
ARM® Developer Suite
Version 1.2

Linker and Utilities Guide
Copyright © 2001 ARM Limited. All rights reserved.
ARM DUI 0151A

ARM Developer Suite
Linker and Utilities Guide

Copyright © 2001 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

November 2001 A ADS Release 1.2
ii Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Contents
ARM Developer Suite Linker and Utilities Guide

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 About the linker and utilities .. 1-2

Chapter 2 The armlink Command Syntax
2.1 About armlink .. 2-2
2.2 armlink command syntax .. 2-8

Chapter 3 Using the Basic Linker Functionality
3.1 Specifying the image structure .. 3-2
3.2 Section placement .. 3-8
3.3 Optimizations and modifications ... 3-12
3.4 Using command-line options to create simple images 3-14

Chapter 4 Accessing Image Symbols
4.1 Accessing linker-defined symbols ... 4-2
4.2 Accessing symbols in another image .. 4-5
4.3 Hiding and renaming global symbols .. 4-9
4.4 Using $Super$$ and $Sub$$ to overide symbol definitions 4-12
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. iii

Contents
Chapter 5 Using Scatter-loading description files
5.1 About scatter-loading .. 5-2
5.2 The formal syntax of the scatter-loading description file 5-7
5.3 Examples of specifying region and section addresses 5-22
5.4 Equivalent scatter-loading descriptions for simple images 5-28

Chapter 6 Creating and Using libraries
6.1 About libraries ... 6-2
6.2 Library searching, selection, and scanning .. 6-3
6.3 The ARM librarian ... 6-6

Chapter 7 Using fromELF
7.1 About fromELF ... 7-2
7.2 fromELF command-line options .. 7-3
7.3 Examples of fromELF usage .. 7-10

Chapter 8 Using the ARM Profiler
8.1 About the ARM profiler ... 8-2
8.2 Profiler command-line options .. 8-3
8.3 Sample output .. 8-4

Glossary
iv Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Preface

This preface introduces the ARM Developer Suite (ADS) linker and utilities
documentation. It contains the following sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. v

Preface
About this book

This book provides reference information for ADS. It describes the command-line
options to the linker and other ARM tools in ADS.

Intended audience

This book is written for all developers who are producing applications using ADS. It
assumes that you are an experienced software developer and that you are familiar with
the ARM development tools as described in ADS Getting Started.

Using this book

This book is organized into the following chapters and appendixes:

Chapter 1 Introduction

Read this chapter for an introduction to the linker and related utilities in
ADS version 1.2.

Chapter 2 The armlink Command Syntax

Read this chapter for an explanation of all command-line options
accepted by the linker.

Chapter 3 Using the Basic Linker Functionality

Read this chapter for details on creating simple images.

Chapter 4 Accessing Image Symbols

Read this chapter for details on accessing symbols in images.

Chapter 5 Using Scatter-loading description files

Read this chapter for details on using a scatter-loading file to place code
and data in memory.

Chapter 6 Creating and Using libraries

Read this chapter for an explanation of the procedures involved in
creating and accessing library objects.

Chapter 7 Using fromELF

Read this chapter for a description of the fromELF utility program and
how you can use it to change image format.
vi Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Preface
Chapter 8 Using the ARM Profiler

Read this chapter for a description of the ARM profiler utility program
provided with ADS.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and for the ARM Frequently
Asked Questions list.

ARM publications

This book contains reference information that is specific to development tools supplied
with ADS. Other publications included in the suite are:

• ADS Installation and License Management Guide (ARM DUI 0139)

• Getting Started (ARM DUI 0064)
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. vii

Preface
• ADS Developer Guide (ARM DUI 0056)

• ADS Assembler Guide (ARM DUI 0068)

• ADS Compilers and Libraries Guide (ARM DUI 0067)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• CodeWarrior IDE Guide (ARM DUI 0065).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
DynaText and PDF format.

• ARM Applications Library Programmer’s Guide. This is supplied in DynaText
and PDF format.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb® Procedure Call Standard specification. This is supplied in PDF
format in install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Additional code examples and information about writing code can be found in the ARM
Firmware Suite (AFS) example code and documentation. Refer to the following ARM
publications for more details on AFS:

• ARM Firmware Suite User Guide (ARM DUI 0136)

• ARM Firmware Suite Reference Guide (ARM DUI 0102).

Other publications

This book is not intended to be an introduction to the ARM assembly language, C, or
C++ programming languages. Other books provide general information about
programming.

The following book gives general information about the ARM architecture:

• ARM System-on-chip Architecture (second edition), Furber, S., (2000). Addison
Wesley. ISBN 0-201-67519-6.
viii Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Preface
Feedback

ARM Limited welcomes feedback on both ADS and the documentation.

Feedback on the ARM Developer Suite

If you have any problems with ADS, please contact your supplier. To help them provide
a rapid and useful response, please give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tools, including the version number and build numbers.

Feedback on this book

If you have any problems with this book, please send an email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. ix

Preface
x Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 1
Introduction

This chapter introduces the ARM linker and utility programs provided with ADS. It
contains the following sections:

• About the linker and utilities on page 1-2

• The linker on page 1-2

• The utilities on page 1-3.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the linker and utilities

ADS consists of a suite of applications, together with supporting documentation and
examples, that enable you to write and debug applications for the ARM family of RISC
processors. You can use ADS to develop, build, and debug C, C++, and ARM assembly
language programs.

The ADS toolkit consists of the following major components:

• command-line development tools

• GUI development tools

• utilities

• supporting software.

This book describes the ARM linker, armlink, and the command-line utility tools
provided with ADS. See ARM publications on page vii for a list of the other books in
the ADS documentation suite that give information on the ARM assemblers, compilers,
debuggers, and supporting software.

1.1.1 The linker

armlink combines the contents of one or more object files with selected parts of one or
more object libraries to produce an ELF executable image, or a partially linked ELF
object.

The linker can link ARM code and Thumb code, and automatically generates
interworking veneers to switch processor state when required. The linker also
automatically generates long branch veneers, where required, to extend the range of
branch instructions.

The linker supports command-line options that enable you to specify separate locations
for code and data within the system memory map. Alternatively, you can use
scatter-load description files to specify the memory locations, at both load and
execution time, of individual code and data sections in your output image. This enables
you to create complex images spanning multiple memories.

The linker can perform common section elimination and unused section elimination to
reduce the size of your output image. In addition, the linker enables you to:

• produce debug and reference information about linked files

• generate a static callgraph and list the stack usage over it

• control the contents of the symbol table in output images.

The linker automatically selects the appropriate standard C or C++ library variants to
link with, based on the build attributes of the objects it is linking.
1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Introduction
The linker does not generate output formats other than ELF. To convert ELF images to
other format, such as plain binary for loading into ROM, use the fromELF utility. See
The utilities.

See Chapter 2 The armlink Command Syntax for detailed information on the ARM
linker.

1.1.2 The utilities

This section gives an overview of the utility tools that are provided to support the main
development tools, including:

• fromELF

• armar

• armprof.

fromELF

fromELF is the ARM image conversion utility. It accepts ELF format input files and
converts them to a variety of output formats, including:

• plain binary

• Motorola 32-bit S-record format

• Intel Hex-32 format

• Byte Oriented (Verilog Memory Model) Hex format.

The utility can also produce textual information about the input file, and disassemble
code. See Chapter 7 Using fromELF for detailed information.

armar

The ARM librarian armar enables you to collect and maintain sets of ELF files in ar
format libraries. You can pass libraries to the linker in place of several ELF object files.
See The ARM librarian on page 6-6 for detailed information.

armprof

The ARM profiler armprof displays an execution profile of a simple program from a
profile data file generated by an ARM debugger. See Chapter 8 Using the ARM Profiler
for detailed information.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 2
The armlink Command Syntax

This chapter describes the full command syntax for armlink. This chapter contains the
following sections:

• About armlink on page 2-2

• armlink command syntax on page 2-8.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-1

The armlink Command Syntax
2.1 About armlink

armlink, the ARM linker, enables you to:

• link a collection of objects and libraries (in either ARM or Thumb code) into an
executable image

• partially link a collection of objects into an object that can be used as input to a
future link step

• specify where the code and data are to be located in memory

• produce debug and reference information about the linked files.

Objects consist of input sections that contain code, initialized data, or the locations of
memory that must be set to zero. Input sections can be Read-Only (RO), Read-Write
(RW), or Zero-Initialized (ZI). These attributes are used by armlink to group input
sections into bigger building blocks called output sections, regions, and images. Load
regions are equivalent to ELF segments.

Load regions typically exist in the system memory map at reset or after the image is
loaded into the target by a debugger. Before you can execute the image, you might have
to move some of its regions to their execution addresses. The memory map of an image
therefore has two distinct views:

• the load view of the memory when the program and data are first loaded

• the execution view of the memory after code is moved to its normal execution
location.

The term root region is used to describe regions that execute at their load address.

See Specifying the image structure on page 3-2 for more information on the image
hierarchy.
2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
2.1.1 Input to armlink

Input to armlink consists of:

• One or more object files in ELF Object Format. This format is described in the
ARM ELF specification. See ARM publications on page vii for more information.

• Optionally, one or more libraries created by armar as described in Chapter 6
Creating and Using libraries.

Note
 For backward compatibility, armlink also accepts object files in AOF format and
libraries in ALF format. These formats are obsolete and will not be supported in the
future.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-3

The armlink Command Syntax
2.1.2 Output from armlink

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a partially-linked object in ELF object format.

For simple images, ELF executable files contain segments that are approximately
equivalent to RO and RW output sections in the image. An ELF executable file also has
ELF sections that contain the image output sections.

You can use the fromELF utility to convert an executable image in ELF executable
format to other file formats. See Chapter 7 Using fromELF for more information.

Constructing an executable image

When you use armlink to construct an executable image, it:

• resolves symbolic references between the input object files

• extracts object modules from libraries to satisfy otherwise unsatisfied symbolic
references

• sorts input sections according to their attributes and names, and merges similarly
attributed and named sections into contiguous chunks

• eliminates duplicate copies of debug sections

• organizes object fragments into memory regions according to the grouping and
placement information provided

• relocates relocatable values

• generates an executable image.

Constructing a partially-linked object

When you use armlink to construct a partially-linked object, it:

• eliminates duplicate copies of debug sections

• minimizes the size of the symbol table

• leaves unresolved references unresolved

• generates an object that can be used as an input to a subsequent link step.

Note
 If you use partial linking, you cannot refer to the components objects by name in a
scatter-loading file.
2-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
2.1.3 Summary of armlink options

This section gives a brief overview of each armlink command-line option. The options
are arranged into functional groups.

Accessing help and information

To get information on the available command-line options use:

-help

To get the tool version number use:

-vsn

Specifying the output type and the output file name

Use the following option to create a partially-linked object instead of an executable
image:

-partial

Name the output file using the following option:

-output

Specify the output file format using the following option:

-elf

ELF is the default, and only, output format. Use fromELF to convert ELF output to other
formats. See Chapter 7 Using fromELF for more information.

Using a via file

Use the following option to specify a via file containing additional command-line
arguments to the linker:

-via

See the section on via files in ADS Compilers and Libraries Guide for more
information.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-5

The armlink Command Syntax
Specifying memory map information for the image

Use the following options to specify simple memory maps:

-reloc
-ro-base
-rw-base
-ropi
-rwpi
-split

For more complex images, use the option:

-scatter

Scatter-loading is described in Chapter 5 Using Scatter-loading description files.

The -scatter option is mutually exclusive with the use of any of the simple memory
map options -ro-base, -rw-base, -reloc, -ropi, -rwpi, or -split. If you use the -scatter
option, you must provide a scatter-loading description file and a reimplementation of
the __user_initial_stackheap() function.

The simple memory map options cannot be used for partial linking because they specify
the memory map of an executable image. See the ADS Developer Guide for more
information.

Controlling image contents

These options control various miscellaneous factors affecting the image contents:

-debug | -nodebug
-entry
-first
-keep
-last
-libpath
-edit
-locals | -nolocals
-remove | -noremove
-scanlib | -noscanlib
-match
2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
Generating image-related information

These options control how you extract and present information about the image:

-callgraph
-info
-map
-symbols
-symdefs
-xref
-xreffrom
-xrefto

With the exception of -callgraph, by default the linker prints the information you
request on the standard output stream, stdout. You can redirect the information to a text
file using the -list command-line option.

For -callgraph, the information is saved as an HTML file. An HTML file named
output_name.htm is saved in the same directory as the generated image.

Controlling armlink diagnostics

These options control how armlink emits diagnostics:

-errors
-list
-verbose
-strict
-unresolved
-mangled
-unmangled
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-7

The armlink Command Syntax
2.2 armlink command syntax

Note
 For command-line arguments that use parentheses, you might have to escape the
parentheses characters with a backslash (\) character on UNIX systems.

The complete linker command syntax is:

armlink [-help] [-vsn] [-partial] [-output file] [-elf] [-reloc]
[[-ro-base address]] [-ropi] [-rw-base address] [-rwpi] [-split] [-scatter file]
[[-debug]|[-nodebug]] [[-remove (RO/RW/ZI/DBG)]|[-noremove]] [-entry location]
[-keep section-id] [-first section-id] [-last section-id] [-libpath pathlist]
[[-scanlib]|[-noscanlib]] [[-locals]|[-nolocals]] [-callgraph] [[-info topics]]
[-map] [-symbols] [[-symdefs file]] [[-edit file]] [-xref]
[[-xreffrom object(section)]] [[-xrefto object(section)]] [[-errors file]]
[[-list file]] [-verbose] [[-unmangled]|[-mangled]] [-match crossmangled]
[[-via file]] [-strict] [[-unresolved symbol]] [-MI|-LI|-BI] [input-file-list]

where:

-help This option prints a summary of some commonly used
command-line options.

-vsn This option displays the armlink version information.

-partial This option creates a partially-linked object instead of an
executable image.

-output file This option specifies the name of the output file. The file can be
either a partially-linked object or executable image. If the output
file name is not specified, armlink uses the following defaults:

__image.axf if the output is an executable image

__object.o if the output is a partially-linked object.

If file is specified without path information, it is created in the
current working directory. If path information is specified, then
that directory becomes the default output directory.

-elf This option generates the image in ELF format. This is the only
output format supported by armlink. This is the default.
2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
-reloc This option makes relocatable images.

A relocatable image has a dynamic segment that contains
relocations that can be used to relocate the image post link-time.
Examples of post link-time relocation include advanced ROM
construction and dynamic loading at run time.

If the image is loaded at its link-time address, the relocatable
image produced by armlink does not require the relocations to be
processed and debug data for the image is valid. Loading the
image at a different address to the link-time address and
processing the relocations, however, invalidates any debug data
present in the image.

Used on its own, -reloc makes an image similar to Simple type 1,
but the single load region has the RELOC attribute. See Type 1:
one load region and contiguous output regions on page 3-14 for
more information on type 1 images.

The combination -reloc -split makes an image similar to Simple
type 3, but the two load regions now have the RELOC attribute.
See Type 3: two load regions and noncontiguous output regions on
page 3-17 for more information on type 3 images.

Using -reloc -rw-base without also using -split causes an error.

-ro-base address This option sets both the load and execution addresses of the
region containing the RO output section at address. address must
be word-aligned. If this option is not specified, the default RO
base address is 0x8000.

-ropi This option makes the load and execution region containing the
RO output section position-independent. If this option is not used
the region is marked as absolute. Usually each read-only input
section must be read-only position-independent. If this option is
selected, armlink:

• checks that relocations between sections are valid

• ensures that any code generated by armlink itself, such as
interworking veneers, is read-only position-independent.

Note
 The ARM tools cannot determine if the final output image will be

read-only position-independent until armlink finishes processing
input sections. This means that armlink might emit ROPI error
messages, even though you have selected the ROPI option for the
compiler and assembler.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-9

The armlink Command Syntax
-rw-base address This option sets the execution addresses of the region containing
the RW output section at address. address must be word-aligned.

If this option is used with -split, it sets both the load and the
execution address of the region containing the RW output sections
at address.

-rwpi This option makes the load and execution region containing the
RW and ZI output section position-independent. If this option is
not used the region is marked as absolute. This option requires a
value for -rw-base. If -rw-base is not specified, -rw-base 0 is
assumed. Usually each writable input section must be read-write
position-independent.

If this option is selected, armlink:

• checks that the PI attribute is set on input sections to any
read-write execution regions

• checks that relocations between sections are valid

• generates static base-relative entries in the tables that are
used when RO and RW regions are copied or initialized.

Note
 The compiler does not force your writable data to be

position-independent. This means that armlink might diagnose
that data is not RWPI, even though you have selected the RWPI
option for the compiler and assembler.

-split This option splits the default load region, that contains the RO and
RW output sections, into two load regions:

• One containing the RO output section. The default load
address is 0x8000, but a different address can be specified
with the -ro-base option.

• One containing the RW output section. The load address is
specified with the -rw-base option. This option requires a
value for -rw-base. If -rw-base is not specified, -rw-base 0
is assumed.
2-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
-scatter file This option creates the image memory map using the
scatter-loading description contained in file. The description
provides grouping and placement details of the various regions
and sections in the image. See Chapter 5 Using Scatter-loading
description files.

Note
 You must reimplement the stack and heap initialization function

__user_initial_stackheap() if you use this option.

-debug This option includes debug information in the output file. The
debug information includes debug input sections and the symbol
and string table. This is the default.

-nodebug This option turns off the inclusion of debug information in the
output file. The image is smaller, but you cannot debug it at the
source level. armlink discards any debug input section it finds in
the input objects and library members, and does not include the
symbol and string table in the image as loaded into the debugger.
This only affects the image size as loaded into the debugger and
has no effect on the size of any resulting binary image that is
downloaded to the target.

If you are creating a partially-linked object rather than an image,
armlink discards the debug input sections it finds in the input
objects, but does produce the symbol and string table in the
partially-linked object.

Note
 Do not use -nodebug if a fromELF step is required. If your image

is produced without debug information:

• fromELF cannot translate the image into other file formats

• fromELF cannot produce a meaningful disassembly listing.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-11

The armlink Command Syntax
-remove (RO/RW/ZI/DBG)

This option performs unused section elimination on the input
sections to remove unused sections from the image. An input
section is considered to be used if it contains the image entry
point, or if it is referred to from a used section. See also Unused
section elimination on page 3-12.

Caution
 You must take care not to remove exception handlers when using

-remove. Use the -keep option to identify exception handlers or use
the ENTRY directive to label them as entry points.

You can use section attribute qualifiers for more precise control of
the unused section elimination process. If a qualifier is used, it can
be one or more of the following:

RO Remove all unused sections of type RO.

RW Remove all unused sections of type RW.

ZI Remove all unused sections of type ZI.

DBG Remove all unused sections of type DEBUG.

The qualifiers can appear in any case and order, but must be
enclosed in parentheses (), and must be separated by a slash /.

The default is -remove (RO/RW/ZI/DBG).

If no section attribute qualifiers are specified, all unused sections
are eliminated. -remove is equivalent to -remove (RO/RW/ZI/DBG).

-noremove This option does not perform unused section elimination on the
input sections. This retains all input sections in the final image
even if they are unused.

-entry location This option specifies the unique initial entry point of the image.
The image can contain multiple entry points, but the initial entry
point specified using this command is stored in the executable file
header for use by the loader. There can be only one occurrence of
this option on the command line. ARM debuggers use this entry
address to initialize the PC when an image is loaded. The initial
entry point must meet the following conditions:

• the image entry point must lie within an execution region

• the execution region must be non-overlay, and must be a
root execution region (load address == execution address).
2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
Replace location with one of the following:

entry_address

A numerical value, for example:
-entry 0x0

symbol This option specifies an image entry point as the
address of symbol. For example:
-entry int_handler

If multiple definitions of symbol exist, armlink
generates an error message.

offset+object(section)

This option specifies an image entry point as an offset
inside a section within a particular object. For
example:
-entry 8+startup(startupseg)

There must be no spaces within the argument to -entry.
The input section and object names are matched
without case-sensitivity. You can use the following
simplified notation:

• object(section) if offset is zero

• object if there is only one input section. If this
form is used and there is more than one
non-debug input section in object, armlink
generates an error message.

-keep section-id Specifies input sections that are not to be removed by unused
section elimination. See Specifying an image memory map on
page 3-5. All forms of section-id argument to -keep can contain
the * and ? wildcards. Replace section-id with one of the
following:

symbol This option specifies that the input section defining
symbol is to be retained during unused section
elimination. If multiple definitions of symbol exist, then
all input sections that define symbol are treated
similarly. For example:
-keep int_handler

To keep all sections that define a symbol ending in
_handler, use:
-keep *_handler

There can be multiple occurrences of this command on
the command line.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-13

The armlink Command Syntax
object(section)

This option specifies that section from object is to be
retained during unused section elimination. The input
section and object names are matched without
case-sensitivity. For example, to keep the vect section
from the vectors.o object use:
-keep vectors.o(vect)

To keep all sections from the vectors.o object where
the first three characters of the name of the section is
vec, use:
-keep vectors.o(vec*)

There can be multiple occurrences of this command on
the command line.

object This option specifies that the single input section from
object is to be retained during unused section
elimination. The object name is matched without
case-sensitivity. If you use this short form and there is
more than one input section in object, armlink
generates an error message. For example:
-keep dspdata.o

To keep the single input section from each of the
objects that have a name starting with dsp, use:
-keep dsp*.o

There can be multiple occurrences of this option on the
command line.

-first section-id This option places the selected input section first in its execution
region. This can, for example, place the section containing the
reset and interrupt vector addresses first in the image. Replace
section-id with one of the following:

symbol Selects the section that defines symbol. You must not
specify a symbol that has more than one definition,
because more than one section cannot be placed first.
For example:
-first reset

object(section)

Selects section from object. There must be no space
between object and the following open parenthesis. For
example:
-first init.o(init)
2-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
object Selects the single input section in object. If you use this
short form and there is more than one input section,
armlink generates an error message. For example:
-first init.o

Note
 When using scatter-loading, use +FIRST in the scatter-loading

description file instead. armlink warns that -first and -last are
ignored if a scatter-loading file is used.

Using -first cannot override the basic attribute sorting order for
output sections in regions that places RO first, RW second, and ZI
last. If the region has an RO section, an RW or a ZI section cannot
be placed first. If the region has an RO or RW section, a ZI section
cannot be placed first.

Two different sections cannot both be placed first in the same
execution region, so only one instance of this option is permitted.

-last section-id This option places the selected input section last in its execution
region. For example, this can force an input section that contains
a checksum to be placed last in the RW section. Replace
section-id with one of the following:

symbol Selects the section that defines symbol. You must not
specify a symbol that has more than one definition,
because more than one section cannot be placed last.
For example:
-last checksum

object(section)

Selects the section from object. There must be no
space between object and the following open
parenthesis. For example:
-last checksum.o(check)

object Selects the single input section from object. If there is
more than one input section in object, armlink
generates an error message.

Note
 When using scatter-loading, use +LAST in the scatter-loading

description file instead.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-15

The armlink Command Syntax
Using -last cannot override the basic attribute sorting order for
output sections in regions that places RO first, RW second, and ZI
last. If the region has a ZI section, an RW section cannot be placed
last. If the region has an RW or ZI section, an RO section cannot
be placed last.

Two different sections cannot both be placed last in the same
execution region, so only one instance of this option is permitted.

-libpath pathlist This option specifies a list of paths that are used to search for the
ARM standard C and C++ libraries.

Note
 This option does not affect searches for user libraries.

These paths override the path specified by the ARMLIB environment
variable. pathlist is a comma-separated list of paths path1,
path2,... pathn that are only used to search for required ARM
libraries. The default path for the directory containing the ARM
libraries is specified by the ARMLIB environment variable. See
Library searching, selection, and scanning on page 6-3 for more
information on including libraries.

-scanlib This option enables scanning of default libraries (the standard
ARM C and C++ libraries) to resolve references. This is the
default.

-noscanlib This option prevents the scanning of default libraries in a link step.

-locals This option instructs the linker to add local symbols to the output
symbol table when producing an executable image. This is the
default.

-nolocals This option instructs the linker not to add local symbols to the
output symbol table when producing an executable image. This is
a useful optimization if you want to reduce the size of the output
symbol table.
2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
-callgraph This option creates a static callgraph of functions in HTML
format. The callgraph gives definition and reference information
for all functions in the image. For each function func it lists:

• the processor state for which the function is compiled
(ARM or Thumb)

• the set of functions that call func

• the set of functions that are called by func

• the number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:

• called through interworking veneers

• defined outside the image

• allowed to remain undefined (weak references).

The static callgraph also provides stack usage information. It lists:

• the size of the stack frame used by each function

• the maximum size of the stack used by the function over any
call sequence, that is, over any acyclic chain of function
calls in the callgraph.

-info topics This option prints information about specified topics, where
topics is a comma-separated list of topic keywords. A topic
keyword can be one of the following:

sizes Gives a list of the Code and Data (RO Data, RW Data,
ZI Data, and Debug Data) sizes for each input object
and library member in the image. Using this option
implies -info sizes,totals.

totals Gives totals of the Code and Data (RO Data, RW Data,
ZI Data, and Debug Data) sizes for input objects and
libraries.

veneers Gives details of armlink-generated veneers. For more
information on veneers see Veneer generation on
page 3-13.

unused Lists all unused sections that were eliminated from the
image as a result of using -remove.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-17

The armlink Command Syntax
Note
 Spaces are not permitted between keywords in a list. For example,

you can enter:

-info sizes,totals

but not:

-info sizes, totals

-map This option creates an image map. The image map contains the
address and the size of each load region, execution region, and
input section in the image, including debugging and
linker-generated input sections.

-symbols This option lists each local and global symbol used in the link
step, and its value. This includes linker-generated symbols.

-symdefs file This option creates a symbol definition file containing the global
symbol definitions from the output image.

By default, all global symbols are written to the symdefs file. If
file already exists, the linker restricts its output to the symbols
listed in the existing symdefs file.

If file is specified without path information, the linker searches
for it in the directory where the output image is being written. If it
is not found, it is created in that directory.

You can use the symbol definition file as input when linking
another image. See Accessing symbols in another image on
page 4-5 for more information.

-edit file This option enables you to specify a steering file containing
commands to edit the symbol tables in the output binary. You can
specify commands in the steering file to:

• Hide global symbols. Use this option to hide specific global
symbols in object files. The hidden symbols are not publicly
visible.

• Rename global symbols. Use this option to resolve symbol
naming conflicts.

See Hiding and renaming global symbols on page 4-9 for more
information on steering file syntax.

-xref This option lists all cross-references between input sections.
2-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
-xreffrom object(section)

This option lists cross-references from input section in object to
other input sections. This is a useful subset of the listing produced
by using -xref if you are interested in references from a specific
input section. You can have multiple occurrences of this option to
list references from more than one input section.

-xrefto object(section)

This option lists cross-references to input section in object from
other input sections. This is a useful subset of the listing produced
by using -xref if you are interested in references to a specific input
section. You can have multiple occurrences of this option in order
to list references to more than one input section.

-errors file Redirects the diagnostics from the standard error stream to file.

-list file This option redirects the diagnostics from output of the -info,
-map, -symbols, -xref, -xreffrom, and -xrefto commands to file.

If file is specified without path information, it is created in the
output directory, that is the directory the output image is being
written to.

-verbose This option prints detailed information about the link operation,
including the objects that are included and the libraries from
which they are taken.

-unmangled This option instructs the linker to display unmangled C++ symbol
names in diagnostic messages, and in listings produced by the
-xref, -xreffrom, -xrefto, and -symbols options.

If this option is selected, the linker unmangles C++ symbol names
so that they are displayed as they appear in your source code. This
is the default.

-mangled This option instructs the linker to display mangled C++ symbol
names in diagnostic messages, and in listings produced by the
-xref, -xreffrom, -xrefto, and -symbols options. If this option is
selected, the linker does not unmangle C++ symbol names. The
symbol names are displayed as they appear in the object symbol
tables.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-19

The armlink Command Syntax
-match crossmangled

This tells the linker to match the following combinations together:

• a reference to an unmangled symbol with the mangled
definition

• a reference to a mangled symbol with the unmangled
definition.

Libraries and matching operate as follows:

• if the library members define a mangled definition, and
there is an unresolved unmangled reference, the member is
loaded to satisfy it

• if the library members define an unmangled definition, and
there is an unresolved mangled reference, the member is
loaded to satisfy it.

Note
 This option has no effect if used with partial linking. The partial

object contains all the unresolved references to unmangled
symbols, even if the mangled definition exists. Matching is done
only in the final link step.

-via file This option reads a further list of input filenames and linker
options from file.

You can enter multiple -via options on the armlink command line.
The -via options can also be included within a via file. See the
ADS Compilers and Libraries Guide for more information on
writing via files.

-strict This option instructs the linker to report conditions that might
result in failure as errors, rather than warnings.

-unresolved symbol This option matches each reference to an undefined symbol to the
global definition of symbol. symbol must be both defined and
global, otherwise it appears in the list of undefined symbols and
the link step fails. This option is particularly useful during
top-down development, because it enables you to test a
partially-implemented system by matching each reference to a
missing function to a dummy function.

This option does not display warnings.
2-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

The armlink Command Syntax
input-file-list This is a space-separated list of objects or libraries.

A special type of object file, the symdef file, can be included in the
list to provide global symbol values for a previously generated
image file. See Accessing symbols in another image on page 4-5
for more information.

There are two ways you can use libraries in the input file list:

• Specify particular members to be extracted from a library
and added to the image as individual objects. For example,
specify mystring.lib(strcmp.o) in the input file list.

• Specify a library to be added to the list of libraries that is
used to extract members if they resolve any non-weak
unresolved references. For example, specify mystring.lib
in the input file list. Other libraries are added to this list
implicitly by armlink when it scans the default library
directories and selects the closest matching library variants
available. Members from the libraries in this list are added
to the image only when they resolve an unresolved
non-weak reference. For more information see Library
searching, selection, and scanning on page 6-3.

armlink processes the input file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to
the image unconditionally, as if they were objects. For
example:
armlink main.o mylib(stdio.o) mylib(a*.o).

unconditionally adds all a*.o objects, and stdio.o.

3. Libraries are added to the list of libraries that are later used
to resolve any remaining non-weak unresolved references.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 2-21

The armlink Command Syntax
2-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 3
Using the Basic Linker Functionality

This chapter describes the basic armlink functionality. This chapter contains the
following sections:

• Specifying the image structure on page 3-2

• Section placement on page 3-8

• Optimizations and modifications on page 3-12

• Using command-line options to create simple images on page 3-14.

For information about advanced linker functionality, refer to the following sections:

Symbol access Chapter 4 Accessing Image Symbols.

Scatter-loading Chapter 5 Using Scatter-loading description files.

Libraries Chapter 6 Creating and Using libraries.

Changing format Chapter 7 Using fromELF.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-1

Using the Basic Linker Functionality
3.1 Specifying the image structure

The structure of an image is defined by:

• the number of its constituent regions and output sections

• the positions in memory of these regions and sections when the image is loaded

• the positions in memory of these regions and sections when the image executes.

3.1.1 Building blocks for objects and images

An image, as stored in an executable file, is constructed from a hierarchy of images,
regions, output sections, and input sections:

• An image consists of one or more regions. Each region consists of one or more
output sections.

• Each output section contains one or more input sections.

• Input sections are the code and data information in an object file.

Figure 3-1 on page 3-3 shows the relationship between regions, output sections, and
input sections.
3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
Figure 3-1 Building blocks for an image

Input sections

An input section contains code or initialized data, or describes a fragment
of memory that is not initialized or that must be set to zero before the
image can execute. Input sections can have the attributes RO, RW, or ZI.
These three attributes are used by armlink to group input sections into
bigger building blocks called output sections and regions.

Output sections

An output section is a contiguous sequence of input sections that have the
same RO, RW, or ZI attribute. An output section has the same attributes
as its constituent input sections. Within an output section, the input
sections are sorted according to the rules described in Section placement
on page 3-8.

Regions A region is a contiguous sequence of one to three output sections. The
output sections in a region are sorted according to their attributes. The RO
output section is first, then the RW output section, and finally the ZI
output section. A region typically maps onto a physical memory device,
such as ROM, RAM, or peripheral.

������

�������	

�������
 ������������
�	

������������	�	

������������	�

������������	��

������������
�	�	

������������
�	�

������������
�	�

������������	�
�	

������������	�	�	

������������	�	�

������������	���	

������������	���

ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-3

Using the Basic Linker Functionality
3.1.2 Load view and execution view of an image

Image regions are placed in the system memory map at load time. Before you can
execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might
have to be copied from its load address in ROM to its execution address in RAM.

The memory map of an image has two distinct views as shown in Figure 3-2.

Load view This view describes each image region and section in terms of the
address it is located at when the image is loaded into memory, that
is the location before the image starts executing

Execution view This view describes each image region and section in terms of the
address it is located at while the image is executing.

Figure 3-2 Load and execution memory maps

Table 3-1 compares the load and execution views.

���������

��������� ���������
�������

����������������������

���������

���

���������

�������

�������

�������

�������

���
���� !������"�#��
��#� �

Table 3-1

Load Description Execution Description

Load
address

The address where a section, or region is
loaded into memory before the image
containing it starts executing. The load
address of a section or a non-root region
can differ from its execution address.

Execution
address

The address where a section or region is
located while the image containing it is
being executed

Load region A region in the load address space. Execution
region

A region in the execution address space
3-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
3.1.3 Specifying an image memory map

An image can consist of any number of regions and output sections. Any number of
these regions can have different load and execution addresses. To construct the memory
map of an image, armlink must have information about:

Grouping How input sections are grouped into output sections and regions.

Placement Where image regions are to be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to
pass this information to armlink:

Using command-line options

The following options can be used for simple cases where an image has
only one or two load regions and up to three execution regions:

• -ro-base

• -rw-base

• -split

• -ropi

• -rwpi

The options listed above provide a simplified notation that gives the same
settings as a scatter-loading description for a simple image. For more
information, see Using command-line options to create simple images on
page 3-14.

Using a scatter-loading description file

A description file is used for more complex cases where you require
complete control over the grouping and placement of image components.
This is described in full in Chapter 5 Using Scatter-loading description
files. To use scatter-loading, specify -scatter filename at the command
line.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-5

Using the Basic Linker Functionality
3.1.4 Image entry points

An entry point in an image is a location where program execution can start. There are
two distinct types of entry point:

Initial entry point

The initial entry point for an image is a single value that is stored in the
ELF header file. For programs loaded into RAM by an operating system
or boot loader, the loader starts the image execution by transferring
control to the initial entry point in the image.

There can be only one initial entry point in an image. The initial entry
point can be, but is not required to be, one of the entry points set by the
ENTRY directive.

Entry points set by the ENTRY directive

These are entry points that are set in the assembly language sources with
the ENTRY directive. In embedded systems, this directive is typically used
to mark code that is entered through the exception vectors.

Specifying an initial entry point

You can specify an initial entry point with the -entry linker option. You can specify the
-entry option only once. See the description in armlink command syntax on page 2-8
for more information.

An image must contain an initial entry point if it is to be executed by a loader, such as
a boot loader or operating system program loader. For example, an image that is an OS
is loaded by the boot loader and entered at the initial entry point specified in the
executable file header. After the image is loaded it overwrites the boot loader and
becomes the OS. In the case of an operating system, the image contains additional entry
points, such as the exception handler addresses.

For embedded applications with ROM at zero use -entry 0x0 (or 0xffff0000 for CPUs
that have high vectors).

The initial entry point must meet the following conditions:

• the image entry point must always lie within an execution region

• the execution region must be non-overlay, and must be a root region (the load
address is the same as the execution address).
3-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
If you do not use the -entry option to specify the initial entry point the linker attempts
to set one if it can:

• If you do not use the -entry option and the input objects contain only one entry
point set by the ENTRY directive, the linker uses that entry point as the initial entry
point for the image.

• The linker generates an output object that does not contain an initial entry point
if you do not use the -entry option and either:

— more than one entry point has been specified by using the ENTRY directive

— no entry point has been specified by using the ENTRY directive.

If the output object does not contain an initial entry point, the linker issues the
following warning:

L6305W: Image does not have an entry point. (Not specified or not set due
to multiple choices)

Specifying multiple entry points

An embedded image can have multiple entry points. For example, an embedded image
typically has entry points that are used by the Reset, IRQ, FIQ, SVC, UNDEF, and ABORT
exceptions to transfer control when the image is running.

You can specify multiple entry points in an image with the ENTRY directive. The directive
marks the output code section with an ENTRY keyword that instructs the linker not to
remove the section when it performs unused section elimination. For C and C++
programs, the __main() function in the C library is also an entry point. See the ADS
Assembler Guide for more information on the ENTRY directive.

If an embedded image is to be used by a loader, it must have a single initial entry point
specified in the header. See Specifying an initial entry point on page 3-6 for more
information.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-7

Using the Basic Linker Functionality
3.2 Section placement

The linker sorts all the input sections within a region according to their attributes. Input
sections with identical attributes form a contiguous block within the region.

The base address of each input section is determined by the sorting order defined by the
linker, and is correctly aligned within the output section that contains it.

When generating an image, the linker sorts the input sections in the following order:

• By attribute.

• By input section name.

• By their positions in the input list, except where overridden by a -first or -last
option. This is described in Using FIRST and LAST to place sections on
page 3-10.

By default, the linker creates an image consisting of an RO, an RW, and optionally a ZI,
output section. The RO output section can be protected at run-time on systems that have
memory management hardware. RO sections can also be placed into ROM in the target.
3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
3.2.1 Ordering input sections by attribute

Portions of the image associated with a particular language run-time system are
collected together into a minimum number of contiguous regions. armlink orders input
sections by attribute as follows:

• read-only code

• read-only data

• read-write code

• other initialized data

• zero-initialized (uninitialized) data.

Input sections that have the same attributes are ordered by their names. Names are
considered to be case-sensitive and are compared in alphabetical order using the ASCII
collation sequence for characters.

Identically attributed and named input sections are ordered according to their relative
positions in the input list.

These rules mean that the positions of identically attributed and named input sections
included from libraries are not predictable. If more precise positioning is required, you
can extract modules manually, and include them in the input list.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-9

Using the Basic Linker Functionality
3.2.2 Using FIRST and LAST to place sections

Within a region, all RO code input sections are contiguous and form an RO output
section that must precede the output section containing all the RW input sections.

If you are not using scatter-loading, use the -first and -last linker options to place
input sections.

If you are using scatter-loading, use the pseudo-attributes FIRST and LAST in the
scatter-load description file to mark the first and last input sections in an execution
region if the placement order is important.

However, FIRST and LAST must not violate the basic attribute sorting order. This means
that an input section can be first (or last) in the execution region if the output section it
is in is the first (or last) output section in the region. For example, in an execution region
containing RO input sections, the FIRST input section must be an RO input section.
Similarly, if the region contains any ZI input sections, the LAST input section must be a
ZI input section.

Within each output section, input sections are sorted alphabetically according to their
names, and then by their positions in the input order.
3-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
3.2.3 Aligning sections

When input sections have been ordered and before the base address is fixed, armlink
inserts padding, if required, to force each input section to start at an address that is a
multiple of the input section alignment. You can expand the alignment (forcing
something that would normally be 4-byte aligned to be 8-byte aligned), but you cannot
reduce the natural alignment (forcing 2-byte alignment on something that would
normally be 4-byte aligned). Input sections are commonly aligned at word boundaries.
The input section alignment can be specified by using either:

ALIGN Use this attribute to the AREA directive from assembly language. The input
section address will be a multiple of 2(value in align attribute).

__align Use this qualifier from C. The input section address will be a multiple of
the value specified (the value must be a power of 2).

See Example 3-1 and the description of __align in the ADS Compilers and Libraries
Guide. See Example 3-2 and the description of ALIGN in the ADS Assembler Guide.

Example 3-1 Using the __align qualifier

__align(8) long long big_var; // big_var eight-byte aligned

Example 3-2 Using the ALIGN attribute in assembly code

AREA LDR_LABEL, CODE, READONLY, ALIGN=3 ; align on eight-byte boundary
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-11

Using the Basic Linker Functionality
3.3 Optimizations and modifications

armlink performs some optimizations and modifications in order to remove duplicate
sections, enable interworking between ARM and Thumb code, and enable long
branches.

3.3.1 Common debug section elimination

The compilers and assemblers generate one set of debug sections for each source file
that contributes to a compilation unit. armlink can detect multiple copies of a debug
section for a particular source file and discard all but one copy in the final image. This
can result in a considerable reduction in image debug size.

3.3.2 Common section elimination

If there are inline functions or templates used in the source, the ARM C++ compilers
generate complete objects for linking such that each object contains the out-of-line
copies of inline functions and template functions that the object requires. When these
functions are declared in a common header file, the functions might be defined many
times in separate objects that are subsequently linked together. In order to eliminate
duplicates, the compilers compile these functions into separate instances of common
code sections and armlink retains just one copy of each common code section.

It is possible that the separate instances of a common code section are not identical.
Some of the copies, for example, might be found in a library that has been built with
different (but compatible) build options, different optimization, or different debug
options.

If the copies are not identical, armlink retains the best available variant of each common
code section based on the attributes of the input objects.

3.3.3 Unused section elimination

Unused section elimination removes code that is never executed, or data that is not
referred to by the code, from the final image. This optimization can be controlled by the
-(no)remove and -first, -last, and -keep linker options. Use the -info unused linker
option to instruct the linker to generate a list of the unused sections that have been
eliminated.
3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
An input section is retained in the final image in the following conditions:

• if it contains an entry point

• if it is referred to, directly or indirectly, by a non-weak reference from an input
section containing an entry point

• if it was specified as the first or last input section by the -first or -last option (or
a scatter-loading equivalent)

• if it has been marked as unremovable by the -keep option.

3.3.4 Veneer generation

armlink must generate veneers when:

• a branch involves change of state between ARM state and Thumb state

• a branch involves a destination beyond the branching range of the current state.

A veneer can extend the range of branch and change processor state. armlink combines
long branch capability into the state change capability. All interworking veneers are also
long branch veneers.

The following veneer types handle different branching requirements. The linker
generates position-independent versions of the veneers if required:

ARM to ARM Long branch capability.

ARM to Thumb Long branch capability and interworking capability.

Thumb to ARM Long branch capability and interworking capability.

Thumb to Thumb Long branch capability.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is
generated only if no other existing veneer can satisfy the requirements. If two input
sections contain a long branch to the same destination, only one veneer is generated if
the veneer can be reached by both sections.

All veneers cannot be collected into one input section because the resulting veneer input
section might not to be within range of other input sections. If the sections are not within
addressing range, long branching is not possible.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-13

Using the Basic Linker Functionality
3.4 Using command-line options to create simple images

A simple image consists of a number of input sections of type RO, RW, and ZI. These
input sections are collated to form the RO, the RW, and the ZI output sections.
Depending on how the output sections are arranged within load and execution regions,
there are three basic types of simple image:

Type 1 One region in load view, three contiguous regions in execution view. Use
the -ro-base option to create this type of image.

Type 2 One region in load view, three non-contiguous regions in execution view.
Use the -ro-base and -rw-base options to create this type of image.

Type 3 Two regions in load view, three non-contiguous regions in execution
view. Use the -ro-base, -rw-base, and -split options to create this type of
image.

In all three simple image types, there are up to three execution regions.

• the first execution region contains the RO output section

• the second execution region contains the RW output section (if present)

• the third execution region contains the ZI output section (if present).

These execution regions are referred to as the RO, the RW, and the ZI execution region.

Simple images can also be created with scatter-loading files. See Equivalent
scatter-loading descriptions for simple images on page 5-28 for more information on
scatter-loading files

3.4.1 Type 1: one load region and contiguous output regions

An image of this type consists of a single load region in the load view and the three
execution regions are placed contiguously in the memory map. This approach is suitable
for systems that load programs into RAM, for example, an OS bootloader, Angel, or a
desktop system (see Figure 3-3 on page 3-15).
3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
Figure 3-3 Type 1

Load view

The single load region consists of the RO and RW output sections placed consecutively.
The ZI output section does not exist at load time. It is created before execution using the
output section description in the image file.

Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged
contiguously. The execution address of the RO and RW execution regions are the same
as their load addresses, so nothing has to be moved from its load address to its execution
address. However, the ZI execution region that contains the ZI output section is created
before execution begins.

Use armlink option -ro-base address to specify the load and execution address of the
region containing the RO output. The default address is 0x8000 as shown in Figure 3-3.

The -reloc option is used to make relocatable images. Used on its own, -reloc makes
an image similar to Simple type 1, but the single load region has the RELOC attribute.

�������
������

�������
������

�������
������

�����������
 �����

�����������
 �����

$���"�
"���
 �����

�����������
 �����

�������
������

����������������������

���������

���

�������
������

���

% �%&������"��
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-15

Using the Basic Linker Functionality
3.4.2 Type 2: one load region and non contiguous output regions

An image of this type consists of a single load region, and three execution regions in
execution view. The RW execution region is not contiguous with the RO execution
region. This approach is used, for example, for ROM-based embedded systems (see
Figure 3-4).

Figure 3-4 Type 2

Load view

In the load view, the single load region consists of the RO and RW output sections
placed consecutively, in ROM for example. The ZI output section does not exist at load
time. It is created before execution using the description of the output section contained
in the image file.

Execution view

In the execution view, the first execution region contains the RO output section and the
second execution region contains the RW and ZI output sections.

The execution address of the region containing the RO output section is the same as its
load address, so the RO output section does not have to be moved.

�������
������

�������
������

�������
������

�������
������

�����������
 �����

�����������
 �����

$���"�
"���
 �����

�����������
 �����

�������
������

����������������������

���

���

���% �%&���

% �%&���
3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the Basic Linker Functionality
The execution address of the region containing the RW output section is different from
its load address, so the RW output section is moved from its load address (from the
single load region) to its execution address (into the second execution region). The ZI
execution region, and its output section, is placed contiguously with the RW execution
region.

Use armlink options -ro-base address to specify the load and execution address for the
RO output section, and -rw-base exec_address to specify the execution address of the
RW output section. If you do not use the -ro-base option to specify the address, the
default value of 0x8000 is used by armlink. For an embedded system, 0x0 is typical for
the -ro-base value. If you do not use the -rw-base option to specify the address, the
default is to place RW directly above RO.

3.4.3 Type 3: two load regions and noncontiguous output regions

This type of image is similar to images of type 2 except that the single load region in
type 2 is now split into two load regions (see Figure 3-5).

Figure 3-5 Type 3

�������
������

�������
������

�������
������

�������
������

�����������
 �����

�����������
 �����

'� �
"���
 �����

�����������
 �����

���������

�������
������

����������������������

$�����
"���
 �����

���

���
% �%&���

% �%&���
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 3-17

Using the Basic Linker Functionality
Load view

In the load view, the first load region consists of the RO output section, and the second
load region consists of the RW output section. The ZI output section does not exist at
load time. It is created before execution using the description of the output section
contained in the image file.

Execution view

In the execution view, the first execution region contains the RO output section and the
second execution region contains the RW and ZI output sections.

The execution address of the RO region is the same as its load address, so the contents
of the RO output section are not moved from their load address to their execution
address.

The execution address of the RW region is also the same as its load address, so the
contents of the RW output section are not moved from their load address to their
execution address. However, the ZI output section is created before execution begins
and placed after the RW region.

Specify the load and execution address using the following linker options:

-reloc The combination -reloc -split makes an image similar to Simple type
3, but the two load regions now have the RELOC attribute.

-split This option splits the default single load region (that contains both the RO
and RW output sections) into two load regions (one containing the RO
output section and one containing the RW output section) so that they can
be separately placed using -ro-base and -rw-base.

-ro-base address

This option instructs armlink to set the load and execution address of the
region containing the RO section at a 4-byte aligned address (for
example, the address of the first location in ROM). If -ro-base option is
not used to specify the address, the default value of 0x8000 is used by
armlink.

-rw-base address

This option instructs armlink to set the execution address of the region
containing the RW output section at a 4-byte aligned address. If this
option is used with -split, both the load and execution addresses of the
RW region are specified.

Using -reloc -rw-base without also using -split causes an error.
3-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 4
Accessing Image Symbols

This chapter describes how to reference symbols with armlink. It contains the following
sections:

• Accessing linker-defined symbols on page 4-2

• Accessing symbols in another image on page 4-5

• Hiding and renaming global symbols on page 4-9

• Using $Super$$ and $Sub$$ to overide symbol definitions on page 4-12.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-1

Accessing Image Symbols
4.1 Accessing linker-defined symbols

The linker defines some symbols that contain the character sequence $$. These symbols
and all other external names containing the sequence $$ are ARM-reserved names. The
symbols are used to specify region base addresses, output section base addresses, and
input section base addresses and their limits.

These symbolic addresses can be imported and used as relocatable addresses by your
assembly language programs, or referred to as extern symbols from your C or C++
source code.

Note
 Linker-defined symbols are defined by armlink only when your code references them.

4.1.1 Region-related symbols

Region-related symbols are generated when armlink creates an image. Table 4-1 shows
the symbols that armlink generates for every execution region present in the image.

If you are using scatter-loading, the description file names all the execution regions in
the image, and provides their load and execution addresses (see Chapter 5 Using
Scatter-loading description files).

If you are not using scatter-loading, the linker uses region_name values of:

• ER_RO, for read-only regions

• ER_RW, for read-write regions

• ER_ZI, for zero-initialized regions.

For every execution region containing a ZI output section, armlink generates additional
symbols containing $$ZI$$.

Table 4-1 Region-related linker symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes (multiple of 4).

Image$$region_name$$Limit Address of the byte beyond the end of the execution region.
4-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Accessing Image Symbols
Note
 • The ZI output sections of an image are not created statically, but are automatically

created dynamically at run-time. Therefore there is no load address symbol for ZI
output sections.

• It is recommended that you use region-related symbols in preference to
section-related symbols.

Placing the stack and heap above the ZI region

One common use of region-related symbols is to place a heap directly above the ZI
region. Example 4-1 shows how to create a retargeted version of
__user_initial_stackheap() in assembly language. The example assumes that you are
using the default one region memory model from the ARM C libraries. See the
description of __user_initial_stackheap() in the ADS Compilers and Libraries Guide
for more information. See also the description of retarget.c in the Writing Code for
ROM chapter of the ADS Developer Guide for an example of how to do this in C.

Example 4-1

 IMPORT ||Image$$region_name$$ZI$$Limit||
__user_initial_stackheap
 LDR r0, =||Image$$region_name$$ZI$$Limit||
 MOV pc, lr

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes (multiple of 4).

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section
in the execution region.

Table 4-1 Region-related linker symbols (continued)

Symbol Description
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-3

Accessing Image Symbols
4.1.2 Section-related symbols

The output section symbols shown in Table 4-2 are generated if command-line options
are used to create a simple image. A simple image has three output sections (RO, RW,
and ZI) that produce the three execution regions. For every input section present in the
image, armlink generates the input symbols shown in Table 4-2.

Note
 If your code refers to the input-section symbols, it is assumed that you expect all the
input sections in the image with the same name to be placed contiguously in the image
memory map. If your scatter-loading description places these input sections
noncontiguously, armlink diagnoses an error because the use of the base and limit
symbols over noncontiguous memory usually produces unpredictable and undesirable
effects.

If you are using a scatter-loading file, the output section symbols in Table 4-2 are
undefined. If your code accesses these symbols, you must treat it as a weak reference.

The standard implementation of __user_initial_stackheap() uses the value in
Image$$ZI$$Limit. Therefore, if you are using a scatter-loading file you must
reimplement __user_initial_stackheap() to set the heap and stack boundaries. See the
section on library memory models in the ADS Compilers and Libraries Guide and
Region-related symbols on page 4-2.

Table 4-2 Section-related linker symbols

Symbol
Section
type

Description

Image$$RO$$Base Output Address of the start of the RO output section.

Image$$RO$$Limit Output Address of the first byte beyond the end of the RO output section.

Image$$RW$$Base Output Address of the start of the RW output section.

Image$$RW$$Limit Output Address of the byte beyond the end of the ZI output section. (The
choice of the end of the ZI region rather than the end of the RW
region is to maintain compatibility with legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the ZI output section.

SectionName$$Base Input Address of the start of the consolidated section called SectionName.

SectionName$$Limit Input Address of the byte beyond the end of the consolidated section
called SectionName.
4-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Accessing Image Symbols
4.2 Accessing symbols in another image

If you want one image to know the global symbol values of another image, you can use
a symbol definitions (symdefs) file.

This can be used, for example, if you have one image that always resides in ROM and
multiple images that are loaded into RAM. The images loaded into RAM can access
global functions and data from the image located in ROM.

4.2.1 Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code
or data. To read a symdefs file, add it to your file list as you would add any object file.
armlink reads the file and adds the symbols and their values to the output symbol table.
The added symbols have ABSOLUTE and GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol
table. If a full link is being performed, the symbols are added to the image symbol table.

armlink generates error messages for invalid rows in the file. A row is invalid if:

• any of the columns are missing

• any of the columns have invalid values.

The symbols extracted out of a symdefs file are treated in exactly the same way as
symbols extracted from an object symbol table. The same restrictions regarding
multiple symbol definitions and ARM/Thumb synonyms apply.

4.2.2 Creating a symdefs file

Use armlink option -symdefs filename to produce a symdefs file.

armlink produces a symdefs file during a successful final link stage. It is not produced
for partial linking or for unsuccessful final linking.

Note
 If filename does not exist, the file is created containing all the global symbols. If
filename exists, the existing contents of filename are used to select the symbols that are
output when armlink rewrites the file.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-5

Accessing Image Symbols
Outputting a subset of the global symbols

By default, all global symbols are written to the symdefs file.

When filename exists, armlink uses its contents to restrict the output to a subset of the
global symbols. To restrict the output symbols:

1. Specify -symdefs filename when you are doing a nearly final link for image1.
armlink creates a symdef file filename.

2. Open filename in a text editor, remove any symbol entries you do not want in the
final list, and save the file.

3. Specify -symdefs filename when you are doing a final link for image1.

You can edit filename at any time to add comments and relink image1 again to, for
example, update the symbol definitions after one or more objects use to create
image1 have changed.

armlink updates a symdefs file as follows:

1. armlink creates a temporary output file.

2. Lines from filename are processed:

a. The comments and blank lines are copied unchanged to the temporary file.

b. When a symbol name is found in filename, the definition of the named
symbol from the current image is output to the temporary file.

Note
 If a symbol occurs in filename more than once, only one definition of the

symbol is placed in the temporary file.

If a symbol is found in filename but is not defined in the current image, no
output will be produced for that symbol.

3. If the final link is successful, filename is deleted and the temporary file renamed
as filename.
4-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Accessing Image Symbols
4.2.3 Symdefs file format

The symdefs file is a type of object file that contains symbols and their values. Unlike
other object files, however, it does not contain any code or data.

The file consists of an identification line, optional comments, and symbol information
as shown in Example 4-2.

Example 4-2

#<SYMDEFS># ARM Linker, ADS1.2 [Build 776]: Last Updated: Tue Jul 24 13:56:35 2001
;value type name, this is an added comment
0x00001000 A function1
0x00002000 T function2
 # This is also a comment, blank lines are ignored

0x00003300 A function3
0x00003340 D table1

Identifying string

If the first 11 characters in the text file are #<SYMDEFS>#, armlink recognizes the file as a
symdefs file.

The identifying string is followed by linker version information, and date and time of
the most recent update of the symdefs file. The version and update information are not
part of the identification string.

Comments

You can insert comments manually with a text editor. Comments have the following
properties:

• Any line where the first non-whitespace character is ; or # is a comment.

• The first line must start with the special identifying comment #<SYMDEFS>#. This
comment is inserted by armlink when the file is produced and must not be
manually deleted.

• A ; or # after the first non-whitespace character does not start a comment.

• Blank lines are ignored and can be inserted to improve readability.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-7

Accessing Image Symbols
Symbol information

The symbol information is provided by the address, type, and name of the symbol on a
single line:

Symbol value armlink writes the absolute address of the symbol in fixed
hexadecimal format, for example 0x00004000. If you edit the file,
you can use either hexadecimal or decimal formats for the address
value.

Type flag The single letter for type is:

A ARM code

T Thumb code

D Data.

Symbol name The name of the symbol.
4-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Accessing Image Symbols
4.3 Hiding and renaming global symbols

This section describes how to use a steering file to hide or rename global symbol names
in output files. For example, you can use steering files to protect intellectual property,
or avoid namespace clashes. A steering file is a text file that contains a set of commands
to edit the symbol tables of output objects.

Use the armlink command line option -edit filename to specify the steering file (see
the description of the -edit option in armlink command syntax on page 2-8).

The following commands are supported:

• RENAME on page 4-10

• HIDE on page 4-11

• SHOW on page 4-11.

4.3.1 Steering file format

A steering file is a plain text file of the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace
character are interpreted as comments. A comment is treated as a blank line.

• Blank lines are ignored.

• Each non blank, non comment line is either a command, or part of a command
that is split over consecutive nonblank lines.

• Command lines that end with a comma (,) as the last non-whitespace character
are continued on the next nonblank line.

Each command consists of a command, followed by one or more comma-separated
operand groups. Each operand group comprises either one or two operands, depending
on the command. The command is applied to each operand group in the command. The
following rules apply:

• Commands are case-insensitive, but are conventionally shown in uppercase.

• Operands are case-sensitive because they must be matched against case-sensitive
symbol names. You can use wild card characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols
or STT_FILE, are not affected.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-9

Accessing Image Symbols
4.3.2 Steering file commands

The following steering file commands enable you to rename, hide, and show symbols
in the symbol table.

RENAME

The RENAME command renames defined and undefined global symbol names.

Syntax

RENAME pattern {AS replacement_pattern} [,pattern AS replacement_pattern] *

where:

pattern Is a string, optionally including wildcard characters, that matches zero or
more global symbols. If pattern does not match any global symbol, the
linker ignores the command. The operand can match both defined and
undefined symbols.

replacement_pattern

Is a string, optionally including wild card characters, to which the symbol
is to be renamed. Wild cards must have a corresponding wild card in
pattern. The characters matched by the pattern wild card are substituted
for the replacement_pattern wildcard.

For example, for a symbol named func1:

RENAME f* AS my_f*

renames func1 to my_func1.

Usage

You cannot rename a symbol to a symbol name that already exists, even if the target
symbol name is being renamed itself. Only one wildcard character (either * or ?) is
permitted in RENAME.

armlink processes the steering file before doing any replacements. You cannot,
therefore, use RENAME A AS B on line 1 and then RENAME B AS A on line 2.
4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Accessing Image Symbols
HIDE

The HIDE command makes defined global symbols in the symbol table anonymous.

Syntax

HIDE pattern [,pattern] *

where:

pattern Is a string, optionally including wildcard characters, that matches zero or
more defined global symbols. If pattern does not match any defined
global symbol, the linker ignores the command. You cannot hide
undefined symbols.

SHOW

The SHOW command makes global symbols visible that were previously hidden with the
HIDE command. This command is useful if you want to un-hide a specific symbol that
has been hidden using a HIDE command with a wild card.

Syntax

SHOW pattern [,pattern] *

where:

pattern Is a string, optionally including wildcard characters, that matches zero or
more global symbols. If pattern does not match any global symbol, the
linker ignores the command.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 4-11

Accessing Image Symbols
4.4 Using $Super$$ and $Sub$$ to overide symbol definitions

There are situations where an existing symbol cannot be modified because, for example,
it is located in an external library or in ROM code.

Use the $Super$$ and $Sub$$ patterns to patch an existing symbol. For example, to patch
the definition of a function foo(), use $Sub$$foo() and $Super$$foo():

$Sub$$foo Identifies the new function that will be called instead of the original
function foo(). Use this to add processing before or after the original
function.

$Super$$foo Identifies the original unpatched function foo(). Use this to call the
original function directly.

Example 4-3 shows the legacy function foo() modified to result in a call to ExtraFunc()
and a call to foo(). See the ARMELF.pdf documentation in the pdf\specs directory for
more details.

Example 4-3

extern void ExtraFunc(void);
extern void $Super$$foo(void):

/* this function will be linked instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo function */
}

4-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 5
Using Scatter-loading description files

This chapter describes how you use armlink and scatter-loading description files to
create complex images. This chapter contains the following sections:

• About scatter-loading on page 5-2

• The formal syntax of the scatter-loading description file on page 5-7

• Equivalent scatter-loading descriptions for simple images on page 5-28.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-1

Using Scatter-loading description files
5.1 About scatter-loading

An image is made up of regions and output sections. Every region in the image can have
a different load and execution address (see Specifying the image structure on page 3-2).

The scatter-loading mechanism enables you to specify the memory map of an image to
armlink. Scatter-loading gives you complete control over the grouping and placement
of image components. It is capable of describing complex image maps consisting of
multiple regions scattered in the memory map at load and execution time.
Scatter-loading can also be used for simple images (see Figure 5-2 on page 5-5), but it
is generally only used for images that have a complex memory map (see Figure 5-4 on
page 5-6).

To construct the memory map of an image, armlink must have:

• grouping information describing how input sections are grouped into regions

• placement information describing the addresses where image regions are to be
located in the memory maps.

You specify this information using a scatter-loading description in a text file that is
passed to armlink.

5.1.1 Symbols defined for scatter-loading

When armlink is creating an image using a scatter-loading description, it creates some
region-related symbols. These are described in Region-related symbols on page 4-2.
These special symbols are created by armlink only if your code references them.

Caution
 The symbols Image$$RW$$Base, Image$$RW$$Limit, Image$$RO$$Base, Image$$RO$$Limit,
Image$$ZI$$Base, and Image$$ZI$$Limit are not defined when a scatter-loading
description file is used.

Because the default implementation uses Image$$ZI$$Limit, you must reimplement
__user_initial_stackheap() and define a value for the start of the heap region and the
top of the stack region. See the section on library memory models in the ADS Compilers
and Libraries Guide and the section on writing code for ROM in the ADS Developer
Guide for more information. If you do not reimplement __user_initial_stackheap(),
the following error message is displayed from the linker:

Undefined symbol Image$$ZI$$Limit (referred from sys_stackheap.o).
5-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
5.1.2 When to use scatter-loading

The command-line options to the linker give some control over the placement of data
and code, but complete control of placement requires more detailed instructions than
can be entered on the command line. Situations where scatter-loading descriptions are
necessary (or very useful) are:

Complex memory maps

Code and data that must be placed into many distinct areas of memory
require detailed instructions on which section goes into which memory
space.

Different types of memory

Many systems contain flash, ROM, SDRAM, and fast SRAM. A
scatter-loading description can match the code and data with the most
appropriate type of memory. For example, the interrupt code might be
placed into fast SRAM to improve interrupt response time and
infrequently used configuration information might be placed into slower
flash memory.

Memory-mapped I/O

The scatter-loading description can place a data section at a precise
address in the memory map.

Functions at a constant location

A function can be placed at the same location in memory even though the
surrounding application has been modified and recompiled.

Using symbols to identify the heap and stack

Symbols can be defined for the heap and stack location and the location
of the enclosing module can be specified when the application is linked.

Scatter-loading is therefore almost always required for implementing embedded
systems because these use ROM, RAM, and memory-mapped I/O.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-3

Using Scatter-loading description files
5.1.3 Command-line option

The armlink command-line option for using scatter-loading is:

-scatter description_file_name

This instructs armlink to construct the image memory map as described in
description_file_name. The format of the description file is given in The formal syntax
of the scatter-loading description file on page 5-7.

For additional information on scatter-loading description files, see also:

• Examples of specifying region and section addresses on page 5-22

• Equivalent scatter-loading descriptions for simple images on page 5-28

• the section on writing code for ROM in the ADS Developer Guide.

5.1.4 Images with a simple memory map

The scatter-loading description in Figure 5-1 loads the segments from the object file
into memory corresponding to the map shown in Figure 5-2 on page 5-5. The maximum
size specification for the regions are optional, but allow the linker to check that a region
has not overflowed its boundary.

Figure 5-1 Simple file contents

�	�
��	��������������
�

����������	��������������
�����
�������������	�
�����

���������������������
�����
�������������������
�����
�

(�����)
"���� �����

(�����)�)� �
����� �����

*���+��� �����
)� ��""�����"��

$� ���� ����)�
"���� �����

$� ���� ����)�
����� �����

,"�����""���������
�����������+��
����� �����

����������#���)�+��
����� �����

$� ��)�������
����� �����

,"�����""��������������
����+�������� �����

����������#���)
"���� �����

*���+��� �����
)� ��""�����"��

����������#���)
+�������� �����

(�����)�������
����� �����
5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
Figure 5-2 Memory map

The same result can be achieved by specifying -ro-base 0x0 and -rw-base 0x10000 as
command-line options to the linker.

5.1.5 Images with a complex memory map

The scatter-loading description in Figure 5-3 loads the segments from the program1.o
and program2.o files into memory corresponding to the map shown in Figure 5-4 on
page 5-6.

Figure 5-3 File contents for a complex memory map

������

������

���������

���������

���������

�	�
���������������� �������

$���

���

���������
����������� ��)�""

�������

�	�
��	���������
�
����������	���������
�����
����������� �!"�#�����	�
�����

����
�����������������
�����
����������� �!"�#�����������
�����
�

�	�
��	�$���%���
�
����������	�$���%���
�����
����������� �!"$#�����	�
�����

����&����������������
�����
����������� �!"$#�����������
�����
�

$� ���� ����)� �)� ��"���� �����

$� ���� ����)� �)� ������� �����

,"�����""�����������������) ��
��� �!"�#������+�������� �����

����������#���)�+�������� �����

,"�����""���������������) ��
��� �!"�#������+�������� �����

$� ���� ����)� ��������"���� �����

,"�����""�����������������) ��
��� �!"$#������+�������� �����

,"�����""���������������) ��
��� �!"$#�������+�������� �����

$� ���� ����)� �+�������� �����
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-5

Using Scatter-loading description files
Figure 5-4 Complex scatter-loaded memory map

Unlike the simple memory map shown in Figure 5-2 on page 5-5, this application
cannot be specified to the linker using only the basic command-line options.

Caution
 The scatter-loading description in Figure 5-3 on page 5-5 specifies the location for code
and data for program1.o and program2.o only. If you link an additional module,
program3.o for example, and use this description file, the location of the code and data
for program3.o is not specified.

Unless you want to be very rigorous in the placement of code and data, it is advisable
to use the * or .ANY specifier to place leftover code and data (see Placing regions at fixed
addresses on page 5-24).

�������

�������

���������-

���������-	

���������-	

���������-

���������-	

���������-

���������-

�������

���������-

���������-	

���������-	

�	�
���������������� �������

.���

$���

���

�� ��)�""

������

������

�������
5-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
5.2 The formal syntax of the scatter-loading description file

A scatter-loading description file is a text file that describes the memory map of the
target embedded product to armlink. The file extension for the description file is not
significant if you are using the linker from the command line. If you are using the
CodeWarrior IDE however, the default extension for a description file is .scf. (However
you can change the extension the CodeWarrior IDE recognizes as a scatter-loading file.)
The description file enables you to specify:

• the load address and maximum size of each load region

• the attributes of each load region

• the execution regions derived from each load region

• the execution address and maximum size of each execution region

• the input sections for each execution region.

The description file format reflects the hierarchy of load regions, execution regions, and
input sections.

Note
 The assignment of input sections to regions is completely independent of the order in
which selection patterns are written in the scatter-loading description file. The best
match between selection patterns and either file/section names or section attributes
wins. See Resolving multiple matches on page 5-18.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-7

Using Scatter-loading description files
5.2.1 BNF notation and syntax

Table 5-1 summarizes the BNF symbols that are used to describe a formal language.

Table 5-1 BNF syntax

Symbol Description

" Quotation marks are used to indicate that a character that is normally part of
the BNF syntax is used as a literal character in the definition.

The definition B"+"C, for example, can only be replaced by the pattern B+C.
The definition B+C can be replaced by, for example, patterns BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is equivalent to
either B+ or C.

The ::= notation is used to define a higher level construct in terms of its
components. Each component might also have a ::= definition that defines it
in terms of even simpler components.

For example, A::= B and B::= C | D means that the definition A is equivalent
to the patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the definition A can
be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. A::= B+ means that the
definition A can be expanded into B, BB, or BBB for example.

A* Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together.
This is particularly useful when the | operator is used or when a complex
pattern is repeated.

For example, A::=(B C)+ (D | E) means that the definition A can be expanded
into any of BCD, BCE, BCBCD, BCBCE, BCBCBCD, or BCBCBCE.
5-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
5.2.2 Overview of the syntax of scatter-loading description files

In the BNF definitions in this section, line returns and spaces have been added to
improve readability. They are not required in the scatter-loading definition and are
ignored if present in the file.

A scatter_description is defined as one or more load_region_description patterns:

Scatter_description ::=

 load_region_description+

A load_region_description is defined as a load region name, optionally followed by
attributes or size specifiers, and one or more execution region descriptions:

load_region_description ::=

 load_region_name (base_address | ("+" offset)) [attributes] [max_size]
 "{"
 execution_region_description+
 "}"

An execution_region_description is defined as an execution region name, a base
address specification, optionally followed by attributes or size specifiers, and one or
more input section descriptions:

execution_region_description ::=

 execution_region_name (base_address | "+" offset) [attributes] [max_size]
 "{"
 input_section_description+
 "}"

An input_section_description is defined as a source module selector pattern optionally
followed by input section selectors:

input_section_description ::=

 module_select_pattern
 ["("
 ("+" input_section_attr | input_section_pattern)
 ([","] "+" input_section_attr | "," input_section_pattern))*
 ")"]
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-9

Using Scatter-loading description files
The contents and organization of a typical scatter-loading description file are shown in
Figure 5-5.

Figure 5-5 Components of a scatter-loading file definition

����� ���������� �����

��������� ���������� �����

���������������� �����

����"����"��� ���� � ������������� �&���

����� ���������� �����

��������� ���������� �����

���������������� �����

��������� ���������� �����

���������������� �����

��������� ���������� �����

���������������� �����

�	�
��	���������
�

����������	���������
�����
����������� �!"�#�����	�
�����

����
�����������������
�����
����������� �!"�#�����������
�����
�

�	�
��	�$���%���
�

����������	�$���%���
�����
����������� �!"$#�����	�
�����

����&����������������
�����
����������� �!"$#�����������
�����
�

$��� ����� �����
5-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
5.2.3 Load region description

A load region has:

• a name (this is used by the linker to identify different load regions)

• a base address (the start address for the code and data in the load view)

• attributes (optional)

• a maximum size (optional)

• a list of execution regions (these identify the type and location of modules in the
execution view).

The components of a typical load region description are shown in Figure 5-6.

Figure 5-6 Components of a load region description

The syntax, in BNF, is:

load_region_description ::=

 load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]
 "{"
 execution_region_description+
 "}"

where:

load_region_name This names the load region. Only the first 31 characters are
significant. The name is only used to identify each region. Unlike
the exec_region_name (page 5-13), the load_region_name is not
used to generate Load$$region_name symbols.

��"���� ���������� �������������
����� ��� ����������� �����
���� ������

�	�
��	���������
�

����������	���������
�����
����������� �!"�#�����	�
�����

����
�����������������
�����
����������� �!"�#�����������
�����
�

����� ���������� �����
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-11

Using Scatter-loading description files
Note
 An image created for use by a debugger requires a unique base

address for each region because the debugger must load regions at
their load addresses. Overlapping load region addresses result in
part of the image being overwritten.

A loader or operating system, however, can correctly load
overlapping position-independent regions. One or more of the
position-independent regions is automatically moved to a
different address.

base_address Is the address where objects in the region are to be linked.
base_address must be a word-aligned number.

+offset Describes a base address that is offset bytes beyond the end of the
preceding load region. The value of offset must be zero modulo
four. If this is the first load region, then +offset means that the
base address begins offset bytes after zero.

attribute_list This specifies the properties of the load region contents:

PI Position-independent

RELOC Relocatable

OVERLAY Overlaid

ABSOLUTE Absolute address

You can specify only one of these attributes. The default load
region attribute is ABSOLUTE.

Load regions that have one of PI, RELOC, or OVERLAY attributes can
have overlapping address ranges. armlink faults overlapping
address ranges for ABSOLUTE load regions.

The OVERLAY keyword enables you to have multiple execution
regions at the same address. ARM does not provide an overlay
mechanism in ADS. To use multiple execution regions at the same
address, you must provide your own overlay manager.

max_size This specifies the maximum size of the load region. (If the
optional max_size value is specified, armlink generates an error if
the region has more than max_size bytes allocated to it.)

execution_region_description

This specifies the execution region name, address, and contents.
See Execution region description on page 5-13.
5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
5.2.4 Execution region description

An execution region has:

• a name

• a base address (either absolute or relative)

• an optional maximum size specification

• attributes that specify the properties of the execution region

• one or more input section descriptions (the modules placed into this execution
region).

The components of a typical execution region description are shown in Figure 5-7.

Figure 5-7 Components of an execution region description

The syntax of an execution-region description, in BNF, is:

execution_region_description ::=

 exec_region_name (base_address | "+" offset) [attribute_list] [max_size]
 "{"
 input_section_description+
 "}"

where:

exec_region_name This names the execution region. (Only the first 31 characters are
significant.)

base_address Is the address where objects in the region are to be linked.
base_address must be word-aligned.

+offset Describes a base address that is offset bytes beyond the end of the
preceding execution region. The value of offset must be zero
modulo four.

If there is no preceding execution region (that is, if this is the first
execution region in the load region) then +offset means that the
base address begins offset bytes after the base of the containing
load region.

������������ ���������� �������������
����� ��� ������������������ ������

���������	���������
�����
����������� �!"�#�����	�
�����

��������� ���������� �����
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-13

Using Scatter-loading description files
If +offset form is used and the encompassing load region has the
RELOC attribute, the execution region inherits the RELOC attribute.
However, if a fixed base_address is used, future occurrences of
offset do not inherit the RELOC attribute.

attribute_list This specifies the properties of the execution region contents:

PI Position-independent.

OVERLAY Overlaid.

ABSOLUTE Absolute address. The execution address of
the region is specified by base_designator.

FIXED Fixed address. Both the load address and
execution address of the region is specified
by base_designator (the region is a root
region. See Creating root execution regions
on page 5-22). base_designator must be
either an absolute base address, or an offset
of +0.

UNINIT Uninitialized data.

You can specify only one of the attributes PI, OVERLAY, FIXED, and
ABSOLUTE. Unless one of the attributes PI, FIXED, or OVERLAY is
specified, ABSOLUTE is the default attribute of the execution region.

Execution regions that use the +offset form of base_designator
either inherit the attributes of the preceding execution region, (or
of the containing load region if this is the first execution region in
the load region), or have the ABSOLUTE attribute.

The attribute RELOC cannot be explicitly specified for execution
regions. The region can only be RELOC by inheriting the attribute
from a previous execution region or parent.

It is not possible for an execution region that uses the +offset form
of base_designator to have its own attributes (other than the
ABSOLUTE attribute that overrides inheritance). Use the combination
+0 ABSOLUTE to set a region to ABSOLUTE without changing the start
location.

Execution regions that are specified as PI or OVERLAY (or that have
inherited the RELOC attribute) are allowed to have overlapping
address ranges. armlink faults overlapping address ranges for
ABSOLUTE and FIXED execution regions.

UNINIT specifies that the ZI output section, if any, in the execution
region will not be initialized to zero. Use this to create execution
regions containing uninitialized data or memory-mapped I/O.
5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
max_size This is an optional number that instructs armlink to generate an
error if the region has more than max_size bytes allocated to it.

input_section_description

This specifies the content of the input sections. See Input section
description.

5.2.5 Input section description

An input_section description is a pattern that identifies input sections by:

• Module name (object file name, library member name, or library file name). The
module name can use wildcard characters.

• Input section name, or input section attributes such as READ-ONLY, or CODE.

The components of a typical input section description are shown in Figure 5-8.

Figure 5-8 Components of an input section description

The syntax, in BNF, is:

input_section_description ::=

 module_select_pattern
 ["("
 ("+" input_section_attr | input_section_pattern)
 ([","] "+" input_section_attr | "," input_section_pattern))*
 ")"]

where:

module_select_pattern

This is a pattern constructed from literal text. The wildcard character *
matches zero or more characters and ? matches any single character.

Matching is case-insensitive, even on hosts with case-sensitive file
naming.

Use *.o to match all objects. Use * to match all object files and libraries.

��� �!"$#�����	�

������������� �&������"����"������ �

���������������� �����
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-15

Using Scatter-loading description files
An input section matches a module_selector_pattern when the
module_selector_pattern matches one of the following:

• The name of the object file containing the section.

• The name of the library member (without leading pathname).

• The full name of the library (including pathname) the section was
extracted from. If the names contain spaces, use wildcards to
simplify searching. For example, use *libname.lib to match
C:\lib dir\libname.lib.

The special module-selector pattern .ANY allows you to assign input
sections to execution regions without considering their parent module.
Use .ANY to fill up the execution regions with do not care assignments.

Note
 • Only input sections that match both the module_selector_pattern

and at least one input_section_attr or input_section_pattern are
included in the execution region.

If you omit (+ input_section_attr) and (input_section_pattern),
the default is +RO.

• Do not rely on input section names generated by the compilers, or
used by ARM library code. These can change between
compilations if, for example, different compiler options are used.
In addition, section naming conventions used by the compilers are
not guaranteed to remain constant between releases.

input_section_attr

This is an attribute selector matched against the input section attributes.
Each input_section_attr follows a +.

If you are specifying a pattern to match the input section name, the name
must be preceded by a +. You can omit any comma immediately followed
by a +.
5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
The selectors are not case-sensitive. The following selectors are
recognized:

• RO-CODE

• RO-DATA

• RO, selects both RO-CODE and RO-DATA

• RW-DATA

• RW-CODE

• RW, selects both RW-CODE and RW-DATA

• ZI

• ENTRY, that is a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE

• CONST for RO-DATA

• TEXT for RO

• DATA for RW

• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST

• LAST.

FIRST and LAST can be used to mark the first and last sections in an
execution region if the placement order is important (for example, if a
specific input section must be first in the region and an input section
containing a checksum must be last). The first occurrence of FIRST or LAST
as an input_section_attr terminates the list.

The special module-selector pattern .ANY allows you to assign input
sections to execution regions without considering their parent module.
Use one or more .ANY patterns to fill up the execution regions with do not
care assignments. In most cases, using a single .ANY is equivalent to using
the * module selector.

You cannot have two * selectors in a scatter-loading description file. You
can, however, use two modified selectors, *A and *B for example, and you
can use a .ANY selector together with a * module selector. The * module
selector has higher precedence than .ANY. If the portion of the file
containing the * selector is removed, the .ANY selector then becomes
active.

The input_section_descriptions having the .ANY module-selector pattern
are resolved after all other (non-.ANY) input-section descriptions have
been resolved and input sections have been assigned to the closest
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-17

Using Scatter-loading description files
matching execution region. If more than one .ANY pattern is present, the
linker fills the first .ANY with as much as possible and then begins filling
the next .ANY.

Each remaining unassigned input section is assigned to the execution
region with the following characteristics:

• the biggest remaining space (determined by the value of max_size
and the sizes of the input sections already assigned to it)

• a matching .ANY input_section_description

• memory access attributes (if they exist) matching the memory
attributes of the input section.

input_section_pattern

This is a pattern that is matched, without case sensitivity, against the input
section name. It is constructed from literal text. The wildcard character *
matches 0 or more characters, and ? matches any single character.

5.2.6 Resolving multiple matches

If a section matches more than one execution region, the matches are resolved as
described below. If a unique match cannot be found, armlink faults the scatter-loading
description. Each section is selected by a module_selector_pattern and an
input_section_selector.

Examples of module_selector_pattern specifications are:

• * matches any module or library

• *.o matches any object module

• math.o matches the math.o module

• *math.lib matches any library path ending with math.lib (for example
C:\apps\lib\math\satmath.lib).

Examples of input_section_selector specifications are:

• +RO is an input section attribute that matches all RO code and all RO data

• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and
all ZI data

• BLOCK_42 is an input section pattern that matches the assembly file area named
BLOCK_42.
5-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
Note
 The compilers produce areas that can be identified by input section patterns such

as .text, .data, .constdata, and .bss. These names, however, might change in
future versions and you should avoid using them.

If you need to match a specific function or extern data from a C or C++ file, either:

— compile the function or data in a separate module and match the module
object name

— use #pragma arm section to specify the name of the section containing the
code or data of interest. See the section on pragmas in the ADS Compilers
and Libraries Guide.

The following variables are used to describe multiple matches:

• m1 and m2 represent module-selector-patterns

• s1 and s2 represent input-section-selectors.

In the case of multiple matches, armlink determines the region to assign the input
section to on the basis of the module_selector_pattern and input_section_selector pair
that is the most specific.

For example, if input section A matches m1,s1 for execution region R1, and A matches
m2,s2 for execution region R2, armlink:

• assigns A to R1 if m1,s1 is more specific than m2,s2

• assigns A to R2 if m2,s2 is more specific than m1,s1

• diagnoses the scatter-loading description as faulty if m1,s1 is not more specific
than m2,s2 and m2,s2 is not more specific than m1,s1.

The sequence armlink uses to determine the most specific module_selector_pattern,
input_section_selector pair is as follows:

1. For the module selector patterns:

m1 is more specific than m2 if the text string m1 matches pattern m2 and the text
string m2 does not match pattern m1.

2. For the input section selectors:

• If s1 and s2 are both patterns matching section names, the same definition
as for module selector patterns is used.

• If one of s1, s2 matches the input section name and the other matches the
input section attributes, s1 and s2 are unordered and the description is
diagnosed as faulty.

• If both s1 and s2 match input section attributes, the determination of
whether s1 is more specific than s2 is defined by the relationships below:
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-19

Using Scatter-loading description files
ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE or RW-DATA

RO-CODE is more specific than RO

RO-DATA is more specific than RO

RW-CODE is more specific than RW

RW-DATA is more specific than RW.

There are no other members of the (s1 more specific than s2) relationship
between section attributes.

3. For the module_selector_pattern, input_section_selector pair, m1,s1 is more
specific than m2,s2 only if any of the following are true:

• s1 is a literal input section name (that is, it contains no pattern characters)
and s2 matches input section attributes other than +ENTRY

• m1 is more specific than m2

• s1 is more specific than s2.

This matching strategy has the following consequences:

• Descriptions do not depend on the order they are written in the file.

• Generally, the more specific the description of an object, the more specific the
description of the input sections it contains.

• The input_section_selectors are not examined unless:

— Object selection is inconclusive.

— One selector fully names an input section and the other selects by attribute.
In this case, the explicit input section name is more specific than any
attribute, other than ENTRY, that selects exactly one input section from one
object. This is true even if the object selector associated with the input
section name is less specific than that of the attribute.
5-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
Example 5-1 shows multiple execution regions and pattern matching.

Example 5-1 Pattern matching

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO_CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO) ; The RO data goes here
 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-21

Using Scatter-loading description files
5.3 Examples of specifying region and section addresses

This section describes how to use a scatter-loading description file to specify addresses
for:

• veneers

• RO constants in ROM

• root execution regions

For additional examples on accessing data and functions at fixed addresses, see the
section on writing code for ROM in the ADS Developer Guide.

5.3.1 Selecting veneer input sections in scatter-loading descriptions

Veneers are used to switch between ARM and Thumb code or to perform a longer
program jump than can be specified in a single instruction (see Veneer generation on
page 3-13). Use a scatter-loading file to place linker-generated veneer input sections. At
most, one execution region in the scatter-loading description file can have the
*(Veneer$$Code) section selector.

If it is safe to do so, armlink places veneer input sections into the region identified by
the *(Veneer$$Code) section selector. It might not be possible for a veneer input section
to be assigned to the region because of address range problems or execution region size
limitations. If the veneer cannot be added to the specified region, it is added to the
execution region containing the relocated input section that generated the veneer.

Instances of *(IWV$$Code) in scatter-loading description files from earlier versions of
ARM tools are automatically translated into *(Veneer$$Code). Use *(Veneer$$Code) in
new descriptions.

5.3.2 Creating root execution regions

If you specify an initial entry point for an image, or if the linker creates an initial entry
point because you have used only one ENTRY directive, you must ensure that the entry
point is located in a root region. A root region is a region that executes at its load
address. If the initial entry point is not in a root region, the link fails and the linker gives
an error message such as:

Entry point (0x00000000) lies within non-root region ER_ROM
5-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
To specify that a region is a root region in a scatter-loading description file you can
either:

• Specify ABSOLUTE, either explicitly or by allowing to default, as the attribute for the
execution region and use the same address for the first execution region and the
enclosing load region. To make the execution region address the same as the load
region address, either:

— specify the same numeric value for both the base designator (address) for
the execution region and the base designator (address) for the load region

— specify a +0 offset for the first execution region in the load region.

If an offset of zero (+0) is specified for all execution regions, then they will
all be root regions.

See Example 5-1.

• Use the FIXED execution region attribute to ensure that the load address and
execution address of a specific region are the same. See Example 5-9 on
page 5-24 and Figure 5-10 on page 5-24.

You can use the FIXED attribute to place any execution region at a specific address in
ROM. See Placing regions at fixed addresses on page 5-24 for more information.

Example 5-1 Specifying the same load and execution address

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 ; rest of scatter description...
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-23

Using Scatter-loading description files
Example 5-9 Using the FIXED attribute

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 ; rest of scatter description...

Figure 5-10 Memory Map for fixed execution regions

5.3.3 Placing regions at fixed addresses

You can use the FIXED attribute to an execution region scatter-loading description to
create root regions that load and execute at fixed addresses.

FIXED is used to create multiple root regions within a single load region (and therefore
typically a single ROM device). You can use this, for example, to place function or a
block of data, such as a constant table or a checksum, at a fixed address in ROM, so that
it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of a
ROM and a checksum at the end of ROM, some of the memory contents might be
unused. Use the * or .ANY module selector to flood fill the region between the end of the
initialization block and the start of the data block.

���	�

����������������������

��%����

'(')#�

���

������� '(')#�

���	�

���!
/)�""�����+�#� ��0

$���"�
"���
 �����
5-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
Note
 To make your code easier to maintain and debug, use the minimum amount of
placement specifications in scatter-loading description files and leave the detailed
placement of functions and data to the linker.

You cannot specify component objects that have been partially linked. For example, if
you partially link the objects obj1.o, obj2.o, and obj3.o together to produce obj_all.o,
the resulting component object names are discarded in the resulting object. Therefore
you cannot refer to one of the objects, obj1.o for example, by name. You can only refer
to the combined object obj_all.o.

Placing functions and data at a specific addresses

Normally, the compiler produces RO, RW, and ZI sections from a single source file.
These regions contain all the code and data from the source file. To place a single
fuction or data item at a fixed address, you must enable the linker to process the function
or data separately from the rest of the input files. To access an individual object, either:

• Place the function or data item in its own source file

Note
 Specifying one object for each function or data block limits the ability of the

compiler to perform optimizations.

• Use the -zo compiler option to produce an object file for each function (see the
ADS Compilers and Libraries Guide)

• Use #pragma arm section inside the C or C++ source code to create multiple
named sections (see Example 5-2 on page 5-27).

• Use AREA directive from assembly language. For assembly code, the smallest
locatable unit is an AREA (see the ADS Assembler Guide).
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-25

Using Scatter-loading description files
Placing the contents of individual object files

The scatter-loading description file in Example 5-1 places:

• initialization code at address 0x0 (followed by the remainder of the RO code and
all of the RO data except for the RO data in the object data.o)

• all global RW variables in RAM at 0x400000

• a table of RO_DATA from data.o fixed at address 0x1ff00.

Example 5-1 Section placement

LOADREG1 0x0 0x10000
{
 EXECREG1 0x0 0x2000 ; ROOT Region, containing init code
 { ; place init code at exactly 0x0
 init.o (Init, +FIRST)
 * (+RO) ; rest of code and read-only data
 }
 RAM 0x400000 ; RW data to be placed at 0x400000
 {
 * (+RW +ZI)
 }
 DATABLOCK 0x1ff00 0xff FIXED ; execution region fixed at 0x1ff00
 { ; the maximum space available for table is 0xff
 data.o(+RO_DATA) ; place read-only data between 0x1ff00 and 0x1ffff
 }
}

Note
 There are some situations where using FIXED and a single load region are not
appropriate. Other techniques for specifying fixed locations are:

• If your loader can handle multiple load regions, place the RO code or data in its
own load region.

• If you do not require the function or data to be at a fixed location in ROM, use
ABSOLUTE instead of FIXED. The loader will then copy the data from the load region
to the specified address in RAM. (ABSOLUTE is the default attribute.)

• To place a data structure at the location of memory-mapped I/O, use two load
regions and specify UNINIT. (UNINIT does not zero-initialize the memory
locations.) For more details, see the section on writing code for ROM chapter of
the ADS Developer Guide.
5-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
Using the arm section pragma

Placing a code or data object in its own source file and then placing the object file
sections uses standard coding techniques. However, you can also use a pragma and
scatter-loading description file to place named sections. Create a module (adder.c for
example) and name a section explicitly as shown in Example 5-2.

Example 5-2 Naming a section

// file adder.c
 int x1 = 5; // in.data
 int y1[100]; // in.bss
 int const z1[3] = {1,2,3}; // in.constdata
 int sub1(int x) {return x-1;} // in.text

 #pragma arm section rwdata = "foo", code ="foo"
 int x2 = 5; // in foo (data part of region)
 char *s3 = "abc"; // s3 in foo, "abc" in .constdata
 int add1(int x) {return x+1;} // in foo (.text part of region)
 #pragma arm section code, rwdata // return to default placement

Use a scatter-loading description file to specify where the named section is placed (see
Example 5-3). If both code and data sections have the same name, the code section is
placed first.

Example 5-3 Placing a section

FLASH 0x24000000 0x4000000
{
 FLASH 0x24000000 0x4000000
 {
 init.o (Init, +First) ; place code from init.o first
 * (+RO) ; sub1(), z1[]
 }
 32bitRAM 0x0000
 {
 vectors.o (Vect, +First)
 * (+RW,+ZI) ; x1, y1
 }
 ADDER 0x08000000
 {
 adder.o (foo) ; x2, string s3, and add1()
 }
}

ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-27

Using Scatter-loading description files
5.4 Equivalent scatter-loading descriptions for simple images

The command-line options (-ro-base, -rw-base, -reloc, -split, -ropi, and -rwpi) create
the simple image types described in Using command-line options to create simple
images on page 3-14. You can create the same image types by using the -scatter
command-line option and a file containing one of the corresponding scatter-loading
descriptions.

5.4.1 Type 1

An image of this type consists of a single load region in the load view and three
execution regions in the execution view. The execution regions are placed contiguously
in the memory map.

Not ropi

-ro-base address specifies the load and execution address of the region containing the
RO output section. Example 5-4 shows the scatter-loading description equivalent to
using -ro-base 0x040000.

Example 5-4 Single load region and contiguous execution regions

LR_1 0x040000 ; Define the load region name as LR_1, the region starts at 0x040000.
{ ; Start of execution region descriptions.
 ER_RO +0 ; First execution region is called ER_RO, region starts at end of previous region.
 ; However, since there was no previous region, the address is 0x040000.
 {
 *(+RO) ; All RO sections go into this region, they are placed consecutively.
 }
 ER_RW +0 ; Second execution region is called ER_RW, the region starts at the end of the
 ; previous region. The address is 0x040000 + size of ER_RO region.
 {
 *(+RW) ; All RW sections go into this region, they are placed consecutively.
 }
 ER_ZI +0 ; Last execution region is called ER_ZI, the region starts at the end of the
 ; previous region at 0x040000 + the size of the ER_RO regions + the size of
 ; the ER_RW regions.
 {
 *(+ZI) ; All ZI region are placed consecutively here.
 }
}

This description creates an image with one load region called LR_1, whose load address
is 0x040000.
5-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the
RO, RW and ZI output sections respectively. The execution address of ER_RO is
0x040000. All three execution regions are placed contiguously in the memory map by
using the +offset form of the base-designator for the execution region description. This
allows an execution region to be placed immediately following the end of the preceding
execution region.

ropi

The execution regions are placed contiguously in the memory map. However, -ropi
marks the load and execution regions containing the RO output section as
position-independent.

-ro-base address is used to specify the load and execution address of the region
containing the RO output section.

Example 5-5 shows the scatter-loading description equivalent to using
-ro-base 0x010000 -ropi.

Example 5-5 Position independent code

LR_1 0x010000 PI ; The first load region is at 0x010000.
{
 ER_RO +0 ; The PI attribute is inherited from parent.
 ; The default execution address is 0x010000, but the code can be moved.
 {
 *(+RO) ; All the RO sections go here.
 }
 ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
 {
 *(+RW) ; The RW sections are placed next. They cannot be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 *(+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. The
next execution region, ER_RW, is marked as ABSOLUTE and uses the +offset form of base
designator. This prevents ER_RW from inheriting the PI attribute from ER_RO.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-29

Using Scatter-loading description files
5.4.2 Type 2

An image of this type consists of a single load region in the load view and three
execution regions in the execution view. It is similar to images of type 1 except that the
RW execution region is not contiguous with the RO execution region.

Not rwpi

-ro-base address1 specifies the load and execution address of the region containing the
RO output section. -rw-base address2 specifies the execution address for the RW
execution region.

Example 5-6 shows the scatter-loading description equivalent to using -ro-base
0x010000 -rw-base 0x040000.

Example 5-6 Single load region and multiple execution regions

LR_1 0x010000 ; Defines the load region name as LR_1
{
 ER_RO +0 ; The first execution region is called ER_RO and starts at end of previous region.
 ; Since there was no previous region, the address is 0x010000.
 {
 *(+RO) ; All RO sections are placed consecutively into this region.
 }
 ER_RW 0x040000 ; Second execution region is called ER_RW and starts at 0x040000.
 {
 *(+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The last execution region is called ER_ZI.
 ; The address is 0x040000 + size of ER_RW region.
 {
 *(+ZI) ; All ZI sections are placed consecutively here.
 }
}

This description creates an image with one load region, named LR_1, with a load address
of 0x010000.

The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the
RO, RW, and ZI output sections respectively. The execution address of ER_RO is
0x010000.

The ER_RW execution region is not contiguous with ER_RO. Its execution address is
0x040000.
5-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
The ER_ZI execution region is placed immediately following the end of the preceding
execution region, ER_RW.

rwpi

This is similar to images of type 2 with -rw-base with the RW execution region separate
from the RO execution region. However, -rwpi marks the execution regions containing
the RW output section as position-independent.

As with other type 2 images, -ro-base address is used to specify the load and execution
address of the region containing the RO output section and -rw-base address2 is used to
specify the load and execution address for the region containing the RW output section.

Example 5-7 shows the scatter-loading description equivalent to using
-ro-base 0x010000 -rw-base 0x018000 -rwpi.

Example 5-7 Position independent data

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent. The execution address
 ; is 0x010000. The code and ro data cannot be moved.
 {
 *(+RO) ; All the RO sections go here.
 }
 ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
 {
 *(+RW) ; The RW sections are placed at 0x018000 and they can be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 *(+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1.
The next execution region, ER_RW, is marked as PI.

Similar scatter-loading descriptions can also be written to correspond to the usage of
other combinations of -ropi and -rwpi with Type 2 and Type 3 images.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-31

Using Scatter-loading description files
5.4.3 Type 3

Type 3 images consist of two load regions in load view and three execution regions in
execution view. It is similar to images of type 2 except that the single load region in type
two is now split into two load regions

Non-relocatable load regions

-ro-base address1 specifies the load and execution address of the region containing the
RO output section. -rw-base address2 specifies the load and execution address for the
region containing the RW output section.

-split is used to split the default single load region (that contains the RO and RW output
sections) into two load regions. One load region contains the RO output section and one
contains the RW output section.

Example 5-8 shows the scatter-loading description equivalent to using -ro-base
0x010000 -rw-base 0x040000 -split.

Example 5-8 Multiple load regions

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; The address is 0x010000.
 {
 *(+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 *(+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 *(+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

This description creates an image with two load regions, named LR_1 and LR_2, that have
load addresses 0x010000 and 0x040000.
5-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using Scatter-loading description files
The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the
RO, RW, and ZI output sections respectively. The execution address of ER_RO is
0x010000.

The ER_RW execution region is not contiguous with ER_RO. Its execution address is
0x040000.

The ER_ZI execution region is placed immediately following the end of the preceding
execution region, ER_RW.

Relocatable load regions

This type 3 images also consists of two load regions in load view and three execution
regions in execution view. However, -reloc is used to specify that the two load regions
now have the RELOC attribute.

-ro-base address1 specifies the load and execution address of the region containing the
RO output section. -rw-base address2 specifies the load and execution address for the
region containing the RW output section.

-split is used to split the default single load region (that contains the RO and RW output
sections) into two load regions. One load region contains the RO output section and one
contains the RW output section.

Example 5-11 on page 5-34 shows the scatter-loading description equivalent to using
-ro-base 0x010000 -rw-base 0x040000 -reloc -split.

This description creates an image with two load regions, named LR_1 and LR_2, that have
load addresses 0x010000 and 0x040000.

The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the
RO, RW, and ZI output sections respectively. The default execution address of ER_RO is
0x010000.

The ER_RW execution region is not contiguous with ER_RO. Its default execution address
is 0x040000.

The ER_ZI execution region is placed immediately following the end of the preceding
execution region, ER_RW.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 5-33

Using Scatter-loading description files
Example 5-11 Relocatable load regions

LR_1 0x010000 RELOC
{
 ER_RO + 0
 {
 *(+RO)
 }
}

LR2 0x040000 RELOC
{
 ER_RW + 0
 {
 *(+RW)
 }

 ER_ZI +0
 {
 *(+ZI)
 }
}

5-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 6
Creating and Using libraries

This chapter describes the use of libraries with armlink. It contains the following
sections:

• About libraries on page 6-2

• Library searching, selection, and scanning on page 6-3

• The ARM librarian on page 6-6.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 6-1

Creating and Using libraries
6.1 About libraries

An object file can refer to external symbols that are, for example, functions or variables.
armlink attempts to resolve these references by matching them to definitions found in
other object files and libraries. armlink recognizes a collection of ELF files stored in an
ar format file as a library.
6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Creating and Using libraries
6.2 Library searching, selection, and scanning

The differences between the way armlink adds object files to the image and the way it
adds libraries to the image are:

• Each object file in the input list is added to the output image unconditionally,
whether or not anything refers to it, however, unused sections are subsequently
eliminated unless -noremove is used.

• A member from a library is included in the output only if an object file or an
already-included library member makes a non-weak reference to it, or if armlink
is explicitly instructed to add it.

Note
 Members selected from libraries using patterns are added to the image

unconditionally, as if they were objects.

Unresolved references to weak symbols do not cause library members to be loaded.

Note
 If the -noscanlib option is specified, armlink does not search for the default ARM
libraries and uses only those libraries that are specified in the input file list to resolve
references.

If a library member is explicitly requested in the input file list, it is loaded even if it does
not resolve any current references. In this case, an explicitly requested member is
treated as if it were an ordinary object.

armlink creates a list of libraries as follows:

1. armlink adds any libraries specified in the input file list to the list.

2. The user-specified search path is examined by armlink to identify library
directories for library requests embedded in the input objects. See Searching for
ARM libraries on page 6-4 for details on the search process.

The best-suited library variants are chosen from the searched directories and their
subdirectories. ARM-supplied libraries have multiple variants that are named according
to the attributes of their members. For details on the library variants see the ADS
Compilers and Libraries Guide and Selecting ARM library variants on page 6-4.

When armlink has constructed the list of libraries, it repeatedly scans each library in the
list to resolve references. See Scanning the libraries on page 6-5 for details.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 6-3

Creating and Using libraries
6.2.1 Searching for user libraries

For user libraries explicitly included on the command line, a path is required if they are
not in the current working directory.

Note
 The search paths used for the ARM standard libraries are not searched for user libraries.

6.2.2 Searching for ARM libraries

You can specify the search paths used to find the ARM standard libraries by:

• Adding the -libpath argument to the armlink command line with a
comma-separated list of parent directories.

This list must end with the parent directory of the ARM library directories armlib
and cpplib. The ARMLIB variable holds the path to the ARM library parent
directory.

Caution
 -libpath overrides the paths specified by the ARMLIB variable.

• Using the CodeWarrior IDE linker configuration panel (see the CodeWarrior IDE
Guide).

• Using the environment variable ARMLIB.

armlink combines each parent directory given by either -libpath, the configuration
panel, or the ARMLIB variable, with each subdirectory request from the input objects and
identifies the place to search for the ARM library. The names of ARM subdirectories
within the parent directories are placed in each compiled object by using a symbol of
the form Lib$$Request$$sub_dir_name.

6.2.3 Selecting ARM library variants

From each of the directories selected by armlink when searching for ARM libraries,
armlink must select the best-suited library. There are different variants of the ARM
libraries based on the attributes of their member objects. The variant of the ARM library
is coded into the name of the library. See the section on library naming conventions in
the ADS Compilers and Libraries Guide.
6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Creating and Using libraries
armlink accumulates the attributes of each input object and uses them to select the
library variant best suited to the accumulated attributes. If more than one of the selected
libraries are equally suited, the library selected first is retained and the others are
rejected.

The final list contains all the libraries that armlink will scan in order to resolve
references.

6.2.4 Scanning the libraries

When all the directories have been searched, and the most compatible library variants
have been selected and added to the list of libraries, each of the libraries is scanned to
load the required members:

1. For each currently unsatisfied non-weak reference, armlink searches sequentially
through the list of libraries for a matching definition. The first definition found is
marked for step 2.

The sequential nature of the search ensures that armlink chooses the library that
appears earlier in the list if two or more libraries define the same symbol. This
enables you to override function definitions from other libraries, for example the
ARM C libraries, by adding your libraries in the input file list.

2. Library members marked in step 1 are loaded. As each member is loaded it might
satisfy some unresolved references, possibly including weak ones. Loading a
library might also create new unresolved weak and non-weak references.

3. The process in steps 1 and 2 continues until all non-weak references are either
resolved or are incapable of being resolved by any library.

If any non-weak reference remains unsatisfied at the end of the scanning operation,
armlink generates an error message.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 6-5

Creating and Using libraries
6.3 The ARM librarian

The ARM librarian, armar, enables sets of ELF object files to be collected together and
maintained in libraries. Such a library can then be passed to armlink in place of several
object files. However, linking with an object library file does not necessarily produce
the same results as linking with all the object files collected into the object library file.
This is because armlink processes the input list and libraries differently:

• each object file in the input list appears in the output unconditionally, although
unused areas are eliminated if the armlink -remove option is specified

• a member of library file is only included in the output if it is referred to by an
object file or a previously processed library file.

For more information on how armlink processes its input files, refer to Chapter 2 The
armlink Command Syntax.

6.3.1 Librarian command-line options

The syntax of the armar command when used to extract files or library information is:

armar [-help] [-C] [-entries] [-p] [-t] [-s] [-sizes] [-T] [-vsn] [-v]
[-via option_file] [-x] [-zs] [-zt] library [file_list]

The syntax when used to add or modify files in the library is:

armar [-help] [-create] [-c] [-d] [-m] [-q] [-r] [-u] [-vsn] [-v]
[-via option_file] [{[-a]|[-b]|[-i]} {pos_name}] library [file_list]

where:

-a This option places new files in library after the file pos_name.

-b This option places new files in library before the file pos_name.

-create This option creates a new library even if library already exists.

-c This option suppresses the diagnostic message normally written to
standard error when a library is created.

-C This option instructs the librarian not to replace existing files with
like-named files when performing extractions. This option is useful when
-T is also used to prevent truncated file names from replacing files with
the same prefix.

-d This option deletes one or more files from library.
6-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Creating and Using libraries
-entries This option lists all entry points defined in library. The format for the
listing is:

ENTRY at offset num in section name of member

file_list This is a list of files to process. Each file is fully specified by its path and
name. The path can be absolute, relative to drive and root, or relative to
the current directory.

Only the filename at the end of the path is used when comparing against
the names of files in the library. If two or more path operands end with
the same filename, the results are unspecified. You can use the wildcards
* and ? to specify files.

If one of the files is a library, armar copies all members from the input
library to the destination library. The order of entries on the command
line is preserved. Therefore, supplying a library file is logically
equivalent to supplying all of its members in the order that they are stored
in the library.

-help This option gives online details of the armar command.

-i This option places new files in library before the member pos_name
(equivalent to -b).

library This is a path name of the library file.

-m This option moves files. If -a, -b, or -i with pos_name is specified, move
files to the new position. Otherwise, move files to the end of library.

-n This option suppresses the archive symbol table. This is used when the
library is not an object library.

-p This option prints the contents of files in library to standard output.

pos_name This is the name of an existing library member to be used for relative
positioning. This name must be supplied with options -a, -b, and -i.

-q This option is an alias for -r.

-r This option replaces, or adds, files in library. If library does not exist, a
new library file is created and a diagnostic message is written to standard
error.

If file_list is not specified and the library exists, the results are undefined.
Files that replace existing files will not change the order of the library.

If the -u option is used, then only those files with dates of modification
later than the library files are replaced.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 6-7

Creating and Using libraries
If the -a, -b, or -i option is used, then pos_name must be present and
specifies that new files are to be placed after (-a) or before (-b or -i)
pos_name. Otherwise the new files are placed at the end.

-t This option prints a table of contents of library. The files specified by
file_list will be included in the written list. If file_list is not specified, all
files in the library will be included in the order of the archive.

-s This option regenerates the archive symbol table.

-sizes This option lists the Code, RO Data, RW Data, ZI Data, and Debug sizes of
each member in library. An example of the output is shown below:

Code RO Data RW data ZI Data Debug Object Name
 464 0 0 0 8612 app_1.o
3356 0 0 10244 11848 app_2.o
3820 0 0 10244 20460 TOTAL

-T This option allows file name truncation of extracted files whose library
names are longer than the file system can support. By default, extracting
a file with a name that is too long is an error. A diagnostic message is
written and the file is not extracted.

-u This option updates older files. When used with the -r option, files within
library will be replaced only if the corresponding file has a modification
time that is at least as new as the modification time of the file within
library.

-via option_file

This option instructs the librarian to take options from option_file. See
the ADS Compilers and Libraries Guide for more information on writing
via files.

-v This option gives verbose output.

The output depends on what other options are used:

-d, -r or -x

Write a detailed file-by-file description of the library creation,
the constituent files, and maintenance activity.

-p Writes the name of the file to the standard output before
writing the file itself to the standard output.

-t Includes a long listing of information about the files within the
library.

-x Prints the filename preceding each extraction.

-vsn This option prints the version number on standard error.
6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Creating and Using libraries
-x This option extracts the files in file_list from library. The contents of
library are not changed. If no file operands are given, all files in library
are extracted. If the filename of a file extracted from the library is longer
than that supported in the destination directory, the results are undefined.

-zs This option shows the symbol table.

-zt Lists member sizes and entry points in library. See -sizes and -entries
for output format.

Note
 The options -a, -b, -C, -i, -m, -T, -u, and -v are not required for normal operation.

Options relating to library order (for example, -a, -b, -i, and -m) are not relevant, since
the ARM tool chain cannot use a library that does not have a symbol table. (If there is
a symbol table, the order is irrelevant.)

Options related to updating a library (-C and -u) are unlikely to be used because, in
practice, the libraries are rebuilt rather than updated.

6.3.2 Examples

Syntax examples are shown in Example 6-1 to Example 6-7 on page 6-10.

Example 6-1 Create a new library and add all object files

armar -create mylib *.o

Example 6-2 List the table of contents

armar -t mylib

Example 6-3 List the symbol table

armar -zs mylib
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 6-9

Creating and Using libraries
Example 6-4 Add (or replace) files

armar -r my_lib obj1.o obj2.o obj3.o ...
armar -ru mylib k*.o

Example 6-5 Extract a group of files

armar -x my_lib k*.o

Example 6-6 Delete a group of files

armar -d my_lib sys_*

Example 6-7 Merge libraries and add (or replace) files

armar -r my_lib.a obj1.o my_lib.a other_lib.a obj2.o obj3.o
6-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 7
Using fromELF

This chapter describes the fromELF software utility provided with ADS. It contains the
following sections:

• About fromELF on page 7-2

• fromELF command-line options on page 7-3

• Examples of fromELF usage on page 7-10.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-1

Using fromELF
7.1 About fromELF

The fromELF utility translates Executable Linkable Format (ELF) image files produced
by armlink into other formats suited to ROM tools and to loading directly into memory.
You can also use it to display various information about an ELF object or to generate
text files containing the information.

fromELF outputs the following image formats:

• Plain binary format.

• Motorola 32-bit S-record format.

• Intel Hex-32 format.

• Byte Oriented (Verilog Memory Model) Hex format.

• ELF format. You can resave as ELF. For example, you can convert a -debug ELF
image to a -nodebug ELF image).

fromELF can also display information about the input file, for example disassembly
output or symbol listings, to either standard output or a text file.

Note
 Do not link your images with the -nodebug linker option if you require a -fieldoffsets
fromELF step. If your image is produced without debug information:

• fromELF cannot translate the image into other file formats

• fromELF cannot produce a meaningful disassembly listing.

7.1.1 Image structure

fromELF can translate a file from ELF to other formats. It cannot alter the image
structure or addresses, other than altering the base address of Motorola S-record or Intel
Hex output with the -base option. You cannot change a scatter-loaded ELF image into
a non-scatter-loaded image in another format. Any structural or addressing information
must be provided to armlink at link time.
7-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using fromELF
7.2 fromELF command-line options

The fromELF command syntax is as follows:

fromelf [-help] [-fieldoffsets|[[-select select_options]]] [-nolinkview]
[-nodebug] [-vsn] [[text_output_format]| code_output_format] [-base n]
[memory_config] [-output output_file] {input_file}

where:

-help This option shows help and usage information. If this option is
specified, other command-line options are ignored. Calling
fromELF without any parameters produces the same help
information.

-fieldoffsets This option produces, to standard output, a list of assembly
language EQU directives that equate C++ class or C structure field
names to their offsets from the base of the class or structure. The
input ELF file can be a relocatable object or an image.

Use -o to redirect the output to a file. Use the INCLUDE command
from armasm to load the produced file and provide access to C++
classes and C structure members by name from assembly
language. See the ADS Assembler Guide for more information on
armasm.

Note
 If the source file does not have debug information, this option is

not available. You cannot use this option together with a
code_output_format.

-fieldoffsets outputs all structure information. To output a subset
of the structures, use -select select_options.

If you do not require a file that can be input to armasm, use the
-text -a option to format the display addresses in a more readable
form. The -a option only outputs address information for
structures and static data in images because the addresses are not
known in a relocatable object.

-select select_options

Use -select select_option together with either the -fieldoffsets
or -text -a options to select only those fields that match the
patterns in the option list.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-3

Using fromELF
Use special characters to select multiple fields:

• Join options in the list together with a , as in: a*,b*,c*.

• The wildcard character * can be used to match any name.

• The wildcard character ? can be used to match any single
letter.

• Specify the fields to include by prefixing a + to the
select_option string. This is the default.

• Specify the fields to exclude by prefixing a ~ to the
select_option string.

If you are using a special character on Unix, you must enclose the
options in quotes to prevent the shell expanding the selection.

-nolinkview Use -nolinkview to discard the section-level view (link-time view)
from the ELF image and retain only the segment level view
(load-time view). Discarding the link-view section level
eliminates:

• the section header table

• the section header string table

• the string table

• the symbol table

• all debug sections.

All that is left in the output is the program header table and the
program segments. According to the ELF specification, these are
all that a program loader can rely upon being present in an ELF
file.

Caution
 This option can have unexpected effects if -elf is not specified on

the command line. See Example 7-2 on page 7-5 for an example
of correct usage.
7-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using fromELF
-nodebug This option does not put debug information in the output files.
This is the default for binary images. If -nodebug is specified, it
affects all output formats. It overrides the -text -g option.

Caution
 This option can have unexpected effects if -elf is not specified on

the command line. The options in Example 7-1 produce a text file
because no output format has been specified.

Example 7-1 Text output

fromelf -nodebug image -o image_nodb.asf

To get ELF format output use the options shown in Example 7-2

Example 7-2 ELF output

fromelf -elf -nodebug image.axf -o image_ndb.axf

-vsn This option displays fromELF version information.

text_output_format Use a text specification, for example -text -c, to display image
information in text format. You can decode an ELF image or ELF
object file using this option. This is the default. If no text or code
output format is specified, -text is assumed.

If output_file is not specified with the -o option, the information
is displayed on stdout.

If a specific text category is not specified, the default is to output
header information.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-5

Using fromELF
If specified, the text category consists of one or more of the
following:

a Prints the global and static data addresses (including
addresses for structure and union contents). This option
can only be used on files containing debug information.
Use the -select option to output a subset of the data
addresses.

c Disassembles code

d Prints contents of the data sections

g Prints debug information

r Prints relocation information

s Prints the symbol table

t Prints the string table(s)

v Prints detailed information on each segment and
section header of the image

z Prints the code and data sizes.

The category selectors can be specified as one of:

• individual options, -text -c -d

• a single concatenated string, -text -cd

• category selectors only, -c -d

• multiple characters following a slash character, -text/cd.

If an output format is not specified, the default output format of
-text is used and the individual category selectors are recognized.
If another output format is specified, the selectors are ignored.
7-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using fromELF
code_output_format This option selects the binary or ELF output file options.
code_output_format can be one of:

-bin Plain binary. You can split output from this option into
multiple files with the memory_config option.

-ihf Extended Intellec Hex format. You can specify the base
address of the output with the -base option. (This
option is deprecated and will be removed from future
versions of the product.)

-m32 Motorola 32-bit format (32-bit S-records). You can
specify the base address of the output with the -base
option.

-i32 Intel Hex-32 format. You can specify the base address
of the output with the -base option.

-vhx Byte Oriented (Verilog Memory Model) Hex format.
This format is suitable for loading into the memory
models of HDL simulators. You can split output from
this option into multiple files with the memory_config
option.

-elf ELF format (resaves as ELF). This can be used to
convert a debug ELF image into a no-debug ELF
image.

If you use fromELF to convert an ELF image containing multiple
load regions to a binary format using any of the -bin, -ihf, -m32,
-i32, or -vhx options, fromELF creates an output directory named
output_file and generates one binary output file for each load
region in the input image. fromELF places the output files in the
output_file directory.

ELF images contain multiple load regions if, for example, they are
built with a scatter-load description file that defines more than one
load region.

-base n This option specifies the base address of the output for Motorola
S-record, Intel Hex, and Extended Intellec Hex file formats. This
option is available only if -m32, -i32, or -ihf is specified as the
output format.

You can specify the base address as either:

• a decimal value, for example -base 0

• as a hexadecimal value, for example -base 0x8000.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-7

Using fromELF
All addresses encoded in the output file start at the base address n.
If you do not specify a -base option, the base address is taken from
the load region address.

Note
 If multiple load regions are present, the -base value is used for

each output file. That is, it overrides all load region addresses.

memory_config This option outputs multiple files for multiple memory banks.
This option is available only if -vhx or -bin is specified as the
output format.

The format of memory_config is -widthxbanks where:

width is the width of memory in the target memory system
(8-bit, 16-bit, 32-bit, or 64-bit).

banks specifies the number of memory banks in the target
memory system.

Valid configurations are:

-8x1
-8x2
-8x4
-16x1
-16x2
-32x1
-32x2
-64x1

fromELF uses the last specified configuration if more than one
configuration is specified. If this option is selected for any format
other than -bin or -vhx it is ignored.

If the image has one load region, fromELF generates bank files
with the following naming conventions:

• If there is one memory bank (banks is 1) the output file is
named by the -o output_file argument.

• If there are multiple memory banks (bank>1), fromELF
generates banks number of files starting with output_file0
and finishing with output_file bank-1. For example:
fromelf -vhx -8x2 test.axf -o test

generates two files named test0 and test1.

If the image has multiple load regions, fromELF creates a
directory named output_file and generates bank files for each
load region named load region0 to load region banks-1.
7-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using fromELF
The memory width specified by width controls the size of the
chunk of information read from the image and written to a file.
The first chunk read is allocated to the first file (output_file0), the
next chunk is allocated to the next file. After a chunk is allocated
to the last file, allocation begins again with the first file (that is, the
allocation is modulo based on the number of files). For example:

For a memory_config of -8x4

byte0 -> file0
byte1 -> file1
byte2 -> file2
byte3 -> file3
byte4 -> file0
...

For a memory_config of -16x2

halfword0 -> file0
halfword1 -> file1
halfword3 -> file0
...

-output output_file

This option specifies the name of the output file, or the name of
the output directory if multiple output files are created (see the
description of text_output_format and code_output_format for
more information). Specifying the output file is optional with the
-text output option and mandatory with all other outputs.

input_file This option specifies the ELF file to be translated.

fromELF accepts only ARM-executable ELF files and ARM
object ELF files (.o). If input_file is a scatter-loaded image that
contains more than one load region and the output format is either
-bin, -ihf, -m32, -i32, or -vhx, fromELF creates a separate file for
each load region.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-9

Using fromELF
7.3 Examples of fromELF usage

This section contains examples of using fromELF to change image format or extract
information from an ELF file.

Note
 If you are using a wildcard character on Unix, for example, *, ? or ~, you must enclose
the options in quotes to prevent the shell expanding the selection.

For example, enter ’*, ~*.*’ instead of *, ~*.*.

7.3.1 Producing a plain binary file

To convert an ELF file to a plain binary (.bin) file, enter:

fromelf -bin -o outfile.bin infile.axf

7.3.2 Disassembly

To produce a listing to stdout that contains the disassembled version of an ELF file,
enter:

fromelf -c infile.axf

To produce a plain-text output file that contains the disassembled version of an ELF file
and the symbol table , enter:

fromelf -c -s -o outfile.lst infile.axf

7.3.3 Listing field offsets as assembly language EQUs

To produce an output listing to stdout that contains all the field offsets from all
structures in the file inputfile.o, enter:

fromelf -fieldoffsets inputfile.o

To produce an output file listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o that have a name starting with p, enter:

fromelf -fieldoffsets -select p* -o outputfile.a inputfile.o

To produce an output listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o with names of tools or moretools, enter:

fromelf -fieldoffsets -select tools.*, moretools.* -o outputfile.a inputfile.o
7-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using fromELF
To produce an output file listing to outputfile.a that contains all the field offsets of
structure fields whose name starts with number and are within structure field top in
structure tools in the file inputfile.o, enter:

fromelf -fieldoffsets -select tools.top.number* -o outputfile.a inputfile.o

7.3.4 Listing addresses of static data

To list to stdout all the global and static data variables and all the structure field
addresses, enter:

fromelf -text -a -select * infile.axf

Selecting only structures

To produce a text file containing all of the structure addresses in inputfile.axf but none
of the global or static data variable information, enter:

fromelf -text -a -select *.* -o strucaddress.txt infile.axf

Selecting only nested structures

To produce a text file containing addresses of the nested structure only, enter:

fromelf -text -a -select *.*.* -o strucaddress.txt infile.axf

Selecting only variables

To produce a text file containing all of the global or static data variable information in
inputfile.axf but none of the structure addresses, enter:

fromelf -text -a -select *, ~*.* -o strucaddress.txt infile.axf

7.3.5 Converting debug to nodebug

To produce a new output file equivalent to using the -nodebug option from an ELF file
produced with the -debug option, enter:

fromelf -nodebug -elf -o outfile.axf infile.axf
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 7-11

Using fromELF
7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Chapter 8
Using the ARM Profiler

This chapter describes the ARM Profiler utility provided with ADS. It contains the
following sections:

• About the ARM profiler on page 8-2

• Profiler command-line options on page 8-3

• Sample output on page 8-4.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 8-1

Using the ARM Profiler
8.1 About the ARM profiler

The ARM profiler, armprof, displays an execution profile of a program from a profile
data file generated by an ARM debugger.

Note
 The ARM profiler is useful only with simple images compiled to the base ATPCS
standard. It does not provide useful information if, for example, you are using
scatter-loading.

The profiler displays one of two types of execution profile depending on the amount of
information present in the profile data:

• If only pc-sampling information is present, the profiler can display only a flat
profile giving the percentage time spent in each function itself, excluding the time
spent in any of its children.

• If function call count information is present, the profiler can display a callgraph
profile that shows approximations of the time spent in each function, the time
accounted for by calls to all children of each function, and the time allocated to
calls from different parents.
8-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Using the ARM Profiler
8.2 Profiler command-line options

A number of options are available to control the format and amount of detail present in
the profiler output. The command syntax is as follows:

armprof [[-parent]|[-noparent]] [[-child]|[-nochild]] [-sort options] prf_file

where:

-parent This option displays information about the parents of each
function in the profile listing. This gives approximate information
about how much time is spent in each function servicing calls
from each of its parents.

-noparent This option turns off the parent listing.

-child This option displays information about the children of each
function. The profiler displays the approximate amount of time
spent by each child performing services on behalf of the parent.

-nochild This option turns off the child listing.

-sort options

This option sorts the profile information using one of the
following options:

cumulative Sorts the output by the total time spent in
each function and all its children.

self Sorts the output by the time spent in each
function (excluding the time spent in its
children).

descendants Sorts the output by the time spent in all the
children of a function but excluding time
spent in the function itself.

calls Sorts the output by the number of calls to
each function in the listing.

prf_file This option specifies the file containing the profile information.

By default, child functions are listed, but not parent functions, and the output is sorted
by cumulative time.

8.2.1 Example

armprof -parent sort.prf
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. 8-3

Using the ARM Profiler
8.3 Sample output

The profiler output is split into a number of sections, each section separated by a line.
Each section gives information on a single function. In a flat profile, one with no parent
or child function information, each section is a single line.

The following shows sample sections for functions called insert_sort and strcmp.

Name cum% self% desc% calls

 main 17.69% 60.06% 1
insert_sort 77.76% 17.69% 60.06% 1
 strcmp 60.06% 0.00% 243432

 qs_string_compare 3.21% 0.00% 13021
 shell_sort 3.46% 0.00% 14059
 insert_sort 60.06% 0.00% 243432
strcmp 66.75% 66.75% 0.00% 270512

8-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Glossary

ADS See ARM Developer Suite.

Angel Angel is a debug monitor program that enables you to develop and debug applications
running on ARM-based hardware. Angel can debug applications running in either ARM
state or Thumb state.

ANSI American National Standards Institute. An organization that specifies standards for,
among other things, computer software.

API Application Program Interface.

Architecture The term used to identify a group of processors that have similar characteristics.

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

ATPCS ARM and Thumb Procedure Call Standard defines how registers and the stack will be
used for subroutine calls.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte.

BNF Backus Naur Format. Mathematical notation for defining logical structures.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. Glossary-1

Glossary
Byte A unit of memory storage consisting of eight bits.

Deprecated A deprecated option or feature is one that you are strongly discouraged from using.
Deprecated options and features will not be supported in future versions of the product.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format.

ELF Executable and linking format.

Environment The actual hardware and operating system that an application will run on.

Executable and linking format
The industry standard binary file format used by the ARM Developer Suite. ELF object
format is produced by the ARM object producing tools such as armcc and armasm. The
ARM linker accepts ELF object files and can output either an ELF executable file, or
partially linked ELF object.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer.

IDE Integrated Development Environment (for example, the CodeWarrior IDE).

Image An executable file which has been loaded onto a processor for execution.

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output sections.

Interrupt A change in the normal processing sequence of an application caused by, for example,
an external signal.

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte.
Glossary-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Glossary
Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Output section A contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions will
be grouped together into the final executable image.

See also Region.

PIC Position Independent Code.

See also ROPI.

PID Position Independent Data or the ARM Platform-Independent Development card.

See also RWPI.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Redirection The process of sending default output to a different destination or receiving default
input from a different source. This is commonly used to output text, that would
otherwise be displayed on the computer screen, to a file.

Region In an Image, a region is a contiguous sequence of one to three output sections (RO, RW,
and ZI). A region typically maps onto a physical memory device, such as ROM, RAM,
or peripheral.

See also Root region.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

Retargeting The process of moving code designed for one execution environment to a new execution
environment.

Root region In an image, a region that executes at its load address. A non-root region is a region that
must be copied from its load address to its execution address.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at
run-time.
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. Glossary-3

Glossary
RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at
run-time.

Scatter-loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Sections A block of software code or data for an Image.

See also Input sections.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather attempting to support the I/O itself.

Stack The portion of memory that is used to record the return address of code that calls a
subroutine. The stack can also be used for parameters and temporary variables.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.

Target The actual target processor, (real or simulated), on which the target application is
running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state or branch to an address that cannot be reached in the current processor
state.

Volatile Memory addresses where the contents can change independently of the executing
application are described as volatile. These are typically memory-mapped peripherals.

See also Memory mapped

VFP Vector Floating Point. A standard for floating-point coprocessors where several data
values can be processed by a single instruction.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

ZI Zero Initialized. R/W memory used to hold variables that do not have an initial value.
The memory is normally set to zero on reset.
Glossary-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
armar 6-6
ARMLIB variable 6-4
armprof 8-2

C
Call graph, profiling 8-2
Command syntax

fromelf 7-3
librarian 6-6
linker
profiler 8-3

D
Disassembly 7-6

E
ELF 2-3
ELF file format 2-8
Entry point

specifying to the linker 2-12, 2-13
Execution

profile 8-2
regions and veneers 3-13

F
File formats

ELF 2-8
fromELF output 7-7
symdefs 4-7

Files
scatter-loading 5-1
steering 4-9
symdefs 4-5
via 2-20

Function call count, profiling 8-2

H
Hiding and renaming symbols 2-18,

4-9

I
Images

complex 5-4
examples, scatter-loaded 5-4
regions, overview 3-3
sections 5-7

overview 3-3
simple 3-14
specifying a memory map 3-5
structure of 3-2

Image$$
symbols not defined 5-2
user_initial_stackheap() 5-2

Interworking
ARM and Thumb 1-2
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. Index-1

Index
L
Librarian 6-6
Libraries

and linker, see Linker, libraries
Linker

code and data sizes 2-17
debug information

turning on and off 2-11
default addresses 2-9
diagnostics 2-19
entering commands via a file 2-20
execution information 3-4
help on 2-5, 2-17
image

construction 2-6
entry point 2-12
keeping sections 2-13
load and execution views 3-4
overview 3-2
structure 3-2

image-related information 2-7
Image$$ errors 5-2
information 2-16, 2-19, 2-20
libraries

defaults 2-16
including during link step 6-2
linker search path 2-16
scanning 2-16

load information 3-4
local symbols 2-16
memory attributes 2-20
memory map information 2-2, 2-11,

3-4
messages 2-16, 2-19, 2-20
output file 2-5, 2-8
output formats 2-5
output sections 3-3
overview of 2-2
partial linking 2-8
regions 3-3
RO section base address 2-9, 3-18
RW section base address 2-10
scatter-loading

command-line option 2-6, 2-11
software version 2-8
sorting input sections 3-8
standard output stream 2-19
steering files 2-18, 4-9

symbols 4-2, 5-2
hiding and renaming 2-18, 4-9
used in link step 2-18

syntax 2-8
undefined symbols 2-20
unused sections 2-12, 2-17
veneers 2-17
version number 2-5
via files 2-5, 2-20
$$ symbols 4-2

Linker options
-edit 2-18, 4-9
-elf 2-8
-entry 2-12
-errors 2-19
-first 2-14
-help 2-8
-info 2-17
-keep 2-13
-last 2-15
-libpath 2-16, 6-4
-list 2-19
-locals 2-16
-mangled 2-19, 2-20
-nodebug 2-11
-nolocals 2-16
-noremove 2-12
-noscanlib 2-16
-output 2-8
-partial 2-8
-remove 2-12
-ro-base 2-9
-ropi 2-9
-rw-base 2-10
-rwpi 2-10
-scanlib 2-16
-scatter 2-11, 5-4
-split 2-10
-strict 2-20
-symbols 2-18
-symdefs 2-18
-unmangled 2-19
-unresolved 2-20
-verbose 2-19
-via 2-20
-vsn 2-8
-xreffrom 2-19

M
Memory map

describing to linker 5-7
overlaid 5-14
specifying 2-11
uninitialized 5-14

P
Position independence 2-9
Profiler 8-2

S
Scatter-loading

description file 5-2
area syntax 5-15
execution region syntax 5-13
FIRST 5-17
LAST 5-17
load region syntax 5-11
pseudo-attributes 5-17
sections 5-7
synonyms in 5-17

error Image$$ZI$$Limit 5-2
linker command-line option 5-4
region matching 5-18
section placement 2-15
section-related symbols 4-4
symbols defined by linker 5-2
+FIRST 2-15
+LAST 2-15

Sections
aligning 3-11
attributes 2-2
in region 2-2
input 3-3
multiple matches in scatterloading

5-18
placement of 2-14, 2-15, 3-8, 5-7,

5-17
by attribute 3-9
FIRST and LAST 3-10

in region 3-3
sorting rules 3-8
unused 2-12, 2-17
Index-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

Index
Steering files 2-18, 4-9
Symbols

hiding and renaming 4-9
Image$$ undefined 5-2
in another image 4-5
input section-related 4-4
linker 2-18, 4-2, 4-9
region-related 4-2
scatter-loading 5-2
section-related 4-4
stack 4-3
undefined 2-20
ZI 4-2
$$ 4-2

Symdefs file 4-5

T
Thumb

code 1-2
verneer 3-13

U
Uninitialized memory 5-14

V
Variables

ARMLIB 6-4
Veneers

ARM to ARM 3-13
ARM to Thumb 3-13
size 2-17
Thumb to ARM 3-13

Verneers
placing 5-22

Via files 2-20

Z
ZI symbols 4-2

Symbols
$$ symbols 4-2
ARM DUI 0151A Copyright © 2001 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0151A

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the linker and utilities
	1.1.1 The linker
	1.1.2 The utilities
	fromELF
	armar
	armprof

	The armlink Command Syntax
	2.1 About armlink
	2.1.1 Input to armlink
	2.1.2 Output from armlink
	Constructing an executable image
	Constructing a partially-linked object

	2.1.3 Summary of armlink options
	Accessing help and information
	Specifying the output type and the output file name
	Using a via file
	Specifying memory map information for the image
	Controlling image contents
	Generating image-related information
	Controlling armlink diagnostics

	2.2 armlink command syntax

	Using the Basic Linker Functionality
	3.1 Specifying the image structure
	3.1.1 Building blocks for objects and images
	3.1.2 Load view and execution view of an image
	3.1.3 Specifying an image memory map
	3.1.4 Image entry points
	Specifying an initial entry point
	Specifying multiple entry points

	3.2 Section placement
	3.2.1 Ordering input sections by attribute
	3.2.2 Using FIRST and LAST to place sections
	3.2.3 Aligning sections

	3.3 Optimizations and modifications
	3.3.1 Common debug section elimination
	3.3.2 Common section elimination
	3.3.3 Unused section elimination
	3.3.4 Veneer generation

	3.4 Using command-line options to create simple images
	3.4.1 Type 1: one load region and contiguous output regions
	Load view
	Execution view

	3.4.2 Type 2: one load region and non contiguous output regions
	Load view
	Execution view

	3.4.3 Type 3: two load regions and noncontiguous output regions
	Load view
	Execution view

	Accessing Image Symbols
	4.1 Accessing linker-defined symbols
	4.1.1 Region-related symbols
	Placing the stack and heap above the ZI region

	4.1.2 Section-related symbols

	4.2 Accessing symbols in another image
	4.2.1 Reading a symdefs file
	4.2.2 Creating a symdefs file
	Outputting a subset of the global symbols

	4.2.3 Symdefs file format
	Identifying string
	Comments
	Symbol information

	4.3 Hiding and renaming global symbols
	4.3.1 Steering file format
	4.3.2 Steering file commands
	RENAME
	HIDE
	SHOW

	4.4 Using $Super$$ and $Sub$$ to overide symbol definitions

	Using Scatter-loading description files
	5.1 About scatter-loading
	5.1.1 Symbols defined for scatter-loading
	5.1.2 When to use scatter-loading
	5.1.3 Command-line option
	5.1.4 Images with a simple memory map
	5.1.5 Images with a complex memory map

	5.2 The formal syntax of the scatter-loading description file
	5.2.1 BNF notation and syntax
	5.2.2 Overview of the syntax of scatter-loading description files
	5.2.3 Load region description
	5.2.4 Execution region description
	5.2.5 Input section description
	5.2.6 Resolving multiple matches

	5.3 Examples of specifying region and section addresses
	5.3.1 Selecting veneer input sections in scatter-loading descriptions
	5.3.2 Creating root execution regions
	5.3.3 Placing regions at fixed addresses
	Placing functions and data at a specific addresses
	Placing the contents of individual object files
	Using the arm section pragma

	5.4 Equivalent scatter-loading descriptions for simple images
	5.4.1 Type 1
	Not ropi
	ropi

	5.4.2 Type 2
	Not rwpi
	rwpi

	5.4.3 Type 3
	Non-relocatable load regions
	Relocatable load regions

	Creating and Using libraries
	6.1 About libraries
	6.2 Library searching, selection, and scanning
	6.2.1 Searching for user libraries
	6.2.2 Searching for ARM libraries
	6.2.3 Selecting ARM library variants
	6.2.4 Scanning the libraries

	6.3 The ARM librarian
	6.3.1 Librarian command-line options
	6.3.2 Examples

	Using fromELF
	7.1 About fromELF
	7.1.1 Image structure

	7.2 fromELF command-line options
	7.3 Examples of fromELF usage
	7.3.1 Producing a plain binary file
	7.3.2 Disassembly
	7.3.3 Listing field offsets as assembly language EQUs
	7.3.4 Listing addresses of static data
	Selecting only structures
	Selecting only nested structures
	Selecting only variables

	7.3.5 Converting debug to nodebug

	Using the ARM Profiler
	8.1 About the ARM profiler
	8.2 Profiler command-line options
	8.2.1 Example

	8.3 Sample output

	Glossary
	Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	P
	S
	T
	U
	V
	Z
	Symbols

