that can be connected to RealView Trace. See
Appendix F Serial Wire Debug for details on Serial Wire Debug (SWD) connections.
9-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
9.2 System design

This section describes how to design clocking and reset circuits that are compatible with
RealView ICE. It contains the following sections:

• Using adaptive clocking to synchronize the JTAG port

• Reset signals on page 9-6.

9.2.1 Using adaptive clocking to synchronize the JTAG port

ARM architecture-based devices using only hard macrocells, for example
ARM7TDMI® and ARM920T, use the standard five-wire JTAG interface (TCK, TMS,
TDI, TDO, and nTRST). Some target systems, however, require that JTAG events are
synchronized to a clock in the system. To handle this case, an extra signal (RTCK) is
included on the JTAG port. For example, this synchronization is required in:

• an ASIC with single rising-edge D-type design rules, such as one based on an
ARM7TDMI-S™ processor core

• a system where scan chains external to the ARM macrocell must meet single
rising-edge D-type design rules.

The adaptive clocking feature of RealView ICE addresses this requirement. When
adaptive clocking is enabled, RealView ICE issues a TCK signal and waits for the
RTCK signal to come back. RealView ICE does not progress to the next TCK until
RTCK is received.

Note
 • If you use the adaptive clocking feature, transmission delays, gate delays, and

synchronization requirements result in a lower maximum clock frequency than
with non-adaptive clocking. Do not use adaptive clocking unless it is required by
the hardware design.

• If, when autoconfiguring a target, the RealView ICE run control unit receives
pulses on RTCK in response to TCK it assumes that adaptive clocking is
required, and enables adaptive clocking in the target configuration. If the
hardware does not require adaptive clocking, the target is driven slower than it
could be. You can disable adaptive clocking using controls on the JTAG settings
dialog box.

• If adaptive clocking is used, RealView ICE cannot detect the JTAG clock speed,
and therefore cannot scale its internal timeouts. If the target clock frequency is
very slow, a JTAG timeout might occur. This leaves the JTAG in an unknown
state, and RealView ICE cannot operate correctly without reconnecting to the
core. JTAG timeouts are enabled by default. You can disable JTAG timeouts by
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-3

System Design Guidelines
deselecting the option JTAG Timeouts Enabled in the RVConfig dialog box. See
Chapter 4 Configuring a RealView ICE Connection for information on
configuring RealView ICE.

You can use adaptive clocking as an interface to targets with slow or widely varying
clock frequency, such as battery-powered equipment that varies its clock speed
according to processing demand. In this system, TCK might be hundreds of times faster
than the system clock, and the debugger loses synchronization with the target system.
Adaptive clocking ensures that the JTAG port speed automatically adapts to slow
system speed.

Figure 9-1 illustrates a circuit for basic applications, with a partial timing diagram
shown in Figure 9-2. The delay can be reduced by clocking the flip-flops from opposite
edges of the system clock, because the second flip-flop only provides better immunity
to metastability problems. Even a single flip-flop synchronizer never completely misses
TCK events, because RTCK is part of a feedback loop controlling TCK.

Figure 9-1 Basic JTAG port synchronizer

Figure 9-2 Timing diagram for the Basic JTAG synchronizer in Figure 9-1

�����

���

���

�	

���

�	�

���

����
	
 	

����

����

�	

���

�����

���

���

�	�

��7

��7

���7
9-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
It is common for an ASIC design flow and its design rules to impose a restriction that
all flip-flops in a design are clocked by one edge of a single clock. To interface this to
a JTAG port that is completely asynchronous to the system, it is necessary to convert the
JTAG TCK events into clock enables for this single clock, and to ensure that the JTAG
port cannot overrun this synchronization delay. Figure 9-3 shows one possible
implementation of this circuit, and Figure 9-4 on page 9-6 shows a partial timing
diagram, showing how TCKFallingEn and TCKRisingEn are each active for exactly
one period of CLK. It also shows how these enable signals gate the RTCK and TDO
signals so that they only change state at the edges of TCK.

Figure 9-3 JTAG port synchronizer for single rising-edge D-type ASIC design rules

����

��

������

���

���� '���
��4
�����
%������

��

����

����

����������������

�����������

��������

	

����

	

����

	

����

	

�	

���

���

�����

���

����

�	�
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-5

System Design Guidelines
Figure 9-4 Timing diagram for the D-type JTAG synchronizer in Figure 9-3 on page 9-5

9.2.2 Reset signals

This section describes the reset signals that are available on ARM devices and how
RealView ICE expects them to be wired. It is presented in the following sections:

• ARM reset signals

• RealView ICE reset signals on page 9-7

• Example reset circuits on page 9-7.

ARM reset signals

All ARM cores have a main processor reset that might be called nRESET, BnRES, or
HRESET. This is asserted by one or more of these conditions:

• power on

• manual push button

• remote reset from the debugger (using RealView ICE)

• watchdog circuit (if appropriate to the application).

Any ARM processor core including the JTAG interface has a second reset input called
nTRST (TAP Reset). This resets the EmbeddedICE logic, the TAP controller, and the
boundary scan cells. It is activated by remote JTAG reset (from RealView ICE).

��7

��7�����	
�

��7

��7��

��	
�

���7

����������

���
9-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
It is strongly recommended that both signals are separately available on the JTAG
connector. If the nRESET and nTRST signals are linked together, resetting the system
also resets the TAP controller. This means that:

• it is not possible to debug a system from reset, because any breakpoints previously
set are lost

• you might have to start the debug session from the beginning, because RealView
ICE does not recover when the TAP controller state is changed.

RealView ICE reset signals

The RealView ICE run control unit has two reset signals connected to the debug target
hardware:

• nTRST drives the JTAG nTRST signal on the ARM processor core. It is an
output that is activated whenever the RealView ICE software has to re-initialize
the debug interface in the target system.

• nSRST is a bidirectional signal that both drives and senses the system reset signal
on the target. The output is driven LOW by the debugger to re-initialize the target
system.

The target hardware must include a pull-up resistor on both reset signals.

Example reset circuits

The circuits shown in Figure 9-5 on page 9-8 and Figure 9-6 on page 9-9 illustrate how
the behavior described in Reset signals on page 9-6 can be achieved. The MAX823 used
in Figure 9-6 on page 9-9 is a typical power supply supervisor. It has a current limited
nRESET output that can be overdriven by the RealView ICE run control unit.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-7

System Design Guidelines
Figure 9-5 Example reset circuit logic

��

��

)�

�������

� ��! ��"������

�"#�$
������

����

�%���&���������
������4�.������&���2

!�������
���������
'�����

��%
���������

�����

�����

�����

��
�
�
�
��
�2

��
�
�
�
�
��
��
��
��

��
��

4�
��
�
��

�
�+
'�

,
��
��

��
��
��

#

8

(�)

(�)

��
9-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
Figure 9-6 Example reset circuit using power supply monitor ICs

��%
���������

�%���&���������
������4�.������&���2

�����

�����

�(���&(����
�����

(�)

��

8

#

��
�����

�� �����

%�9:18

%�9:18

!�������
���������
'�����

�����

�
�
�
�
�
��
�2

��
�
�
�
�
��
��
��
��

��
��

4�
��
�
��

�
�+
'�

,
��
��

��
��
��
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-9

System Design Guidelines
9.3 ASIC guidelines

This section describes:

• ICs containing multiple devices

• Boundary scan test vectors on page 9-11.

9.3.1 ICs containing multiple devices

If your ASIC contains multiple devices that have a JTAG TAP controller, you must
serially chain them so that RealView ICE can communicate with all of them
simultaneously. The chaining can either be within the ASIC, or externally:

• TAP controllers serially chained within the ASIC

• TAP controllers serially chained externally on page 9-11.

Note
 There is no support in RealView ICE for multiplexing TCK, TMS, TDI, TDO, and
RTCK between a number of different processors.

TAP controllers serially chained within the ASIC

The JTAG standard originally described serially chaining multiple devices on a PCB.
This concept can be extended to serially chaining multiple TAP controllers within an
ASIC. This configuration does not increase the package pin count. It does increase
JTAG propagation delays, but this impact can be small if you put unaddressed TAP
controllers into bypass mode (as shown in Figure 9-7 on page 9-11).
9-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
Figure 9-7 TAP Controllers serially chained within an ASIC

TAP controllers serially chained externally

You can use separate pins on the ASIC for each JTAG port, and serially chain them
externally (for example on the PCB). This configuration can simplify device testing,
and gives the greatest flexibility on the PCB. However, this is at the cost of many pins
on the device package.

9.3.2 ICs containing CoreSight debug technology

For details on CoreSight debug technology, please see the CoreSight Technology System
Design Guide.

9.3.3 Boundary scan test vectors

If you use the JTAG boundary scan test methodology to apply production test vectors,
you might want to have independent external access to each TAP controller. This avoids
the requirement to merge test vectors for more than one block in the device. One
solution to this is to adopt a hybrid, using a pin on the package that switches elements
of the device into a test mode. This can be used to break the internal daisy chaining of
TDO and TDI signals, and to multiplex out independent JTAG ports on pins that are
used for another purpose during normal operation.

���

���

9	�*����#�&�6	 �

��

��#

���������

���

���	�

�
	

���

���

�� ��/���#�&�6	 �

��

��#

������������

���	�
�
	

���
���	�
�
	
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-11

System Design Guidelines
9.4 PCB guidelines

This section contains guidelines on the physical and electrical connections present on
the target board:

• PCB connections

• Target interface logic levels on page 9-13.

For RealView ICE JTAG header connectors see JTAG interface pinouts on page A-2.

9.4.1 PCB connections

It is recommended that you place the 20-way JTAG header as closely as possible to the
target device, because this minimizes any possible signal degradation caused by long
PCB tracks. The header must be a 0.1 inch pitch standard box header.

Figure 9-8 shows the layout of possible PCB connections.

Figure 9-8 Typical PCB connections

Note
 • The signals TMS and TDI must be pulled up on the PCB, as shown.

• TCK must be pulled down on the PCB, as shown.

• DBGRQ and DBGACK are not used by the ARM tools, but are used by some
third party tools. If your tools do not use DBGRQ and DBGACK, and your
device has a DBGRQ input, this must be pulled down on the PCB.

�� ���	
�
����
 +�:+�:

+�:

���
��
���/��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�����
���
��
�
�
�
���
���
�����

���

�
�
���
���

�����

������

��

���

��*��

	� $	�

���

��� !�"#$$%&

��
�
9-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
• RTCK is used by -S core variants, such as the ARM966E-S. If your device does
not use RTCK, then RTCK must be pulled down on the PCB.

9.4.2 Target interface logic levels

RealView ICE is designed to interface with a wide range of target system logic levels.
It does this by adapting its output drive and input threshold to a reference voltage
supplied by the target system.

VTref (pin 1 on the JTAG header connector) feeds the reference voltage to the
RealView ICE run control unit. This voltage, clipped at approximately 3.2V, is used as
the output high voltage (Voh) for logic 1s (ones) on TCK, TDI, and TMS. 0V is used
as the output low voltage for logic 0s (zeroes). The input logic threshold voltage
(Vi(th)) for the TDO, RTCK, and nSRST inputs is 50% of the Voh level, and so is
clipped to approximately 1.55V. The relationships of Voh and Vi(th) to VTref are
shown in Figure 9-9.

Figure 9-9 Target interface logic levels

�5��

�52�

+5��

+52�

�5��

�52�

;5��

;52�

� + � ; 3 2 ,

�'�()���� !�*�+

�
,
-
�.
��
/*
)-
+�
*�
+

��$�'$���	%��0�6��������
�	�'$������*���/����	�����
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-13

System Design Guidelines
RealView ICE can adapt interface levels down to VTref less than 1V. If, however, VTref
becomes less than approximately 0.85V, RealView ICE interprets this condition as
Target Not Present, and the software reports this as an error condition.

The nTRST output from RealView ICE is effectively driven as an active low signal, so
it is actively pulled to 0V but relies on a 4.7kΩ pull-up resistor to end the reset state. This
is because it is common to wire-OR this signal with another source of nTRST, such as
power-on reset in the target system.

The nSRST output from RealView ICE is a similarly-driven active low signal, and must
be pulled-up with a resistor in the target system. Because this signal is also an input to
the RealView ICE run control unit, there is a 4.7kΩ internal pull-up resistor. This is to
avoid spurious lows on the input when nSRST is not connected to the target system.

The input and output characteristics of the RealView ICE run control unit are
compatible with logic levels from TTL-compatible, or CMOS logic in target systems.
For information when assessing compatibility with other logic systems:

• the output impedance on the LVDS probe of the TCK, TMS, and TDI signals is
approximately 47Ω

• the output impedance of all other signals is approximately 100Ω.
9-14 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
9.5 JTAG signal integrity and maximum cable lengths

For JTAG-based debugging, you must have a very reliable connection between
RealView ICE and the target, because there is no way to detect or correct errors. For this
reason it is important to guarantee good signal integrity.

One factor that can limit the maximum cable length is propagation delays. Normally the
RealView ICE run control unit samples data returning from the target using the same
clock as for sending data, TCK. If the propagation delay gets too long then the
RealView ICE run control unit samples the signal at the wrong time. This can be
resolved by using adaptive clocking. In this mode the target returns a clock, RTCK, and
RealView ICE does not sample data on TDO, or send more data on TDI, until clocked
by this signal.

In an ASIC or ASSP (for example, in ARM processor based microcontrollers) the TDO
and RTCK signals are not typically implemented with a stronger driver than other
signals on the device. The strength of these drivers varies from device to device. An
example specification is to sink or source 4mA. Many designs connect these pins on the
device directly to the corresponding pins on the RealView ICE connector.

Over very short lengths of cable, such as the one supplied with RealView ICE, this type
of weak driver is adequate. However, if longer cables are used then the cable becomes
harder to drive as the capacitive load increases. When using longer cables it becomes
essential to consider the cable as a transmission line and to provide appropriate
impedance matching, otherwise reflections occur.

RealView ICE has much stronger drivers and they are connected through 100Ω series
resistors to impedance match with the JTAG cable. This is very much better than the
typical circuit used at the target end.

With the typical situation at the target end (weak drivers, no impedance matching
resistors) you can only expect reliable operation over short cables (approximately
30cm). If operation over longer cables is required:

• For very long cables, a solution is to buffer the JTAG signals through differential
drivers, such as the LVDS cable and probe supplied with RealView ICE. Reliable
operation is possible over tens of metres using this technique.

• For intermediate lengths of cables, you can instead improve the circuitry used at
the target end. The recommended solution is to add an external buffer with good
current drive and a 100Ω series resistor for the TDO (and RTCK if used) signals
on your target hardware. Using this technique you can debug over cable lengths
up to several metres. Depending on cable length and propagation delays through
your buffers and cables, it might still be necessary to use adaptive clocking.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-15

System Design Guidelines
If you are not already using adaptive clocking in your design, you can generate
RTCK at the target end by using the TCK signal fed through the same buffer and
impedance matching circuit as used for TDO.

Reducing the JTAG clock speed used by RealView ICE avoids some, but not all, of the
problems associated with long cables. If reducing the speed of downloading code and
reading memory in the debugger is not a significant problem, try experimenting with
lowering this clock speed.
9-16 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

System Design Guidelines
9.6 Compatibility with EmbeddedICE interface target connectors

The EmbeddedICE run control unit uses a 14-way connector for the interface to the
target system. ARM Limited supplies an adaptor board with the RealView ICE run
control unit, so that you can connect it to target hardware with 14-way connectors.

9.6.1 Adaptor to connect a RealView ICE run control unit to 14-way connectors

The 14-way socket on the adaptor board plugs into the box header on the target, and the
RealView ICE ribbon cable is connected to the 20-way header on the adaptor board.

The three-pin header J3 has the following connections:

Pin 1 0V, Gnd.

Pin 2 RealView ICE connector pin 2, no connection.

Pin 3 Target connector pin 1, SPU.

Note
 The J3 header is provided for use with Multi-ICE run control units, and has no useful
purpose with RealView ICE run control units.

The three-pin header J4 has the following connections:

Pin 1 0V.

Pin 2 RealView ICE connector pin 11, RTCK.

Pin 3 Resistor fed by RealView ICE connector pin 9, TCK.

The jumper link supplied on the adaptor board connects 0V back to the RealView ICE
RTCK input. If the target system is to use adaptive clocking, TCK can be tapped off
here, and the synchronized version used to clock the target can be fed back as RTCK.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. 9-17

System Design Guidelines
9-18 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix A
JTAG Interface Connections

This appendix describes and illustrates the JTAG interface connection on the RealView®
ICE unit. It contains the following sections:

• JTAG interface pinouts on page A-2

• JTAG interface signals on page A-3

• JTAG port timing characteristics on page A-6.

See Appendix C RealView Trace Interface Connections for information on the
RealView Trace unit pin connections.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. A-1

JTAG Interface Connections
A.1 JTAG interface pinouts

The RealView ICE run control unit is supplied with a short ribbon cable, and a longer
ribbon cable and LVDS probe. These both terminate in a 20-way 2.54mm pitch IDC
connector. You can use either cable to mate with a keyed box header on the target. The
pinout is shown in Figure A-1.

Figure A-1 JTAG interface pinout

Note
 All GND pins must be connected to 0V on the target hardware.

#

8

;

<

##

#

#;

#<

1

6

5

:

#$

#1

#6

#5

#:

1$

#8

��$��

�����

�	�

���

���

����

�	

�����

	!(�

	!(*��

�� ++�%

(�	

(�	

(�	

(�	

(�	

(�	

(�	

(�	

(�	
A-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

JTAG Interface Connections
A.2 JTAG interface signals

Table A-1 describes the signals on the JTAG interfaces.

Table A-1 JTAG signals

Signal I/O Description

DBGACK - This pin is connected in the RealView ICE run control unit,
but is not supported in the current release of the software. It is
reserved for compatibility with other equipment to be used as
a debug acknowledge signal from the target system. It is
recommended that this signal is pulled LOW on the target.

DBGRQ - This pin is connected in the RealView ICE run control unit,
but is not supported in the current release of the software. It is
reserved for compatibility with other equipment to be used as
a debug request signal to the target system. The RealView ICE
software maintains this signal as LOW.

When applicable, RealView ICE uses the core's scan chain 2
to put the core in debug state. It is recommended that this
signal is pulled LOW on the target.

GND - Ground.

nSRST Input/output Active Low output from RealView ICE to the target system
reset, with a 4.7kΩ pull-up resistor for de-asserted state. This
is also an input to RealView ICE so that a reset initiated on the
target can be reported to the debugger.

This pin must be pulled HIGH on the target to avoid
unintentional resets when there is no connection.

nTRST Output Active Low output from RealView ICE to the Reset signal on
the target JTAG port, with a 4.7kΩ pull-up resistor for
de-asserted state. This pin must be pulled HIGH on the target
to avoid unintentional resets when there is no connection.

RTCK Input Return Test Clock signal from the target JTAG port to
RealView ICE. Some targets must synchronize the JTAG
inputs to internal clocks. To assist in meeting this requirement,
you can use a returned, and retimed, TCK to dynamically
control the TCK rate. RealView ICE provides Adaptive Clock
Timing, that waits for TCK changes to be echoed correctly
before making more changes. Targets that do not have to
process TCK can ground this pin.

RTCK is not supported in SWD mode.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. A-3

JTAG Interface Connections
A.2.1 JTAG interface signal details

VTref is used to create the logic-level reference for the input comparators on TDO,
RTCK and nSRST. RealView ICE clips the logic-level reference to 3.3V. RealView
ICE inputs (TDO, RTCK and nSRST) are taken to high-impedance inputs of
comparators. Each input is read as a logic 1 when it exceeds half the voltage reference.

VTref also controls the output logic levels to the target. RealView ICE uses analog
switches to drive the output signals. The output is connected to ground for a logic 0 and
to the JTAG interface voltage for a logic 1.

TDI, TMS and TCK have 47Ω series resistors on the LVDS probe. All other outputs
from the LVDS probe and the RealView ICE 20-way connector have 100Ω series
resistors.

nSRST and nTRST are both active low signals. When asserted, these signals are
connected to ground for a logic 0, and when de-asserted use a 4.7kΩ pull-up for a logic
1.

TCK Output Test Clock signal from RealView ICE to the target JTAG port.
It is recommended that this pin is pulled LOW on the target.

TDI Output Test Data In signal from RealView ICE to the target JTAG
port. It is recommended that this pin is pulled HIGH on the
target.

TDO Input Test Data Out from the target JTAG port to RealView ICE. It
is recommended that this pin is pulled HIGH on the target.

TMS Output Test Mode signal from RealView ICE to the target JTAG port.
This pin must be pulled HIGH on the target so that the effect
of any spurious TCKs when there is no connection is benign.

Vsupply Input This pin is not connected in the RealView ICE run control
unit. It is reserved for compatibility with other equipment to
be used as a power feed from the target system.

VTref Input This is the target reference voltage. It indicates that the target
has power, and It must be at least 0.628V. VTref is normally
fed from Vdd on the target hardware and might have a series
resistor (though this is not recommended). There is a 10kΩ
pull-down resistor on VTref in RealView ICE.

Table A-1 JTAG signals (continued)

Signal I/O Description
A-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

JTAG Interface Connections
You must ensure that your board has appropriate pull-up and pull-down resistors on the
JTAG signals:

• TMS, TDI, TDO, nSRST and nTRST must have pull-ups.

• TCK must have a pull-down to enable hot swap and post-mortem debugging

• RTCK must have a pull-down to fix a stable value on that signal when debugging
a non-synthesizable core.

• DBGRQ must have a pull-down. This ensures that the core doesn't enter debug
state in an uncontrolled way.

• DBGACK must have a pull-down, so the default value that the debugger sees is
core not in debug state.

The recommended value for pull-ups and pull-downs is 10kΩ, although the optimum
value depends on the signal load. For example, pull-downs must be about 1kΩ when
working with TTL logic.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. A-5

JTAG Interface Connections
A.3 JTAG port timing characteristics

This section describes the timing characteristics of the RealView ICE unit:

• Figure A-2 shows the JTAG port timing and parameters

• Table A-2 on page A-7 gives the requirements for these parameters when you are
using the JTAG A port

• Table A-3 on page A-7 gives the requirements for these parameters when you are
using the JTAG B port.

These timing characteristics must be considered if you design a target device or board
and want to be able to connect RealView ICE at a particular TCK frequency. The
characteristics relate to the RealView ICE hardware. You must consider them in parallel
with the characteristics of your target.

Figure A-2 JTAG port timing diagram

In a JTAG device that fully complies to IEEE1149.1-2001, TDI and TMS are sampled
on the rising edge of TCK, and TDO changes on the falling edge of TCK. To take
advantage of these properties, RealView ICE samples TDO on the rising edge of TCK
and changes its TDI and TMS signals on the falling edge of TCK. This means that with
a fully compliant target, issues with minimum setup and hold times can always be
resolved by decreasing the TCK frequency, because this increases the separation
between signals changing and being sampled.

Note
 There are no separate timing requirements for adaptive clocking mode, as the minimum
Tbsch and Tbscl times are identical and are the same as for non-adaptive clocking. Tbsis
and Tbsih are relative to RTCK rising, and not TCK rising, as RTCK is used to sample
TDO in adaptive clocking mode.

The only real timing difference is that in adaptive mode, RealView ICE samples TDO
on the rising edge of RTCK and not TCK, so TDO timing is relative to RTCK.

�������
���

��7
����
 �����

����� �����

���

�����
A-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

JTAG Interface Connections
Table A-2 shows the timing requirements for the JTAG A port, measured open circuit
(no target connection, except for 3.3V reference on VTref) with the supplied JTAG
cable connected.

Table A-3 shows the timing requirements for the JTAG B port, measured open circuit
(no target connection, except for 3.3V reference on VTref) with no cable connected.

Note
 • The RealView ICE software enables you to change the TCK frequency. The TCK

LOW:HIGH mark-space ratio is always 50:50. The other parameters must be
considered with the specific values of Tbscl and Tbsch that you have chosen. The
default values for an autoconfigured single-TAP system are, nominally,
Tbscl=50ns and Tbsch=50ns.

• Tbsod is the maximum delay between the falling edge of TCK and valid levels on
the TDI and TMS RealView ICE output signals. The target samples these signals
on the following rising edge of TCK and so the minimum setup time for the
target, relative to the rising edge of TCK, is Tbscl–Tbsod.

Table A-2 RealView ICE JTAG A timing requirements

Parameter Min Max Description

Tbscl 50ns 500μs TCK LOW period

Tbsch 50ns 500μs TCK HIGH period

Tbsod - 6.0ns TDI and TMS valid from TCK (falling)

Tbsis 15.0ns - TDO setup to TCK (rising)

Tbsih 6.0ns - TDO hold from TCK (rising)

Table A-3 RealView ICE JTAG B timing requirements

Parameter Min Max Description

Tbscl 10ns 500μs TCK LOW period

Tbsch 10ns 500μs TCK HIGH period

Tbsod - 3.2ns TDI and TMS valid from TCK (falling)

Tbsis 6.2ns - TDO setup to TCK (rising)

Tbsih 4.5ns - TDO hold from TCK (rising)
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. A-7

JTAG Interface Connections
• Tbsis is the minimum setup time for the TDO input signal, relative to the rising
edge of TCK when RealView ICE samples this signal. The target changes its
TDO value on the previous falling edge of TCK and so the maximum time for
the target TDO level to become valid, relative to the falling edge of TCK, is
Tbscl–Tbsis.
A-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix B
User I/O Connections

This appendix describes and illustrates the additional input and output connections
provided in RealView® ICE, and consists of:

• The RealView ICE User I/O connector on page B-2.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. B-1

User I/O Connections
B.1 The RealView ICE User I/O connector

This section describes the User Input/Output (I/O) connector.

The User I/O connector is situated on an end panel of the RealView ICE run control unit
(see Figure 1-1 on page 1-8). The connector is a 10-way 2.54mm pitch IDC header that
mates with IDC sockets mounted on a ribbon cable (see Figure B-1).

Figure B-1 User I/O pin connections

Warning
 You must establish a common ground between the RealView ICE run control unit and
the target hardware before you connect any of the User I/O signals.

Table B-1 shows the User I/O pin connections.

#

8

;

<

1

6

5

:

#$

 �+ ���

 �+ ��,

 �+ ��-

 �+ ��.

�,/,�

 �+ ��0

 �+ ��1

��+ ���

��+ ��0

(�	

Table B-1 User I/O pin connections

Pin Signal I/O Description

Pin 1 Output 1 Output This is a user output bit. It operates at a 3.3V swing, with
a 100Ω series resistance.

Pin 2 Output 2 Output This is a user output bit. It operates at a 3.3V swing, with
a 100Ω series resistance.

Pin 3 Output 3 Output This is a user output bit. It operates at a 3.3V swing, with
a 100Ω series resistance.

Pin 4 Output 4 Output This is a user output bit. It operates at a 3.3V swing, with
a 100Ω series resistance.

Pin 5 Output 5 Output This is a user output bit. It operates at a 3.3V swing, with
a 100Ω series resistance.
B-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

User I/O Connections
Note
 Input is not currently supported on the User I/O pin connections.

Pin 6 Input 1 Input This is a user input bit. It has a 10kΩ weak pull-up to the
unit internal +3.3V supply, and requires a Vih(min) of
2.0V and a Vil(max) of 0.8V. It can safely be driven by 5V
logic levels, and has Electro Static Discharge (ESD)
protection greater than the 2kV human body model.

This pin is not currently supported.

Pin 7 Output 6 Output This is a copy of the trigger output on the end panel (see
Figure 1-1 on page 1-8). It operates at a 3.3V swing, with
a 100Ω series resistance.

Pin 8 Input 2 Input This is a copy of the trigger input on the end panel (see
Figure 1-1 on page 1-8). It has a 10kΩ weak pull-up to
the unit internal +3.3V supply, and requires a Vih(min) of
2.0V and a Vil(max) of 0.8V. It can safely be driven by 5V
logic levels, and has Electro Static Discharge (ESD)
protection greater than the 2kV human body model.

This pin is not currently supported

Pin 9 +3.3V Output This is intended for powering external signal
conditioning circuitry, to a maximum current of 100mA.
Incorrect use of this output might cause the RealView
ICE run control unit to enter current limit.

Pin 10 GND - -

Table B-1 User I/O pin connections (continued)

Pin Signal I/O Description
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. B-3

User I/O Connections
B-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix C
RealView Trace Interface Connections

This appendix describes and illustrates the RealView® Trace v1.0 pin connections. It
contains the following sections:

• RealView Trace front panel components on page C-2

• Trace signals on page C-8.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. C-1

RealView Trace Interface Connections
C.1 RealView Trace front panel components

The layout of the RealView Trace front panel is shown in Figure C-1.

Figure C-1 RealView Trace panel layout

The components are:

• LEDs

• Trigger input and output SMB connectors on page C-3

• RealView Trace probe connector on page C-3

• Logic input connector on page C-7.

Note
 The Trigger input, Trigger output and Logic connectors are not supported by RealView
ICE v3.1.

C.1.1 LEDs

The LEDs on the RealView Trace front panel have the following functions:

PWR The PWR LED indicates that the RealView Trace unit is powered up.
This is always lit when the unit is powered from its own external power
supply. When RealView Trace is powered by RealView ICE, the Power
LED is lit only when RealView ICE is initializing the RealView Trace
unit.

BUS The BUS LED indicates module initialization and RealView ICE
expansion bus power. It lights up when RealView ICE is initializing the
RealView Trace unit, and remains lit while the RealView ICE expansion
bus is powered.

DATA The DATA LED indicates that the RealView Trace module has data in its
buffer

��	��
��'�

	�'���3�

��� �	,�
'��,

'��,

'�

0���

�����
���

�-�������
&(�������

���
'��..��
���(�

'��..��
�(��(� ����

���

0(44
���

'����
���

'��..��
���

5$�3�!�'����
���&��
�������� #6�3�!���.��

���(��
��������
C-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

RealView Trace Interface Connections
FULL The FULL LED indicates that the RealView Trace module data buffer is
full.

TRACE The TRACE LED indicates that the RealView Trace module has enabled
the buffer for capture.

TRIG the TRIG LED indicates that the RealView Trace module has triggered

C.1.2 Trigger input and output SMB connectors

The trigger input has 10K weak pull-up to the internal 3.3V supply and requires a
Vih(min) of 2.0v and Vil(max) of 0.8V. The input can be safely driven by 5V logic levels
and is ESD protected greater than 2kV human body model.

The trigger output operates at 3.3 voltage swings with a 100Ω series resistance.

Note
 The Trigger input and Trigger output connectors are not supported by RealView ICE
v3.1.

C.1.3 RealView Trace probe connector

RealView Trace supports 4, 8, and 16-bit data port widths with the high density target
connector described in Trace high density connector.

RealView Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and
TRACEPKT[n:0] at each rising edge of each TRACECLK or on each alternate rising
or falling edge. For details on setting capture options, see the chapter that describes
tracing in the RealView Debugger Trace User Guide.

Trace high density connector

RealView Trace provides a connection to the AMP Mictor connector. Figure C-2 on
page C-4 shows the target connector (AMP 2-5767004-2 38-pin surface mount
receptacles).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. C-3

RealView Trace Interface Connections
Figure C-2 Pin surface mount receptacles on trace probe connector

Table C-1 shows the pinouts in single Embedded Trace Macrocell (ETM) mode.

�2

�,

�<

�*$''��

����"

&���
:

�����
�
0:

�=����

1

;<

;2

;;

;+

�>

�<

�;

�+

+>

;(

;,

;3

;�

;�

�(

�,

�3

��

��

�2

#�#������

#�#�����+

#�#������

���
��71

��

�+

��

�;

�3

+2

+;

++

>+�

<(

2,

;3

+�

+<+(

+,

+3

+�

1

�&�

���

�
:

��
:

�&8

�����

&���?

�1&

1

1

�(

�>

�+�

�++

�+�

�+;

�+3

�+2

�����

Table C-1 Connector signals

Target board signal Pin Description

NC 1 No Connect

NC 3 No Connect

GND 5 Signal ground

DBGRQ 7 Debug request
C-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

RealView Trace Interface Connections
nSRST 9 Active Low output from
RealView ICE to the target
system reset, with a 4.7kΩ
pull-up resistor for
de-asserted state.

This is also an input to the
run control unit so that a reset
initiated on the target can be
reported to the debugger.

TDO 11 Test data output from target
JTAG port

RTCK 13 Return test clock from the
target JTAG port

TCK 15 Test clock from the run
control unit to the JTAG port

TMS 17 Test mode select from the run
control unit to the JTAG port

TDI 19 Test data input from the run
control unit to the JTAG port

nTRST 21 Active Low output from the
run control unit to the target
TAP reset line, with a 4.7kΩ
pull-up resistor for
de-asserted state.

Port A15 TRACEPKT 23 The trace packet port

Port A14 TRACEPKT 25 The trace packet port

Port A13 TRACEPKT 27 The trace packet port

Port A12 TRACEPKT 29 The trace packet port

Port A11 TRACEPKT 31 The trace packet port

Port A10 TRACEPKT 33 The trace packet port

Port A9 TRACEPKT 35 The trace packet port

Port A8 TRACEPKT 37 The trace packet port

Table C-1 Connector signals (continued)

Target board signal Pin Description
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. C-5

RealView Trace Interface Connections
More details on these signals can be found in the Embedded Trace Macrocell
Architecture Specification.

NC 2 No Connect

NC 4 No Connect

Port A TRACECLK 6 Clocks trace data on rising
edge or both edges

DBGACK 8 Debug acknowledge from the
test chip, High when in
debug state

EXTRIG 10 Optional external trigger
signal to the ETM

VTref 12 Target reference voltage

Vsupply 14 Supply voltage (not used by
RealView ICE)

Port A7 TRACEPKT 16 The trace packet port

Port A6 TRACEPKT 18 The trace packet port

Port A5 TRACEPKT 20 The trace packet port

Port A4 TRACEPKT 22 The trace packet port

Port A3 TRACEPKT 24 The trace packet port

Port A2 TRACEPKT 26 The trace packet port

Port A1 TRACEPKT 28 The trace packet port

Port A0 TRACEPKT 30 The trace packet port

Port A TRACESYNC 32 Start of branch sequence
signal

Port A PIPESTAT2 34 RAM pipeline status

Port A PIPESTAT1 36 RAM pipeline status

Port A PIPESTAT0 38 RAM pipeline status

Table C-1 Connector signals (continued)

Target board signal Pin Description
C-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

RealView Trace Interface Connections
C.1.4 Logic input connector

The logic inputs have a 1M weak pull-down and require a Vih(min)of 2.0v and Vil(max)
of 0.8V. These inputs can safely be driven by 5V logic levels and are ESD protected
greater than 2kV human body model. All logic inputs are sampled by an internally
generated clock derived from the target ETM clock.The 3.3V power output can be used
to power external signal conditioning circuits to a maximum current of 100mA.
Incorrect use of this output might cause the unit to enter current limit.

Note
 The Logic input connector is not supported by RealView ICE v3.1.

Figure C-3 shows the pin surface mount receptacles on the logic input connector.

Figure C-3 Pin surface mount receptacles on logic input connector

Warning
 Before you connect any of the logic signals, a common ground must be established
between the RealView Trace data capture unit and the target hardware. This is usually
achieved through the RealView Trace probe, but can also be achieved by the trigger
SMB connectors or the logic input connector itself when not using the supplied logic
grabbers.

+;

++

>

<

2

;

+3

+�

+�

(

,

3

� +

���������;5;��*$''����+��)��)�@�

�'���"�"�����'�������	%%����$�'$�

�'���"�"�����'�������	%%���	�'$�

0�%	 �	�'$�� �������<

0�%	 �	�'$�� �������,

0�%	 �	�'$�� �������2

0�%	 �	�'$�� �������3

���$�/

���$�/

���$�/

0�%	 �	�'$�� �������;

0�%	 �	�'$�� ��������

0�%	 �	�'$�� �������+

0�%	 �	�'$�� ��������
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. C-7

RealView Trace Interface Connections
C.2 Trace signals

Data transfer is synchronized by the TRACECLK signal.

C.2.1 Signal levels

The maximum capacitance presented by RealView Trace at the trace port connector,
including the connector and interfacing logic, is less than 6pF. The trace port lines have
a matched impedance of 50Ω.

The RealView Trace unit operates with a target board that has a supply voltage range of
1.0V-5.0V.

C.2.2 Clock frequency

For capturing trace port signals synchronous to TRACECLK, RealView Trace supports
a TRACECLK frequency of up to 250MHz. Figure C-4 and Table C-2 describe the
timing for TRACECLK.

Figure C-4 Clock waveforms

Table C-2 TRACECLK frequencies

Parameter Minimum Period

Tperiod 3.0ns Clock period

Twh 1.5ns High pulse width

Twl 1.5ns Low pulse width

�$ �/,�

�0- �0%
C-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

RealView Trace Interface Connections
C.2.3 Data setup and hold

Figure C-5 and Table C-3 show the setup and hold timing of the trace signals with
respect to TRACECLK.

Figure C-5 Data waveforms

Note
 RealView Trace supports half-rate clocking mode. Data is output on each edge of the
TRACECLK signal and TRACECLK (max) <= 125MHz. For half-rate clocking, the
setup and hold times at the Mictor connector must be observed.

C.2.4 Switching thresholds

The RealView Trace probe detects the target signalling reference voltage (VTref) and
automatically adjusts its switching thresholds to VTref/2. For example, on a 3.3 volt
target system, the switching thresholds are set to 1.65 volts.

Table C-3 Data setup and hold

Parameter Minimum Period

Tsh 2.0ns Data setup high

Thh 1.0ns Data hold high

Tsl 2.0ns Data setup low

Thl 1.0ns Data hold low

�*� �������*�

���
�
0:

&���

-��"�����
���
�
0:

-	%� 0�

ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. C-9

RealView Trace Interface Connections
C.2.5 Hot plugging

RealView Trace is not damaged if it is powered up when plugged into an unpowered
target or if an unpowered RealView Trace unit is plugged into a powered target.

If both the RealView Trace unit and the target are powered, no damage occurs to the
RealView Trace unit, but there might be damage to a (third-party) target system.
C-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix D
Designing the Target Board for Tracing

This appendix describes the properties of a target board that can be connected to
RealView® Trace. It contains the following sections:

• Overview of high-speed design on page D-2

• Termination on page D-4

• Probe dimensions and keep out areas on page D-7

• Signal requirements on page D-10

• Probe modeling on page D-12.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-1

Designing the Target Board for Tracing
D.1 Overview of high-speed design

Failure to observe high-speed design rules when designing a target system containing
an ARM Embedded Trace Macrocell (ETM) trace port can result in incorrect data being
captured by RealView Trace.You must give serious consideration to high-speed signals
when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times,
even at relatively low frequencies. For example, a signal with a rise time of 1ns has an
effective knee frequency of 500MHz and a signal with a rise time of 500ps has an
effective knee frequency of 1GHz (fknee = 0.5/Tr).

Note
 These principles apply to all of the trace port signals (TRACEPKT[15:0],
PIPESTAT[0:2], TRACESYNC), but special care must taken with TRACECLK.

D.1.1 Avoid stubs

Stubs are short pieces of track that tee off from the main track carrying the signal to, for
example, a test point or a connection to an intermediate device. Stubs cause impedance
discontinuities that affect signal quality and must be avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin
functions and where the PCB is designed to support both functions with differing
tracking requirements.

D.1.2 Minimize signal skew (balancing PCB track lengths)

You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK,
PIPESTAT, TRACESYNC, and TRACEPKT from the ASIC to the mictor connector
to within approximately 0.5 inches (12.5mm) of each other. Any greater differences
directly impact the setup and hold time requirements.

D.1.3 Minimize crosstalk

Normal high-speed design rules must be observed. For example, do not run dynamic
signals parallel to each other for any significant distance, keep them spaced well apart,
and use a ground plane and so forth. Particular attention must be paid to the
TRACECLK signal. If in any doubt, place grounds or static signals between the
TRACECLK and any other dynamic signals.
D-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Designing the Target Board for Tracing
D.1.4 Use impedance matching and termination

Termination is almost certainly necessary, but there are some circumstances where it is
not required. The decision is related to track length between the ASIC and the Mictor
connector (see Termination on page D-4).
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-3

Designing the Target Board for Tracing
D.2 Termination

To calculate the maximum track length that can be used without termination, you must
know the following about your ASIC and PCB:

• the rise time (Tr) of the signals coming off the ASIC

• the impedance of the output drivers on the ASIC for the ETM signals

• the propagation delay per inch of PCB track (Tpdt).

D.2.1 Example

The maximum track length without termination is given by:

That is, the signal propagation delay from the ASIC to the Mictor connector must be
less than one fifth of the signal rise time. This calculation allows for the delay of the
Mictor connector and the delay of the track from the Mictor to the input buffers on the
probe.

For a case where the signal rise time (Tr) is 1ns (1000ps) and the propagation delay of
the trace (Tpdt) is 160ps per inch (typical for a PCB made with FR4 laminate), L must
be less than 1000/(5 * 160). That is, L must be less than 1.25 inches. If the PCB trace
length from the ASIC to the Mictor connector is greater than 1.25 inches, you must use
termination.

D.2.2 Termination options

There are four termination options:

Matched impedance

Where available, the best termination scheme is to have the ASIC
manufacturer match the output impedance of the driver to the impedance
of the PCB track on your board. This produces the best possible signal.

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor
value plus the output impedance of the driver must be equal to the PCB
track impedance.

���'*�

2��'/��'*�

0��%���	� ��*� A
D-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Designing the Target Board for Tracing
DC parallel termination

This requires either a single resistor to ground or a pull-up/pull-down
combination of resistors (Thevenin termination), fitted at the end of each
signal and as close as possible to the Mictor connector. If a single resistor
is used, its value must be set equal to the PCB track impedance. If the
pull-up/pull-down combination is used, their resistance values must be
selected so that their parallel combination equals the PCB track
impedance.

Caution
 At lower frequencies, parallel termination requires considerably more

drive capability from the ASIC than series termination and so, in practice,
DC parallel termination is rarely used.

AC parallel termination

This typically uses a resistor and capacitor in series to ground.

Caution
 AC termination can only be used with signals with a 1:1 mark/space ratio

(DC balanced) and is not suitable for asymmetric signals such as the
TRACEPKT and PIPESTAT signals. For this reason, AC termination is
not recommended.

D.2.3 Rules for series terminators

Series (source) termination is the most commonly used method. The basic rules are:

1. The series resistor must be placed as close as possible to the ASIC pin (less than
0.5 inches)

2. The value of the resistor must equal the impedance of the track minus the output
impedance of the output driver. So for example, a 50Ω PCB track driven by an
output with a 17Ω impedance, requires a resistor value of 33Ω.

3. A source terminated signal is only valid at the end of the signal path. At any point
between the source and the end of the track, the signal appears distorted because
of reflections. Any device connected between the source and the end of the signal
path therefore sees the distorted signal and might not operate correctly. Care must
be taken not to connect devices in this way, unless the distortion does not affect
device operation.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-5

Designing the Target Board for Tracing
D.2.4 PCB track impedance

Use the following formula only for microstrips (track on outer layer over a ground
plane):

Where:

h Height above ground plane (inches)

w Trace width (inches), and 0.1 < w/h < 2

t Trace thickness (inches)

Er Relative permittivity of core/prepreg, and 1 < Er < 15

The dimensions h, w, and t are shown in Figure D-1.

Figure D-1 Track impedance

As an example, the following track (in microstrip form) has an impedance of 51.96Ω:

h 0.005 inch height above ground

w 0.007 inch width track

t 0.0014 inch thickness (1 oz. finished weight)

Er 4.5 (FR4 laminate)

Note
 As the track width increases, the impedance decreases.

(<
�)'�/�� � B ��

����C�+53+	 ��5(+
�C���

25>(�

���$�/�'����

�

�

D-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Designing the Target Board for Tracing
D.3 Probe dimensions and keep out areas

Figure D-2 shows the probe attached to a target board.

Caution
 The Mictor connector is not robust. It is recommended that the plastic shroud is fitted
around the target connector. This part is not supplied as standard with RealView Trace.

The Mictor connector support shroud is available from Agilent as part number
E5346 - 44701.

Figure D-2 Probe dimensions

D.3.1 Delayed clock probe

This probe is to be used with target boards that do not meet the required set-up and hold
times between transitions on the data and clock lines, as specified in Signal
requirements on page D-10.

This probe is similar in overall shape and size to the one shown in Figure D-2, but its
reverse side comprises a set of switches that you are to manipulate according to the
function that you require from the target board, namely to:

• perform in (normal) RealView Trace mode

• invert TRACECLK

�3))

�,))

�,))

��>))

��� ��'��!�

���%��
!���/

�$''����*���$/
�	 " �$*�/�

32))
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-7

Designing the Target Board for Tracing
• delay TRACECLK by 2.25ns

• delay TRACECLK by 2.75ns

• perform asynchronous sampling.

Table D-1 shows the switch configurations that you must set to obtain your required
function. The ASYNC switch, however, is controlled by code, and not by physical
manipulation of switch positions.

The layout and location of these switches are shown in Figure D-3.

Figure D-3 Delayed clock probe showing location of switches

Figure D-3 shows Switch 1 in the Off position, and Switch 2 in the On position.

Table D-1 Probe switch settings

Switch Function Switch 1 position Switch 2 position

Normal RVT mode On On

Inverted Inverts TRACECLK Off On

Delay 1 Delays TRACECLK by 2.25ns On Off

Delay 2 Delays TRACECLK by 2.75ns Off Off

ASYNC Asynchronous sampling N/A N/A

+ �
D-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Designing the Target Board for Tracing
Five mode LEDs, located to the left of the switches, are used to indicate when the unit
is powered-up, and which mode is currently active. Only one mode LED lights up at any
one time. Each of these LEDs corresponds to the function denoted by the switch
configuration that you have set.

The five mode LEDs are identified on the PCB as follows:

• INVERTED (green)

• NORMAL (yellow)

• DELAY1(green)

• DELAY2 (yellow)

• ASYNC (green)

Note
 The ASYNC mode facility is included here for descriptive purposes. Its intended use is
for future enhancement of the system.

If you require a delayed clock probe, please contact ARM Limited for more
information.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-9

Designing the Target Board for Tracing
D.4 Signal requirements

Table D-2 lists the specifications that apply to the signals as seen at the Mictor
connector.

The signal waveform is shown in Figure D-4.

Figure D-4 Setup and hold

Note
 RealView Trace supports half-rate clocking mode. Data is output on each edge of the
TRACECLK signal and TRACECLK (max) <= 125MHz. For half-rate clocking, the
setup and hold times at the Mictor connector must be observed.

Table D-2 Signals seen at the Mictor connector

Signal Value

Fmax 250MHz

Tsh and Tsl setup times (min.) 2.0ns

Thh and Thl hold times (min.) 1.0ns

TRACECLK high pulse width (min.) 1.5ns

TRACECLK low pulse width (min.) 1.5ns

�*� �������*�

���
�
0:

&���

-��"�����
���
�
0:

-	%� 0�

D-10 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Designing the Target Board for Tracing
D.4.1 Switching Thresholds

The RealView Trace probe senses the target signalling reference voltage (VTref) and
automatically adjusts its switching thresholds to VTref/2. For example, on a 3.3 volt
target system, the switching thresholds are set to 1.65 volts.

D.4.2 Hot plugging

If both RealView Trace and the target are powered, plugging or unplugging the trace
cable does not damage or crash the RealView Trace system. It is not possible, however,
to guarantee similar immunity to any third party target system. You must, therefore, take
precautions such as pulling inputs and driving or making high Z outputs when Vsupply
is not present.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. D-11

Designing the Target Board for Tracing
D.5 Probe modeling

For TRACECLK frequencies above 100MHz, it is recommended that modeling is
used. The characteristics for the RealView Trace probe are:

• The Mictor connector single line model can be downloaded directly from the
AMP website at http://www.amp.com (models are currently located at
http://www.amp.com/simulation/scripts/models.asp). The closest available
model is entitled MICTOR, .025" PITCH, 2 ROW, VERTICAL PLUG TO
VERTICAL RECEPTACLE, 0.260" [6.6 mm] HEIGHT .

The connector assembly (plug and receptacle together) can be viewed as a
transmission line with an impedance of 45Ω and a propagation delay of 39ps. For
more accurate modeling, multi-line models can be requested from AMP.

• All traces are microstrips (on outer layers over ground planes)

• Trace widths are 0.007 inch

• Trace thickness is 0.0014 inch (1oz finished weight)

• Distance from trace to ground plane is 0.005 inch

• Trace lengths from Mictor to input buffers are 0.329 inches maximum and 0.193
inches minimum

• Average trace separation is 0.010 inches

• Er = 4.5.

• The probe input buffers are a mixture of Fairchild FIN1104MTD and
FIN1108MTD devices (4 channel & 8 channel devices respectively).

The following signals are routed to FIN1104MTD inputs:

— TRACEPKT4

— TRACEPKT5

— TRACEPKT6

— TRACEPKT7

— TRACECLK

All other signals are routed to FIN1108MTD devices.

The datasheets, ibis and hspice models for these devices are available on the
Fairchilds web site at http://www.fairchildsemi.com.
D-12 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix E
Hardware Variants

This appendix describes the RealView® ICE v3.1 hardware unit.

Depending on the hardware unit that you are using, it is possible that your unit’s features
might be different in appearance or functionality from those generally referred to in this
document.

This appendix includes:

• RealView ICE hardware on page E-2.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. E-1

Hardware Variants
E.1 RealView ICE hardware

This appendix describes the appearance and functionality of the RealView ICE v3.1
hardware unit, and compares some physical aspects of previous versions. It consists of
the following sections:

• End panel elements

• Lead-free LVDS probe on page E-4.

The new functionality of the v3.1 probe allows you to make a serial wire debug (SWD)
connection to the Debug Access Port (DAP). For more details of this, see Appendix F
Serial Wire Debug.

E.1.1 End panel elements

The RVI v3.1 hardware unit is enhanced in comparison to previous versions.

The host computer ports end panel comprises:

• a reset switch, RST

• a DC socket negative/positive symbol.

The host computer ports end panel details are shown in Figure E-1.

Figure E-1 RVI v3.1 host computer ports end panel

Compare this arrangement with that of earlier units, an example of which is shown in
Figure E-2 on page E-3.

�������	
���
 ���

�����
���������

�������	
����

���
����

��������
����

���
����
���� ��!"

���
���������
���� ��!"

���
�#$$%&
��������"

��'

�����
&(����

)*
E-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Hardware Variants
Figure E-2 Pre-v3.0 host computer ports end panel

The main change in functionality between the v3.0 hardware and that of its predecessors
was the introduction of the RST button, which allows you to reset the RVI to its default
state without the requirement to disconnect the unit from the power supply and then
reconnect. For more information on the functionality of each of the features shown in
Figure E-1 on page E-2, see The RealView ICE run control unit on page 1-8.

In the case of the target hardware ports end panel, this shows the name of each of the
four identification LEDs. See Figure E-3.

Figure E-3 RVI v3.1 target hardware ports end panel

Here, the identification LEDs JTAG, STAT, CFAC and LVDS replace the previous
lettering system of A, B, C and D, respectively. An example of the replaced target
hardware ports end panel is shown in Figure E-4 on page E-4.

�������	
���
 ���

�����
���������

�������	
����

���
����

��������
����

���
����
���� ��!"

���
���������
���� ��!"

���
�#$$%&
��������"

+'�,��+'�,

�'�'

	�'��

	�

��� +'�,��

�-�������
&(�������

���
'��..��
���(�

'��..��
�(��(�

�����
���

+'�,��
����

�/�������"

0�

����

�'�'
���

����
���

+'�,��
����

�/���1$*��!"

+'�,
���

0�

���
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. E-3

Hardware Variants
Figure E-4 Replaced target hardware ports end panel

E.1.2 Lead-free LVDS probe

The RVI v3.1 hardware unit comprises a Low Voltage Differential Signaling (LVDS)
probe. The probe is visibly different by the presence of two colored LEDs, which
signify the status of the activity taking place.

Figure E-5 shows the LVDS probe’s dimensions and its LED locations.

Figure E-5 Lead-free LVDS probe LEDs and dimensions

�����
�+'�,
���� ��!"

+'�,��

�

�

�

	�'��

	�

��� +'�,��

�-�������
&(�������

���
'��..��
���(�

'��..��
�(��(� ����

�����
���

�����
��!���=
�����"

�����
�+'�,��
��4����2"

+'�,��
����

�/�������"

+'�,��
����

�/���1$*��!"

;())

,;))
������0�&

7����
�0�&

#0&
E-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Hardware Variants
Table E-1 provides a diagnostic means to determine the type of activity taking place,
according to the permutations of the green and yellow LEDs.

RVI v3.1 supports the SWD debugging protocol as an alternative to JTAG. SWD can
only be used with the LVDS probe, and without using the JTAG ribbon cable. The probe
must be a lead-free version as described, and may need to have its firmware upgraded.
For details on upgrading its firmware, see Procedure for upgrading the LVDS probe on
page 7-13.

As shown in Figure E-5 on page E-4, compatible probes have two LEDs on their front
left-hand side. At power-up, both LEDs should be lit. If only the yellow LED is lit, you
must upgrade the probe to make it SWD-capable.

In addition, if your probe does not appear to have a CPLD located as shown in
Figure E-5 on page E-4, it means that your probe is of the v1.5 type, and should be
replaced if SWD-compatibility is required. To upgrade your probe to the lead-free type,
please contact ARM Limited for more information.

SWD supports only a single DAP and not a chain of devices. The graphical
representation of the target system changes to represent this when SWD is selected.

Note
 The lead-free LVDS probe is supplied as standard with RealView ICE v3.1 units. The
probe can also be used with a RealView ICE v3.0 unit, updated with a firmware patch
that provides support for the v3.1 probe. See Installing an update or patch on page 7-10.

Table E-1 Diagnostic table

Green Yellow Power CPLD OK
JTAG
mode

SW Mode
JTAG

Activity
SW

Activity

Off Off No N/A N/A N/A N/A N/A

Dim Dim Yes No N/A N/A N/A N/A

On On Yes Yes N/A N/A N/A N/A

Off On Yes Yes Yes No No N/A

Flicker On Yes Yes Yes No Yes N/A

On Off Yes Yes No Yes N/A No

On Flicker Yes Yes No Yes N/A Yes
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. E-5

Hardware Variants
E-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Appendix F
Serial Wire Debug

This appendix describes the Serial Wire Debug (SWD) connection to the Debug Access
Port (DAP).

This appendix includes:

• Serial Wire Debug on page F-2.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. F-1

Serial Wire Debug
F.1 Serial Wire Debug

This appendix describes the functionality available for use with the LVDS probe in
RealView ICE v3.1. It consists of the following sections:

• Target interface

• SWD timing requirements

The functionality supports a serial wire debug (SWD) connection to the Debug Access
Port (DAP). SWD is an alternative protocol to JTAG for connecting to CoreSight cores,
and has the advantage of requiring fewer pins than previous probes. It also supports
higher data rates.

F.1.1 Target interface

Table F-1 shows the SWD pinout for the connector alongside the JTAG pinout.

F.1.2 SWD timing requirements

This section describes the timing requirements for the SWD interface when the clock is
sourced from the RVI.

Table F-1 SWD interface pinout

Pin
Signal

Pin Signal
JTAG Serial Wire

1 VTref VTref 2 NC

3 nTRST NC 4 GND

5 TDI NC 6 GND

7 TMS SWDIO 8 GND

9 TCK SWDCLK 10 GND

11 RTCK NC 12 GND

13 TDO NC 14 GND

15 nSRST nSRST 16 GND

17 DBGRQ DBGRQ 18 GND

19 DBGACK DBGACK 20 GND
F-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Serial Wire Debug
The RVI connects to the serial wire-enabled target using the LVDS probe. The interface
uses only two lines, but for clarity the diagrams shown in Figure F-1 separate the
SWDIO line to show when it is driven by either the RVI probe or target.

Figure F-1 SWD timing diagrams

The probe outputs data to SWDIO on the falling edge of SWDCLK. The probe captures
data from SWDIO on the rising edge of SWDCLK. The target outputs data to SWDIO
on the rising edge of SWDCLK. The target captures data from SWDIO on the rising
edge of SWDCLK.

Table F-2 shows the timing requirements for the SWD.

'��*��������� ���>

'��*����� ��>���4�2.� '��*�����

'��*��������� ���>

����'��*����� ��>���4�2.� ���� '��*����������!

�����

��������� ���� �����!

'��'��

�������&���(��(������3��	

�������&���(��(������3�
��

'��.����(��(������3��	

�������&���(��(������3��	

�������&���(��(������3�
��

'��.����(��(������3��	

'�� '��.� '4��

3������!�4�

���2��!�4�

Table F-2 SWD timing requirements

Parameter Min Max Description

Thigh 10ns 500μs SWDCLK HIGH period

Tlow 10ns 500μs SWDCLK LOW period

Tos -5ns 5ns SWDIO Output skew to falling edge
SWDCLK

Tis 4ns - Input Setup time required between
SWDIO and rising edge SWDCLK

Tih 1ns - Input Hold time required between
SWDIO and rising edge SWDCLK
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. F-3

Serial Wire Debug
F-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

Access-provider connection
A debug target connection item that can connect to one or more target processors. The
term is normally used when describing the RealView Debugger Connection Control
window.

Adaptive clocking A technique in which a clock signal is sent out by RealView ICE and it waits for the
returned clock before generating the next clock pulse. The technique enables the
RealView ICE run control unit to adapt to differing signal drive capabilities and
differing cable lengths.

Address breakpoint A type of breakpoint. See Breakpoint.

ADS See ARM Developer Suite.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors
such as an ARM core to high-performance peripherals, DMA controllers, on-chip
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports
multi-master bus management to maximize system performance.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running
with multiple masters and slaves. It is an on-chip bus specification that details a strategy
for the interconnection and management of functional blocks that make up a
System-on-Chip (SoC). It aids in the development of embedded processors with one or
more CPUs or signal processors and multiple peripherals. AMBA complements a
reusable design methodology by defining a common backbone for SoC modules. AHB
conforms to this standard.

AFS ARM Firmware Suite.

AHB See Advanced High-performance Bus.

AHB-Lite
AHB-Lite is a subset of the full AHB specification. It is intended for use in designs
where only a single AHB master is used. This can be a simple single AHB master
system or a multi-layer AHB system where there is only one AHB master on a layer.

Angel Angel is a software debug monitor that runs on the target and enables you to debug
applications running on ARM architecture-based hardware. Angel is commonly used
where a JTAG emulator is not available.

ARM Developer Suite (ADS)
A suite of software development applications, together with supporting documentation
and examples, that enable you to write and debug applications for the ARM family of
RISC processors.

Big-endian Memory organization where the least significant byte of a word is at the highest address
and the most significant byte is at the lowest address in the word.

See also Little-endian.

Breakpoint A user-defined point where execution stops so that a debugger can examine the state of
memory and registers.

See also Hardware breakpoint and Software breakpoint.

Cache cleaning The process of writing dirty data in a cache to main memory.

See also Dirty data.

Complex Programmable Logic Device (CPLD)
A collection of PAL-type devices in a single package.

Context menu See Pop-up menu.

Coprocessor An additional processor that is used for certain operations, for example, for
floating-point math calculations, signal processing, or memory management.
Glossary-2 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Glossary
Core Module In the context of Integrator, an add-on development board that contains an ARM
processor and local memory. Core modules can run standalone, or can be stacked onto
Integrator motherboards.

See also Integrator.

CoreSight Debug and real-time trace. The infrastructure for monitoring, tracing and debugging a
complete system-on-chip.

CPLD See Complex Programmable Logic Device.

CPSR See Program Status Register.

CPU Central Processor Unit.

Current Program Status Register (CPSR)
See Program Status Register.

DAP See Debug Access Port.

Data breakpoint A location in the image that is monitored. If the value stored there is accessed in a
specific way, the debugger halts execution of the image.

See also Instruction breakpoint.

DCache Data cache.

Debug Access Port (DAP)
A TAP block that acts as an AMBA (AHB or AHB-Lite) master for access to a system
bus. The DAP is the term used to encompass a set of modular blocks that support
system-wide debug. The DAP is a modular component, intended to be extendable to
support optional access to multiple systems such as memory mapped AHB and
CoreSight APB through a single debug interface.

Debugger An application that monitors and controls the execution of a second application. It is
usually used to find errors in the application program flow.

Dirty data When referring to a processor data cache, data that has been written to the cache but has
not been written to main memory. Only write-back caches can have dirty data, because
a write-through cache writes data to the cache and to main memory simultaneously. The
process of writing dirty data to main memory is called cache cleaning.

See also Cache cleaning.

DLL See Dynamic Linked Library.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. Glossary-3

Glossary
Dynamic Linked Library
A collection of programs, any of which can be called when required by an executing
program. A small program that helps a larger program communicate with a device, such
as a printer or keyboard, is often packaged as a DLL.

EmbeddedICE logic The EmbeddedICE logic is an on-chip logic block that provides TAP-based debug
support for ARM processor cores. It is accessed through the TAP controller on the ARM
core using the JTAG interface.

See also IEEE1149.1-2001 and In-Circuit Emulator.

Embedded Trace Buffer (ETB)
The Embedded Trace Buffer provides logic inside the core that extends the information
capture functionality of the Embedded Trace Macrocell.

Embedded Trace Macrocell (ETM)
The Embedded Trace Macrocell is the logic inside the core that communicates details
of program execution to the external trace port.

Endpoint connection
A debug target processor, normally accessed through an access-provider connection.

Environment The actual hardware and operating system that an application runs on.

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

Flash memory Nonvolatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Hardware breakpoint
A breakpoint that is implemented using non-intrusive additional hardware. Hardware
breakpoints are the only method of halting execution when the location is in Read Only
Memory (ROM). Using a hardware breakpoint often results in the processor halting
completely. This is usually undesirable for a real-time system.

See also Breakpoint and Software breakpoint.

Host A computer that provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

IC Integrated Circuit.

ICache Instruction cache.

ID Identifier.
Glossary-4 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Glossary
IEEE 1149.1-2001 The IEEE Standard that defines TAP. Commonly, but incorrectly, referred to as JTAG.

See also Test Access Port

Image An executable file that has been loaded onto a processor for execution.

In-circuit Emulator A device enabling access to and modification of the signals of a circuit while that circuit
is operating.

Instruction breakpoint
A location in the image that is monitored. If execution reaches this location, the
debugger halts execution of the image.

See also Data breakpoint.

Instruction Register (IR)
When referring to a TAP controller, a register that controls the operation of the TAP.

Integrator A range of ARM hardware development platforms. Core Modules are available that
contain the processor and local memory.

IR See Instruction Register.

Joint Test Action Group (JTAG)
An IEEE group focussed on silicon chip testing methods. Many debug and
programming tools use a Joint Test Action Group (JTAG) interface port to communicate
with processors. For more information, see IEEE Standard, Test Access Port and
Boundary Scan Architecture specification 1149.1-2001 (JTAG).

JTAG See Joint Test Action Group.

Little-endian Memory organization where the least significant byte of a word is at the lowest address
and the most significant byte is at the highest address of the word.

See also Big-endian.

LSI Large Scale Integration.

LVDS Low Voltage Differential Signaling.

Memory Management Unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

MPU Multi-Processor Unit.

Multi-ICE A JTAG-based tool for debugging embedded systems.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. Glossary-5

Glossary
nSRST Abbreviation of System Reset. The electronic signal that causes the target system other
than the TAP controller to be reset. This signal is known as nSYSRST in some other
manuals.

See also nTRST.

nTRST Abbreviation of TAP Reset. The electronic signal that causes the target system TAP
controller to be reset. This signal is known as nICERST in some other manuals.

See also nSRST.

Open collector A signal that can be actively driven LOW by one or more drivers, and is otherwise
passively pulled HIGH. Also known as a ‘wired AND’ signal.

PCB Printed Circuit Board

Pop-up menu Also known as Context menu. A menu that is displayed temporarily, offering items
relevant to your current situation. Obtainable in most RealView Debugger windows or
panes by right-clicking with the mouse pointer inside the window. In some windows the
pop-up menu can vary according to the line the mouse pointer is on and the tabbed page
that is currently selected.

Processor core The part of a microprocessor that reads instructions from memory and executes them,
including the instruction fetch unit, arithmetic and logic unit and the register bank. It
excludes optional coprocessors, caches, and the memory management unit.

Processor Status Register
See Program Status Register.

Program image See Image.

Program Status Register (PSR)
Contains information about the current execution context. It is also referred to as the
Current PSR (CPSR), to emphasize the distinction between it and the Saved PSR
(SPSR), that records information about an alternate processor mode.

PSR See Program Status Register.

RealView Compilation Tools
A suite of tools, together with supporting documentation and examples, that enables
you to write and build applications for the ARM family of RISC processors.

RealView Debugger The latest debugger software from ARM that enables you to make use of a debug agent
to examine and control the execution of software running on a debug target. RealView
Debugger is supplied in Windows and Linux versions.

RealView ICE RealView EmbeddedICE interface.

RealView Trace Provides tracing functionality for RealView ICE.
Glossary-6 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

Glossary
Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to enable RAM to replace ROM when the initialization
has been done.

RTCK Returned TCK. The signal that enables Adaptive Clocking.

RTOS Real Time Operating System.

RVCT See RealView Compilation Tools.

RVD See RealView Debugger

Saved Program Status Register (SPSR)
See Program Status Register.

Scan chain A scan chain is made up of serially-connected devices that implement boundary-scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain. Processors might contain
several shift registers to enable you to access selected parts of the device.

Semihosting A mechanism where I/O requests made in the application code are communicated to the
host system, rather than being executed on the target.

Serial Wire Debug
(SWD)

Serial Wire Debug is a two-pin, bi-directional, data signal plus clock that replaces the
5-pin or 6-pin JTAG interface. The Serial Wire/JTAG debug port provides access to
system memory peripherals and debug configuration registers.

Software breakpoint A breakpoint that is implemented by replacing an instruction in memory with one that
causes the processor to take exceptional action. Because instruction memory must be
altered software breakpoints cannot be used where instructions are stored in read-only
memory. Using software breakpoints can enable interrupt processing to continue during
the breakpoint, making them more suitable for use in real-time systems.

See also Breakpoint and Hardware breakpoint.

SPSR See Program Status Register.

Supervisor Call (SVC)
An instruction that interrupts the program being executed, and passes control to the
supervisor.

SVC See Supervisor Call.

SWD See Serial Wire Debug.

Synchronous starting
Setting several processors to a particular program location and state, and starting them
together.
ARM DUI 0155G Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. Glossary-7

Glossary
Synchronous stopping
Stopping several processors in such a way that they stop executing at the same instant.

TAP See Test Access Port.

TAP Controller Logic on a device that enables access to some or all of that device for test purposes. The
circuit functionality is defined in IEEE1149.1-2001.

See also Test Access Port and IEEE1149.1-2001.

Target The target hardware, including processor, memory, and peripherals, real or simulated,
on which the target application is running.

TCK The electronic clock signal that times data on the TAP data lines TMS, TDI, and TDO.

TDI The electronic signal input to a TAP controller from the data source (upstream). Usually
this is seen connecting the RealView ICE run control unit to the first TAP controller.

TDO The electronic signal output from a TAP controller to the data sink (downstream).
Usually this is seen connecting the last TAP controller to the RealView ICE run control
unit.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST. This signal is
mandatory in ARM cores because it is used to reset the debug logic.

TMS Test Mode Select.

TPA See Trace Port Analyzer.

Trace funnel A device that combines multiple trace sources onto a single bus.

Trace Port Analyzer (TPA)
A logic analyzer that can capture the details of program execution in real time.
RealView Trace is the ARM trace port analyzer.

Trace Port Interface Unit (TPIU)
A trace sink used to drain trace data, and acts as a bridge between the on-chip trace data
and the data stream captured by a TPA.

TTL Transistor-transistor logic. A type of logic design in which two bipolar transistors drive
the logic output to one or zero. LSI and VLSI logic often used TTL with HIGH logic
level approaching +5V and LOW approaching 0V.

VLSI Very Large Scale Integration.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
Glossary-8 Copyright © 2002, 2004-2007 ARM Limited. All rights reserved. ARM DUI 0155G

	RealView ICE and RealView Trace User Guide
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Organization
	Timing diagram conventions
	Further reading

	Feedback
	Feedback on RealView ICE and RealView Trace
	Feedback on this document

	Introduction
	1.1 About RealView ICE and RealView Trace
	1.1.1 RealView ICE product contents
	1.1.2 RealView Trace product contents

	1.2 Availability and compatibility
	1.3 Introduction to EmbeddedICE logic and debug extensions
	1.3.1 Debug extensions to the ARM core
	1.3.2 The EmbeddedICE logic
	1.3.3 How the EmbeddedICE debug architecture differs from a debug monitor

	1.4 Introduction to the RealView ICE components
	1.4.1 The RealView ICE run control unit
	1.4.2 The RealView ICE firmware
	1.4.3 The RealView ICE host software

	1.5 Introduction to GDB debugging with RealView ICE
	1.5.1 GDB availability and compatibility
	1.5.2 Supported debug host platforms
	1.5.3 Recommended applications for debugging with GDB

	Getting Started
	2.1 System requirements
	2.1.1 Host software requirements
	2.1.2 Host hardware requirements
	2.1.3 Target hardware requirements

	2.2 Connecting the RealView ICE hardware
	2.2.1 What you require
	2.2.2 Connection instructions
	2.2.3 Using nonstandard connectors
	2.2.4 Hot plugging and unplugging the JTAG cable

	2.3 Using RealView ICE and RealView Trace

	Configuring RealView ICE Networking
	3.1 Determining the correct network settings
	3.1.1 Not using DHCP
	3.1.2 Using DHCP

	3.2 Starting and exiting the RealView ICE Config IP application
	3.2.1 Starting the RealView ICE Config IP application
	3.2.2 Exiting the RealView ICE Config IP application

	3.3 Configuring the network settings
	3.3.1 Configuring by scanning all run control units
	3.3.2 Configuring using an Ethernet address
	3.3.3 Configuring for connection with an Ethernet cross-over cable

	3.4 Restarting your RealView ICE run control unit

	Configuring a RealView ICE Connection
	4.1 Changes to RealView Debugger
	4.2 Using the RVConfig dialog
	4.2.1 Opening the RVConfig dialog box from RealView Debugger
	4.2.2 Opening the RVConfig dialog box - standalone method
	4.2.3 Connecting to a RealView ICE unit
	4.2.4 Configuring a scan chain
	4.2.5 CoreSight system configuration
	4.2.6 Configuring devices
	4.2.7 Advanced configuration
	4.2.8 Saving your changes
	4.2.9 Disconnecting from a RealView ICE unit

	4.3 Connecting RealView Debugger to a target using RealView ICE
	4.4 Using the Debug tab of the RealView Debugger Register pane

	Debugging with RealView ICE
	5.1 Post-mortem debugging
	5.2 Semihosting
	5.2.1 Enabling semihosting
	5.2.2 Adding an application SVC handler when using RealView ICE
	5.2.3 Cortex-M3 semihosting

	5.3 Breakpoints
	5.3.1 Hardware Breakpoints
	5.3.2 Software instruction breakpoints
	5.3.3 Processor exceptions
	5.3.4 Breakpoints and the program counter
	5.3.5 Interaction with RealView Debugger
	5.3.6 Problems setting breakpoints

	5.4 Cached data
	5.5 Debugging applications in ROM
	5.5.1 Debugging from reset
	5.5.2 Debugging systems with ROM at the exception vector

	Using RealView Trace
	6.1 About RealView Trace
	6.1.1 The RealView Trace product
	6.1.2 Front panel layout
	6.1.3 Capture rates
	6.1.4 Availability and compatibility

	6.2 System requirements
	6.2.1 Host software requirements
	6.2.2 Host hardware requirements
	6.2.3 Target hardware requirements

	6.3 Installing RealView Trace
	6.4 Connecting the RealView Trace hardware
	6.4.1 What you require
	6.4.2 Connection instructions

	6.5 Configuring RealView Debugger for trace capture

	Managing the RealView ICE Software
	7.1 Starting the RVI Update application
	7.2 Connecting to a RealView ICE unit
	7.2.1 Scanning for RealView ICE units
	7.2.2 Identifying your RealView ICE unit
	7.2.3 Viewing the installed components
	7.2.4 RVI Update tasks
	7.2.5 Disconnecting from the RealView ICE unit
	7.2.6 Exiting the RVI Update application
	7.2.7 Troubleshooting RealView ICE connections

	7.3 Viewing software version numbers
	7.3.1 Version information dialog box components
	7.3.2 Saving the version information to a file

	7.4 Installing an update or patch
	7.4.1 Procedure for installing an update or patch
	7.4.2 Procedure for upgrading the LVDS probe
	7.4.3 Troubleshooting firmware upgrade installations

	7.5 Restarting the RealView ICE run control unit

	Configuring RealView ICE for GDB
	8.1 About using RealView ICE for debugging with GDB
	8.1.1 Features supported when debugging with GDB
	8.1.2 Features not supported when debugging with GDB
	8.1.3 RealView ICE TCP/IP ports used
	8.1.4 Building for standalone target platforms

	8.2 Methods of connecting from remote GDB sessions
	8.2.1 Summary of the connection methods for each debugging mode
	8.2.2 Connections to a target without built-in GDB support (RVI-GDB)
	8.2.3 Connections to a target with a GDB stub (Target-GDB)
	8.2.4 Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual Ethernet)
	8.2.5 Connections to a target OS using gdbserver (GDBserver)
	8.2.6 Connections to a target OS using NFS (GDB-NFS)

	8.3 Preparing RealView ICE for remote GDB connections
	8.3.1 About connecting to targets through RealView ICE
	8.3.2 Multicore debugging
	8.3.3 DCC modes

	8.4 Loading and booting a complete system
	8.4.1 Requirements for using the rviload utility
	8.4.2 rviload command syntax
	8.4.3 Using the rviload utility from a Cygwin bash or Red Hat Linux shell

	8.5 Multiprocessor debugging with GDB and RealView ICE
	8.5.1 How connections to multiple processors are allocated
	8.5.2 Considerations when debugging multiple targets with GDB

	8.6 The Eclipse Plug-in
	8.6.1 Load using an existing Eclipse target configuration
	8.6.2 Launching Eclipse in Red Hat Linux

	System Design Guidelines
	9.1 About the system design guidelines
	9.2 System design
	9.2.1 Using adaptive clocking to synchronize the JTAG port
	9.2.2 Reset signals

	9.3 ASIC guidelines
	9.3.1 ICs containing multiple devices
	9.3.2 ICs containing CoreSight debug technology
	9.3.3 Boundary scan test vectors

	9.4 PCB guidelines
	9.4.1 PCB connections
	9.4.2 Target interface logic levels

	9.5 JTAG signal integrity and maximum cable lengths
	9.6 Compatibility with EmbeddedICE interface target connectors
	9.6.1 Adaptor to connect a RealView ICE run control unit to 14-way connectors

	JTAG Interface Connections
	A.1 JTAG interface pinouts
	A.2 JTAG interface signals
	A.2.1 JTAG interface signal details

	A.3 JTAG port timing characteristics

	User I/O Connections
	B.1 The RealView ICE User I/O connector

	RealView Trace Interface Connections
	C.1 RealView Trace front panel components
	C.1.1 LEDs
	C.1.2 Trigger input and output SMB connectors
	C.1.3 RealView Trace probe connector
	C.1.4 Logic input connector

	C.2 Trace signals
	C.2.1 Signal levels
	C.2.2 Clock frequency
	C.2.3 Data setup and hold
	C.2.4 Switching thresholds
	C.2.5 Hot plugging

	Designing the Target Board for Tracing
	D.1 Overview of high-speed design
	D.1.1 Avoid stubs
	D.1.2 Minimize signal skew (balancing PCB track lengths)
	D.1.3 Minimize crosstalk
	D.1.4 Use impedance matching and termination

	D.2 Termination
	D.2.1 Example
	D.2.2 Termination options
	D.2.3 Rules for series terminators
	D.2.4 PCB track impedance

	D.3 Probe dimensions and keep out areas
	D.3.1 Delayed clock probe

	D.4 Signal requirements
	D.4.1 Switching Thresholds
	D.4.2 Hot plugging

	D.5 Probe modeling

	Hardware Variants
	E.1 RealView ICE hardware
	E.1.1 End panel elements
	E.1.2 Lead-free LVDS probe

	Serial Wire Debug
	F.1 Serial Wire Debug
	F.1.1 Target interface
	F.1.2 SWD timing requirements

	Glossary

