
ARM® Firmware Suite
Version 1.4

User Guide
Copyright © 2000-2002 ARM Limited. All rights reserved.
ARM DUI 0136D

ARM Firmware Suite
User Guide

Copyright © 2000-2002 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

April 2000 A New document

June 2001 B Second version

March 2002 C Third version

September 2002 D Interim release for Excalibur support
ii Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Contents
ARM Firmware Suite User Guide

Preface
About this document .. vi
Further reading .. viii
Feedback ... x

Chapter 1 Introduction to the ARM Firmware Suite
1.1 About the ARM Firmware Suite ... 1-2
1.2 What is firmware? ... 1-4
1.3 Flash library and utilities .. 1-7
1.4 Additional libraries ... 1-11
1.5 µHAL demonstration programs ... 1-13
1.6 Angel ... 1-16

Chapter 2 An Introduction to µHAL
2.1 About µHAL ... 2-2
2.2 Building a new µHAL-based application .. 2-7
2.3 Building the µHAL library .. 2-9

Chapter 3 Running the LED Application
3.1 About the LED application .. 3-2
3.2 Building the LED application ... 3-4
3.3 Using Multi-ICE to load and debug images ... 3-7
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. iii

Contents
3.4 Using Angel to load and debug images .. 3-13
3.5 Modifying the application .. 3-21

Chapter 4 Running the Timer Application
4.1 How the application uses µHAL .. 4-2
4.2 Running the application .. 4-5

Chapter 5 Creating a New Application
5.1 How to create a new application ... 5-2
5.2 Extending the existing directory structure ... 5-3
5.3 Creating a separate directory structure .. 5-10

Chapter 6 Troubleshooting and Frequently Asked Questions
6.1 Frequently asked questions .. 6-2
6.2 Troubleshooting .. 6-5

Glossary
iv Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Preface

This preface introduces the ARM Firmware Suite and provides a guide to using the
software. It contains the following sections:

• About this document on page vi

• Further reading on page viii

• Feedback on page x.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. v

Preface
About this document

This book provides a guide on how to setup and use the ARM Firmware Suite. It
describes its major components and features. This book contains a simplified guide to
downloading and running the demonstration applications and how to develop
applications for ARM-based hardware platforms.

Intended audience

This book is written for hardware and software developers to aid the development of
ARM-based products and applications. It assumes that you are familiar with ARM
architectures and have an understanding of computer hardware. You can find more
detailed information in the guides listed under ARM publications on page viii.

Using this book

This document is organized into the following chapters:

Chapter 1 Introduction to the ARM Firmware Suite

Read this chapter for an introduction to the ARM Firmware Suite (AFS).
It describes the individual components of AFS.

Chapter 2 An Introduction to µHAL

Read this chapter for a description of the structure and design of the
hardware abstraction layer.

Chapter 3 Running the LED Application

Read this chapter for information of the Dhrystone application and how
to run it using AFS.

Chapter 4 Running the Timer Application

Read this chapter for a description of how an application can use the
µHAL APIs.

Chapter 5 Creating a New Application

Read this chapter for instructions on how to build a new application that
uses AFS.

Chapter 6 Troubleshooting and Frequently Asked Questions

Read this chapter for the solution to common problems.
vi Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the whole command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists and for ARM processor signal names.

typewriter bold

Denotes language keywords when used outside example code.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. vii

Preface
Further reading

This section lists publications from ARM and third parties that provide additional
information about developing on ARM processors.

ARM publications

The following publication provides detailed information about AFS components:

• ARM Firmware Suite Reference Guide (ARM DUI 0102).

The following publications provide information about ARM Integrator products:

• ARM Integrator/CM920T User Guide (ARM DDI 0097)

• ARM Integrator/CM940T User Guide (ARM DDI 0125)

• ARM Integrator/CM720T User Guide (ARM DDI 0126)

• ARM Integrator/CM740T User Guide (ARM DDI 0124)

• ARM Integrator/CM7TDMI User Guide (ARM DDI 0126)

• ARM Integrator/SP User Guide (ARM DUI 0099)

• ARM Integrator/AP User Guide (ARM DUI 0098).

The following publication provides information about ARM Prospector products:

• ARM Prospector/P1100 User Guide (ARM DUI 122).

The following publications provide information about ARM hardware and software
debugging tools:

• RealMonitor Host Controller User Guide (ARM DUI 0137).

• RealMonitor Target Controller User Guide (ARM DUI 0142).

• Multi-ICE User Guide (ARM DUI 0048)

The following publications provide information about the ARM Developer Suite:

• ADS Getting Started (ARM DUI 0064)

• ADS Tools Guide (ARM DUI 0067)

• ADS Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056)

• ADS CodeWarrior IDE Guide (ARM DUI 0065).

Further information can be obtained from the ARM web site at:

http://www.arm.com
viii Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Preface
Other publications

The following publications provide information and guidelines for developing products
for Microsoft Windows CE:

HARP Enclosure Requirements for Microsoft® Windows® CE 1998 Microsoft
Corporation

Standard Development Board for Microsoft® Windows® CE 1998 Microsoft
Corporation.

Further information on Microsoft Windows CE is available from the Microsoft web site:

http://www.microsoft.com

The following publication provides information about µC/OS-II:

• MicroC/OS-II, The Real-Time Kernel, Jean Labrosse, R&D Technical Books,
ISBN 0-87930-543-6.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. ix

Preface
Feedback

Feedback on both the ARM Firmware Suite and the documentation is welcome.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Firmware Suite

If you have any problems with the ARM Firmware Suite, please contact your supplier.

To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool used, including the version number and date.
x Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 1
Introduction to the ARM Firmware Suite

The ARM Firmware Suite (AFS) is a collection of tools and utilities designed as an aid
to developing applications and operating systems on ARM-based systems. This chapter
contains the following sections:

• About the ARM Firmware Suite on page 1-2

• What is firmware? on page 1-4

• Flash library and utilities on page 1-7

• µHAL demonstration programs on page 1-13.

See the AFS Reference Guide for detailed descriptions of AFS components, utilities,
and libraries.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-1

Introduction to the ARM Firmware Suite
1.1 About the ARM Firmware Suite

AFS provides:

µHAL libraries

µHAL (pronounced Micro-HAL) is the ARM Hardware Abstraction
Layer that is the basis of AFS. µHAL is a set of low-level functions that
simplify the porting of operating systems and applications.

Flash library and utilities

The flash library provides an Application Programming Interface (API)
for programming and reading flash memory. The API provides access to
individual blocks or words in flash, and access to images and files. The
flash management utilities simplify using flash memory. Use the boot
switcher, for example, to select and run one of the images in flash.

Development environment

AFS is an easy to use environment for evaluating ARM-based platforms.
The library APIs enable rapid development of applications and device
drivers. Reusable code is provided to help develop applications and
product architectures on a wide range of ARM and third-party
development platforms.

AFS is compatible with the ARM Development Suite (ADS). AFS
supports use of the Angel debug monitor, Multi-ICE (if the target board
supports it), and third-party debug monitors.

Additional components

Additional components provided with AFS include a boot monitor,
generic applications, and board-specific applications. Use these
components to verify that your development board is working correctly.
You can use the source code for the applications as a starting point for
your own applications.

Additional libraries

AFS supplies libraries for specialized hardware or exception handling.

• The PCI library supports the PCI bus on the Integrator board.

• A public-domain library for compression, zlib, is included. Refer to
the GNU web site for more information on public-domain libraries.

• The Chaining library provides support for exception chaining
required, for example, by RealMonitor.

• The VFP library provides support for soft vector floating point
routines.
1-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
Angel A version of Angel that has been implemented using µHAL is included
with AFS.

µC/OS-II µC/OS-II is a multitasking kernel that is comparable in performance to
many commercially available kernels. AFS includes a port of µC/OS for
the ARM architecture using the µHAL API.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-3

Introduction to the ARM Firmware Suite
1.2 What is firmware?

Firmware is low-level software that runs on development boards and products. You can
use the functions in the firmware directly, or you can use the functions as a starting point
for developing your own applications.

One difference between firmware and other code libraries is that the firmware is
designed to be development-board and operating-system neutral. AFS uses a Hardware
Abstraction Layer (µHAL) to provide a neutral interface to the applications.

AFS provides a collection of standard functions with a known API. This API enables
applications to perform hardware-specific operations without requiring a completely
new version of the application for each hardware configuration. If the AFS libraries
have been ported to the different hardware platforms, you can rebuild the application by
recompiling and relinking the application.

AFS includes many example applications as well as flash utilities and low-level libraries
that you can build into your application.

Figure 1-1 shows the logical organization of code in a development board and how the
AFS firmware simplifies application creation by separating low-level board-specific
code from higher-level applications.

Figure 1-1 Logical organization

1.2.1 µHAL Libraries

The µHAL libraries in AFS mask hardware differences between platforms by providing
a standard layer of board-dependent functions for the size and location of I/O, RAM,
boot flash, and application flash. The µHAL API provides common and uniform access
to other firmware components and applications.

Board and processor-independence for applications is achieved by a set of low-level
functions that:

• identify and initialize the system processor or multiple processors

��������	
���

�

����������	
����
��

����	
�������
���

������	

����
�
�

�����
��������
�
��������
��
���

������
	
���

��������
��
�
��
���
1-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
• identify and initialize the system memory

• identify and initialize the system buses, for example PCI

• identify and initialize system devices, for example serial interfaces

• initialize and handle interrupts

• access code or data stored in flash memory.

Examples of specific functional modules in µHAL are:

• system initialization

• serial ports

• generic timers

• generic LEDs

• interrupt control

• memory management (cache and MMU).

In addition to providing a linkable library, µHAL also provides a set of definitions
(board and processor), and reusable code. Even if you do not use the µHAL library, you
can use the µHAL definitions in your application.

You can write µHAL applications to operate in one of two modes:

Standalone A standalone application is one that has complete control of the system
from boot time onwards.

Semihosted A semihosted application is one for which an application or debug agent,
such as Angel or Multi-ICE, provides or simulates facilities that do not
exist on the target system.

The µHAL applications programming interface is described in the AFS Reference
Guide.

Directory structure

AFS code and source files are arranged into a directory structure that simplifies
identifying the general functional area and the board-specific dependencies.

The lib directory, for example, contains prebuilt library archives for different
development boards. The directory AFSv1_4\lib\Integrator contains generic
ARM7TDMI code for use on an Integrator board. The directory
AFSv1_4\lib\Integrator940T contains code specifically for an Integrator board with an
ARM940T core module fitted.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-5

Introduction to the ARM Firmware Suite
The AFSv1_4\Source\uHAL\Build directory contains build files for different development
boards. The directory AFSv1_4\Source\uHAL\Build\Integrator.b contains generic
ARM7TDMI code for use on an Integrator board. The directory
AFSv1_4\Source\uHAL\Build\Integrator940T.b contains build files specifically for an
Integrator board with an ARM940T core module fitted.
1-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
1.3 Flash library and utilities

ARM development boards contain flash memory that you can use to store programs and
data. You can:

• Use the library functions to access flash from your own application.

• Use the ARM Flash Utility (AFU) to load applications into the flash or RAM
memory.

• Use the ARM Boot Flash Utility (BootFU) application to program the boot and
FPGA areas of flash memory.

• Use the boot switcher subprogram, normally located within the first application
that is run on reset, to select and run an image in application flash. You can store
one or more code images in flash memory and use the boot switcher to start the
image at reset.

• Use the boot monitor to load an image from the serial port and select it to run
when the development board is reset. The boot monitor also provides a simple
command-line interface that provides system debug and self-test functions.

1.3.1 The flash library APIs

The flash library provides four types of function that you can use in your application:

• functions that directly access flash memory

• functions related to low-level file structures

• functions related to high-level file access

• functions related to application-defined storage areas.

The flash management library is described in the AFS Reference Guide.

1.3.2 The ARM Flash Utility

The AFU application can manipulate and store data within a system that uses the flash
library. The AFU runs within an ARM debug environment such as the ARM Multi-ICE
server and the ARM Extendable Debugger (AXD). AFU commands are available to:

• list image information

• delete a block of flash

• program an image from the host computer into flash

• read an image from flash and send it to the host computer

• examine a block of flash for problems.

The commands for AFU are described in the AFS Reference Guide.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-7

Introduction to the ARM Firmware Suite
1.3.3 The ARM Boot Flash Utility

With the BootFU application, you can program the boot and FPGA areas of flash
memory. BootFU must be loaded into the target system RAM to operate. BootFU runs
within an ARM debug environment such as the ARM Multi-ICE server and the AXD
environment. This application is only used for upgrading or restoring the boot ROM and
is not required for loading and debugging user applications.

1.3.4 Boot switcher

The boot switcher is a small subprogram, normally located within the first application
that is run on reset. The boot switcher selects and runs an image in application flash.
You can store one or more code images in flash memory and use the boot switcher to
start the image at reset.

When the ARM development board is reset, the boot switcher reads the status of a
hardware switch and, depending on the value, either:

• Runs the default application. (The default application is typically the boot
monitor command interpreter.)

• Searches flash for the image specified in the system information block and runs
that image instead of the boot monitor. If the image is not found in flash, an error
code is passed to the default application and it displays an error message.

1.3.5 Boot monitor

Use the boot monitor to load an image from the serial port and select it to run when the
development board is reset. The boot monitor also provides a simple command-line
interface that provides system debug and self-test functions.

The boot monitor communicates with a host computer using simple commands over a
serial port. The boot monitor conforms to the Microsoft Standard Development Board
Requirements for Windows CE Specification. The requirements of the Microsoft Harp
Specification have been extended by the ARM boot monitor to aid development of new
hardware. In particular, new system-specific commands have been added.

See the AFS Reference Guide for a detailed description of the boot monitor commands.

1.3.6 Managing images in flash

The flash memory on development boards is logically divided into two areas:

Application Application flash holds data and user applications. You normally load
your own programs into the application flash.
1-8 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
Boot Boot flash holds the boot monitor and boot switcher utilities used for
loading and debugging applications. This flash can be modified using the
BootFU application, but this is not a typical user action.

The images stored in flash memory have three to five parts:

Code and data

The actual code and data for the image.

Header If the original image contained a header, the header is moved to after the
end of the image. Not all images have a header.

Image info The Image Information Block holds additional information about the
image such as image name and start address.

Empty If the image and related data does not completely fill the flash block,
there is an area of empty flash before the footer.

Footer The owner of the image, a checksum, and the image number are stored in
the footer.

There are three images in the flash memory map shown in Figure 1-2. One of the images
is the boot monitor itself. Two other images have been loaded and can be run from the
boot switcher. Two other memory blocks are shown in the figure:

Unused This area can be used to hold additional user images.

SIB A System Information Block (SIB) flash block is a nonvolatile storage
area for various processes.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-9

Introduction to the ARM Firmware Suite
Figure 1-2 Images in flash

���
�
�
���
��

�! �"!��#��$%

���&
��'��

�! �"�

���
�
�
�%

�
�����������

�

���

�

���

�
�����������

�! �"!��#��(%

)���*

������

"�
&����
�*%

���������
"����������
�+,+%

�
���
���������

��
��#���
����

!��#������������
�'��-���

!��#��$

!��#��(

�! ��	
�-��

���

���
�
�
���

���

!��#������������
�'��-���

������

������

!��#��
��
����

�

!��#��
��
����

�

�!
�	
�-

������
���	��'

���	
���

�
�	��'

"�
#'����
�*%

���	��'
"��������%
1-10 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
1.4 Additional libraries

Additional libraries are provided for managing specialized hardware and supporting
exception handling.

1.4.1 PCI library

Some ARM development systems are equipped with PCI expansion card interfaces. Use
the PCI library and µHAL library extensions to initialize and manage a PCI interface
and its devices.

The PCI library code has three main functions:

• to initialize the PCI subsystem, that is, to identify the PCI devices and buses in the
system and then assign them resources

• to locate PCI devices by device drivers

• to allow the PCI device drivers to control their devices.

Using the PCI management library is described in the AFS Reference Guide.

1.4.2 Chaining library

Some hardware and software combinations require that an exception vector, especially
an interrupt vector, is shared by different code modules. The chaining library provides
a mechanism for installing and updating chains of exception vectors.

The SWI interface is used to obtain information about the debugger in use and to install
the trap handler into the chain for a given vector. There are three new SWIs that are used
for interrupt chaining:

angel_SWIInfo (0x21)

Return debugger information.

angel_SWIInfo (0x22)

Perform chaining action.

angel_MoveSemihostingVector (0x23)

Move semihosting vector (used with Multi-ICE).

Note
 The new SWIs are not implemented in older versions of the development and debug
tools.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-11

Introduction to the ARM Firmware Suite
1.4.3 RealMonitor library

RealMonitor (RM) is a small program that, when integrated into your target application
or Real-Time Operating System (RTOS), allows you to observe and debug your target
with minimal intrusion. A debugger such as AXD that runs on a host computer can
connect to the target in order to send commands and retrieve data.

There are two parts to debugging using RM:

• A debug host communication mechanism operates between the debugger (such as
AXD) and RM. The debugger uses version 1.51rt of the Remote Debug Interface
(RDI). RM runs on the debug target using the RealMonitor protocol over the
DCC. For details on debugging an RM-integrated application from the host, see
the RealMonitor Host Controller User Guide.

• RM itself, with RT-aware EmbeddedICE logic, runs on the target hardware. It
receives, and responds to, commands over the DCC. Some of these commands
cause the current processor state to be saved. Depending on the command
received, the application can be suspended while interrupt-driven code continues
to execute. For more details on the RM target code, see the RealMonitor Target
Controller User Guide.

These two functional parts are joined using the RM protocol. This provides the
framework for sending packets of data between a host machine and a target processor.
The RM protocol is carried over a highly reliable DCC, or any word-based transport
mechanism, that keeps target-side RM messages as simple as possible.

You must build the RM target library and link it with your application before you
perform any integration. The RM build options provide full control over which features
you include in any given build. The build options you set are applicable to either C
language code, assembly language code, or both.

1.4.4 The zlib library

The zlib library is included to show how third-party libraries can be used with AFS.
Refer to the GNU documentation for more information on zlib.
1-12 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
1.5 µHAL demonstration programs

Use the generic µHAL demonstration programs on the AFS CD to understand how to
use the µHAL API. Use the test programs to verify that µHAL has been successfully
ported to a system. The generic programs include:

• Simple tests

• Timing tests on page 1-14.

1.5.1 Simple tests

These demonstration programs are typically the first images you might run on a new
target. The following simple tests demonstrate and verify a specific functionality:

hello.c This program outputs data to the serial port.

io.c This program takes data input on the serial port and echoes it on the
output.

led.c This program flashes the LEDs in a binary pattern. It requires no
additional functionality (such as serial ports) to be working in order to
run.

Note
 The semihosted version prints out a banner and description on the

debugger console, because this functionality is known to be available in
semihosted mode.

heap.c This program allocates and then frees some memory.

simple-caches.c

This program gives an example of simple cache (Data and Instruction)
usage that:

• reads the cache and MMU state

• resets the cache and MMU

• turns caches and MMU on and off

• restores the original state.

system-timer.c

This program combines serial output, LED flashing, timers, and
interrupts. This program uses most of the features of µHAL and is a good
indicator that a target is functional.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-13

Introduction to the ARM Firmware Suite
file-io.c A file I/O program. It performs file functions on the host and returns the
size of a specified file.

Note
 This program is only useful when built semihosted and linked with the

ADS C Library.

exception.c

This program shows how the ADS C Library handles a divide-by-zero
exception.

Note
 The compiler displays a warning when building this program.

1.5.2 Timing tests

These demonstration programs are computation and memory-intensive, and
demonstrate how the performance of applications is affected by caching strategies. The
tests are:

bubble.c This program sorts a list by comparing each adjacent pair of items in a list
in turn, swapping the items if necessary, and repeating the pass through
the list until no swaps are required.

queens.c This is one of the benchmark programs that you can use to measure
performance with different caching strategy. The problem of the eight
queens is a well known example of the use of recursion and backtracking
algorithms. The program calculates how 20 queens can be placed on a 20
by 20 chess board so that no queens check against any other queen.

sieve.c This is an implementation of the Sieve of Eratosthenes algorithm to find
all prime numbers up to a certain N. Begin with an (unmarked) array of
integers from 2 to N. The first unmarked integer, 2, is the first prime.
Mark every multiple of this prime. Repeatedly take the next unmarked
integer as the next prime and mark every multiple of the prime. Finally,
the unmarked integers are primes.

1.5.3 Board-specific demonstration programs

The AFS distribution CD contains demonstration program sources and images for a
specific board and processor combination. The sources enable you to bring new
hardware into operation quickly and to gain experience with building applications that
use AFS.
1-14 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Introduction to the ARM Firmware Suite
Each development board has its own collection of demonstration programs. The
Integrator demos are in AFSv1_4\Demos\Integrator. Examples of the programs available
for Integrator are:

TestSuite A collection of test routines for the LEDs, serial ports, keyboard, mouse,
interrupt handlers, and timers.

scanpci Scans the Integrator PCI bus and shows what PCI devices are connected.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 1-15

Introduction to the ARM Firmware Suite
1.6 Angel

The Angel debug monitor is an application that allows you to develop and debug
applications on ARM-based systems. Angel can be used to debug applications running
in either ARM or Thumb state.

A typical Angel system has two main components that communicate through a physical
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Angel
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel Debug Monitor

The Angel debug monitor runs alongside the application being debugged
on the development board.

The internal operation of Angel is described in the AFS Reference Guide.
1-16 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 2
An Introduction to µHAL

This chapter describes µHAL and how it conceals hardware differences between
different ARM-based development systems. This chapter contains the following
sections:

• About µHAL on page 2-2

• Building a new µHAL-based application on page 2-7

• Building the µHAL library on page 2-9.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 2-1

An Introduction to µHAL
2.1 About µHAL

µHAL consists of a low-level interface that provides a common set of functions for
different ARM-based systems.

In addition to providing a linkable library, µHAL also provides a set of definitions
(board and processor) and reusable code. All the AFS components are built with the
µHAL libraries. Even if you do not use the µHAL library, you can use the µHAL
definitions in your application.

µHAL simplifies building applications for development boards by providing a standard
layer of board-dependent functions to manage I/O, RAM, boot flash, and application
flash. Figure 2-1 shows a block diagram of a development platform.

Figure 2-1 Development board with AFS

2.1.1 Licensing

µHAL and its demonstration programs are freely reusable and you can redistribute them
as long as they are used on ARM-based platforms. The other AFS components must be
licensed from ARM. See the license agreement on the AFS CD for details of which
components are licensed.

If you want to use µHAL in commercial projects, contact your vendor to ensure that you
have the appropriate µHAL version. Because the other AFS base-level components are
not free, you must be careful which parts are used and where.

2.1.2 Frequently asked questions

You can find the answers to some common setup problems and other frequently asked
questions in Chapter 6 Troubleshooting and Frequently Asked Questions.

��#�	

�����
��#�

�&
��'��
�)��
!./
���
�	��
��

����
�
�

�
�	��'

����
�	��'

����	
�������
���

�	��'����
�*

�*��������������
'���&���

�����	�����	
���

�
"�

���
�
�
�%

���&
��'��
2-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

An Introduction to µHAL
The ARM Technical Support pages on the ARM web site have additional information
on AFS and on other ARM products:
http://www.arm.com/DevSupp/Sales+Support/faq.html

2.1.3 Application programming interfaces

The µHAL API consists of two types of functions:

Simple The basic functions allow you to program an application through a
minimal number of calls.

Extended The extended functions allow a more complex usage of the system, but
you must be aware of the way µHAL components fit together and how it
works. Within µHAL itself, the basic functions are built using the
extended functions.

For a complete list and description of these functions, see the AFS Reference Guide.

2.1.4 Application operating modes

You can write µHAL applications to operate in one of two modes:

Standalone A standalone application is one that has complete control of the system
from boot time onwards.

Semihosted A semihosted application is one for which an application or debug agent,
such as Angel or Multi-ICE, provides or simulates facilities that do not
exist on the target system. In the case of a debug agent, access to these
facilities are requested by using Software Interrupt instructions (SWIs).

For example, the serial interface code in a standalone application requires a real serial
port to transmit characters. A semihosted application does not necessarily require a
serial port of its own to transmit characters, because it uses a SWI to access a
communications channel provided by the debug agent.

2.1.5 System support provided by µHAL

µHAL provides system support for a variety of target platforms. It does this by
providing routines for specific functional modules. These functions are described in the
following sections:

• System initialization software

• Serial port

• Generic timer

• Generic LED on page 2-4
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 2-3

An Introduction to µHAL
• Interrupt control on page 2-4

• Memory management on page 2-5.

System initialization software

This software initializes the system so that the standard µHAL API is supported. This
might involve:

• switching the memory map over from its initial state to the normal state (for
example from ROM mapped to physical address 0x00000000 to RAM mapped to
virtual address 0x00000000)

• building page tables and setting up memory management or memory protection
units

• enabling virtual memory

• setting up the stack

• zeroing user-memory areas.

The system initialization code can be much simpler if the system has already been set
up by a debug agent such as Angel.

Serial port

If the system has one or more serial ports, µHAL allows character-level polled reading
and writing to that device by way of low-level C routines or C macros. It also includes
a very basic printf() implementation. In semihosted mode, µHAL makes SWI calls to
the debug host to run printf().

Generic timer

µHAL provides a generic interface to manage any timers present in the system. In
semihosted mode, µHAL ensures that it does not use timers that are being used by a
memory-resident debug agent such as Angel.

Generic LED

If your system has LEDs, µHAL provides a generic interface to these LEDs.

Interrupt control

µHAL supports interrupts that use Interrupt Requests (IRQs). This support includes:

• support for applications that request control of an interrupt
2-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

An Introduction to µHAL
• interrupt handling

• interrupt enabling and disabling.

µHAL assumes that it has complete control of the IRQs. If the application is semihosted,
Angelt can use the Fast Interrupt Requests (FIQs). Alternatively, use Multi-ICE, which
does not require an interrupt.

Note
 If you use the chaining library in your application and perform the calls to initialize
exception handling, it is possible for the IRQs to be shared by more than one
application.

Memory management

If the system has not been set up by a debug agent, µHAL attempts to set a one-to-one
mapping between physical and virtual memory. The one exception is that memory at
address 0 must be in RAM.

On some systems, ROM is at address 0. On this type of system, RAM is remapped to
address 0, ROM is remapped to address 64M. Because of the remapping, the Memory
Management Unit (MMU) cannot be disabled or reset.

Note
 The memory management and ROM/RAM memory map for the Prospector
development board is different from the Integrator board. Refer to the board-specific
appendices in the AFS Reference Guide for more details.

2.1.6 µHAL naming conventions

Every µHAL routine has the following naming conventions:

• the prefix uHAL

• the object type

• underscore

• a meaningful capitalized name.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 2-5

An Introduction to µHAL
 Table 2-1 lists these conventions by object type.

Caution
 The extended routines provide access to lower-levels of the library functionality. You
must have an understanding of how µHAL operates internally before you use the
extended routines.

Table 2-1 µHAL naming conventions

Object type Sample

Basic routine, part of the API uHALr_GlobalRoutine

Extended routine, part of the API uHALir_InternalRoutine

Global variable, part of the exported API uHALv_GlobalVariable

Internal variable, not part of the exported API uHALiv_InternalVariable

Pointer uHALp_PointerVariable

Internal pointer uHALip_InternalPointer

Global structure, part of the exported API uHALs_GlobalStructure

Global enumerated variable uHALe_GlobalEnum
2-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

An Introduction to µHAL
2.2 Building a new µHAL-based application

There are three ways to build a µHAL-based application:

• Take an existing demonstration program (for example
AFSv1_4/Source/uHALDemos/Sources/hello.c) and modify it for your use. You can
use the program with any of the existing build systems.

• Create new source files and use one of the build systems such as make or the
CodeWarrior IDE. You must understand the details of the build system that you
are using.

• Copy the prebuilt µHAL library that you wish to use, together with the include
files (bits.h, cdefs.h, platform.h, sizes.h, and uhal.h) into a new directory and
build your application there. However, you must make sure that the µHAL library
is the right variant (board, processor, semihosted versus standalone) and that
platform.h is for the system that you wish to run on. This approach is suited to
small applications. Determine the required files by viewing the project files or
makefiles for an existing application.

The directory names within the Build subdirectory indicate the development board and
processor combination. Use the one that matches your development board and target
processor.

For example, a directory called Integrator940T.b is for an Integrator board with an
ARM940T processor. The directory called Integrator.b is for an Integrator board with
a generic ARM7TDMI processor.

Note
 If you are using PCI or Flash functions in your application, your makefile must include
a path to a prebuilt PCI or Flash library. Prebuilt .a library archives are located in the
subdirectory in AFSv1_4\lib\ that corresponds to your development board and
processor.

2.2.1 Building with GNUmake

To build µHAL and its associated components using makefiles use GNUmake.
GNUmake is available for UNIX, Linux, and for most Windows versions.

Note
 Before you can use GNUmake with Windows 95, Windows 98, or Windows NT, you
must first install CygWin. For more information about the CygWin project, it is
recommended that you contact Redhat at: http://sources.Redhat.com
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 2-7

An Introduction to µHAL
Installing GNUmake on Unix

To use GNUmake on a Unix workstation, you must:

• have access to the appropriate versions of the ARM toolset (currently ADS v1.0
or higher)

• use the correct version of the build tools and the ARM library

• have an environment variable called ARMLIB that contains a pointer to the set of
ARM C libraries

• have an environment variable called ARMINC that contains a pointer to the set of
include files

• place gnumake in your search path.

Installing GNUmake on Windows

After installing GNUmake on your system, you must set up some links and environment
variables in order to use GNUmake and other Unix tools. Assuming that you are using
the bash shell (a popular free command shell available from Cygnus), do the following:

1. Create a desktop shortcut to point to the cygnus.bat file. By default this is placed
at c:\cygnus\cygwin-b20\cygnus.bat.

2. Start a bash shell by double-clicking on the desktop shortcut.

3. Move to the directory where the binary files are kept. This directory is quoted in
cygnus.bat:

bash2-02$ cd //c/cygnus/cygwin-b20/H-i586-cygwin32/bin

4. Create a soft link:

bash2-02$ ln -s make.exe gnumake.exe

The default name for GNUmake is make, however the rules files assume that it is
gnumake to avoid conflicts with the native make on Unix systems. Creating a soft
link to the real make executable resolves the names.

5. Test that the ARM tools work by launching a new bash shell and typing armcc.
armcc executes and lists its input options.

6. Move to the directory of the particular type of board you are building for. (Some
components are not board-specific and the makefile exists in the higher-level
directory.)

7. Type the command gnumake to build images that contain no debug information, or
type gnumake DEBUG=1 to build images that can be debugged.
2-8 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

An Introduction to µHAL
2.3 Building the µHAL library

There are two ways of building the µHAL library and other AFS components. Use
either:

• ARM .mcp project files for the CodeWarrior IDE with ADS 1.0 or higher

• GNU makefiles.

Each board and processor combination has its own build directory within
AFSv1_4\Source\uHAL\Build. Build directories are denoted by the .b suffix on the
directory name.

For example, the build directory for the Integrator/CM940 core module is
AFSv1_4\Source\uHAL\Build\Integrator940T.b, and the build directory for the Integrator
with an ARM7TDMI core and Thumb interworking is
AFSv1_4\Source\uHAL\Build\IntegratorT.b.

The makefile in Integrator940T.b builds two variants of the µHAL library for the
ARM940T Integrator core modules:

• standalone in the subdirectory standalone

• semihosted in the subdirectory semihosted.

Note
 The CodeWarrior IDE creates a new output directory called uHALLibrary_Data and
creates the standalone and semihosted subdirectories in the new directory. You must run
the CodeWarrior IDE build process twice to build both variants.

See the AFS Reference Guide for more information on rebuilding components.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 2-9

An Introduction to µHAL
2-10 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 3
Running the LED Application

This chapter describes how to build and run the LED demo application. It contains the
following sections:

• About the LED application on page 3-2

• Building the LED application on page 3-4

• Using Multi-ICE to load and debug images on page 3-7

• Using Angel to load and debug images on page 3-13

• Modifying the application on page 3-21.

Note
 The examples in this chapter use the Integrator development board. The process is
similar for other development boards.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-1

Running the LED Application
3.1 About the LED application

The LED application flashes the LEDs on the development board in sequence. This is
a good first application to test because the code is relatively simple and the LEDs give
immediate feedback that the application is working correctly.

3.1.1 Files used with the LED application

AFSv1_4\Source\uHALDemos\Sources\led.c is the single C source file for the LED
application in standalone mode. (If the application is semihosted, the file pr_head.c is
used. Functions in this file display information about the target on the debug console.)

There are several library files and include files that produce an image for a specific
board and processor combination.

The led.c file

The main() function in the C file contains a loop that sequences through the LEDs and
turns them off or on. To enable the application to be built for any development board,
the µHAL library functions uHALr_InitLEDs() and uHALr_WriteLED() handle the
low-level control of the LEDs on the development board.

The LED application does not use µHAL timer or interrupt functions. The delay
between LED flashes is determined by a simple loop:

for (wait = 0; wait < 1000000; wait++)

The platform file

The Include directory contains subdirectories for each of the development boards
available. These directories contain the platform.h include file that contains definitions
particular to each specific board. For example, the platform.h file for the Integrator
board includes #define uHAL_PCI 1. This indicates to the build tools that the Integrator
board has PCI slots and supports the µHAL PCI library.

The µHAL library

The uHALDemo applications use µHAL library functions. If the µHAL library cannot
be found, the build tools (makefile or project files) build the library.

3.1.2 Overview of the µHAL LED functions

The µHAL function uHALr_InitLEDs() returns the number of LEDs on the development
board. The LED application uses this function to set the count variable:
3-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
count = uHALr_InitLEDs();

The function uHALr_WriteLED() takes two parameters, the LED number and the state for
that LED. The application uses this function to sequence through the LEDs as shown in
Example 3-1.

Example 3-1 Flashing the LEDs

 // Do a binary count on the LEDs
 for (i = 0; i < max; i++)
 {
 on = (max - 1) & i; // which LEDs are on?
 for (j = 0; j < count; j++)
 uHALr_WriteLED(j + 1, (on & (1 << j) ? 1 : 0));
 for (wait = 0; wait < 1000000; wait++) // wait a while
 ;
 }

3.1.3 Selecting semihosted or standalone operation

If the application is built as a semihosted image and run with a debugger, the application
can use semihosting functions to use resources on the host computer. For example, the
debugger console on the host computer is used for printing. The printf() function is,
therefore, always supported when running semihosted. (The printf() and
uHALr_printf() functions normally map to the same function when an application is
built semihosted.)

The semihosted version of the LED application uses the uHALr_printf() function to
display a message on the debugger console as shown in Example 3-2.

Example 3-2 Printing in semihosted version

 #ifdef SEMIHOSTED
 // init the library
 uHALr_LibraryInit();
 print_header();
 uHALr_printf("\nCheck target for flashing LEDs\n");
 #endif
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-3

Running the LED Application
3.2 Building the LED application

You must compile and link the LED application before you can download it to your
development board. There are two ways to build the image:

• You can use the supplied makefile and build all of the applications. See Using the
makefile.

• You can use the supplied project file and build each application individually. See
Using the project file on page 3-4.

After you have built the LED image, it can be downloaded to the development board in
any of the following ways:

• If the image is built standalone, convert the .axf file produced by the build system
into an .m32 file and download it to flash using the boot monitor. See Changing
the image format on page 3-6.

• If the image is built standalone, use a debugger and the flash utility to download
the .axf file to flash.

• If the image is built semihosted, use a debugger to download the .axf file to RAM.

3.2.1 Using the makefile

The file makefile in the board and processor subdirectory builds the demo applications
for that development environment. For example,

• Source\uHALDemos\Build\Integrator940T.b\makefile builds all of the
demonstration applications for an Integrator board with an ARM940T processor

• Source\uHALDemos\Build\Integrator.b\makefile builds applications for an
Integrator board with a generic ARM7TDMI core module.

Use the make utility to build the applications. If you are using Windows, you must have
the GNU make utility installed.

3.2.2 Using the project file

In the board and processor subdirectories, most of the demonstration applications have
an ADS project file that builds the application for that development environment. The
LED demonstration application, for example, can be built using:

• AFSv1_4\Source\uHALDemos\Build\Integrator940T.b\led.mcp with ADS and the
CodeWarrior IDE to build for an Integrator board with an ARM940T processor
3-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
• AFSv1_4\Source\uHALDemos\Build\Integrator.b\led.mcp builds for an Integrator
board with a generic ARM7TDMI processor.

Double-click on the project file or start the development environment and open the
project file. The CodeWarrior IDE project window displays the files used to build the
application. See Figure 3-1.

Figure 3-1 Files in the LED project

Select semihosted or standalone as the output target. For ADS and CodeWarrior, the
led.mcp file creates a new subdirectory called led_Data that contains the ELF image.
Select Project → Make to rebuild the application. See Figure 3-2.

Figure 3-2 Project menu
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-5

Running the LED Application
3.2.3 Changing the image format

If you are using a debugger and the flash utility, you can download .axf files. The boot
monitor, however, can only download .m32 Motorola hex files. Use the fromELF utility
provided with ADS to convert an .axf file into an .m32 file:

fromelf -m32 -output led.m32 led.axf

Note
 Some of the project files, for example the CodeWarrior project for Angel on Integrator,
are set up to perform the conversion to .m32 as part of the build process.
3-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
3.3 Using Multi-ICE to load and debug images

If your development board supports debugging over a JTAG interface, and you have the
Multi-ICE interface, you can load and debug applications using Multi-ICE.

3.3.1 Preparing the board

Follow the steps below to prepare the target board and Multi-ICE server:

1. Install the Multi-ICE software on your PC.

2. Turn the power to the development board OFF.

3. Connect the Multi-ICE interface cable to the JTAG connector on the development
board and connect Multi-ICE parallel cable to the parallel port on the PC.

4. Power-on the development board.

5. Start the Multi-ICE server. See Figure 3-3.

Figure 3-3 Multi-ICE startup

6. Select Auto configure to initialize the server and target board. See Figure 3-4 on
page 3-8.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-7

Running the LED Application
Figure 3-4 Auto configure

3.3.2 Starting the debugger

The boot monitor commands are not available from Multi-ICE, but you can use the flash
utility afu to access the flash memory. Follow the steps below to start the debugger and
communicate with the Multi-ICE server:

1. Start the debugger (ADW or AXD).

2. Configure the debugger to use Multi-ICE. See Figure 3-5. For more details on
configuration, refer to the Multi-ICE documentation.

Figure 3-5 Select Multi-ICE

3. If you have not used Multi-ICE with the debugger before, you must use Add to
install the Multi-ICE .dll file and then Configure to initialize the interface.
3-8 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
4. Follow the instructions in Loading an image into flash with Multi-ICE on
page 3-10 to download a standalone image into flash.

3.3.3 Loading an image into RAM with Multi-ICE

If your development board has a JTAG interface and the processor supports Multi-ICE,
you can use Multi-ICE with your debugger. Using Multi-ICE and JTAG is much faster
than using a serial port.

Note
 If your board does not support Multi-ICE, or you do not have the Multi-ICE hardware,
you must have the Angel debug monitor in the target board to load and debug
applications in RAM. See Using Angel to load and debug images on page 3-13.

Connect the development board to the host and establish communication with a
debugger:

1. Start the debugger as described in Starting the debugger on page 3-8.

2. Load the semihosted version of the led.axf image. See Figure 3-6. (For AXD,
select File → Load image)

Use the image that matches your board. (For the Integrator board with a 940T
processor, use the image in
AFSv1_4\Source\uHALDemos\Build\Integrator940T.b\semihosted

Figure 3-6 Loading the LED application

3. Display the debugger console. (For AXD, select Processor Views → Console.)

4. Execute the application. (For AXD, select Execute → Go.)
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-9

Running the LED Application
Prompt messages are displayed on the screen and the LEDs begin to flash (see
Figure 3-7).

Figure 3-7 Semihosted LED application

3.3.4 Loading an image into flash with Multi-ICE

Follow the steps below to load an image into flash memory on the target board:

1. Start the debugger as described in Starting the debugger on page 3-8.

2. Start the flash utility application.

a. Use the debugger to load the afu.axf flash utility application (see
Figure 3-8 on page 3-11). For AXD, select File → Load image.

Use the image that matches your board. (For the Integrator board, use the
image in AFSv1_4\Images\Integrator\.)
3-10 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
Figure 3-8 Loading the flash utility image

b. Display the debugger console. (For AXD, select Processor Views →
Console.)

c. Execute the flash utility application. (For AXD, select Execute → Go.)

The flash utility runs and displays a prompt (see Figure 3-9).

Figure 3-9 ARM Flash Utility
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-11

Running the LED Application
3. Use the Program command to load a standalone image as image number 2. The
AFU utility cannot handle long pathnames. To avoid long pathnames, use a
temporary directory to hold the files to download:

p 2 LED D:\Temp\led.axf

4. Quit by using the q command in the debugger and exit the debugger.

5. Set the development board to boot the new image.

a. The new image must be set by the boot monitor as the default. Change the
development board switches to start the boot monitor on reset. (For the
Integrator board, set switch S1-1 and S1-4 to the ON position.)

b. Connect the serial cable between the target board and the host and start a
terminal emulator. See Using a serial port and the boot monitor to load and
run images on page 3-17 for terminal settings.

c. Reset the development board. You now see the boot monitor prompt,
similar to that shown in Figure 3-10.

Figure 3-10 Terminal prompt

d. Enter BI 2 in the terminal window to select image 2 on reset.

e. Change the development board switches to run the image selected by the
boot monitor. (The settings depend on the board type and version. For the
Integrator board, set switches S1-1 to the ON position and S1-4 to the OFF
position.)

Note
 The switch settings provided here might not apply to the version of

development board that you have. Refer to the documentation provided
with your development board for detailed switch settings.

6. Reset the board. The LEDs begin flashing.
3-12 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
3.4 Using Angel to load and debug images

If your board does not support Multi-ICE or you do not have the Multi-ICE hardware,
use the Angel debug monitor to load and debug images. Some boards come preinstalled
with Angel. If your board does not already have Angel installed, you must use one of
the utility applications to install Angel. If Angel is installed, you can load and debug the
application using the debugger (for example, AXD) and the Angel debug agent.

You can use the serial port on the development board to:

• load an image directly into RAM

• load the flash utility into RAM and start it from the debugger to load a new image
into the flash memory

• use the boot monitor to load a new image into flash.

3.4.1 Verifying Angel is in flash

If you are using the serial port and Angel to debug applications, you must have Angel
in the target board. There are the following possibilities for Angel in your development
board:

No Angel If you do not have an ARM supplied development board, you must build
Angel for your board and download it. If you have an older version of an
ARM development board, it might not have Angel preinstalled. You must
select the appropriate Angel image and use either the boot monitor, or
AFU to download it to your board.

Image 0 If you have an older version of an ARM development board, or you have
downloaded a customized version of Angel, Angel might be installed as
image number 0. Use the boot monitor BI command to select image 0 to
run on startup and set the switches on the development board to run the
selected image.

Image 911 If you have a newer version of an ARM development board, it might have
Angel preinstalled in the system ROM as image number 911. Use the
boot monitor BI command to select image 911 to run on startup. (For the
Integrator board, set switch S1-1 to the ON position and S1-4 to the ON
position to start the boot monitor on reset.)

After you have selected the image, set the switches on the development
board to run the selected image, in this case Angel, on startup. (For the
Integrator board, set switch S1-1 to the ON position and S1-4 to the OFF
position to start the image selected to run on reset.)
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-13

Running the LED Application
Note
 The switch settings provided here are a suggestion, but might not apply to the version
of development board that you have. Refer to the documentation provided with your
development board for detailed switch settings.

3.4.2 Using a terminal to detect Angel

For some development boards, you might need to download the Angel agent before you
can use your debugger. To test whether Angel is installed on your board:

1. Set the terminal emulator to 9600 baud (the default Angel baud rate).

2. Use the boot monitor BI command to set the startup image and set the
configuration switches to boot the Angel image on startup. (Angel might be
installed as either image 0 or image 911. If you have a newer board, it is installed
as image 911.)

3. Apply power to the development board and reset the board.

4. Angel attempts to communicate with the debugger over the serial port. The
terminal emulator displays some symbols and then the Angel banner. The display
will be similar to, but not necessarily the same as, that shown in Figure 3-11.

Figure 3-11 Verifying Angel is in flash

5. If you do not see the Angel banner, use boot monitor to identify the images in
flash and set the boot image to be the Angel image.

6. If you still do not see the Angel banner, follow the instructions in Loading an
image into flash on page 3-18 to load the Angel image for your board.

The Angel image for the Integrator is located in:
3-14 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
AFSv1_4\images\Integrator\

The Angel project files for the Integrator are located in:

AFSv1_4\Source\angel\Integrator.b\

Note
 If you download Angel to the target system, Boot Monitor can load it as image number
0 in any available flash block. If you use AFU, you can load it as any image number
(ARM uses image number 911 for Angel in the newer development boards). If you
cannot succeed in loading Angel to your target system, contact your supplier.

If you have access to the Multi-ICE interface, you can use it to download an image to
flash. Multi-ICE is much faster than the serial port for downloading images.

3.4.3 Loading an image into RAM with Angel

The procedure for loading an image into RAM for a debugger that uses Angel is the
same procedure as for a debugger that is using Multi-ICE. The only difference is that
the Angel DLL must be used instead of the Multi-ICE DLL. See Loading an image into
RAM with Multi-ICE on page 3-9 and Running the flash utility from a debugger for
details on loading an image into RAM.

Note
 Disable the heartbeat timeout if the application, led.axf for example, does not allow
Angel to periodically communicate with the board.

3.4.4 Running the flash utility from a debugger

Reset the development board and establish communication with a debugger:

1. Set the switches on the target board to boot Angel from flash. See Verifying Angel
is in flash on page 3-13.

2. Reset the target board.

3. Configure your debugger to use the Angel remote_a DLL for the ADP protocol.

The way you connect to Angel depends on the debugger you are using:

armsd The command line must be of the form:
armsd -adp -port s=1 -linespeed 38400 image.axf

AXD for ADS
See the Debuggers Guide supplied with ADS.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-15

Running the LED Application
4. The debugger attempts to connect with Angel in the target board (see
Figure 3-12).

Figure 3-12 Loading Target

5. The debugger connects to the target and the status line displays ADP (see
Figure 3-13).

If you do not see ADP, follow the instructions in Verifying Angel is in flash on
page 3-13.

Figure 3-13 Debugger connected to Angel

6. Follow the instructions in Loading an image into flash with Multi-ICE on
page 3-10 to download a standalone image into flash.
3-16 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
3.4.5 Using a serial port and the boot monitor to load and run images

If you load an image with the boot monitor, it is loaded as image 0. You can use the flash
utilities to load an image as a different image number. See Running the flash utility from
a debugger on page 3-15 or Loading an image into RAM with Multi-ICE on page 3-9
for loading applications with Angel and a debugger.

Preparing the board

Follow these steps to prepare your board for loading:

1. Assemble, if necessary, your board and identify the power and data connectors.
Refer to the hardware manuals provided with your board.

Note
 Do not apply power to the development board yet.

2. Connect and configure a terminal emulator to communicate with boot monitor:

a. Locate and install a terminal emulator program that is able to send raw
ASCII data files. HyperTerminal is supplied with Windows, but there are
also commercial and public-domain emulators available.

b. Set up the terminal emulator com port to use 38400 Baud, 8 data bits, no
parity, 1 stop bit, and Xon/Xoff (see Figure 3-14).

Figure 3-14 Terminal settings
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-17

Running the LED Application
c. Connect the supplied null-modem cable between the workstation and the
first serial port on the development board. (On the Integrator/AP, the first
port is the port nearest to the switch box S1.)

d. Set the configuration switches to use boot monitor. (The settings depend on
the board type and version. For the Integrator, set switches S1-1 and S1-4
both to the ON position.)

e. Power on and reset the board. You should see the boot monitor prompt.

f. If you do not see the boot monitor prompt, press return on the workstation.
If a prompt still does not appear, there is a problem with the terminal
emulator software or the hardware.

Loading an image into flash

Follow these steps to load and run an image:

1. If your image is not already in Motorola S-record format, convert it so that it is
compatible with the boot monitor. See Changing the image format on page 3-6.

2. Set up the terminal emulator as described in Preparing the board on page 3-17.

3. Apply power to the development board and establish that you can communicate
with the board. You should now see the boot monitor prompt, similar to that
shown in Figure 3-15.

Figure 3-15 Terminal prompt

4. Use the boot monitor to download the image you have built (or one of the prebuilt
images from the CD) to the development board. See Building the LED application
on page 3-4 for build instructions:

a. At the command prompt type L to start the Motorola 32 S-record loader.
3-18 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
b. Select the menu option for transferring an ASCII file (see Figure 3-16 on
page 3-19).

Figure 3-16 ASCII transfer

c. Select the .m32 file for downloading (see Figure 3-17).

Figure 3-17 Select the file to download

d. The boot monitor displays a dot for every 64 records loaded. When the
terminal emulator has finished sending the file, type Ctrl+C to exit the
loader.

e. On exit, the loader displays the number of records loaded, the time the load
took, and any blocks it has overwritten.

5. Use the BI command in Boot Monitor to set image 0 as the image to run on reset
(see Figure 3-18 on page 3-20).
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-19

Running the LED Application
Figure 3-18 Setting the boot image

6. Set the switches to boot the selected image from flash. (The switch settings
depend on the board type and version. For the Integrator set switches S1-1 to the
ON and S1-4 to the OFF position.)

Note
 Your development board might use different switch settings. Refer to the

documentation supplied with your development board for details on switch
settings.

If you require the loaded image to have a different image number, see the
description of the ARM Firmware Utilities in the ARM Firmware Suite Reference
Manual.

7. Reset the development board.

8. The application starts. If you downloaded the LED application, the LEDs on the
development board flash.

If the application uses standard output, text is displayed on the terminal emulator
or the LCD screen.
3-20 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
3.5 Modifying the application

The settings for the led.mcp file produce optimum code size but with reduced debugging
capability. You can rebuild the project so that you can easily trace the execution of the
application and watch how the µHAL code is executed.

3.5.1 Changing build options

Follow the steps below to create an application with a better debug view:

1. Start CodeWarrior and open the led.mcp project.

2. Select Edit → semihosted settings to display the settings dialog (see
Figure 3-19).

Figure 3-19 Changing the settings

3. Select the Linker entry. Check the Include debugging information box (see
Figure 3-20).
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-21

Running the LED Application
Figure 3-20 Linker options

4. Select the ARM C Compiler entry and the Debug tab. Change the settings to
produce optimum debug view (see Figure 3-20).

Figure 3-21 Debug options

5. Save the changes.

6. Open the uHAL subproject and change its settings as in step 3.

7. Select Project → Make to rebuild the µHAL library.
3-22 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the LED Application
Note
 Remember to change the settings back to optimum code size if you rebuild the

project later and do not want the full debug information.

3.5.2 Stepping through the code

Follow the steps below to step through the code and see the call to the µHAL library
code:

1. Start AXD and connect to the target board. This requires either Angel on the
target board or the Multi-ICE hardware. See Starting the debugger on page 3-8.

2. Load the semihosted led.axf image.

3. Select Processor views → Source and load the file
AFSv1_4\Source\uHAL\Sources\led.c (Figure 3-22).

Figure 3-22 Loading the source files

4. Set a breakpoint in led.c to stop when the uHALr_WriteLED() call is reached (see
Figure 3-23).
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 3-23

Running the LED Application
Figure 3-23 Breakpoint in led.c

5. Select Execute → Go to start the application.

6. After the debugger stops on the breakpoint, select Execute → Step in to continue
execution.

7. The debugger shows the code execution continuing in the b_led.c file. This file
contains the uHAL_WriteLED() code that is specific to the Integrator board (see
Figure 3-24).

Figure 3-24 The µHAL library code for writing to an LED
3-24 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 4
Running the Timer Application

This chapter describes how the system-timer application uses µHAL. It contains the
following sections:

• How the application uses µHAL on page 4-2

• Running the application on page 4-5.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 4-1

Running the Timer Application
4.1 How the application uses µHAL

The system-timer application installs a timer interrupt to update a variable. A loop in
main() contains the code that reads the variable and outputs its value to the standard
output port. The examples in this section list code from the timer application. To view
the code, either:

• Open the AFSv1_4\Source\uHALDemos\Sources\system-timer.c file in a text editor.

• Use the CodeWarrior IDE to open the system-timer.mcp file for your board. For
example, to use the project file for an Integrator board with an ARM940T
processor, use the integrator940T.b project file in the directory
AFSv1_4\Source\uHALDemos\Build\ and double-click on the entry system-timer.c.

4.1.1 The interrupt function

The function in Example 4-1 is installed as the interrupt simply increments the value of
a global variable. This function is passed to a µHAL interrupt installation function.

Functions that are installed as interrupt handlers by µHAL must have a single integer
parameter and a void return type.

Example 4-1 The interrupt function

// called by IRQ Trap Handler when the timer interrupts
static int OSTick = 0;
void TickTimer(unsigned int irq)
{
 OSTick++;
}

4.1.2 Displaying the board details

Before the interrupt function is installed, the board details are loaded into an infoType
structure and displayed as shown in Example 4-2 on page 4-3.

The uHALr_GetPlatformInfo() function source is in the board.c file. There is an
implementation of this routine for each board that returns the board-specific
information.
4-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the Timer Application
Example 4-2 Display the board details

int main(int argc, int *argv[])
 int i, j;
 infoType platformInfo;

 print_header();

 // who are we?
 uHALr_GetPlatformInfo(&platformInfo);
 uHALr_printf("platform Id :0x%08X\n",platformInfo.platformId);
 uHALr_printf("memory Size :0x%08X\n", platformInfo.memSize);
 uHALr_printf("cpu ID :0x%08X\n", platformInfo.cpuId);

4.1.3 Installing the timer interrupt

Example 4-3 on page 4-4 shows how the timer is installed. There are several steps to
complete before the timer interrupt is functioning:

1. uHALr_InitInterrupts() is called once on startup to initialize the µHAL internal
interrupt structures. This must be called before installing a new IRQ handler with
µHAL.

2. uHALr_InitTimers() must be called before any other timer function. This function:

• Sets the host timer to T_LOCKED, if the application is semihosted, so that
the host timer cannot be modified by the application.

• Initializes the µHAL internal timer structures.

• Resets all timers to a known state (it sets the internal delays to a predefined
value and sets all timers off).

3. The call to uHALr_RequestSystemTimer():

• installs a handler for the system timer

• sets up the internal structures

• stops, and does not restart, the timer.

By default, the system timer is set to tick once every millisecond.

4. uHALr_InstallSystemTimer() starts the timer and enables the interrupt associated
with it.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 4-3

Running the Timer Application
Example 4-3 Install the timer

 // Install new trap handlers and soft vectors
 uHALr_InitInterrupts();
 // initialise the timers
 uHALr_InitTimers();

 // initialise the tick count
 OSTick = 0;
 uHALr_printf("Timer init\n");
 if (uHALr_RequestSystemTimer(TickTimer,
 (const unsigned char*)"test") <= 0)
 uHALr_printf("Timer/IRQ busy\n");

 // Start system timer & enable the interrupt.
 uHALr_InstallSystemTimer();

4.1.4 Displaying the timer value

Example 4-4 shows the loop that continuously flashes the LED and prints the timer
value. The µHAL LED functions are used to turn the LED on and off.

Example 4-4 Display the timer count

// loop flashing a led and giving out the tick count
for (j = 0;; j++)
 {
 if (j & 1)
 uHALr_SetLED(1);
 else
 uHALr_ResetLED(1);

 uHALr_printf("Tick count is 0x%05X\n", OSTick);

 // Wait around for a bit..
 for (i = 0; i < 1000000; i++)
 ;
 }
 print_end();
 return (OK);
}

4-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Running the Timer Application
4.2 Running the application

To build and run the timer application, follow the steps below:

1. Build an executable image for the application from the makefile or the
CodeWarrior project file located in the directory for your development board. For
example, to use the project file for an Integrator board with an ARM940T
processor, use
AFSv1_4\Source\uHALDemos\Build\Integrator940T.b\simple-timer.mcp.

For an Integrator board with a generic ARM7TDMI, use
AFSv1_4\Source\uHALDemos\Build\Integrator.b\simple-timer.mcp.

2. Follow the instructions in Loading an image into RAM with Multi-ICE on
page 3-9 to download the semihosted application to the development board.

3. Use AXD to start the application. The timer values are displayed in the console
as shown in Figure 4-1.

Figure 4-1 Timer application output
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 4-5

Running the Timer Application
4-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 5
Creating a New Application

This chapter describes how to create and build a new application. It contains the
following sections:

• How to create a new application on page 5-2

• Extending the existing directory structure on page 5-3

• Creating a separate directory structure on page 5-10.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-1

Creating a New Application
5.1 How to create a new application

There are several ways to create a new application:

• Modify one of the existing demonstration applications. This method does not
require detailed knowledge of how applications are built, but it is only suitable for
simple applications. See Modifying the application on page 3-21 for details on
using the CodeWarrior IDE and an existing application.

• Create new directories within the existing directory structure and place your
source code there. You must also create either makefiles or project files that
control how your application is built. Your make or project files must use the
correct relative path to access the library and include files that match your target
hardware.

This method can be used for medium or large applications. Reusing the existing
directory structure simplifies selecting the correct library and include files.

• Create a new directory structure and copy the necessary library and include files
from the AFS installation directories. In addition to creating the make or project
files that use files in the new paths, you must also ensure that you have copied the
correct build variants of the files for your target hardware.

This method gives the most flexibility, but it requires more understanding of how
applications are constructed. If you only build for one processor and development
board combination, you can use this method to simplify the directory structure.
5-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
5.2 Extending the existing directory structure

This section describes how to extend the standard AFS directory structure to provide a
working area for your own applications. This method is simple and fast, but it has the
disadvantage that common library files are shared between different applications. This
might result in someone changing a library build without your knowledge.

If you want more control of the build process and included files, create a separate
directory structure and copy the required library files to it (see Creating a separate
directory structure on page 5-10).

5.2.1 Using CodeWarrior projects

Follow the steps below to create new directories for CodeWarrior projects:

1. Create new directories for your project and source files:

a. Change directory to the Source directory in your AFS installation directory
(for example, AFSv1_4\Source).

b. Create a new directory to hold your work. For example,
AFSv1_4\Source\User.

c. Create a Sources subdirectory in your new directory.

d. Create a Build subdirectory in your new directory.

e. Create a directory within Build that matches your development board and
target processor.

For example, create a directory called Integrator940T.b if you have an
Integrator board with an ARM940T processor. Create a directory called
Integrator.b if you have an Integrator board with a generic ARM7TDMI
processor.

f. Create new source files in your Sources directory to add to the project. For
example, copy AFSv1_4\Source\uHALDemos\Sources\led.c and
AFSv1_4\Source\uHALDemos\Sources\pr_head.c to
AFSv1_4\Source\User\Sources\led2.c and
AFSv1_4\Source\User\Sources\pr_head.c.

2. Modify an existing project file to use different source files:

a. Copy a project file from one of the existing demonstration directories to the
subdirectory for your hardware.

For example, copy
AFSv1_4\Source\uHALDemos\Build\Integrator940T.b\led.mcp to
AFSv1_4\Source\User\Build\Integrator940T.b\led2.mcp.

b. Open the project file in the new destination directory.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-3

Creating a New Application
c. Delete the existing source files from the project by selecting the files and
pressing Delete (see Figure 5-1).

Figure 5-1 Delete existing source files from project

d. Confirm the delete by selecting OK (see Figure 5-2).

Figure 5-2 Confirm delete

e. Add your source files to the CodeWarrior project.

For example, Figure 5-3 shows adding
AFSv1_4\Source\User\Sources\led2.c and
AFSv1_4\Source\User\Sources\pr_head.c
5-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
Figure 5-3 Adding new files to the project

f. Add your source files to both the semihosted and standalone builds (see
Figure 5-4).

Figure 5-4 Targets for source files

g. Verify that the correct library build targets match the overall build targets
by selecting the Targets tab (see Figure 5-5).
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-5

Creating a New Application
Figure 5-5 Targets for library

3. The original led.mcp project used the basic uHAL library, but you might require
the PCI or flash libraries for your new application if you are calling PCI or flash
routines. If so, add the prebuilt library file to the project.

For the flash library and Integrator, select the file from the directory containing
builds for all Integrator boards in AFSv1_4\lib\Integrator. For the PCI library and
Integrator, you can select one of:

• the generic library file from AFSv1_4\lib\Integrator

• a generic Thumb-aware file from AFSv1_4\lib\IntegratorT

• a library which is built for the specific processor.

For example, the files in AFSv1_4\lib\Integrator940T are built for the Integrator
board with an ARM940T processor. The generic libraries are build for an ARM7
processor running in ARM mode. The files in the IntegratorT directory are build
for an ARM7TDMI with Thumb interworking.

Select the library variant that matches the semihosted or standalone build options.
PCI_u_.a is the semihosted PCI library. PCI_ur.a is the library for applications in
ROM. See the ARM Firmware Suite Reference Guide for more details on library
naming. See Figure 5-6.
5-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
Figure 5-6 Adding a prebuilt library to the project

4. Select Project → Make to build your new application.

Because uHALLibrary is a subproject in your application, the library is
automatically rebuilt if necessary.

If you included library archive files directly in the application, for example,
PCI_ur.a, the library is not rebuilt and you cannot change its build options by
changing project options. If you require different build options for a library, you
must select a different library variant.

5.2.2 Using makefiles

You can use makefiles to control your build process instead of using project files. The
existing makefile and .in include files from the uHALDemos directory can be used as
a starting point.

To extend the existing directory structure and customize your makefiles:

1. Create new directories in your AFS installation directories as described in step 1
of Using CodeWarrior projects on page 5-3.

2. Create two output directories in the build directory for your hardware called
semihosted and standalone. For example, the full paths are
AFSv1_4\Source\User\Build\Integrator940T\semihosted and
AFSv1_4\Source\User\Build\Integrator940T\standalone.

3. Create an include file to define your build environment to the make process:

a. Copy environ.in from AFSv1_4\Source\uHALDemos\ to
AFSv1_4\Source\User\.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-7

Creating a New Application
b. Open environ.in in a text editor and modify the list of boards. Enter the
name of your hardware subdirectory without the trailing .b.
The set of boards/subdirectories that we need to build.
BOARDS = Integrator940T

c. Save the modified file.

4. Create an include file that specifies which applications you are building:

a. Copy common.make from AFSv1_4\Source\uHALDemos\Build to
AFSv1_4\Source\User\Build.

b. Open common.make in a text editor and modify the list of target applications.
Enter the name of your application and the file type:
$(TARGET)_all: $(TARGET)/led2.axf \
 $(TARGET)/led2.bin

c. Modify the build instructions for the led application to use the new
application name and source files as shown in Example 5-1.

Example 5-1 makefile

 #**
 # LED flashing program
 #***
 $(TARGET)/led2.o : $(SOURCES)/led2.c $(SYSTEM_INCLUDE_FILES)
 $(ARMCC) $(CFL) $(CFLAGS) $(CDEFS) -c $(INCL) $< -o $*.o

 ifeq ($(TARGET),semihosted)
 LEDOBJS=$(TARGET)/led2.o $(TARGET)/pr_head.o
 else
 LEDOBJS=$(TARGET)/led2.o
 endif

 $(TARGET)/led2.axf: $(LEDOBJS) $(LIBRARIES) $(UHALLIB)
 $(ARMLINK) $(LFLAGS) $(LDEFS) $(SYM_LIST) \
 $(TARGET)/led2.sym $(LIBRARIES) $(UHALLIB) $(LEDOBJS) \
 -o $(TARGET)/led2.axf

 $(TARGET)/led2.bin: $(TARGET)/led2.axf
 $(FROMELF) $(ELFDEFS) $(TARGET)/led2.axf -bin $(ELF_OUTPUT) \
 $(TARGET)/led2.bin

d. Delete the other demo application target instructions (for bubble, exception,
file-io, hello, and so on) from the include file. Do not, however, delete the
library or cleanup instructions.

e. Save the modified file.
5-8 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
5. Create a makefile that controls the overall build process by copying makefile from
AFSv1_4\Source\uHALDemos\Build\Integrator940T.b to
AFSv1_4\Source\User\Build\Integrator940T.b

The makefile uses the line:

include $(UHAL_BASE)/Build/$(BOARD_NAME).b/board.in

to select the settings for your development board and processor.

Note
 Because the BOARD_NAME variable is used to retrieve files from other directories, the

board names in your User\Build directory must be the same as the ones in the
uHAL\Build directory.

6. Change location to the board directory and use the make command to build your
application.

Note
 Using make requires additional software not provided with ADS or AFS. If you are

using Windows, you can download the public-domain Cygnus command shell.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-9

Creating a New Application
5.3 Creating a separate directory structure

This section describes how to create a new independent directory structure to hold both
your source and library files. This method gives you more control over how your
applications are built, but it requires more knowledge of the internal stages of the build
process.

Caution
 You must copy the correct library variants for your development board and processor.
Use the directory names to identify the board or processor settings used in the library.

5.3.1 Using the CodeWarrior IDE

If you are using the CodeWarrior IDE, the search paths for the project must match the
board and processor. This section describes how to modify the access paths and
preprocessor settings for a project. See the CodeWarrior IDE documentation for details
on creating and modifying projects:

1. Create new directories and project files. See Extending the existing directory
structure on page 5-3 for examples of how to use existing CodeWarrior project
files as a starting point for new projects.

2. Change the access paths that CodeWarrior uses to locate user files:

a. Select Edit → Project Settings to display the settings dialog.

b. Select Access Paths from the left panel (see Figure 5-7).

Figure 5-7 Access paths
5-10 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
c. Click on one of the user paths to select it.

d. Click Change to display the dialog for selecting a new path. Select the new
path and click OK. See Figure 5-8.

Figure 5-8 Relative path

e. Use Remove to delete a selected path that is not used in your new directory
structure.

f. Use Add to add a new path. If you are adding an absolute path, use the Path
Type drop-down list and select absolute path (see Figure 5-9).

Figure 5-9 Absolute path
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-11

Creating a New Application
3. Change the predefines and preprocessor settings for the assembler and compilers:

a. Set the project defines to match your build target. Select the Preprocessor
tab to set defines for the compilers (see Figure 5-10).

Figure 5-10 Compiler preprocessor settings

b. Select the Predefines tab to set defines for the assembler (see Figure 5-11).

Figure 5-11 Assembler predefines
5-12 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Creating a New Application
5.3.2 Using makefiles

You must be familiar with the build process, the library files, and makefiles to control
your build process. Instructions on the make process are beyond the scope of this
document. This section, however, covers some of the key concepts and issues.

Create your new directory structure and copy the necessary library archives and header
files into a directory within that structure. If you are only building for one board and
processor combination, you can copy just the files needed for that build target. If you
are building for different board or processor combinations, you must copy all the files
that are used for your build targets and use directory naming to identify which files are
used for each target build.

Create a makefile that matches your new directory structure, library archives, and build
target. If you use the existing make and include files as a starting point, edit the defines
that set the library base paths. Extensive use is made of path-relative directory names.
The text in Example 5-2 shows how the rules.in file calculates paths for include files:

Example 5-2 Relative path names in rules.in

...

 # What is the set of include files for this board?
 ifndef UHAL_BOARD_INCLUDES
 UHAL_BOARD_INCLUDES= $(UHALBOARDDIR)/platform.h \
 $(UHALBOARDDIR)/platform.s $(UHALBOARDDIR)/target.s
 endif

...

 # ***
 # Where are the sources?
 # ***
 # where stuff is (in uHAL)
 # [A] The directories
 UHALINCLUDEDIR = $(UHAL_BASE)/h
 UHALBOARDDIR = $(UHAL_BASE)/Boards/$(BOARD_TYPE)
 UHALPROCESSORDIR = $(UHAL_BASE)/Processors
 UHALARMDIR = $(UHAL_BASE)/Processors/$(PROCESSOR_NAME)
 UHALLIBDIR = $(UHAL_BASE)/Sources/
 UHALTOOLDIR = $(UHAL_BASE)/tools/

 # [B] Sources
 UHALLIBSOURCES= $(UHALLIBDIR)/boot.s $(UHALLIBDIR)/led.c \
 $(UHALLIBDIR)/iolib.c $(UHALLIBDIR)/timer.c \
 $(UHALLIBDIR)/heap.c $(UHALLIBDIR)/irq.c \
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 5-13

Creating a New Application
 $(UHALLIBDIR)/irqlib.s $(UHALLIBDIR)/irqtrap.s \
 $(UHALLIBDIR)/switrap.s $(UHALLIBDIR)/undeftrap.s \
 $(UHALLIBDIR)/crt.c $(UHALLIBDIR)/mort.s \
 $(UHALLIBDIR)/external.s $(UHALLIBDIR)/cpumode.s \
 $(UHALLIBDIR)/divide.s $(UHALLIBDIR)/support.s
 UHALPROCESSORSOURCES= $(UHALPROCESSORDIR)/cache.c \
 $(UHALPROCESSORDIR)/control.s $(UHALPROCESSORDIR)/mmu.s

 # [C] Include files
 UHALLIBINCLUDES = $(UHALINCLUDEDIR)/uhal.h \
 $(UHALINCLUDEDIR)/cdefs.h $(UHALINCLUDEDIR)/bits.h \
 $(UHALINCLUDEDIR)/sizes.h
 UHALPROCESSORINCLUDES = $(UHALPROCESSORDIR)/mmu_h.h \
 $(UHALPROCESSORDIR)/mmu_h.s \
 $(UHALPROCESSORDIR)/mmumacro.s

The build process is considerably simplified if you use prebuilt libraries rather than
including the instructions for building a library variant. If you use prebuilt libraries
however, you must ensure that you are using the correct variant for your build options.

Note
 If you are using PCI or flash functions in your application, your makefile must include
a path to a prebuilt PCI or flash library. Prebuilt .a library archives are located in the
subdirectory in AFSv1_4\lib\ that corresponds to your development board and
processor.
5-14 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Chapter 6
Troubleshooting and Frequently Asked
Questions

This chapter describes solutions to problems that occur when producing an application,
and provides answers to general questions about AFS. It contains the following
sections:

• Frequently asked questions on page 6-2

• Troubleshooting on page 6-5.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 6-1

Troubleshooting and Frequently Asked Questions
6.1 Frequently asked questions

This section gives the answers to some frequently asked questions about the AFS.

6.1.1 Does AFS support Thumb?

The CodeWarrior IDE project files installed for the AFS components and demo
applications use a define in the ARM C Compiler and ARM Assembler Preprocessor
tabs of the target settings window to select Thumb support:

-DTHUMB_AWARE=1

There are different directories for Thumb and non-Thumb builds:

Integrator.b This directory contains project files that build non-Thumb versions.
These builds can be run on any supported processor.

IntegratorT.b

This directory contains project files that build Thumb versions. These
builds can be run on any supported processor that can execute Thumb
code.

To build applications with the makefile, set the build variable:

make THUMB_AWARE=1

6.1.2 How do I build AFS components using ADS?

There are ADS CodeWarrior IDE project files installed for the AFS components and
demo applications.

The makefile builds for ADS by default. The build is controlled by the following build
variable:

make ADS_BUILD=1

6.1.3 How do I use the C library?

The CodeWarrior IDE project files installed for the AFS components and demo
applications use a define in the Processors tab of the target settings window to select
the ADS C library:

-DUSE_C_LIBRARY=1

The CodeWarrior IDE projects that build applications with the ADS C library require
an additional assembler predefine:
6-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Troubleshooting and Frequently Asked Questions
USE_C_LIBRARY SETA TRUE

and an additional C preprocessor #define:

USE_C_LIBRARY=1

or use -DUSE_C_LIBRARY=1 on the compiler command line.

UNIX makefiles that build using the ADS C library must define the additional makefile
build variable:

make USE_C_LIBRARY=1

The main effect of building with the ADS C library is that µHAL now defines the heap
and stack base and size and exports these to be used by the C library memory
management routines. Program start-up and termination are still controlled by C library
routines, but additional routines in the C library are used to perform some of the
initialization.

6.1.4 Is µHAL free?

The µHAL demonstration and example programs are freely reusable and redistributable
so long as they are used on ARM-based platforms. The other ARM Firmware Suite
components must be licensed from ARM.

6.1.5 Can I use µHAL in my project?

You can use µHAL in your commercial projects. Refer to your license agreement for
details, or contact your supplier if you require further information.

Note
 Because there are portions of the firmware base level that are not free, you must be
careful about the parts that are used and where they are used. Contact your ARM sales
representative for more information.

6.1.6 What boards are supported?

The current set of supported evaluation boards consist of:

• Integrator

• Prospector

• ARM Evaluation Board (Evaluator 7T)

• Intel IQ80310.

• Intel IQ80321.

• Agilent AAED-2000.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 6-3

Troubleshooting and Frequently Asked Questions
6.1.7 How do I use boot monitor with Multi-ICE?

Boot monitor does not use the Multi-ICE interface, but you can load and debug
applications using Multi-ICE and the flash utilities:

1. Install the Multi-ICE server software on your PC.

2. Configure your debugger to use the Multi-ICE interface.

3. Connect the Multi-ICE cable to the JTAG connector on the processor card.

4. Power-on the development board.

5. Use the Load image command from the debugger to load and debug an image in
the RAM of the development board, or load afu and use the debugger console to
store images in flash.

Once a standalone image has been loaded into flash with Multi-ICE, you can use the
boot monitor and a serial port to select the image to run on reset.

6.1.8 How can I verify that Angel is installed?

To test whether Angel is installed on your board, refer to the instructions in Verifying
Angel is in flash on page 3-13.
6-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Troubleshooting and Frequently Asked Questions
6.2 Troubleshooting

The topics below list solutions to problems that might occur when you build an
application using µHAL.

6.2.1 µHAL does not work with my processor

µHAL supports the following processors:

• ARM7TDMI (in the Integrator and Integrator.b directories)

• ARM720T

• ARM740T

• ARM920T

• ARM940T

• ARM946E-S (preliminary support only)

• ARM966E-S

• StrongARM (SA110 and SA1100).

• XScale

• ARM 10 (preliminary support only).

If the processor you want to use is not on this list, you might still be able to use all or
part of the µHAL source code or definitions in your application. The generic code is
based on an ARM7TDMI processor.

6.2.2 The boot switcher fails to run an image from flash

Take one of the following actions to remedy this condition:

• Check that the boot image number is correct by using the boot monitor BI
command.

• Check that the image is correctly programmed by using the boot monitor V
command.

• For the Integrator board, use the boot monitor DC command in the extended
command mode to check that the clock settings in the SIB are reasonable values
for the core module you are using.

• Check the switch settings for your board.

6.2.3 AXD cannot download to Integrator flash memory

The following actions may solve the problem:

1. Download to flash with switch 1 in the on position.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 6-5

Troubleshooting and Frequently Asked Questions
2. Power cycle the board.

3. Start AXD and download to flash.

4. Put switch 1 down again.

5. Power cycle the board to run the image.

If you still have problems, clear the flash with HyperTerm (using the e command in the
boot monitor) and start again with switch 1 on.

See The switch settings do not behave as expected or the documentation supplied with
your development board for more information on switch settings.

6.2.4 The switch settings do not behave as expected

The function of the switches depends on the development board and the firmware
version. The function of the switch settings for the Integrator board are described in
Table 6-1. Refer to the documentation supplied with your development board for more
information on switch settings. For example, on the Prospector board, switch U25-5
selects the boot monitor

6.2.5 Integrator images fail to load after Multi-ICE Auto-Configuration

Take one of the following actions to remedy this condition:

• Reset the system.

• Power the system OFF and then ON again.

• Set the REMAP bit (bit 2 in the CM_CTRL register at 0x1000000C) from the
debugger.

Table 6-1 Integrator switch settings

Switch 1 - 4
settings

Result

ON OFF OFF ON The boot monitor is run on reset.

OFF OFF OFF ON The application image at address 0x24000000 is run on reset. This is
the default address for images loaded with the boot monitor L
command.

ON OFF OFF OFF The image designated as the boot image is run on reset. Use the boot
monitor BI command to select the image number.
6-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Troubleshooting and Frequently Asked Questions
6.2.6 Exception vector errors when using Multi-ICE

The message Unable to set breakpoints on exception vectors is displayed when using
Multi-ICE on Integrator.

• Depending on the value of $vector_catch, Multi-ICE attempts to write to the
vectors. This error occurs if the memory has not been remapped. Refer to the
Multi-ICE User Guide.

6.2.7 I cannot enable a timer that has not been requested

You must allocate a timer by requesting it before you can use it in any way, including
enabling it. The System Timer ID is available using uHALir_GetSystemTimer().

6.2.8 Enabled timer interval is too long

The interval count is reloaded when the timer is enabled, so it is the full interval duration
before the timer event occurs again. Load the correct timer interval before you enable
the timer.

6.2.9 Terminal emulator does not work with boot monitor

The line parameters for the boot monitor are the defaults for the µHAL port for that
board. Look in the porting documentation for your board for details. For many ARM
boards, the defaults are 38400 baud, 8 data bits, no parity, and one stop bit.

Either TTY or VT100 emulation should work. You must enable Xon/Xoff flow control
for the emulator. Where there are two ports, look in the board documentation or in the
source to identify the port to use (or more simply, try both).

6.2.10 I cannot use ELF format in my application

The ADS utility fromELF is provided to generate other file formats from an ELF image.
See your ADS documentation for details on using fromELF.

6.2.11 Demo applications run slower as standalone

The µHAL Board Demo routines appear to show differences in running time between
the semihosted and standalone variants. The semihosted variants can run approximately
four times faster when not using the processor cache.

This difference is due to the semihosted code being run from system RAM (linked to
execute at location 0x8000 which is the default location for debugger execution).
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. 6-7

Troubleshooting and Frequently Asked Questions
The standalone code is linked to run directly from the flash memory in which it is
stored. Flash memory accesses are slower than RAM accesses giving the performance
loss.

The system test and sieve demo applications show how the use of system caches
improve routines performance from slower memory.

The standalone code can be linked to run from RAM for direct performance
comparison. You can achieve this by setting the Read Only address for the linker to
0x8000.

When programming an image linked for RAM into flash memory, use the AFU to
program an image into the flash (the location in flash is not important). The flash image
contains all the information in the footer to ensure that the code can be copied to the
correct location and executed. An example of the code required to use this information
is in the ARM boot monitor.
6-8 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Glossary

ADP Angel Debug Protocol, see Angel

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

AFU See ARM Flash Utility.

AFS See ARM Firmware Suite.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

ANSI American National Standards Institute.

API See Application Programming Interface.

Application
Programming
Interface

The syntax of the functions and procedures within a module or library.

ARM Boot Flash
Utility

The ARM Boot Flash Utility (BootFU) allows modification of the specific boot flash
sector on the system.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM Debugger for
UNIX

The ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively.

ARM Debugger for
Windows

See ARM Debugger for Unix.

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtendable
Debugger

The ARM eXtendable Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM Flash Utility The ARM Flash Utility (AFU) is an application for manipulating and storing data within
a system that uses the flash library.

ARM Firmware Suite A collection of utilities to assist in developing applications and operating systems on
ARM-based systems.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger
providing high-level debugging support for languages such as C, and low-level support
for assembly language. It is a command-line debugger that runs on all supported
platforms.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

ATPCS The ARM and Thumb Procedure Call Standard (ATPCS) defines how registers and the
stack are used for subroutine calls.

AXD See ARM eXtendable Debugger.

Big-Endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-endian.

BootFU See ARM Boot Flash Utility.

Boot monitor A ROM-based monitor that communicates with a host computer using simple
commands over a serial port. Typically this application is used to display the contents
of memory and provide system debug and self-test functions.

Boot switcher The boot switcher selects and runs an image in application flash. You can store one or
more code images in flash memory and use the boot switcher to start the image at reset.

Canonical Frame
Address

In DWARF 2, this is an address on the stack specifying where the call frame of an
interrupted function is located.
Glossary-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Glossary
CFA See Canonical Frame Address.

CodeWarrior IDE The development environment for the ARM Developer Suite.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format (DWARF) is a format for debug tables.

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable and Linking Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Flash memory Nonvolatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Hardware
abstraction layer

Code designed to conceal hardware differences between different processor systems.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer.

ICE In Circuit Emulator.

IDE Integrated Development Environment, for example the CodeWarrior IDE in ADS.

Image A binary execution file loaded onto a processor and given a thread of execution. An
image may have multiple threads. An image is related to the processor on which its
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output section
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. Glossary-3

Glossary
Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Local An object that is only accessible to the subroutine that created it.

Memory
management unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same Read Only (RO), Read
Write (RW), or Zero Initialized (ZI) attributes. The sections are grouped together in
larger fragments called regions. The regions will be grouped together into the final
executable image.

See also Region

PCI See Peripheral Component Interconnect.

PCS Procedure Call Standard.

See also ATPCS

Peripheral
Component
Interconnect

An expansion bus used with PCs and workstations.

PIC Position Independent Code.

See also ROPI

PID Position Independent Data.

See also RWPI

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.
Glossary-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Glossary
Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each
instance of the subroutine call has its own copy of any required static data.

Region In an Image, a region is a contiguous sequence of one to three output sections. Output
section types are Read Only (RO), Read Write (RW), and Zero Initialized (ZI).

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

Retargeting The process of moving code designed for one execution environment to a new execution
environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at
run-time.

Scatter loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols which have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Section A block of software code or data for an Image.

See also Input section

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SIB See System Information Block.

System Information
Block

A block of user-defined nonvolatile storage.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. Glossary-5

Glossary
Target The actual target processor, real or simulated, on which the application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Thread A context of execution on a processor. A thread is always related to a processor and may
or may not be associated with an image.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state or branch to an address that cannot be reached from the current
processor state.

Watchpoint A location within the image which will be monitored and which will cause execution to
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
Glossary-6 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
AFS

about 1-2
Angel 1-16
board demontsrations 1-14
flash memory and 1-7
generic demonstrations 1-13
PCI 1-11
µHAL 1-2

Angel
flash 3-14
verifying 6-4

API
extended HAL functions 2-3
simple µHAL functions 2-3
types 2-3
µHAL functions 2-3
µHAL naming conventions 2-5

Applications programming interface,
see API

ARM support x
AXD 1-12

B
Boards

displaying details 4-2
supported 6-3

Boot image
selecting 3-19

Boot monitor
terminal configuration 3-17

Boot switcher
flash 6-5

Building
C library 6-2
LED demo 3-4
using GNU make 2-7
with ADS 6-2
µHAL application 2-7
µHAL library 2-9

C
CodeWarrior IDE 2-9

copy project 5-4
directories 5-10
LED demo 3-5
new project 5-3
settings 5-12

D
DCC 1-12
Demonstrations 1-14
Directory

CodeWarrior IDE 5-10
new 5-2

E
ELF support 6-7
Extended µHAL functions 2-3
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. Index-1

Index
F
Feedback x
Firmware 1-4
Flash image

Multi-ICE 3-10
Flash utility 3-15
Frequently asked questions, µHAL 2-2
Further reading viii

G
Global variables, HAL 2-6
GNU makefiles 2-9

H
Host controller 1-12

I
Image

loading 3-18
setting boot image 3-19

Initializing
system 2-4

Installing GNU make on Windows 2-8
Internal pointers, µHAL 2-6
Internal variables, µHAL 2-6
Interrupt

timer demo 4-2
µHAL control 2-5

L
LED

demo application 3-2
µHAL generic 2-4

Library
build options 5-5

Loading image
Angel 3-15
Multi-ICE 3-10

M
Makefile

GNUmake 2-7
include 5-7
soft link 2-7
using 5-13

Memory
management by µHAL 2-5

Multi-ICE
failure 6-6
using 3-7

N
Naming conventions

µHAL 2-5
µHAL global variables 2-6
µHAL internal variables 2-6
µHAL pointers 2-6

O
Object types, µHAL 2-6
Operating modes, µHAL applications

2-3

P
Pointer,µHAL 2-6
Projects

distributing 6-3

R
RAM image

Angel 3-15
RDI 1-12
RealMonitor. See RM.
Related publications viii
Remote Debug Interface. See RDI.
RM

host controller 1-12
overview 1-12
target functionality 1-12

RM protocol 1-12
RTOS 1-12

S
Serial port

µHAL initialization 2-4
Simple µHAL functions 2-3
S-record

boot monitor 3-18
SWI calls 2-4
SWI interface

chaining 1-11
System initialization, µHAL 2-3

T
Target functionality 1-12
Terminal

configuring 3-17
Thumb support 6-2, 6-6
Timer

demo 4-2
initializing 4-3
installing 4-3
installing interrupt 4-3
requesting 4-3
value 4-4
µHAL generic 2-4

Troubleshooting 6-1
Typographical conventions vii

U
uHALr_InitInterrupts() 4-3
uHALr_InitTimers() 4-3
uHALr_InstallSystemTimer() 4-3
uHALr_RequestSystemTimer() 4-3

V
Vectors

chaining 1-11
Index-2 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

Index
Symbols
µCOS-II 1-3
µHAL

application operating modes 2-3
building 2-9
frequently asked questions 2-2
global variable naming 2-6
internal variable naming 2-6
licensing 2-2
naming conventions 2-5
object types 2-6
overview 2-2
pointer naming 2-6
system initialization 2-3
ARM DUI 0136D Copyright © 2000-2002 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 2000-2002 ARM Limited. All rights reserved. ARM DUI 0136D

	Version 1.4
	Contents
	Preface
	About this document
	Intended audience
	Using this book
	Typographical conventions

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this book
	Feedback on the ARM Firmware Suite

	Introduction to the ARM Firmware Suite
	1.1 About the ARM Firmware Suite
	1.2 What is firmware?
	1.2.1 µHAL Libraries
	Directory structure

	1.3 Flash library and utilities
	1.3.1 The flash library APIs
	1.3.2 The ARM Flash Utility
	1.3.3 The ARM Boot Flash Utility
	1.3.4 Boot switcher
	1.3.5 Boot monitor
	1.3.6 Managing images in flash

	1.4 Additional libraries
	1.4.1 PCI library
	1.4.2 Chaining library
	1.4.3 RealMonitor library
	1.4.4 The zlib library

	1.5 µHAL demonstration programs
	1.5.1 Simple tests
	1.5.2 Timing tests
	1.5.3 Board-specific demonstration programs

	1.6 Angel

	An Introduction to µHAL
	2.1 About µHAL
	2.1.1 Licensing
	2.1.2 Frequently asked questions
	2.1.3 Application programming interfaces
	2.1.4 Application operating modes
	2.1.5 System support provided by µHAL
	System initialization software
	Serial port
	Generic timer
	Generic LED
	Interrupt control
	Memory management

	2.1.6 µHAL naming conventions

	2.2 Building a new µHAL-based application
	2.2.1 Building with GNUmake
	Installing GNUmake on Unix
	Installing GNUmake on Windows

	2.3 Building the µHAL library

	Running the LED Application
	3.1 About the LED application
	3.1.1 Files used with the LED application
	The led.c file
	The platform file
	The µHAL library

	3.1.2 Overview of the µHAL LED functions
	3.1.3 Selecting semihosted or standalone operation

	3.2 Building the LED application
	3.2.1 Using the makefile
	3.2.2 Using the project file
	3.2.3 Changing the image format

	3.3 Using Multi-ICE to load and debug images
	3.3.1 Preparing the board
	3.3.2 Starting the debugger
	3.3.3 Loading an image into RAM with Multi-ICE
	3.3.4 Loading an image into flash with Multi-ICE

	3.4 Using Angel to load and debug images
	3.4.1 Verifying Angel is in flash
	3.4.2 Using a terminal to detect Angel
	3.4.3 Loading an image into RAM with Angel
	3.4.4 Running the flash utility from a debugger
	3.4.5 Using a serial port and the boot monitor to load and run images
	Preparing the board
	Loading an image into flash

	3.5 Modifying the application
	3.5.1 Changing build options
	3.5.2 Stepping through the code

	Running the Timer Application
	4.1 How the application uses µHAL
	4.1.1 The interrupt function
	4.1.2 Displaying the board details
	4.1.3 Installing the timer interrupt
	4.1.4 Displaying the timer value

	4.2 Running the application

	Creating a New Application
	5.1 How to create a new application
	5.2 Extending the existing directory structure
	5.2.1 Using CodeWarrior projects
	5.2.2 Using makefiles

	5.3 Creating a separate directory structure
	5.3.1 Using the CodeWarrior IDE
	5.3.2 Using makefiles

	Troubleshooting and Frequently Asked Questions
	6.1 Frequently asked questions
	6.1.1 Does AFS support Thumb?
	6.1.2 How do I build AFS components using ADS?
	6.1.3 How do I use the C library?
	6.1.4 Is µHAL free?
	6.1.5 Can I use µHAL in my project?
	6.1.6 What boards are supported?
	6.1.7 How do I use boot monitor with Multi-ICE?
	6.1.8 How can I verify that Angel is installed?

	6.2 Troubleshooting
	6.2.1 µHAL does not work with my processor
	6.2.2 The boot switcher fails to run an image from flash
	6.2.3 AXD cannot download to Integrator flash memory
	6.2.4 The switch settings do not behave as expected
	6.2.5 Integrator images fail to load after Multi-ICE Auto-Configuration
	6.2.6 Exception vector errors when using Multi-ICE
	6.2.7 I cannot enable a timer that has not been requested
	6.2.8 Enabled timer interval is too long
	6.2.9 Terminal emulator does not work with boot monitor
	6.2.10 I cannot use ELF format in my application
	6.2.11 Demo applications run slower as standalone

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Symbols

