
ARM® Developer Suite
Version 1.2

CodeWarrior® IDE Guide
Copyright © 1999-2001 ARM Limited. All rights reserved.
ARM DUI 0065D

ARM Developer Suite
CodeWarrior IDE Guide

Copyright © 1999-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

CodeWarrior® and Metrowerks® are registered trademarks of Metrowerks, Inc.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

November 2000 C Release 1.1

November 2001 D Release 1.2
ii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Conformance Notice

Year 2000 Conformance

The Products provided by Metrowerks under the License agreement process dates only to the extent that the
Products use date data provided by the host or target operating system for date representations used in internal
processes, such as file modifications. Any Year 2000 Compliance issues resulting from the operation of the
Products are therefore necessarily subject to the Year 2000 Compliance of the relevant host or target operating
system. Metrowerks directs you to the relevant statements of Microsoft Corporation, Sun Microsystems, Inc.,
Apple Computer, Inc., and other host or target operating systems relating to the Year 2000 Compliance of their
operating systems. Except as expressly described above, the Products, in themselves, do not process date data
and therefore do not implicate Year 2000 Compliance issues.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. iii

iv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Contents
ARM Developer Suite CodeWarrior IDE Guide

Preface
About this book .. x
Feedback .. xv

Chapter 1 Introduction
1.1 About the CodeWarrior IDE .. 1-2
1.2 About the CodeWarrior IDE for the ARM Developer Suite 1-4
1.3 Where to go from here .. 1-6

Chapter 2 Working with Files
2.1 About working with files .. 2-2
2.2 Creating and opening files .. 2-3
2.3 Saving files .. 2-11
2.4 Closing files ... 2-15
2.5 Printing files .. 2-17
2.6 Reverting to the most recently saved version of a file 2-19
2.7 Comparing and merging files and folders ... 2-20

Chapter 3 Working with Projects
3.1 About working with projects .. 3-2
3.2 Overview of the project window .. 3-4
3.3 Working with simple projects ... 3-13
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. v

Contents
3.4 Working with project stationery ... 3-23
3.5 Managing files in a project .. 3-37
3.6 Configuring the CodeWarrior IDE for complex or multi-user projects 3-50
3.7 Working with multiple build targets and subprojects 3-52
3.8 Compiling and linking a project ... 3-74
3.9 Processing output ... 3-83

Chapter 4 Working with the ARM Debuggers
4.1 About working with the ARM debuggers .. 4-2
4.2 Generating debug information .. 4-4
4.3 Running and debugging your code ... 4-9
4.4 Using the message window .. 4-11

Chapter 5 Editing Source Code
5.1 About editing source code .. 5-2
5.2 Overview of the editor window .. 5-3
5.3 Configuring the editor window .. 5-7
5.4 Editing text .. 5-10
5.5 Navigating text .. 5-17

Chapter 6 Searching and Replacing Text
6.1 About finding and replacing text ... 6-2
6.2 Finding and replacing text in a single file .. 6-3
6.3 Finding and replacing text in multiple files .. 6-8
6.4 Using grep-style regular expressions ... 6-17

Chapter 7 Working with the Browser
7.1 About working with the browser .. 7-2
7.2 Activating the browser .. 7-5
7.3 Using browser views ... 7-8
7.4 Using the browser ... 7-21
7.5 Creating classes and members with browser wizards 7-30

Chapter 8 Configuring IDE Options
8.1 About configuring the CodeWarrior IDE ... 8-2
8.2 Overview of the IDE Preferences window .. 8-3
8.3 Choosing general preferences ... 8-6
8.4 Choosing editor preferences .. 8-18
8.5 Choosing debugger preferences ... 8-30
8.6 Setting commands and key bindings .. 8-31
8.7 Customizing toolbars .. 8-41

Chapter 9 Configuring a Build Target
9.1 About configuring a build target .. 9-2
9.2 Overview of the Target Settings window .. 9-4
9.3 Configuring general build target options ... 9-8
vi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Contents
9.4 Using the Equivalent Command Line text box .. 9-31
9.5 Configuring assembler and compiler language settings 9-33
9.6 Configuring linker settings ... 9-65
9.7 Configuring editor settings .. 9-79
9.8 Configuring the debugger ... 9-81
9.9 Configuring Miscellaneous settings ... 9-89

Chapter 10 Using the CodeWarrior IDE with Version Control Systems
10.1 About version control systems .. 10-2
10.2 Activating VCS .. 10-3
10.3 Using your VCS from the CodeWarrior IDE .. 10-6

Appendix A Running the CodeWarrior IDE from the Command Line
A.1 Using the CodeWarrior IDE from the command line A-2

Appendix B CodeWarrior IDE Installation and Preference Settings
B.1 The CodeWarrior IDE preferences directory ... B-2
B.2 Using different versions of the CodeWarrior IDE .. B-3

Appendix C Perl Scripts
C.1 Perl software plug-ins .. C-2
C.2 Configuring your project for Perl .. C-3
C.3 Using Perl scripting .. C-6

Appendix D CodeWarrior IDE Reference
D.1 CodeWarrior IDE menu reference .. D-2
D.2 CodeWarrior IDE default key bindings ... D-27

Glossary
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. vii

Contents
viii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Preface

This preface introduces the CodeWarrior® Integrated Development Environment (IDE)
and its documentation. It contains the following sections:

• About this book on page x

• Feedback on page xv.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. ix

Preface
About this book

This book provides user information for the CodeWarrior IDE for the ARM Developer
Suite. It describes the major graphical user interface components of the CodeWarrior
IDE, and provides information on ARM-specific features.

Intended audience

This book is written for all developers who are using the ARM version of the
CodeWarrior IDE to manage their ARM-targeted development projects under Windows
NT, 95, 98, 2000 or ME. It assumes that you are an experienced software developer, and
that you are familiar with the ARM development tools, as described in Getting Started.
It does not assume that you are familiar with the CodeWarrior IDE.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the CodeWarrior IDE, and for a
summary of how it is used with the ARM development tools.

Chapter 2 Working with Files

Read this chapter for details of how to work with source files in the
CodeWarrior IDE. This chapter provides basic information on managing
your source files, and describes how to use the CodeWarrior IDE file
comparison and merging functions.

Chapter 3 Working with Projects

Read this chapter for details of how to use the CodeWarrior IDE project
files to organize your project source files, and specify the output from
compiling and linking your source. This chapter gives details of how to
structure multiple build targets, control dependencies between build
targets, and use other structural elements of CodeWarrior IDE projects.

It also describes the ARM project stationery provided with the
CodeWarrior IDE, and describes how to use and modify the default
stationery to generate ARM and Thumb® executable images, libraries,
and disassembled code listings.
x Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Preface
Chapter 4 Working with the ARM Debuggers

Read this chapter for details of how to use the ARM debuggers with the
CodeWarrior IDE. It describes how the CodeWarrior IDE interacts with
the ARM debuggers. It also describes parts of the CodeWarrior IDE that
are useful for finding errors in your code, such as the CodeWarrior IDE
message window.

Chapter 5 Editing Source Code

Read this chapter for details of how to use the CodeWarrior IDE built-in
text editor. It describes the basic functionality of the CodeWarrior IDE
editor, and provides information on useful file navigation techniques that
enable you to find related header and source files, find function
definitions, and add markers to your source code.

Chapter 6 Searching and Replacing Text

Read this chapter for details of how to use the CodeWarrior IDE find and
replace facility to search text files and replace found text. It also describes
the CodeWarrior IDE batch search facilities that enable you to search
multiple source files and directories, and define named file lists for search
operations.

Chapter 7 Working with the Browser

Read this chapter for details of how to use the CodeWarrior IDE browser
to view your source code from a number of object-oriented perspectives,
including class-based and inheritance-based views.

Chapter 8 Configuring IDE Options

Read this chapter for details of how to set CodeWarrior IDE
configuration options that apply across all projects. It describes general
interface options, editor options, and syntax coloring options. In addition
it gives information on configuring command keybinding and the
CodeWarrior IDE toolbars.

Chapter 9 Configuring a Build Target

Read this chapter for important information on configuring
target-specific options for build targets within your projects. It describes
how to use the CodeWarrior IDE to configure options for the ARM
compilers, assembler, debuggers, fromELF, and other tools, to produce
machine code for execution on an ARM processor.

It also describes how to configure important target-specific options for
the CodeWarrior IDE, such which linker and postlinker to use, and the
access paths and file mappings that apply to a build target.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. xi

Preface
Chapter 10 Using the CodeWarrior IDE with Version Control Systems

Read this chapter for general information on using the CodeWarrior IDE
with version control systems such as SourceSafe and CVS.

Appendix A Running the CodeWarrior IDE from the Command Line

Read this appendix for information on using the CodeWarrior IDE from
the command line.

Appendix B CodeWarrior IDE Installation and Preference Settings

Read this appendix for information on installing multiple copies of the
CodeWarrior IDE, and using the CodeWarrior IDE for the ARM
Developer Suite with other versions of the CodeWarrior IDE.

Appendix C Perl Scripts

Read this appendix for general information on using Perl in conjunction
with the CodeWarrior IDE. It describes how to install and configure
plug-in support for Perl, and describes special considerations for using
Perl from the CodeWarrior IDE.

Appendix D CodeWarrior IDE Reference

Read this appendix for a quick reference summary of the CodeWarrior
IDE menu commands and default key bindings.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.
xii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list in the Technical Support area of the
ARM web site at http://www.arm.com.

ARM publications

This book contains information that is specific to the version of the CodeWarrior IDE
supplied with the ARM Developer Suite (ADS). Refer to the following books in the
ADS document suite for information on other components of ADS:

• ADS Installation and License Management Guide (ARM DUI 0139)

• ADS Assembler Guide (ARM DUI 0068)

• Getting Started (ARM DUI 0064)

• ADS Compilers and Libraries Guide (ARM DUI 0067)

• ADS Linker and Utilities Guide (ARM DUI 0151)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
Dynatext and PDF format.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is
supplied in Dynatext and PDF format.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb Procedure Call Standard specification (SWS ESPC 0002). This is
supplied in PDF format in install_directory\PDF\specs\ATPCS.pdf.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. xiii

Preface
In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

This book provides information specific to the ARM version of the Metrowerks
CodeWarrior IDE. For more information on Metrowerks, and the CodeWarrior IDE
generally, including version control plug-in availability, visit the CodeWarrior web site
at http://www.codewarrior.com.

The following books are referenced in the text:

Friedl, J., Mastering Regular Expressions, 1997, O’Reilly & Associates, International
Thomson Publishing. ISBN 1565922573.
xiv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. xv

Preface
xvi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 1
Introduction

This chapter introduces the CodeWarrior IDE. It contains the following sections:

• About the CodeWarrior IDE on page 1-2

• About the CodeWarrior IDE for the ARM Developer Suite on page 1-4

• Where to go from here on page 1-6.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the CodeWarrior IDE

The CodeWarrior IDE provides a simple, versatile, graphical user interface for
managing your software development projects. You can use the CodeWarrior IDE for
the ARM Developer Suite to develop C, C++, and ARM assembly language code
targeted at ARM and Thumb processors. It speeds up your build cycle by providing:

• comprehensive project management capabilities

• code navigation routines to help you locate routines quickly.

The CodeWarrior IDE enables you to configure the ARM tools to compile, assemble,
and link your project code.

Note
 Throughout this book, the terms compile and compilation apply generically both to
compiling C and C++ source files, and assembling ARM and Thumb assembly
language source files.

There are two distinct meanings of target in CodeWarrior IDE terminology:

Target system The specific ARM-based hardware, or simulated hardware, for
which you write code. For example, if you are writing code to run
on an ARM development board, the development board is referred
to as the target system.

Build target The collection of build settings and files that determines the
output that is created when you build your project.

The CodeWarrior IDE enables you to organize source code files, library files, other
files, and configuration settings into a project. Each project enables you to create and
manage multiple configurations of build target settings. For example, you can compile
a debugging build target and an optimized build target of code targeted at hardware
based on an ARM7TDMI™. Build targets can share files in the same project while using
their own settings.

The CodeWarrior IDE provides:

• a source code editor that provides syntax coloring, and is integrated with the
CodeWarrior IDE browser

• a source code browser that keeps a database of symbols defined in your code, and
enables you to navigate through your source code quickly and easily

• search and replace capabilities that enable you to use grep-style regular
expressions, and perform batch searches through multiple files
1-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Introduction
• file comparison capabilities that enable you to locate, and optionally merge the
differences from one text file to another, and to compare the contents of
directories.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-3

Introduction
1.2 About the CodeWarrior IDE for the ARM Developer Suite

The CodeWarrior IDE for the ARM Developer Suite is based on Metrowerks
CodeWarrior IDE version 4.2. It has been tailored to support the ARM Developer Suite
toolchain. It provides:

• ARM-specific configuration panels that enable you to configure the ARM
development tools from within the CodeWarrior IDE

• ARM-targeted project stationery that enables you to create basic ARM and
Thumb projects from the CodeWarrior IDE.

Although most of the ARM toolchain is tightly integrated with the CodeWarrior IDE,
there are a number of areas of functionality that are not implemented by the ARM
version of the CodeWarrior IDE. In most cases, these are related to debugging, because
the ARM debuggers are provided separately. In particular:

• There are a number of configuration dialogs that are not used by the ARM
toolchain, such as the Runtime Settings target configuration dialog. See Chapter 9
Configuring a Build Target for more information on target configuration.

• The ARM debuggers are not tightly integrated with the CodeWarrior IDE. This
means, for example, that you cannot set breakpoints or watchpoints from within
the CodeWarrior IDE. See How the ARM debuggers work with the CodeWarrior
IDE on page 4-2 for more information.

• There are a number of menu commands and windows that are not implemented
by the ARM version of the CodeWarrior IDE. These are described in Unused
menu commands and windows.

Interface items that are not used by the CodeWarrior IDE for the ARM Developer Suite
are documented as Not used by the CodeWarrior IDE for the ARM Developer Suite in
the documentation and the online help.

If you are familiar with the CodeWarrior IDE in other environments, you will also
notice that some areas of functionality have been removed completely for the ARM
version, such as Rapid Application Development templates.

1.2.1 Unused menu commands and windows

The following commands and windows are not implemented in the ARM version of the
CodeWarrior IDE:

View menu
The following windows are not used by the CodeWarrior IDE for the
ARM Developer Suite:

• Processes
1-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Introduction
• Expressions

• Global Variables

• Breakpoints

• Watchpoints

• Registers

Project menu
The Precompile menu item. The ARM compilers do not support
precompiled headers.

Debug menu
None of the menu commands in the Debug menu are applicable to ARM.
See Chapter 4 Working with the ARM Debuggers for more information.

Browser menu
The following Browser menu items are not used:

• New Property
• New Method
• New Event Set
• New Event.

Help menu
The following menu commands are not used by the CodeWarrior IDE for
the ARM Developer Suite:

• CodeWarrior Help

• Index

• Search

• Online Manuals.

1.2.2 Converting old projects

When you open a project that was created with an older version of the CodeWarrior
IDE, you are prompted to convert it to the newest version. If you decide to update, the
CodeWarrior IDE saves a backup of the project and then converts the project to the
newest version. ADS 1.0, 1.0.1, and 1.1 projects are converted to ADS 1.2, and ADW
projects are converted to AXD.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-5

Introduction
1.3 Where to go from here

The following documentation and examples will help you get started with the
CodeWarrior IDE:

• Read Getting Started for a quick introduction to the CodeWarrior IDE for the
ARM Developer Suite.

• Examine the example ARM projects provided in the examples subdirectory of
your ADS installation directory.

• See Chapter 3 Working with Projects for detailed information on setting up your
CodeWarrior IDE projects.

Note
 If you are setting up a complex project environment, refer to Configuring the

CodeWarrior IDE for complex or multi-user projects on page 3-50 for important
information.

• See Chapter 9 Configuring a Build Target for information on configuring the
ARM toolchain from within the CodeWarrior IDE.

1.3.1 Online documentation and online help

Documentation for the CodeWarrior IDE for the ARM Developer Suite is available
online as part of the ARM Developer Suite documentation collection. If you have
installed ADS using the default name, select Programs → ARM Developer Suite
v1.2 → Online Books from the Windows Start menu to access the collection.

In addition, the CodeWarrior IDE for the ARM Developer Suite provides
context-sensitive online help. You can access this in either of the following ways:

• Click on the question mark icon at the top right corner of the window. A question
mark appears alongside the mouse pointer. Click with the mouse pointer on the
item that you want help with.

• Right-click on the item you want help with. A menu containing the What’s This?
command is opened. Click on What’s This? to get help on the item.
1-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 2
Working with Files

This chapter describes how to work with source files in the CodeWarrior IDE. It
contains the following sections:

• About working with files on page 2-2

• Creating and opening files on page 2-3

• Saving files on page 2-11

• Closing files on page 2-15

• Printing files on page 2-17

• Reverting to the most recently saved version of a file on page 2-19

• Comparing and merging files and folders on page 2-20.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-1

Working with Files
2.1 About working with files

This chapter gives information on how to use the CodeWarrior IDE to perform basic
operations on files, including source files, project files, and text files. It describes basic
file operation such as opening, closing, saving, and printing files.

In addition, it describes how to use more sophisticated features of the CodeWarrior IDE,
such as:

• navigating between related files (see Switching between source and header files
on page 2-10)

• using the built-in file comparison features to compare and merge one or more files
(see Comparing and merging files and folders on page 2-20).

This chapter does not provide detailed information on editing or managing files within
a project. See:

• Chapter 3 Working with Projects for information on how source files fit into the
project structure

• Chapter 5 Editing Source Code for information on how to use the CodeWarrior
IDE editor to edit files

• Chapter 10 Using the CodeWarrior IDE with Version Control Systems for more
information on working with files that you have checked into a revision control
system.
2-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.2 Creating and opening files

There are several ways to open a file with the CodeWarrior IDE. This section describes:

• Creating a new file

• Opening files from the File menu on page 2-5

• Opening files from the project window on page 2-6

• Opening header files from an editor window on page 2-9.

Note
 You cannot open libraries with the CodeWarrior IDE editor.

2.2.1 Creating a new file

To create a new text file:

1. Select New… from the File menu and click the File tab in the New dialog box.
The CodeWarrior IDE displays the File panel with a list of new file types
(Figure 2-1).

Note
 See Creating a new project on page 3-13 for more information on the Project tab.

The Object tab is not used by the ARM version of the CodeWarrior IDE.

Figure 2-1 The New dialog box
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-3

Working with Files
2. Click Text File to create a new Text file.

3. Enter a file name for the new file in the File name text field. If you want to add
the new file to a build target in an existing project, you must ensure that the
filename you enter uses a filename extension that is defined in the File mappings
panel for the build target. See Configuring file mappings on page 9-23 for more
information.

4. Enter a directory path to the new file in the Location field, or click Set… and
select the directory from the standard file dialog.

5. Select the Add to Project checkbox if you want to add the new file to an existing
project (Figure 2-2):

a. Click the Project drop-down list to select the project you want to add the
file to from the pop-up list of currently open projects. The Targets field
displays a list of the build targets defined for the project you select.

b. Select the build targets to which you want to add the source file.

Figure 2-2 Add new file to project

6. Click OK to create the new file. If you have selected Add to Project, the new file
is added to the selected build targets, provided the filename extension of the new
file is defined in the File mappings configuration panel for the build targets.

7. Enter your text or source code, as required. See Chapter 5 Editing Source Code
for more information on editing text.

8. Save the text file. See Saving files on page 2-11 for more information.
2-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
Note
 A new text file is not associated with any project. You must specifically add the new file
to your project. See Adding files to a project on page 3-38 for more information.

2.2.2 Opening files from the File menu

You can open two types of files in the CodeWarrior IDE:

• Project files. See Working with simple projects on page 3-13 for information on
opening projects.

• Text files, such as a source code file, header file, or other text file.

Opening text files

To open a text file or a source code file:

1. Select Open… from the File menu. The CodeWarrior IDE displays an Open
dialog box (Figure 2-3).

Figure 2-3 Open dialog box

2. Select All Files from the Files of Type drop-down list. The list of displayed files
changes to show all the files in the current directory, including text files. If you
want to display only files of a certain type, select the required type from the Files
of type drop-down list. Options are:

• All Files (*.*)

• Text Files (.txt)

• Project Files (.mcp)

• CW files (.cat, .ctlg, .elf, .eld, .pch, .pch++, .axp).

• xml Files (.xml)

• Executable files (.exe)
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-5

Working with Files
• Library Files (.dll, .lib)

• Symbolics Files (.gSYM, .iSYM)

• C/C++ files (.c, .cp, .cpp, .c++, .cc, .cxx, .h, .hpp, .h++, .hh, .hxx)

• C/C++ source files (.c, .cp, .cpp, .c++, .cc, .cxx)

• C/C++ header files (.h, .hpp, .h++, .hh, .hxx)

• Java Files (.java)

• Pascal Files (.p, .pas)

3. Select the file you want to open and click Open. The CodeWarrior IDE opens the
file in an editor window. See Chapter 5 Editing Source Code for more information
on editing the file you have opened.

2.2.3 Opening files from the project window

There are a number of ways to open files from within the project window, depending on
the type of file you want to see. These are:

Using the File column

Use this column to open a file that is in the project.

Using the Group drop-down menu

Use this drop-down menu to open a text source file from within a
collapsed group.

Using the Header Files drop-down menu

Use this drop-down menu to open a header file #included from a project
source file.

Opening files from the File column

To open a file from the File column:

1. Select the file or files you want to open from the File column in the File view or
Link Order view of the project window. See Selecting files and groups on
page 3-37 for information on selecting multiple files in a project.

2. Open the selected files. Either:

• double-click the selected files

• press the Enter key.
2-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
The CodeWarrior IDE opens selected text files in an editor window. If project files
are selected, the CodeWarrior IDE opens the project. If library files are selected
they are ignored. To view the contents of library files, right click on the library file
and select Disassemble from the context menu.

See Overview of the project window on page 3-4 for more information on the File
column.

Opening files from the Group drop-down menu

You can open a source file from the drop-down menu for the group that contains the file,
even if the group is collapsed and the file is not visible in the project window.

To open a file from the Group drop-down menu:

1. Select the group that contains the source file you want to open.

2. Click the pop-up button for the group. A Group drop-down menu is displayed
that contains a menu item for each file within the group. Figure 2-4 shows an
example.

Figure 2-4 Group drop-down menu

3. Select the menu item for the source file that you want to open. The file is opened
in an editor window.

Opening header files from the Header Files drop-down menu

To open a header file that is associated with a source file:

1. Select the source file in the project window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-7

Working with Files
2. Click the Header Files pop-up button. A list of header files is displayed.
Figure 2-5 on page 2-8 shows an example.

Two types of header file are displayed:

• Header files enclosed in angle brackets <…> are system header files found in
the System access paths. See Configuring access paths on page 9-11 for
information on how the CodeWarrior IDE searches for system header files.

• Header files that are not enclosed in angle brackets are header files that are
found in the User access paths. You might have created these header files
yourself, or been supplied with them in order to use exported functions of
a library. See Configuring access paths on page 9-11 for more information
on how the CodeWarrior IDE searches for user header files.

Figure 2-5 Header Files drop-down menu in the project window

3. Select the header file you want to open from the list. The CodeWarrior IDE opens
the header file in an editor window.

Note
 • You can press Ctrl-` to switch between a source file and its header file. See

Switching between source and header files on page 2-10 for more information.

• If you click the Header Files pop-up button for a library file that is part of your
project, you will only have the option to Touch or Untouch the library file. You
cannot open the corresponding header file for a library file in this way. See
Touching and untouching files on page 3-47 for more information on touching
files.
2-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.2.4 Opening header files from an editor window

The following sections describe various ways to open header files from within an editor
window:

• Open a header file using the Header Files drop-down menu on page 2-9

• Opening a header file with the Find and Open menu item on page 2-9

• Switching between source and header files on page 2-10.

Open a header file using the Header Files drop-down menu

To open a header file from within a source file you are editing:

1. Click the Header Files drop-down menu at the top left of the editor window (see
Figure 5-10 on page 5-22). The drop-down menu lists all header files used by the
source file.

2. Select a file from the list displayed in the Header Files drop-down menu to open
it in a new editor window.

Note
 If there are no files available in the drop-down menu, it means one or more of the

following:

• the source file has not yet been compiled

• your text file does not contain any source code

• the source file does not include any header files.

Opening a header file with the Find and Open menu item

You can use the Find and Open menu item to open header files in two different ways:

• If you are editing a source file and the source file contains the name of a header
file:

1. Select the name of the header file you want to open. For example, if the
source file contains:
#include <stdio.h>
#include <string.h>
// source code

you can double click on stdio or string to select it. You do not need to
select the .h part of the name.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-9

Working with Files
2. Select Find and Open File from the File menu. The CodeWarrior IDE
searches for the selected file and opens it in an editor window. If the file
cannot be found, a system beep sounds. The CodeWarrior IDE uses the
settings specified in the Access Paths configuration dialog to search for the
header file.

• If you are editing a source code file and want to open a file without selecting any
text:

1. Select Find and Open File from the File menu. The CodeWarrior IDE
displays a Find and Open File dialog (Figure 2-6 on page 2-10)

Figure 2-6 Find and open file dialog box

2. Type the name of the header file you want to open in the Open text field.
The CodeWarrior IDE uses the settings specified in the Access Paths
configuration dialog to search for header files.

3. Select the Search Only in System Paths option if you want to restrict the
search to the directories specified in the System Paths pane of the Access
Paths configuration dialog.

Turn the Search Only in System Paths option off to search both System
Paths pane and User Paths pane directory paths (all paths specified in the
Access Paths).

See Configuring access paths on page 9-11 for more information on configuring access
paths.

Switching between source and header files

You can use the Ctrl-` keyboard shortcut to switch back and forth between a header file
and its corresponding source file. To do this, your header file must have the same name
as your source file, except for the file extension.

For example, if you are editing myFile.cpp and you want to see the associated header
file, press Ctrl-` to display myFile.h in a new editor window. Type the same keyboard
shortcut again to switch back to myFile.cpp file.

The CodeWarrior IDE searches the project directories defined in the Access Paths
settings panel to find the header file. See Configuring access paths on page 9-11 for
more information on configuring access paths.
2-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.3 Saving files

This section describes the ways that the CodeWarrior IDE can save files. It contains the
following sections:

• Saving project files

• Saving editor files

• Saving a backup copy of a file on page 2-13.

2.3.1 Saving project files

Projects are opened for exclusive read/write access and are continually updated on the
disk. Projects are saved when they are closed, when you exit the CodeWarrior IDE, or
when you select Save A Copy As… from the File menu. You do not need to save
projects explicitly.

2.3.2 Saving editor files

You can save editor files either explicitly, or automatically when your project is built.

Saving one file

To save your changes to a single text file:

1. Ensure that the text window you want to save is the active window.

2. Select Save from the File menu. If the file is an existing file, the CodeWarrior IDE
saves the file.

3. If the file is a new and untitled file, the CodeWarrior IDE displays the Save As
dialog box. Enter a new name and location for your file. See Renaming and saving
a file on page 2-12 for more information.

Note
 The Save menu item is disabled if:

• The window is new and has no data

• The contents of the active window have already been saved, and have not been
modified since the last save. Modifying a file and then undoing the change marks
the file as modified.

• The active window is the project window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-11

Working with Files
Saving all files

To save your changes to all the files currently open, press the keyboard shortcut
Shift-Ctrl-S. The CodeWarrior editor saves all the modified files to your hard disk.

Saving files automatically

The CodeWarrior IDE can automatically save changes to all your modified files
whenever you select any of the following menu options from the Project menu:

• Preprocess
• Compile
• Disassemble
• Bring Up To Date
• Make
• Debug
• Run.

You can use the Save All Before Build feature to save your work before building and
running your program. If you are experimenting with a change and do not want to save
changes, you can turn this option off.

Caution
 The ARM debuggers read source files from disk. If you are debugging at source level
and select this option, the debuggers will not read any unsaved modifications to the
source.

See the description of the Save All Before Build option in Configuring build settings on
page 8-6 for more information.

Renaming and saving a file

To save a text file under a new name:

1. Ensure that the text window you want to rename is the active window.

2. Select Save As from the File menu. The CodeWarrior IDE displays the Save
Document As dialog box (Figure 2-7 on page 2-13).
2-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
Figure 2-7 Save Document As dialog box

3. Enter the new name and location of the file.

4. Click Save to save the file under its new name. The CodeWarrior IDE saves the
file and changes the name of the editor window to the name you entered. If the
file is in the current project, the CodeWarrior IDE updates the project to use the
new name.

Note
 See Saving a backup copy of a file if you want to save a copy of a file, but you do not
want to change the name of the file used in the project.

Saving as a Mac OS, or UNIX text file

The ARM-supplied version of the CodeWarrior IDE is supported on Windows
platforms only. However, you can use the CodeWarrior IDE to open text files created on
other platforms. When you open a text file originally created in a Mac OS, or UNIX text
editor, the CodeWarrior IDE converts the text file internally to be compatible with
Windows and corrects inconsistent line endings. When you finish editing the file, the
CodeWarrior IDE saves the file in its original format.

See Specifying Other Settings on page 8-20 for more information on saving text files in
a different text format.

2.3.3 Saving a backup copy of a file

You can save backup copies of both text and project files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-13

Working with Files
Saving a copy of a text file

To save a backup copy of a text file before you change the original:

1. Ensure that the text window you want to save is the active window.

2. Select Save A Copy As… from the File menu. The CodeWarrior IDE displays the
Save document as dialog (Figure 2-8).

Figure 2-8 Save document as

3. Type the name and location for the new file in the File name text field.

4. Click Save. The CodeWarrior IDE saves a copy of the file with the new name. It
does not change the file in the editor window or in the current project, and it does
not change the currently-open project to use the new file.

Saving a copy of the current project

To save a copy of the current project:

1. Ensure that the project window you want to save is the active window.

2. Select Save A Copy As… from the File menu. The CodeWarrior IDE displays a
Save a Copy dialog box.

3. Type the name you want to use for the copy of the project if you want to change
the default.

4. Click Save to save the project.

See Comparing XML-formatted projects on page 2-26 for information on exporting a
project to XML.
2-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.4 Closing files

Every editor or project window in the CodeWarrior IDE is associated with a file. When
you close the window, you close the file. This section describes:

• Closing project files

• Closing editor files.

2.4.1 Closing project files

To close a project file, select Close from the File menu, or click the Windows close
button. Source files opened from the project remain open when you close the project.
Projects are saved when you close the project window. See Saving a project on
page 3-18 for more information on saving project files.

2.4.2 Closing editor files

This section describes how to close editor files.

Closing one file

To close an editor window:

1. Select Close from the File menu, or click the close box for the window.

If you have unsaved changes to the text file, the CodeWarrior IDE asks if you want
to save the changes before closing the window (Figure 2-9).

Figure 2-9 Unsaved changes alert

2. Click one of:

• Save, if you want to save your changes before closing the file.

• Don’t Save, if you want to close the file without saving your changes. All
unsaved changes are discarded.

• Cancel, if you want to cancel the close and return to the editor window
without saving your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-15

Working with Files
Note
 The Close command also saves other properties of the window, such as the size,
location, and the selected text in the active window. See Editor settings on page 8-18 for
information on how to configure these options. If the appropriate options are enabled,
the editor window will occupy the same position on your screen and will have the same
text selected the next time the source code file is opened.
2-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.5 Printing files

Use the print options in the CodeWarrior IDE to print open files, a project file, or the
contents of a window.

The topics in this section are:

• Setting print options

• Printing a window.

2.5.1 Setting print options

To configure printing options:

1. Select Print… from the File menu. The CodeWarrior IDE displays the printer
dialog box for your printer.

2. Use the dialog box to select the paper size, orientation, and other settings. The
specific settings and options depend on the printer you have connected to your
computer. See your printer and operating system documentation for more
information on printer options.

3. Click OK to save your selected printer options.

2.5.2 Printing a window

To print a window:

1. Ensure that the window you want to print is the active window. If the active
window is:

• an editor window, the CodeWarrior IDE prints the text file associated with
that window

• a project window, the CodeWarrior IDE prints a screen representation of the
project window.

2. Select Print from the File menu. The Print dialog box for your printer is
displayed.

3. Select your print options. The options available will vary depending on your
printer. See your printer and operating system documentation for more
information on print options.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-17

Working with Files
In addition, there are two CodeWarrior IDE-specific print options:

Print Selection Only
This option is available only if text is selected in an editor window.
Select this option to print only the selected text. If this option is not
selected, the CodeWarrior IDE prints the entire file.

Print using Syntax Highlighting
Select this option to print the editor window with syntax coloring. On
a black and white printer, colors are printed as shades of gray. If this
option is not selected, the CodeWarrior IDE prints the file in black and
white without syntax coloring.

4. Click Print in the Print dialog box. The CodeWarrior IDE spools the file to your
printing software for printing.
2-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
2.6 Reverting to the most recently saved version of a file

You can revert to the most recently saved version of a file if you have edited the file and
you do not want to keep the changes you have made. To revert to the saved version of a
file:

1. Ensure that the window for which you want to discard changes is the active
window.

2. Select Revert from the File menu. The CodeWarrior IDE displays a confirmation
alert (Figure 2-9 on page 2-15).

Figure 2-10 Revert to a previous file

3. Click OK to discard changes to the current file and open the last saved version of
the file. All changes you have made since the last time you saved the file are
discarded.

Click Cancel if you do not want to revert to the last saved version of the file. The
file you are working on is not changed or saved to disk, and you can continue
editing it.

Note
 • You can use multiple undo to retrace your changes in an editor file. See Specifying

Other Settings on page 8-20 for more information.

• You can use the CodeWarrior IDE in conjunction with a version control system to
recover previous checked-in versions of your editor files. See Chapter 10 Using
the CodeWarrior IDE with Version Control Systems for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-19

Working with Files
2.7 Comparing and merging files and folders

You can use the CodeWarrior IDE to compare two text files, mark the differences
between the files, and apply changes to the files. In addition, you can compare the
contents of two folders.

The following sections show you how to use the CodeWarrior IDE file comparison
features:

• File comparison and merge overview

• Choosing files to compare on page 2-22

• Applying and unapplying differences on page 2-23

• Choosing folders to compare on page 2-24

• Comparing XML-formatted projects on page 2-26.

2.7.1 File comparison and merge overview

The file comparison window displays two text files, and the differences between them.
Differences are listed as insertions, deletions, and non-matching lines. The file
comparison window has controls that enable you to examine, apply, and unapply the
differences between the files. The currently selected difference is shown with a darker
color and is outlined in black to contrast it from the other differences visible in the
window. Figure 2-11 shows an example.

Figure 2-11 The Compare Files window

�������	
�� ��
���
��������
� ����
���
���	
��

�������

�
		���������
��
2-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
The main parts of the File Compare Results window are:

Source file column

This column displays the source text file that the CodeWarrior IDE uses
as a basis for its comparison with the destination file. The source file is
displayed on the left side of the File Compare Results window. You can
edit this text.

Destination file column

This column displays the destination file that is compared with the source
file. The destination file is displayed on the right side of the file
comparison window. Differences between the source file and the
destination file can be added to, or removed from, the destination file.
You can edit this text.

Comparison column

This column displays a graphical representation of where text was added
or removed between the source and destination files. This column is
displayed between the source and destination panes in the comparison
window.

Differences list

The Differences list lists the insertions, deletions, and lines of
mismatching text between the two files. Select an item in the list to
display the difference in the source and destination panes. Text in the
Differences list is displayed in italics when a difference is applied to the
destination file.

Toolbar

The toolbar has buttons to apply or remove changes between the two files
to the destination file. The toolbar also has buttons to undo and redo
changes to the source and destination files. See Customizing toolbars on
page 8-41 for information on how to customize the toolbar.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-21

Working with Files
Table 2-1 shows the control icons.

2.7.2 Choosing files to compare

To open a file comparison window and select text files to compare:

1. Select Compare Files from the Search menu. The CodeWarrior IDE displays the
Compare Files Setup dialog box that prompts you for a source file and a
destination file to compare (Figure 2-12).

Figure 2-12 Compare Files Setup window

2. Click Choose for each of the source and destination sections of the window to
browse for the files to compare.

Alternatively, you can drag and drop files from the Windows desktop to the source
and destination sections of the window.

Table 2-1 Toolbar control icons

Control Action

Apply difference

Unapply difference

Undo

Redo
2-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
3. Set the text compare options you want. The available options are:

Case sensitive
Select this option to consider the case of characters as part of the
comparison operation. To ignore case, deselect this option.

Ignore extra space
Select this option to ignore extra space and tab characters at the
beginning and end of lines.

See Choosing folders to compare on page 2-24 for information on the folder
comparison options.

4. Click Compare to compare the two files and display the File Compare Results
window.

Comparing open editor windows

To compare two files that are already open in editor windows:

1. Select Compare Files from the Search menu. The CodeWarrior IDE displays a
Compare Files Setup dialog that prompts you for a source file and a destination
file to compare, as shown in Figure 2-12 on page 2-22.

2. Click the Editor Files pop-up menu next to the source and destination paths, as
shown in Figure 2-12 on page 2-22. The CodeWarrior IDE displays a list of all
open editor windows.

3. Select a file name from the pop-up menu to make it the source or destination file.

4. Click Compare to compare the two files and display the comparison window.

2.7.3 Applying and unapplying differences

Use the Comparison window toolbar and Differences list to select the differences that
you want to apply from the source file to the destination file.

Applying a difference

To view and apply a difference from the source file to the destination file:

1. Click the entry for the difference in the Differences list.

2. Click the Apply button in the toolbar, or select Apply Difference from the
Search menu. The CodeWarrior IDE changes the destination file to match the
source file for the selected difference. The applied difference is displayed in
italics in the Differences list.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-23

Working with Files
Figure 2-13 Applied difference

Unapplying a difference

To reverse a difference you have applied:

1. Click the entry for the difference you want to unapply. Applied differences are
displayed in italics in the Differences list.

2. Click the Unapply button in the toolbar, or select Unapply Difference from the
Search menu.

Note
 The Apply Difference and Unapply Difference commands erase all actions from the
Undo stack. When you exit the File Compare Results window after applying or
unapplying differences, all undo and redo actions are cleared from the Undo stack.

2.7.4 Choosing folders to compare

You can use the CodeWarrior IDE comparison features to compare complete folders of
files. To compare two folders:

1. Select Compare Files from the Search menu. The CodeWarrior IDE displays a
Compare Files Setup dialog that prompts you for a source folder and destination
folder to compare (Figure 2-14 on page 2-25).
2-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
Figure 2-14 Compare Folders Setup dialog box

2. Click Choose… for each of the source and destination sections of the window to
browse for the folders to compare.

Alternatively, you can drag and drop folders from the Windows desktop to the
source and destination sections of the window.

3. Set the folder comparison options you want. The available options are:

Only show different files
Select this option to display only files that are different in both folders
in the Files In Both Folders list of the Compare Folders window
(Figure 2-15 on page 2-26). By default, this option is disabled, so all
files in the source and destination folders are displayed.

Comparisons between files in the source and destination folders are
normally based on the file modification dates and file sizes. This is
usually good enough to determine if there are differences between the
two files. If there are invisible items in the folders, the comparison will
skip over those items.

Compare text file contents
Select this option to perform a more accurate comparison of the files
in the two folders. The comparison performs a Compare Files
command on every file in the source and destination folders and checks
neither the modification dates nor the file sizes. The file comparison is
slower, but the comparison information is more accurate.

See Choosing files to compare on page 2-22 for information on the file
comparison options.

4. Click Compare to compare the two folders. The CodeWarrior IDE displays the
Folder Compare Results window (Figure 2-15 on page 2-26). The names of
source code files, header files, text files, and folders are displayed in plain face.
All other file names are displayed in italics.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-25

Working with Files
Figure 2-15 Folder Compare Results window

The files are displayed in three lists:

Files in Both Folders
This list displays all files in both the source and destination folders,
unless the Only Show Different Files option is enabled. Files that are
different in the two folders have a small bullet to the right of their
name.

Files Only in Source
This list displays all the files that exist only in the source folder.

Files Only in Destination
This list displays all the files that exist only in the destination folder.

5. Click on a file name in any of the lists to display specific information about the
selected file in the Selected Item box at the bottom of the folder comparison
window.

6. Double-click on a file in the Files In Both Folders list to open a Compare Files
window for resolving the differences between the two files.

Note
 You can click on a zoom box () for any of the three lists to expand them to fill the
window. Click the zoom box again to collapse the lists back to their original size.

2.7.5 Comparing XML-formatted projects

The CodeWarrior IDE can export a project file to extensible markup language (XML)
format. You can use the file comparison facility to compare two XML files, and merge
the contents of the files. In addition, you can import a merged XML file into the
CodeWarrior IDE and save the imported file as a new CodeWarrior IDE project.
2-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Files
To compare two CodeWarrior IDE projects and apply changes from one to the other:

1. Convert the required projects to XML format:

a. Ensure that the same build target is currently selected for both project files
when you export them to XML format. Otherwise, the Differences List
might not properly reflect the differences in the two files.

b. Ensure that the project window for the first project is the currently active
window.

c. Select Export Project from the File menu. The CodeWarrior IDE displays
an Export project as dialog box (Figure 2-16).

Figure 2-16 Export project as dialog box

d. Save the project as an XML file.

e. Repeat steps a to d for the second project.

2. Select Compare Files from the Search menu. The CodeWarrior IDE displays the
Compare File Setup dialog box (see Figure 2-12 on page 2-22).

3. Choose the XML-formatted versions of the two project files in the Compare Files
Setup dialog box. See Choosing files to compare on page 2-22 if you do not know
how to do this.

4. Click Compare. The CodeWarrior IDE displays the Differences list for the two
projects. See Figure 2-11 on page 2-20 for an example of the File Comparison
window.

5. Apply the changes you want to the destination file. See Applying and unapplying
differences on page 2-23 for more information.

6. Select Save from the File menu to save your modified XML file.

7. Select Import Project… from the File menu. The CodeWarrior IDE displays a
standard open file dialog box.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-27

Working with Files
8. Select the XML file you want to import and click Open. The CodeWarrior IDE
displays a Save As dialog asking you to name the project file that will be created,
and choose a location to save the project.

9. Enter the name and location of the new project, and click Save. The CodeWarrior
IDE converts the XML-formatted file into a project file and saves the project file.
2-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 3
Working with Projects

This chapter introduces the CodeWarrior IDE project file and shows how to create,
configure, and work with projects. It contains the following sections:

• About working with projects on page 3-2

• Overview of the project window on page 3-4

• Working with simple projects on page 3-13

• Working with project stationery on page 3-23

• Managing files in a project on page 3-37

• Configuring the CodeWarrior IDE for complex or multi-user projects on
page 3-50

• Working with multiple build targets and subprojects on page 3-52

• Compiling and linking a project on page 3-74

• Processing output on page 3-83.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-1

Working with Projects
3.1 About working with projects

CodeWarrior IDE projects are the highest level structural element that you can use to
organize your source files and determine their output. This chapter describes many of
the basic tasks involving projects, such as:

• creating projects

• opening projects

• adding files to projects

• saving projects

• moving files in the project window.

It also describes more complex operations, including:

• creating nested projects

• creating multiple build targets

• dividing the project window into groups of files.

In addition, it describes:

• how the CodeWarrior IDE uses project stationery

• the ARM-specific project stationery provided with this version of the
CodeWarrior IDE

• how you can configure and use your own project stationery.

3.1.1 Project structure overview

A CodeWarrior IDE project is a collection of source files, library files, and other input
files. You can organize the files in a project in various ways to provide a logical structure
to your source. The most important structural element in a project is the build target.
The build target defines how the source files within a project are processed, not the
CodeWarrior IDE project itself.

Build targets

Every CodeWarrior IDE project defines at least one build target. A build target is a
specific configuration of build options that are applied to all, or some of the source files
in a project to produce an output file, such as an executable image, library, or code
listing.

Complex projects can define up to 255 build targets. You can use multiple build targets
to build different kinds of output files from one project file. For example, the
ARM-supplied stationery projects define at least three build targets, shown in
Figure 3-5 on page 3-12. See Using ARM-supplied project stationery on page 3-23 for
more information on ARM project stationery.
3-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
When you select build options for your project you apply them specifically to one or
more build targets. See Chapter 9 Configuring a Build Target for detailed information
on setting build options.

You can define a specific build order for the build targets in a project, so that the
CodeWarrior IDE builds one build target before building another, and optionally links
the output from the build targets. This means that you can create a build target that
depends on the output from some other build target. See Creating build target
dependencies on page 3-60 for more information.

Each build target in a project contains a collection of elements that the CodeWarrior
IDE uses to build the output file. Build targets within a project can share some, or all,
of their elements. A build target can include:

Source files and libraries

These are the basic input files for your project. They can be organized
into groups, or included from other build targets and project files. You can
use the project window to customize how individual source files are
treated in a build target. For example, you can turn debugging on and off,
compile, preprocess, and check the syntax of individual source files.

You can also specifically exclude an individual source file from a build
target. This enables you, for example, to have a proven but slow C
language implementation of an algorithm for debugging, and an
optimized assembly language implementation for product release.

Groups These are groups of files and libraries. You can group related source files
or libraries together to help organize your project sources conveniently.

Other build targets

You can use the output from one build target as input to another, or create
independent build targets that generate different types of output. You can
use dependent build targets, for example, to combine output objects from
ARM and Thumb build targets into a single output image. See Working
with multiple build targets and subprojects on page 3-52 for detailed
information on build targets.

Subprojects

These are independent projects that you include in your main project.
They can contain the same kinds of elements, such as files, build targets
and additional subprojects, as the main project. See Creating subprojects
within projects on page 3-67 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-3

Working with Projects
3.2 Overview of the project window

The project window shows information about the files and build targets in your project
file. The project window uses three distinct views to display your files and build targets:

• the Files view

• the Link Order view

• the Targets view.

The following sections describe the project window in detail:

• Navigating the project window

• Project views on page 3-5.

3.2.1 Navigating the project window

To navigate the project window, use the vertical scroll bar on the right side of the
window, or the Up and Down Arrow keys on your keyboard. If the project window
contains many files, use the Home key to scroll to the top of the list, or use the End key
to scroll to the end of the list.

Use the Page Up and Page Down keys to scroll one page up or one page down the project
window. See Selection by keyboard on page 3-37 for information on how to select files
as you type.

Using the Project Window toolbar

The toolbar in the project window has buttons and other items that provide shortcuts to
commands and information about the project. You can choose the items to display on
the toolbar, and the order in which those items are displayed. You can also choose to
hide or display the toolbar itself. See Customizing toolbars on page 8-41 for more
information on configuring toolbars in the CodeWarrior IDE.
3-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.2.2 Project views

The project window provides three distinct views on the files, groups, and subprojects
that make up your project. These are:

• the Files view

• the Link Order view

• the Targets view.

To choose a view, click its tab at the top of the project window, as shown in Figure 3-1.

Figure 3-1 View tabs at the top of the project window

The project views are described in:

• Files view

• Link Order view on page 3-9

• Targets view on page 3-12.

Files view

The Files view (Figure 3-2 on page 3-6) shows a list of all the files, groups, and
subprojects for all the build targets in the project. You can use this view to arrange your
project into hierarchical groups without affecting the way the CodeWarrior IDE handles
a build target. This view also displays information about modification status, file access
paths, code size, data size, current build target, debugging status, and other information.

��
��������������������
���
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-5

Working with Projects
Figure 3-2 Project window Files view

The Files view window contains the following columns:

File column

The File column lists project files and groups in a configurable
hierarchical view. A group can contain files and other groups. You can:

• Double-click a source filename in the File column to open the file
in the CodeWarrior IDE editor, or a third-party editor set in the IDE
preferences panel.

• Click the hierarchical control to display and hide the contents of
groups.

• Right-click on a filename to display a context menu of commands
that can be applied to the file. For example, to display the location
of the file, right-click the filename in the project window and select
Open in Windows Explorer from the context menu.

 The File column in the Files view displays all files in the current project,
whether or not they are included in the current build target.

�����
����
�

�
������
���
�������

�
��
����
� ����

����
�
����
����
�

������
����
�

�����
����
�

��������
������
����
�

�����
���������

���

�������	
���
���������

����
3-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Code column

The Code column shows the size, in bytes or kilobytes, of the compiled
executable object code for files. For a group, the value is the sum of the
sizes for files in the group in the current target. If 0 is displayed in the
Code column, it means that your file has not yet been compiled. If n/a is
displayed, the file is not included in the current build target.

The values in this column do not necessarily reflect the amount of object
code that will be included in the final output file. By default, the linker
removes unused sections from input object files. See the description of
unused section elimination in the ADS Linker and Utilities Guide for
more information.

Data column

The Data column shows the size, in bytes, kilobytes (K), or megabytes
(M) of data, including zero-initialized data, but not stack space used by
the object code for files in the project. If 0 is displayed in the Data
column, it means that the file has not yet been compiled, or no data
sections are generated from this source code. If n/a is displayed, the file
is not included in the current build target.

Like the Code column sizes, the data values listed in the Data column are
not necessarily all added to the final output file. You can use the fromELF
utility to determine the sizes of code and data sections in the final output
image.

Debug column

The Debug column indicates whether debugging information will be
generated for individual files in a project if the ARM compilers and
assembler are not configured to generate debug information for all files
in the build target.

A black marker in this column next to a filename or group name indicates
that debugging information will be generated for the corresponding item.
A gray marker next to a group name indicates that debugging information
will be generated for only some of the files in the group.

To generate debugging information for a:

• file, click in the Debug column next to the file

• group, click in the Debug column next to the group

• project, Alt-click in the Debug column.

See Chapter 4 Working with the ARM Debuggers for detailed information
on how debug information is generated for files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-7

Working with Projects
Target column

The Target column indicates whether an item is in the currently selected
build target. The CodeWarrior IDE displays this column if a project has
more than one build target. A dark marker in this column next to a file or
group means that the corresponding item is in the current build target. A
gray marker next to a group indicates that only some of the files in that
group are in the current build target.

To assign or unassign a current build target for a:

• file, click in the Target column next to the file

• group, click in the Target column next to the group

• project, Alt-click in the Target column.

See Assigning files to build targets on page 3-57 for information on
adding or removing a file to or from a build target using the Target
column.

Touch column

The Touch column indicates whether a file is marked to be compiled,
assembled, or imported (libraries and object files). A marker in this
column next to a filename or group name indicates that the corresponding
item will be rebuilt at the next Bring Up To Date, Make, Run or Debug
command. A gray marker next to a group indicates that only some of the
files in that group are marked for compilation or assembly.

To touch or untouch:

• a file, click in the Touch column next to the file

• a group, click in the Touch column next to the group

• a project, Alt-click in the Touch column.

See Synchronizing modification dates on page 3-47 for more information.

Header Files pop-up menu

The Header Files pop-up menu:

• lists and opens header files for your project source files

• enables you to touch or untouch the selected item and set other
options.

For groups, the Header Files pop-up menu lists the files within the
group. Select a file from the pop-up menu to open that file. See Opening
header files from the Header Files drop-down menu on page 2-7 for more
information.
3-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
File Control context menu

The File Control context menu is shown in Figure 3-3. To display this
context menu, right-click on a filename or group name in the project
window.

From the File Control context menu, you can choose a command to
operate on the selected item. The available commands depend on the
selected item. See Appendix D CodeWarrior IDE Reference for more
information on the commands in this context menu.

Figure 3-3 File Control context menu in the project window

Checkout Status column

The Checkout Status column indicates whether files are checked in or
checked out of a Version Control System (VCS). This column is displayed
only if you configure your CodeWarrior IDE project to use a source code
revision control system. See Chapter 10 Using the CodeWarrior IDE with
Version Control Systems for more information.

Project Checkout Status icon

The Project Checkout Status icon shows:

• whether a project is writable

• the file access permissions for that project.

 A revision control system can assign the permissions when you check in
or check out a project file. See Chapter 10 Using the CodeWarrior IDE
with Version Control Systems for more information.

Link Order view

The Link Order view shows information about how the CodeWarrior IDE will compile
and link the final output file for the current build target. Figure 3-4 on page 3-10 shows
an example.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-9

Working with Projects
When you add files to a project, they are added in the same order in both the Files View
and the Link Order view. This means that, by default, the CodeWarrior IDE compiles
project files in the order shown in the Files view. You can change the order in which files
are compiled by rearranging them in the Link Order view. In addition, files are
displayed in the Link Order view only if they are included in the current build target.

Changing the order of files in the Link Order view can change the order in which the
object code is placed in the final binary output produced from your project. The
CodeWarrior IDE invokes the ARM linker with a list of object files in the order in which
they are compiled. By default, the ARM linker processes object files in the order in
which they are presented.

Note
 The Link Order view is a convenient way to control the order in which source files are
processed. However, in general it is not advisable to depend the Link Order view to
control output image structure. The ARM Linker configuration panel provides limited
control over section placement. For finer control, use a scatter-load description file. See
Configuring the ARM linker on page 9-66 and the linker chapter of the ADS Linker and
Utilities Guide for more information.

Figure 3-4 Example Link Order view

The Link Order view displays columns that are similar to those displayed in the Files
view. The most important difference is that there is no Target column in the Link order
view. The Link Order view gives information only for those files that are included in the
current build target. This means that a file must be selected in the Target column of the
Files view in order to be displayed in the Link Order view.

The columns in the Link Order view are:

File column

The File column lists the files in the current build target. Unlike the Files
view, the Link Order view displays only files, not groups. Files are
displayed in the order in which they will be compiled, regardless of
whether they are in a group or not.
3-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Code column, Data column, Debug column

These columns display the same information as in the Files view. See the
description in Files view on page 3-5 for more information.

Touch column

The Touch column indicates whether a file is marked to be compiled. A
marker in this column next to a filename indicates that the corresponding
item will be recompiled at the next Bring Up To Date, Make, Run or
Debug command.

To touch or untouch:

• a file, click in the Touch column next to the file

• the current build target, Alt-click in the Touch column.

See Synchronizing modification dates on page 3-47 for more information.

Header Files pop-up menu

The Header Files pop-up menu:

• lists and opens header files for your source files

• enables you to touch or untouch the selected item and set other
options.

See Opening header files from the Header Files drop-down menu on
page 2-7 for more information.

File Control context menu

Right-click on an entry in the project window to display the File Control
context menu (Figure 3-3 on page 3-9 shows an example). The File
Control context menu provides context-specific commands, depending
on the selected item.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-11

Working with Projects
Targets view

The Targets view (Figure 3-5) shows information about the build targets in a project,
and build target dependencies.

The Targets view shows a list of the build targets in the project. This view also shows
the objects that the build targets depend on to create a final output file. Figure 3-5 shows
an example Targets view with the three default targets defined by the ARM stationery.
See Using ARM-supplied project stationery on page 3-23 for more information on the
DebugRel, Release, and Debug build targets. See Working with multiple build targets
and subprojects on page 3-52 for a detailed description of the Targets view, and for
information on working with build targets in general.

Figure 3-5 Example Targets view
3-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.3 Working with simple projects

This section describes the basic project operations:

• Creating a new project

• Opening a project on page 3-15

• Closing a project on page 3-17

• Saving a project on page 3-18

• Importing makefiles into projects on page 3-19

• Choosing a default project on page 3-21

• Moving a project on page 3-22

• Importing and exporting a project as XML on page 3-22.

3.3.1 Creating a new project

The CodeWarrior IDE can base new projects on an existing, preconfigured project
stationery file that is used as a template for your new project. The CodeWarrior IDE
provides two options for creating new projects:

Projects based on project stationery

Project stationery can be preconfigured with libraries and source code
placeholders. Configuration options and build targets are predefined,
though you should still review some configuration options to ensure that
they are relevant to your development environment. This kind of project
file is useful for quickly creating new projects.

Empty projects

Empty projects do not contain any placeholder files or libraries, and use
default values for all tool configuration options. If you choose to create a
new empty project you must review all configuration options, define your
own build targets, and add all required libraries and files.

See Chapter 9 Configuring a Build Target for information on configuring project,
compiler, linker, and other target settings for your project. See Working with project
stationery on page 3-23 for more information on project stationery.

To create a new project:

1. Select New… from the File menu. The CodeWarrior IDE displays a New dialog
box (Figure 3-6 on page 3-14).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-13

Working with Projects
Note
 The New dialog box also contains a File tab and an Object tab. See Creating a

new file on page 2-3 for more information on creating new source files. The
Object tab is not used by the ARM version of the CodeWarrior IDE.

Figure 3-6 New dialog box

2. Ensure that the Project tab is selected and choose the project stationery file on
which you want to base your own project. You can choose from:

• An empty project, to create a project that contains no libraries or other
support files

• An ARM or Thumb Executable image, library, or interworking project. See
Using ARM-supplied project stationery on page 3-23 for more information
on the project stationery files supplied by ARM.

• The Makefile Importer Wizard. See Importing makefiles into projects on
page 3-19 for information on using this wizard.

Note
 Using the keyboard

You can use Ctrl+Tab or the left and right arrow keys to move between the
Project, File, and Object tabs. To set the focus on the list of stationery:

a. Press Ctrl+Tab until the Project tab is selected.
3-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
b. Press Tab again.

c. Press the Up and Down arrow keys to move to items in the stationery list.

3. Enter a name for your project and either enter the project location or click Set…
to choose a directory in which to store your project. By default, the CodeWarrior
IDE adds a .mcp filename extension to the project filename.

4. Click OK. The CodeWarrior IDE creates a new project based on the project
stationery you have selected. See:

• Adding files to a project on page 3-38, for information on how to add your
own source files to the new project

• Compiling and linking a project on page 3-74 for more information on
building your new project.

3.3.2 Opening a project

This section describes how to:

• open existing projects so you can work on them

• open subprojects from within a project window

• open projects created on other platforms.

You can have more than one project open at a time. To switch to one of several open
projects, select the project name from the Window menu. See Choosing a default
project on page 3-21 for information on how to select one of your open projects as the
default target for project-level commands.

To open a project file:

1. Select Open from the File menu. The CodeWarrior IDE displays an Open File
dialog box (Figure 3-7).

Figure 3-7 Open dialog
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-15

Working with Projects
2. If not already set, use the Files of Type drop-down list to select Project Files. The
file list changes to show the project files that you can open.

3. Select the project file you want to open and click Open. The CodeWarrior IDE
opens the project and displays it in a project window.

Note
 If the project was created with an older version of the CodeWarrior IDE, you will

be prompted to convert the older project to the newest version. If you decide to
update, the CodeWarrior IDE saves a backup of the project and then converts the
project to the newest version.

Using the Open Recent command

The CodeWarrior IDE maintains a list of the projects and files you have opened recently
in the File menu. Use the Open Recent command in the File menu to reopen one of
these projects. See Configuring IDE extras on page 8-8 for information on setting the
number of files that the CodeWarrior IDE stores in this menu.

Opening subprojects from the project window

To open a subproject contained within your project, double-click the subproject file icon
in the project window. The CodeWarrior IDE displays the subproject in a new project
window. See Working with multiple build targets and subprojects on page 3-52 for more
information on using subprojects.

Opening project files created on other host platforms

Project files are cross-platform compatible. For example, you can open and use a project
created under MacOS on a Windows machine.

Note
 The ARM version of the CodeWarrior IDE is supported on Windows only. However,
this feature might be useful if you are moving to ARM from another target environment
that also uses CodeWarrior development tools.

To use a project created on another host platform:

1. Ensure that the project has a .mcp filename extension. The CodeWarrior IDE uses
this file name extension to recognize project files. If the three-letter extension is
not present, the CodeWarrior IDE is unable to identify the project file.
3-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
2. Copy only the project file, not its associated Data folder, from the other host
platform to your computer.

3. Open the project in the CodeWarrior IDE and rebuild it.

3.3.3 Closing a project

To close a project:

1. Ensure that its project window is the currently active window.

2. Select Close from the File menu, or click the Windows close button.

You do not have to close your project before quitting the CodeWarrior IDE application,
because your project settings are automatically saved. See Saving a project on
page 3-18 for details of how the CodeWarrior IDE saves project information.

The CodeWarrior IDE enables you to have more than one project open at a time, so you
do not have to close a project before switching to another project.

Note
 Having multiple projects open at a time uses more memory, and also causes project
opening times to lengthen slightly.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-17

Working with Projects
3.3.4 Saving a project

The CodeWarrior IDE automatically updates and saves your project when you perform
certain actions. This section describes the actions that cause a project file to be saved.

Your settings are saved when you:

• close the project

• change the Preferences or Target Settings for the project

• add or delete files for the project

• compile any file in the project

• edit groups in the project

• remove object code from the project

• exit the CodeWarrior IDE.

You do not have to save your project manually unless you want to create a copy of it.

Information saved with your project

When the CodeWarrior IDE saves your project, it saves the following information:

• the names of the files added to your project and their locations

• all configuration options

• dependency information, such as the touch state and header file lists

• browser information

• references to the object code of any compiled source code files.

Saving a copy of your project

If you want to save a backup copy of a project file before you make some changes to the
original, select Save a Copy As… from the File menu. The CodeWarrior IDE creates a
copy of the project file under a new name that you specify, and leaves the original
project file unchanged. The CodeWarrior IDE does not change the currently open
project to use the new file name.

Caution
 Do not attempt to make a copy of an open project from the Windows desktop. This can
cause the project file to be corrupted. Always close the project before copying the
project file.
3-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.3.5 Importing makefiles into projects

The CodeWarrior IDE can import many Visual C nmake or GNU make files into
CodeWarrior IDE project files. The CodeWarrior IDE uses the Makefile Importer
wizard to process the files. The wizard performs the following tasks:

• parses the makefile

• creates a CodeWarrior IDE project

• creates build targets

• adds source files as specified in the makefile

• matches the information specified in the makefile to the output name, output
directory, and access paths of the created build targets

• selects a linker to use with the project.

Using the Makefile Importer wizard

To create a new project from a makefile:

1. Select New… from the File menu. The CodeWarrior IDE displays the New dialog
box (see Figure 3-6 on page 3-14).

2. Click the Project tab and select the Makefile Importer Wizard from the list of
project stationery.

3. Enter a name and location for the project to be created from the imported makefile
(see Creating a new project on page 3-13 for naming conventions) and click
OK.The CodeWarrior IDE displays the Makefile Importer Wizard (Figure 3-8).

Figure 3-8 Makefile Importer Wizard
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-19

Working with Projects
4. Enter the location of the makefile in the Makefile Location text field, or click
Browse to select the makefile from the standard file dialog.

5. Select Settings options:

Tool Set Used in Makefile
Select the makefile tool on which the makefile build rules are based
from the drop-down list.

Metrowerks Tool Set
Select ARM Linker from the drop-down list.

6. Select Diagnostic Settings as required:

Log Targets Bypassed
Select this option to log information about the build targets parsed in
the makefile that were not converted to CodeWarrior IDE build targets.

Log Build Rules Discarded
Select this option to log information about the build rules in the
makefile that were discarded in the conversion to a CodeWarrior IDE
project.

Log All Statements Bypassed
Select this option to log the same information as the Log Targets
Bypassed and Log Build Rules Discarded options, and information
about other items in the makefile that were not understood during the
parsing process.

Diagnostic messages are displayed in a project message window. The project
message window is similar to the message window. See Using the message
window on page 4-14 for more information.

7. Click Finish. If the Makefile Importer wizard can successfully process the
makefile, it displays a summary window showing the current conversion settings
(Figure 3-9 on page 3-21).
3-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-9 Makefile importer summary

8. Click Generate to import the makefile. The CodeWarrior IDE generates a new
project based on the makefile.

3.3.6 Choosing a default project

The CodeWarrior IDE enables you to have more than one project open at a time. When
you select some project-level commands, such as Debug or Bring up to date the
CodeWarrior IDE applies the command in the following way if there is more than one
project open:

• if one of the project windows is the currently active window, the CodeWarrior
IDE applies the command to that project

• if no project window is the currently active window and it is ambiguous as to
which project the command should be applied to, the CodeWarrior IDE applies
the command to the default project.

To specify a default project, select Project → Set Default Project → Project_name
where Project_name is the name of the open project you want to make the default.

When you start the CodeWarrior IDE, the first project you open becomes the default
project. If you close the default project, the default project becomes the project with the
front-most project window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-21

Working with Projects
3.3.7 Moving a project

The CodeWarrior IDE stores all the information it requires about a project in the project
file. The project data directory contains additional information such as window
positions, object code, debug info, browser data, and other settings. However, the
CodeWarrior IDE does not need these files to recreate your project.

To move a project, drag the project file (ending in .mcp if it obeys the project file naming
convention) to its new location using Windows Explorer. The CodeWarrior IDE
reconstructs the project state when you select a Bring Up To Date or Make operation.
In a revision control system, you need only check in the main project file and not the
data files.

If your project file references other files with absolute access paths, you might need to
modify the paths when you move the project. See Configuring access paths on
page 9-11 for more information.

3.3.8 Importing and exporting a project as XML

You can export a project file in eXtensible Markup Language (XML) format. This
format is useful when you want to use the CodeWarrior IDE file comparison feature to
compare and merge the contents of different project files. See Comparing
XML-formatted projects on page 2-26 for more information.
3-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.4 Working with project stationery

This section describes how to use the project stationery provided with the CodeWarrior
IDE for the ARM Developer Suite, and how to create your own project stationery. It
describes:

• Project stationery overview

• Using ARM-supplied project stationery

• Creating your own project stationery on page 3-35.

3.4.1 Project stationery overview

A project stationery file is typically a minimal, preconfigured template project file. You
can use project stationery to create a new project quickly. When you create a new
project or open a project stationery file, the CodeWarrior IDE creates a new project and,
optionally, a new folder for the project. It then copies all the files related to the
stationery project to the new folder.

A stationery project can include:

• preconfigured build target settings for the project

• predefined build targets, subprojects, and build dependencies

• all files included in the stationery project.

The project stationery folder

The project stationery folder is located in the ARM Developer Suite installation folder.
By default, this is c:\Program Files\ARM\ADSv1_2\Stationery. ARM-supplied project
stationery files for common types of projects are located in subdirectories in the project
stationery directory.

You can create your own project stationery by saving preconfigured projects, together
with their support files, in the project stationery directory. See Creating your own
project stationery on page 3-35 for more information.

3.4.2 Using ARM-supplied project stationery

The ARM version of the CodeWarrior IDE is supplied with a number of default
stationery projects to enable you to start an ARM, Thumb, or Thumb ARM
interworking project quickly and easily.

All the supplied stationery projects use:

• default target settings (little-endian ARM7TDMI)

• default ATPCS options for the compilers and assemblers
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-23

Working with Projects
• separate build targets for debug and optimization options (see Predefined build
targets on page 3-26).

This means that you must reconfigure the target options if, for example, you want to
build position-independent output, or target a different ARM processor. See Chapter 9
Configuring a Build Target for detailed information.

The following stationery projects are supplied with the CodeWarrior IDE for the ARM
Developer Suite:

ARM Executable Image

Use this project template to build an executable ELF image from ARM
code. This stationery project is configured to use:

• The ARM C compilers to compile all files with a .c filename
extension. If you want to use the C++ compiler to compile C code,
you must reconfigure the File Mappings configuration panel. See
Configuring file mappings on page 9-23 for more information.

• The ARM C++ compiler to compile all files with a .cpp filename
extension.

• The ARM assembler to assemble all files with a .s filename
extension.

• The ARM linker to link a simple executable ELF image.

• The AXD debugger to both debug and run executable images
output by the project.

ARM Object Library

Use this project template to build an object library in armar format from
ARM code. The library will contain ELF object format members. This
project is similar to the ARM executable image project. The major
differences are:

• it is configured to use the armar utility to output an object library.

• you cannot debug or run a standalone library file.

See the Toolkit Utilities chapter of the ADS Linker and Utilities Guide for
more information on armar.
3-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Thumb Executable Image

Use this project to build an executable ELF image from Thumb code.
This stationery project is configured to use:

• The Thumb C compilers to compile all files with a .c filename
extension. If you want to use the Thumb C++ compiler to compile
C code, you must reconfigure the File mappings configuration
panel. See Configuring file mappings on page 9-23 for more
information.

• The Thumb C++ compiler to compile all files with a .cpp filename
extension.

• The ARM assembler to assemble all files with a .s filename
extension. By default, the Thumb Executable Image stationery
configures the assembler to start in Thumb state. See the ADS
Assembler Guide for information on switching the assembler to
compile ARM code.

• The ARM linker to link a simple executable ELF image.

• The AXD debugger to both debug and run executable images
output by the project.

Thumb Object Library

Use this project template to build an object library in armar format from
Thumb code.

The library will contain ELF object format members. This project is
similar to the Thumb executable image project. The major differences
are:

• it is configured to use the armar utility to output an object library

• you cannot debug or run a standalone library file until it is linked
into an image.

See the Toolkit Utilities chapter of the ADS Linker and Utilities Guide for
more information on armar.

Thumb ARM Interworking Image

Use this project to build an executable ELF image from interworking
ARM and Thumb code. This stationery project is configured to use:

• Separate build targets for ARM code and Thumb code. The output
from the Thumb build targets is chained with the corresponding
ARM build targets. See Creating build target dependencies on
page 3-60 for information on defining build dependencies between
build targets.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-25

Working with Projects
• The ARM C and C++ compilers to compile code included in the
ARM build targets.

• The Thumb C and C++ compilers to compile code included in the
Thumb build targets.

• The ARM assembler to assemble both ARM and Thumb assembly
language source.

• The ARM linker to link the output from the Thumb and ARM build
targets into an executable ELF image.

• The ATPCS interworking option for the ARM assembler and ARM
and Thumb compilers.

Predefined build targets

The non-interworking ARM project stationery files define three build targets. The
Interworking project stationery defines an additional three build targets to compile
Thumb-targeted code. The basic build targets for each of the stationery projects are:

Debug This build target is configured to build output binaries that are fully
debuggable, at the expense of optimization. It is intended to be used if
you plan to build separate Debug and Release versions of your code. This
build target provides the best debug view while you are developing your
code. It is also configured to output basic image information in an error
and messages window.

Release This build target is configured to build output binaries that are fully
optimized, at the expense of debug information. It is intended to be used
if you plan to build separate Debug and Release versions of your code.
This build target outputs optimized code suitable for release.

DebugRel This build target is configured to build output binaries that provide
adequate optimization, and give an adequate debug view. It is intended to
be used if you plan to build a version of your code for debug, and release
the same code in order to reduce testing.

See Working with multiple build targets and subprojects on page 3-52 for more
information on using the ARM project stationery to create complex projects. See
Configuring debug and optimization on page 9-57 for information on how to set debug
and optimization options.
3-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Using the Thumb ARM interworking stationery

The Thumb ARM interworking stationery is an example of a complex project that uses
multiple, dependent, build targets to compile ARM and Thumb code separately, and
then link the output into an interworking executable image. This section gives a brief
description of how to use the interworking stationery. See Working with multiple build
targets and subprojects on page 3-52 for a detailed description of how to use complex
projects.

To create an interworking project:

1. Create a new project using the Thumb ARM interworking stationery. See
Creating a new project on page 3-13 for more information. The CodeWarrior IDE
displays the Files view for the new project (Figure 3-10).

Figure 3-10 Interworking project

2. Add your Thumb source files to the Thumb build targets:

a. Select Add Files… from the Project menu and select your Thumb source
files from the standard file dialog box. The CodeWarrior IDE displays an
Add Files dialog.

b. Deselect the ARM build targets and click OK (Figure 3-11).

Figure 3-11 Add Thumb files
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-27

Working with Projects
The CodeWarrior IDE adds the files to the Thumb build targets only.

3. Add your ARM source files to the ARM build targets. Follow the same procedure
as step 2, but select the ARM build targets when you add the files. Figure 3-12 on
page 3-28 shows an example of the Files view for the Thumb DebugRel target.
The Files view shows all the files in the project. Files not in the current build target
do not have a black dot in the Target column, and have a code size of n/a.

Figure 3-12 Interworking project Files view

4. Click the Targets tab to display the build target structure of the project.
Figure 3-13 on page 3-29 shows an example. Each ARM build target is linked as
a dependent target to its corresponding Thumb build target. See Creating a new
build target on page 3-62 for more information.

����������
���������

���
��	
���
���������
��
���������

 !"�	
�������
���������
��
���������

#������	��
����������
 !"����������
3-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects

��

�

Figure 3-13 Interworking project Targets view

5. Click the Make button to build the ThumbDebugRel build target. The
CodeWarrior IDE:

a. builds the dependent ARMDebugRel build target

b. builds the ThumbDebugRel build target

c. links the output from the two build targets.

To build the other interworking targets, select the appropriate Thumb build target
from the Targets drop-down list. If you select an ARM build target, only the
ARM part of your project source is built.

Converting ARM projects to Thumb projects

To convert an existing ARM project to Thumb, you must:

• modify the file mappings to call the Thumb compilers

• configure the appropriate ATPCS options for the compilers and assembler.

Note
 You must change the following configuration options for each build target in the project.

1. Open the project you want to convert.

��������
�
�
��
���������

���������
���������

������������

�������������
�
������
���
�

��
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-29

Working with Projects
2. Select TargetName Settings… from the Edit menu and click File Mappings in
the Target Settings Panels list. The CodeWarrior IDE displays the File Mappings
panel (Figure 3-14).

Figure 3-14 File Mappings panel

3. Click the entry for the .c file extension and select Thumb C compiler from the
Compiler drop-down list (Figure 3-15).

Figure 3-15 Changing file mapping to use Thumb C compiler
3-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
4. Click Change to change the file mapping for .c source files. When you make your
project, the CodeWarrior IDE calls the Thumb C compiler to compile files ending
with a .c filename extension.

5. Modify the file mappings for .cpp and .h files to use the Thumb C++ compiler
and Thumb C compiler respectively. The File Mappings panel should look similar
to Figure 3-16.

Figure 3-16 Changed file mappings

6. Click Apply to apply the new file mappings.

7. Click ARM Assembler in the Target Settings Panel list to display the Language
Settings panel for the ARM Assembler:

a. Select the Thumb option in the Initial State section of the dialog box
(Figure 3-17 on page 3-32).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-31

Working with Projects
Figure 3-17 Select Thumb initial state

b. Click the ATPCS tab and select ARM/Thumb interworking, if required
(Figure 3-18). In general you must select interworking for any code that is
directly called from code running in the other state (either ARM or Thumb).
If you are not sure whether your Thumb code will be called from ARM
code, you should select the interworking option.

Figure 3-18 Select ARM/Thumb interworking
3-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
c. Ensure that the other language settings for the assembler are appropriate for
your project.

d. Click Apply to apply your changes.

8. Click Thumb C Compiler in the Target Settings Panel list to display the
Language Settings panel for the Thumb C compiler:

a. Click the ATPCS tab and select ARM/Thumb interworking, if required.
(Figure 3-19). In general you must select interworking for any code that is
directly called from code running in the other state (either ARM or Thumb).
If you are not sure whether your Thumb code will be called from ARM
code, you should select the interworking option.

Figure 3-19 Selecting the ATPCS Interworking option

b. Ensure that the other language settings for the Thumb compiler are
appropriate for your project. In particular, if you have changed any of the
default settings for the ARM compiler before converting your project to
Thumb, you might not have changed the equivalent settings for the Thumb
compiler.

c. Click Apply to apply your changes.

9. Repeat step 8 for the Thumb C++ compiler panel, if required.

10. Repeat all the above steps for each build target in the project.

11. Rebuild your project. The CodeWarrior IDE uses the Thumb compilers to rebuild
your code.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-33

Working with Projects
Converting Executable Image projects to Library projects

To convert an Executable Image project to a Library project you must change the
following configuration options for each build target in the project:

1. Open the project you want to convert.

2. Select TargetName Settings… from the Edit menu and click Target Settings in
the Target Settings Panels list. The CodeWarrior IDE displays the Target Settings
panel

3. Click the Linker drop-down list and select ARM Librarian (Figure 3-20).

Figure 3-20 Select the ARM librarian

4. Click Apply to apply your changes.

5. Repeat all the above steps for each build target in your project.

6. Rebuild your project. The CodeWarrior IDE calls armar to create an object
library.
3-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Creating ROMable output

The default ARM-supplied project stationery is configured to generate a semihosted
ELF executable image. To convert a project to produce a simple binary image suitable
for embedding in ROM you must:

1. Configure the Target Settings panel to call fromELF as a postlinker. See
Configuring target settings on page 9-8 for more information.

2. Configure the ARM fromELF panel to convert the executable ELF image output
by the linker to the binary format of your choice. See Configuring fromELF on
page 9-76 and Converting output ELF images to other formats on page 3-84 for
more information.

3. Configure the ARM Linker panel to create the image structure you require, or use
a scatter-load description file to specify your image structure. See Configuring the
ARM linker on page 9-66 for more information. See also the example ROM
projects in install_directory\Examples\Embedded and the description of writing
code for ROM in the ADS Developer Guide.

3.4.3 Creating your own project stationery

You can create your own stationery project file that includes the source files and project
options you want. You can use the stationery project when you create a new project.

A CodeWarrior IDE project is a stationery project if:

• it is located in the project stationery folder

• the source files associated with the project are stored with the project.

The CodeWarrior IDE duplicates the stationery project file and its source files when you
create a new project and select your stationery project in the New Project dialog box.
See Creating a new project on page 3-13 for more information on creating a new
project.

Before you create your own project stationery, it is recommended that you are familiar
with the project stationery supplied by ARM. See Using ARM-supplied project
stationery on page 3-23 for more information.

To create your own custom stationery:

1. Create a new project from an existing project stationery file, or create an empty
project.

2. Select Save A Copy As… from the File menu. The CodeWarrior IDE displays a
Save a copy of project as dialog box (Figure 3-21 on page 3-36).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-35

Working with Projects
Figure 3-21 Save a copy of project as dialog

3. Use the dialog box controls to save the new project to the project stationery folder.
By default the stationery folder is:

 Install_dir/adsv1_2/Stationery

4. Modify the project settings to suit your requirements. You can add and remove
files as necessary to create the base project you want.

Ensure that a copy of all the project source files are present in the project folder
so that they will be copied to new projects created with the project stationery.

Note
 You do not need to copy the project data directory to the stationery folder.

5. Save your changes. The project is ready to use as a new project stationery file.

You can select your custom project stationery when you create a new project. The
project settings and source files in your stationery project are used to create the new
project.

See the following sections for more information on how to configure your project
stationery and include the files you want:

• Choosing general preferences on page 8-6

• Configuring target settings on page 9-8

• Managing files in a project on page 3-37.
3-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.5 Managing files in a project

This section describes how to manage files in your project. It provides information on:

• Selecting files and groups

• Adding files to a project on page 3-38

• Grouping files in a project on page 3-42

• Moving files and groups on page 3-44

• Removing files and groups on page 3-45

• Touching and untouching files on page 3-47.

3.5.1 Selecting files and groups

From the project window, you can select one or more files and groups to open, compile,
check syntax, remove from the project, or move to a different group. Selecting a group
selects all the files in the group, regardless of whether or not the files appear to be
selected.

Selection by mouse-clicking

You can use the following methods to select files with the mouse:

• To select a single file or group in the project window, click its name.

• To select a consecutive list of files or groups either:

— Click the first file or group in the list, and then Shift-click the last file or
group. Everything between and including the first and last file or group is
selected.

— Drag-select files in the same way as on the Windows desktop.

• To select non-contiguous files or groups, Ctrl-click the file and group names.

Selection by keyboard

To select an item using the keyboard, type the first few characters of the name of the
item you want to select. As you type, the CodeWarrior IDE selects the file in the project
that most closely matches the characters you have typed. Press the Backspace key if you
make a mistake. Press the Enter key to open a file.

Note
 Only files in currently expanded groups in the project window can be selected this way.
Files in collapsed groups are not matched with your keystrokes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-37

Working with Projects
3.5.2 Adding files to a project

This section describes how to add files to your project. You can use the following
methods to add files:

The Add Files command

Select Add Files… from the Project menu to add one or more files to the
current project. See Using the Add Files command on page 3-39 for
details.

Drag and drop

Use drag and drop to add one or more files to the current project. See
Adding files with drag and drop on page 3-40 for details.

The Add Window command

Select Add Window to add the file in the currently active editor window.
See Adding the current editor window on page 3-41.

When you add a file to a project, the CodeWarrior IDE adds the path to that file to the
project access paths, and displays a message in the message window.

Filename requirements

Filenames must conform to the following rules or the CodeWarrior IDE will not add
them to the project:

• Filename extensions for the file type you want to add must be defined in the File
Mappings configuration dialog. See Configuring file mappings on page 9-23 for
more information.

• You cannot add multiple copies of source files that generate object output, such a
C, C++, or assembly language source files. You can add multiple copies of header
files. The CodeWarrior IDE searches the defined search paths and uses the first
file with the correct name that it locates. It does not continue to search for header
files with the same name.

Where added files are displayed

When you add files to a project, they are placed either:

• after the currently selected item in the project window

• at the bottom of the project window if no item is currently selected in the project
window.
3-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
To place a new file or group in a specific location, you must select the file or group
above the location where you want the file to be added before you select Add Files or
Add Window.

If you select a group, the added files are placed at the end of that group regardless of
whether or not the group is expanded or collapsed. See Selecting files and groups on
page 3-37 for more information on selecting files and groups of files.

Note
 If you drag and drop a folder of source files onto your project window, a new group is
created and appended to your project. The added files are placed in the new group.

See Moving files and groups on page 3-44 for information on how to move a file, or
group of files, to a new location within the project.

Using the Add Files command

To add source code files, libraries, and other files to your project:

1. Select Add Files… from the Project menu. The CodeWarrior IDE displays an
Add Files dialog box (Figure 3-22).

Figure 3-22 Adding files to a project

2. Use the Files of type drop-down list to filter the types of files displayed in the
dialog box.

Note
 If you select All Files, the dialog box displays all files regardless of their filename

extension. However, the CodeWarrior IDE will not add files that do not have a
recognized filename extension set in the File Mappings target configuration
panel. See Configuring file mappings on page 9-23 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-39

Working with Projects
3. Change directory to the location of the files you want to add and select the files
to be added:

• To select a single file, click on its file name. Alternatively, double-click the
file to add it to your project immediately.

• To select multiple files, press the Control key and click on the file names in
the dialog box.

• To select a contiguous group of files, click on the first file name in the
group, then press the Shift key and click on the last file in the group.
Alternatively you can drag the mouse over the files you want to select.

4. Click Add to add the selected files. If your project contains multiple build targets,
the CodeWarrior IDE displays an Add files to targets dialog box (Figure 3-23).
Select the build targets to which you want the files added, or click Cancel to close
the dialog box without adding any files to the project.

Figure 3-23 Add files to targets dialog box

Adding files with drag and drop

You can drag suitable files or folders directly to an open project window. When you drag
files onto the project window, the CodeWarrior IDE verifies that the files can be added
to the project. When you drag a folder, the CodeWarrior IDE checks to ensure that the
folder, or one of its subfolders, contains at least one file with a recognized filename
extension, and that file is not already in the project. Folders are added to the project as
new groups.

If the selection does not contain at least one file recognized by the CodeWarrior IDE,
the drag is not accepted. See Configuring file mappings on page 9-23 for more
information on configuring the CodeWarrior IDE to recognize files.
3-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
To add files to your project with drag and drop:

1. Select the files or folders you want to add to the project.

You can select files in many places, including the desktop or the multi-file search
list in the CodeWarrior IDE Find dialog box.

2. Drag your selection onto the project window.

3. Use the focus bar (an underline) that appears in the project window to select the
location where the files will be inserted.

To create a new group and add files to it, drop the files when the cursor is over the
blank space after the last group.

4. Release the mouse button (drop the files) to add the dragged items to the project.
The items are inserted below the position of the focus bar.

If your project contains multiple build targets, the CodeWarrior IDE displays an
Add files to targets dialog box (see Figure 3-23 on page 3-40). Select the build
targets to which you want the files added.

Note
 • You cannot drag entire volumes, such as your hard disk, onto the project window.

• You can drag files from the project window to another application to open them
in that application.

See Removing files and groups on page 3-45 for more information on removing files
from the project window.

Adding the current editor window

The Add Window command adds the file displayed in the active editor window to the
default project.

Note
 The Add Window menu item is enabled when the active window is a text file, the file
is not yet in the project, and the file either has a recognized file name extension, or is an
unsaved window. See Configuring file mappings on page 9-23 for more information.
The Add Window menu item is disabled otherwise.

To add the current editor file:

1. Select a location in the project window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-41

Working with Projects
2. Open the source code file or text file in the editor.

3. Select Add filename to project from the Project menu:

• If the editor window is untitled the CodeWarrior IDE displays the Save As
dialog box. The file is added to the open project after you save it.

• If your project contains multiple build targets, the CodeWarrior IDE
displays an Add files to targets dialog box (see Figure 3-23 on page 3-40).
Select the build targets to which you want the files added.

3.5.3 Grouping files in a project

The CodeWarrior IDE enables you to organize your source code files into groups.
Groups are the CodeWarrior IDE equivalent to a Windows folder. For example, if you
drag a folder of source files onto the project window, the CodeWarrior IDE creates a
new group with the same name as the folder. However, CodeWarrior IDE groups are
independent of the directory structure of your source files. You can create any group
structure you want in the CodeWarrior IDE.

Creating groups

To create a new group:

1. Ensure that the project window is the active window, and that the Files view is
selected.

2. Select a location for the new group in the project window. The CodeWarrior IDE
will place the new group immediately below a selected item in the project window
hierarchy. If no item is selected the CodeWarrior IDE will place the group at the
top of the hierarchy.

3. Select Create Group from the Project menu. The CodeWarrior IDE displays a
Create Group dialog (Figure 3-24).

Figure 3-24 Create Group dialog

4. Enter a name for the new group and click OK. The CodeWarrior IDE creates the
new group at the selected location.
3-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Renaming groups

To rename a group you have already created:

1. Select the group you want to rename by clicking on it, or using the arrow keys to
navigate to the group in the project window.

2. Press the Enter key, or double click on the group in the project window. The
CodeWarrior IDE displays the Rename Group dialog box (Figure 3-25).

Note
 If you select more than one group, the CodeWarrior IDE displays the Rename

Group dialog box once for each group. The Enter Group Name text field displays
the name of the current group.

Figure 3-25 Rename group dialog

3. Enter a new name for the group and click OK to rename the group.

Expanding and collapsing groups

Groups display files in collapsible hierarchical lists. There are a number of ways to
toggle a group list between its expanded state and its collapsed state:

• Click the hierarchical control next to the group name to toggle the display of that
group only.

• Alt-click a hierarchical control to toggle the display of the group and all its
subgroups. Other groups at the same level are not changed.

• Ctrl-click any hierarchical control to toggle the display of all groups at the same
level.

• Ctrl-Alt-click any hierarchical control to toggle the display of all groups and
subgroups (Figure 3-26 on page 3-44).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-43

Working with Projects
Figure 3-26 Expanding groups and subgroups

3.5.4 Moving files and groups

To move one or more files or groups within a Files view, or to arrange build targets in a
Targets view:

1. Select the files or groups to be moved. Selecting a group includes all the files in
that group, regardless of whether or not those files are visually selected in the
project window. See Selecting files and groups on page 3-37 for more
information.

2. Drag the selected files or groups to their new location in the project window. A
focus bar (an underline) indicates where the selected files will be moved when the
mouse button is released:

• if your selection consists only of files, the focus bar is displayed under both
groups and files.

• if your selection includes one or more groups, the focus bar is displayed
only under other groups.

3. Release the mouse button when the focus bar is displayed at the position you want
place the files or groups. The selected files or groups are moved to the new
position (Figure 3-27 on page 3-45).

�������� �����
��
��$��
������
���
������������%����
����������
�������������
3-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Note
 The focus bar has a small arrow at the left end that indicates the level of insertion into
the existing hierarchy. If the arrow is to the left of a group icon, the insertion is at the
same level as the target group. If the arrow appears to the right of the icon, the files are
inserted into the target group.

Figure 3-27 Moving a file

3.5.5 Removing files and groups

You can remove files from either the Files view or the Link Order view of the project
window.

��������
��&�
�������������
����
�����
��
���

���������
����������������
��
�����
���
��&���
������
����
���������������������������
�����
��
���������

'	�����	���������������
�
�
����$��������
��
��
�����
��������
��&���
������������

��
�������������������������
��
���
�����
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-45

Working with Projects
Note
 If you remove files from the Files view, they are removed from all the build targets in
the project. If you remove files from the Link Order view, the files are removed from
the current build target only. See Build targets on page 3-2 for more information on
build targets.

To remove one or more files or groups from the project window:

1. Click either the Files view tab or the Link Order view tab, depending on whether
you want to remove the files from the entire project, or from the current build
target only.

2. Select the files or groups you want to remove.

Note
 Selecting a group includes all of the files in that group, regardless of whether or

not those files are visually selected in the project window. See Selecting files and
groups on page 3-37 for more information on selecting files.

3. Either:

• press Delete

• right click on the selected files and select Delete from the context menu.

The CodeWarrior IDE displays a confirmation dialog (Figure 3-28).

Figure 3-28 Remove file confirmation dialog

4. Click either:

• Cancel to leave the files in the project.

• OK to continue. The selected files and groups are removed from the project
or the current build target.
3-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Note
 You cannot undo this operation. If you remove a file or a group by mistake, you

must re-add the removed files by one of the methods described in Adding files to
a project on page 3-38.

3.5.6 Touching and untouching files

The CodeWarrior IDE does not always recognize file changes, and might not recompile
changed files in some cases. Use the Touch column to mark files that need to be
compiled (see Figure 3-2 on page 3-6).

You can touch files in the following ways:

• Click in the Touch column next to the filename in the Project Files view to toggle
the touch status of the file. A check mark is displayed in the Touch column next
to the filename to indicate that the file will be recompiled the next time you build
your project.

• Select Touch from the Header Files pop-up menu for the file.

Note
 If the file has not changed since it was last compiled, the first command in the

Header Files pop-up menu is Touch. If the file has been changed since it was last
compiled, the Untouch command is shown.

To unmark files so that they are not compiled, click in the Touch column again, or select
Untouch from the Header Files pop-up menu.

Note
 You can only untouch files that have been marked for compilation with the Touch
command. You cannot untouch files that are marked for compilation because they have
been modified.

Synchronizing modification dates

To update the modification dates stored in your project file either:

• select Synchronize Modification Dates from the Project menu.

• click the check icon in the project window toolbar (Figure 3-29 on page 3-48).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-47

Working with Projects
Figure 3-29 Synchronize modification dates

The CodeWarrior IDE checks the modification date for each file in the project. If the
file has been modified since it was last compiled, the CodeWarrior IDE marks it for
recompilation. This command is useful if you have modified source files outside the
CodeWarrior IDE, for example, by using a third-party text editor.

3.5.7 Examining and changing project information for a file

You can use the Project Inspector window to view and configure information for the
source files in your project. The project inspector window consists of:

• An Attributes panel that displays file attributes such as the name and location of
the file, the code and data size of the file, if it has been compiled, and whether or
not debug information is generated for the file.

• A Targets panel that displays a list of the build target that include a specific file.

To open the Project Inspector window:

1. Select the source file or library for which you want to view information in the
Files view or the Link Order view of the project window.

2. Select Project Inspector from the View menu. The CodeWarrior IDE displays
the Project Inspector window with the Attributes tab selected (Figure 3-30 on
page 3-49).

You can use this panel to specify whether debug information is generated for the
current file when it is compiled. See Generating debug information on page 4-4
for more information on configuring debug information for files.

The project inspector window shows project information for the currently
selected file or files. You change the file selection without closing the project
inspector window.
3-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-30 Project Inspector window for attributes

3. Click the Targets tab to display the Targets panel (see Figure 3-31) and select the
build targets that you want to include the current file.

See Assigning files to build targets on page 3-57 for more information on how to
select files for inclusion in specific build targets.

Figure 3-31 Project Inspector window for targets

4. Click either:

• Save to save your changes

• Revert to discard your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-49

Working with Projects
3.6 Configuring the CodeWarrior IDE for complex or multi-user projects

The CodeWarrior IDE has a number of configuration options that can affect how, and
where, project source files and libraries are searched for. If set incorrectly, these options
can cause unexpected behavior for large or complex projects such as:

• projects that have multiple source files with the same name in different directories

• multi-user projects where more than one developer is modifying sources,
especially if a source control system is in use

• projects that use embedded subprojects or build targets.

The following configuration options are recommended for complex, or multi-user
projects:

• Ensure that the source and library directories specified for your project are not
searched recursively by configuring the Access Paths dialog.

In general, for large projects recursive searching of access paths is prohibitively
slow. In addition, in some circumstances the CodeWarrior IDE fails to find, or
finds the wrong, dependent subproject or source file.

The default ARM project stationery is set to search the library and include
directories nonrecursively. However, if you make a new project, the CodeWarrior
IDE default is to add the {Compiler} directories recursively to your system access
paths. This means that every subdirectory of the directory in which the
CodeWarrior IDE is installed is added recursively to your system paths.

See Setting access path options on page 9-13 for more information on configuring
recursive searching.

• Ensure that the Always Search User Paths option is selected in the Access Paths
configuration panel.

If this option is not selected, and any source file is found in a system search path,
it is effectively promoted to an unchanging system file. This means that if a later
version of the source file is placed in a user search path, it is not found by the
CodeWarrior IDE until this option is selected. In particular, if your system paths
are defined to be searched recursively, the CodeWarrior IDE might find
unexpected versions of source files in system paths, and ignore newer versions in
user paths.

See Setting access path options on page 9-13 for more information on configuring
the Always Search User Paths option.

• Ensure that the Use Modification Date Caching option is not selected in the
Build Extras configuration panel. If this option is selected, the CodeWarrior IDE
might not be able to determine if a source file has been modified outside the
3-50 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
immediate CodeWarrior IDE environment. This applies if you are using a
third-party editor, or for multi-user development environments where source files
can be modified and checked in through version control systems.

See Configuring build extras on page 9-20 for more information on configuring
cache modification dates option.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-51

Working with Projects
3.7 Working with multiple build targets and subprojects

You can use the CodeWarrior IDE to create project files that use complex build rules
and dependencies. This section describes how to create complex projects.

For example, the default ARM project stationery defines separate build targets for:

• release code

• debug code

• code that is intended for release, but must still be debuggable.

In addition, the Thumb/ARM interworking project stationery uses separate build targets
for ARM code and Thumb code, and defines build dependencies between the two build
targets.

Each build target in a project has its own configuration settings. For example, the debug
build target in the ARM-supplied project stationery has code optimizations disabled and
debugging information enabled. The release build target has code optimizations
enabled. See Using ARM-supplied project stationery on page 3-23 for more
information.

This section describes:

• Overview of complex projects

• Creating a new build target on page 3-56

• Assigning files to build targets on page 3-57

• Changing a build target name on page 3-59

• Creating build target dependencies on page 3-60

• Building all targets in a project on page 3-66

• Creating subprojects within projects on page 3-67.

3.7.1 Overview of complex projects

Complex projects are projects that contain either multiple build targets, or multiple
subprojects, or both. You can use multiple build targets and subprojects to create
complex build relationships between parts of your code that rely on each other, or that
must be compiled with different tools or build options:

Multiple build targets

A CodeWarrior IDE project can contain multiple build targets, each with
its own target settings, source files, and output options. You can define
build and link dependencies between build targets that enable you to link
the output of multiple build targets. See Creating build target
dependencies on page 3-60 for detailed information on defining
dependencies between multiple build targets.
3-52 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Subprojects A subproject is a standalone project that is nested within another project
file. You can use subprojects to organize your build system into separate
project files that can be separately maintained. For example, you can use
subprojects to build and maintain libraries that are used in your main
project file.

You can link the output from any build target in a subproject with the
output object code from the main project. This means, for example, that
you can link a Release build of a library, with a Debug or DebugRel build
of your main project. See Creating subprojects within projects on
page 3-67 for detailed information on using subprojects.

Strategy for creating complex projects

You can create complex projects using either, or both, multiple build targets and
subprojects. A number of factors can affect the most appropriate choice, including:

Project structure

Software development projects often consist of several subprojects
worked on by different teams. You can create CodeWarrior IDE
subprojects for team developments and use a master project to pull the
subprojects together.

The number of build targets

Projects can contain a maximum of 255 build targets. Before you reach
that limit, multiple build targets will affect available memory and project
load times. Projects with several build targets take up more disk space,
take longer to load, and use more memory.

If your project contains more than ten to twenty build targets you can
improve performance by moving some of them off to subprojects.

Including well tested code

Any code that is not built often and uses a distinct set of source files is a
good candidate for moving to a subproject. For example, you can include
a subproject based on the ARM Object library stationery, and link with
the Release target output to include well tested library code that has been
built with high optimization options. In addition, you can specify whether
or not a subproject is rebuilt when the main project is built. Dependent
build targets are always rebuilt when the main build target is built.

Including closely related code

Code that is an integral part of your main project, but requires distinct
build options, is a good candidate for a dependent build target. For
example, the Thumb ARM interworking project stationery uses separate
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-53

Working with Projects
build targets for ARM and Thumb code, and defines the ARM build
targets as dependents to the Thumb build targets to generate a
Thumb/ARM interworking image.

Access to source code

If you want access to all your project source code from a single project
file, then using multiple build targets is a good choice. Subprojects are
better when you want to keep separate, standalone project files.

Some CodeWarrior IDE features are designed to work at the project level.
For example, a multi-file Search and Replace operation can search all
source code for all build targets in the current project, but will not search
source code in a subproject unless the subproject source files are
specifically added to the search list.

Setting the current build target

If you define multiple build targets in your project, you must select the specific build
target when you:

• Set target options. When you set target options, the settings apply only to the
currently selected build target. See Chapter 9 Configuring a Build Target for more
information on configuring target options.

• Perform a build operation by selecting the Compile, Make, or Bring Up to Date
menu items from the Project menu. By default, these commands apply only to
the selected build target. This means that you must perform build operations
separately for each build target in your project.

Note
 If you define build dependencies between build targets, the CodeWarrior IDE

compiles all dependent build targets when you compile the main build target. You
can use this, for example, to set up a build target that builds all other build targets
in your project. See Building all targets in a project on page 3-66 for more
information.

See Compiling and linking a project on page 3-74 for more information on
building your project.

To set the active build target in a project:

From the CodeWarrior IDE menu bar

Select the build target from the Set Default Target hierarchical menu in
the Project menu.
3-54 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
From the Build Target drop-down list

Select the build target from the Build Target drop-down list
(Figure 3-32).

Figure 3-32 Build target drop-down list

From the Targets View

Click once on the name of a build target to select it as the current build
target. Current build targets that the CodeWarrior IDE will build are
denoted by a circular icon (an archery target) with an arrow going into it
(Figure 3-33).

Figure 3-33 Targets view

��������$���������
��
���������

��
��������������

�������������
����
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-55

Working with Projects
3.7.2 Creating a new build target

You can create new build targets from the Targets view of the project window. To create
a new build target in your project:

1. Click the Targets tab in your project window to display the Targets view
(Figure 3-34).

Figure 3-34 Targets view tab

2. Select Create Target from the Project menu.

The CodeWarrior IDE displays a New Target dialog box (Figure 3-35 on
page 3-57).

��
�����������������������
����$
�������������
��
3-56 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-35 New Target dialog box

3. Enter the name of the new build target in the Name for new target text field.

4. Select the type of new target you want to create:

• Select the Empty target option if you want to create a new empty target. If
you select this option you must configure all the settings of the build target
as if you had created a new empty project.

• Select the Clone existing target option if you want to use the settings and
files from a previously defined target as a starting point for your new target.
Select the target you want to clone from the pop-up list of defined targets.

5. Click OK to create the new build target. The new build Target is added to the list
of build targets displayed in the Targets view.

6. Modify the new build target to suit your requirements. See:

• Assigning files to build targets for information on how to include specific
source and library files in the build target.

• Chapter 9 Configuring a Build Target for information on how to configure
the target settings and options for you build target.

You can associate the new build target with other build targets to create dependent build
relationships.See Creating build target dependencies on page 3-60 for more
information on defining build target dependencies.

3.7.3 Assigning files to build targets

You can assign files to build targets using either:

• the Target column in the project window Files view

• the Project inspector.

You can assign the same file to any number of defined build targets in a project.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-57

Working with Projects
Including a file in a build target using the Target column

The Target column in the project window Files view indicates whether a file is in the
current build target. The CodeWarrior IDE displays this column only if the project has
more than one build target. If a file is in the current build target, a dot is displayed in the
Target column next to the file (see Figure 3-36).

To toggle the inclusion of a file in a build target:

1. Ensure that the build target you want to assign the file to is the currently active
build target. See Setting the current build target on page 3-54 for information on
how to change the active build target.

2. Click in the Target column next to the file (Figure 3-36):

• If the file is not already marked as being included in the current build, the
CodeWarrior IDE places the build marker in the column to indicate that the
file is included in the current build.

• If the file is already included in the current build, the CodeWarrior IDE
removes the file from the build.

Figure 3-36 The target column

Note
 To assign or remove all the current build target files, Alt-click in the Target

column.

Including a file in a build target using the Project Inspector

You can use the Project Inspector window to assign a file to any defined build target. To
use the Project Inspector:

1. Select the file you want to assign in the project window.

2. Select Project Inspector from the View menu. The CodeWarrior IDE displays
the Project Inspector window.

��
���
�����������������
�����������

�����
���
����������������
���������
3-58 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3. Click the Targets tab. The CodeWarrior IDE displays a Target window for the file
you selected in step 1 (Figure 3-33 on page 3-55).

Figure 3-37 Project Inspector window for targets

4. Select the checkbox next to a build target to include the file in that build target.
Deselect the checkbox to exclude the file from that build target.

5. Click either:

• Revert, to undo the changes you have made

• Save, to apply the changes.

3.7.4 Changing a build target name

This section describes how to change the name of a build target. For detailed
information on setting other target options see Chapter 9 Configuring a Build Target. To
change the name of a build target in the Targets view of the project window:

1. Click the Targets tab to display the Targets view in the project window (see
Figure 3-34 on page 3-56).

2. Double-click the name of the build target you want to rename. The CodeWarrior
IDE displays the Target Settings window for that build target (see Figure 9-4 on
page 9-9).

3. Select Target Settings from the list of available panels and change the name of
the build target in the Target Name text field (Figure 3-38 on page 3-60).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-59

Working with Projects
Figure 3-38 Renaming a build target

4. Click Save to save your changes.

You can also open the Target Settings window by selecting Target Settings from the
Edit menu. See Configuring target settings on page 9-8 for more information.

3.7.5 Creating build target dependencies

You can configure a build target to depend on other build targets. Build target
dependencies are useful when you want to ensure that the CodeWarrior IDE builds one
or more specific build targets before the main, containing build target. In addition, you
can create link dependencies between build targets. When you make your project, the
CodeWarrior IDE compiles the dependent build target first, and then links its output
with the output from the main build target.

This section describes how to set up build target dependencies. See also:

• Creating a new build target on page 3-56 for more information on creating build
targets.

• Setting the current build target on page 3-54 for more information on setting the
current build target.

• Strategy for creating complex projects on page 3-53 for information on strategies
for setting up complex projects with build targets and subprojects.
3-60 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
To create a new, dependent build target and link its output with an existing build target:

1. Open the project to which you want to add the build target. Figure 3-39 shows an
example.

Figure 3-39 Project window

2. Create a new build target:

a. Click the Targets tab to display the list of build targets.

b. Select Create Target… from the Project menu.

c. Type a name for the new target and select whether the build target is to be
based on an existing build target, or created as a new build target. See
Creating a new build target on page 3-56 for detailed information.

d. Click OK. The new Target is displayed in the list of targets (Figure 3-40 on
page 3-62). By default, the new target is not dependent on any existing
targets.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-61

Working with Projects
Figure 3-40 Creating a new build target

3. Add the new build target as a dependent to the main build target by dragging it
below and to the right of the main build target (Figure 3-41 on page 3-63).
3-62 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-41 Dragging a build target

4. Click the plus sign next to the main build target to display the list of dependencies.
The dependent build target is listed in italics underneath the main build target (see
Figure 3-42 on page 3-64). You can add the dependent build target to as many
main build targets as you require. The CodeWarrior IDE compiles the dependent
build target before attempting to compile the main build target.

Note
 By default, the CodeWarrior IDE does not link the output from the dependent

build target with the output from the main build target. You must explicitly chain
the build targets if you want to link their output. See the following steps for more
information.

���������������������
���������������
������������
�����	�����
�
����
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-63

Working with Projects
The output file from the dependent build target is displayed in the Files view of
the project.

Figure 3-42 Dependent build target

5. Add files to the dependent build target. When you use the Add Files command,
you can specify the build targets to which the files are added. To add a file to the
dependent build target only, deselect the main build targets in the Add Files dialog
(Figure 3-43 on page 3-65).

������������
���������
3-64 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-43 Adding files to the dependent build target

6. (Optional) Click in the Link column next to the italic build target entry to chain
the dependent build target to the main target if you want the CodeWarrior IDE to
link the object code from the dependent build target with the main build target. A
dot is displayed in the link column to indicate that the build targets are chained
(Figure 3-44 on page 3-66).

Click the Link Order tab if you want to display the order in which the output
objects are linked. You can drag and drop the files in the Link Order view to
change the link order.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-65

Working with Projects
Figure 3-44 Linking output from a dependent build target

7. Click the Make button, or select Make from the Project menu. The CodeWarrior
IDE compiles the dependent build target first, and links its output with the output
from the main build target if you have chained the output as described in step 6.

3.7.6 Building all targets in a project

The CodeWarrior IDE does not have single Build All command that will build all build
targets in a project. However, you can use target dependencies to create a dummy build
target that does nothing other than build all the other targets in your project.

��
���
�������
�������
������
��
�������	��
�����������������
��
��������
�������
�
����
���������
3-66 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
To create a Build All Targets build target:

1. Create a new build target using the Empty Target option in the new target dialog.
See Creating a new build target on page 3-56 for details.

2. Leave the target settings for the new build target as they are. That is, do not define
a linker or other target settings for the new build target.

3. Drag the existing build targets underneath and to the right of the new build target
listing in Targets view to create a build dependency. See Creating build target
dependencies on page 3-60 for more information on creating dependent build
targets.

The Build All Targets build target displays an italicized list of dependent build
targets. Figure 3-45 shows an example based on the ARM stationery. The new
build target is named Build All Targets.

Figure 3-45 Building all build targets

4. Ensure that the Build All Targets build target is the current build target. See
Setting the current build target on page 3-54 for more information.

5. Click the Make button, or select Make from the Project menu to build all the
dependent build targets.

3.7.7 Creating subprojects within projects

A subproject is a standalone project that is nested within another project file. You can
use subprojects to organize your build into separate project files that can be separately
maintained. For example, you can use subprojects to build and maintain libraries that
are used in your main project file.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-67

Working with Projects
Subprojects are listed in the Files view of the project window with the other components
of your project. They can be assigned to any build target in the main project. When you
add a subproject, you can select the build targets to which it belongs.

You can configure your main project so that a Make command builds one or more build
targets in a subproject when it builds the containing build target in the main project. You
can also configure the main project so that it links the output from any build target in a
subproject to any build target in the main project. This means, for example, that you can
link the Release build target output from a subproject in which the code is well tested,
with the Debug or DebugRel build target of your main development project.

There are three important steps to compiling and linking the output from a subproject
with your main project:

1. Add the subproject to one or more build targets in the main project.

2. Specify which, if any, build target in the subproject should be built when the main
project is built. By default none of the build targets is built when the subproject is
first added.

3. Specify which, if any, output objects are to be linked with the output from the
main project. By default, none of the build target output objects are linked when
the subproject is first added.

Each of the steps is independent of the other. For example, you can specify that:

• a subproject build target is built when the main project is built, but not linked with
the main project

• the output from a subproject build target is linked, but the subproject build target
is not built when the main project is built.

The following example shows how to add an ARM object library project as a subproject
to an ARM executable image project, and gives details on how to specify link and build
dependencies:

1. Open the project to which you want to add a subproject. In this example, the main
project is an ARM Executable Image project based on the default ARM
stationery. See Using ARM-supplied project stationery on page 3-23 for more
information on the ARM stationery projects.

2. Add the subproject to the main project. In this example, the subproject is an ARM
Object Library project based on the default ARM stationery. You can either:

• Drag and drop the library project file from the Windows desktop to the main
project window.
3-68 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
• Select Add Files… from the Project menu and use the standard file dialog
to select the subproject. Figure 3-46 shows an example.

Figure 3-46 Adding a subproject

The CodeWarrior IDE displays an Add Files dialog (Figure 3-47).

Figure 3-47 Add subproject to build target dialog

3. Select the build targets to which you want to add the library project as a subproject
and click OK. The library project is added as a subproject to each of the selected
build targets. Figure 3-48 on page 3-70 shows an example of the Files view for
the project.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-69

Working with Projects
Figure 3-48 Project with subproject

4. Click the Targets tab to display the Targets view for the project and click the plus
sign next to a build target containing the subproject to expand the hierarchy. Each
build target in the subproject is listed in the hierarchy. Figure 3-49 shows an
example.

Figure 3-49 Subproject build target view

5. Click on the Target icon next to the subproject build targets you want to build
when the main project is built (Figure 3-50 on page 3-71). The CodeWarrior IDE
displays an arrow and target icon for build targets that are selected. When the
main project is built, selected targets are built first if they have changed, or have
been touched.

For example, in Figure 3-50 on page 3-71 the DebugRel and Release build targets
in the Example Subproject will be built before the DebugRel build target in the
main project.
3-70 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-50 Selecting subproject build targets for building

6. Click in the link column next to the subproject build targets you want to link with
the main project output (Figure 3-51 on page 3-72). You can select multiple build
targets in the subproject, and link them with any of the build targets in the main
project. If you select multiple subproject build targets they are linked in the order
given in the link view.

�����������
��
�������

��
����������������

�������������
������
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-71

Working with Projects

��

��
��
�
����
�

Figure 3-51 Selecting subproject build targets for linking

Caution
 You can create link dependencies to any of the build targets in a subproject. This

means that, if you are using the ARM-supplied project stationery, you can create
a link dependency to any, or all, of the Debug, DebugRel, and Release build
targets in the subproject, all of which might contain the same code, built with
different optimization and debug options.

When you build your project, the ARM linker selects the first available object file
that resolves the unresolved symbol it is processing. In the Link order view, the
output filenames for each of the build targets are identical (see Figure 3-52 on
page 3-73). Select the output file in the Files view and use the Project Inspector
to determine which output object is being linked. See Examining and changing
project information for a file on page 3-48 for more information.

(
�������
�������

��
���
�����
����
�����
��
��������
3-72 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-52 Multiple build targets in the Link order view
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-73

Working with Projects
3.8 Compiling and linking a project

The CodeWarrior IDE provides a number of ways to compile and link a project. All
compiling and linking commands are available from the Project menu. Depending on
your project type, some of these commands might be disabled or renamed. Also, a
compiling or linking menu item might be disabled because the CodeWarrior IDE is
executing another command.

If you have multiple projects open at the same time, you can set the default project that
the CodeWarrior IDE will use. See Choosing a default project on page 3-21 for more
information.

This section describes:

• Overview of compiling and linking

• Compiling files on page 3-76

• Making a project on page 3-79

• Removing objects from a project on page 3-81.

3.8.1 Overview of compiling and linking

This section assumes you are familiar with how to create a project, add source files and
libraries, group your files, and set the project and build target options. You must also be
familiar with features such as moving files in the Project window, the project window
columns, and project window drop-down lists. See Overview of the project window on
page 3-4 for more information.

Note
 • The CodeWarrior IDE can only compile and link files that belong to an open

project. You must have a project open before trying to compile its files.

• The Check Syntax command uses the compiler for the default build target to
check the syntax of source files that are not in a project.

Choosing a compiler

The CodeWarrior IDE uses file mappings to associate a compiler, or other tool, with a
specific filename extension. For C and C++ source files, the CodeWarrior IDE uses the
file mappings for the current build target to distinguish between source files targeted at
the Thumb C compiler and the ARM C compiler.

In the project stationery provided with the CodeWarrior IDE for the ARM Developer
Suite:

• the ARM project stationery maps .c files to the ARM C compiler
3-74 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
• the Thumb project stationery maps .c files to the Thumb C compiler.

To change the compiler used for a build target, you must change the file mapping for
that build target. See Using ARM-supplied project stationery on page 3-23 and
Configuring file mappings on page 9-23 for more information.

If you want to select between the Thumb compiler and ARM compiler for source files
in the same build target, you can adopt your own file naming conventions. For example,
to identify Thumb source files:

• Use a filename extension such as .tcc for all source files that you want to compile
with the Thumb compiler

• Define a file mapping between the Thumb compiler and .tcc files in the Target
configuration panels for the build target. See Configuring file mappings on
page 9-23 for more information.

Selecting a build target

When you compile one or more files in a project, the CodeWarrior IDE compiles the
files only for the currently selected build target. For example, if your current build target
is the DebugRel build target and you recompile your source files, the object code for the
Release and Debug build targets is not updated, and the CodeWarrior IDE does not show
the files in those build targets as being up to date. See Setting the current build target on
page 3-54 for more information.

Note
 If you want to compile all the build targets in a project with a single command you can
create a master build target that includes all your other build targets as dependents. See
Creating build target dependencies on page 3-60 for more information.

Output file naming conventions and locations

When you compile an individual file, or make a project, the CodeWarrior IDE gives
conventional names to your output objects and images. By default, project output is
stored in subdirectories of the project data directory. You can change the output location
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-75

Working with Projects
by setting the default output directory in the Target Settings panel. See Configuring
target settings on page 9-8 for more information. Table 3-1 describes the output file
naming conventions and default locations.

3.8.2 Compiling files

This section describes how to use the CodeWarrior IDE to compile one or more source
files without invoking the linker to link the files. You can use the CodeWarrior IDE to
compile:

• the current editor window

• one or more selected files in a project

• all the files in a project.

The object files generated by the compilation are placed in a data subdirectory of your
main project folder. See Making a project on page 3-79 for information on compiling
and linking your source files and libraries.

Note
 The CodeWarrior IDE compiles the files only for the currently selected build target. See
Setting the current build target on page 3-54 for more information on setting the build
target for a compilation.

The CodeWarrior IDE provides feedback on the progress of a compilation. When you
compile source code files and libraries, the CodeWarrior IDE:

• Places an animated build icon in the project window Touch column next to the file
currently being compiled.

• Displays the Build Progress window (Figure 3-53 on page 3-77). The Build
Progress window displays a line count and the name of the file currently being
compiled.

Table 3-1 Default output names and locations

Output Naming convention Default location in the project folder

Executable ELF image Project Name.axf Project_Name_Data\Target_Name

Partially linked ELF object Project Name.o Project_Name_Data\Target_Name

ARM library Project Name.a Project_Name_Data\Target_Name

Object code filename.o Project_Name_Data\Target_Name\ObjectCode
3-76 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-53 Build Progress window

Compiling the current editor window

To compile a single file that is open in an editor window:

1. Ensure that the file you want to compile is part of a currently open project.

2. Click on the editor window to make it the currently active window.

3. Select Compile from the Project menu.

Note
 The Compile menu item is unavailable if:

• there is no open project

• the active editor window does not have a source code filename extension

• the source code file for the active editor window is not included in your
project.

Compiling selected files from the project window

You can use the project window to compile one or more selected files, whether or not
those files are open in an editor window. To compile source files from the project
window:

1. Open the project that contains the files you want to compile.

2. Select one or more source files. See Selecting files and groups on page 3-37 for
information on selecting multiple files in the project window.

3. Select Compile from the Project menu. The CodeWarrior IDE compiles the files
you have selected regardless of whether they have been changed since the last
compilation.

Note
 The Compile menu item is unavailable if there is no open project.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-77

Working with Projects
Bringing a project up to date

When you have many newly added, modified, or touched files in your project, you can
use the Bring Up To Date command to compile all the files. This command only runs
the appropriate compiler or the assembler, it does not invoke the linker.

To bring a project up to date:

1. Ensure that the project window for the project you want to bring up to date is the
active window.

2. Select Bring Up To Date from the Project menu. Source files in the project are
compiled if:

• the source file is new to the project and has not previously been compiled

• you have changed the file since the last compilation

• you have used the Touch command to mark a file for recompilation.

Note
 The CodeWarrior IDE compiles files only for the currently selected build target. See
Setting the current build target on page 3-54 for more information on setting the build
target for a compilation.

Recompiling files after making changes

The CodeWarrior IDE does not always recognize file changes and might not
automatically recompile a file. For example, if you modify a file with a third-party
editor and you have the Use modification date caching option selected in the Build
Extras configuration panel, the CodeWarrior IDE will not recognize that the file has
been modified. To force the CodeWarrior IDE to recompile a changed file:

1. Click on the Header Files pop-up menu for the file you want to recompile, and
select Touch. See Touching and untouching files on page 3-47 for more
information on touching files.

2. Select either Bring Up To Date or Make from the Project menu to recompile the
files you have touched.

Note
 To update the modification dates stored in the project file for all files in your project,
select Synchronize Modification Dates from the Project menu. See Synchronizing
modification dates on page 3-47 for more information.
3-78 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Preprocessing source code

You can preprocess a file if you want to see what the code looks like just before
compilation. The preprocessor prepares source code for the compiler by:

• Interpreting directives beginning with the # and $ symbols, such as #define,
#include, and #ifdef.

• Removing C and C++ style comments. Comments are any text enclosed in /* */,
or any line prefixed with //.

To preprocess a C or C++ source file:

1. Open the file you want to preprocess, or select the file in the currently open
project window.

2. Select Preprocess from the Project menu. The preprocessed source file is
displayed in a new editor window with the name filename.

3. (Optional) Select one of the save commands from the File menu to save the
contents of the window to a file.

Checking syntax

You can check the syntax of your source code without compiling output objects. You
can check the syntax of any source file, regardless of whether it is included in a project.
However, you must have a project file open in order to check the syntax of source files
that are not in a project, because the Check Syntax command uses the compiler defined
for the current default build target. To check the syntax of a source file:

1. Select the source files to be checked. Either:

• select one or more source files in the project window

• open a source file in the editor and ensure that the editor window is the
currently active window.

2. Select Check Syntax from the Project menu. The CodeWarrior IDE invokes the
compiler for the current build target to check the syntax of the selected files.
Syntax errors are reported in a messages window.

3.8.3 Making a project

Select Make from the Project menu, or click the Make button in the project window
toolbar, to compile and link your source. This command builds the project by:

• compiling newly added, modified, and touched source files to produce ELF object
files
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-79

Working with Projects
• linking object files and libraries to produce an ELF image file, or a partially linked
object

• performing any postlink operations that you have defined for your build target,
such as calling fromELF to convert an ELF image file to another format.

If the project has already been compiled using Bring Up To Date or another command,
then the Make command performs only the link and postlink steps.

Setting the link order

You can specify the order in which files are compiled and linked using the Link Order
view of the project window. By rearranging the order of the files you can resolve link
errors caused by file dependencies. To set the link order:

1. Click the Link Order tab in the project window. The Link Order view is
displayed in the project window (Figure 3-54).

Figure 3-54 Link Order view

2. Drag files into the correct link order. Use drag and drop to reposition the files into
the build order you require.

The next time you select Bring Up To Date, Make, Run, or Debug, the new build order
is used when compiling the project files.

See Link Order view on page 3-9 for more information.

Note
 • Changing the order of files in the Link Order view can change the order in which

the object code is placed in the final binary output produced from your project.
The CodeWarrior IDE invokes the ARM linker with a list of object files in the
order in which they are compiled.
3-80 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
By default, the ARM linker links object files in the order in which they are
presented. You can change the linker behavior by explicitly placing output
sections first or last in an image, or by using a scatter-load description file to
specify the output image structure. See Configuring the ARM linker on page 9-66
and theADS Linker and Utilities Guide for more information.

• You can generate link information by selecting options in the ARM Linker
configuration panel and remaking your project. See Configuring the ARM linker
on page 9-66 for more information.

3.8.4 Removing objects from a project

When you compile your project, the CodeWarrior IDE saves the object code generated
by the compiler and assembler in the project data directory. The object code increases
the size of the project folder. The Remove Object Code command removes object code
from a specific target, or from all targets.

Caution
 Do not delete the contents of the data directory manually.

Removing object code

To remove the object code from a project:

1. Ensure that the project window for the project is the current window, or that the
project from which you want to remove object code is selected as the current
default project.

Note
 If you remove object code while an editor window is active, the CodeWarrior IDE

will remove object code from the current default project, regardless of whether
the file displayed in the current editor window belongs to that project.

2. Select Remove Object Code from the Project menu. The CodeWarrior IDE
displays a Remove Objects dialog box (Figure 3-55 on page 3-82).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-81

Working with Projects
Figure 3-55 Remove Objects dialog box

3. Click either:

• All Targets, to remove all object code data for all build targets in the
project, resetting the Code and Data size of each file in the project window
to zero.

• Current Target, to remove the objects for the current build target only. See
Setting the current build target on page 3-54 for more information on
changing the build target.

• Cancel, to cancel the operation so that object code is not removed.
3-82 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
3.9 Processing output

This section describes how to process project output. It describes:

• Disassembling code

• Converting output ELF images to other formats on page 3-84

• Creating libraries with armar on page 3-85

• Running batch files with the batch runner on page 3-86.

3.9.1 Disassembling code

You can configure the CodeWarrior IDE to call the ARM command-line tool fromELF
to display an assembly language listing for an object file, or library file. You can
disassemble an object file built from:

• the currently open source file in the editor window

• selected source files in the project window.

You can disassemble library files selected in the project window. You can also
disassemble output that has been processed by the fromELF utility. See Disassembling
fromELF output on page 3-85 for more information.

Note
 To disassemble an image file built from your current project, you must configure your
build target to call fromELF as a postlinker. See Configuring target settings on page 9-8
and Configuring fromELF on page 9-76 for more information.

Disassembling from the editor window

To disassemble an object file built from the current editor window source file:

1. Ensure that the editor window is the currently selected window.

2. Select Disassemble from the Project menu. If the object file is up to date, the
disassembled code is displayed in a new editor window. If the object file is not up
to date, the CodeWarrior IDE compiles the source file first.

3. (Optional) Select Save from the File menu to save the disassembled source code.

Disassembling from the project window

To disassemble an object file or source file from the project window:

1. Ensure that the project window is the currently selected window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-83

Working with Projects
2. Select one or more files to disassemble. You can select both source and library
files.

3. Either:

• select Disassemble from the Project menu.

• right click on the selected file and select Disassemble from the context
menu.

If the object file is up to date, the disassembled code is displayed in a new editor
window. If the object file is not up to date, the CodeWarrior IDE compiles the
source file first. Disassembled source for each selected file is displayed in its own
editor window.

4. (Optional) Click on an editor window and select Save from the File menu to save
the disassembled source code.

3.9.2 Converting output ELF images to other formats

You can configure the CodeWarrior IDE to call fromELF to convert executable ELF
output from the linker to a number of binary formats suitable for embedding in ROM,
including:

• Plain binary

• Motorola 32-bit S-Record

• Intel 32-bit Hex

• Byte Oriented (Verilog Memory Model) Hex format.

See the ADS Linker and Utilities Guide for more information on using fromELF,
including information on splitting fromELF output for multiple memory banks.

To configure fromELF to process output images you must:

1. Configure the Target settings panel to call fromELF as a postlinker. See
Configuring target settings on page 9-8 for detailed instructions.

2. Configure the fromELF utility to generate the output you want. See Configuring
fromELF on page 9-76 for detailed instructions.

3. Select Make from the Project menu or click the Make button. The CodeWarrior
IDE compiles and links your code to produce an executable ELF output file, and
then calls fromELF to convert the output to the binary format of your choice.

The converted output is saved in:

ProjectName\ProjectName_Data\TargetName

together with the executable ELF output.
3-84 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Note
 The fromELF utility can only convert executable ELF to binaryformats. It cannot
convert object code or libraries.

Disassembling fromELF output

You can configure the CodeWarrior IDE to call fromELF to:

• convert output to a different binary format

• disassemble the converted output.

To disassemble converted binary output, you must configure the CodeWarrior IDE to
call fromELF twice:

1. Configure the Target settings panel to call fromELF as a Post-linker. See
Configuring target settings on page 9-8 for detailed instructions.

2. Configure the fromELF utility to generate the output you want. See Configuring
fromELF on page 9-76 for detailed instructions.

3. Configure the ARM Debugger or the ARM Runner panel to call fromELF as a
third-party debugger to disassemble the converted output binary. See Configuring
the ARM Debugger on page 9-81 for detailed instructions.

4. Select Run or Debug from the Project menu, depending on whether you have
configured the Runner or Debugger panel to call fromELF. See Configuring the
ARM Runner on page 9-88 for more information on configuring a debugger to run
your images. The CodeWarrior IDE compiles and links your code to produce an
executable ELF output file, and then calls fromELF as a postlinker to convert the
output to the binary format of your choice.

When the compile and postlink operations are finished, the CodeWarrior IDE
calls fromELF as a third party debugger with the command-line options you have
specified in the configuration panel. Refer to the Utilities chapter of the ADS
Linker and Utilities Guide for detailed information on the command-line options
to fromELF.

3.9.3 Creating libraries with armar

To configure the CodeWarrior IDE to call armar to output libraries in ar format you must
configure the Target Settings panel to call armar as the linker. See Configuring target
settings on page 9-8 for more information. armar combines object files from the
compiler and assembler with any other object files in your build target, such as partially
linked ELF output from a subproject, into an object library. The output library is saved
in the build target subdirectory of the project data directory:
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-85

Working with Projects
ProjectName\ProjectName_Data\TargetName

The easiest way to build library code is to use the ARM-supplieddefault project
stationery to create a library project. See Using ARM-supplied project stationery on
page 3-23 for more information.

3.9.4 Running batch files with the batch runner

The CodeWarrior IDE provides a batch runner utility that you can use to run a DOS
batch file from your project. To use the batch runner you must:

• Configure the file mappings for your build target to recognize .bat files. By
default, the ARM project stationery is not configured to recognize batch files.

• Configure the batch runner as the postlinker in the Target Settings panel.

Note
 You can configure only one postlinker. This means that you cannot use the batch

runner and fromELF in the same build target.

• Add the batch file to the build target and make the build target. The batch runner
is run only after a successful link operation.

Configuring file mappings to recognize batch files

You must configure the file mappings for each build target to which you want to add
batch files.

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click File Mappings in the Target Settings Panels list to display the configuration
panel (Figure 3-56 on page 3-87).
3-86 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
Figure 3-56 File Mappings panel

3. Click the entry for the .c mapping in the File Mappings list to select it.

4. Change the filename extension, from .c to .bat.

5. Click the Compiler drop-down list and select None. Figure 3-57 shows an
example.

Figure 3-57 Specifying batch file mappings

6. Click Add to add a new file mapping.

7. Click Save to save your changes.

Configuring the batch runner as the postlinker

To run batch files from your project, you must configure the batch runner to be run as a
postlinker in the Target Settings configuration panel.

To configure the batch runner:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-87

Working with Projects
2. Click Target Settings in the Target Settings Panels list to display the
configuration panel (Figure 3-58).

Figure 3-58 Target Settings panel

3. Click the Post-linker drop-down list and select Batch File Runner. See
Configuring target settings on page 9-8 for more information on the other options
on this panel.

4. Click Save to save your changes.

Adding batch files and making the build target

You can add one or more batch files to any build target you have configured to accept
files with a .bat extension. You can add any number of batch files to the build target,
however the batch runner will only run the batch file listed first in the Link Order view
of the project window.

Note
 If you try to add batch files to build targets in the current project that you have not
configured to accept .bat file extensions, the CodeWarrior IDE displays a warning
message and adds the batch files only to the properly configured targets.

To add the batch files and make your build target:

1. Either:

• select Add Files… from the Project menu
3-88 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with Projects
• drag and drop the batch files onto the project window.

See Adding files to a project on page 3-38 for more information.

2. Touch your project files, if required, to ensure that the project is rebuilt. The batch
file runner is executed only after a link step. If your project is up to date, the linker
is not executed and the batch file runner is not run. See Touching and untouching
files on page 3-47 for more information.

3. Click the Link Order tab to specify which batch file is to be run, if you have
added more than one batch file to the build target. Drag the batch file you want to
execute so that it is displayed before any other batch file (Figure 3-59).

Figure 3-59 Setting the link order

4. Select Make from the Project menu, or click the Make button to build your
project. The first batch file in the link order list is executed after the linker has
completed, regardless of the order of the batch files in the Files view. For
example, batch2.bat in Figure 3-59 is executed first.

Configuring the batch runner window to close automatically

On systems running Windows NT or 2000, the MS-DOS window that runs the batch file
closes automatically when the batch file finishes running. Under Windows 95, 98 and
ME, the CodeWarrior IDE will wait for you to close the MS-DOS window. On these
platforms you will need to configure the MS-DOS window to close automatically:

1. Run the batch runner postlinker.

2. When the batch file has finished running, select Properties from the System
menu. The MS-DOS Prompt Properties window opens.

3. Select the Program tab (Figure 3-60 on page 3-90).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-89

Working with Projects
Figure 3-60 MS-DOS Prompt Properties window.

4. Enable the Close on exit checkbox.

5. Click OK to apply your changes and close the MS-DOS Prompt Properties
window. The next time you run the batch runner, the MS-DOS window will close
automatically when the file has finished running.
3-90 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 4
Working with the ARM Debuggers

This chapter describes how to use the CodeWarrior IDE and the ARM debuggers to run
and debug your code. It contains the following sections:

• About working with the ARM debuggers on page 4-2

• Generating debug information on page 4-4

• Running and debugging your code on page 4-9

• Using the message window on page 4-11.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-1

Working with the ARM Debuggers
4.1 About working with the ARM debuggers

You can call any of the ARM debuggers from the CodeWarrior IDE to either debug, or
run images output from a make operation. This section gives an overview of how the
ARM debuggers integrate with the CodeWarrior IDE.

4.1.1 How the ARM debuggers work with the CodeWarrior IDE

The CodeWarrior IDE for the ARM Developer Suite enables you to call an ARM
Debugger with a number of optional arguments, depending on the debugger you are
using. When you select Debug or Run from the Project menu, the CodeWarrior IDE
starts your selected debugger and instructs it to load the image file output from the
current build target. When the image is loaded into the debugger, all control passes to
the debugger. You must use the debugger interface to perform operations such as
stepping, inserting breakpoints, and examining memory.

Note
 The CodeWarrior IDE displays a Debug menu in the main menu bar. The Debug menu
is not used by the CodeWarrior IDE for the ARM Developer Suite.

Selecting the ARM debugger and ARM runner

You can select any of the ARM debuggers to either run or debug your executable
images. You do not have to use the same debugger for running and debugging. The
following debuggers are available:

• ARM eXtended Debugger (AXD)

• ARM symbolic debugger (armsd).

In addition, you can select a third-party debugger in place of the ARM debuggers. See
Configuring the debugger on page 9-81 for detailed information on selecting a
debugger and a runner. See the AXD and armsd Debuggers Guide for detailed
information on using the ARM debuggers.

Selecting debug options

There are a number of options to the ARM compilers that affect the quality of the debug
view available to the debuggers. You can set the debug configuration options in the
compiler configuration panels. The debug options are used to create the Debug,
DebugRel, and Release build targets. See Using the Debug, DebugRel, and Release
build targets on page 4-3 for more information. See Configuring the compilers on
page 9-45 for more information on setting build options yourself.
4-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Using the Debug, DebugRel, and Release build targets

The default project stationery provided with CodeWarrior IDE for the ARM Developer
Suite defines at least three build targets for each project type:

Debug This build target is configured to generate the most complete debug
information possible for each source file in the build target.

DebugRel This build target is configured to generate adequate debug information
for each source file in the build target.

Release This build target is configured with debug table generation turned off.

See Using ARM-supplied project stationery on page 3-23 for more information on the
default build targets. See also Working with multiple build targets and subprojects on
page 3-52 for more information on using multiple build targets in your projects.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-3

Working with the ARM Debuggers
4.2 Generating debug information

You can configure the ARM tools to generate debug table information when your source
code is compiled and assembled. There are two ways to enable debug table generation:

• Use the debug column in the project window to enable debug table generation for
individual source files. See Generating debug information for individual source
files for more information.

• Use the Compiler and Assembler configuration panels to configure the ARM
tools to generate debug tables. If debugging is turned on in the configuration
panels, debug tables are generated for all source files in the current build target.
See Generating debug information for all source files in a build target on page 4-6
for more information.

Note
 The debug settings specified in the configuration panels override the settings for

individual source files. This means that you can generate debug table information
for an individual source file if the configuration panel debug option is turned off,
but you cannot turn off debug table generation for a specific source file if the
configuration panel debug option is turned on.

4.2.1 Generating debug information for individual source files

You can enable debug table generation for one or more individual source files in the
current build target provided the ARM tools are not configured to generate debug
information for the entire build target. See Generating debug information for all source
files in a build target on page 4-6 for more information. If the ARM tools are configured
to generate debug information, selecting or deselecting individual source files has no
effect.

Note
 You can also use the Project Inspector window to enable or disable debugging
information. See Examining and changing project information for a file on page 3-48
for more information.

To generate debugging information for a source code file:

1. Select the build target for which you want to generate debug information. See
Setting the current build target on page 3-54 for more information.
4-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
2. Select the source files or groups for which you want to generate debug
information:

• Click in the Debug column next to a single source file to turn on debug table
generation.

• Alt-click in the Debug column next to a source file or group to enable
debugging for all source files in the current build target.

• Click in the Debug column next to a group to enable debugging for all
source files in a group.

Note
 To generate debug information for source files in a subtarget or subproject

you must open the build target or subproject.

 For selected files, the debug column displays a Debug Info marker (Figure 4-1
on page 4-6) and marks the source files for recompilation.

For selected groups, the Debug column displays one of three markers:

• a black marker indicates that all source files in the group generate
debugging information

• a gray marker indicates that only some of the source files in the group
generate debugging information

• no marker indicates that no debugging information is generated for source
files in the group.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-5

Working with the ARM Debuggers
Figure 4-1 Debug Info markers

3. Select Make from the Project menu or click the Make button to build your
project. The ARM tools generate debug information for selected source files only,
provided the tool configuration panels are not configured to generate debug
information.

4.2.2 Generating debug information for all source files in a build target

When you click on the Debug button, the debug information that is generated depends
on whether or not any files are currently selected for debug table generation.

• if no files are individually selected for debug table generation, the CodeWarrior
IDE selects all files in the current build target

• if any file is selected for debug table generation, the CodeWarrior IDE does not
change the debug selection settings.

See Generating debug information on page 4-4 for more information.

��
���
����������������
�������������
	
������������	����������������������
��

)�
	
��

 �
��
���
	��

 �
��
��
��
4-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Use the ARM compiler and assembler configuration panels to turn on debug table
generation. You can use these panels to generate debug table generation for each tool.
If you want to generate debug information for all source files in your current build
target, you must select the appropriate options for each compiler, and for the ARM
assembler.

Note
 The default ARM project stationery is configured to generate debug information for all
source files in the Debug and DebugRel build targets. See Using the Debug, DebugRel,
and Release build targets on page 4-3 for more information.

Example: Using the compiler configuration dialogs

The following example shows how to enable debug setting for the ARM C compiler.
The steps for the assembler and C++ compilers are similar. To enable debug table
generation for all C source files in a build target:

1. Open your project window and select the build target you want to configure. See
Selecting a build target on page 3-75 for more information.

2. Click the Target Settings button to display the Target Settings window for the
build target you want to configure. See Displaying Target Settings panels on
page 9-4 for more information.

3. Click the ARM C Compiler entry in the Target Settings Panels list, and click the
Debug/Opt tab to display the configuration panel (Figure 4-2).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-7

Working with the ARM Debuggers
Figure 4-2 ARM compiler Debug/Opt panel

4. Select Enable debug table generation to instruct the compiler to generate
DWARF2 debug tables. See Configuring debug and optimization on page 9-57
for more information on the other options available on this panel. See Configuring
assembler options on page 9-39 for detailed information on selecting Assembler
debug options.

5. Click Save to save your changes. When you make your project, the compiler
generates debug tables for all C source files in the current build target, regardless
of the debug settings of individual files in the target.
4-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
4.3 Running and debugging your code

This section describes how to run executable images from within the CodeWarrior IDE,
and how to call one of the ARM debuggers to run or debug your code.

4.3.1 Running a project

To call an ARM Debugger to run an executable image from the CodeWarrior IDE:

1. Ensure that the project you want to run is the currently active window.

2. Select Run from the Project menu, or click the Run button (Figure 4-3).

Note
 The Run button does not appear in the project window by default. To add it, you

must use the Customize IDE commands dialog box. This is accessed using the
Commands and Key Bindings... command in the Edit menu. See Setting
commands and key bindings on page 8-31 for more information.

Figure 4-3 The Run button

The CodeWarrior IDE compiles and links the currently selected build target, if
necessary, and creates an executable image file. It then executes the image file
with the debugger selected in the ARM Runner target configuration panel (see
Configuring the ARM Runner on page 9-88).

Note
 If the current build target is configured to produce non-executable output, such as

a library or a partially linked object, the Run menu item is not available.

��
�������!���������
�������$�������*���
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-9

Working with the ARM Debuggers
4.3.2 Debugging a project

To call an ARM Debugger to debug an executable image from the CodeWarrior IDE:

1. Ensure that the project you want to debug is the currently active window.

2. Ensure that you have set the correct debug options for your build target. See:

• Configuring the ARM Debugger on page 9-81 for information on how to
select an ARM debugger.

• Configuring assembler and compiler language settings on page 9-33 for
information on how to enable debug table generation for the assembler and
compilers.

Note
 If your project is based on ARM-supplied stationery there are at least three

separate build targets defined:

• Debug

• DebugRel

• Release.

If you are planning separate Debug and Release versions of your code, select
Project → Set Current Target… → Debug to set the Debug build target. The
Debug build target is configured to generate the most complete debug information
at the expense of optimization.

If you are planning to release the same code you are debugging, select Project →
Set Current Target… → DebugRel. This build target generates adequate debug
information and provides good optimization.

3. Select Debug from the Project menu. The CodeWarrior IDE compiles and links
your build target, if required, and calls the debugger you have specified in the
ARM Debugger configuration panel (see Configuring the ARM Debugger on
page 9-81).

See the AXD and armsd Debuggers Guide for detailed information on using the ARM
debuggers.
4-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
4.4 Using the message window

This section describes the message window. The message window displays messages
about events that have occurred when compiling, linking, or searching files. There are
two basic types of message window:

• the Errors & Warnings message window

• the Notes message window.

These are described in:

• Overview of the message window

• Using the message window on page 4-14.

4.4.1 Overview of the message window

The message window displays the following types of messages:

Errors Error messages are given by the compilers, assembler, linker, or fromELF
in response to errors that prevent them from completing an operation. The
final output from the tool is not created.

Warnings Warning messages are given by the compilers, assembler, or linker, in
response to a problem, or potential problem from which the tool can
recover. Problems that cause warning messages might result in problems
in the final output file.

Notes These are informational messages that are given in response to an
operation.

Note
 Some Notes messages indicate a problem that is serious enough to stop

output being produced.

The different message types are displayed in two variants of the message window:

Error & Warnings message window

This message window displays error and warning messages from the
compiler, assembler, linker, and postlinker.

Notes message window

This message window displays all other types of message, including:

• The results of a batch Find operation.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-11

Working with the ARM Debuggers
• Messages displayed when the CodeWarrior IDE adds an access
path to your project.

• A message if you try to build an up-to-date project, if this option is
selected in the Build Settings preferences panel. See Configuring
build settings on page 8-6 for more information.

Error and warning messages are not displayed in the Notes message
window.

The message window contains interface elements that enable you to perform common
tasks such as:

• viewing error messages, warning messages, and other diagnostic messages

• navigating to locations in your source code that caused an error message or
warning message.

Some user interface items in the message window are not described here. See Overview
of the editor window on page 5-3 for more information on:

• the Markers drop-down menu

• the Document Settings drop-down menu

• the Version Control drop-down menu

• the Line Number button

• the File Path caption.

Figure 4-4 on page 4-13 shows an example of the Errors & Warnings message window.
The major interface components of the window are described below.

Note
 Not all interface elements appear in all message windows. For example, Notes message
windows display the Source Code pane only if it is applicable to the specific message.
4-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Figure 4-4 The Errors & Warnings message window

The major interface components of the message window are:

Errors button

The Errors button toggles the view of error messages on and off. See
Viewing error and warning messages on page 4-15 for more information.

Notes button

The Notes button toggles the view of informative notes on and off. See
Viewing error and warning messages on page 4-15 for more information.

Warnings button

The Warnings button toggles the view of warning messages on and off.
See Viewing error and warning messages on page 4-15 for more
information.

Project Information caption

The Project Information caption gives a short description of the view you
are looking at in the message window. Your project name is displayed
here.

"�������(
�������

����������������

+�������
,�����

+��*����'�	��
��
��
����
��

-������������

.���
���������� -%����'�	��
��
�� �����
����������

�����������
�
��������
��
�����

)�����������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-13

Working with the ARM Debuggers
Extra Information button

The Extra Information button expands a message to show information
about the project, target, and file that caused a message.

Stepping buttons

The Stepping buttons enable you to step up or down through the messages
in the window. See Stepping through messages on page 4-15 for more
information.

Message List pane

The Message List pane displays your messages. See Viewing error and
warning messages on page 4-15 for more information.

Source Code Disclosure triangle

The Source Code Disclosure triangle enables you to hide the Source
Code pane of the message window.

Source Code pane

The Source Code pane of the message window enables you to view the
source code at the location referred to by a message. See Viewing error
and warning messages on page 4-15 for more information.

Pane resize bar

The pane resize bar enables you to reallocate the amount of space in the
message window given to the Source Code pane and Message List pane.
Click and drag this bar up or down to change the amount of space on your
computer screen that is allocated to both panes.

4.4.2 Using the message window

The message window displays any error and warning messages given by the compilers,
assembler, linker, and other tools when processing a menu command such as Make,
Bring Up To Date, or Check Syntax. This section explains how to interpret, navigate,
and use the information that appears in the message window. It describes:

• Viewing error and warning messages on page 4-15

• Filtering error and warning messages on page 4-15

• Stepping through messages on page 4-15

• Correcting compilation errors and warnings on page 4-16

• Correcting link errors on page 4-17

• Searching library files on page 4-18

• Printing the message window on page 4-18

• Saving the message window on page 4-19.
4-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Viewing error and warning messages

The message window is opened by the CodeWarrior IDE to display messages. To close
the message window either:

• click its close box

• select Close from the File menu while the message window is the active window.

To reopen the message window, select Errors & Warnings Window from the View
menu.

Note
 This menu item is available only if a list of Errors or Warnings has already been
generated as the result of a Make, or compile operation.

Filtering error and warning messages

You can choose whether the Errors & Warnings message window displays either error
messages, or warning messages, or both by using the Errors button and the Warnings
button at the top of the message window.

By default, both the Errors button and the Warnings button are selected when the
CodeWarrior IDE displays an Errors & Warnings message window. You can specify
which types of message you want to view:

• To view only error messages in the Message List pane, click the Errors button to
deselect it and ensure that all other buttons are deselected.

• To view only warning messages in the Message List pane click the Warnings
button to deselect it and ensure that all other buttons are deselected.

• To view only notes in the Message List pane click the Notes button to deselect it
and ensure that all other buttons are deselected.

• To view a combination of message types, click all the required buttons and ensure
that all other buttons are deselected.

Stepping through messages

To move to a specific message in the list of messages displayed in the message window
either:

• click the up and down stepping buttons

• click the error message you want to select

• use the up and down arrow keys.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-15

Working with the ARM Debuggers
As you move through the error and warning messages, the source code that caused the
message is displayed in the Source Code pane. See the following sections for
information on how to correct errors and warnings.

Correcting compilation errors and warnings

To correct a compilation error or warning from the Source Code pane of the message
window:

1. Ensure that the Source Code pane of the message window is visible. If it is not
visible, click the Source Code Disclosure Triangle to display the pane (see
Figure 4-4 on page 4-13).

2. Select a message in the Message List pane of the message window to view the
statement that caused the message. The Source Code pane displays the source
code that caused the message. A statement arrow points to the line of code that
the compiler or assembler reports as an error. (Figure 4-5 on page 4-17).

Note
 If you have corrected an error or modified the source code since the message list

was generated, the CodeWarrior IDE might not be able to locate the correct
position in the source code file. In this case, the CodeWarrior IDE displays an
alert telling you that the position of the error or warning could not be found. You
must recompile your project to update the list of errors and warnings in the
message window.
4-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Figure 4-5 Statement arrow pointing to an error

3. Either edit the source code directly in the Source Code pane or open the file in its
own Editor window.

To open a source code file that corresponds to a given message either:

• select the message in the Message List pane and press Enter

• double-click the message in the Message List pane.

Note
 You can use the Header Files drop-down menu, Functions drop-down menu, or

the Line Number button to navigate the source code for a selected message. See
Overview of the editor window on page 5-3 for more information.

Correcting link errors

There are many possible causes of link errors. Some of the most common are:

• You have misspelled the name of a library routine. This means that the routine that
the linker is searching for does not exist.

• You are using inconsistent ATPCS options for the compilers and assembler. See
Configuring assembler ATPCS options on page 9-37 and Configuring compiler
ATPCS options on page 9-49 for more information.

�����
���
�����
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-17

Working with the ARM Debuggers
• Your project is missing the necessary libraries. Check that your access paths
include the directories where you store your libraries. See Configuring access
paths on page 9-11 for more information.

Check also that the setting for the Use ARMLIB to find libraries option is as you
expect. If this option is selected, the ARM tools use the ARMLIB environment
variable to search for libraries. See Configuring linker options on page 9-70 for
more information.

• You have not correctly linked the output from a dependent build target or
subproject. You must explicitly specify that output from a subproject or subtarget
is linked into your final output image. See Working with multiple build targets and
subprojects on page 3-52 for more information.

• You have not correctly set up your linker output options. See Configuring the
ARM linker on page 9-66 for more information.

Link errors are displayed in the message window in the same way as compilation errors.
See Viewing error and warning messages on page 4-15 for information on how to move
through the message window.

Searching library files

You can use armar to create a searchable text file of symbols in library files. For
example, to create a text file of the symbol tables for all little-endian ARM C library
files:

1. Open a DOS command prompt window.

2. Change directory to: install_directory\lib\armlib.

3. Type:

armar -zs libname >> filename.txt

for each of the little-endian libraries.

4. Edit the duplicate symbol names from the text file, if you want to.

Printing the message window

To print the message window:

1. Ensure that the message window you want to print is the active window.

2. Select Print from the File menu. The Print dialog box is displayed.

3. Select the print options you require and click OK. The message window is
printed.
4-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the ARM Debuggers
Saving the message window

To save a message window to a text file:

1. Ensure that the message window you want to save is the active window. You must
click in the Error & Warnings message section of the window, not the Code
section, in order to save the error and warning messages.

2. Select Save A Copy As… from the File menu. The CodeWarrior IDE displays a
standard file dialog box.

3. Enter a name for the file and click Save. The CodeWarrior IDE saves the contents
of the active message window to a text file.

Copying the message window to the clipboard

To copy the contents of the message window to the Windows clipboard:

1. Ensure that the message window is the currently active window.

2. Select Copy from the Edit menu. The entire contents of the message window is
copied to the clipboard. You can paste the clipboard contents into a text editor or
other application.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-19

Working with the ARM Debuggers
4-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 5
Editing Source Code

This chapter describes how to use the CodeWarrior IDE text editor to edit your source
code. It contains the following sections:

• About editing source code on page 5-2

• Overview of the editor window on page 5-3

• Configuring the editor window on page 5-7

• Editing text on page 5-10

• Navigating text on page 5-17.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-1

Editing Source Code
5.1 About editing source code

The CodeWarrior editor is a full-featured text editor designed for programmers. Its
features include:

• drop-down menus on every editor window for opening header files and quickly
navigating among functions

• integrated version control menus that enable you to work with your version
control system from within the CodeWarrior IDE

• syntax highlighting that formats source code for easy identification of comments
and keywords in your source files.

This chapter describes the basics of how to use the CodeWarrior editor. You can
customize the way the CodeWarrior editor works. See Editor settings on page 8-18 for
more information. See also:

• Chapter 2 Working with Files for information on basic file operations such as
opening, saving, and comparing source files

• Chapter 6 Searching and Replacing Text for information on searching and
replacing text in source files

• Chapter 7 Working with the Browser for information on using the CodeWarrior
source code browser.
5-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
5.2 Overview of the editor window

The editor window provides drop-down menus and other controls that enable you to
perform basic editing operations. Figure 5-1 shows an example of the CodeWarrior
editor window.

Figure 5-1 The editor window

The major interface components of the editor window are:

Header Files drop-down menu

You can use the Header Files drop-down menu, shown in Figure 5-10 on
page 5-22, to either:

• open header files referenced by the current file

• use the Touch and Untouch commands from this drop-down
menu.

See Touching and untouching files on page 3-47 for more information.

/���
����������
���������

���

�
�������
����
��

�
��$�	
��

�����

�������
�
��������
������

��%����
�
��
����

+�������
�����(
�����
����������

��������
���
����������
���

�����
���
���������

���

"������
���������

���

����
��������
���
����������
���
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-3

Editing Source Code
Functions drop-down menu

You can use the Functions drop-down menu shown in Figure 5-5 on
page 5-18 to jump to a specific function in another text file within your
source code. See Using the Functions drop-down menu on page 5-17 for
more information.

Markers drop-down menu

You can use the Markers drop-down menu (Figure 5-2) to add and
remove markers in your text files.

You can use markers for:

• quick access to a line of text

• remembering where you left off

• other identification purposes.

Figure 5-2 The Marker drop-down menu

See Using markers on page 5-19 for more information.

Document Settings drop-down menu

You can use the Document Settings drop-down menu (Figure 5-3), to
turn color syntax highlighting on or off for the current file, and to set the
method for saving the file.

See Text Colors on page 8-25 for details of how to modify syntax
coloring.

Figure 5-3 The Document Settings drop-down menu
5-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Version Control drop-down menu

The Version Control drop-down menu indicates the read/write revision
control database status of the current file. You can modify the file if the
replace icon box shows the Unlocked icon or the Read/Write icon. The
icons and their meanings are described in Performing common VCS
operations on page 10-7.

Depending on the VCS system your are using, you can use this
drop-down menu to:

• get a new copy of your file

• checkout the file for modification

• make the file writable so you can make changes without
performing a checkout.

See Performing common VCS operations on page 10-7 for more
information about revision control system software.

Browser context menu

The Browser context menu is a context-sensitive menu that provides
quick access to browser information. To access it, right-click on any
symbol name in the window. See Using the Browser context menu from
an editor window on page 7-22 for information on using this menu.

Note
 The Browser context menu displays a Set Breakpoint menu item in

source code windows. This command is not implemented in the ARM
version of the CodeWarrior IDE.

File Path caption

The CodeWarrior IDE displays the directory path of the current file in the
File Path caption, at the top right of the window shown in Figure 5-1 on
page 5-3.

Dirty File marker

The Dirty File marker indicates if the file displayed in a window has been
modified after it was last saved or opened. The states of the Dirty File
marker are:

unchanged file

modified and unsaved file (dirty)
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-5

Editing Source Code
Pane splitter controls

Pane splitter controls split the editor windows into panes so you can view
different portions of a file in the same window.

Use these controls to adjust the sizes of the panes after you have created
them. Figure 5-4 on page 5-8 shows an editor window with multiple
panes.

See Splitting the window into panes on page 5-8 for more information on
pane splitter controls.

Line Number button

The Line Number button shown in Figure 5-1 on page 5-3 displays the
number of the line that contains the text insertion point. You can click on
this button to go to another line in the file.

See Going to a specific line on page 5-20 for more information on setting
the text insertion point on another line.

Toolbar Disclosure button

The Toolbar Disclosure button hides or displays the editor window
toolbar along the top of the window. If the toolbar is hidden, a row of
controls is displayed at the top of the editor window.

See Displaying window controls on page 5-7 for more information on
using the Toolbar Disclosure button.

Text editing area

The text editing area of the editor window is where you enter and edit
text. See Editing text on page 5-10.
5-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
5.3 Configuring the editor window

The editor enables you to customize your view of the file with which you are working.
This section describes the following options available in the editor window:

• Setting text size and font

• Displaying window controls

• Splitting the window into panes on page 5-8

• Saving editor window settings on page 5-9.

See Customizing toolbars on page 8-41 for more information on configuring the editor
window toolbar.

5.3.1 Setting text size and font

Use the Font & Tabs preference panel to set the size or font used to display text in an
editor window. See Font & Tabs on page 8-22 for more information.

5.3.2 Displaying window controls

The toolbar comprises the row of drop-down menus and controls that appears along the
top of the editor window. Use the Toolbar Disclosure button, shown in Figure 5-1 on
page 5-3, to show or hide the toolbar.

To hide the toolbar, click the Toolbar Disclosure button. The CodeWarrior IDE hides
the toolbar, and displays the default toolbar drop-down menu controls along the top of
the editor window.

Note
 • If you have customized the editor window toolbar, your custom toolbar items are

not displayed at the top of the window. When you display the toolbar again, its
custom configuration is restored.

• The File Path caption is no longer visible when the toolbar is hidden.

To re-show the toolbar if it is hidden, click the Toolbar Disclosure button. The toolbar
is displayed along the top of the editor window.

See Customizing toolbars on page 8-41 for general information on toolbars, including
toolbar customization.

You can select a default setting to display or hide the toolbar in editor windows. See
Showing and hiding a toolbar on page 8-42 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-7

Editing Source Code
5.3.3 Splitting the window into panes

You can split the editor window into panes to view different parts of a file in the same
window. Figure 5-4 shows an example. The following sections describe how to create,
resize, and remove multiple panes.

Figure 5-4 Multiple panes in a window

Creating a new pane

You can click and drag a pane splitter control to create a new pane in an editor window.
Pane splitter controls are on each scroll bar (the top and left side) of a pane in the editor
window. To use a pane splitter control:

1. Drag the pane splitter control toward the desired location of the new pane. As you
drag the control, a gray focus line tracks your progress and indicates where the
new pane will go.

2. Release the mouse button to create a new pane.

Alternatively, you can double-click the pane splitter control to split a pane into two
equal parts.
5-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Resizing a pane

To resize a pane:

1. Click and drag the pane resize boxes to change the sizes of the panes in an editor
window. As you drag a resize box, a gray focus line indicates your progress.

2. Release the mouse button to redraw the pane in its new position.

Removing a pane

To remove a pane from an editor window:

1. Click and drag a resize box to any edge of the window. As you drag the resize box,
a gray focus line indicates your progress. If you drag the box close to the edge of
the window, the gray lines are no longer displayed.

2. Release the mouse button when the gray lines are no longer displayed. The editor
removes one of the panes from the window.

Alternatively, you can double-click on a resize bar to remove a split.

5.3.4 Saving editor window settings

The current settings of an editor window are automatically saved:

• when you close the window

• when the toolbar is hidden or displayed.

The settings that are saved include the size and location of the window, and the display
of the toolbar. When you re-open an editor window, the CodeWarrior IDE uses the saved
window settings.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-9

Editing Source Code
5.4 Editing text

The CodeWarrior IDE provides many methods for editing source files. These methods
are described in:

• Basic editor window navigation

• Basic text editing on page 5-11

• Selecting text on page 5-12

• Moving text with drag and drop on page 5-13

• Balancing punctuation on page 5-14

• Shifting text left and right on page 5-15

• Undoing changes on page 5-15

• Controlling color on page 5-16.

5.4.1 Basic editor window navigation

This section describes basic text navigation techniques and shortcuts you can use in text
editor windows.

Scrollbar navigation

Use the scrollbars to adjust the field of view in an editor window in the CodeWarrior
IDE.

Keyboard navigation

Table 5-1 shows the keystrokes you can use to move the insertion point in a file.

Table 5-1 Text navigation with the keyboard

To move insertion point to… Keystroke

Previous word Ctrl-left arrow

Next word Ctrl-right arrow

Beginning of line Home

End of line End

Beginning of file Ctrl-Home

End of file Ctrl-End
5-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Table 5-2 shows the keystrokes you can use to scroll to different locations in a file,
without moving the insertion point.

5.4.2 Basic text editing

The CodeWarrior IDE supports the standard Windows editing operations provided by
most Windows text editors.

Adding text

To add text to an open file:

1. Click once in the text editing area of the window to set the new location of the text
insertion point.

2. Begin typing on the keyboard to enter text.

See Basic editor window navigation on page 5-10 for ways to move the insertion point
in an editor window.

Deleting text

You can delete text in any of the following ways:

• press the Backspace key to delete text that is behind the text insertion point

• press the Delete key to delete text that is in front of the text insertion point

• select the text you want to delete and press the Backspace or Delete key to delete
the selection. See Selecting text on page 5-12, below, for details on how to select
text.

Table 5-2 Scroll with the keyboard

To scroll to…
Keystroke

Previous page Page Up

Next page Page Down

Previous line Ctrl-up arrow

Next line Ctrl-down arrow
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-11

Editing Source Code
Using cut, copy, paste, and clear

You can use the standard Windows editing commands to remove text, or to copy and
paste in a window, between windows, or between applications. See Edit menu on
page D-5 for more information on these commands.

5.4.3 Selecting text

There are several ways to select text in the editor window. This section describes how
to select text:

• using keystroke shortcuts

• using the mouse.

Selecting text using keystroke shortcuts

To select text using keystroke shortcuts, hold down the Shift key while pressing a text
navigation key sequence.

Table 5-3 shows the keystrokes for selecting text, starting at the current insertion point.

To select blocks of code quickly, use the Balance command. See Balancing punctuation
on page 5-14 for more information.

Table 5-3 Text selection with the keyboard

Select text to... Keystroke

Previous word Shift-Ctrl-left arrow

Next word Shift-Ctrl-right arrow

Beginning of line Shift-Home

End of line Shift-End

Beginning of page Shift-Page Up

End of page Shift-Page Down

Beginning of file Shift-Ctrl-Home

End of file Shift-Ctrl-End
5-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Selecting text using the mouse

Table 5-4 gives a summary of how to select text with the mouse.

5.4.4 Moving text with drag and drop

Use the drag and drop features of the editor if you have text in your editor window that
you want to move to a new location. To use drag and drop editing, you must enable this
feature in the IDE configuration panels. See Editor settings on page 8-18 for
information on how to turn this feature on or off.

The CodeWarrior editor accepts drag-and-drop text items from other applications that
support drag-and-drop editing.

Table 5-4 Selecting text with the mouse

To select a… Do this…

Single word Double-click on the word.

Single line Either:

• Triple-click anywhere in the line.

• Move the mouse pointer to the left edge of the editor window
so the mouse pointer points right, and press the mouse button.

This selection method is available when the Left Margin Click
Selects Line option is on in the Editor Settings preference
panel.

Range of text Use any of the following methods:

• Click and drag the mouse in a portion of your window where
there is text.

• Set your text insertion point to mark the beginning of your
selection, and press the Shift key while clicking the place in
your text where you want the selection to end.

• Move the mouse pointer to the left edge of the editor window
so the mouse pointer points right, and click and drag the mouse
pointer to select lines of text.

This selection method is available when the Left Margin Click
Selects Line option is on in the Editor Settings preference
panel.

Function Press the Shift key while selecting a function in the Functions
drop-down menu to display and highlight an entire function in the
editor window. This is particularly useful for copy and paste
operations, and for using drag and drop to move code around in your
file.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-13

Editing Source Code
Moving text in the text editing area

To drag and drop text between text areas in the CodeWarrior IDE:

1. Either:

• create a new text file

• open an existing text file.

See Creating and opening files on page 2-3 for more information.

2. Drag and drop text in any of the following ways:

• Select and drag text from an editor window to any destination that can
accept a drop. You can drag and drop text to a new location in the current
editor window, or to another open editor window.

• Drag selected text into an editor window from other applications that
support drag and drop.

• Drag and drop an icon of a text file directly into the editor window.

5.4.5 Balancing punctuation

The CodeWarrior IDE provides manual balancing and automatic balancing to ensure
that every parenthesis (()), bracket ([]), and brace ({}) in your code has a counterpart,
where applicable.

Using manual balancing

To check for balanced parentheses, brackets, or braces:

1. Place the insertion point in the text you want to check.

2. Select Balance from the Edit menu. Alternatively, double-click on a parenthesis,
bracket, or brace character that you want to check for a matching character.

The CodeWarrior editor searches from the text insertion point until it finds a close
parenthesis, bracket, or brace, and then searches in the opposite direction until it
finds a matching open parenthesis, bracket, or brace. When it finds the match, it
selects the text between them. If the insertion point is not enclosed, or if the
punctuation is unbalanced, the CodeWarrior IDE emits a warning beep.

Note
 You can use the Balance command to select blocks of code quickly.
5-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Using automatic balancing

You can have the editor check for balanced punctuation automatically. See Other
settings on page 8-10 for more information on how to configure the CodeWarrior IDE
to check punctuation automatically as you type.

5.4.6 Shifting text left and right

You can format your source code by shifting blocks of text left and right. This enables
you to indent large blocks of text easily.

To shift blocks of text left and right:

1. Select a block of text (see Selecting text on page 5-12).

2. Select Shift Right or Shift Left from the Edit menu.

The CodeWarrior editor shifts the selected text one tab stop to the right or left by
inserting or deleting a tab character at the beginning of every line in the selection.

See Font & Tabs on page 8-22 for information on configuring the number of spaces
defined for a tab character.

5.4.7 Undoing changes

The CodeWarrior editor provides several methods to undo mistakes as you edit a file.
The available methods are:

• undoing the last edit

• undoing and redoing multiple edits

• reverting to the last saved version of the file.

Undoing the last edit

The Undo command reverses the effect of your last action. The name of the undo
command on the Edit menu changes depending on your last action. For example, if your
most recent action was to type some text, the command changes to Undo Typing. In
this case, you can select Undo Typing to remove the text you just typed.

Undoing and redoing multiple edits

You can use multiple undo and redo commands when the Use Multiple Undo option is
selected in the Editor Settings IDE Configuration panel. See Other settings on
page 8-10 for information on how to enable the Use Multiple Undo option.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-15

Editing Source Code
When multiple undo is enabled, you can select Undo or Redo from the Edit menu
multiple times to undo and redo your previous edits.

For example, if you cut a word, paste it, then type some text, you can reverse all three
actions by choosing Undo three times. The first undo removes the text you typed, the
second unpastes the text you pasted, and the third uncuts the text you cut to restore the
text to its original condition.

You can redo the edits by selecting Redo three times.

Note
 The keyboard shortcut for the Redo command changes when the Use Multiple Undo
option is turned off.

Undo actions are saved in a stack. Each undo action adds an item to the stack, and each
redo repositions a pointer to the next undo action. If you perform several undo and redo
actions you will lose actions off the stack. For example, if there are five undo actions on
the stack (ABCDE), and you redo two of them, the stack appears to the undo pointer as ABC.
When you perform a new action (ABCF), the undo events (DE) are no longer available.

Reverting to the last saved version of a file

You can discard all changes you have made since the last time you saved your file.
Select Revert from the File menu to return a file to its last-saved version. See Reverting
to the most recently saved version of a file on page 2-19 for more information.

5.4.8 Controlling color

You can use color to highlight many elements in your source code, such as comments,
keywords, and quoted character strings. You can also highlight custom keywords that
are in a list of words you designate. See Text Colors on page 8-25 for information on
configuring color syntax options.
5-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
5.5 Navigating text

The CodeWarrior editor provides several methods for navigating a file that you are
editing.

This section describes the following methods:

• Finding a function

• Finding symbol definitions on page 5-18

• Using markers on page 5-19

• Going to a specific line on page 5-20

• Using Go Back and Go Forward on page 5-21.

• Opening a related header file on page 5-21.

See also Chapter 7 Working with the Browser for details on the methods provided by the
integrated code browser for navigating through code.

Note
 You can customize key bindings for the CodeWarrior editor. See Customizing
keybindings on page 8-36 for more information on how to the change key bindings that
move the text insertion point around in a file.

5.5.1 Finding a function

You can use the Functions drop-down menu to find a specific function within the
source file currently displayed in the editor window.

Note
 • If the drop-down menu is empty, the current editor file is not a source code file.

• You cannot use the Functions drop-down menu to navigate through ARM
assembly language code.

Using the Functions drop-down menu

To jump to a specific function in the current source file:

1. Ensure that the editor window that contains the function is the currently active
window.

2. Click on the Functions drop-down menu (Figure 5-5 on page 5-18). The
drop-down menu lists the functions in your source file.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-17

Editing Source Code
By default, the menu lists the functions in the order in which they appear in the
file. You can list functions in alphabetical order by pressing the control key before
you click on the Functions drop-down menu.

Note
 You can change the default order of the functions in the Functions drop-down

menu with the Sort Function Popup configuration option. See Editor settings on
page 8-18 for more information.

If the function name in the replace list has a bullet next to it, it means that the text
insertion point is currently located within the definition for that function.

Figure 5-5 The Functions drop-down menu

5.5.2 Finding symbol definitions

You can find symbol definitions in any source file within your current project.

To look up the definition of a symbol:

1. Select the symbol name in your source code.

2. Select Find Definition from the Search menu. Alternatively, you can press the
Alt key and double-click on the symbol name. The CodeWarrior IDE searches all
the files in your project for the definition of the symbol.

If CodeWarrior finds one or more matches in your project, it opens a window and
displays each of the matches for you to examine. If the browser is enabled for your
project, the CodeWarrior IDE displays the browser Symbol window (see Finding
overrides and multiple implementations of a function on page 7-26). Otherwise, the
CodeWarrior IDE displays a message window (see Using the message window on
page 4-14).
5-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
5.5.3 Using markers

You can add or remove a marker in any of your text files using the facilities built into
the CodeWarrior editor. Markers function as bookmarks for setting places in your file
that you can jump to quickly, or for leaving notes to yourself about work in progress on
your code.

Adding a marker

To add a marker:

1. Move the text insertion point to the location in the text you want to mark.

2. Select Add marker from the Markers drop-down menu. The CodeWarrior IDE
displays an Add Marker dialog box (Figure 5-6).

Figure 5-6 Add Marker dialog box

3. Enter text in the dialog box to mark your insertion point location in the file with
a note, comment, function name, or other text that would be helpful to you.

4. Click Add. Your marker will be visible in the Markers drop-down menu
(Figure 5-7).

Note
 If you select some text in a source file, then select Add marker..., the selected text
appears as the new marker name in the Add Marker dialog. This is useful for quickly
adding specific functions or lines as markers.

Figure 5-7 Example text file with a marker added
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-19

Editing Source Code
Removing a marker

To remove a marker:

1. Click the Markers drop-down menu and select the Remove markers command.
The CodeWarrior IDE displays the Remove Markers dialog box (Figure 5-8).

Figure 5-8 Remove Markers dialog box

2. Select the marker you want to delete and click Remove to remove it permanently
from the marker list.

3. Click Done to close the Remove Markers dialog box.

Jumping to a marker

To jump to a marker:

1. Click the Markers drop-down menu.

2. Select the name of the marker from the list shown on the menu to set the text
insertion point at the marker location.

5.5.4 Going to a specific line

You can go to a specific line in an editor window if you know its number. Lines are
numbered consecutively, with the first line designated as line 1. To go to a particular
line:

1. Click Line Number on the editor window to open the Line Number dialog box
(Figure 5-9 on page 5-21).
5-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Editing Source Code
Figure 5-9 Line Number dialog box

2. Enter the number of the line you want to jump to.

3. Click OK.

5.5.5 Using Go Back and Go Forward

The Go Back and Go Forward commands are only available when you use the
browser. If you already have the browser enabled, see Using Go Back and Go Forward
on page 7-21 for details on using these commands. See Chapter 7 Working with the
Browser for more information on using the browser.

5.5.6 Opening a related header file

The CodeWarrior IDE enables you to open header files for the active editor window.
You can open a header file in two ways:

• using the Header Files drop-down menu

• using a keyboard shortcut.

Using the Header Files drop-down menu

You can use the Header Files drop-down menu to open header files referenced by the
file in the current editor window.

Note
 You can also use the Touch and Untouch commands from this menu. See Touching and
untouching files on page 3-47 for more details.

To use the Header Files drop-down menu to open a header file:

1. Ensure that the project in which the source file is included is open. If the project
file is not open, the list of files in the Header Files menu is not displayed.

2. In the editor window for the your source file, click the Header Files drop-down
menu icon to display the menu (Figure 5-10 on page 5-22).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-21

Editing Source Code
Figure 5-10 The Header Files drop-down menu

Note
 • You can also open the Header Files drop-down menu from the project

window.

• Some files cannot be opened in the editor window, such as libraries.

3. Select the header file you want to open from the menu. The header file is opened
in a new editor window.

Using a keyboard shortcut

You can open a header file using a keyboard shortcut:

1. Select the filename of the header file in the active editor window.

2. Type Ctrl-D. The header file is opened in a new editor window.

See Creating and opening files on page 2-3 for more information.
5-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 6
Searching and Replacing Text

This chapter describes how to use the CodeWarrior IDE search and replace functions.
It contains the following sections:

• About finding and replacing text on page 6-2

• Finding and replacing text in a single file on page 6-3

• Finding and replacing text in multiple files on page 6-8

• Using grep-style regular expressions on page 6-17.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-1

Searching and Replacing Text
6.1 About finding and replacing text

The search and replace facilities in the CodeWarrior IDE enable you to search and
replace from either the current editor window, or from the Find dialog box. You can
search for and replace text in a single file, in every file in a project, or in any
combination of files. You can also search using regular expressions, similar to the UNIX
grep command.

The Find dialog, shown in Figure 6-1 on page 6-4, provides comprehensive search and
replace facilities. You can use the Find dialog to perform find and replace operations
for:

• text in a single file

• text in multiple files in your project

• text in arbitrary files that are not part of your current project.

You can use text strings, text substrings, and pattern matching in find and replace
operations. In addition, you can use the batch search option to display the results of a
find operation in a text window.
6-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
6.2 Finding and replacing text in a single file

The Find dialog box enables you to search for text patterns in the active editor window.
When you find the text you are searching for, you can change it or look for the next
occurrence.

This section describes how to use the CodeWarrior IDE search functions to locate
specific text you want to replace in the active editor window. See:

• Searching for selected text

• Finding and replacing text with the Find and Replace dialog on page 6-4

6.2.1 Searching for selected text

The CodeWarrior IDE provides two ways of searching for text selected in the editor
window, without opening the Find dialog box.

When you search for selected text, the CodeWarrior IDE uses the option settings that
you last chose in the Find dialog box. To change the option settings, you must open the
Find dialog box.

Finding text in the active editor window

To find text in the active window:

1. Select an instance of the text you want to find.

2. Select Find Selection from the Search menu. The CodeWarrior IDE searches for
the next occurrence of your text string in the current file only.

3. Either:

• select Find Next from the Search menu, or press F3 to search for the next
occurrence of the text string

• press Shift+F3 to search backwards for the previous occurrence of the text
string.

Finding text in another window

This method is useful if you are working with a file in an editor window and you want
to find occurrences of a text string in another file. To find text in another editor window:

1. Select an instance of the text you want to find.

2. Select Enter Find String from the Search menu. The editor enters the selected
text into the Find text field of the Find dialog box.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-3

Searching and Replacing Text
3. Click on the editor window that you want to search to make it active.

4. Either:

• Select Find Next from the Search menu, or press F3 to search for the next
occurrence of the text string.

• Press Shift-F3 to search toward the beginning of the file for the previous
occurrence of the text string.

6.2.2 Finding and replacing text with the Find and Replace dialog

To find and replace text with the Find and Replace dialog box:

1. Select Replace… from the Search menu. The Find and Replace dialog box is
displayed (Figure 6-1).

Figure 6-1 The Find and replace dialog box

2. Type a text string into the Find text field, or select a string from the Recent
Strings drop-down list.

The Recent Strings drop-down list contains strings that have previously been
used for searches. Select an item in one of these drop-down lists to place it into
the corresponding text box.

You can use Cut, Copy, and Paste commands to edit text in the Find text field.

Note
 See Searching for special characters on page 6-7 for information on how to

search for a Return or Tab character.

3. Type a text string into the Replace text field, or select a string from the Recent
Strings drop-down list, if you want to replace the found string.
6-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
4. Select the search options you want:

Match whole word
Select this option to find only complete words (delimited by
punctuation or white-space characters) that match the search string.
When this option is not selected, the CodeWarrior IDE finds
occurrences of the search string embedded within larger words.

Case sensitive
Select this option to treat uppercase and lowercase text in the search
string as distinct. When this option is not selected, uppercase and
lowercase text are identical.

Regular expression
Select this option to instruct the CodeWarrior IDE to interpret the text
in the Find text field as a regular expression. See Using regular
expressions on page 6-18 for more information.

Search selection only
Select this option to instruct the CodeWarrior IDE to search only the
currently selected text.

Stop at end of file
Select this option if you want the search to stop when it gets to the end
of the file. When this option is not selected, the CodeWarrior IDE
searches from the current insertion point to the end of the file, and
continues to the insertion point.

Direction: Up
Select this option if you want to search the file in an upward direction
from the insertion point.

Direction: Down
Select this option if you want to search the file in a downward direction
from the insertion point.

5. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace operation:

• Click Find to search forward from the text insertion point in the active
editor window. The CodeWarrior IDE finds the first instance of the string.
Select Find Next from the Search menu or press F3 to search for
subsequent instances.

• Click Find All to collect all successful matches of your search text in one
window for easy reference. The results are displayed in a Search Results
message window (Figure 6-2 on page 6-6).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-5

Searching and Replacing Text
Figure 6-2 Search Results window

Use the Search Results message window to navigate through the search
results. For example, click on an entry in the list view to display the match
in the source view pane, or double-click on an entry to display it in an editor
window. See Using the message window on page 4-11 for more information
on the features of the message window.

• Select Replace from the Search menu to search forward from the text
insertion point in the active editor window and find the first instance of the
string. The CodeWarrior IDE replaces found text with the text in the
Replace text field. To replace subsequent instances, select Replace and
Find Next from the Search menu. Alternatively, use the keyboard shortcut
Ctrl+L. Press Shift if you want to replace and find backwards.

• Select Replace & Find Next from the Search menu to replace found text
and find the next occurrence of the find string. Press Shift to replace and
search backwards.

• Select Replace All from the Search menu to replace all occurrences of the
find string in a single operation.

Caution
 Undo is not available for the Replace All command. It is recommended that

you save your source file before using Replace All, so that you can use the
Revert command if you want to discard the changes.

• Click Cancel to close the Find and Replace dialog box.
6-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
Searching for special characters

To enter a Tab or Return character in the Find or Replace fields, you must either:

• copy and paste your selected text with the Tab or Return characters into the Find
or Replace text field

• enable the Regular expression option, and enter \t for Tab or \r for Return into
the field.

Using regular expressions alters the way in which the CodeWarrior IDE locates a string
match. See Using grep-style regular expressions on page 6-17 for more details.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-7

Searching and Replacing Text
6.3 Finding and replacing text in multiple files

The CodeWarrior IDE Find in Files dialog box enables you to search for text patterns in:

• folders

• projects

• symbolics

• files.

You can perform these different powerful searches by choosing the In Folders, In
Projects, In Symbolics, or In Files view tabs and setting their specific search options.

In addition, you can save sets of search files for future use.

This section describes:

• Using multi-file search

• Using file sets on page 6-14.

Note
 You can also select the browser Go Back and Go Forward commands from the Search
menu to access information and search through multiple files. See Using Go Back and
Go Forward on page 7-21 for more information.

6.3.1 Using multi-file search

This section describes how to perform multi-file searches. See Using file sets on
page 6-14 for more information on configuring multi-file searches. To search for text in
multiple files:

1. Select Find in Files… from the Search menu. The Find in Files dialog box is
displayed (see The Find in Files dialog on page 6-9).
6-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
Figure 6-3 The Find in Files dialog

2. Select the search options you want:

Match whole word
Select this option to find only complete words (delimited by
punctuation or white-space characters) that match the search string.
When this option is not selected, the CodeWarrior IDE finds
occurrences of the search string embedded within larger words.

Case sensitive
Select this option to treat uppercase and lowercase text in the search
string as distinct. When this option is not selected, uppercase and
lowercase text are identical.

Regular expression
Select this option to instruct the CodeWarrior IDE to interpret the text
in the Find text field as a regular expression. See Using regular
expressions on page 6-18 for more information.

3. Select the appropriate tab for your search:

• In Folders (see Searching through multiple files by folders on page 6-10)

• In Projects (see Searching through multiple files by projects on page 6-11)

• In Symbolics (see Searching through multiple files by symbols on
page 6-13)

• In Files (see Searching through multiple files by file on page 6-13).

4. Type the search text into the Find text box.

5. Type the replacement text into the Replace with box if required.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-9

Searching and Replacing Text
6. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace, operation:

• Click Find All to collect all successful matches of your search text in one
window for easy reference. See the Find All section in Finding and
replacing text with the Find and Replace dialog on page 6-4 for information
on using Find All.

• Click Replace or select Replace from the Search menu to replace found
text with the text in the Replace text field.

• Select Replace & Find Next from the Search menu to replace found text
and find the next occurrence of the find string. Press the Shift key to replace
and search backwards.

• Click Replace All or select Replace All from the Search menu to replace
all occurrences of the find string.

Caution
 Undo is not available for the Replace All command. It is recommended that

you save your source file before using Replace All, so that you can use the
Revert command if you want to discard the changes.

Searching through multiple files by folders

To search multiple files by folders:

1. Select the In Folders tab in the Find in Files window.

Figure 6-4 The In Folders tab in the Find in Files Window

2. Use the Search in drop-down list to specify the location you want to search. Type
in a location or click Browse... to find the required location.

3. Check Search sub-folders if you want to search in folders within the specified
folder. If you leave this option unchecked, CodeWarrior IDE searches only files
at this level.
6-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
4. Use the By type drop-down list to specify the type of file you want to search for.

5. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace, operation.

Searching through multiple files by projects

To search multiple files by projects:

1. Select the In Projects tab in the Find in Files window.

Figure 6-5 The In Projects tab in the Find in Files Window

2. Use the Project drop-down list to specify the project you want to search.

3. Use the Target drop-down list to specify the target you want to search. Options
are:

• All Targets

• DebugRel

• Release

• Debug.

4. Select the required project-specific search options:

Project sources
Select this option to add all the source files from the current project.
Deselect this option to remove all project source files from the file list.

System headers
Select this option to add system header files. System header files are
defined in the CodeWarrior IDE access paths configuration panel. See
Configuring access paths on page 9-11 for more information.

Note
 • To search the system header files, you must have successfully

compiled your source files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-11

Searching and Replacing Text
• If this option does not add the header files you expect, use the
Make command to update the internal list of header files. See
Making a project on page 3-79 for more information.

Project headers
Select this option to add all the project header files from the current
project. Deselect this option to remove all project header files from the
file list.

Note
 • To search the system header files, you must have successfully

compiled your source files.

• If this option does not add the header files you expect, use the
Make command to update the internal list of header files. See
Making a project on page 3-79 for more information.

Search cached sub-targets
Select this option to search cached subtargets of the projects shown in
the Project drop-down list. The search criteria that you define for the
projects also applies to the cached subtargets. If this option is disabled,
cached subtargets are disregarded during the search.

A cached subtarget has the following characteristics:

• the current target builds against it

• it resides in the current project

• it resides in a subproject if you enabled subproject caching for
the current build target (see Configuring build extras on
page 9-20 for more information).

The file types you select are added to the search file list. See Using file sets on
page 6-14 for information on saving sets of search files for future use.

Note
 • To remove a specific file from the file list, select the file and press the

backspace key.

• You can drag and drop groups or files from the Windows interface, or from
the project window, onto the file list.

5. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace, operation.
6-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
Searching through multiple files by symbols

To search multiple files by symbols:

1. Select the In Symbolics tab in the Find in Files window (Figure 6-6 on
page 6-13).

Figure 6-6 The In Symbols tab in the Find in Files Window

2. Select the files containing symbolics information you want to search in the
Symbolics drop-down list. As you select files, they are added to the list at the
bottom of the window. To remove a file from the list, select it and press the Delete
button. To open a file, double-click its name in the list.

3. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace, operation.

Searching through multiple files by file

To search multiple files by file sets:

1. Select the In Files tab in the Find in Files window (Figure 6-7).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-13

Searching and Replacing Text
Figure 6-7 The In Files tab in the Find in Files Window

2. Select the file set you want to search in the File Set drop-down list.

• Select Open Editor Files if you want to view only files that are currently
open.

• Select the name of the appropriate file set if you want to search in a presaved
file set.

• Select New File Set if you want to create a new file set.

See Using file sets for information on file sets.

3. Use the dialog box buttons, or menu items from the Search menu, to start the find,
or find and replace, operation.

6.3.2 Using file sets

You can use the In Files tab of the Find in Files dialog box to save sets of frequently
searched files for later use.

Creating a file set

To create a file set for use in future multifile searches:

1. Select New File Set from the File Set drop-down list.

2. Click Add Files….

3. Locate the required files and click Add to add them to the list.

4. Click Save This Set.... The CodeWarrior IDE displays the Save File Set dialog
box (Figure 6-8).
6-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
Figure 6-8 The Save File Set dialog

5. Enter a name for the file set in the Save file set as text field.

Adding files to a file set

To add a file to an existing file set:

1. Select the required file set from the File Set drop-down list.

2. Click the Add Files.... button.

3. Locate the required files and click Add to add them to the list.

Note
 You can also drag and drop files into the file set list to add them to the current list.

Removing a file set

To remove a file set from the list of saved search file sets:

1. Click the Remove a Set button. The CodeWarrior IDE displays the Remove File
Sets dialog box (Figure 6-9).

Figure 6-9 Remove File Sets dialog box

2. Select the file set you want to remove and click Remove. The CodeWarrior IDE
removes the file set.

3. Click Done to return to the Find dialog box.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-15

Searching and Replacing Text
Removing files from a file set

To remove a file from a file set:

1. Select the required file set from the File Set drop-down list.

2. Click on the required file to select it.

3. Press the Delete key.

To remove all the files from a file set:

1. Select the required file set from the File Set drop-down list.

2. Click the Clear List button.
6-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
6.4 Using grep-style regular expressions

The CodeWarrior IDE provides regular expression searching that is similar to the UNIX
grep command. A regular expression is a text string composed of characters, some of
which have special meanings within the regular expression. The regular expression
string describes one or more possible literal strings. In the CodeWarrior IDE Find dialog
box, it is used to match literal strings in the search text if the Regexp option is selected.

This section gives a brief introduction to regular expressions. For a comprehensive book
on using regular expressions, refer to Mastering Regular Expressions, by Jeffrey E.F.
Friedl.

This section describes:

• Special operators

• Using regular expressions on page 6-18.

6.4.1 Special operators

Table 6-1 shows the characters that have special meanings in a regular expression string.
In some cases, their meaning depends on where they occur in the regular expression.
See Using regular expressions on page 6-18 for more information.

Table 6-1 Regular expression metacharacters

Metacharacter Description

. The match-any-character operator matches any single printing or
non-printing character except newline and null.

* The match-zero-or-more operator repeats the smallest preceding
regular expression as many times as necessary (including zero) to
match the pattern.

+ The match-one-or-more operator repeats the preceding regular
expression at least once, and then as many times as necessary to match
the pattern.

? The match-zero-or-one operator repeats the preceding regular
expression once or not at all.

\n The back-reference operator is used in the replace string to refer to a
specified group in the find string. Each group must be enclosed within
parentheses. The digit n must range between 1 and 9. The number
identifies a specific group, starting from the left side of the regular
expression.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-17

Searching and Replacing Text
6.4.2 Using regular expressions

You can create powerful regular expressions to search for text and perform replace
operations on found text. To use regular expressions in your search and replace strings:

1. Select Find… from the Search menu.

2. Ensure that the Regular expression option is selected (Figure 6-10).

Figure 6-10 Regexp checkbox

3. Enter the search and replace strings. Your search and replace strings are treated as
regular expressions.

The following examples show how to use regular expressions in search and replace
operations.

| The alternation operator matches one of a choice of regular
expressions. If you place the alternation operator between any two
regular expressions, the result matches the largest union of strings that
it can match.

^ The match-beginning-of-line operator matches the string from the
beginning of the string or after a newline character. When it appears
within brackets, the ^ represents a not action.

$ The match-end-of-line operator matches the string either at the end of
the string or before a newline character in the string.

[…] List operators enable you to define a set of items to use as a match. The
list items must be enclosed within square brackets. You cannot define
an empty list.

(…) Group operators define subexpressions that can be used elsewhere in
the regular expression as a single unit.

- The range operator defines the characters that fall between the start
and ending characters within the list.

Table 6-1 Regular expression metacharacters (continued)

Metacharacter Description
6-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
Matching simple expressions

Most characters in a regular expression match themselves. The exceptions are the
regular expression metacharacters listed in Table 6-1 on page 6-17. For example, the
regular expression a matches all occurrences of the letter a in the search text.

To match a metacharacter literally, precede the metacharacter with a backslash. For
example, to find every occurrence of a dollar sign ($), type \$ in the Find text field. The
backslash instructs the CodeWarrior IDE to interpret the dollar sign as a literal
character, rather than a special character. If you do not use the backslash, the search
finds end of line characters, not $ characters.

Matching any character

A period (.) matches any character except a newline character or a null character.

For example, the regular expression:

var.

matches any four-character sequence that begins with var, such as var1, and var2.

Matching repeating expressions

The following metacharacters enable you to match repeating occurrences of a regular
expression in your search string:

• A regular expression followed by an asterisk (*) matches zero or more
occurrences of that regular expression. If there is any choice, the editor chooses
the longest, left-most matching string in a line.

• A regular expression followed by a plus sign (+) matches one or more occurrences
of that regular expression. If there is any choice, the editor chooses the longest,
left-most matching string in a line.

• A regular expression followed by a question mark (?) matches zero or one
occurrences of that regular expression. If there is any choice, the editor chooses
the left-most matching string in a line.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-19

Searching and Replacing Text
Table 6-2 shows some simple examples.

The asterisk, question mark, and plus metacharacters can operate on both single
character regular expressions and grouped regular expressions. See Grouping
expressions for details.

Grouping expressions

If an expression is enclosed in parentheses (()), it is treated as a single unit and
repetition operators, such as the asterisk (*) or plus sign (+) are applied to the whole
expression.

For example, to find strings that match is, you can type is in the Find text field.
However, you can also use (i)s as a regular expression. This regular expression
instructs the CodeWarrior IDE to look for the letter s, preceded by both a space and the
letter i. Whereas is matches the is within This, this, and is, (i)s will match only with
is.

Matching any character in a list

A string of characters enclosed in square brackets ([]) matches any one character in that
string. For example, the regular expression:

[xyz]

Table 6-2 Using repetition operators

Regular expression Matches

s*ion Zero or more occurrences of the character s immediately
preceding the characters ion. This regular expression matches
with ion in information and sections, and with ssion in
expressions.

s+ion One or more occurrences of the character s immediately
preceding the characters ion. This regular expression matches
the ssion in expressions.

s?ion Zero or one occurrences of the character s immediately
preceding the characters ion. This regular expression matches
with the sion in expressions, and with ion in information and
sections.

0\.? The number zero, followed by a period. The backslash tells the
CodeWarrior IDE to treat the period as a literal character, and
the ? operator acts on the period character.
6-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
matches any of the characters x, y, or z.

To match any character that is not in the string enclosed within the square brackets,
precede the enclosed expression with a caret (^). For example, the regular expression:

[^abc]

matches every character in the search text other than a, b, and c.

To specify a range of consecutive ASCII characters, use a minus sign (-) within square
brackets. For example, the regular expression:

[0-9]

is the same as:

[0123456789]

The following points apply to characters within the square brackets:

• If a minus sign is the first or last character within the square brackets, it is treated
as a literal character. For example, the regular expression:

[-bc]

matches any one of the -, b, and c characters.

• A right square bracket immediately following a left square bracket does not
terminate the string. It is considered to be one of the characters to match. For
example, the regular expression:

[]0-9]

matches the right square bracket and any digit.

• Metacharacters, such as backslash (\), asterisk (*), or plus sign (+), immediately
following the opening square bracket are treated as literal characters. For
example, the regular expression:

[.]

matches the period character.

You can use square brackets to group regular expressions in the same way as
parentheses. The text string in the square brackets is treated as a single regular
expression. For example, the regular expression:

[bsl]ag

matches any of bag, sag,or lag.

The regular expression:
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-21

Searching and Replacing Text
[aeiou][0-9]

matches any lowercase vowel followed by a number, such as a1.

Matching the beginning or end of a line

You can specify that a regular expression matches the beginning or end of the line:

• If a caret (^) is at the beginning of the entire regular expression, it matches the
beginning of a line. For example, the regular expression:

^([\t]*cout)

matches any occurrence of cout at the start of a line. The [\t]* in the regular
expression specifies that zero or more spaces or tabs can precede cout.

• If a dollar sign ($) is at the end of the entire regular expression, it matches the end
of a line. For example, this$ matches any occurrence of the string this at the end
of a line.

• if an entire regular expression is enclosed by a caret and dollar sign (^like this$),
it matches an entire line.

Using the find string in the replace string

You can specify the text found by a regular expression in the replace string by using an
ampersand (&) in the replace regular expression. For example, if the find expression is
var[0-9] and the replace string is my_&, the editor matches the find expression with
strings such as var1 and var2 in the search text, and replaces var1 with my_var1 and var2
with my_var2.

Use \& to specify a literal ampersand in the replace string. An ampersand has no special
meaning in the find string.

Using subexpressions in the replace string

You can specify subexpressions of a regular expression in a find string, and use the
subexpressions in the replace string. You can specify up to nine subexpressions for each
find string. Each subexpression must be enclosed within parentheses.

To use a subexpression in the replace string, type \n, where n is a digit that specifies
which subexpression to recall. Subexpressions are counted from the left side of the find
string to determine the value of n.

For example, to change #define declarations of the form:

#define var1 10
6-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Searching and Replacing Text
into const declarations:

1. Select Find… from the Search menu and ensure that the Regexp option is
selected.

2. Enter the following regular expression in the Find text field:

\#define[\t]+(.+)[\t]+([0-9]+);

This regular expression matches string patterns of the following form:

#define, followed by one or more spaces or tabs, followed by one or more
characters, followed by one or more spaces or tabs, followed by one or more
digits, followed by a semicolon.

Starting from the left side of the find regular expression, the first subexpression is
(.+), and the second subexpression is ([0-9]+).

3. Enter the following regular expression in the Replace text box:

const int \1 = \2;

The \1 specifies the text found by the first subexpression. The \2 specifies the text
found by the second subexpression. The two subexpressions recall the variable
name and its value from the original #define declaration.

4. Click Replace when the string is found. The replace string changes the #define
declaration into a const declaration by using references to the two subexpressions.
For example:

#define var1 10;

is changed to:

const int var1 = 10;
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-23

Searching and Replacing Text
6-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 7
Working with the Browser

This chapter describes the CodeWarrior browser. The CodeWarrior browser provides
you with a user interface to access a database of all the symbols in your code quickly
and easily. The symbol database is generated by the ARM C and C++ compilers and the
ARM assembler when the browser is activated and you build your project. The
CodeWarrior browser works with both procedural and object-oriented code.

This chapter contains the following sections:

• About working with the browser on page 7-2

• Activating the browser on page 7-5

• Using browser views on page 7-8

• Using the browser on page 7-21

• Creating classes and members with browser wizards on page 7-30.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-1

Working with the Browser
7.1 About working with the browser

The CodeWarrior browser enables you to view symbolic information, generated by the
ARM compilers and assembler, on the objects defined in your code, and the
relationships between those objects.

Browser windows provide three views on the objects in the current build target, and
enables you to navigate quickly to the source code for any object in the database. For
example, you can find the function definition or declaration code for any member
function of any class in your code.

Note
 The browser does not distinguish between the declaration and the definition of a
variable or constant, so the ARM compilers produce a browse item for both. For
example, the following code results in two items in the browse database:

// test.h
extern int var;
// test.c
#include test.h
int var;

You can use browser information both in browser windows, and from the CodeWarrior
editor. The browser is particularly useful for viewing object-oriented code, because it
can map the relationships between classes, subclasses, and members. However it is also
useful for navigating procedural code.

7.1.1 Understanding the browser strategy

The browser enables you to sort and examine information in a variety of ways. You can
examine browser information using the following views:

Contents view You can use the Contents view to view all C and C++ language
constructs in your code, sorted by category into alphabetical lists.
Categories include type definitions, constants, enumerations,
macros, global variables, functions, templates, and classes. In
addition, the Contents view lists assembler constructs such as
register names, macros, and other symbols. Figure 7-7 on
page 7-17 shows an example of a contents view.

See Viewing data by type with the Contents view on page 7-16 for
details of the Contents window interface.
7-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Class browser view

You can use the Class browser view to examine your code from a
class-based perspective. Figure 7-2 on page 7-9 shows an
example.

The Class browser view lists all the classes in your current build
target, except classes that contain only data members. When you
select a class in the list, the Class browser view displays its
member functions and data members. When you select a list item,
the source code where the item is defined is displayed in the
Source pane.

See Viewing data by class with the Class browser view on
page 7-8 for details of the user interface elements in the Class
browser view.

Hierarchy view The Hierarchy view is an inheritance-based view. It provides a
graphical map of the class hierarchy for your current build target.
You can use this view to follow class relationships. Figure 7-8 on
page 7-18 shows an example.

The Hierarchy view illustrates how your classes are
interconnected. You can expand and collapse a hierarchy from
within this view.

See Viewing class hierarchies and inheritance with the hierarchy
view on page 7-18 for details on the Hierarchy view interface.

The browser provides context-sensitive access to information. You can right-click on
any symbol for which there is information in the database to display the related source
code. See Using the Browser context menu on page 7-21 for more information.

In addition, the browser enables you to decide the scope of the view. You can look at
data in all your classes, or you can focus on one class.

Within the browser and hierarchy views, you can look at multiple class hierarchies or
single class hierarchies. Table 7-1 summarizes the general viewing choices available
when using the browser.

Table 7-1 Browser viewing options

Viewing style Wide focus Narrow focus

Comprehensive Contents Not applicable

Inheritance-based Multi-class hierarchy Single-class hierarchy
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-3

Working with the Browser
The browser-related menu commands in the View menu (Browser Contents window,
Class Hierarchy window, and Class Browser) display wide-focus views. After you
have selected a wide view, you can use a context-sensitive menu to focus on a particular
class.
7-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
7.2 Activating the browser

You must activate the browser and recompile your project before browser information
is available. To activate the browser:

1. Ensure that your project window is the active window and click the Target
Settings icon in the toolbar. The CodeWarrior IDE displays the Target settings
panel for your project.

2. Click Build Extras in the Target Settings Panels list. The CodeWarrior IDE
displays the Build Extras panel (Figure 7-1).

Figure 7-1 Target settings panel

3. Select Activate Browser and click Apply. The CodeWarrior IDE marks your
source files for recompilation.

4. Close the Target Settings panel and select Make or Bring up to Date from the
Project menu, or click the Make button in your project toolbar to rebuild the
project.

When the project is rebuilt, the ARM compilers generate a database of
information about your code, and about the relationships between various parts of
your code, such as inheritance hierarchies.

Note
 You can also selectively compile individual source files to generate browser

information for those files only.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-5

Working with the Browser

See Configuring browser options for more details on browser settings and options

7.2.1 Configuring browser options

Browser-related menu items and browser-specific options are available only when you
activate the browser. See Activating the browser on page 7-5 for more information. This
section describes how to configure additional browser options, including:

• Configuring symbol colors

• Browsing across subprojects.

Note
 To determine quickly if the browser is enabled, look in the View menu at the
browser-related menu commands. If they are enabled, the browser is active.

Configuring symbol colors

You can use browser coloring to identify browser database symbols. If the browser is
enabled, symbols that are in the browser database are displayed in editor and browser
windows in the colors you select. See Changing browser coloring on page 8-29 for
more information on setting browser colors.

Note
 The default color setting is the same for all types of browser database symbols. You can
select a different color for each symbol type if you want. However, if syntax coloring is
also enabled for your code, you might find it easier to identify browser symbols if you
use only one or two colors.

Browsing across subprojects

To include browser information from subprojects of the current build target you must
enable subproject caching.

Note
 This option is selected by default.

To enable subproject caching:

1. Display the Target Settings panel for the project you want to configure (see
Displaying Target Settings panels on page 9-4) for more information.
7-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
2. Click Build Extras in the Target Settings Panels list. The CodeWarrior IDE
displays the Build Extras panel.

3. Select the Cache Subprojects checkbox. This option:

• improves multiproject updating and linking

• enables the Class browser to include browser information from target
subprojects.

However, this option also increases the amount of memory required by the
CodeWarrior IDE.

See Configuring build extras on page 9-20 for more information on the Build
Extras panel.

4. Click Apply to apply your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-7

Working with the Browser
7.3 Using browser views

This section describes how to use browser windows to display and work with data in the
browser database. It describes:

• Viewing data by class with the Class browser view

• Viewing data by type with the Contents view on page 7-16

• Viewing class hierarchies and inheritance with the hierarchy view on page 7-18.

7.3.1 Viewing data by class with the Class browser view

The Class browser window provides a class-based view of the information in the
browser database for the current build target. You can use the Class browser window to
view C++ classes, member functions, and data members in the current build target.

Note
 • You must use the File Mappings configuration panel to map the ARM or Thumb

C++ compiler to process all source and header files containing classes. By
default, header files are mapped to the ARM and Thumb C compilers.

Opening a Class browser window

To open the Class browser window:

1. Ensure that the browser is activated. See Activating the browser on page 7-5 for
more information.

2. Select Class Browser from the View menu. Alternatively, you can:

• right click a class name to display the Browser Contextual menu and select
Open Browser for classname

• double-click a class name in either a Hierarchy window.

The CodeWarrior IDE displays a Class browser window (Figure 7-2 on page 7-9).
7-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Figure 7-2 A Class browser view

The main components of the Class browser window are:

Browser toolbar

The browser toolbar provides access to a number of CodeWarrior IDE
commands, including Go Forward and Go Back navigation buttons, and
buttons to open hierarchy view windows. See Finding declarations,
definitions, overrides, and multiple implementations on page 7-24 for
more information.

Browser Access Filters drop-down list

Use this menu to filter the display of member functions and data
members. See Filtering members by access type on page 7-15 for more
information.

Pane zoom box

The pane zoom box enlarges and shrinks panes within the Class browser
window.

Resize bar A resize bar is located between each pair of panes. To resize two panes,
drag the resize bar located between them.

0�������������
	
������������

(
��������� !��
,������������ +����,��
���%)���
��
�������

 ������
����������������������
����$������� #����	
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-9

Working with the Browser
Classes pane

The Classes pane lists classes in the browser database for the current
build target. See Viewing class and member information on page 7-12 for
more information.

List button Click the List button to toggle between an alphabetical list or a
hierarchical list in the Classes pane. See Viewing class and member
information on page 7-12 for more information.

 Click this button to switch to a hierarchical list.

 Click this button to switch to an alphabetical list.

Class display button

Click the Class display button at the bottom left of the Class browser
window to toggle the display of the Classes pane.

Click this button to hide the classes pane.

Click this button to display the classes pane.

Class declaration button

Click the Class declaration button to display the class declaration
for the current class in the Source pane. The name of the current

class is displayed in the Status area of the Class browser window.

Member Functions pane

The Member Functions pane lists all member functions defined in the
selected class. Constructors and destructors are at the top of the list. All
other member functions are listed in alphabetical order.

To display inherited member functions select the Show Inherited
checkbox in the toolbar.

The Inherited access icon in the Class browser window darkens to
indicate that inherited member functions are currently displayed.

Note
 Select a member function in the Member Functions pane in the Class

browser window and press the Enter key to open an editor window and
view the definition of the selected function.
7-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Data Members pane

The Data Members pane lists all data members defined in the selected
class. You can also display inherited data members by enabling the Show
Inherited checkbox in the toolbar.

The Inherited access icon in the Class browser window darkens to
indicate that inherited data members are currently displayed.

The entries in the Data Members pane are listed in alphabetical order. If
inherited members are displayed, data members are listed by superclass,
but alphabetically within each class.

Note
 Select a data member in the Data Members pane in the Class browser

window and press the Enter key to open an editor window and view the
declaration of the selected data member.

Identifier icon

Member functions that are declared static, virtual, or pure virtual are
identified with an icon. Table 7-2 describes the icons.

Source pane

The Source pane displays the source code for the selected item.

Note
 To enter function calls or variable names into the code in the source pane,

Alt-Click an item in the Member Functions pane or the Data Members
pane. The item is entered into the Source pane text at the current insertion
point.

The text in the Source pane is fully-editable. The path to the file that
contains the code on display is shown at the top of the Source pane.

Table 7-2 Browser identifier icons

Icon Meaning The member is…

Static A static member.

Virtual A virtual function that you can override, or an override of an
inherited virtual function.

Pure virtual A member function that you must override in a subclass if you
want to create instances of that subclass.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-11

Working with the Browser
Open File icon

Click this icon to open the file that contains the code displayed in the
Source pane in a new editor window.

VCS drop-down menu

The VCS drop-down menu is available if you have a version
control system installed. See Chapter 10 Using the CodeWarrior
IDE with Version Control Systems for more information.

Status area

The status area displays various status messages and other information.
For example, when you select a class from the Classes pane, the status
area displays the base classes for the selected class.

Viewing class and member information

The Class browser window enables you to locate and view class and member definitions
in your source code. To view class and member information:

1. Open a Class browser window. See Opening a Class browser window on page 7-8
for more information. The class and member information is displayed in the panes
of the Class browser window. The Classes pane (Figure 7-3) displays a list of
classes in the current build target.

Note
 The Classes pane does not display information about classes or structures that do

not have any member functions, base classes, or subclasses. This means that
structures and classes that have only fields and data members are not displayed.

Figure 7-3 The Classes pane
7-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
2. Click the List button at the top right of the classes pane (see Figure 7-2 on
page 7-9) to select either a hierarchical list or alphabetical list of classes in the
classes pane:

Alphabetical list
This list type displays an alphabetical list of classes in the current build
target.

Hierarchical list
This list type displays a hierarchy expansion triangle next to class
names that have subclasses (Figure 7-3 on page 7-12 shows an
example of a hierarchical list):

• Click an expansion triangle to toggle the display of subclasses.

• Alt-click an expansion triangle to open all subclasses at all
levels. This is called a deep disclosure.

• Ctrl-click an expansion triangle to open a single level of subclass
in a class and all of its siblings at the same level. This is a called
a wide disclosure.

• Ctrl-Alt-Click an expansion triangle to perform a wide and deep
disclosure.

Note
 When you select a class in the Classes pane, the Multi-class hierarchy window

selection scrolls to the newly-selected class if it is not already displayed.

3. Navigate to the class, member function, or data member you want to view:

a. Click within a pane to make it the active pane. You can also use the Tab key
to navigate through the panes, except for the Source pane.

Caution
 If the Source pane is active and you press the Tab key, a tab is entered into

your source code.

b. Select an item within a pane in any of the following ways:

• Click an item in any list.

• Use the arrow keys to navigate through the items in the active pane.

• Type the name of the item. The item in the active pane that most
closely matches the characters you type is selected.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-13

Working with the Browser
When you select different items in the panels the Class browser window
display changes:

• When you select a class name, the Member Functions pane and Data
Members pane display the members of the selected class. Figure 7-4
shows an example for the class Circle.

• The source code pane displays the definition or declaration for the
selected item. If the selected item is:

— a class, the pane shows the class declaration

— a function, the pane shows the function definition

— a data member, the pane shows the data member declaration.

Figure 7-4 Member functions, data members, and declaration for class circle

4. Use the features of the browser to control the display of browser information,
navigate to specific sections of code, or open other browser views. For more
information on browser functions see:

• Filtering members by access type on page 7-15

• Opening another view from the Class browser view on page 7-16

• Using the Browser context menu on page 7-21

• Finding declarations, definitions, overrides, and multiple implementations
on page 7-24

• Editing code in the browser on page 7-28.
7-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Filtering members by access type

You can use the Access Filters drop-down list to filter the display of member functions
and data members in the Class browser view. The drop-down list commands filter the
display according to public, private, and protected access types. To filter the display of
members:

1. Open a Class browser window. See Opening a Class browser window on page 7-8
for more information.

2. Select the class you want to display. See Viewing class and member information
on page 7-12 for more information.

3. Click on the Access Filters drop-down list in the Class browser toolbar
(Figure 7-5).

Figure 7-5 Access filters drop-down list

The drop-down list displays a list of access types. A bullet is displayed in the
menu next to each access type currently selected.

4. Select the access type you want from the drop-down list:

View as implementor
Select this option to show members with public, private, and protected
access.

View as subclass
Select this option to show members with public and protected access

View as user
Select this option to show only members with public access.

Show public
Select this option to show only members with public access

Show protected
Select this option to show only members with protected access.

Show private
Select this option to show only members with private access.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-15

Working with the Browser
The access icons at the bottom right corner of the Class browser window are dark if the
access type is selected, and grayed out if the access type is not selected (see Figure 7-6).

Figure 7-6 Browser access filter icons

Opening another view from the Class browser view

There are a number of ways in which you can open a hierarchy or class view from the
Class browser window, including:

• Click the Show hierarchy button to open a single-class or multi-class hierarchy
window.

• Right-click any browser symbol in the window and use the Browser context
menu. See Using the Browser context menu on page 7-21 for more information.

Saving a default Class browser window

You can save Class browser window configurations to be used as the default for new
Class browser windows. You can save:

• The size and placement of Class browser window.

• The size and placement of the Classes, Member Functions, Data Members, and
Source code panes within the Class browser window.

To save a default Class browser window:

1. Set up the Class browser window to your preferences. See Opening a Class
browser window on page 7-8 for information on resizing controls in the Class
browser window.

2. Select Save Default window from the Window menu. The current Class browser
window is saved and used as a default for all your CodeWarrior IDE projects.

7.3.2 Viewing data by type with the Contents view

The Contents window displays browser objects sorted by category into alphabetical
lists.

+���
�
+��������

+�
����
7-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Using the Contents window

To open a Contents window:

1. Ensure that the browser is activated. See Activating the browser on page 7-5 for
more information.

2. Select Browser Contents from the View menu. The CodeWarrior IDE displays
the Contents window (Figure 7-7). Alternatively, you can click the Contents
view button in the Class browser toolbar, or use the Browser context menu.

Figure 7-7 A Contents window

3. Select the category of data you want to view from the Category drop-down list at
the top of the window. The Symbols pane displays an alphabetical list of all
symbols in the current build target for the selected category.

Note
 Functions are listed alphabetically by function name, but the class name is

displayed first. Therefore, it might appear that the functions are not listed
alphabetically.

4. From the contents window you can:

• Right-click on any item in the contents list to display a Browser context
menu for that item. See Using the Browser context menu on page 7-21 for
more information.

• Double-click on any item in the contents list to open an editor window with
the source code for the item.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-17

Working with the Browser
7.3.3 Viewing class hierarchies and inheritance with the hierarchy view

You can use the browser hierarchy view to analyze inheritance in your source code. The
hierarchy window displays a complete graphical map of the classes in the browser
database for the current build target. Each class name is displayed in a box, and related
classes are connected to each other by lines.

To open a hierarchy window and view the class hierarchy for the current build target:

1. Open the hieararchy window. There are three ways to do this:

• Select Class Hierarchy Window from the View menu.

• Click on the Show hierarchy button in the Class browser window

• Use the Browser context menu in the Contents window or the Class
browser window. See Using the Browser context menu on page 7-21 for
more information.

The CodeWarrior IDE displays a hierarchy window for the current build target
(Figure 7-8).

Figure 7-8 The Multi-class hierarchy window

 ���������������������
����

�
������$��%����
�����
������
(
���������
7-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
2. Select Class Hierarchy Window from the View menu. Alternatively, click on the
Show hierarchy button in the Class browser window. The CodeWarrior IDE
displays a hierarchy window for the current build target (Figure 7-8 on page 7-18)

In addition to the entry for each class, the main components of the hierarchy
window are:

Line button
Click this button to toggle between diagonal lines and straight lines.
This feature affects only the on-screen appearance of the hierarchy.

Hierarchy expansion triangle
Click this button to expose or conceal subclasses for a class.

• Click the expansion triangle to toggle the display of subclasses.

• Alt-click an expansion triangle to open all subclasses at all
levels. This is called a deep disclosure.

• Ctrl-click an expansion triangle to open a single level of subclass
in a class and all of its siblings at the same level. This is called a
wide disclosure.

• Ctrl-Alt-Click an expansion triangle to perform a wide and deep
disclosure.

Note
 Ctrl-Alt-click the expansion triangle for a base class that has no

ancestors to expand or collapse an entire map.

Ancestor Class drop-down list
If a class has multiple base classes, the hierarchy window displays a
small triangle (the Ancestor Class triangle) to the left of the class name.
Click on the Ancestor Class triangle to display the Ancestor Class
drop-down list. Figure 7-9 shows an example.

Select the ancestor class you want from the drop-down list to jump to
the hierarchy view for the ancestor class.

Figure 7-9 Ancestor drop-down list

3. Navigate to the class you want to view:

• Use the arrow keys to change the selected class:

— use the up and down key to move between siblings
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-19

Working with the Browser
— use the left and right keys to move between ancestors and
descendents.

• Type the name of the class. The class selection changes to the closest match
to the characters you type.

• Use the Tab key to change the selected class alphabetically.

Note
 The class selected in the hierarchy window changes when you select a class in the

Classes pane of the Class browser window.

4. When you have selected a class you can:

• double-click the class entry, or select the entry and press the Enter key to
open a Class browser window for that class. Viewing data by class with the
Class browser view on page 7-8 for more information.

• Right-click on the class to open a Browser context menu. See Using the
Browser context menu on page 7-21 for more information.
7-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
7.4 Using the browser

This section gives some techniques you can use to perform common tasks with the
browser. It describes:

• Using Go Back and Go Forward

• Using the Browser context menu

• Finding declarations, definitions, overrides, and multiple implementations on
page 7-24

• Using symbol name completion on page 7-27

• Editing code in the browser on page 7-28.

7.4.1 Using Go Back and Go Forward

Use the Go Back and Go Forward commands to retrace your navigational steps
through source code and browser views. Either:

• Click the Go Back or Go Forward buttons in the browser toolbar.

• Click and hold the Go Back and Go Forward buttons to display a drop-down
menu containing a list of previous views (Figure 7-10).

Figure 7-10 Go Back and Go Forward toolbar buttons

• Select Go Back or Go Forward from the Search menu.

Note
 Go Back and Go Forward do not undo any actions you performed.

7.4.2 Using the Browser context menu

The Browser context menu is a context-sensitive menu that provides quick access to
browser information. The Browser context menu is available for any symbol for which
the browser database has data. You can use it to access the source code related to any
symbol. To display the Browser context menu:

1. Ensure that the browser is activated. See Activating the browser on page 7-5 for
more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-21

Working with the Browser
2. Open any of the Class, Contents, or Hierarchy browser windows. See Using
browser views on page 7-8 for more information. You can also open a source code
file in the CodeWarrior editor.

3. Right-click on any symbol name in the window. The Browser context menu is
displayed. The menu commands available in the menu depend on the symbol type
(such as class, function name, and enumeration), and the context in which the
menu was called. Figure 7-11 shows an example of a Browser context menu for
a member function.

Figure 7-11 A Browser context menu for a function

For member functions, you can:

• View the function declaration. See Viewing a class or member declaration
on page 7-24.

• View the function definition. See Viewing a function definition on
page 7-25.

• Use the Find all implementations of command to find all implementations
of a function that has multiple definitions. See Finding overrides and
multiple implementations of a function on page 7-26.

Using the Browser context menu from an editor window

In the editor window, every symbol in your code, such as function names, class names,
data member names, constants, enumerations, templates, macros, and type definitions,
becomes a hypertext link to other locations in your source code. For example, you can
right-click on a class name to:

• open the class declaration

• open a Class browser window for that class

• open aHhierarchy window for that class.

For function names, you can use the Browser context menu to insert function templates
into your code. See Using the Insert template commands on page 7-23 for more
information.

Note
 • The Browser context menu displays a Set Breakpoint menu item in source code

windows. This command is not implemented in the ARM version of the
CodeWarrior IDE.
7-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
• The contextual menu features of the browser work with the CodeWarrior editor,
in addition to all browser windows. For this reason, you should consider enabling
the browser, even if you do not use the browser windows.

You can use symbol name completion to enter a browser symbol into your text file:

1. Select the text and right-click to display the Browser context menu. The menu
contains a list of browser symbols that match part or all of the selected text.
Figure 7-12 shows an example for the character string bm, where bmw and bmw_h are
both symbols in the browser database.

Figure 7-12 Using symbol name completion

2. Select an item from the list to enter it into your text file. See Using symbol name
completion on page 7-27 for other ways to type browser items.

Using the Insert template commands

You can use the context-sensitive menu in an editor window to insert function templates
into your code. To insert a function template for a specific function:

1. Ensure that the Include insert template commands option is selected in the
Browser Display configuration panel. See Editor settings on page 8-18 for more
information. This option is off by default.

2. Type the name of the function you want to insert, and right-click. If the function
has one or more definitions, the Browser context menu displays Insert commands
for each definition. Figure 7-13 on page 7-24 shows an example.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-23

Working with the Browser
Figure 7-13 Inserting a function template

3. Select the function template you want to insert. The CodeWarrior IDE inserts
template code for the function.

7.4.3 Finding declarations, definitions, overrides, and multiple implementations

This section describes how to use the browser to navigate through your source code. It
describes:

• Viewing a class or member declaration

• Viewing a function definition on page 7-25

• Finding overrides and multiple implementations of a function on page 7-26.

Viewing a class or member declaration

Use any of the following methods to display a class or member declaration:

• Select a class name or data member name in a Class browser window. The
declaration is displayed in the Source pane. Double-click the name to open the file
that contains the declaration (if you select or double-click a function name, the
function definition is displayed).

• Click the Class Declaration button in the Class browser window to display a
class declaration in the Source pane.
7-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
• Right-click on a the class or member name in any editor or browser window and
select Go to declaration of name from the Browser context menu to jump to the
declaration.

Viewing a function definition

Use the following methods to display a function definition:

• Select the function in the Member Functions pane of the Class browser window.
The definition is displayed in the Source pane. To open the file that contains the
definition, double-click the function name in the Member Functions pane.

• Right-click on the function name in any editor or browser window and select Go
to definition of name from the Browser context menu to jump to the function
definition.

• Alt-double-click or Ctrl-double-click a function name in any source view. The
Symbol window is displayed for functions with multiple definitions to show all
implementations of that function. Figure 7-14 shows an example for the
symbol f.

Figure 7-14 Symbol window for a multiply defined function

• Right-click on a class name in any browser window. The Browser context menu
displays a list of member functions, if any are defined for the class. Use the menu
to jump to the function definition.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-25

Working with the Browser
Finding overrides and multiple implementations of a function

The Symbol window lists all implementations of any symbol that has multiple
definitions. Typically, these symbols are multiple versions of overridden functions.
However, the Symbol window works for any symbol that has multiple definitions in the
browser database.

To list implementations of a symbol:

1. Find an instance of the symbol name in any browser or editor window. For
example, to find overrides of virtual functions, open a Class browser window and
look for functions that are marked with a virtual identifier icon . These are

either:

• overrides of inherited virtual functions

• virtual functions declared in the class that are not inherited from an
ancestor.

2. Right-click on the symbol name. A Browser context menu is displayed.

3. Select Find all implementations of symbol_name from the Browser context
menu. The CodeWarrior IDE displays the Symbol window with a list of all
definitions for the symbol (Figure 7-15 on page 7-27).

Note
 In a source pane or editor window, Alt-double-click or Ctrl-double-click a

function or other symbol name to find all implementations, and open the Symbol
window without using the contextual menu.
7-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Figure 7-15 The Symbol window

Most of the items in the Symbol window work in the same way as the
corresponding items in the Class browser window. See Viewing data by class with
the Class browser view on page 7-8 for more information. The Symbol window
has two items not found in the Class browser window:

Symbols pane
This pane lists all versions of a symbol in the database. Select an item
in the Symbols pane to display its definition in the Source pane.

Orientation button
Click this button to toggle the orientation of the Symbols pane and the
Source pane.

4. Select an implementation in the Symbol window list to display its definition in the
source pane.

7.4.4 Using symbol name completion

Use the following keyboard commands to find and select browser items that match the
text you have selected or just typed into a source code file.

#�
�����
���������

�$
���������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-27

Working with the Browser
Note
 The following commands are available only from the keyboard. They are not available
in the CodeWarrior IDE menus.

Find symbols with prefix

Type Ctrl-\ to enter the name of a browser item that has the same initial
characters as the text you have selected or just typed.

Find symbols with substring

Type Ctrl-Shift-\ to enter the name of a browser item that has a substring
with the same characters as the text you have selected or just typed.

Get next symbol and Get previous symbol

Type Ctrl-. after using one of the Find symbols commands to search for
the next symbol in the database that matches your search string.

Type Ctrl-, after using one of the Find symbols commands to search for
the previous symbol in the database that matches your search string.

When you find the browser item you want to enter, press the right arrow key to place
the insertion point next to the item and continue typing.

Note
 Another way to find and enter a browser item is to right-click on the first few characters
of the text and wait for the Browser context menu to display. The menu displays a list
of matching items. Select an item to enter it into your text. See Using the Browser
context menu on page 7-21 for more details.

7.4.5 Editing code in the browser

Code displayed in a Source code pane is fully editable. You can use standard
CodeWarrior editor commands to edit your code. See Chapter 5 Editing Source Code
for more information.

Opening a source file

Use any of the following methods to open a source file:

• In the Class browser window, click the Open File button when the file is
displayed in the Source pane (see Figure 7-2 on page 7-9).

• Right-click on a symbol used in the source file and use the Browser context menu
to open the file.
7-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
• Type Ctrl-` to move between a source file and its corresponding header file.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-29

Working with the Browser
7.5 Creating classes and members with browser wizards

When you open a Contents View, Browser View, or Hierarchy View browser window,
the CodeWarrior IDE adds a Browser menu to the main menu bar. You can use the
commands in the Browser menu to display browser wizards that help you create new
classes, member functions, and data members.

Note
 The wizards assume that you have a basic understanding of C++.

The commands in the Browser menu that are implemented by the ARM version of the
CodeWarrior IDE are:

New Class… Displays the New Class wizard to help you create a new class. You
can specify the name, location, file type, and modifiers for the new
class. See Using the New Class wizard.

New Member Function…

Displays the New Member Function wizard to help you create a
new member function for a selected class. You can specify the
name, return type, parameters, modifiers, and other optional
information for the new member function. See Using the New
Member Function wizard on page 7-35.

New Data Member…

Displays the New Data Member wizard to help you create a new
data member for a selected class. You can specify the name, type,
initializer, modifiers, and other optional information for the new
data member. See Using the New Data Member wizard on
page 7-37.

Note
 The New Property…, New Method…, New Event Set…, and New Event… menu
items are not implemented by the CodeWarrior IDE for the ARM Developer Suite.

7.5.1 Using the New Class wizard

You can use the New Class wizard to create a new class declaration, or a class
declaration based on an existing class.
7-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
To create a new class with the New Class wizard:

1. Ensure that one of the browser windows is the currently active window. See Using
browser views on page 7-8 for information on opening browser windows.

2. Select New Class… from the Browser menu. The CodeWarrior IDE displays the
Name and Location page of the New C++ Class Wizard (Figure 7-16).

Figure 7-16 New C++ Class: Name and Location

3. Enter the name and location for the new class:

Class Name
Enter a name for the new class. The wizard names the declaration and
definition files depending on the values you specify for the options
listed below.

Declaration File
Use this drop-down list to specify the type of declaration file.
Depending on the option you choose, different fields become enabled
below the Declaration File drop-down list. You can select either:

New File Select this option to create a new declaration file. Enter the
pathname for the new file, or click Set… to use the standard
file dialog to set a directory for the new file. By default the
file is saved with the name classname.h.

Relative to class
Select this option to add the class to an existing declaration
file. Enter the name of an existing class where you want to
declare the new class, or click Set… to select a class from a
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-31

Working with the Browser
list of current classes in the browser database. Use the
drop-down list to place the new class Before or After the
selected class declaration.

Namespace
Namespaces are not supported by the ARM and Thumb C++
compilers. Leave this field empty.

Use separate file for member definitions
Select this checkbox if you want to use a separate file to define the
members of the new class. Type the path to the separate file in the field
below the checkbox, or click Existing to select the file with the
standard file dialog box. To create a new separate file, click New and
save the new file to a location on your hard disk.

4. Click Next… to move to the next page of the New Class wizard. The Base Class
and methods page is displayed (Figure 7-17).

Figure 7-17 New C++ Class: Base Class and Methods

5. Specify base classes, member functions, and other information for the new class:

Base Classes
Enter a comma-separated list of base classes for the new class.

Generate Constructor and Destructor
Select this checkbox to generate a constructor and destructor for the
new class. The following options are available:

Access Select an access type for the constructor and destructor from
the drop-down list.
7-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Constructor parameters
Enter a list of parameters for the constructor. Example
parameters are listed above the field.

Virtual destructor
Select this checkbox to create a virtual destructor for the
new class.

Namespaces
Namespaces are not supported by the ARM and Thumb C++
compilers. Leave this field empty.

6. Click Next… to move to the next page of the New Class Wizard. The Include
Files page of the New Class wizard is displayed (Figure 7-18).

Figure 7-18 New C++ Class: Include Files

7. Enter a list of any additional #include files for the new class. Separate each file in
the list with a comma. The #include files that are added automatically are listed
in the field above.

8. Click Next… to move to the next page of the New Class wizard. The Targets page
is displayed (Figure 7-19 on page 7-34).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-33

Working with the Browser
Figure 7-19 New C++ Class: Targets

9. Select the checkbox next to one or more build targets to assign the new class to
the build targets you want. You must select at least one build target.

10. Click Finish. The CodeWarrior IDE displays a summary of the class information
you have specified (Figure 7-20).

Figure 7-20 New class summary

11. Click Generate to create the new class.
7-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
7.5.2 Using the New Member Function wizard

You can use the New Member function wizard to create a new member function for an
existing class. To create a new member function with the Member Function wizard:

1. Ensure that one of the browser windows is the currently active window. See Using
browser views on page 7-8 for information on opening browser windows.

2. Select the class to which you want to add the member function. For example, in
the Class browser window, click on the class name in the Classes list at the left of
the window.

3. Select New Member Function… from the Browser menu. The CodeWarrior
IDE displays the Member Declaration panel of the New Member Function
Wizard (Figure 7-21).

Figure 7-21 New Member Function: Member Function Declaration

4. Enter information for the new member function declaration:

Name Enter the name for the member function.

Return type
Enter the function return type.

Parameters
This field is optional. Enter a comma-separated list of parameters for
the member function, if required.

Namespaces required for parameters (optional)
Namespaces are not supported by the ARM and Thumb C++
compilers. Leave this field empty.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-35

Working with the Browser
Modifiers
Modify the function declaration, as required:

• Use the Access drop-down list to specify whether the new
member function is public, protected, or private.

• Use the Specifier drop-down list if you want to declare the new
member function as a virtual, pure virtual, or static function.

• Select the Inline or Const check boxes to declare the function
inline or const. If you select the Inline checkbox, the
CodeWarrior IDE places the framework function definition
within the class.

5. Click Next… to move to the next page of the New Member Function wizard. The
File Locations page is displayed (Figure 7-22).

Figure 7-22 New Member Function: File Locations

6. Specify file locations for the new member function:

Declaration
This field displays the location of the file to which the member
function declaration will be added.

Definition
Enter the path to the file used for the member function definition or
click Existing… to select the file using a standard dialog box. To
create a new file to use for the member function definition, click
New… and save the new file to a location on your hard disk.
7-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Include files automatically added…
This field displays a list of #include files that will be automatically
added to the member function. These files are automatically added
based on the return type and parameters you specified from the
previous section.

Additional header include files
Enter a list of any additional #include files you require for the new
member function.

7. Click Finish. The CodeWarrior IDE displays a summary of the information you
have entered for the new member function declaration (Figure 7-23).

Figure 7-23 New member function declaration summary

8. Click Generate to generate source for the new member function. The
CodeWarrior IDE adds a member function declaration to the selected class, and
creates a framework function definition below the class, or inline if the inline
checkbox is selected.

7.5.3 Using the New Data Member wizard

You can use the New Data Member wizard to create a new data member declaration in
an existing class. To create a new data member for a class:

1. Ensure that one of the browser windows is the currently active window. See Using
browser views on page 7-8 for information on opening browser windows.

2. Select the class to which you want to add the data member. For example, in the
Class browser window, click on the class name in the Classes list at the left of the
window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-37

Working with the Browser
3. Select New Data Member… from the Browser menu. The CodeWarrior IDE
displays the Name and Location page of the New Class Wizard (Figure 7-16 on
page 7-31).

Figure 7-24 New Data Member wizard: Data Member Declaration

4. Declare the new data member:

Name Enter a name for the data member.

Type Enter the data member type.

Namespaces required for type (optional)
Namespaces are not supported by the ARM and Thumb C++
compilers. Leave this field empty.

Initializer
Type an initial value for the data member. This field is optional.

Modifiers
Use the Access and Specifier drop-down lists to select the access level
and member specifier for the new data member. Possible access levels
include Public, Protected, and Private. Possible specifiers include
None, Static, and Mutable. Enable the Const or Volatile checkboxes
as desired to further describe the modifiers of the data member.

5. Click Next… to move to the next page of the New Data Member wizard. The File
Locations page is displayed (Figure 7-25 on page 7-39).
7-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Working with the Browser
Figure 7-25 New Data Member wizard: File Locations

6. Specify file locations for the new data member:

Declaration
This field displays the location of the file to which the data member
declaration will be added.

Definition
This field does not apply to data members.

Include file automatically added for member type
This field displays any #include files automatically added for the
data-member type.

Additional header include files
Enter a list of any additional #include files you require for the new data
member.

7. Click Finish. The CodeWarrior IDE displays a summary of the information you
have entered for the new data member (Figure 7-26 on page 7-40).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-39

Working with the Browser
Figure 7-26 New data member summary

8. Click Generate to generate source for the new data member. The CodeWarrior
IDE adds a data member declaration to the selected class.
7-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 8
Configuring IDE Options

This chapter describes how to set options in the CodeWarrior IDE Preferences window.
In addition, this chapter describes how to configure the CodeWarrior IDE toolbars and
keybindings for commands. It contains the following sections:

• About configuring the CodeWarrior IDE on page 8-2

• Overview of the IDE Preferences window on page 8-3

• Choosing general preferences on page 8-6

• Choosing editor preferences on page 8-18

• Setting commands and key bindings on page 8-31

• Customizing toolbars on page 8-41.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-1

Configuring IDE Options
8.1 About configuring the CodeWarrior IDE

You can use the IDE Preferences window to customize many features of the
CodeWarrior IDE. The settings you specify in this window are global settings. They
affect the way the CodeWarrior IDE works in all projects. You can export your settings
to XML and import an XML settings file. In addition, you can customize toolbars and
commands to suit your own working style.

This chapter describes:

Setting general preferences

General preferences enable you to customize a number of features of the
CodeWarrior IDE, including build settings and global source trees. You
can also export settings to XML and import an XML settings file. See
Choosing general preferences on page 8-6 for more information.

Setting editor preferences

You can use the Editor preference panels to set many options that affect
how you edit text, including the number of items in the Open Recent
submenu, syntax coloring, and font and tabs settings. In addition you can
specify a third-party editor to be used in place of the CodeWarrior editor.
See Choosing editor preferences on page 8-18 for more information.

Customizing commands and keybindings

You can customize the menu commands that are displayed in the
CodeWarrior IDE, and the keyboard shortcuts that are assigned to menu
commands. See Setting commands and key bindings on page 8-31 for
more information.

Customizing toolbars

You can customize the items that are displayed as icons in the
CodeWarrior IDE toolbars. You can create toolbar icons for most menu
commands, and add interface elements to the toolbar. See Customizing
toolbars on page 8-41 for more information.
8-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
8.2 Overview of the IDE Preferences window

This section gives an overview of how to use the IDE Preferences window to configure
global preferences for the CodeWarrior IDE. Detailed instructions on how to set specific
preferences are described in the sections that follow this overview.

8.2.1 Using the IDE Preferences window

This section gives basic information on using the IDE Preferences window to configure
preferences for all your CodeWarrior IDE projects.

Opening the IDE Preferences panel

To open the IDE Preferences panels and select preferences:

1. Select Preferences… from the Edit menu. The CodeWarrior IDE displays the
IDE Preferences window with a hierarchical list of available panels on the left
side of the window. Figure 8-1 shows an example.

Note
 The Debugger preferences panels are not used by the CodeWarrior IDE for the

ARM Developer Suite.

Figure 8-1 The IDE Preferences panel

2. Select the panel you want to configure from the list. You can use the arrow keys
or click the name of the panel.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-3

Configuring IDE Options
Each panel contains related options that you can set. The options you select apply
to all CodeWarrior IDE projects.

3. Select the options you require. See the following sections in this chapter for
detailed descriptions of the options in each configuration panel.

4. Apply or cancel your changes, as required. See Saving or discarding changes for
more information on applying the changes you have made.

Saving or discarding changes

If you make changes in the IDE Preferences window and attempt to close it, the
CodeWarrior IDE displays a Preferences Confirmation dialog box like that shown in
Figure 8-2.

Figure 8-2 Preferences Confirmation dialog box

Click either:

• Save to save your changes and close the dialog box.

• Don’t Save to discard your changes and close the dialog box

• Cancel to continue using the IDE Preferences window without saving changes

In addition, you can use the dialog box buttons in the IDE Preferences window to apply
or discard your changes. The dialog buttons are:

OK Click this button to save any changes that you have made and close the
panel.

Cancel Click this button to close the panel without saving any changes you have
made.

Apply Click this button to commit any changes you have made in any of the
panels. If you have changed an option that requires you to recompile the
project, the CodeWarrior IDE displays a confirmation dialog box. Click
OK or Cancel depending on whether you want to keep your changes or
not.
8-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Factory Settings

Click this button to reset the current panel to the settings that the
CodeWarrior IDE uses as defaults. Settings in other panels are not
affected. Only the settings for the current panel are reset.

Revert

Click this button to reset the state of the current panel to its last-saved
settings. This is useful if you start making changes to a panel and then
decide not to use them for the current panel.

Export Panel

Click this button if you want to export the current settings to XML. Enter
the name of the file to which you want to export the settings and click the
Save button. You can then import these settings at any time.

Import Panel

Click this button if you want to import an XML settings file created by
using the Export Panel option. Select the file you want to import and
click Open to import the settings.

Note
 The Import Panel and Export Panel features are useful if you want to move the
settings for whole panels. If you want to move individual settings between panels, it is
suggested that you cut and paste into the Equivalent Command Line field for each panel.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-5

Configuring IDE Options
8.3 Choosing general preferences

This section describes how to set preferences for the CodeWarrior IDE as a whole,
including editor preferences. The preferences you set apply to all your CodeWarrior
IDE projects.

This section describes:

• Configuring build settings

• Configuring IDE extras on page 8-8

• Configuring plug-in settings on page 8-11

• Configuring shielded folders on page 8-12

• Configuring global source trees on page 8-15.

8.3.1 Configuring build settings

The Build Settings panel enables you to customize a number of project build settings.
To open the Build Settings panel:

1. Select Preferences… from the Edit menu and click Build Settings in the IDE
Preference Panels list. The CodeWarrior IDE displays the Build Settings panel
(Figure 8-3).

Figure 8-3 Build Settings preference panel
8-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
2. Change the following options, as required:

Build before running
Use this drop-down list to configure how the CodeWarrior IDE
responds if you try to run a project and the source or target settings for
the project have been changed since the last build. You can choose:

Always Always build changed projects before running them.

Ask The CodeWarrior IDE will ask you how to proceed if you
have changed the project since the last build.

Never Never build changed projects before running them.

Save open files before build
Select this option if you want to save all open files automatically before
a Preprocess, Compile, Disassemble, Bring Up To Date, Make, Run
or Debug command is executed.

Show message after building up-to-date project
Select this option to configure the CodeWarrior IDE to display a
message when you try to build an up-to-date project. The up-to-date
project is not built.

If this option is not selected, the CodeWarrior IDE does nothing when
you try to build an up-to-date project.

Compiler thread stack (K)
This option is not used by the CodeWarrior IDE for the ARM
Developer Suite.

Use Local Project Data Storage
After loading a project file, the IDE creates or updates an associated
project data folder. The IDE stores intermediate project data in this
folder. After you build or close the project, the IDE uses the
information in the project data folder to update the project file.

By default, the IDE places the project data folder within the same
folder as the project file. However, the IDE cannot create or update a
project data folder in a location that grants read-only privileges. To
specify a different location for the project data folder, enable the Use
Local Project Data Storage checkbox, then click Choose to select the
path to the location you wish to use. For more information on the types
of paths available to you, see Configuring global source trees on
page 8-15.

3. Click Apply to apply your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-7

Configuring IDE Options
8.3.2 Configuring IDE extras

The IDE Extras panel has options to remember previously-opened projects and text
files, and enables you to configure the CodeWarrior IDE to use third-party editors. To
open the IDE Extras panel:

1. Select Preferences… from the Edit menu and click IDE Extras in the IDE
Preference Panels list. The CodeWarrior IDE displays the IDE Extras panel
(Figure 8-4).

Figure 8-4 IDE Extras preference panel

There are three groups of options. For details of how to change the options see:

• Configuring the Menus submenu

• Using a third-party text editor on page 8-9

• Other settings on page 8-10.

Configuring the Menus submenu

Use the Menu bar layout drop-down list to choose the default menu layout for the
CodeWarrior IDE. The name of the menu bar layout suggests the host. For example, use
the Windows menu bar layout to organize IDE menus according to Microsoft®
Windows® user-interface standards. Appendix D CodeWarrior IDE Reference shows
the organization of the menu commands under each menu bar layout.

To choose the default menu layout:

1. Open the IDE Extras panel (see Configuring IDE extras).
8-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
2. Select either Windows or Macintosh from the Menu bar layout drop-down list.

Note
 The CodeWarrior IDE for the ARM Development Suite does not use the Macintosh
layout, and only the Windows layout is documented in this User Guide.

You can configure how many projects and documents are displayed in the File → Open
Recent submenu. To set the number of project and documents displayed:

1. Open the IDE Extras panel (see Configuring IDE extras on page 8-8).

2. Enter values for the following text fields:

Recent projects
Enter the maximum number of projects you want the CodeWarrior IDE
to display in the File → Open Recent submenu.

Recent documents
Enter the maximum number of files you want the CodeWarrior IDE to
display in the File → Open Recent submenu.

Recent symbolics
Enter the maximum number of symbolics you want the CodeWarrior
IDE to display in the File → Open Recent submenu.

Note
 CodeWarrior IDE for the ARM Development Suite does not use symbolic files.

3. Click Apply to apply your changes.

Using a third-party text editor

You can configure the CodeWarrior IDE to use a third-party text editor in place of its
built-in text editor. To use a third-party editor:

1. Open the IDE Extras panel (see Configuring IDE extras on page 8-8).

2. Select the Use Third Party Editor checkbox. When this checkbox is selected,
the CodeWarrior IDE uses the third-party text editor you specify to open text files.

3. Enter the command line to invoke the text editor:

a. Type the name of the editor you want to use in the Launch Editor text field.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-9

Configuring IDE Options
b. Type the name of the editor and an initial line of text to jump to on launch
in the Launch Editor w/Line # text field. The IDE invokes this command
line when you double-click on an error message to display the line in the
text file that caused the error message.

You can use two variables to specify the file you want to open, and the line you
want to jump to:

%file The CodeWarrior IDE expands this into the full pathname of the file.

%line The CodeWarrior IDE expands this into the initial line number for the
file.

For example, to use the Emacs text editor to edit text files, type:

runemacs %file

into the Launch editor text field, and type:

runemacs +%line %file

into the Launch Editor w/Line # text field.

See your text editor documentation for more information on specifying line
numbers.

Note
 The CodeWarrior IDE does not recognize that files have been modified in a third

party editor if the Use modification date caching option is selected. See
Configuring build extras on page 9-20 for more information.

4. Click Apply to apply your changes.

Other settings

The Other Settings group has a single option that enables you to configure which
Windows interface style is used by the CodeWarrior IDE. To change the Windows
interface style:

1. Open the IDE Extras panel (see Configuring IDE extras on page 8-8).

2. Select the Use Multiple Document Interface checkbox to use the Windows
Multiple Document Interface (MDI).

Deselect the checkbox to use the Floating Document Interface (FDI).

3. Click Apply to apply your changes. You must quit and restart the CodeWarrior
IDE to apply your changes.
8-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
8.3.3 Configuring plug-in settings

Use the plug-in Settings panel to specify how much plug-in diagnostic information the
CodeWarrior IDE provides. Plug-in diagnostic information is useful if you are using the
CodeWarrior IDE to develop plug-ins for the CodeWarrior IDE. Use this panel if you
have problems getting your plug-in to function properly, or if you want more
information about the properties of installed plug-ins.

Note
 You cannot develop CodeWarrior plug-ins with ARM Developer Suite tools. However,
if you develop a CodeWarrior plug-in using the standard Metrowerks CodeWarrior
development environment and the plug-in SDK, you can use this option to diagnose
problems when you run the plug-in from the ARM CodeWarrior environment.

To set plug-in diagnostics:

1. Select Preferences… from the Edit menu and click Plugin Settings in the IDE
Preference Panels list. The CodeWarrior IDE displays the Plugin Settings panel
(Figure 8-5).

Figure 8-5 Plugin settings panel

2. Select the level of plug-in diagnostics you want. You can specify three levels of
plug-in diagnostics:

None Select this setting if you do not want to generate plug-in diagnostics.
This is the default setting. No plug-in diagnosis takes place, and no
output is produced.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-11

Configuring IDE Options
Errors Only
Select this setting to display errors that occur when the CodeWarrior
IDE loads plug-ins. The errors are displayed in a new text document
after the CodeWarrior IDE starts up. You can save or print the text file
after it is generated so you can have a convenient error reference when
troubleshooting your plug-ins.

All Info Select this setting to display detailed information for each plug-in.
Problems with loading plug-ins, optional plug-in information, and
plug-in properties are reported. This information is displayed in a new
text document after the CodeWarrior IDE starts up.

The text document includes a complete list of installed plug-ins and
their associated preference panels, compilers, and linkers, and provides
suggestions for correcting general plug-in errors. You can save or print
the text file after it is generated so you can have a convenient error
reference when troubleshooting your plug-ins.

3. Click Disable third party COMplugins if you want do disable all third-party
Common Object Model (COM) plug-ins for the CodeWarrior IDE. This can be
helpful for troubleshooting purposes.

Note
 If you experience problems while using the CodeWarrior IDE, you should select

this option. If the problem no longer occurs after disabling third-party plug-ins,
this indicates that the source of the problem might be conflicts between
third-party plug-ins and the plug-ins supplied with the CodeWarrior IDE.

4. Click Apply to apply your changes. The CodeWarrior IDE warns that you must
quit and restart the CodeWarrior IDE for the changes to take effect. plug-in
diagnostics are generated when you restart the CodeWarrior IDE.

8.3.4 Configuring shielded folders

The Shielded Folders panel enables you to configure the CodeWarrior IDE to ignore
specified folders during certain operations. This option is useful if you want to avoid
collisions between example files or version control data, for example. You specify
regular expressions that match the names of the folders that you want to ignore. The IDE
treats matching folders as shielded folders and ignores their contents. For more
information about regular expressions, see Using regular expressions on page 6-18.
8-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
The Shielded Folders list at the top of the panel shows the current list of regular
expressions. The IDE uses this list to determine whether to shield folders from the
current project. The following regular expressions appear in the Shielded Folders list by
default:

• The \(.*\) regular expression matches folders with names that begin and end
with parentheses, such as (Project Stationery).

• The CVS regular expression matches folders named CVS. With this regular
expression, the IDE skips data files used by the CVS version control system

• The .*[_]Data regular expression matches the names of folders used by the IDE
to store target data information, such as MyProject_Data.

The Shielded Folders list includes two columns. These columns represent different
types of operations for which you can shield folders:

A bullet in the Project operations column indicates that the IDE ignores matching
folders for project operations. Such operations include dragging a folder into the Project
window, building a project, and searching access paths for source or include files after
choosing the Open command.

A bullet in the Find-and-compare operations column indicates that the IDE ignores
matching folders for find-and-compare operations. These operations include dragging
a folder into fields in the Find window, or comparing folder contents.

Note
 You can configure a project target to include items within a shielded folder. Use the
Access Paths target settings panel to specify the path to the shielded folder that you want
to include.

To add a regular expression to the Shielded Folders list:

1. Select Preferences… from the Edit menu and click Shielded Folders in the IDE
Preference Panels list. The CodeWarrior IDE displays the Shielded Folders
settings panel (Figure 8-5 on page 8-11).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-13

Configuring IDE Options
Figure 8-6 Shielded Folders settings panel

2. Enter in the Regular Expression field the expression that specifies the folders you
want to ignore. You can enter the name of a specific folder, or you can enter a
regular expression that matches several folder names.

3. Choose whether to shield matching folders from project operations, from
find-and-compare operations, or from both. Enable the Project operations
checkbox, the Find and compare operations checkbox, or both. During the
operations that you specify, the IDE ignores folders with names that match the
regular expression.

4. Click Add. After you click the Add button, the regular expression appears in the
Shielded Folders list. Bullets in the list indicate the operations for which the IDE
ignores matching folders.

5. Click Apply to apply your changes.

To modify an existing regular expression:

1. Select Preferences… from the Edit menu and click Shielded Folders in the IDE
Preference Panels list. The CodeWarrior IDE displays the Shielded Folders
settings panel (Figure 8-5 on page 8-11).

2. Select the regular expression you want to modify.

3. Modify the regular expression using the Regular Expression text box.

4. Specify the operations you want to skip matching folders for, by enabling the
Project operations checkbox, the Find and compare operations checkbox, or
both.
8-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
5. Click the Change button. After you click the Change button, the modified regular
expression appears in the Shielded Folders list. Bullets in the list reflect the
changes that you made to the corresponding operations.

6. Click Apply to apply your changes.

To remove an existing regular expression:

1. Select Preferences… from the Edit menu and click Shielded Folders in the IDE
Preference Panels list. The CodeWarrior IDE displays the Shielded Folders
settings panel (Figure 8-5 on page 8-11).

2. Select the regular expression you want to remove.

3. Click the Remove button. The IDE deletes the regular expression from the
Shielded Folders list.

4. Click Apply to apply your changes.

8.3.5 Configuring global source trees

The Source Trees settings panel enables you to define global source trees (root paths)
for use in your projects. Source trees are used in dialogs that require you to select a path
type, such as the Source Trees panel (shown in Figure 8-7 on page 8-16). You can define
your project access paths and build target output in terms of source trees. See
Configuring access paths on page 9-11 for more information.

The CodeWarrior IDE predefines four global source tree types:

• absolute path

• project relative

• compiler relative

• system relative.

You can define additional source trees in two panels:

IDE Preferences panel

You can use the source trees you define in the IDE Preferences panel with
all projects. This section describes how to configure global source trees.

Target Settings panel

You can use the source trees you define in the Target Settings window
with the current build target only. See Configuring source trees on
page 9-26 for information on configuring target-specific source trees.

If you define the same source tree in both panels, the target-specific source trees take
precedence over the global source trees.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-15

Configuring IDE Options
To add, change, or remove a source tree for all projects:

1. Select Preferences… from the Edit menu and click Source Trees in the IDE
Preference Panels list to display the configuration panel (Figure 8-7). The source
trees panel displays a list of currently-defined source paths.

Figure 8-7 Source Trees panel

2. Edit the source tree details:

• To remove or change an existing source path, double-click the entry in the
list of source trees. The source tree details are displayed. Click Remove to
remove the source tree, or follow the steps below to modify it.

• To add a new source tree, type a name for the new source path in the Name
field.

3. Click the Type drop-down list to select the type of source tree. Select one of:

Absolute Path
Select this option to choose a specific directory as the root for your
source tree.

Environment Variable
Select this option to choose a directory defined in an environment
variable as the root for your source tree.

Registry Key
Select this option to choose a directory defined in a Windows registry
key as the root for your source tree.
8-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
4. Choose the source tree root:

• If the source tree is an absolute path, click Choose… to select the root
directory from the standard file dialog.

• If the source key is an environment variable, enter the name of the
environment variable in the Name box and select a type from the Type
drop-down list. If the environment variable is defined, the source tree
window adds the source tree to the list of defined source trees and displays
the value of the environment variable.

• If the source tree is a registry key enter the full pathname of the registry key,
without the prefix volume label (such as My Computer), and ending with the
name of the registry entry. If the registry key is defined, the source tree
window adds the source tree to the list of defined source trees and displays
the value of the registry key. For example, to add the directory defined by
the ARMHOME registry entry, enter:
HKEY_LOCAL_MACHINE\SOFTWARE\ARM Limited\ARM Developer
Suite\v1.2\ARMHOME

5. Click one of the following:

• Add if you are adding a new source tree

• Change if you are modifying an existing source tree

• Remove to remove the selected source tree.

6. Click Apply to apply your changes. The new source tree name is displayed in
dialogs that require you to select a path type, such as the Source Trees panel
(shown in Figure 8-7 on page 8-16). See Configuring access paths on page 9-11
for more information on adding access paths to CodeWarrior projects.

Note
 If you have used a non-predefined global source tree as an access path in a project that
you are providing to another developer, you must also provide a copy of the Source
Trees panel. Do this by using the Export Panel... button to save a copy of the panel. See
Using the IDE Preferences window on page 8-3 for information on using the Export
Panel... button.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-17

Configuring IDE Options
8.4 Choosing editor preferences

This section describes the preference panels that control editor features. The editor
panels are described in:

• Editor settings

• Font & Tabs on page 8-22

• Text Colors on page 8-25.

8.4.1 Editor settings

This section describes how to configure the behavior of the CodeWarrior editor. To open
the Editor Settings panel:

1. Select Preferences… from the Edit menu. The CodeWarrior IDE displays the
IDE Preferences dialog.

2. Click Editor Settings in the IDE Preference Panels list. The CodeWarrior IDE
displays the Editor Settings panel (Figure 8-8).

Figure 8-8 Editor Settings preference panel

There are three groups of options. For more information on changing the options
see:

• Setting Remember options on page 8-19

• Specifying Contextual Menus on page 8-19

• Specifying Other Settings on page 8-20.
8-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Setting Remember options

The Remember options determine the editor window settings that are saved from one
programming session to the next. To set Remember options:

1. Open the Editor Settings panel (see Editor settings on page 8-18).

2. Select the options you want the CodeWarrior IDE to remember between editing
sessions:

Font preferences
Select this option to specify that font information for individual files is
remembered. If this option is not selected, all files inherit the default
font settings from the CodeWarrior IDE.

Window position and size
Select this option to save the window position and size of editor
windows when they are closed.

Selection position
This option instructs the CodeWarrior IDE to remember what text was
scrolled into view, and the location of the insertion point or selection,
at the time the file is closed. You must turn this option off if you want
the editor to go to the top of the file when it opens.

Note
 The CodeWarrior IDE can remember the window position and selection position

of a file only if the file is writable. Files might not be writable if you are using a
version control system and have checked out a read-only copy of a file. See
Performing common VCS operations on page 10-7 for more information.

3. Click Apply to apply your changes.

Specifying Contextual Menus

The Contextual Menus options toggle the display of specific types of menu commands
in the contextual menus.

Edit Commands

Enable this checkbox to display commonly used menu commands from
the Edit menu. See Edit menu on page D-5 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-19

Configuring IDE Options
Browser Commands

Enable this checkbox to display commonly used menu commands from
the Browser menu. See Browser menu on page D-20 for more
information. After you enable this checkbox, you can also enable the
Insert Template Commands checkbox to display templates from your
source code. The contextual menus then display the Insert Template
command, as shown in Figure 7-13 on page 7-24. If necessary, this
command displays a submenu that lists the templates.

Project Commands

Enable this checkbox to display commonly used menu commands from
the Project menu. See Project menu on page D-13 for more information.

Insert Template Commands

Enable this checkbox to insert function templates into your source code.

VCS Commands

Enable this checkbox to display commonly used menu commands from
the VCS menu. See Version Control System (VCS) menu on page D-23
for more information.

Debugger Commands

Debugger commands Enable this checkbox to display commonly used
menu commands from the Debug menu. See Debug menu on page D-16
for more information.

Note
 The Debug menu is not used by the CodeWarrior IDE for the ARM

Developer suite.

Specifying Other Settings

The Other Settings options control how the editor works. To change these settings:

1. Open the Editor Settings panel (see Editor settings on page 8-18).

2. Select the options you require. The options available are:

Balance while typing
Select this option to instruct the CodeWarrior IDE to check for
balanced parentheses, brackets, and braces as you type. When you type
a right parenthesis, bracket, or brace, the editor attempts to locate the
matching left counterpart. If the counterpart is found, the editor brings
8-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
it into view, highlights it for a length of time specified by the Balance
Flash Delay (which can be specified in the text box at the bottom of this
pane), and returns to where you were typing. If the counterpart is not
found, the editor beeps. By default, the Balance while typing option
is on.

Note
 If you want to check for balanced punctuation without highlighting it,

set the Balance Flashing Delay to 0.

Use multiple undo
Select this option to undo and redo multiple actions. If this option is not
selected, you can undo or redo only the last action that you performed.
See Redo, Multiple Undo, and Multiple Redo on page D-6 for more
information.

Relaxed C popup parsing
Select this option if you use K&R-style coding conventions in your
source code. This option instructs the CodeWarrior IDE to recognize
and display function names in the Functions drop-down menu. You
must deselect this option if you use nonstandard macros that can
interfere with K&R-styled code.

Note
 Some macro functions are not recognized when this option is enabled.

If you encounter problems with viewing function names, disable this
option and try again.

Drag and drop editing
Select this option to enable drag-and-drop text editing support in the
editor. See Moving text with drag and drop on page 5-13 for more
information on drag & drop editor features.

Left margin click selects line
Select this option to enable left margin editing features. Moving the
mouse pointer to the left edge of an editor window changes the mouse
pointer into a right-pointing arrow. Clicking the window when the
mouse pointer faces right selects the line at the mouse pointer. Clicking
and dragging the mouse when the mouse pointer faces right selects
more than one line. When this option is not selected, the mouse pointer
always faces left and cannot select an entire line with a click.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-21

Configuring IDE Options
Sort function popup
Select this option if you want items in the Functions drop-down menu
in the editor window to be sorted alphabetically by default. See Using
the Functions drop-down menu on page 5-17 for more information.

Enable Virtual Space
Enable this checkbox to use virtual spaces in the editor. With virtual
spacing enabled, you can use the arrow keys to move the text-insertion
point past the end of a line of source code. The editor automatically
inserts spaces between the former end of the line and newly entered
text.

Balance Flash Delay (ticks)
Use this text field to specify the amount of time the CodeWarrior editor
highlights an opening parentheses, bracket, or brace when balancing
punctuation. The Flashing Delay is measured in 60ths of a second. See
Balancing punctuation on page 5-14, and the description of Balance
while typing above for more information.

Enter a value of 0 (zero) if you want to disable flashing entirely.

Default file format
Use the Default text file format drop-down list to set the end-of-line
conventions that the CodeWarrior IDE uses to create new files. You can
choose from:

• DOS

• UNIX

• Macintosh.

3. Click Apply to apply your changes.

8.4.2 Font & Tabs

The Font & Tabs panel enables you to set the default font and tab information for the
CodeWarrior editor. You can change:

• the default settings used by the CodeWarrior IDE for all editor windows

• the settings to be used for an individual file.

Note
 To change settings for individual files, you must ensure that the Remember Font
preferences option is selected in the Editor configuration panel. See Setting Remember
options on page 8-19 for more information. See Setting the font and tabs for a single file
on page 8-23 for detailed instructions.
8-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
To open the Font & Tabs panel:

1. Select Preferences… from the Edit menu. The CodeWarrior IDE displays the
IDE Preferences dialog.

2. Click Font & Tabs in the IDE Preference Panels list. The CodeWarrior IDE
displays the Font & Tabs panel (Figure 8-9).

Figure 8-9 Font & Tabs preference panel

For more information on setting font and tabs options see:

• Setting the font and tabs for a single file

• Setting font and tabs defaults on page 8-24.

Setting the font and tabs for a single file

To change the font settings for an individual file:

1. Ensure that the Remember Font preferences option is selected in the Editor
configuration panel. See Setting Remember options on page 8-19 for more
information.

2. Ensure that the editor window you want to configure is the active window.

3. Open the Font & Tabs preference panel (see Font & Tabs on page 8-22).

4. Select the display font, font size, and script from the drop-down lists, if required.
The font and size you select here are applied to the current editor window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-23

Configuring IDE Options
5. Select tab options if required. The available options are:

Auto Indent
Select this option to maintain the current indent level when you press
the Enter key.

Tab Size Enter a tab size, in number of spaces. The CodeWarrior IDE:

• sets the tab character to the number of spaces you have selected,
if the Tab Inserts Spaces option is not selected

• sets the number of characters to be inserted, if the Tab Inserts
Spaces option is selected.

Tab indents selection
Select this option if you want the CodeWarrior IDE to indent selected
lines when you press the Tab key. If this option is not set, selected lines
are replaced with a Tab character when you press the Tab key.

Note
 This option applies only to selected complete lines of text. If you select

one or more words within a line and press Tab, the CodeWarrior IDE
replaces the selection.

Tab Inserts Spaces
Select this option to insert space characters, instead of a tab character,
when you press the Tab key.

6. Click Apply to apply your changes. The CodeWarrior IDE applies your settings
to the current editor file, and uses the settings when you close and re-open the file.

Note
 The CodeWarrior IDE can store the font settings for a file only if the file is

writable. Files might not be writable if you are using a version control system and
have checked out a read-only copy of a file. See Performing common VCS
operations on page 10-7 for more information.

Setting font and tabs defaults

To set the default font and tab settings that the CodeWarrior IDE will use for all text files
that do not have individual settings specified:

1. Ensure that the Remember Font preferences option is not selected in the Editor
configuration panel. See Setting Remember options on page 8-19 for more
information.
8-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
When this option is not selected, any changes you make in the Font & Tabs
configuration panel apply to all CodeWarrior IDE editing sessions.

2. Follow the instructions in Setting the font and tabs for a single file on page 8-23
to select font and tab options. You do not require an open editor window to set
default values.

8.4.3 Text Colors

The Text Colors preferences panel enables you to change the default text coloring in
your source code.

Note
 Syntax coloring does not apply to assembly language source. However, you can use
browser coloring to highlight assembly language constructs in the browser.

It also provides four Custom Keyword sets that you can use to specify the text color for
your own keyword sets. The Custom Keywords list can contain function names, type
names, or anything else you want highlighted in your editor windows.

To open the Text Colors panel:

1. Select Preferences… from the Edit menu. The CodeWarrior IDE displays the
IDE Preferences window.

2. Click Text Colors in the IDE Preference Panels list. The CodeWarrior IDE
displays the Text Colors panel (Figure 8-10).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-25

Configuring IDE Options
Figure 8-10 Text Coloring preference panel

Changing text colors

In the Text Colors section of the panel, set the following options:

Foreground This option configures the color of any text not affected by the options in
the Syntax Coloring or Browser Coloring sections. Click the color swatch
to change the current color.

Background This option configures the color of the areas on which text appears. Click
the color swatch to change the current color.
8-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Changing syntax coloring

The CodeWarrior IDE can use different colors for each type of text. Table 8-1 Syntax
coloring highlights lists and describes the elements that can be configured.

Before you can change the syntax coloring options, you must enable the Activate
Syntax Coloring checkbox.

Note
 You can use Syntax Coloring from the Document Settings drop-down menu to turn
syntax coloring on or off as you view a particular file. See Controlling color on
page 5-16 for more information.

Using color for custom keywords

You can use the Custom Keywords section of the Text Colors panel to choose additional
words to display in color. These words can be macros, types, or other names that you
want to highlight. These keywords are global to the CodeWarrior IDE and will apply to
every project.

To add one or more keywords to a Custom Keyword Set:

1. Open the Text Colors panel (see Text Colors on page 8-25).

2. Click Edit… to the right of the Custom Keyword Set you want to modify. The
CodeWarrior IDE displays the Custom Keywords dialog box (Figure 8-11).

Table 8-1 Syntax coloring highlights

Element Description

Comments Code comments. In C or C++, a comment is text enclosed by /*
and */ or text from // to the end of the line.

Keywords C and C++ language keywords. It does not include any macros,
types, or variables that you or the system header files define.

Strings Anything that is not a comment, keyword, or custom keyword.
Sample strings include literal values, variable names, routine
names, and type names.

Custom keywords Any keyword listed in the Custom Keyword List. This list is
useful for macros, types, and other names that you want to
highlight. See Using color for custom keywords on page 8-27.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-27

Configuring IDE Options
Figure 8-11 Custom Keywords dialog box

3. Type a keyword in the Custom Keywords text field. Check Case Sensitive if you
want the IDE to match the case of each keyword in the list when applying your
color settings. You can also import sets of custom keywords that you have already
saved. See Importing and exporting custom keywords on page 8-29 for more
information.

4. Click Add. The CodeWarrior IDE adds the keyword to the Custom Keywords list.

Note
 To delete a keyword from the list, select the keyword and then press Backspace.

The CodeWarrior IDE removes the keyword from the Custom Keywords list.

You might not be able to add keywords if the Custom Keywords list is very large.
If the CodeWarrior IDE is unable to add a keyword to the list, it displays a dialog
box informing you that adding the keyword was unsuccessful.

5. Click Done when you have finished. The dialog box is closed.

6. Click Apply to apply your changes. The changes you have made are applied to
your current editor windows. All the custom keywords you have defined are
displayed in the appropriate color.

Note
 • If you define a keyword in more than one Custom Keyword set, the

CodeWarrior IDE uses the definition from the first set it encounters. For
example, definitions in Custom Keyword Set 1 are used before those in
Custom Keyword Set 2.
8-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
• You can also set target-specific colors for custom keywords. See Custom
Keywords on page 9-79 for more information.

Importing and exporting custom keywords

You can use the Custom Keywords dialog box to export and import lists of defined
keywords. To save a list of the keywords defined in a Custom Keyword Set, or to
re-import a list of keywords that you have already saved:

1. Open the Text Colors panel (see Figure 8-10 on page 8-26).

2. Click Edit to the right of the Custom Keyword Set you want to export or import
to (see Figure 8-10 on page 8-26).

3. Click either:

• Export to file…, if you want to save the current list of keywords

• Import from file…, if you want to load new keywords into the current list.

The CodeWarrior IDE displays a standard file dialog box.

4. Depending on whether you are exporting or importing a keyword set, use the
standard file dialog box to:

• Enter the name of the file you want to save to.

• Open the file that contains the list of keywords you want to import. If you
are importing a custom keyword set, the CodeWarrior IDE adds the
keywords in the imported file to any keywords already defined for the
current set.

5. Click Done. To close the dialog box and save your changes.

6. Click Apply in the Syntax Coloring panel to apply the changes to your current
editor files.

Changing browser coloring

The Browser Display section of the Text Colors panel enables you to customize the
browser. The browser can export its lists of symbols and their types to the CodeWarrior
editor. This enables the editor to use different colors for displaying various types of
symbols.

Before you can change the browser coloring options, you must enable the Activate
Browser Coloring checkbox.

The color choice for each symbol type is displayed in both the editor window and the
browser window. Click the color swatch to change the current color.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-29

Configuring IDE Options
8.5 Choosing debugger preferences

This panel is not used by the CodeWarrior IDE for the ARM Developer Suite.
8-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
8.6 Setting commands and key bindings

This section describes how to:

• specify customized commands that can appear in the CodeWarrior IDE menus

• assign keyboard shortcuts to commands and change keyboard shortcuts that are
already defined.

See also Customizing toolbars on page 8-41 for information on customizing
CodeWarrior IDE toolbars.

8.6.1 Opening the Customize IDE Commands window

The Customize IDE Commands window contains two tabbed panels that enable you to
specify your own commands, assign keybindings to commands, and customize the
CodeWarrior IDE toolbar. To open the Customize IDE commands window:

1. Select Commands & Keybindings… from the Edit menu. The CodeWarrior
IDE displays the Customize IDE Commands window (Figure 8-12). The window
contains two tabbed panels.

Figure 8-12 Key Bindings panel

2. Click either:

• The Commands tab, to display the key bindings customization panel. The
CodeWarrior IDE commands are displayed in a hierarchical list, ordered by
their menu names.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-31

Configuring IDE Options
• The Toolbar Items tab, to display the toolbar control elements that you can
add to the CodeWarrior IDE toolbars. See Customizing toolbars on
page 8-41 for more information.

3. Click a hierarchical control next to a command group to display the commands
for the command group. Figure 8-13 shows an example for the Edit group of
commands.

Note
 Some commands are not implemented by the ARM version of the CodeWarrior

IDE.

Figure 8-13 List of Edit commands

4. Click on a command to select it. The default key bindings for the command are
displayed. See Customizing keybindings on page 8-36 for more information on
modifying key bindings. See Customizing toolbars on page 8-41 for more
information on adding commands to the CodeWarrior IDE toolbar.

8.6.2 Adding your own commands to the CodeWarrior IDE

You can use the Commands & Keybindings command in the Edit menu to add menu
items and keybindings for your own external executable commands. You can add
commands to existing CodeWarrior IDE menus, or you can create your own menu
groups. To configure your own commands:

1. Open the Customize IDE Commands window. See Opening the Customize IDE
Commands window on page 8-31.

2. Create a new group if you want to create a new menu for the command. See
Creating a new command group on page 8-34 for more information.
8-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
3. Select the group to which you want to add the command and click New
Command.

Note
 You cannot add your own commands to some default CodeWarrior IDE groups.

The CodeWarrior IDE adds Action configuration fields to the Commands window
(Figure 8-14).

Figure 8-14 Configuring a new command

4. Enter the name of the command to run in the Execute field, or click the … button
and select the command from the standard file dialog.

5. Enter arguments to the command in the Arguments field, if required. You can
click on the drop-down list button next to the text field to select arguments from
a list of CodeWarrior IDE internal variables.

For example, select the Editor Selected Text drop-down list item to specify the
text selected in the current editor window as an argument to the command.
Figure 8-15 on page 8-34 shows an example.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-33

Configuring IDE Options
Figure 8-15 Mail selection command

6. Enter the name of the working directory from which the command is to be
executed, if required. You can click on the drop-down list button next to the text
field to select arguments from a list of CodeWarrior IDE internal variables.

For example, select the Current Target Output File Directory drop-down list
item to specify the directory that contains the output from the currently selected
build target.

7. Define one or more keybindings for the new command, if required. See
Customizing keybindings on page 8-36 for more information.

8. Click Save to save your settings. The CodeWarrior IDE adds the command to the
specified group.

Creating a new command group

To create a new group for your own commands and optionally display it in the main
menu:

1. Open the Customize IDE Commands window. See Opening the Customize IDE
Commands window on page 8-31.

2. Click New Group…. The CodeWarrior IDE inserts the new group into the
commands list (Figure 8-16 on page 8-35).
8-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Figure 8-16 Creating a new group

3. Type a name for the new group in the Name text field.

4. Ensure that the Appears in Menus option is selected if you want to add a menu
for the new group to the main CodeWarrior IDE menu bar.

5. Click Save. The CodeWarrior IDE changes the name of the new group and creates
a new menu with the same name as the group.

Deleting a command or group

To delete a command or group that you have created:

1. Open the Customize IDE Commands window. See Opening the Customize IDE
Commands window on page 8-31.

2. Select the command or group you want to delete.

3. Click Delete.

4. Click Save. The CodeWarrior IDE removes the selected command or group.

Note
 You only remove commands or groups that you have created, and not those that are
pre-defined by the CodeWarrior IDE.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-35

Configuring IDE Options
8.6.3 Customizing keybindings

This section describes how to customize the default CodeWarrior IDE keybindings
definitions and options. You can customize the keyboard shortcuts used for menu,
keyboard, and editor commands in the CodeWarrior IDE. You can attach or bind almost
any key to any command, and you can define multiple keybindings for the same
command. You can set the key bindings for menu commands, source code editor
actions, and other miscellaneous actions. You can also create multiple-keystroke
command bindings.

This section describes:

• Restrictions on choosing key bindings

• Using multiple-keystroke bindings

• Setting the Prefix Key Timeout on page 8-37

• Using a Quote Key prefix to create single-key keybindings on page 8-37

• Setting Auto Repeat for keybindings on page 8-39

• Adding a new keybinding on page 8-39

• Deleting a keybinding on page 8-40

• Exporting key bindings on page 8-40

• Importing key bindings on page 8-40.

Restrictions on choosing key bindings

The following restrictions apply to the keys you can bind to actions:

• The Escape and Space keys are always invalid for key bindings.

• Function keys and the Clear key are valid for creating key bindings.

• The Return and Tab keys require at least the Control or Shift key. This restriction
does not apply for the second key of a two-key sequence.

Using multiple-keystroke bindings

You can create multiple-keystroke command keys, such as those used in the Emacs text
editor. For example, the key sequence in Emacs to save a file is Control-X followed by
Control-S.

To emulate the Emacs key binding to save a file:

1. Delete the Ctrl-X keybinding for the Cut command. You must delete the current
keybinding because you cannot assign the same keybinding to more than one
command.

2. Delete the Ctrl-S keybinding for the Save command.

3. Set the command key for the Save command to Control-X Control-S.
8-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
You can adjust the maximum time to wait for a key press after a the first key sequence
is pressed (see Setting the Prefix Key Timeout).

Setting the Prefix Key Timeout

The Prefix Key Timeout field sets the length of time that the CodeWarrior IDE waits for
the second key sequence after the first sequence in a multi-keystroke binding is pressed.
Larger values indicate that the CodeWarrior IDE will wait longer for the second key to
be pressed.

To set the Prefix Key timeout:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Enter the value for the timeout key in the Prefix Key Timeout text field.

The timeout value is in ticks (1/60th of a second). Valid values are in the range of
1 to 999. The default value is 120.

3. Click Apply to save your settings.

Using a Quote Key prefix to create single-key keybindings

In typical use, a key binding requires you to use two keys in combination:

• a modifier key, such as the Control key

• a printing key, such as the 1 key.

However, you can define key bindings that do not require a modifier key. For example,
you can assign the key for the number 1, with no modifier, to a command.

If you assign a keybinding to a single printing key, you must type a Quote Key prefix in
order to ignore the keybinding and type the printing character associated with the key.
For example, if you have assigned the 1 key to a command and the tilde (~) key as the
Quote Key, you must type ~1 in order to enter the character 1 into an editor window. To
enter a tilde character you must type the tilde key twice.

Note
 The Quote Key affects only the next key or combination of keys that you type. You must
use the Quote Key once for each bound key or combination of keys for which you want
to type the equivalent character on-screen.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-37

Configuring IDE Options
By default, the CodeWarrior IDE does not define a Quote Key. To assign a Quote key:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Click the hierarchical control next to the Miscellaneous group and select the
Quote Key entry (Figure 8-17).

Figure 8-17 Selecting the quote key

3. Click New Binding to display the Edit Key Binding dialog (Figure 8-18).

Figure 8-18 New Key binding for the Quote key

4. Type the key you want to use as the quote key prefix and click OK to set the key
binding.

5. Click Apply to apply your settings.
8-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Setting Auto Repeat for keybindings

You can use Auto Repeat to specify that a keybinding is repeated automatically when
you press and continue to hold down its key combination. For example, you can use
Auto Repeat with the Find Next command to repeatedly find a search string in a file.
You can configure Auto Repeat separately for each key binding.

Adding a new keybinding

To add a new keybinding for a command:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Click the hierarchical control next to the command group for the command you
want to modify and select the command from the list.

3. Click New Binding. The CodeWarrior IDE displays the Edit Keybinding dialog
(Figure 8-19).

Figure 8-19 Edit Keybinding dialog

4. Type the key sequence you want to use for the command, and click either:

• OK to confirm your setting

• Cancel if you make a mistake.

5. Click Apply to apply your settings.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-39

Configuring IDE Options
Deleting a keybinding

To delete a keybinding:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Select the keybinding you want to delete.

3. Press the Delete key. The keybinding is deleted from the list of keybindings.

4. Click Apply to apply your settings.

Exporting key bindings

You can save your key bindings in a file so that you can later import them into the
CodeWarrior IDE at another time. To export your current key bindings:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Click Export. A standard file dialog box is displayed.

3. Select the location where you want to save the key bindings file, and click Save.
The current keybindings are saved to the keybindings file.

Importing key bindings

To import a key bindings set that you have previously saved:

1. Open the Key Bindings panel (see Opening the Customize IDE Commands
window on page 8-31).

2. Click Import and select the keybindings file from the standard file dialog.

3. Click Open to read the keybindings from the file.
8-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
8.7 Customizing toolbars

This section describes how to customize the CodeWarrior IDE toolbars. It describes:

• Toolbar overview

• Showing and hiding a toolbar on page 8-42

• Modifying a toolbar on page 8-42.

8.7.1 Toolbar overview

A toolbar contains elements, represented by icons, that act as buttons. A toolbar can
contain the following elements:

Commands These are buttons that execute CodeWarrior IDE menu commands when
clicked.

Controls These are the CodeWarrior IDE interface controls such as Document
Settings, Function, Header, Marker, Version Control, and Current
Target drop-down lists.

 Figure 8-20 shows the default toolbar from the CodeWarrior IDE project window.

Figure 8-20 The Project window toolbar

Toolbar types

The following types of toolbar are available in the CodeWarrior IDE:

• Project window toolbars. These are displayed at the top of project windows.

• Editor window toolbars. These are displayed at the top of editor windows, and in
the editing pane of other windows, such as the message window.

• Browser window toolbars. These are displayed in the Class Browser window in
the single-class and multi-class browser views.

• The main window toolbar.

When you modify a toolbar, the changes apply wherever toolbars of that type are
displayed. For example, if you modify an editor window toolbar, the change affects all
editor windows and editor panes. See Modifying a toolbar on page 8-42 for more
information on adding and removing elements to toolbars.

Each toolbar type has a default configuration of elements that you can restore if you
want to discard your changes. See Restoring a toolbar to default settings on page 8-46
for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-41

Configuring IDE Options
8.7.2 Showing and hiding a toolbar

The View menu contains a Toolbars submenu that enables you to show, hide, reset or
clear a toolbar. There are separate menu items for the main window toolbar, and the
toolbar for the currently active window. When you select a toolbar command it applies
to all toolbars of the same type. Hiding a toolbar does not change the elements contained
in the toolbar.

To show or hide a window toolbar:

1. Click on the window which you want to configure to make it the active window.

2. Select either:

• View → Toolbars → Hide Window Toolbar to hide the window toolbar

• View → Toolbars → Show Window Toolbar to show the window toolbar.

You can also show or hide the editor window toolbar with the Toolbar disclosure
button. See Displaying window controls on page 5-7 for more information.

Note
 When you hide an editor window toolbar, the default toolbar elements are

displayed at the bottom of the editor window. Figure 8-21 shows an example.

Figure 8-21 The editor window with hidden toolbar

8.7.3 Modifying a toolbar

You can modify a toolbar by:

• Adding a toolbar element on page 8-43

• Removing a toolbar element on page 8-45

• Removing all toolbar elements on page 8-46

• Restoring a toolbar to default settings on page 8-46.

There are restrictions on the elements you can add or remove from a toolbar. These are
described in Adding a toolbar element on page 8-43 and Removing a toolbar element
on page 8-45.
8-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
If you modify a toolbar type, the changes apply to every instance of that toolbar type
created after the modification. For example, if you customize the project window
toolbar, the changes apply to every project window you open, not just the toolbar in the
active project window. Windows that are already open are not affected.

Adding a toolbar element

To add an element to a toolbar:

1. Ensure that the destination toolbar to which you want to add the element is open.

2. Select Commands & Keybindings from the Edit menu. The Customize IDE
Commands window is displayed (Figure 8-22). The window contains two tabbed
panels:

Commands Use the commands tab to add toolbar elements for menu
commands.

Toolbar Items Use the Toolbar Items tab to add interface elements, such as
the dirty files pop-up menu, or the file path indicator.

Figure 8-22 Customize IDE Commands window

3. Click on the tab for the type of toolbar element you want to add. If you are adding
a Command, click on the hierarchical control next to the command group to
navigate to the command.

4. Click on the icon for the command or interface element you want to add, and drag
it to the toolbar where you want to add the element (Figure 8-23 on page 8-45).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-43

Configuring IDE Options
Note
 You must click on the icon. You cannot drag the element if you click on its name.

If the toolbar accepts the element, framing corners are displayed in the toolbar. If
you cannot add the selected element to this particular toolbar, framing corners are
not displayed. There are several reasons why a toolbar will not accept an element:

• the toolbar is full

• the element already exists in the toolbar

• commands can be added to a window toolbar only for menu commands that
are available when the current window is the active window

• the drop-down menus and the File Dirty and File path indicator in the
Toolbar Controls tab can only be added to the editor window toolbar

• the Target pop-up element in the Toolbar Controls tab can only be added to
the project window toolbar.
8-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring IDE Options
Figure 8-23 Dragging a toolbar element

5. Release the mouse button to add the element to the toolbar.

Removing a toolbar element

To remove an element from a toolbar:

1. Ctrl-right-click on the element in the toolbar. The CodeWarrior IDE displays a
context menu.

������������������
��

��������
������������
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-45

Configuring IDE Options
2. Select Remove Toolbar Item from the menu to remove the item.

Note
 Some default toolbar items cannot be removed.

Removing all toolbar elements

To remove all elements from a toolbar:

1. Click on the window which you want to configure.

2. Select either:

• Window → Toolbar → Clear Window Toolbar to clear all toolbar items
from they type of toolbar in the currently selected window

• Window → Toolbar → Clear Main Toolbar to clear all toolbar items
from the main window toolbar.

Note
 Some default toolbar items cannot be removed.

Restoring a toolbar to default settings

To restore the default settings for a toolbar:

1. Click on the window which you want to configure.

2. Select either:

• Window → Toolbar → Reset Window Toolbar to reset the type of
toolbar in the currently active window

• Window → Toolbar → Reset Main Toolbar to reset the main window
toolbar.

The toolbar is reset to contain its default elements.
8-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 9
Configuring a Build Target

This chapter describes how to configure build target options, including Compiler,
Assembler, and Linker options, for a specific build target in a project. Build target
options specify how the CodeWarrior IDE should process a build target in a project.
This chapter contains the following sections:

• About configuring a build target on page 9-2

• Overview of the Target Settings window on page 9-4

• Configuring general build target options on page 9-8

• Using the Equivalent Command Line text box on page 9-31

• Configuring assembler and compiler language settings on page 9-33

• Configuring linker settings on page 9-65

• Configuring editor settings on page 9-79

• Configuring the debugger on page 9-81.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-1

Configuring a Build Target
9.1 About configuring a build target

The Target Settings window controls settings that affect how the CodeWarrior IDE
builds a specific build target within a project. The build settings that you specify in the
Target Settings window apply to the currently selected build target only. This means that
you must set the Target options for each build target in your project separately.

For example, if you are configuring a project based on the ARM Executable Image
project stationery and you want to change the ATPCS options for your project, you must
configure the options for each of the:

• Debug build target

• DebugRel build target

• Release build target.

See Using ARM-supplied project stationery on page 3-23 for more information on
default ARM stationery. See also Setting the current build target on page 3-54 for more
information on selecting build targets.

After you have configured the target, you can export your settings to XML. You can
then import this settings file at any time.

The Target Settings window is organized into a series of panels that apply to a specific
group of build options. For example, one panel contains settings that specify the folders
in which the CodeWarrior IDE searches for the source files and libraries. See Figure 9-2
on page 9-5 for an example of the Target Settings window. The panels are divided into
the following main groups:

Target The panels in this group enable you to configure basic settings for the
current build target, including the target name, and the linker to use. The
linker setting is particularly important because the CodeWarrior IDE uses
the linker setting to determine which panels to display in the other
groups.

Language Settings

The panels in this group apply specifically to the ARM tool chain. They
enable you to set options for the ARM assembler and compilers,
including ATPCS options, and debug and optimization options.

Note
 Language settings are used to compile and assemble all source files

within a single build target. You cannot specify individual settings for
specific source files. You must use separate build targets to change the
settings for one or more files.
9-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Linker The panels in this group enable you to configure ARM linker options and
fromELF options. You can use this panel to configure fromELF to
convert ELF output images to a number of binary formats.

Editor This group contains one panel that enables you to configure custom
keywords for the CodeWarrior editor.

Debugger The panels in this group enable you to select the ARM debugger you want
to use for debugging output, and for running executable images. These
panels also enable you to configure options for the debugger you have
selected.

9.1.1 Configuration recommendations

If you have based your CodeWarrior project on one of the ARM project stationery
templates then many of the configuration options are preset to values that are likely to
be appropriate for your project. For example, if your project is based on the ARM
Executable Image project stationery, the project is configured to use:

• the ARM compilers

• the ARM linker, to output executable ELF format images

• the AXD debugger, to debug and run executable image files.

However, there are a number of configuration panels that you should review in order to
ensure that the configuration options are appropriate for your target hardware and
development environment. In particular, you should review:

• the Target and ATPCS panels for the compilers and assembler, to ensure that the
settings are appropriate to your target hardware and procedure call standard
preferences

• the ARM linker panels, to ensure that the appropriate output is produced

• the ARM fromELF panels, if you are using fromELF to produce a ROMable
image or disassembled source.

9.1.2 Creating project stationery

After you have configured the settings you require for each of the build targets in your
project, you can create Project stationery of your own so that you can create new
projects based on your preferences. See Creating your own project stationery on
page 3-35 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-3

Configuring a Build Target
9.2 Overview of the Target Settings window

This section gives an overview of how to use the Target Settings window to set Target
options in the CodeWarrior IDE. It describes how to display the Target Settings window,
and how to save and discard changes to the target settings. For detailed descriptions of
how to set specific target options see:

• Configuring general build target options on page 9-8

• Configuring assembler and compiler language settings on page 9-33

• Configuring linker settings on page 9-65

• Configuring editor settings on page 9-79

• Configuring the debugger on page 9-81.

Note
 The settings you define in these panels apply to the currently selected build target only.
You must configure each build target in your project separately. You can use the Import
Panel... and Export Panel... features to transfer configurations between projects. See
Applying or discarding changes on page 9-6 for information on using this feature. Many
ARM tools can read settings from a file using the -via argument to share options. See
the Via File Syntax Chapter of the ADS Compilers and Libraries Guide for information
on using via files.

9.2.1 Using the Target Settings window

This section gives basic information on using the Target Settings window to configure
Target options. When you change target settings, the changes you make apply to the
currently selected build target in the current project.

Displaying Target Settings panels

To display Target Settings panels for a specific build target in the current project:

1. Open the project file you want to configure. See Opening a project on page 3-15
for more information.

2. Use the build target drop-down list to select the build target you want to
configure (Figure 9-1).

Figure 9-1 Select build target
9-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
3. Either:

• click the Target Settings button in the Project window.

• select the Settings menu item for your build target from the Edit menu.

The name of the Settings menu item matches the build target for your
currently selected project. For example, if your current build target is
DebugRel, the Settings menu item is named DebugRel Settings….

The CodeWarrior IDE displays a Target Settings window with a list of available
panels on the left side of the window. The panel selected in the list is displayed on
the right side of the window. Figure 9-2 shows an example.

Note
 The panels that are listed depend on the linker that is selected for the current build

target. See Configuring general build target options on page 9-8 for more
information on specifying a linker.

Figure 9-2 Selecting a settings panel

4. Select the panel you want to configure in the list. You can use the arrow keys or
click the name of the panel.

Each panel contains related options that you can set. The options you select apply
to the currently selected build target in the active project.

5. Select the options you require. See the following sections in this chapter for
detailed descriptions of the options in each configuration panel.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-5

Configuring a Build Target
6. Save or discard your changes, as required. See Applying or discarding changes
for more information on applying the changes you have made.

Applying or discarding changes

If you make changes in the Target Settings window and attempt to close it, the
CodeWarrior IDE displays a Settings Confirmation dialog box (Figure 9-3).

Figure 9-3 Settings Confirmation dialog box

Click one of:

• Don’t Save to discard your changes and close the dialog box

• Save to save your changes and close the dialog box

• Cancel to continue using the Target Settings window without saving changes.

In addition, you can use the dialog buttons in the Target Settings window to apply or
discard your changes. The dialog buttons are:

OK Click this button to save any changes that you have made and close the
panel.

Cancel Click this button to close the panel without saving any changes you have
made.

Apply Click this button to commit any changes you have made in any of the
panels. If you have changed an option that requires you to recompile the
project, the CodeWarrior IDE displays a confirmation dialog box. Click
OK or Cancel depending on whether you want to keep your changes or
not.

Factory Settings

Click this button to reset the current panel to the settings that the
CodeWarrior IDE uses as defaults. Settings in other panels are not
affected. Only the settings for the current panel are reset.
9-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Revert

Click this button to reset the state of the current panel to its last-saved
settings. This is useful if you start making changes to a panel and then
decide not to use them.

Import Panel

Click this button if you want to import an XML settings file. Select the
file you want to import and click the Open button to import the settings.

Export Panel

Click this button if you want to export the current settings to XML. Enter
the name of the file you want to export the settings to and click the Save
button. You can then import these settings at any time.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-7

Configuring a Build Target
9.3 Configuring general build target options

This section describes how to configure general options for a specific build target, such
as the name of the output file, and the linker and post-linker to use. It gives information
on:

• Configuring target settings

• Configuring access paths on page 9-11

• Configuring build extras on page 9-20

• Configuring runtime settings on page 9-22

• Configuring file mappings on page 9-23

• Configuring source trees on page 9-26.

Note
 The settings you define in these panels apply to the currently selected build target only.
You must configure each build target in your project separately.

9.3.1 Configuring target settings

The Target Settings panel enables you to specify basic settings for your project such as:

• the name of the target

• the linker and post-linker to use

• the output directory, and whether to use relative or absolute paths for files in the
project.

Because the linker choice determines which panels are displayed in the Targets Settings
Panels list, you must select the linker first before you can specify other target-specific
options such as compiler and linker settings.

The CodeWarrior IDE ensures that only the files affected by an option are marked for
recompilation when you change the option.

To set the Target Settings for the selected build target within a project:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click Target Settings in the Target Settings Panels list to display the
configuration panel (Figure 9-4 on page 9-9).
9-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-4 Target Settings panel

3. Specify the settings for your target:

Target Name
Use the Target Name text field to set or change the name of your
current build target. This is not the name of your final output file. See
Output file naming conventions and locations on page 3-75 for more
information on how the CodeWarrior IDE for the ARM Developer
Suite names output files.

Linker Select a linker option from the drop-down list. You can choose:

ARM linker
Use the ARM linker to link the output from the assembler
and compiler. See Configuring the ARM linker on page 9-66
for more information on linker options.

ARM librarian
Use the ARM librarian to create a library from the compiler
and linker output.

None Do not define a linker. This means that source files will not
be compiled or assembled, because your choice of linker
determines the compiler and assembler that the
CodeWarrior IDE calls. You can use this option if you want
to define a prelink or postlink step only, or if you want to use
the CodeWarrior IDE to maintain a collection of non-source
files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-9

Configuring a Build Target
Note
 See Configuring file mappings on page 9-23 for more information

about the file mappings associated with the linker. The file mappings
determine which filename extensions the CodeWarrior IDE
recognizes.

Pre-linker
This field is not used by the CodeWarrior IDE for the ARM Developer
Suite.

Post-linker
Select a post-linker to process output from the linker. Choose one of:

None Do not use a post-linker.

ARM fromELF
Send the output from the linker to the ARM fromELF
utility. FromELF processes the output using the options set
in the fromELF configuration panel. Use this option to
convert ELF images output by the linker to other formats.
See Configuring fromELF on page 9-76 for more
information.

Batch File Runner
Use the Batch File Runner to run a DOS batch file as the
final step in the link process. The batch file runner runs the
first, and only the first, .bat file in the link order view of the
project. See Running batch files with the batch runner on
page 3-86 for detailed information on using the Batch File
Runner.

Output Directory
This field displays the name of the directory where the data directory
containing your build output is placed. The default location is the
directory that contains your project file. Click Choose… to select a
different directory. You can define the output directory relative to a
defined source tree. See Configuring source trees on page 9-26 for
more information.

Save Project Entries Using Relative Paths
Select this option to instruct the CodeWarrior IDE to store project
entries as a relative path from one of the access paths. The
CodeWarrior IDE remembers the location even if it needs to re-search
for files in the access paths.
9-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
If this setting is not selected, project entries are stored by name. See
Re-search for files on page D-15 and Reset project entry paths on
page D-16 for more information.

Note
 The standard CodeWarrior IDE uses this option to enable you to add

multiple source files with the same name to your project. However, the
CodeWarrior IDE for the ARM Developer Suite does not allow you to
add multiple copies of source files that produce output objects. See
Filename requirements on page 3-38 for more information.

4. Click Apply to apply your changes.

9.3.2 Configuring access paths

You can use the Access Paths panel to define directories that the CodeWarrior IDE
searches for libraries, header files, and source files. The CodeWarrior IDE defines two
types of access path:

User Paths The ARM tools search these paths for:

• User header files. These are header files that you include with a
#include"…" statement.

• User libraries. These are libraries that correspond to your
#include"…" header files.

• Your source files. When you add a source file to your project from
any directory, the CodeWarrior IDE adds the path for the source file
to the User Paths list automatically.

By default, the User Paths setting contains {Project}. This is the folder
that contains the open project.

System Paths

The ARM tools search these paths for:

• C++ system header files. These are C++ header files included with
a #include <…> statement. See Default header file search paths on
page 9-12 for more information on how the ARM C and C++
compilers search for C system header files.

• System libraries. These are the corresponding libraries for the
system header files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-11

Configuring a Build Target
By default, the system paths list contains:

• {Compiler}lib. The ARM C and C++ compilers use this path to
locate the armlib directory containing the C standard libraries. The
ARM C++ compilers use this path to locate the cpplib directory
containing the standard C++ libraries.

• {Compiler}include. The default directory for the ARM standard
C++ library header files.

Note
 Previous releases of the ARM development tools used the ARMLIB environment variable
to define the location of C standard libraries. You can configure the ARM linker to use
the ARMLIB environment variable, rather than the System access paths defined here. See
Configuring linker options on page 9-70 for more information.

Caution
 If you use the ARMLIB environment variable with the CodeWarrior IDE, and you are using
The ARM Developer Suite and the ARM Software Development Toolkit on the same
machine, you must configure ARMLIB to point to the correct libraries for the development
system you are using. The ADS installer gives you the option of overwriting the value
of ARMLIB when you install. The ADS standard libraries are not compatible with the
standard libraries for the SDT.

Default header file search paths

The default search path for header files are defined by the Access path options you have
chosen. The ARM project stationery defines the following access paths:

User Paths {Project}. This is the directory in which the project file is located.

System Paths

{Compiler}Include and {Compiler}Lib, where {Compiler} is the directory
in which the ARM Developer Suite is installed.

Note
 • The ARM compilers use the search paths defined in the CodeWarrior IDE Access

Paths configuration panel when they are called from the CodeWarrior IDE. This
means that the default search paths are different from those used by the compilers
when they are invoked from the command line. In particular:

— the ARMINC environment variable is ignored

— the :mem directory is not searched
9-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
— there is no current place (Berkeley search rules are not followed).

If you are using a default ADS installation, these differences have no effect. If you
have made changes to your default installation, such as changing the value of
ARMINC, or editing system header files, the behavior of the command line tools and
the CodeWarrior IDE is different. See the ADS Compilers and Libraries Guide for
details of how the compilers search for header files when invoked from the
command line.

• The CodeWarrior IDE stops searching when it finds the first match for a header
file. If you have two header files with the same name in your project, the
CodeWarrior IDE does not search the second header file.

• You can speed up compiling and linking if you ensure that search paths defined
in the CodeWarrior IDE are not searched recursively. See Setting access path
options for more information.

You can change the default search paths in the following ways:

• Select the Always Search User Paths option (see Figure 9-5 on page 9-14) to
search for system header files in the same way as user header files.

• Enter -I, -j, -fd, -fk, -s and -s -fs command-line options in the Equivalent
Command Line text box. See the ADS Compilers and Libraries Guide for a
description of these options. See Using the Equivalent Command Line text box on
page 9-31 for more information on specifying command-line options in the
CodeWarrior IDE.

If your standard header files or libraries are not in the default access search paths, the
ARM tools cannot find them when compiling, linking, or running your project. See
Adding an access path on page 9-16 for information on adding access paths.

Setting access path options

There are a number of options you can set to modify the way in which access paths are
searched, including:

• specifying recursive searches

• turning off searches for specific access paths

• always searching user paths.

To set access path options for a build target:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-13

Configuring a Build Target
2. Click Access Paths in the Target Settings Panels list to display the configuration
panel (Figure 9-5).

Figure 9-5 Access Paths settings panel

3. Select one of:

• User Paths
• System Paths

depending on which path type you want to modify.

4. Specify the search options you want:

Specifying recursive searches

Note
 It is strongly recommended that you do not use recursive searching in

complex, or multi-user projects. See Configuring the CodeWarrior
IDE for complex or multi-user projects on page 3-50 for more
information.

Click in the Recursive Search column next to a folder name to toggle
searching recursively through the folder (see Figure 9-6 on page 9-15):

• If a folder icon is displayed next to the name of the folder, the
CodeWarrior IDE performs a recursive search on the path. That
is, the CodeWarrior IDE searches that folder and all the folders
within it.
9-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
• If a folder icon is not displayed, the CodeWarrior IDE searches
the named folder only.

Figure 9-6 Access paths detail

Note
 You can speed up project compilation and linking by turning off

recursive path searches and adding each specific path of every
directory that contains your files to either the System path list or the
User path.

Disabling search for a directory
Click in the Search column next to a folder name to toggle searching
that directory (see Figure 9-6):

• if a check mark is displayed next to the name of a folder, the
folder is searched from the current host computer.

• if a check mark is not displayed, the folder is not searched from
the current host computer.

Note
 You can prevent any folder and all its subfolders in an access path from

being searched by renaming the Windows directory with enclosing
parentheses. For example, changing GameImages to (GameImages)
excludes the folder from all subsequent searches. To add it to the
search list, you must explicitly add it as an access path. Additionally,
you can use any other wildcard or regular expression specified in the
Shielded Folders panel in the IDE Preferences panel. See Configuring
shielded folders on page 8-12.

Always Search User Paths
Select this option to search for system header files in the same way as
user header files. See Default header file search paths on page 9-12 for
more information.

!�����
����������
��������������
�
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-15

Configuring a Build Target
Note
 It is strongly recommended that you select this option for complex, or

multi-user projects. See Configuring the CodeWarrior IDE for
complex or multi-user projects on page 3-50 for more information.

If this option is not selected, and any source file is found in a system
search path, it is effectively promoted to an unchanging system file.
This means that if a later version of the source file is placed in a user
search path, it is not found by the CodeWarrior IDE until this option is
selected.

5. Click Apply to apply your changes.

Adding an access path

User access paths are added automatically by the CodeWarrior IDE when you add a
source file to your project that is not in an existing access path. In addition, you can
specify both User and System access paths explicitly. Access paths are searched in the
order that they are defined in the User and System panels. See Changing or removing
an access path on page 9-18 for information on changing the order of access paths.

To add a new access path to a project:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click Access Paths in the Target Settings Panels list to display the configuration
panel (see Figure 9-5 on page 9-14).

3. Select one of:

• User Paths

• System Paths

depending on which path type you want to add.

4. Click Add. The CodeWarrior IDE displays the Select Access Path dialog
(Figure 9-7 on page 9-17).
9-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-7 Select an Access Path dialog box

5. Select the path type you require from the Path Type drop-down list.

Note
 You can use relative paths to enable projects to contain two or more files with

identical names. However, for large projects, using relative paths will slow
performance.

You can select from the following path types:

Absolute Path
The CodeWarrior IDE defines the access path of the added folder
relative to the root level of the startup volume, including all folders in
between. You must update absolute access paths if you move the
project to another system, rename the startup volume, or rename any of
the folders along the access path.

Project Relative
The CodeWarrior IDE defines the access path of the added folder
relative to the folder that contains the project. You do not need to
update project relative access paths if you move a project, provided the
hierarchy of the relative path is the same. You cannot create a project
relative path to a folder on a volume other than the one on which your
project file resides.

Compiler Relative
The CodeWarrior IDE defines the access path of the added folder
relative to the folder that contains the CodeWarrior IDE executable.
You do not need to update compiler relative access paths if you move
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-17

Configuring a Build Target
a project, provided the hierarchy of the relative path is the same. You
cannot create a compiler relative path to a folder on a volume other
than the one on which your CodeWarrior IDE resides.

System Relative
The CodeWarrior IDE defines the access path of the added folder
relative to the base folder containing your operating system. You do not
need to update system relative access paths if you move a project,
provided the hierarchy of the relative path is the same. You cannot
create a system relative path to a folder on a volume other than the one
on which your active operating system base folder resides.

Source Tree Relative
The Path Type drop-down list contains the name of any source trees
you have defined. If you select a source tree, the CodeWarrior IDE
defines the access path of the added folder relative to a folder defined
in either a build target source tree, or a global source tree. See
Configuring source trees on page 9-26 for more information on
defining source trees for a specific build target. See Configuring global
source trees on page 8-15 for more information on defining source
trees for all projects.

6. Select the folder that you want to add to the access path and click OK to add the
path, or Cancel to leave the list unchanged.

Note
 You can also add a path by dragging and dropping the directory onto the Access

Paths list pane. The path is added as:

• a project-relative path if the directory is on the same as volume the
CodeWarrior IDE

• an absolute path if it is on a different volume from the CodeWarrior IDE.

You can also drag and drop single paths between the Access Paths configuration
panels for different build targets in the same project, and in other projects.

7. Click Apply to apply your changes.

Changing or removing an access path

To change an access path for a build target:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).
9-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
2. Click Access Paths in the Target Settings Panels list to display the configuration
panel (see Figure 9-5 on page 9-14).

3. Select one of:

• User Paths

• System Paths

depending on which path type you want to change or remove.

4. Select the path you want to change or remove and click either:

• Change, if you want to change the access path. The CodeWarrior IDE
displays the Select Access Path dialog (see Figure 9-7 on page 9-17). Use
the dialog box to navigate to the new folder location. See Adding an access
path on page 9-16 for a description of the Path Type options.

• Remove, if you want to remove the access path. The access path is removed
from the list.

Note
 You can use drag and drop to change the order of the User and System access path

lists. Click the access path you want to re-order and drag it to its new location.
Access paths are searched in the order in which they appear in the Access paths
lists.

5. Click Apply to apply your changes.

Adding the default access path

You can click the Add Default button to add the default CodeWarrior IDE paths to the
User and System paths lists if you delete them by accident.

Note
 If you are working with a project based on ARM stationery, the default System paths
for the project are:

• {Compiler}include

• {Compiler}lib

The Add Default button does not add these paths to your project. It adds the
CodeWarrior IDE default path of recursive {Compiler}. You must add the ARM-defined
default path yourself if you delete it. See Adding an access path on page 9-16 for
information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-19

Configuring a Build Target
Host Flags

The Host Flags drop-down list specifies the host platform that can use an access path.
This menu does not apply to the ARM version of the CodeWarrior IDE. By default, all
host platforms are selected. If you add a new access path, you should not deselect the
Windows host flag, because this instructs the CodeWarrior IDE not to search the access
path on a Windows-based host.

9.3.3 Configuring build extras

The Build Extras panel contains a number options that affect the way a project builds,
including:

• how project information is cached

• whether browser information is generated

• whether a third-party debugger is used.

To modify the Build extras for a build target:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click Build Extras in the Target Settings Panels list to display the configuration
panel (Figure 9-8).

Figure 9-8 Build Extras settings panel
9-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
3. Select values for the following options:

Use modification date caching
Select this option to instruct the CodeWarrior IDE not to check the
modification dates of files you have changed outside the CodeWarrior
IDE. Select this option if you edit files with the CodeWarrior IDE
editor only, and are working in a single user environment. Selecting
this option reduces compilation time.

Deselect this option if you have configured the CodeWarrior IDE to
use a third-party editor, or you are working on a multi-user project with
shared access to source files. See Configuring IDE extras on page 8-8
for more information on using a third-party editor. See Configuring the
CodeWarrior IDE for complex or multi-user projects on page 3-50 for
more information on using the CodeWarrior IDE in a complex build
environment.

Cache Subprojects
Select this option to:

• Improve multiproject updating and linking.

• Enable the CodeWarrior IDE browser to include browser
information from target subprojects. See Chapter 7 Working with
the Browser for more information on the browser.

You can deselect this option to reduce the amount of memory required
by the CodeWarrior IDE.

Activate Browser
Select this checkbox to generate the information needed by the
CodeWarrior browser. The information is generated the next time you
build your project. You cannot open browser windows for your project
if this option is not selected.

See Making a project on page 3-79 for more information about
rebuilding your project. For more information on browser settings and
options, see Chapter 7 Working with the Browser.

Note
 The contextual menu features of the browser work in the CodeWarrior

editor, in addition to all browser windows. You should consider
enabling the browser, even if you do not use the browser windows, so
that you can use the context-sensitive browser menu features such as
finding definitions, declarations and multiple definitions in your
source code, and using symbol name completion.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-21

Configuring a Build Target
If the Activate Browser option is selected you can also select the
Dump internal browser information after compile option to view
the raw browser information that a plug-in compiler or linker provides
for the CodeWarrior IDE. This information is useful only if you are
developing plug-ins for the CodeWarrior IDE.

Note
 • You cannot build plug-ins for CodeWarrior IDE for the ARM

Developer Suite.

• Compile only single files, or small files with this option selected.
The information that the CodeWarrior IDE displays can be very
large if you compile an entire project.

Use External debugger
Select this checkbox if you are using a third-party debugger instead of
the ARM debuggers. You must specify the following options:

Application
Click Browse... to search for the non-ARM debugger
application you want to use. The application you select is
automatically placed in the Application field.

Arguments
If you want the selected debugger to use arguments
whenever it is run from within the CodeWarrior IDE, enter
them in this field. See the documentation accompanying the
non-ARM debugger you are using for details on supported
arguments.

Initial directory
Click Browse... to search for the working (initial) directory
in which the debugger you have selected will run. The
working directory should be the root directory of your
project. This facilitates, for example, the process of
searching for a file when you attempt to open it from the
selected debugger.

4. Click Apply to apply your changes.

9.3.4 Configuring runtime settings

The Configure runtime settings panel is not used by the ARM version of the
CodeWarrior IDE.
9-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.3.5 Configuring file mappings

Use the File Mappings settings panel to associate a filename extension, such as .c, with
a plug-in tool, such as the ARM C compiler. The file mappings you define in this panel
tell the CodeWarrior IDE which tool, if any, to use to process files with defined
extensions. The default file mappings for the ARM version of the CodeWarrior IDE
depend on:

• the project stationery you use to create a project

• the currently selected build target.

For example, if you create a project from the ARM Executable Image stationery, files
with an extension of .c are mapped to the ARM C compiler. If you create a project from
the Thumb Executable Image stationery, files with an extension of .c are mapped to the
Thumb C compiler.

Note
 • File mappings determine whether the CodeWarrior IDE will recognize files in the

project. If you have trouble adding files to your project, or if the CodeWarrior IDE
refuses a folder or file that is dragged and dropped on the Project window, check
the File Mappings settings panel to ensure that the relevant file extensions are
defined.

• File mappings sets are associated with the currently selected linker. If you change
the selected linker, the defined list of file mappings also changes. See Configuring
target settings on page 9-8 for more information.

To view and modify the file mappings for a build target:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click File Mappings in the Target Settings Panels list to display the configuration
panel (Figure 9-9 on page 9-24).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-23

Configuring a Build Target
Figure 9-9 File Mappings panel

The File Mappings List contains a File Type, associated Extension, and compiler
choice for each filename extension in the list. This list tells the CodeWarrior IDE
which tool, if any, to invoke for files with specified filename extensions.

Figure 9-9 shows the default filename extensions used by the CodeWarrior IDE
for a project based on the ARM Executable Image project stationery. Projects
based on Thumb stationery invoke the Thumb C or C++ compilers, as
appropriate.

3. Click the entry you want to modify in the File Mappings list and enter the File
Type for the file. Alternatively, click the Choose… button and select a file of the
same type.

4. Enter the filename extension, such as .c or .h, for the file type.

5. Click the Flags drop-down list to set flags that determine how the CodeWarrior
IDE treats files of the current type. If a flag is set, the File Mappings panel
displays a dot in the appropriate flag column (see Figure 9-9). The flags are:

Resource File
This flag does not apply to the ARM tool chain.

!��������	���
�1����������$� !"2

(����������	���
+����
�
����	���

'��������$�
����	���
9-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Launchable
Select this flag to instruct the CodeWarrior IDE to open this type of file
with the application that created it when you double-click it in a Project
window.

Precompiled
Select this flag to instruct the CodeWarrior IDE to compile this type of
file before other files. This option is useful for file types that are used
to generate files used by other source files or compilers. For example,
this option enables you to create a compiler that translates a file into a
C source code file and then compiles the C file. YACC (Yet Another
Compiler Compiler) files are treated as precompiled files because
YACC generates C source code to be compiled by a C compiler.

Note
 You cannot develop CodeWarrior plug-ins using the CodeWarrior IDE

for the ARM Developer Suite. However, you can use the standard
Metrowerks CodeWarrior for Windows development environment to
write your own plug-ins to work with the CodeWarrior IDE for the
ARM Developer Suite.

Ignored by Make
Select this flag to instruct the CodeWarrior IDE to ignore files of this
type when compiling or linking the project. This option is useful for
documentation files that you want to include with your project.

6. Click the Compiler drop-down list and select a compiler for the File Type from
the list of available tools. Select None if you want to be able to add files with the
specified filename extension to your project, but you do not want to use a plug-in
tool to process them.

7. Click the Edit Language drop-down list to select the language you want to edit
in. Selecting the correct language ensures that the correct syntax coloring for your
chosen language is used. See the CodeWarrior IDE Online Help for an example
showing syntax coloring.

8. Click either:

• the Add button, to add a new file mapping

• the Change button, to change the configuration for a selected file mapping.

9. Click Apply to apply your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-25

Configuring a Build Target
To remove a file mapping:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click File Mappings in the Target Settings Panels list to display the configuration
panel (Figure 9-9 on page 9-24).

3. Click the entry you want to modify in the File Mappings list.

4. Click the Remove button to remove the selected file mapping.

9.3.6 Configuring source trees

The Source Trees settings panel enables you to define target-specific source trees (root
paths) for use in your projects. You can define your project access paths and build target
output in terms of source trees.

You can define source trees in two panels:

Target Settings Panel

You can use the source trees you define in the Target Settings window
with the current build target only. This section describes how to configure
target-specific source trees.

IDE Preferences Panel

You can use the source trees you define in the IDE Preferences panel with
all projects. See Configuring global source trees on page 8-15 for
information on configuring global source trees.

If you define the same source tree in both panels, the target-specific source trees take
precedence over the global source trees.

To add, change, or remove a source tree for the current build target:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click Source Trees in the Target Settings Panels list to display the configuration
panel (Figure 9-10 on page 9-27). The source trees panel displays a list of
currently defined source paths.
9-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-10 Source Trees panel

3. Edit the source tree details:

• To remove or change an existing source path, double-click the entry in the
list of source trees. The source tree details are displayed. Click Remove to
remove the source tree, or follow the steps below to modify it.

• To add a new source tree, type a name for the new source path in the Name
field and follow the steps below.

4. Click the Type drop-down list to select the type of source tree. Select one of:

Absolute Path
Select this option to choose a specific directory as the root for your
source tree.

Environment Variable
Select this option to choose a directory defined in an environment
variable as the root for your source tree.

Registry Key
Select this option to choose a directory defined in a Windows registry
key as the root for your source tree.

5. Choose the source tree root:

• If the source tree is an absolute path, click Choose… to select the root
directory from the standard file dialog.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-27

Configuring a Build Target
• If the source key is an environment variable enter the name of the
environment variable. If the environment variable is defined, the source tree
window adds the source tree to the list of defined source trees and displays
the value of the environment variable.

• If the source tree is a registry key enter the full pathname of the registry key,
without the prefix volume label (such as My Computer), and ending with the
name of the registry entry. If the registry key is defined, the source tree
window adds the source tree to the list of defined source trees and displays
the value of the registry key. For example, to add the directory defined by
the ARMHOME registry entry, enter:
HKEY_LOCAL_MACHINE\SOFTWARE\ARM Limited\ARM Developer
Suite\v1.2\ARMHOME

Note
 You can enter {Compiler} instead of the above path. This uses the predefined

source tree. In most cases it is better to use predefined source trees in order
to ensure portability.

6. Click one of:

• Add to add a new source tree

• Change if you are modifying an existing source tree

• Remove to remove the selected source tree.

7. Click Apply to apply your settings. The new source path is displayed in dialogs
that require you to select a path type, such as the Select an Access Path dialog
(Figure 9-11). See Configuring access paths on page 9-11 for more information
on adding access paths to CodeWarrior projects.

Figure 9-11 Example source path
9-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.3.7 Configuring the ARM target

The ARM Target panel enables you to change the output name for a project without
changing the project itself. The default output filename is the same as the project name.
For example, a project called test might produce the image file test.axf. You can use
this panel to produce a different image file, for example, new.axf, without changing the
name of the project.

You can also change the output type, to enable you to use your output files with any
non-ARM link tool that can process ARM ELF object files.

To change the output name for a project:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Target in the Target Settings Panels list to display the configuration
panel (Figure 9-12). The ARM target panel displays the current settings for the
output name and output type.

Figure 9-12 ARM Target panel

3. If you want to produce output files with a different name to the project file,
uncheck the Use project name option and enter the required name in the Name
text box. The Name text box is grayed out when the Use project name option is
checked.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-29

Configuring a Build Target
Warning
 It is strongly recommended that you do not use the Name text box to change the

file extension.

4. Click the Output Type drop-down list to select the output type. Select one of:

Linker Output
Select this option if you are using the ARM linker. This option is the
default.

Directory of objects
Select this option if you do not want to use the linker output. This
enables you to use your output files with any non-ARM link tool that
can process ARM ELF object files.

5. Click Apply to apply your changes.
9-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.4 Using the Equivalent Command Line text box

The Equivalent Command Line text box is displayed at the bottom of configuration
panels for each of the:

• ARM Language Settings panels

• ARM Linker panels

• ARM Debugger panels.

 Figure 9-13 shows an example for the ARM C compiler configuration panel.

Figure 9-13 Equivalent Command Line text box

The Equivalent Command Line text box:

• Displays the command-line equivalent for any tool options you select in the panel.
For example, if you select the Read-only position independent option in the
Compiler ATPCS panel, the Equivalent Command Line text box changes to
display -apcs /ropi on the command line.

• Enables you to edit the command line, and enter command-line options for which
there are no interface controls in the configuration panels. Not all command-line
options to the ARM compilers, assembler, linker, and other tools, have equivalent
interface controls in the configuration panels. If you want to use a tool

#��
�������������
�����

����	����������	������

������-3�
������
��

����(
�����%����%
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-31

Configuring a Build Target
command-line option from the CodeWarrior IDE, you can enter it in the text box.
See ADS Linker and Utilities Guide for more information on the command-line
options to the ARM tools.

• Enables you to copy and paste language settings between build targets. This is
useful because the Import Panel... and Export Panel... features do not allow you
to move settings between compiler panels, or add to existing settings.

Press the Enter key after you have edited the command line to apply the options and
update the panel interface settings.
9-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.5 Configuring assembler and compiler language settings

This section describes the language settings group of panels. These panels provide
configuration options that are specific to the ARM compilers and assembler:

Assembler Use this panel to configure options for the ARM assembler, including:

• the processor type or architecture version, and other capabilities of
your target hardware

• ATPCS options

• debug and optimization options

• listing options, and other miscellaneous options.

In addition, you can use this panel to predefine variable values for the
assembler. See Configuring the ARM assembler on page 9-34 for details.

Compilers There is a separate configuration panel for each of the ARM compilers in
the language settings group. These panels are identical. Use the compiler
configuration panels to configure options including:

• the processor type or architecture version, and other capabilities of
your target hardware

• ATPCS options

• language mode, for example ANSI C or strict ANSI C

• debug and optimization options

• warning, error, and other preferences.

See Configuring the compilers on page 9-45 for details of options
common to all the compilers.

Note
 The settings you define in these panels apply to the currently selected build target only.
You must configure each build target in your project separately. The settings for a build
target are applied to all files in the build target. You can use the Equivalent Command
Line text box to copy settings from one build target to another.

For information on configuring the other tools in the ARM tool chain see:

• Configuring linker settings on page 9-65

• Configuring the debugger on page 9-81.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-33

Configuring a Build Target
9.5.1 Configuring the ARM assembler

This section describes how to configure the ARM assembler from within the
CodeWarrior IDE. It provides general descriptions of the available assembler options.
Where necessary, you are referred to more detailed descriptions in the ADS Assembler
Guide.

Note
 Many of the configuration settings described here are optional. However, you should
review at least the Target options, ATPCS options, and Debug table generation options
to ensure that they are suitable for your project.

The configuration options are described in:

• Configuring the target

• Configuring assembler ATPCS options on page 9-37

• Configuring assembler options on page 9-39

• Configuring predefined variables on page 9-41

• Configuring code listings on page 9-43

• Reading assembler options from a file on page 9-44.

These sections give general descriptions of the available assembler options. Where
necessary, you are referred to more detailed descriptions in the ADS Assembler Guide.

Configuring the target

Use the Target panel to configure the target processor and architecture for the ARM
assembler:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the Target tab
to display the configuration panel (Figure 9-14 on page 9-35).
9-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-14 ARM Assembler Target panel

3. Select values for the following options:

Architecture or Processor
Select the processor or architecture for your target hardware from the
drop-down list. Some processor-specific instructions produce either
errors or warnings if assembled for the wrong target architecture.

Floating Point
Use this option to select the target Floating-Point Unit (FPU)
architecture. If you specify this option, it overrides any implicit FPU
set by the -cpu option. Floating-point instructions produce either errors
or warnings if assembled for the wrong target FPU.

The assembler sets a build attribute corresponding to name in the object
file. The linker determines compatibility between object files, and
selection of libraries, accordingly.

Valid values are:

FPA format and instructions
Selects hardware Floating Point Accelerator.

VFPv1 format and instructions
Selects hardware vector floating-point unit conforming to
architecture VFPv1.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-35

Configuring a Build Target
VFPv2 format and instructions
Selects hardware vector floating-point unit conforming to
architecture VFPv2.

Old-style mixed-endian softfp
Selects software floating-point library with mixed-endian
doubles.

Pure-endian softfp
Selects software floating-point library (FPLib) with
pure-endian doubles. This is the default.

VFP with softvfp calling standard
Selects hardware Vector Floating Point unit.

To armasm, this is identical to -fpu vfpv1. See the C and C++
Compilers chapter in the ADS Compilers and Libraries
Guide for details of the effect on software library selection
at link time.

No floating point
Selects no floating-point option. This makes your
assembled object file compatible with any other object file.

Byte Order
Select the byte order used by your target hardware.

Initial State
Controls whether instructions in the source are assembled as ARM or
Thumb until a CODE16 or CODE32 directive is processed.

Select the state that the processor is expected to be in when your code
is executed. This option is available only if you have selected an
architecture or processor that supports the Thumb instruction set.

Note
 This option does not generate code to switch the processor state. All

ARM processors start in ARM state. You must ensure that the
processor is in the state you expect when your code is run. See the ADS
Developer Guide for information on switching between ARM state and
Thumb state.

4. Click Apply to apply your changes.
9-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Configuring assembler ATPCS options

Selecting ATPCS options sets the appropriate attribute values for the code sections
generated by the assembler. The linker checks the attribute values at link time and
generates error messages if you attempt to link incompatible objects.

Note
 Selecting ATPCS options does not provide checks that your assembly language code
conforms to a given ATPCS variant. You must ensure that your assembly language code
follows the conventions required by the ATPCS options you select. See the chapter on
using the ATPCS in the ADS Developer Guide for more information.

If you expect to call your assembly language code from C or C++, you must ensure that
your C and C++ compiler options are configured to use the same calling standard
options. See Configuring compiler ATPCS options on page 9-49 for details.

Note
 For exception handlers or interworking projects, it might not be necessary to use the
same calling standard options for C and C++ compilers. In such cases you must mark
called functions as being in an INTERWORK area. See the ATPCS chapter in the ADS
Developer Guide for more information.

To configure the ARM/Thumb Procedure Call Standard settings for the ARM
assembler:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the ATPCS tab
to display the configuration panel (Figure 9-15 on page 9-38).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-37

Configuring a Build Target
Figure 9-15 ARM Assembler ATPCS panel

3. Select values for the calling standard and predefined register names options:

Calling standard
Select ATPCS if your assembly language code is expected to conform
to one of the ATPCS variants. You should select ATPCS if you are
writing assembly language routines that are called from C or C++, or
from other assembly language routines that expect your code to follow
ATPCS calling conventions.

You can select None if you are writing standalone assembly language
routines that are not called from other routines that expect ATPCS
calling conventions to be followed. In this case you are responsible for
maintaining your own register usage conventions.

Predeclared Register Names
Select ATPCS if you are writing assembly language routines that
conform to one of the ATPCS variants and you want the assembler to
recognize the conventional predefined register names, such as a1-a4.
See the ADS Assembler Guide for a complete list of predefined register
names.

4. Select the ATPCS variant options that you require.
9-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
The following options are available:

ARM/Thumb interworking
Select this option if you are writing ARM code that you want to
interwork with Thumb code, or Thumb code that you want to interwork
with ARM code, and you are writing the correct interworking return
instructions. The linker generates suitable interworking veneers when
the assembler output is linked. See the description of Interworking in
the ADS Developer Guide for more information.

Read-only position independent
Select this option to mark your code as read-only
position-independent. When this flag is set, the assembler sets the PI
attribute on read-only sections output by the assembler.

Read-write position independent
Select this option to mark your code as read-write
position-independent. When this flag is set, the assembler sets the PI
attribute on read-write sections output by the assembler.

Software stack checking
Select the software stack checking option you require:

On Select this option if you are writing code that performs stack
checking in software.

Off Select this option if you are writing code for a system that
does not require software stack checking.

Not Applicable
Select this option if you are writing code that can work with
either software stack checking, or non software stack
checking code.

See the section on the callgraph option in Configuring linker options
on page 9-70 for information on calculating static stack size.

5. Click Apply to apply your settings.

Configuring assembler options

To configure other options, such as code checks, warnings, and debug options, for the
ARM assembler:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the Options
tab to display the configuration panel (Figure 9-16 on page 9-40).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-39

Configuring a Build Target
Figure 9-16 ARM Assembler Options panel

3. Select values for the following options:

Check Register Lists
Select this option to instruct the assembler to check RLIST, LDM, and STM
register lists to ensure that all registers are provided in increasing
register number order. If this is not the case, a warning is given.

No Warnings
Select this option to turn off all warning messages.

Source Line Debug
Select this option to instruct the assembler to generate debug tables. By
default, when you select this option the Keep Symbols option is also
selected.

Keep Symbols
Select this option to keep local labels in the symbol table of the object
file, for use by the debugger.

Ignore C-style escape characters
Select this option to instruct the assembler to ignore C-style escaped
special characters, such as \n and \t.

Fault long running Load and Store Multiple
Select this option to instruct the assembler to fault LDM and STM
instructions if the maximum number of registers transferred exceeds:

• five, for all STMs, and for LDMs that do not load the PC
9-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
• four, for LDMs that load the PC.

Avoiding large multiple register transfers can reduce interrupt latency
on ARM systems that:

• do not have a cache or a write buffer (for example, a cacheless
ARM7TDMI)

• use zero wait-state, 32-bit memory.

Note
 Avoiding large multiple register transfers increases code size and

decreases performance slightly.

Avoiding large multiple register transfers has no significant benefit for
cached systems or processors with a write buffer.

Avoiding large multiple register transfers also has no benefit for
systems without zero wait-state memory, or for systems with slow
peripheral devices. Interrupt latency in such systems is determined by
the number of cycles required for the slowest memory or peripheral
access. This is typically much greater than the latency introduced by
multiple register transfers.

4. Click Apply to apply your settings.

Configuring predefined variables

Use the Predefines panel to configure the assembler to predefine a global variable and
execute one of the SET directives to set its value, for example:

Debug SETL {TRUE}

The SET directives enable you to configure numeric, string, or logical variables. See the
ADS Assembler Guide for detailed information on using these directives.

To predefine a new variable:

1. Display the Target Settings panel for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the Predefines
tab to display the configuration panel (Figure 9-17 on page 9-42).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-41

Configuring a Build Target
Figure 9-17 ARM Assembler Predefines panel

3. Enter the name of the variable in the Variable Name field. Alternatively, if you
want to modify or delete an existing predefined variable, select the variable from
the List of Predefines drop-down list.

4. Select the directive you require. Use:

• SETA, for numeric values

• SETS, for string values

• SETL, for logical values.

5. Enter the value of the variable in the value field, or click the appropriate boolean
value button if you have selected a SETL directive.

6. Click either:

• Add, if you are creating a new variable definition

• Replace, if you are modifying an existing variable definition

• Delete, to delete an existing variable definition.

7. Click Apply to apply your settings.
9-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Configuring code listings

To configure options for code listings generated by the assembler:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the Listing
Control tab to display the configuration panel (Figure 9-18).

Figure 9-18 ARM Assembler Listing Control panel

3. Select values for the following options, as required:

Listing on
Select this option to instruct the assembler to output a detailed listing
of the assembly language produced by the assembler after it has
resolved assembler constructs such as directives and
pseudo-instructions. The listing is displayed in a new text window.

Terse Deselect this option to display lines skipped due to conditional
assembly in the listing.

Cross-references
Select this option to instruct the assembler to list cross-referencing
information on symbols, including where they were defined and where
they were used, both inside and outside macros.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-43

Configuring a Build Target
Dimensions
Use the Page Width and Page Length fields to set the page width and
page length for your listings. Select the Continuous Page option if you
do not want page breaks inserted in the listing.

4. Click Apply to apply your settings.

Reading assembler options from a file

Use the Extras panel to specify a via file for the assembler. A via file is a text file that
contains additional command-line arguments to the assembler. You can use via files to
ensure that the same assembler settings are used by different build targets and projects.
See the ADS Assembler Guide for a description of via file syntax.

To specify a via file:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Assembler in the Target Settings Panels list and click the Extras tab
to display the configuration panel (Figure 9-19).

Figure 9-19 ARM Assembler Extras panel

3. Enter the path name of the via file, or click Choose… and select the via file from
the standard file dialog. The via file options are processed after the options
specified in the configuration panels, and override them if there is a conflict.
9-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
4. Click Apply to apply your settings.

9.5.2 Configuring the compilers

This section describes how to configure compiler options that are common to each of
the ARM compilers:

• the ARM C compiler, armcc

• the Thumb C compiler, tcc

• the ARM C++ compiler, armcpp

• the Thumb C++ compiler, tcpp.

Note
 Many of the configuration settings described here are optional. However, you should
review at least the Target options, ATPCS options, and Debug table generation options
to ensure that they are suitable for your project.

Each compiler has its own configuration panel consisting of a number of tabbed panes.
The panels are listed in the Target Settings Panels list (see Figure 9-20 on page 9-46 for
an example) when you select the ARM linker or the ARM librarian as the linker in the
Target Settings panel. See Configuring target settings on page 9-8 for more information
on selecting the linker in the Target Settings panel.

The configuration options are described in:

• Configuring the target and source on page 9-46

• Configuring compiler ATPCS options on page 9-49

• Configuring warnings on page 9-51

• Configuring errors on page 9-55

• Configuring debug and optimization on page 9-57

• Configuring the preprocessor on page 9-59

• Configuring code generation on page 9-61.

• Reading compiler options from a file on page 9-64.

These sections give general descriptions of the available compiler options. Where
applicable, you are referred to more detailed descriptions in the C and C++ Compiler
chapters of the ADS Compilers and Libraries Guide.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-45

Configuring a Build Target
Configuring the target and source

To configure the target processor and architecture for the ARM compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Target and Source tab to display the
configuration panel (Figure 9-20).

Figure 9-20 ARM compiler Target and Source panel

3. Select values for the following options:

Architecture or Processor
Select an architecture or processor for your target hardware from the
drop-down list. The drop-down list contains menu items for all current
product names and architectures. If you select:

• an architecture, for example 4T, your code is compiled to run on
any processor that implements that architecture

• a processor, the compiler compiles code that is optimized for that
processor.
9-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Some processor selections imply a floating-point selection. For
example, with the ARM compilers ARM10200E implies VFPv2
format and instruction. The implied option is overridden if you specify
an explicit floating point option. If no processor or floating-point
options are specified, Pure-endian softfp is used.

Floating Point
Select the floating-point system you are using. Valid values are:

FPA format and instructions
Select this option if you are targeting a system with a
hardware Floating Point Architecture unit. This option is
not available for the Thumb compilers.

VFPv1 format and instructions
Select this option to target hardware vector floating-point
unit conforming to architecture VFPv1, such as the
ARM10200™ rev 0. This option is not available for the
Thumb compilers.

VFPv2 format and instructions
Select this option to target hardware vector floating-point
unit conforming to architecture VFPv2, such as the
ARM10200E. This option is not available for the Thumb
compilers.

Old-style mixed-endian softfp
Select this option to use the software floating-point library
and your source code uses FPA-format double-precision
floating-point representations.

Pure-endian softfp
Select this option to use the software floating-point library
with pure-endian doubles. This option specifies that your
code uses VFP format double-precision floating-point
representations, but does not use any floating-point
coprocessor instructions. This is the default.

VFP with softvfp calling standard
Selects software floating-point library with pure-endian
doubles, software floating-point linkage, and requiring a
VFP unit. Select this option if you are interworking Thumb
code with ARM code on a system that implements a VFP
unit.

If you select this option the compiler behaves exactly as for
Pure-endian softfp except that it links with VFP-optimized
floating-point libraries.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-47

Configuring a Build Target
Note
 If this option is specified for both armcc and tcc, it ensures

that your interworking floating-point code is compiled to
use software floating-point linkage. If you select VFPv1
format and instructions, or VFPv2 format and
instructions for armcc you must use the __softfp keyword
to ensure that your interworking ARM code is compiled to
use software floating-point linkage. See the description of
__softfp in the ADS Compilers and Libraries Guide for
more information.

No floating point
Select this option if you are neither targeting a hardware
floating-point unit, nor the software floating-point library.

Byte Order
Select the byte order used by your target hardware.

Source Language
Select the source language you require from the drop-down list. See
the compiler chapters of the ADS Compilers and Libraries Guide for
detailed information on C and C++ standards conformance and
implementation details. Valid options for both C and C++ compilers
are:

ANSI/ISO Standard C
Select this option to compile fairly strict ANSI standard C,
with some characteristics removed, and some minor
extensions, such as accepting C++ style comments (//), and
accepting $ characters in identifiers.

Strict ANSI/ISO Standard C
Select this option to enforce stricter adherence to the ANSI
standard.

The ARM C++ compilers provide the following additional options:

ISO/IEC Standard C++
Select this option to compile standard ISO/IEC C++ with
minor extensions.

Strict ISO/IEC Standard C++
Select this option to enforce stricter adherence to the
ISO/IEC standard. For example, the following code gives an
error when this option is selected, and a warning when
compiled with the standard ISO/IEC option:
9-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
static struct T {int i;};

The static declaration is spurious because no object is
declared. In strict C++ it is illegal.

Embedded C++
Select this option to compile C++ that closely conforms to
the industry standard for embedded C++. Embedded C++ is
a subset of standard C++ that is designed to encourage
efficient code for use in embedded systems. The Embedded
C++ standard is evolving. The proposed definition can be
found on the web at http://www.caravan.net/ec2plus.

4. Click Apply to apply your changes.

Configuring compiler ATPCS options

Selecting ATPCS options instructs the compiler to generate code that conforms to the
appropriate ATPCS variant. In general, you must ensure that you use compatible calling
standard options when you are compiling objects or libraries that you expect to link
together.

Note
 Routines that are entered from exception vectors do not necessarily need the same
settings as the rest of your project code. For example, software stack checking should
be avoided in FIQ handlers in order to maximize the speed of the handler.

In addition, if you are calling routines written in ARM assembly language you must
ensure that your assembly language code conforms to the appropriate ATPCS variant,
and that the assembler is configured with the appropriate ATPCS options. See
Configuring assembler ATPCS options on page 9-37 for details. See also the ATPCS
chapter in the ADS Developer Guide for more information.

To configure the ARM and Thumb procedure call standard options for the ARM
compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the ATPCS tab to display the configuration panel
(Figure 9-21 on page 9-50).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-49

Configuring a Build Target
Figure 9-21 ARM compiler ATPCS panel

3. Select the ATPCS variant options that you require:

ARM/Thumb interworking
Select this option if you are writing ARM code that you want to
interwork with Thumb code, or Thumb code that you want to interwork
with ARM code. Only functions called from the other state need to be
compiled for interworking. The linker generates suitable interworking
veneers when the compiler output is linked. See the description of
Interworking in the ADS Developer Guide for more information.

Software stack check
Select this option if you are writing code that performs stack checking
in software. This option slows down performance, but can be useful in
identifying errors that are hard to find. See the section on the callgraph
option in Configuring linker options on page 9-70 for information on
calculating static stack size.

Read-only position independent
Select this option if you are compiling code that you want to be
position-independent. If this option is selected, the compiler:

• addresses read-only entities (code and data) pc-relative

• sets the PI attribute on read-only output sections.
9-50 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Note
 The ARM tools cannot determine if the final output image will be

Read-Only Position-Independent until the linker finishes processing
input sections. This means that the linker might emit ROPI error
messages, even though you have selected this option.

Read-write position independent
Select this option to ensure that output data sections in your compiled
code are addressed position-independently. If this option is selected,
the compiler:

• Addresses writable data using offsets from the static base (sb).
This means that:

— data addresses can be fixed at run time

— data can be multiply instanced

— data can be, but does not have to be, position-independent.

• Sets the PI attribute on read-write output sections.

Note
 The compiler does not force your writable data to be

position-independent. This means that the linker might emit RWPI
messages, even though you have selected this option.

4. Click Apply to apply your changes.

Configuring warnings

The compiler issues warning messages to warn about portability problems or other
potential problems in your code. You can use the Warnings tab to configure the C and
C++ compilers to suppress or enable specific warnings.

To configure warnings given by the ARM compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Warnings tab to display the configuration panel
(Figure 9-22 on page 9-52).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-51

Configuring a Build Target
Figure 9-22 ARM compiler Warnings panel

3. Select warning options that apply to both C and C++, as required:

No warnings
Select this option to turn off all warnings.

Warn for all conditions
Select this option to turn on all warnings, including those that are
disabled by default.

Assignment in condition
Select this option to enable the warning:

C2961W: use of “=” in condition context

This warning is issued when the compiler finds a statement such as:
if (a = b) {...

where it is possible that one of the following is intended:
if ((a = b) != 0) {...
if (a == b) {...

ANSI C extensions
Select this option to enable warning messages that are issued when
extensions to the ANSI standard are used implicitly. Examples include:

• using an unwidened type in an ANSI C assignment

• specifying bitfields with a type of char, short, long, or long long

• specifying char, short, float, or enum, arguments to variadic
functions such as va_start().
9-52 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Header file not guarded
Select this option to enable the warning given when an unguarded
header file is #included. An unguarded header file is one that is not
wrapped in a declaration such as:
#ifndef foo_h
#define foo_h
/* body of include file */
#endif

Unused declaration
Select this option to enable not used warnings such as:
C2870W: variable 'y' declared but not used.

Warning are given for:

• local (within a function) declarations of variables, typedefs, and
functions

• labels (always within a function)

• top-level static functions and static variables.

Non-ANSI header
Select this option to enable the warning message:

C2812W: Non-ANSI #include <…>

The ANSI C standard requires that you use #include <…> for ANSI C
headers only. However, it is useful to disable this warning when
compiling code that does not conform to this aspect of the standard.
These warnings are suppressed by default unless you have selected a
strict source language option in the Target and Source panel (see
Configuring the target and source on page 9-46).

Padding inserted in struct
Select this option to enable warnings given when the compiler inserts
padding in a struct.

For example:
C2221W: padding inserted in struct 's'

C to C++ incompatibility
For C code, select this option to enable warnings about future
compatibility with C++. Warnings are suppressed by default. For
example:
int *new(void *p) { return p; }

results in the following warnings:
C2204W: C++ keyword used as identifier: 'new'
C2920W: implicit cast from (void *), C++ forbids

Lower precision in wider context
Select this option to enable the warning message:
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-53

Configuring a Build Target
Lower precision in wider context

that is given when code like the following is found:
long x; int y, z; x = y*z

where the multiplication yields an int result that is then widened to
long. This warning indicates a potential problem when either the
destination is long long, or when the target system defines 16-bit
integers or 64-bit longs.

Implicit narrowing
Select this option to enable the Implicit narrowing cast warning
message.

This warning is issued when the compiler detects the implicit
narrowing of a long expression in an int or char context, or the implicit
narrowing of a floating-point expression in an integer or narrower
floating-point context.

Implicit narrowing casts such as these almost always cause problems
when you move code that has been developed on a fully 32-bit system
to a system in which integers occupy 16 bits and longs occupy 32 bits.

Double to float
Select this option to disable the warning:
C2621W: double constant automatically converted to float

This warning is given when the default type of unqualified
floating-point constants is changed by the Narrow double constants
to float constants option. This warning is switched on by default.

4. Select warning options specific to C++, if required:

Member and base inits out of order
Select this option to enable warnings given when base and member
initializations are out of order. For example:
struct T { T(int); int i, j; };T::T(int x) : j(x), i(j*3) { }

The base and member initializations are done in declaration order
(virtual bases are done first) no matter what the order specified in the
definition of the constructor. In this case i is initialized before j and so
j*3 gives an undefined value.

Unused this in non-static member function
Select this option to enable the unused this warning. This warning is
issued when the implicit this argument is not used in a non-static
member function. It is applicable to C++ only. The warning can also
be avoided by making the member function a static member function.
The default is off. For example:
9-54 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
struct T {
 int f() { return 42; }
};

results in the following warning:
C2924W: 'this' unused in non-static member function

To avoid the warning, use static int f() ...

Implicit virtual
Select this option to enable the implicit virtual warning that is given
when a non-virtual member function of a derived class hides a virtual
member of a parent class. For example:
struct Base { virtual void f(); };
struct Derived : Base { void f(); };

// warning 'implicit virtual'

C2997W: 'Derived::f()' inherits implicit virtual from
'Base::f()'

Adding the virtual keyword in the derived class prevents the warning.

Implicit constructor
Select this option to enable the implicit constructor warning that is
given when the code requires a constructor to be invoked implicitly.
For example:
struct X { X(int); };
X x = 10; // actually means, X x = X(10);

// See the Annotated C++
// Reference Manual p.272

5. Click Apply to apply your changes.

Configuring errors

The compiler issues error messages to indicate serious problems in the code it is
attempting to compile.

The options described below enable you to:

• turn specific recoverable errors off

• downgrade specific errors to warnings.

Caution
 These options force the compiler to accept C and C++ source that normally produces
errors. If you use any of these options to ignore error messages, it means that your
source code does not conform to the appropriate C or C++ standard.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-55

Configuring a Build Target
These options might be useful when importing code from other environments. However,
they might allow the compiler to produce code that does not function correctly. It is
generally better to correct the code than to use options to switch off error messages.

To configure error messages issued by the ARM compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Errors tab to display the configuration panel
(Figure 9-23).

Figure 9-23 ARM compiler Errors panel

3. Select error options that apply to both C and C++, if required:

Note
 By default, all the following options are selected. Deselect an option to instruct

the compiler to suppress or downgrade the error message.

Implicit pointer casts
Deselect this option to suppress all implicit cast error messages, such
as the error message generated by casting a nonzero int to pointer. No
warning message is given.
9-56 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Other dubious casts
Deselect this option to downgrade error messages for illegal casts, such
as those generated by casting pointer to short, to warnings.

Junk at end of #endif/#else/#undef
Deselect this option to suppress error messages generated as the result
of extra characters at the end of a preprocessor line. No warning
message is given.

Zero-length arrays
Deselect this option to suppress error messages arising from
zero-length arrays. No warning message is given.

Linkage conflicts
Deselect this option to suppress error messages about linkage
disagreements where functions are implicitly declared as extern and
then later redefined as static. No warning message is given.

4. Select error options that apply only to C++, as required:

Access control violations
Deselect this option to downgrade access control errors to warnings.
For example:
class A { void f() {}; }; // private member
A a;
void g() { a.f(); } // erroneous access

Implicit ‘int’ types
Deselect this option to downgrade error messages produced by
constructs such as:
const i;
//missing type specification for 'i' - 'int' assumed

to warnings.

5. Click Apply to apply your changes.

Configuring debug and optimization

Use the Debug/Opt panel to set debug controls, and optimization levels and criteria for
the compiler. The optimization selections you make affect the quality of the debug view
of your code.

To configure optimization and debug options for the compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-57

Configuring a Build Target
2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Debug/Opt tab to display the configuration
panel (Figure 9-24).

Figure 9-24 ARM compiler Debug and optimization panel

3. Select Debug control options:

Enable debug table generation
Select this option to instruct the compiler to generate DWARF2 debug
tables. This option enables you to debug your output images at the
source level. If this option is not selected, only limited debugging is
available.

Include preprocessor symbols
Select this option to include preprocessor symbols in the compiler
output.

Enable debug of inline functions
Select this option to instruct the compiler to compile inline qualified
functions out of line so that they can be debugged at source more
easily.

4. Select the level of optimization you want:

Minimum
Select this option to disable all compiler optimizations. Use this option
in combination with enabled debug table generation to generate the
best possible debug view of your output image.
9-58 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Most Select this option to disable compiler optimizations that impact
seriously on the debug view. Use this option in combination with
enabled debug table generation to generate code that provides a good
compromise between optimization and debug.

All Select this option to enable all compiler optimizations. This option
results in a poor debug view of your output image due to code
movement and register re-use. You can use this option with debug table
generation turned off, or by linking with debug data discarded, to
generate the most efficient code possible, after you have finished
debugging.

5. Select the optimization criterion:

For space Select this option to favor small code size over execution
speed. This is the default.

For time Select this option to favor execution speed over code size.

6. Click Apply to apply your changes.

Configuring the preprocessor

Use the Preprocessor panel to configure preprocessor macros, and to set search path
options. To add, replace, or delete a preprocessor macro for the ARM compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Preprocessor tab to display the configuration
panel (Figure 9-25 on page 9-60). The panel displays a list of all predefined
macros.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-59

Configuring a Build Target
Figure 9-25 ARM compiler Preprocessor panel

3. Double-click on a preprocessor macro definition in the List of #DEFINEs field to
modify the definition. If you want to add a new definition, double-click on any
existing definition. The name of the macro is displayed in the text field below the
list.

4. Edit the value of the macro definition as appropriate. If you want to create a new
macro, type over the existing macro name. Specify the value of the macro with an
equals sign. For example:

EXAMPLE_DEFINE=2

If you do not enter a value, the value defaults to 1.

5. Click Add to add a new macro definition, or click Replace to edit the value of an
existing macro definition.

Caution
 Do not replace the macro definitions predefined by ARM.

6. Click Apply to apply your changes.
9-60 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Configuring code generation

To configure code generation options for the ARM compilers:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Code Gen tab to display the configuration panel
(Figure 9-26).

Figure 9-26 ARM Compiler Code Gen panel

3. Select Code Generation options:

Enum container always int
Select this option to force all enumerations to be stored in integers. By
default, the compiler uses the smallest data type that can hold all values
in an enum.

Note
 This option is not recommended for general use and is not required for

ANSI-compatible source. If used incorrectly, this option can cause
errors in the resulting image.

Plain char is signed
Select this option to make the char type signed. It is normally unsigned
in C++ and ANSI C modes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-61

Configuring a Build Target
Note
 This option is not recommended for general use and is not required for

ANSI-compatible source. If used incorrectly, this option can cause
errors in the resulting image.

Split load and store multiple
Select this option to instruct the compiler to split LDM and STM
instructions into two or more LDM or STM instructions, where required,
to reduce the maximum number of registers transferred to:

• five, for all STMs, and for LDMs that do not load the PC

• four, for LDMs that load the PC.

This option can reduce interrupt latency on ARM systems that:

• do not have a cache or a write buffer (for example, a cacheless
ARM7TDMI)

• use zero-wait-state, 32-bit memory.

Note
 Using this option increases code size and decreases performance

slightly.

This option does not split ARM inline assembly LDM or STM instructions,
or VFP FLDM or FSTM instructions, but does split Thumb LDM and STM
inline assembly instructions where possible.

This option has no significant benefit for cached systems, or for
processors with a write buffer.

This option also has no benefit for systems with non-zero-wait-state
memory, or for systems with slow peripheral devices. Interrupt latency
in such systems is determined by the number of cycles required for the
slowest memory or peripheral access. This is typically much greater
than the latency introduced by multiple register transfers.

Narrow double constants to float constants
Select this option to change the type of unsuffixed floating-point
constants from double (as specified by the ANSI/ISO C and C++
standards) to unspecified. In this context, unspecified means that
uncast double constants and double constant expressions are treated as
float when used in expressions with values other than double. This can
sometimes improve the execution speed of a program.

Compile-time evaluation of constant expressions that contain such
constants is unchanged. The compiler uses double-precision
calculations, but the unspecified type is preserved. For example:
9-62 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
(1.0 + 1.0) // evaluates to the floating-point
 // constant 2.0 of double precision and
 // unspecified type.

In a binary expression that must be evaluated at run-time (including
expressions that use the ?: operator), a constant of unspecified type is
converted to float, instead of double. The compiler issues the
following warning:
C2621W: double constant automatically converted to float

You can avoid this warning by explicitly suffixing floating-point
constants that you want to be treated as float. You can turn this
warning off with the -Wk compiler option.

Note
 This behavior is not in accordance with the ANSI C standard.

If the other operand in the expression has type double, a constant of
unspecified type is converted to double. A cast of a constant of
unspecified type to type T produces a constant of type T.

For example:
float f1(float x) { return x + 1.0; } // Uses float add and is treated the same
 // as f2() below, a warning is issued.
float f2(float x) { return x + 1.0f;} // Uses float add with no warning, with or
 // without -auto_float_constants.
float f3(double x) { return x + 1.0; } // Uses double add, no special treatment.
float f4(float x) { return x + (double)1.0;} // Uses double add, no special treatment.

One ELF section per function
Select this option to generate one ELF section for each function in a
source file. This option enables the linker to remove unused functions.
This option increases code size slightly for some functions, but when
creating code for a library, it can prevent unused functions being
included at the link stage. This can result in the reduction of the final
image size.

4. Click Apply to apply your changes.

Note
 If you want to configure the compiler to generate assembler files instead of object files,
add -S to the equivalent command line box. The CodeWarrior IDE creates a .s file when
the project is compiled, invokes armasm, and attempts to assemble the .s file. With -S
alone, this assemble step succeeds, because the output from -S is a source file that can
be assembled. However, with -S -fs, the link step fails, because a .txt file is created. It
is recommended that you use the new compiler option, -asm -fs, as an alternative to -S
-fs.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-63

Configuring a Build Target
Reading compiler options from a file

A via file is a text file that contains additional command-line arguments to the compiler.
Via files are read when the compiler is invoked. The via file options are processed after
the options specified in the configuration panels, and override them if there is a conflict.
You can use via files to ensure that the same compiler settings are used by different build
targets and projects. See the ADS Compilers and Libraries Guide for a description of
via file syntax.

To specify a via file:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Depending on the compiler you are using, click the appropriate entry in the Target
Settings Panels list and click the Extras tab to display the configuration panel
(Figure 9-27).

Figure 9-27 ARM Compiler Extras panel

3. Enter the path name of the via file you want to use, or click Choose… and select
the via file from the standard file dialog box.

4. Click Apply to apply your changes.
9-64 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.6 Configuring linker settings

This section describes how to configure the ARM linker from within the CodeWarrior
IDE. The linker settings you can configure depend on the linker that is selected in the
Target Settings window. If you want to process your output with more than one linker
or postlinker you can use dependent subprojects or subtargets to select additional linkers
or postlinkers. See Working with multiple build targets and subprojects on page 3-52 for
more information.

You can use the following linker and postlinker options with the ARM tool chain:

Linker Use this panel to configure the ARM linker. See Configuring the ARM
linker on page 9-66 for details.

fromELF Use this panel to configure the ARM fromELF utility as a post-linker to
process output from the linker. The fromELF utility can perform a
number of format conversions on linker output, such as converting an
ELF image file to plain binary format suitable for embedding in ROM.
See Configuring fromELF on page 9-76 for details.

The ARM librarian

There is no configuration panel for armar. You can use armar to combine
ELF object files into a library. See also the utilities chapter of the ADS
Linker and Utilities Guide for detailed information on the ARM
implementation of ar.

The batch runner

There is no configuration panel for the batch runner. See Running batch
files with the batch runner on page 3-86 for more information.

For information on configuring the other tools in the ARM tool chain see:

• Configuring assembler and compiler language settings on page 9-33

• Configuring the debugger on page 9-81.

Note
 The settings you define in these panels apply to the currently selected build target only.
You must configure each build target in your project separately.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-65

Configuring a Build Target
9.6.1 Configuring the ARM linker

This section describes how to configure options for the ARM linker (armlink). It
provides a general description of the options that you can configure through the
CodeWarrior IDE. See the ADS Linker and Utilities Guide for a description of:

• the ARM linker and its command-line options

• how the linker constructs images and partially linked objects

• scatter-loading.

Linker configuration options are described in:

• Configuring linker output

• Configuring linker options on page 9-70

• Configuring image layout on page 9-72

• Configuring linker listings on page 9-73

• Configuring linker extras on page 9-75.

Configuring linker output

Use the linker output panel to configure basic linker options that determine the type of
image it produces. You can configure the linker to produce three basic types of output
file. The options available in this panel depend on the type of image you select. You can
choose to produce:

• A partially linked object. You can use this option to produce a partially linked
ELF object file that you can use in a later link or armar operation. See
alsoWorking with multiple build targets and subprojects on page 3-52 for
information on configuring dependent subtargets and subprojects.

• A simple image that does not require a scatter-load description file to describe the
structure of the image. This option provides an easy way to produce an executable
ELF image. It gives limited control over the structure of the image.

• A scatter-loaded image. Use this output type for more detailed control over the
linker output. You must write a scatter-load description file for the image you
want to produce.

See the ADS Linker and Utilities Guide for detailed information on how to control
output from the linker, including a description of scatter-loading. See also the
description of writing code for ROM in the ADS Developer Guide for guidance on
producing images suitable for embedding in ROM.

To set the output options for images:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).
9-66 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
2. Click ARM Linker in the Target Settings Panels list and click the Output tab to
display the configuration panel (Figure 9-28).

Figure 9-28 ARM linker Output panel

3. Select the type of image you want to produce in the Link type group of options.
Select one of:

Partial Select this option to produce a partially linked ELF object file. No
other options are available if you select this option.

Simple Select this option to produce a simple ELF image file without using a
scatter-load description file. If you select this option the Simple image
group of options becomes active and a Layout panel tab is added to the
list of available panels. See Configuring image layout on page 9-72 for
more information on specifying layout options when linking a simple
image. See below for more information on setting the simple image
options.

Scattered
Select this option if you want to use a scatter-load description file to
specify the linker output. If you select this option the Scatter
description text field becomes active. You must provide a scatter-load
description file to be used by the linker. Either:

• enter the pathname of the file in the Scatter description file text
field

• click Choose… to select the file from the standard file dialog
box.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-67

Configuring a Build Target
By convention, scatter-load description files use a filename extension of .scf. You
can add scatter-load description files to your project. See the ADS Linker and
Utilities Guide for information on writing a scatter-load description file.

4. If you have selected a Simple image type in the previous step, the Simple image
output options become available. These options give you limited control over the
type of image output by the linker. The following options are available:

RO Base This text field sets both the load address and execution address of the
region containing the RO section. If you do not enter a value, the value
defaults to 0x8000.

RW Base
This text field sets the execution addresses of the region containing the
RW and ZI output sections. If you enter a value in this field, the linker
creates an image with an execution view that contains two, possibly
non-contiguous, regions:

• a region containing the RO output section

• a region containing the RW and ZI output sections.

If you enter a value for RW Base and select the Split image option, the
linker creates an image that has two load regions in addition to two
execution regions. In this case the value you enter for RW Base sets
both the load address and the execution address of the region that
contains the RW and ZI output sections.

Ropi Select this option to instruct the linker to make the execution region
containing the RO output section position-independent. Usually, each
read-only input section must be read-only position-independent. If this
option is selected, the linker:

• checks that relocations between sections are valid

• ensures that any code generated by the linker itself, such as
interworking veneers, is read-only position-independent.

Note
 The ARM tools cannot determine if the final output image will

be Read-Only Position-Independent until the linker finishes
processing input sections. This means that the linker might omit
ROPI error messages, even though you have selected the ROPI
options for the compiler and assembler.
9-68 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Rwpi Select this option to instruct the linker to make the execution region
containing the RW and ZI output sections position-independent. If this
option is not selected, the region is marked as absolute. Each writable
input section must be read-write position-independent. If this option is
selected, the linker:

• checks that the PI attribute is set on input sections to any
read-write execution regions

• checks that relocations between sections are valid

• generates sb-relative entries in Region$$Table and
ZISection$$Table.

This option requires a value for RW Base. A value of zero (0) is
assumed if you do not specify one.

Note
 The compiler does not force your writable data to be

position-independent. This means that the linker might emit RWPI
error messages, even though you have selected the RWPI options for
the compiler and assembler.

Split Image
Select this option to split the default load region, which contains the
RO and RW output sections, into two load regions:

• one containing the RO output section

• one containing the RW output section.

This option requires a value for RW Base. A value of zero (0) is
assumed if you do not specify one.

Relocatable
Select this option to retain relocation offsets in the image. These offsets
provide useful information for program loaders. Selecting this option
is equivalent to producing a scatter file with RELOC defined as an
attribute of every region.

5. Select a symbol definitions file, if required. See the description of the -symbols
option in the ADS Linker and Utilities Guide for more information on symbol
files.

6. Select a symbol editing file, if required. See the description of the -edit option in
the ADS Linker and Utilities Guide for more information on editing symbols in
output objects.

7. Click Apply to apply your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-69

Configuring a Build Target
Configuring linker options

Use the linker options panel to configure options such as unused section elimination and
symbol resolution. To configure linker options:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Linker in the Target Settings Panels list and click the Options tab to
display the configuration panel (Figure 9-29).

Figure 9-29 ARM Linker Options panel

3. Select unused section elimination options, as required:

Remove unused sections
Select one or more of these options to remove unused sections from the
image:

• Read-only

• Read-write

• Zero-initialized.
See the description of unused section elimination in the ADS Linker
and Utilities Guide for detailed information on when a section is
considered to be unused.
9-70 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Caution
 You must take care not to remove interrupt handlers when you remove

unused read-only sections. There are a number of ways to do this,
including:

• using -keep directly in the command line text field

• ensuring that the section containing the interrupt handlers is
placed first

• using the ENTRY assembler directive.

See the ADS Linker and Utilities Guide for more information on
unused section elimination.

4. Select additional linker options, as required. The following options are available:

Include debugging information
Select this option to instruct the linker to include debug table
information from the output image. The image output by the linker is
larger, but you can debug it at source.

If this option is not selected, the linker discards any debug input section
it finds in the input objects and library members, and does not include
the symbol and string table in the image. If you are creating a partially
linked object rather than an image, the linker discards the debug input
sections it finds in the input objects, but does produce the symbol and
string table in the partially linked object.

Search standard libraries
Select this option to instruct the linker to scan libraries to resolve
references.

Use ARMLIB to find libraries
Select this option to search the paths defined in the ARMLIB
environment variable for the ARM standard C libraries, instead of the
system paths defined in the Access Paths panel. See Configuring
access paths on page 9-11 for more information on access paths.

Output local symbols
Select this option to instruct the linker to add local symbols to the
output symbol table when producing an executable image.

Give progress information while linking
Select this option to print progress information during a link.

Report “might fail” conditions as errors
Select this option to instruct the linker to report conditions that might
result in failure as errors, rather than warnings.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-71

Configuring a Build Target
5. Enter a value for the image entry point, if required. You can specify an entry point
in the following forms:

• as a unique entry point address

• as the start of the input section that defines a symbol

• as an offset inside a section within a specific object.

 The entry point specified here is used to set the ELF image entry address. See the
description of the -entry linker option in the linker chapter of the ADS Linker and
Utilities Guide for details.

6. Click Apply to apply your changes.

Configuring image layout

You can use the Image Layout panel to specify which sections should be placed first and
last in an image:

• The Place at Beginning of Image options enable you to place a selected input
section first in its execution region.

• The Place at End of Image options enable you to place a selected input section
last in its execution region.

 You can use this, for example, to place:

• the section containing the reset and interrupt vector addresses first in an image

• an input section containing a checksum last in the RW section.

Note
 You cannot use these options to override the basic attribute sorting order for sections in
output regions. The basic sorting rules place RO sections before RW sections, and place
both RO and RW sections before ZI sections. This means, for example, that you cannot
use the image layout options to place an RW section before an RO section in an output
region.

You can use scatter-loading to specify more complex ordering of sections. See the ADS
Linker and Utilities Guide for more information.

To configure the layout of ELF images output by the linker:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Linker in the Target Settings Panels list and click the Image Layout
tab to display the configuration panel (Figure 9-30 on page 9-73).
9-72 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-30 ARM Linker Layout panel

3. Enter section specifications in the appropriate fields, as required. You can enter
specifiers for either, or both, the first and last sections. Section specifiers can be:

• A symbol. This selects the section that defines the symbol. You must not
specify a symbol that has more than one definition.

• An object name, and section label. This selects the specified section from
within the specified object.

See the ADS Linker and Utilities Guide for detailed information on specifying
first and last sections.

4. Click Apply to apply your changes.

Configuring linker listings

Use the Listings panel to instruct the linker to output link information to a listing file.
To configure how the linker produces listing information:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Linker in the Target Settings Panels list and click the Listings tab to
display the configuration panel (Figure 9-31 on page 9-74).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-73

Configuring a Build Target
Figure 9-31 ARM Linker Listings panel

3. Select the information you want to list during the link operation:

Image map
Select this option to create an image map listing the base and size of
each region and section in the image.

Symbols Select this option to list each symbol used in the link step, including
linker-generated symbols, and its value.

Mangled C++
Select this option to instruct the linker to display mangled C++ symbol
names in diagnostic messages, and in listings produced by the various
linker listing options. If this option is selected, the linker does not
unmangle C++ symbol names. The symbol names are displayed as
they appear in the object symbol tables.

Section cross-references
Select this option to list all cross-references between input sections.

4. Enter the name to be used for the list file, or click Choose… to select a listing file
from the standard file dialog box. When you make your project, the listing text
file is displayed in an editor window.

If you do not enter a filename the listing information is displayed in a Message
window.
9-74 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
5. Select the Callgraph checkbox if you want to generate a static callgraph of
functions. This option generates an HTML file in the same directory as the output
binary. The callgraph gives definition and reference information for all functions
in the image. See the description of the -callgraph linker option in the ADS Linker
and Utilities Guide for a description of the output.

6. Select the link information you want to view. These options instruct the linker to
generate size information for sections in the output image:

Sizes Gives a list of the Code and Data (RO Data, RW Data, ZI Data, and
Debug Data) sizes for each input object and library member in the
image.

Totals Gives totals of the Code and Data (RO Data, RW Data, ZI Data, and
Debug Data) sizes for input objects and libraries.

Unused Lists all unused sections that were eliminated from the image. See
Configuring linker options on page 9-70 for more information on
unused section elimination.

Veneers Gives details of the linker-generated veneers. See the ADS Linker and
Utilities Guide for more information on linker-generated veneers, such
as interworking veneers.

7. Click Apply to apply your changes.

Configuring linker extras

Use the Extras panel to configure extra linker options:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Linker in the Target Settings Panels list and click the Extras tab to
display the configuration panel (Figure 9-31 on page 9-74).
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-75

Configuring a Build Target
Figure 9-32 ARM Linker Extras panel

3. Enter a symbol to match to each reference to an undefined symbol in your code.

The symbol must be both defined and global, otherwise it will appear in the list
of undefined symbols, and the link step will fail. This option is useful during
top-down development. It enables you to test a partially-implemented system by
matching references to missing functions to a dummy function.

4. Enter a filename, or click Choose… to select a via file from the standard file
dialog box. You can use a via file to specify additional linker options. See the ADS
Linker and Utilities Guide for more information on using via files with the linker.

5. Click Apply to apply your settings.

9.6.2 Configuring fromELF

The fromELF utility can perform a number of format conversions on linker, compiler,
or assembler output, such as:

• converting an ELF image file to a binary format suitable for embedding in ROM

• disassembling output, and extracting other information such as object sizes,
symbol and string tables, and relocation information.

To use fromELF you must specify it in the Post-linker field of the Target settings
configuration panel. See Configuring target settings on page 9-8 for more information.
9-76 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
In addition to calling fromELF as a post-linker, you can also call it as a third-party
debugger. This enables you to use fromELF a second time, for example, to generate a
disassembled code listing from your converted binary output. See Choosing a debugger
on page 9-82 for more information.

Note
 The options you configure in the ARM fromELF panel apply only when you call
fromELF as a post-linker, not when you call it as a third-party debugger.

To configure the fromELF utility:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM fromELF in the Target Settings Panels list to display the fromELF
configuration panel (Figure 9-33).

Figure 9-33 ARM fromELF panel

3. Select Include debug sections in output to ensure that debug table information
is included in the fromELF output.

4. Click the Output format drop-down list and select the output format you want.
Either:

• Select from the binary output options. See the Toolkit Utilities chapter of
the ADS Linker and Utilities Guide for details.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-77

Configuring a Build Target
• Select Text information to extract a text file of information on the output
image. Select one or more text format flags (on the right of the panel) to
choose the information you want. These flags also control how source files
are disassembled when you use the Disassemble command. See
Disassembling code on page 3-83 for more information.

5. Enter the pathname of the output file or click Choose… to select an output file
from the standard file dialog box. If you do not enter a pathname:

• output text information is displayed in a new editor window if the Text
information output format is selected

• the converted binary is saved in the target subdirectory of the project data
directory if a binary output is selected.

6. Click Apply to apply your changes. When you make your project, the
CodeWarrior IDE calls fromELF to process the output.
9-78 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.7 Configuring editor settings

This section describes changes you can make to the CodeWarrior editor that apply to
the current build target. See Choosing editor preferences on page 8-18 for information
on setting global editor preferences.

9.7.1 Custom Keywords

The Custom Keywords settings panel enables you to set colors for defined sets of
keywords. The colors you define are used to display the keywords in the CodeWarrior
editor. Custom keywords are project-specific, not global to the CodeWarrior IDE. See
Text Colors on page 8-25 for more information on:

• setting global keyword sets

• setting color options

• importing and exporting keyword sets.

To configure custom keyword sets:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click Custom Keywords in the Target Settings Panels list to display the
configuration panel (Figure 9-34)

Figure 9-34 Custom Keywords settings panel
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-79

Configuring a Build Target
3. Change the keyword sets, as required:

• To change the color for the keyword set, click the color sample and select
the color you want from the standard Windows color picker.

• To change the contents of a keyword set, click Edit… and make the
appropriate entries in the dialog box. To delete a keyword from the list,
select it and press the Backspace key.

You can also export and import sets of keyword definitions from this dialog.
Keyword files are alphabetically sorted text files with one line for each
keyword. Each line is terminated with a carriage return.

4. Click Apply to apply your changes.
9-80 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.8 Configuring the debugger

You can configure the CodeWarrior IDE to call any of the ARM debuggers to load and
debug your images. This section describes how to configure the ARM debuggers to
debug and run executable images built from CodeWarrior IDE projects. See Chapter 4
Working with the ARM Debuggers for more information on how the CodeWarrior IDE
interacts with the ARM debuggers. See the AXD and armsd Debuggers Guide for
detailed information on working with the ARM debuggers.

For information on configuring the other tools in the ARM tool chain see:

• Configuring assembler and compiler language settings on page 9-33

• Configuring linker settings on page 9-65.

Note
 The settings you define in these panels apply to the currently selected build target only.
You must configure each build target in your project separately.

This section describes:

• Debugger Settings

• Configuring the ARM Debugger

• Configuring the ARM Runner on page 9-88.

9.8.1 Other Executables

The Other Executables panel is not used by the ARM version of the CodeWarrior IDE.

9.8.2 Debugger Settings

The Debugger Settings panel is not used by the ARM version of the CodeWarrior IDE.

9.8.3 Configuring the ARM Debugger

Use the Choose Debugger panel to configure options for the ARM debugger that the
CodeWarrior IDE calls when you select Debug from the Project menu. You can call
any of the ARM debuggers. Depending on the debugger, you can provide startup and
configuration options, or specify a script file to call when the debugger is executed.

In addition, you can use this panel to specify a third-party debugger, or other
post-processing tool, in place of the ARM debuggers. The following sections describe:

• Choosing a debugger on page 9-82

• Configuring armsd on page 9-84

• Specifying arguments for your executable image on page 9-87.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-81

Configuring a Build Target
Choosing a debugger

Use the Choose Debugger panel to specify which ARM debugger is called to debug or
run output images from the CodeWarrior IDE. You can select any ARM debugger, or
you can specify a third-party debugger with the Other option.

Note
 Use the Other option in this panel in preference to the Use Third Party debugger
option in the Build Extras panel.

In addition, you can use the Other option to select any post-processing tool for your
output images. You can use this, for example, to run the ARM fromELF utility twice
during a build so that you can generate a disassembled listing of a plain binary output
file:

1. Configure fromELF as a post-linker to convert your output image to ROMable
binary format (see Configuring target settings on page 9-8 and Configuring
fromELF on page 9-76)

2. Call fromELF as a third-party debugger to generate a disassembled code listing
of your output binary.

To select the debugger called by the CodeWarrior IDE:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Debugger in the Target Settings Panels list and click the Choose
Debugger tab to display the configuration panel (Figure 9-35 on page 9-83).
9-82 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Figure 9-35 Choose debugger panel

3. Choose the debugger you want to use when you select Debug from the Project
menu. To select an ARM debugger, click one of the radio buttons and configure
the debugger in the appropriate panel. For more information on configuring armsd
see Configuring armsd on page 9-84.

Note
 AXD does not have a configuration panel.

See also the AXD and armsd Debuggers Guide for detailed information on using
the ARM Debuggers.

To select a third-party debugger:

a. Click Other.

b. Click Choose… and select the third-party debugger from the standard file
dialog.

c. Enter the debugger command-line arguments in the Command-line for
non-ARM debugger field.

Note
 Third-party debuggers must be capable of loading and debugging an ARM

ELF/DWARF2 image.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-83

Configuring a Build Target
Configuring armsd

If you have configured the CodeWarrior IDE to use armsd as your debugger (see
Choosing a debugger on page 9-82), use the armsd panels to configure debugger
options:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Debugger in the Target Settings Panels list and click the Armsd1 tab
to display the first configuration panel (Figure 9-36).

Figure 9-36 Armsd1 panel

3. Select the debug target for the debugger:

ARMulator
Select Armulator® to target an ARMulator processor.

ADP Select ADP if you are connecting to an ADP-compatible remote target
such as an ARM development board. If you select this option you can
specify the port and line speed for your target device.

Other Select Other if you are connecting to a third-party debug target.

Note
 You cannot use armsd with Multi-ICE®.
9-84 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
4. Select values for the following options, as required:

Target Processor
Select the processor for your target system from the pop-up list. For
ADP targets, select the Reset target processor checkbox to instruct
the debugger to reset the target processor, if this is supported by the
target system. Select Don’t specify a processor to accept the default.

Byte Order
Set the byte order used by your target system. The image you are
debugging must be compiled and assembled with the same byte order
settings.

Load FPE emulator
Use this option if you want to run code compiled for a processor with
a Floating-Point Accelerator (FPA) on a processor with no FPA, by
using a Floating-Point Emulator (FPE). For example, use this option if
you want to run code built on the ARM7500FE on the StrongARM.

Emulated Clock Speed
Select a clock speed for the ARMulator. ARMulator uses this value to
convert cycle counts to time. If there is an armsd.map file, ARMulator
uses information from this file in combination with the emulated clock
speed to calculate both cycle count and time. The armsd.map file must
be located in the same directory as armsd. See the ADS Debug Target
Guide for more information on map files.

Port Specification
If you have selected an ADP debug target, enter an expression in the
Device text field to select the target communication method. The
expression selects serial, serial/parallel, or ethernet communications
and can be one of:

s=n selects serial port communications. n can be 1, 2 or a device
name.

s=n,p=m

selects serial and parallel port communication. n and m can
be 1, 2, or a device name. There must be no space between
the arguments.

e=id selects ethernet communication. id is the ethernet address of
the target board.

For serial and serial/parallel communications, you can append ,h=0 to
the port expression to switch off the heartbeat feature of ADP. For
example:
s=1,h=0
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-85

Configuring a Build Target
selects serial port 1 and turns off the ADP heartbeat.

5. Click the Armsd2 tab to display the second configuration panel (Figure 9-37).

Figure 9-37 Armsd2 panel

6. Enter values for the following options:

Symbols file
Enter the full pathname to an image file. Armsd reads debug
information from the image file, but does not load the image.
Alternatively, click Choose… to select a symbols file from the
standard file dialog box.

Script file
Enter the full path to a script file containing armsd commands that you
want to execute on startup. Alternatively, click Choose… to select a
script file from the standard file dialog box.

Load configuration
Enter the full path to an EmbeddedICE™ configuration file.
Alternatively, click Choose… to select a configuration file from the
standard file dialog box. Use the Select configuration field to select a
specific configuration block from this file. This option is grayed out
unless you have enabled ADB by selecting ADP under Debug Target
in the Armsd1 tab.
9-86 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
Select configuration
Enter an armsd selectconfig command to select a data block from the
configuration file specified in the Load configuration field. An
EmbeddedICE configuration data file contains data blocks, each
identified by a processor name and version. This option is grayed out
unless you have enabled ADB by selecting ADP under Debug Target
in the Armsd1 tab.

The selectconfig command selects the required block of
EmbeddedICE configuration data from those available in the specified
configuration file. See the armsd chapter of the AXD and armsd
Debuggers Guide for more information.

Capture output to
Enter a filename to which output information from the debuggee is
written. Alternatively, click Choose… to select an output file from the
standard file dialog box.

7. Click Apply to apply your settings.

Specifying arguments for your executable image

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Debugger in the Target Settings Panels list.

3. Click the Arguments tab to display the arguments configuration panel
(Figure 9-38 on page 9-88). Use this panel to enter any command-line arguments
required by your executable image.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-87

Configuring a Build Target
Figure 9-38 Arguments panel

4. Click Apply to apply your settings.

9.8.4 Configuring the ARM Runner

The term ARM Runner refers to the ARM debugger that is called to execute, rather than
debug, an image file.

The ARM Runner panel is used to configure the debugger that is called when you select
Run from the Project menu in the CodeWarrior IDE. You can use any of the ARM
Debuggers, or a third-party debugger, to run executable images. You can specify
different debuggers to be called when you debug, and when you run. For example, you
can use AXD to debug your image, and armsd to run it without the overhead of starting
a GUI debugger.

The options for this panel are exactly the same as for the ARM Debugger panel. See
Configuring the ARM Debugger on page 9-81 for information.
9-88 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Configuring a Build Target
9.9 Configuring Miscellaneous settings

This section describes the following miscellaneous configuration options:

• ARM Features.

9.9.1 ARM Features

This panel is required only if you are using versions of the ARM Developer Suite that
are feature-restricted through FLEXlm license management software. The ARM
Features panel enables you to select the feature set supplied with your version of ADS.
This panel enables you to select the feature set in use if you are moving a project from
one restricted toolkit to another restricted toolkit with a different feature set.

To configure the feature set:

1. Display the Target Settings window for the build target you want to configure (see
Displaying Target Settings panels on page 9-4).

2. Click ARM Features in the Target Settings Panels list to display the
configuration panel (Figure 9-39).

Figure 9-39 ARM Features panel

3. Select the appropriate feature set.

4. Click Apply to apply your changes.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-89

Configuring a Build Target
9-90 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Chapter 10
Using the CodeWarrior IDE with Version
Control Systems

This chapter explains how to use the CodeWarrior IDE version control integration
facilities to control your source code. It contains the following sections:

• About version control systems on page 10-2

• Activating VCS on page 10-3

• Using your VCS from the CodeWarrior IDE on page 10-6.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-1

Using the CodeWarrior IDE with Version Control Systems
10.1 About version control systems

A revision control or version control system (VCS) enables you to maintain a database
of your source code, and then check files in or out of the database. Version control
systems can help you track code changes, particularly when more than one person is
working on a software project.

Note
 See Configuring the CodeWarrior IDE for complex or multi-user projects on page 3-50
for important information on using the CodeWarrior IDE in multi-user environments.

10.1.1 Commercially available VCS plug-ins

The CodeWarrior IDE plug-in architecture supports a variety of version control
systems.

Plug-ins are available for version control systems such as:

• CVS

• Visual SourceSafe

• Clearcase

• Perforce.

To see the latest list of available plug-in tools, visit the CodeWarrior web site at:
http://www.codewarrior.com
10-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
10.2 Activating VCS

This section describes how to install and activate a version control system so that it can
be used with the CodeWarrior IDE.

10.2.1 VCS plug-in software

The installation instructions for your VCS plug-in software will depend on which VCS
software you are using. This section gives general instructions that apply to most VCS
systems.

Installing VCS plug-in software

To install most version control system plug-in software:

1. Exit the CodeWarrior IDE if it is running.

2. Copy your VCS plug-in to the {Compiler}\Plugins directory.

Note
 You must also follow any installation instructions that accompany the VCS

software you plan to use. If you encounter any problems, contact the VCS
software vendor for assistance.

3. Restart the CodeWarrior IDE.

This is usually sufficient to make the VCS software available for use.

10.2.2 Activating VCS software

You must configure VCS options separately for each project that you want to use your
version control system. This section gives general instructions for activating version
control for a project.

Note
 You must also follow any activation instructions that accompany the VCS software you
plan to use. If you encounter any problems, contact the VCS software vendor for
assistance.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-3

Using the CodeWarrior IDE with Version Control Systems
Configuring your VCS settings

To configure your VCS settings and activate VCS:

1. Ensure that the project you want to configure is the currently active window.

2. Select Version Control Settings… from the Edit menu. The VCS Settings
window is displayed (Figure 10-1).

Figure 10-1 The VCS settings panel

3. Select the Use Version Control checkbox to activate version control.

4. Select a version control system from the Method drop-down list.

The CodeWarrior IDE supports several different types of VCS. If your VCS
software is correctly installed, its name is displayed in the Method list, as shown
in Figure 10-2.

Figure 10-2 VCS Method pop-up list.

Note
 If your VCS software does not appear in the Method list, you might have to

restart the CodeWarrior IDE or restart your computer.
10-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
5. Enter your VCS user name in the Username field.

6. Enter your password (optional).

7. Set any additional Login Settings options you require. The following options are
available:

Connect on open
If this option is selected, the CodeWarrior IDE connects to the VCS
database when you open this project.

Always show login dialog
If this option is selected the login window is displayed every time you
connect to the VCS database.

Remember password
If this option is selected your password is saved after you connect to
the database for the first time. You will not be required to enter your
password each time you connect.

8. Click the Choose button next to the Database Path field to select the VCS
database you want to access. The setting of the Database Path field depends on
which VCS software you are using. See your VCS software documentation for
more information.

9. Check Try to mount shared volume if the database you are using is shared by
other users.

10. Click the Choose button next to the Local Path field to select the destination
folder where your local files will be stored. The setting of the Local Path field
depends on which VCS software you are using. See your VCS software
documentation for more information.

11. Click Apply to apply your settings. The CodeWarrior IDE uses the settings you
have specified to connect to the VCS database.

Note
 Some VCS software might have additional setup requirements. If you encounter any
problems, contact the VCS software vendor for assistance.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-5

Using the CodeWarrior IDE with Version Control Systems
10.3 Using your VCS from the CodeWarrior IDE

The CodeWarrior IDE provides several ways to access common VCS operations and
view status and log information. These include:

• Using the Version Control Login window

• Performing common VCS operations on page 10-7.

10.3.1 Using the Version Control Login window

Many version control systems require you to log in before you can use the system. The
CodeWarrior IDE provides the Version Control Login window to support systems that
require password authentication.

The CodeWarrior IDE displays the Version Control Login window if you are not
already logged in to your VCS and:

• You perform an operation that requires the CodeWarrior IDE to communicate
with the VCS, such as updating the status of a file.

• You log in manually.

• You configure your project to connect each time the project is opened. See
Configuring your VCS settings on page 10-4 for more information.

Logging in to your VCS

To log into your VCS:

1. Either:

• perform an operation that will cause the CodeWarrior IDE to communicate
with your VCS

• select Connect from the VCS menu to connect manually, if this menu item
is supported by your VCS software.

The CodeWarrior IDE displays the Version Control Login window.

2. Enter your VCS username and password, if required by your system.

3. Click OK to log in, or Cancel to stop.

Logging out of your VCS

To log out of your VCS select Disconnect from the VCS menu.
10-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
10.3.2 Performing common VCS operations

When version control is active for a project, the CodeWarrior IDE makes the following
additions to its graphical interface:

• A Checkout Status column is displayed in the project window. Figure 10-3 shows
an example.

• A VCS menu is added to the menu bar. See Figure 10-4 on page 10-10 for an
example.

• A VCS drop-down menu is added to editor windows for the project. See
Figure 10-5 on page 10-12 for an example.

Figure 10-3 Checkout Status Column

You can use the VCS interface items to perform the most common VCS operations,
such as determining file status, checking in files, and checking out files, from within
both the project window and the editor window.

Note
 Other operations

Other operations might be available, depending on which revision control system
plug-in you use. See the documentation that accompanies the VCS software you are
using for more information.

��������������������
�
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-7

Using the CodeWarrior IDE with Version Control Systems
The following sections describe how to perform the most common VCS operations
from within the CodeWarrior IDE project and editor windows:

• Viewing and synchronizing the VCS status of files

• Working from a project window on page 10-9

• Working from an editor window on page 10-11

• Viewing VCS messages on page 10-13.

Viewing and synchronizing the VCS status of files

If you have configured your project to use a VCS, the CodeWarrior IDE uses icons to
represent the current checkout status, or file permission, of the files in your project.
When you change the checkout status of a file in the CodeWarrior IDE, the icon updates
to reflect the change.

Each file in a project can have a different permission setting. The CodeWarrior IDE
displays file status icon for a file:

• In the Checkout Status column of the project window. See Figure 10-3 on
page 10-7 for an example.

• As the icon for the VCS Pop-up menu in the editor window for the file. See
Figure 10-3 on page 10-7 for an example.

 Table 10-1 shows the most common status indicator icons. The operations that you can
perform on a file depend on the current status of the file, and the type of VCS system
you use.

Table 10-1 VCS status icons

If the icon is… Then…

Checked out You can edit the file and add your changes to the revision
control database.

Checked in You cannot edit the file. It is part of the revision control
database.
10-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
Most version control systems provide a command to synchronize the status of a local
copy of a file with the status of the file in the version control system. To perform a
synchronize status command either:

• click the Checkout Status icon at the top of the column

• select Synchronize Status from the VCS menu.

The status of your local files is compared and synchronized with the status of the files
in the version control database.

Working from a project window

You can perform many common VCS operations from the project window by using the
VCS menu (Figure 10-4 on page 10-10).

Writable You can edit the file, but you cannot add your changes to the
revision control database because the file was not properly
checked-out for modification.

Unlocked The file can be edited. It is not checked into a revision control
database.

Locked You cannot edit the file. It is not part of the revision control
database. You might not have the access privileges necessary to
access the file, or someone might have locked the file.

Table 10-1 VCS status icons (continued)

If the icon is… Then…
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-9

Using the CodeWarrior IDE with Version Control Systems
Figure 10-4 VCS menu

The VCS menu enables you to perform Get, Checkout, Checkin, and other common
VCS operations. To perform a VCS operation on all the files in a project:

1. Ensure that the project window is the currently active window.

2. Select the command from the VCS menu.

Note
 • The menu items available in the VCS menu might vary, depending on the

VCS operations that are supported by your VCS software. See the
documentation that accompanies your VCS software for more information.

• VCS plug-ins can assign different names to these operations. See the
documentation that accompanies your VCS software to determine which
operations are supported.

The following VCS menu commands are typical:

Synchronize Status
Updates the VCS Status column in the project window by examining
each project file’s status and updating its information. See Viewing and
synchronizing the VCS status of files on page 10-8 for more
information.

Project Contains a submenu of VCS commands that enable you to perform
Get, Checkout, Undo Checkout, Checkin, Status, and Add
operations on project files themselves.
10-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
Recursive
Contains a submenu of VCS commands that enable you to perform
recursive operations in some version control systems.

Get Retrieves a copy of the file without checking it out of the project
database.

Checkout
Checks out files for modification. Depending on your version control
software, checkout can be exclusive or non-exclusive.

Undo Checkout
Cancels a checkout and discard all changes.

Checkin
Returns a modified file to the database and relinquishes the checkout.

History Displays a modification history of a project or file.

Status Displays the status of a file.

Properties
Displays database information about a project or file.

Comment
Changes a comment for a specific version of a project or file.

Label Assigns a label to a project or file.

Add Adds a file to the database.

Connect or Disconnect
Connects or disconnects you from the project database, depending on
the current open status.

About Displays VCS plug-in copyright and version information.

Variables
Displays the VCS user variable settings in an editor window.

Working from an editor window

The VCS drop-down menu (see Figure 10-5 on page 10-12) is displayed in
editor windows when a VCS is activated. The icon that represents the VCS
drop-down menu indicates the current permission setting for the file. For more

information on permission settings, see Viewing and synchronizing the VCS status of
files on page 10-8.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-11

Using the CodeWarrior IDE with Version Control Systems
Figure 10-5 VCS drop-down menu

The VCS drop-down menu enables you to perform a subset of the available VCS
commands on the file you are currently editing. The VCS operations you can perform
depend on the current status of the file, and the operations supported by your VCS.

To perform a VCS operation on a source file:

1. Open the file in the CodeWarrior editor.

2. Click the VCS drop-down menu.

Note
 The button that represents this menu changes to reflect the current status of the

file. See Table 10-1 on page 10-8 for more information.

A VCS menu is displayed that contains menu items for VCS operations that are
supported by your VCS system. See Figure 10-5 for an example.

See the documentation that accompanies your revision control system for more
information on supported VCS operations.

3. Select an item from the VCS menu to execute a VCS operation. If the menu item
contains an ellipsis character (…), a dialog box is displayed that enables you to
customize the operation before you execute it.

The following VCS pop-up operations are typical:

Unlock Changes the lock on the file (if possible), enabling it to be writable.
10-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Using the CodeWarrior IDE with Version Control Systems
Add Adds the file to the revision control database.

Get Retrieves a fresh copy of the file from the revision control database.

Checkout
Checks the file out from the revision control database for
modifications.

Undo Checkout
Discards any changes made to the file, and instructs the revision
control database to cancel the checkout of the file.

Checkin
Instructs the revision control database to accept the file with the
changes that have been made to it.

Make Writable
Makes the file writable. Depending on your VCS, you might not be
able to be check the modified version into the version control database.

Viewing VCS messages

The CodeWarrior IDE uses a message window to display a log of revision control
messages. See Using the message window on page 4-14 for details of how to use the
controls in the window.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. 10-13

Using the CodeWarrior IDE with Version Control Systems
10-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Appendix A
Running the CodeWarrior IDE from the
Command Line

This appendix explains how to use the CodeWarrior IDE from the command line. It
contains the following section:

• Using the CodeWarrior IDE from the command line on page A-2.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. A-1

Running the CodeWarrior IDE from the Command Line
A.1 Using the CodeWarrior IDE from the command line

CMDIDE.EXE is a console window program that can be started from the command line to
build project files that have been created and edited with the CodeWarrior IDE.
CMDIDE.EXE invokes the CodeWarrior IDE, passes the proper parameters to produce a
build, and waits for the IDE to finish its operation.

The command-line arguments are:

Projectname
Specifies the project to use.

/tTargetname
Specifies a target to become the current target.

/r Removes the objects of the current target before building.

/b Builds the current target.

/c Closes the project after building.

/q Quits the IDE after building.

/v[y|n|a] Options for converting projects on open:

y Convert without asking.

n Do not convert.

a Ask whether to convert.

/s Forces the command line to be processed in a new instance of the IDE
(rather than using a current instance).

If more than one project document is specified to be opened in the command line, the
/t target and /b build command flags apply to the first project document found in the
list of documents. If no project is specified in the command line, it uses the usual logic
in the CodeWarrior IDE (front project or default project) to select the project to build.

For example, to build the dhryansi project, change directory to the dhryansi example
directory and type:

cmdide dhryansi.mcp /t DebugRel /c /b

If no target is specified, cmdide uses whatever the current target is for that project.

All build commands are executed using a different process from the one launched from
the command line. The original process returns when the command line has been
completely processed and the build has completed.

The following codes are returned and can be tested using the IF ERRORLEVEL instruction
in a batch file:

0 No error

1 Error opening file
A-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Running the CodeWarrior IDE from the Command Line
2 Project is not open

3 IDE is already building

4 Invalid target name (for /t flag)

5 Error changing current target

6 Error removing objects

7 Build was canceled

8 Build failed

9 Process aborted.

Note
 Though IDE.EXE understands the same parameters as CMDIDE.EXE, it is particularly
important on Windows 95, Windows 98, and Windows ME to use CMDIDE.EXE to ensure
that builds are correctly serialized rather than executed all at once.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. A-3

Running the CodeWarrior IDE from the Command Line
A-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Appendix B
CodeWarrior IDE Installation and Preference
Settings

This appendix describes how to install multiple copies of the CodeWarrior IDE, and
how to use the CodeWarrior IDE for the ARM Developer Suite with other versions of
the CodeWarrior IDE. It contains the following sections:

• The CodeWarrior IDE preferences directory on page B-2

• Using different versions of the CodeWarrior IDE on page B-3.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. B-1

CodeWarrior IDE Installation and Preference Settings
B.1 The CodeWarrior IDE preferences directory

The CodeWarrior IDE maintains preferences and persistence information in the
following locations:

For Windows NT c:\Winnt\Metrowerks\CodeWarrior IDE 4.2 Prefs

For Windows 95/98/ME c:\Windows\Metrowerks\CodeWarrior IDE 4.2 Prefs

The preferences file is created when the CodeWarrior IDE is started for the first time, if
it does not already exist.

Note
 If you want to install multiple copies of the CodeWarrior IDE for the ARM Developer
Suite you can preconfigure a single installation and copy the preferences directory for
that installation to each machine.

CodeWarrior IDE preferences are deleted when you uninstall the CodeWarrior IDE for
the ARM Developer Suite.
B-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Installation and Preference Settings
B.2 Using different versions of the CodeWarrior IDE

The CodeWarrior IDE for the ARM Developer Suite is customized to support the ARM
tool chain. This means that:

• your CodeWarrior IDE preferences might not be applicable to other CodeWarrior
IDE versions

• some components of the CodeWarrior IDE that are registered in the Windows
registry at installation are specific to the CodeWarrior IDE for the ARM
Developer Suite.

To switch from the CodeWarrior IDE for the ARM Developer Suite to another version
of the CodeWarrior IDE on the same machine:

1. Rename the CodeWarrior IDE Preferences file.

2. Run the regservers.bat batch file for the installation you want to use. Typically
regservers.bat is located in the CodeWarrior bin subdirectory.

To switch back to the CodeWarrior IDE for the ARM Developer Suite, rename your
preferences directories and run regservers.bat from
install_directory\ARM\ADSv1_2\Bin.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. B-3

CodeWarrior IDE Installation and Preference Settings
B-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Appendix C
Perl Scripts

This appendix describes how to use the CodeWarrior IDE Perl support. It describes how
to install and configure the Perl plug-ins, and how to configure your project to recognize
and run Perl scripts. It contains the following sections:

• Perl software plug-ins on page C-2

• Configuring a prefix file on page C-4

• Using Perl scripting on page C-6.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. C-1

Perl Scripts
C.1 Perl software plug-ins

The CodeWarrior IDE uses software plug-ins to process Perl scripts. This section
describes how to install the Perl plug-ins for Windows.

C.1.1 Installing Perl software plug-ins

The CodeWarrior IDE Perl plug-ins are available in the MWPerlWin.zip zip archive on
your installation CD. To install the plug-ins:

1. Open the MWPerlWin.zip archive in a zip extraction utility such as WinZip.

2. Ensure that your zip extraction utility is configured to recreate the directory
structure of the archive.

3. Extract the contents of the zip archive to the bin\plugins subdirectory of your
ADS installation directory. If you have installed ADS in its default location, this
will be c:\Program Files\ARM\ADSv1_2\Bin\plugins.

4. Start the CodeWarrior IDE. The Perl plug-ins are available.
C-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Perl Scripts
C.2 Configuring your project for Perl

This section describes how to configure the CodeWarrior IDE to recognize and process
Perl scripts, and how to configure a prefix file that is executed before each Perl script in
your project.

C.2.1 Configuring file mappings

If you want to add Perl files with a standard .pl filename extension to your project you
must configure the File Mappings panel to associate .pl files with the MW Perl plug-in
compiler. To configure file mappings:

1. Open the project window for your project.

2. Select the build target you want to configure.

Note
 You must configure File Mappings separately for each build target in your project.

3. Select target_name Settings… from the Edit menu and select File Mappings
from the list of Target Settings Panels. The CodeWarrior IDE displays the File
Mappings panel (Figure C-1).

Figure C-1 File mappings configuration panel

4. Select an existing file mapping, such as the ARM C compiler mapping.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. C-3

Perl Scripts
5. Change the Extension field to .pl and select MW Perl from the Compiler
drop-down list.

Note
 If the MW Perl menu item is not displayed in the drop-down list, check that you

have correctly installed the Perl plug-in software. See Perl software plug-ins on
page C-2 for more information.

6. Click Add to add the filename extension to the File Mappings list.

7. Click Save to save your changes.

C.2.2 Configuring a prefix file

You can use the Perl target settings panel to specify a prefix script to be used for the Perl
scripts in your project. The CodeWarrior IDE treats the prefix script as an implicit
require file. The require directive is the Perl equivalent of the #include directive in C
and C++. The Perl commands in the prefix file are executed before each Perl script file
in your project.

To configure a prefix file:

1. Open the project window for your project.

2. Select the build target you want to configure.

Note
 You must configure the prefix file separately for each build target in your project.

3. Select target_name Settings… from the Edit menu and select Perl Panel from the
list of Target Settings Panels. The CodeWarrior IDE displays the File Mappings
panel (Figure C-2 on page C-5).
C-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Perl Scripts
Figure C-2 Perl configuration panel

4. Enter the name of the Perl file you want to use as a prefix file.

Note
 The Perl plug-in for the CodeWarrior IDE uses the find-and-load functionality of

the CodeWarrior IDE. This functionality depends on the ability of the IDE to find
referenced files using absolute paths. You must specify the access paths for any
files in the Perl script or the Prefix file that are not referenced by absolute paths.
See Configuring access paths on page 9-11 for more information.

5. Click Save to save your changes. The CodeWarrior IDE will execute Perl
commands in the prefix file prior to executing each Perl file in the project.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. C-5

Perl Scripts
C.3 Using Perl scripting

This section describes how to add Perl files to your project, and gives an example Perl
script.

C.3.1 Adding Perl files to you project

To add a Perl file to your project:

1. Ensure that you have installed the Perl plug-in software and have configured the
CodeWarrior IDE to recognize the filename extension for your Perl files. See Perl
software plug-ins on page C-2 and Configuring your project for Perl on page C-3
for more information.

2. Select Add Files… from the Project menu. The CodeWarrior IDE displays the
Add Files dialog box (Figure C-3).

Figure C-3 Adding Perl source to a project

3. Select All Files from the Files of Type drop-down list to display .pl files in the
dialog.

4. Select the Perl file you require and click Add. The CodeWarrior IDE adds the Perl
file to your project.

Changing the build order of added files

The CodeWarrior IDE executes Perl scripts in the order in which they appear in the Link
Order view, regardless of their order in the Files view. For example, if a Perl script is
listed after a C source file in the Link Order view, the CodeWarrior IDE calls the ARM
C compiler to compile the source file, and then calls the MW Perl plug-in to process the
Perl script.
C-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Perl Scripts
To change the order in which source files and Perl scripts are processed, use drag and
drop in the Link Order view. See Setting the link order on page 3-80 for more
information.

C.3.2 Restrictions

The following usage restrictions and special considerations apply to using Perl with the
CodeWarrior IDE.

StdIn Usage

StdIn is not supported in the prefix file. This means that the Perl script cannot accept
keyboard input.

C.3.3 Example

Example C-1 shows a simple example of a Perl script.

Example C-1

Simple Perl Example
Print a line of text
print "Hello World!\n";
$scale0 = 0;
$scale1 = 1;
$scale2 = 2.5;
Create and open a file for output
open (theFile, ">output.txt");
Dump some text into the file
print theFile "The file should now be open\n";
print theFile "Let's try a few things:\n\n";
Arithmetic
print theFile "**Arithmetic \n";
print theFile $scale1 + $scale2 . "\n";
print theFile $scale1 * $scale2 . "\n";
print theFile $scale1 % $scale2 . "\n\n";
Boolean logic
print theFile "**Boolean \n";
print theFile ($scale0 && $scale0) . "\n";
print theFile ($scale0 && $scale1) . "\n";
print theFile ($scale1 && $scale1) . "\n";
print theFile ($scale0 || $scale0) . "\n";
print theFile ($scale0 || $scale1) . "\n";
print theFile (!$scale0) . "\n\n";
Comparison
print theFile "**Comparisons \n";
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. C-7

Perl Scripts
print theFile ($scale2 == $scale2) . "\n";
print "That's it, closing file\n";
Close the file
close theFile;
C-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Appendix D
CodeWarrior IDE Reference

This chapter describes each menu command in the CodeWarrior IDE, and the default
key bindings for those commands. You can use this chapter as a convenient reference
when you want to find information quickly. It contains the following sections:

• CodeWarrior IDE menu reference on page D-2

• CodeWarrior IDE default key bindings on page D-27.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-1

CodeWarrior IDE Reference
D.1 CodeWarrior IDE menu reference

This section gives an overview of the menu commands in the CodeWarrior IDE. The
following sections describe the menus in the CodeWarrior IDE menu bar:

• File menu on page D-3

• Edit menu on page D-5

• View Menu on page D-8

• Search menu on page D-10

• Project menu on page D-13

• Browser menu on page D-20

• Window menu on page D-22

• Version Control System (VCS) menu on page D-23

• Help menu on page D-24

• Toolbar submenu on page D-25.

The lists below summarize the menus that are displayed at all times, and which menus
are displayed only when a window that can use their menu commands is available.

The following menus are always available:

• File

• Edit

• Search

• Project

• Debug (this menu is not used by the CodeWarrior IDE for the ARM Development
Suite)

• Window

• Help.

The following menus are context-sensitive:

• Data (this menu is not used by the CodeWarrior IDE for the ARM Development
Suite)

• Browser

• Catalog (this menu is not used by the CodeWarrior IDE for the ARM
Development Suite)

• Layout (this menu is not used by the CodeWarrior IDE for the ARM Development
Suite).
D-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
The Version Control System (VCS) menu is displayed only if you have installed and
configured the CodeWarrior IDE to work with a compatible revision control system that
you purchased separately. See the documentation that came with the additional revision
control software for more information on revision control systems, and how to use them
with the CodeWarrior IDE.

D.1.1 File menu

The File menu contains the commands you use to open, create, save, close, and print
existing or new source code files and projects. The File menu also provides different
methods for saving edited files.

New

This command opens the New dialog box. This dialog box enables you to create new
projects and files in the CodeWarrior IDE.

Open

This command opens an existing file. See Opening files from the File menu on page 2-5
for more information.

Find and Open File

This command opens an existing file, searching the current access paths as specified in
the Access Paths panel of the Target Settings window. See Opening header files from an
editor window on page 2-9 for more information.

Close

This command closes the active window. See Closing files on page 2-15 for more
information.

Save

This command saves the contents of the active window to disk. See Saving editor files
on page 2-11 for more information.

Save All

This command saves all editor files that are currently open. See Saving all files on
page 2-12 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-3

CodeWarrior IDE Reference
Save As...

This command saves the contents of the active window to disk under another name of
your choosing. See Renaming and saving a file on page 2-12 for more information.

Save a Copy As...

This command saves the active window in a separate file. This command operates in
different ways, depending on the active window. See Saving a backup copy of a file on
page 2-13 for more information.

Revert

This command reverts the active editor window to its last saved version. See Reverting
to the most recently saved version of a file on page 2-19 for more information.

Close Catalog

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Import Project...

This command imports an eXtensible Markup Language (XML) file into the
CodeWarrior IDE so you can save the XML file as a CodeWarrior IDE project. The
CodeWarrior IDE prompts you to choose a name and location to save the new project
file. See Importing and exporting a project as XML on page 3-22 for more information.

Export Project...

This command exports a CodeWarrior IDE project to XML format. The CodeWarrior
IDE prompts you to choose a name and location to save the new XML file. See
Importing and exporting a project as XML on page 3-22 for more information.

Page Setup...

This command sets the options used when printing files from the CodeWarrior IDE. See
Setting print options on page 2-17 for more information.

Print...

This command prints files from the CodeWarrior IDE on your printer. See Printing a
window on page 2-17 or read the documentation that accompanies your printer for more
information.
D-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Open Recent

This command displays a submenu of projects and files that were recently opened.
Select a filename from the submenu to open the file.

If two or more files in the submenu have identical names, the full paths to those files are
displayed to distinguish them. See Opening files from the File menu on page 2-5 for
more information.

Exit

This command exits the CodeWarrior IDE immediately, provided either of the
following conditions has been met:

• all changes to the open editor files have already been saved

• the open editor files have not been changed.

If a project window is open, all changes to the project file are saved before the
CodeWarrior IDE exits. If an editor window is open and changes have not been saved,
the CodeWarrior IDE asks if you want to save the changes before exiting.

D.1.2 Edit menu

The Edit menu contains all the customary editing commands, along with some
CodeWarrior IDE additions. This menu also includes the commands that open the
Preferences and Target Settings windows.

Undo

The text of this menu command varies depending on the most recent action, and your
editor options settings.

Undo reverses the effect of your last action. The name of the undo command varies
depending on the type of operation you last executed. For example, if you have just
typed in an open editor window, the undo command is renamed Undo Typing.
Choosing the Undo Typing command removes the text you have just typed.

See Undoing the last edit on page 5-15 and Undoing and redoing multiple edits on
page 5-15 for more information.

If you do not have Use Multiple Undo turned on in the Editor Settings preference
panel, the Undo menu item toggles between Undo and Redo. See Editor settings on
page 8-18 for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-5

CodeWarrior IDE Reference
Redo, Multiple Undo, and Multiple Redo

When an operation has been undone, it can be redone. For example, if you select Undo
Typing, the menu item is changed to Redo Typing. Choosing this command overrides
the previous undo.

If you have Use Multiple Undo turned on in the Editor Settings preference panel, you
have more flexibility to undo and redo operations. Select Undo multiple times to undo
multiple actions. Select Redo multiple times to redo multiple actions.

See Undoing the last edit on page 5-15 and Undoing and redoing multiple edits on
page 5-15 for more information on undo and redo operations. See Other settings on
page 8-10 in the Editor settings on page 8-18 section for information on configuring
multiple undo.

Cut

This command deletes the selected text and puts it in the system clipboard, replacing
the contents of the clipboard.

Copy

This command copies the selected text in the active editor window onto the system
clipboard. If the messages window is active, the Copy command copies all the text in
the messages window onto the clipboard.

Paste

This command pastes the contents of the system clipboard into the active editor
window.

The Paste command replaces the selected text with the contents of the clipboard. If no
text is selected, the clipboard contents are placed after the text insertion point.

If the active window is the messages window, the Paste menu item is grayed out and
cannot be executed.

Delete

This command deletes the selected text without placing it in the system clipboard. The
Delete command is equivalent to pressing the Delete or Backspace key.
D-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Select All

This command selects all the text in the active window. This command is usually used
in conjunction with other Edit menu commands such as Cut, Copy, and Clear. See
Selecting text on page 5-12 for more information.

Balance

This command selects the text enclosed in parentheses (), brackets [], or braces {}. For
complete instructions on how to use this command, and how to balance while typing,
see Balancing punctuation on page 5-14.

Shift Left

This command shifts the selected source code one tab size to the left. The tab size is
specified in the Preferences window. See Shifting text left and right on page 5-15 for
more information.

Shift Right

This command shifts the selected source code one tab size to the right. See Shifting text
left and right on page 5-15 for more information.

Preferences…

Use this command to change the global preferences for the CodeWarrior IDE. See
Choosing general preferences on page 8-6 for more information.

Target Settings

Use this command to display the Target Settings window where you can change settings
for the active build target. The name of this menu command varies depending on the
name of your current build target.

See Configuring target settings on page 9-8 for more information on the Settings
window. See Set Default Target on page D-16 for information on changing the current
build target.

Version Control Settings…

This menu command displays the Version Control System options panel. See
Chapter 10 Using the CodeWarrior IDE with Version Control Systems for more
information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-7

CodeWarrior IDE Reference
If this command is not enabled, you do not have a revision control system configured
for use with the CodeWarrior IDE.

Commands & Keybindings…

Use this menu item to set keybinding for commands, and to customize the CodeWarrior
IDE toolbars.

D.1.3 View Menu

The View menu contains commands for viewing toolbars, browsers, and windows.

Toolbars

This command causes the Toolbar submenu to appear. See Toolbar submenu on
page D-25 for more information.

Project Inspector

This command allows you to view information about your project and enable debug
information generation.

See Overview of the project window on page 3-4 for more information.

Browser Contents

This command displays the browser Contents window. This menu command is grayed
out when the browser is not activated. See Viewing data by type with the Contents view
on page 7-16 for more information. See Activating the browser on page 7-5 for details
of how to activate the browser.

Class Browser

This command displays the browser Class window. This menu command is grayed out
when the browser is not activated. See Viewing data by class with the Class browser
view on page 7-8 for more information. See Activating the browser on page 7-5 for
details of how to activate the browser.

Class Hierarchy

This command displays the browser Hierarchy window. This menu command is grayed
out when the browser is not activated. See Viewing class hierarchies and inheritance
with the hierarchy view on page 7-18 for more information. See Activating the browser
on page 7-5 for details of how to activate the browser.
D-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Build Progress

This command displays the progress window for builds, as shown in Figure 3-53 on
page 3-77.

Errors and Warnings

This command displays the Errors and Warnings window. See Using the message
window on page 4-11 for more information. See also the Find All section in Finding and
replacing text with the Find and Replace dialog on page 6-4.

Symbolics

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Processes

This window is not used by the CodeWarrior IDE for the ARM Developer Suite. See
Chapter 4 Working with the ARM Debuggers for more information.

Breakpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Watchpoints

This window is not used by the CodeWarrior IDE for the ARM Developer Suite. See
Chapter 4 Working with the ARM Debuggers for more information.

Registers

This window is not used by the CodeWarrior IDE for the ARM Developer Suite. See
Chapter 4 Working with the ARM Debuggers for more information.

Expressions

This window is not used by the CodeWarrior IDE for the ARM Developer Suite. See
Chapter 4 Working with the ARM Debuggers for more information.

Global Variables Window

This window is not used by the CodeWarrior IDE for the ARM Developer Suite. See
Chapter 4 Working with the ARM Debuggers for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-9

CodeWarrior IDE Reference
D.1.4 Search menu

The Search menu contains all the necessary commands used to find text, replace text,
and compare files. There are also some commands for code navigation.

Find…

This command opens the Find dialog box which is used to find and/or replace the
occurrences of a specific string in one or many files. See Chapter 6 Searching and
Replacing Text for more information.

Replace

This command replaces the selected text in the active window with the text string in the
Replace text box of the Find window. If no text is selected in the active editor window,
this command is grayed out.

This command is useful if you want to replace one instance of a text string without
having to open the Find window. For example, if you have just replaced all the
occurrences of the variable icount with jcount and discover an instance of icont, you
can replace this variable with jcount by selecting Replace from the Search menu. See
Finding and replacing text with the Find and Replace dialog on page 6-4 for more
information. See Selecting text on page 5-12 for more information on selecting text.

Find in Files

Opens the Find in Files window. Using this window, you can perform find-and-replace
operations across a single file or multiple files. You can also specify various search
criteria. For more information, see Chapter 6 Searching and Replacing Text.

Find Next

This command finds the next occurrence of the Find text box string in the active
window. This is an alternative to clicking the Find button in the Find dialog box. See
Finding and replacing text with the Find and Replace dialog on page 6-4 for more
information.

Find in Next File

This command finds the next occurrence of the Find text box string in the next file
listed in the Multi-File Search portion of the Find window (as exposed by the Multi-File
Search Disclosure triangle in the Find window). This is an alternative to using the Find
window. If the Multi-File Search button is not enabled this command is grayed out. See
Finding and replacing text in multiple files on page 6-8 for more information.
D-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Enter Find String

This command copies the selected text in the active window into the Find text box,
making it the search target string. This is an alternative to copying text and pasting it
into the Find window. See Selecting text on page 5-12 for more information.

Find Selection

This command finds the next occurrence of the selected text in the active text editor
window. See Finding and replacing text with the Find and Replace dialog on page 6-4
for more information.

Replace Selection

Substitutes the selected text in the active window with the text in the Replace field of
the Find window. If no text is selected in the active Editor window, the IDE grays out
the menu command.Use the menu command to replace one instance of a text string
without having to open the Find window. For example, if you have just replaced all the
occurrences of the variable icount with jcount and discover an instance of icont, you
can replace this variable with jcount by selecting Replace Selection from the Search
menu.

See Chapter 6 Searching and Replacing Text for information on finding and replacing
text.

Replace & Find Next

This command replaces the selected text with the string in the Replace text box of the
Find window, and then performs a Find Next. If no text is selected in the active editor
window and there is no text in the Find text box string field of the Find window, this
command is grayed out. See Finding and replacing text with the Find and Replace
dialog on page 6-4 for more information. See Selecting text on page 5-12 for more
information on selecting text.

Replace All

This command finds all the occurrences of the Find string and replaces them with the
Replace string. If no text is selected in the active editor window and there is no text in
the Find text box in the Find dialog box, this command is grayed out.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-11

CodeWarrior IDE Reference
Find Definition

This command searches for the definition of the function name selected in the active
window. Searching occurs in the source files belonging to the open project. If the
definition is found, the CodeWarrior IDE opens the source code file where the function
is defined and highlights the function name.

If the CodeWarrior IDE finds more than one definition, a messages window appears
warning you of multiple definitions. For more information on the messages window, see
Using the message window on page 4-14.

If no definition is found, the system beeps.

Go Back

This command returns you to the previous view in the browser. See Using Go Back and
Go Forward on page 7-21 for more information.

Go Forward

This command moves you to the next view in the browser (after you have used the Go
Back command to return to a previous view). See Using Go Back and Go Forward on
page 7-21 for more information.

Go To Line

This command opens a dialog box (in which you enter a line number) and then moves
the text insertion point to the line number you specify. See Going to a specific line on
page 5-20 for more information.

Compare Files…

This command opens a dialog box to choose two files or folders to compare and merge.
After choosing files to compare, a file comparison window appears, showing
differences between the two files. If two folders are compared, the differences between
the folders are shown in the Compare Folders window. See Comparing and merging
files and folders on page 2-20 for more information.

Apply Difference

This command adds, removes, or changes text in the destination file shown in a file
comparison window that is different from the text in the comparison window source file.
D-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Unapply Difference

This command reverses the action of an Apply Difference command in a file
comparison window.

D.1.5 Project menu

The Project menu allows you to add and remove files and libraries from your project.
It also allows you to compile, build, and link your project. All of these commands are
described in this section.

Add Window

This command adds the file in the active editor window to the open project. See Adding
the current editor window on page 3-41 for more information.

Add Files…

This command adds files to the project window. See Using the Add Files command on
page 3-39 for more information.

Create Group…

The Create Group command enables you to create a new group in the current project.
This command is present in the Project menu if the Files category is selected in the
current project window. See Creating groups on page 3-42 for more information.

Create Target

The Create Target command enables you to create a new build target for the current
project. This command is present in the Project menu if the Targets view is selected in
the current project window. See Working with multiple build targets and subprojects on
page 3-52 for more information.

Create Segment/Overlay

Creates a new segment or overlay in the current project. The IDE enables this menu
command after you click the Segments tab or the Overlays tab in the active Project
window. See Chapter 3 Working with Projects for more information.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-13

CodeWarrior IDE Reference
Check Syntax

This command checks the syntax of the source code file in the active editor window or
the selected file(s) in the open project window. If the active editor window is empty, or
no project is open, this command is grayed out.

Check Syntax does not generate object code. It only checks the source code for syntax
errors. The progress of this operation is tracked in the toolbar message area. To abort
this command at any time, press the Escape key.

If one or more errors are detected, the messages window appears. For information on
how to correct compiler errors, consult Correcting compilation errors and warnings on
page 4-16.

Preprocess

This command performs preprocessing on selected C and C++ source code files. See
Preprocessing source code on page 3-79 for more information.

Precompile

This menu option is not used by the CodeWarrior IDE for the ARM Developer Suite.

Compile

This command compiles selected files. If the project window is active, the selected files
and segments/groups are compiled. If a source code file in an editor window is active,
the source code file is compiled. The source code file must be in the open project. See
Compiling and linking a project on page 3-74 for more information.

Compile If Dirty

This command compiles the file if it has been changed in a way that requires
recompilation.

Note
 This command does not appear in the Project menu by default, but you can add it using
the Customize IDE commands dialog box. This is accessed using the Commands and
Key Bindings... command in the Edit menu. See Setting commands and key bindings
on page 8-31 for more information.
D-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Disassemble

This command disassembles the compiled source code files selected in the project
window, and displays object code in a new window. See Disassembling code on
page 3-83 for more information.

Bring Up To Date

This command updates the open project by compiling all of its modified and touched
files. See Bringing a project up to date on page 3-78 for more information.

Make

This command builds the selected project by compiling and linking the modified and
touched files in the open project. The results of a successful build depend on the selected
project type. See Making a project on page 3-79 for more information.

Stop Build

This command stops the current make operation.

Remove Object Code…

This command removes all compiled source code binaries from the open project. The
numbers in the Code column and Data column of each file are reset to zero. See
Removing objects from a project on page 3-81 for more information.

Re-search for files

To speed up builds and other project operations, the CodeWarrior IDE caches the
locations of project files after it has found them in the access paths. The Re-search for
files option forces the CodeWarrior IDE to forget the cached locations of files and
re-search for them in the access paths. This command is useful if you have moved files
around on disk and want the CodeWarrior IDE to find them in their new locations.

If the Save Project Entries Using Relative Paths setting is enabled, the CodeWarrior
IDE does not reset the relative path information stored with each project entry, so
re-searching for files locates the source files in the same location. However, if the file
no longer exists in the old location, the CodeWarrior IDE searches again, but only for
header files. To force the CodeWarrior IDE to re-search for source files as well, you
must first select Reset Project Entry Paths.

If the Save Project Entries Using Relative Paths setting is disabled, the CodeWarrior
IDE re-searches for both header and source files.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-15

CodeWarrior IDE Reference
Reset project entry paths

This command resets the location information stored with each project entry when the
Save Project Entries Using Relative Paths setting is enabled. The next time the
project entries are accessed, the CodeWarrior IDE searches for the project entries in the
access paths. This command does nothing if the Save Project Entries Using Relative
Paths setting is disabled.

Synchronize Modification Dates

This command updates the modification dates stored in the project file. It checks the
modification date for each file in the project, and if the file has been modified since it
was last compiled, the CodeWarrior IDE marks it for recompilation. See Synchronizing
modification dates on page 3-47 for more information.

Debug

This command compiles and links the current build target, and launches an ARM
debugger to debug the output image.

Run

This command compiles and links the current build target, and launches an ARM
debugger to run the output image. If the project type is set as a library, the Run
command is grayed out.

Set Default Project

This menu command selects which project is the default project. See Choosing a default
project on page 3-21 for more information.

Set Default Target

This command enables you to choose a different default target.

D.1.6 Debug menu

The Debug menu is not used by the CodeWarrior IDE for the ARM Developer suite. For
more information on debugging your code using the ARM debuggers see:

• Chapter 4 Working with the ARM Debuggers

• AXD and armsd Debuggers Guide.

The following menu items are not used by the CodeWarrior IDE for the ARM
Developer Suite and are documented for completeness only.
D-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Break

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Kill

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Restart

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Step Over

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Step Into

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Step Out

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Run to Cursor

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Change Program Counter

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Set/Clear Breakpoint

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Set/Clear Breakpoint...

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Enable/Disable Breakpoint

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-17

CodeWarrior IDE Reference
Clear All Breakpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Show Breakpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Hide Breakpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Set/Clear Watchpoint

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Enable/ Watchpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Clear All Watchpoints

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Break on C++ Exception

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Break on Java Exceptions

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Connect

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

D.1.7 Data menu

The Data menu is not used by the CodeWarrior IDE for the ARM Developer suite. The
following menu items are documented for completeness only.

Show Types

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.
D-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
New Expression

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Copy to Expression

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View Variable

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View Array

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View Memory

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View Memory As

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Default

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Binary

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Signed Decimal

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Unsigned Decimal

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-19

CodeWarrior IDE Reference
View As Hexadecimal

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Character

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As C String

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Pascal String

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Unicode String

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Floating Point

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Enumeration

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

View As Fixed

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

D.1.8 Browser menu

You can use the Browser menu to create new classes, member functions, and data
members in the active project. This menu is present when a browser window is open.
Otherwise, the menu is not displayed.

New Class…

This command displays a dialog box to help you create a new class for your project.
D-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
New Member Function…

This command displays a dialog box to help you create a new member function for a
class in your project.

New Data Member…

This command displays a dialog box to help you create a new data member for a class
in your project.

New Property…

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

New Method…

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

New Event Set…

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

New Event…

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

D.1.9 Layout Menu

The layout menu is not used by the CodeWarrior IDE for the ARM Developer Suite.The
following menu items are documented for completeness only.

Align

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Resize

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Display Grid

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-21

CodeWarrior IDE Reference
Snap To Grid

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Group

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Ungroup

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

D.1.10 Window menu

The Window menu includes commands that tile open editor windows, switch between
windows, and open Debugger windows. There is also a submenu for customizing the
toolbars.

Close

Closes the active window.

Close All

Closes all open windows of a certain type. The name of this menu changes based on the
type of item selected. For example, after you select one of several open Editor windows,
the menu command changes its name to Close All Editor Documents.

Cascade

This command opens all editor windows to their full screen size and stacks them one on
top of another, with their window titles showing. This command is grayed out when the
active window is the project window or messages window.

Tile Horizontally

Arranges open editor windows horizontally so that none overlap.

Tile Vertically

Arranges open editor windows vertically so that none overlap.
D-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Save Default Window

Saves the settings of the active browser window. The CodeWarrior IDE applies the
saved settings to subsequently opened browser windows.

Other Window menu items

The other Window menu items depend solely on which project, source files, header
files, and other windows you have open.

All the open windows are shown in this menu and the first nine files (1 through 9) are
given key equivalents. The current project is always assigned the number 0 (zero). You
must press the Control key and a number to open a specific editor window. A check
mark is placed beside the active window.

To make one of your open CodeWarrior IDE files active and bring its window to the
front, do one of the following:

• click in its window

• select it from the Window menu

• use the key equivalent shown in the Window menu.

D.1.11 Version Control System (VCS) menu

The VCS menu, similar to that shown in Figure D-1 on page D-24, is displayed in the
menu bar of the CodeWarrior IDE if you are using a version control system. See the
documentation that came with the additional revision control software for more
information on revision control systems, and how to use them with the CodeWarrior
IDE.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-23

CodeWarrior IDE Reference
Figure D-1 VCS menu

D.1.12 Help menu

Online help is available from the Help menu. When you are working in the
CodeWarrior IDE, select one of the items to get interactive, online help.

CodeWarrior Help

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Index

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Search

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

Online Manuals

This menu item is not used by the CodeWarrior IDE for the ARM Developer Suite.

CodeWarrior IDE Help for ARM Developer Suite

Opens the online help for the CodeWarrior IDE for the ARM Developer Suite.
D-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Online Books for ARM Developer Suite

Opens the online books for the CodeWarrior IDE for the ARM Developer Suite.

ARM Technical Support Website

Directs your web browser to the ARM Technical Support web site.

Metrowerks Website

Directs your web browser to the Metrowerks web site.

About Metrowerks CodeWarrior

This command displays the Metrowerks About Box.

D.1.13 Toolbar submenu

The View menu has another submenu under it for the Toolbar command. The Toolbar
submenu contains all the commands used to customize the toolbars that appear in
CodeWarrior IDE windows. See Customizing toolbars on page 8-41 for more
information.

Show Window Toolbar

This command causes the CodeWarrior IDE to display the toolbar in the active window.
The actual command shown in the menu toggles between Show Window Toolbar and
Hide Window Toolbar, depending on whether the toolbar of the active window is
visible.

Hide Window Toolbar

This command causes the CodeWarrior IDE to hide the toolbar in the active window.
The actual command shown in the menu toggles between Show Window Toolbar and
Hide Window Toolbar, depending on whether the toolbar of the active window is
visible.

Reset Window Toolbar

This command causes the toolbar in the active window to reset to a default state. You
can use this menu command if you want to return the editor window toolbar to its
original default settings.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-25

CodeWarrior IDE Reference
Clear Window Toolbar

This command causes the toolbar in the active editor, project, or browser window to
have all icons removed from it. When all the icons have been removed, you can add
icons using the Toolbar Elements window.

Use the Reset Window Toolbar command to cause all the default icons to come back.

Show Main Toolbar

This command displays the main window toolbar.

Hide Main Toolbar

This command hides the main window toolbar.

Reset Main Toolbar

This command sets the main window toolbar to its default state.

Clear Main Toolbar

This command removes all elements from the main window toolbar. When all the icons
have been removed, you can add icons using the Toolbar Elements window.
D-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
D.2 CodeWarrior IDE default key bindings

This section lists the default key bindings assigned to commands in the CodeWarrior
IDE.

Some commands do not have any key bindings assigned to them by the CodeWarrior
IDE. You can assign key bindings to any blank command. For more information on key
bindings, see Setting commands and key bindings on page 8-31. The commands in this
section are listed in the order that they appear in the Windows layout.

The key bindings sections include:

• File menu

• Edit menu on page D-28

• Search menu on page D-30

• Project menu on page D-31

• Window menu on page D-32

• Miscellaneous on page D-33

• Editor commands on page D-33.

D.2.1 File menu

Table D-1 lists the default key bindings for manipulating projects and files from within
the CodeWarrior IDE.

Table D-1 File key bindings

Command Key binding

New Ctrl-N

New… Ctrl-Shift-N

Open Ctrl-O

Find and Open File Ctrl-Shift-D

Close Ctrl-W

Close All Ctrl-Shift-W

Save Ctrl-S

Save All Ctrl-Shift-S

Save As -

Save A Copy As -
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-27

CodeWarrior IDE Reference
D.2.2 Edit menu

Table D-2 contains the default key bindings for the commands in the Edit menu of the
CodeWarrior IDE.

Revert -

Page Setup -

Print Ctrl-P

Exit -

Table D-1 File key bindings (continued)

Command Key binding

Table D-2 Edit key bindings

Command Key binding

Undo Ctrl-Z

Redo Ctrl-Shift-Z

Cut Ctrl-X

Copy Ctrl-C

Paste Ctrl-V

Clear -

Select All Ctrl-A

Balance Ctrl-B

Shift Left Ctrl-[

Shift Right Ctrl-]

Preferences -

Target Settings Alt-F7

VCS Settings -
D-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
D.2.3 View menu

Table D-3 contains the default key bindings for the commands in the Edit menu of the
CodeWarrior IDE.

Table D-3 View key bindings

Command Key binding

Toolbars -

Project Inspector Alt-Enter

Browser Contents -

Class Browser Alt-F12

Class Hierarchy -

Build Progress -

Errors and Warnings Ctrl-l

Symbolics -

Processes -

Breakpoints Alt-F9

Watchpoints -

Registers -

Expressions Alt-Shift-F3

Global Variables -
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-29

CodeWarrior IDE Reference
D.2.4 Search menu

Table D-4 contains the default key bindings for the commands in the Search menu of
the CodeWarrior IDE.

Table D-4 Search key bindings

Command Key binding

Find Ctrl-F

Find Next F3

Find Previous Shift-F3

Find in Next File Ctrl-T

Find in Previous File Ctrl-Shift-T

Enter Find String Ctrl-E

Enter Replace String Ctrl-Shift-E

Find Selection Ctrl-F3

Find Previous Selection Ctrl-Shift-F3

Replace Ctrl-=

Replace & Find Next Ctrl-L

Replace & Find Previous Ctrl-Shift-L

Replace All -

Find Definition Ctrl-’

Find Definition & Reference -

Find Reference -

Go Back Ctrl-Shift-B

Go Forward Ctrl-Shift-F

Goto Line Ctrl-G

Compare Files -

Apply Difference -

Unapply Difference -
D-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
D.2.5 Project menu

Table D-5 contains the default key bindings for commands in the Project menu.

Table D-5 Project key bindings

Command Key binding

Add Window -

Add Files -

Create Group/ Segment/Target -

Check Syntax Ctrl-;

Preprocess -

Precompile -

Compile Ctrl-F7

Disassemble -

Bring Up To Date Ctrl-U

Make F7

Stop Build Ctrl-Break

Remove Object Code Ctrl - –

Re-search For Files -

Reset Project Entry Paths -

Synchronize Modification Dates -

Enable Debugging -

Run/Debug F5

Debug/Run Ctrl-F5
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-31

CodeWarrior IDE Reference
D.2.6 Window menu

Table D-6 contains the default key bindings for handling many common windows in the
CodeWarrior IDE.

Table D-6 Window menu key bindings

Command Key binding

Close -

Close All -

Cascade -

Tile Horizontally Ctrl-/

Tile Vertically -

Save Default Window -

Select Default Project Ctrl-0

Select Document 1 Ctrl-1

Select Document 2 Ctrl-2

Select Document 3 Ctrl-3

Select Document 4 Ctrl-4

Select Document 5 Ctrl-5

Select Document 6 Ctrl-6

Select Document 7 Ctrl-7

Select Document 8 Ctrl-8

Select Document 9 Ctrl-9
D-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
D.2.7 Miscellaneous

Table D-7 contains the default key bindings for handling miscellaneous tasks in the
CodeWarrior IDE.

D.2.8 Editor commands

Table D-8 contains the default key bindings for handling editor windows in the
CodeWarrior IDE.

Table D-7 Miscellaneous key bindings

Command Key binding

Go to Header/Source File Ctrl-`

Go to Previous Error Message F4

Go to Next Error Message Shift-F4

Run Script -

Stop Script -

Table D-8 Editor window key bindings

Command Key binding

Move Character Left Left Arrow

Move Character Right Right Arrow

Move Word Left Ctrl-Left Arrow

Move Word Right Ctrl-Right Arrow

Move Sub-word Left Alt-Left Arrow

Move Sub-word Right Alt-Right Arrow

Move to Start of Line Home

Move to End of Line End

Move Line Up Up Arrow

Move Line Down Down Arrow

Move to Top of Page Page Up
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-33

CodeWarrior IDE Reference
Move to Bottom of Page Page Down

Move to Top of File Ctrl-Home

Move to Bottom of File Ctrl-End

Delete Character Left Backspace

Delete Character Right Del

Delete to End of File -

Character Select Left Shift-Left Arrow

Character Select Right Shift-Right Arrow

Select Word Left Ctrl-Shift-Left Arrow

Select Word Right Ctrl-Shift-Right Arrow

Select Sub-word Left Alt-Shift-Left Arrow

Select Sub-word Right Alt-Shift-Right Arrow

Select Line Up Shift-Up Arrow

Select Line Down Shift-Down Arrow

Select to Start of Line Shift-Home

Select to End of Line Shift-End

Select to Start of Page Shift-Page Up

Select to End of Page Shift-Page Down

Select to Start of File Ctrl-Shift-Home

Select to End of File Ctrl-Shift-End

Scroll Line Up Ctrl-Up Arrow

Scroll Line Down Ctrl-Down Arrow

Scroll Page Up -

Scroll Page Down -

Scroll to Top of File -

Table D-8 Editor window key bindings (continued)

Command Key binding
D-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

CodeWarrior IDE Reference
Scroll to End of File -

Scroll to Selection -

Find Symbols with Prefix Ctrl-\

Find Symbols with Substring Ctrl-Shift-\

Get Next Symbol Ctrl-.

Get Previous Symbol Ctrl-,

Table D-8 Editor window key bindings (continued)

Command Key binding
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. D-35

CodeWarrior IDE Reference
D-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Glossary

ADS See ARM Developer Suite.

ANSI American National Standards Institute. An organization that specifies standards for,
among other things, computer software.

ARM and Thumb
Procedure Call
Standard

Defines how registers and the stack will be used for subroutine calls

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended
Debugger

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger
providing high-level debugging support for languages such as C, and low-level support
for assembly language. It is a command-line debugger that runs on all supported
platforms.

ATPCS See ARM and Thumb Procedure Call Standard.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-1

Glossary
AXD See ARM eXtended Debugger.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Deprecated A deprecated option or feature is one that you are strongly discouraged from using.
Deprecated options and features will not be supported in future versions of the product.

DWARF Debug With Arbitrary Record Format

ELF See Executable and linking format

Environment The actual hardware and operating system that an application will run on.

Executable and linking format
The industry standard binary file format used by the ARM Developer Suite. ELF object
format is produced by the ARM object producing tools such as armcc and armasm. The
ARM linker accepts ELF object files and can output either an ELF executable file, or
partially linked ELF object.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Host A computer which provides data and other services to another computer.

ICE In Circuit Emulator.

IDE Integrated Development Environment (the CodeWarrior IDE).

Image An executable file which has been loaded onto a processor for execution.

A binary execution file loaded onto a processor and given a thread of execution. An
image can have multiple threads. An image is related to the processor on which its
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output sections

Interworking Producing an application that uses both ARM and Thumb code.
Glossary-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Glossary
Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Local An object that is only accessible to the subroutine that created it.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions will
be grouped together into the final executable image.

See also Region

Read Only Position
Independent

A section in which code and read-only data addresses can be changed at run-time.

Read Write Position
Independent

A section in which read/write data addresses can be changed at run-time.

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO, RW,
and ZI).

RO Read-only.

RW Read-write.

ROPI See Read Only Position Independent.

RWPI See Read Write Position Independent.

Scatter loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols which have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Section A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Target The actual target processor, (real or simulated), on which the application is running.
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-3

Glossary
The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Thread A context of execution on a processor. A thread is always related to a processor and
might or might not be associated with an image.

VCS Version Control System.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

ZI Zero-initialized.
Glossary-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
A
About Metrowerks help command

D-25
About (VCS operation) 10-11
Absolute Path 9-17
Access control violations option 9-57
Access paths 9-11, 9-18

adding 9-16
adding default 9-19
and ARMLIB variable 9-71
Host Flags 9-20
modifying 9-18
recursive search 9-14
relative paths 9-17

Access pop-up menu
of New Class wizard 7-32
Private option 7-38
Protected option 7-38
Public option 7-38

Activate Browser option 9-21
Add Files command D-13
Add Window command 3-41, D-13

Add (VCS operation) 10-11
Adding

batch files 3-88
default access path 9-19
files and file mappings 9-23
files to projects 3-38

Adding a marker 5-19
Adding files to a project 3-40
Additional Header Include Files

of New Data Member wizard 7-39
of New Member Function wizard

7-37
ADP option (armsd) 9-84
After option, of New Class wizard 7-32
Always search user paths 3-50
Always Search User Paths option 9-13,

9-15
Always Show Login Dialog (VCS

option) 10-5
Analyzing inheritance in browser 7-18
Ancestor Class pop-up menu 7-19
ANSI C extensions option 9-52
ANSI C header files 9-53

Applying a difference 2-23
Architecture or Processor option

(Assembler) 9-35
ARM librarian 9-9
ARM linker 9-9
ARM Miscellaneous settings 9-89
ARM Runner 9-88
ARMLIB environment variable 9-71
armlink 9-66
armsd

ADP option 9-84
arguments to image file 9-87
ARMulator option 9-84
BATS option 9-84
Byte Order option 9-85
Capture output to option 9-87
configuring 9-84
Emulated Clock Speed option 9-85
Load configuration option 9-86
Port Specification option 9-85
Script file option 9-86
Select configuration option 9-87
Symbols file option 9-86
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-1

Index
target processor 9-85
ARMulator option (armsd) 9-84
ARM/Thumb interworking option

9-39
ARM/Thumb interworking option

(Compilers) 9-50
Arrow keys 3-4
Assembler

Architecture or Processor option
9-35

ARM/Thumb interworking option
9-39

Byte Order option 9-36
Calling standard option 9-38
Check Register Lists option 9-40
code listings 9-43
Cross-references option 9-43
Dimensions option 9-44
Floating Point option 9-35
Ignore C-style escape characters

option 9-40
Initial State option 9-36
Keep Symbols option 9-40
Listing on option 9-43
Lsting control 9-43
No Warning option 9-40
Predeclared Register Names option

9-38
predefined variables 9-41
Source Line Debug option 9-40
target options 9-34
Terse option 9-43
via files 9-44

Assigning files
to build targets 3-57
with the Project Inspector 3-58
with the Target column 3-58

Assigning files to build targets 3-58
Assignment in condition option 9-52
Assignment operator warning 9-52
ATPCS options (Assembler) 9-37
Automatically saving files 2-12

B
Backup files 2-14, 3-18
Balance command 5-14, D-7
Balancing punctuation 5-14

Base Classes and Methods section, of
New Class wizard 7-32

Base Classes field
of New Class wizard 7-32

Basic ARM Ten system 9-84
Batch file runner 3-86, 9-10
BATS option (armsd) 9-84
Before option, of New Class wizard

7-32
Bitfield type warning 9-52
Bowser

Contents view 7-2
Break on C++ Exception command

D-18
Break on Java Exceptions command

D-18
Bring Up To Date command D-15
Browser

Activating 9-21
activating 7-5
analyzing inheritance 7-18
assigning build targets to classes

7-34
base classes in hierarchy 7-19
Class Display button 7-10
Classes pane 7-10
Contents view 7-16
contextual menu 7-21
controlling lines in hierarchy

window 7-19
customizing windows 7-16
Data Members pane 7-11
describing name and location of new

classes 7-31, 7-35
editing code 7-28
Hierarchy view 7-3
identifier icon 7-11
including subprojects 9-21
Member Functions pane 7-10
multi-class hierarchy 7-19
navigating code with 7-21, 7-24
opening a source file 7-28
resize bar 7-9
saving windows 7-16
setting options 7-6
Source pane 7-11
specifying base classes and methods

for classes 7-32

specifying file locations for member
functions 7-36, 7-38

status area 7-12
strategy 7-6
Symbol window 7-26
synchronized class selection 7-13,

7-20
toolbar 7-9
view 7-3

data by type 7-16
member functions and data
members 7-9

viewing options 7-2
Browser Catalog Window command

D-8
Browser Display preference panel

8-18, 8-23, 8-25
Browser Menu D-20

New Class command D-20
New Data Member command D-21
New Member Function command

D-21
Browser views 7-8
Browser window 7-8

pane zoom box 7-9
Build Progress Window command D-9
Build targets 3-3

changing names of 3-59
creating 3-56
defined 1-2
dependencies 3-60
overview 3-2, 3-26, 9-2
selecting 9-5
settings 9-8
specifying access paths 9-18

Building all targets 3-66
Building projects 3-15
Byte order option (armsd) 9-85
Byte order option (Assembler) 9-36

C
C to C++ incompatibility option 9-53
Cache subprojects option 9-21
Calling standard option 9-38
Capture output to option (armsd) 9-87
Category pop-up menu, in Contents

window 7-17
Index-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
Changing a build target name 3-59
Changing syntax highlighting colors

8-27
Char, changing sign of 9-61
Check Register Lists option (assembler)

9-40
Check Syntax command D-14
Checkin (VCS operation) 10-11
Checkout Status column 3-9, 10-8
Checkout (VCS operation) 10-11
Choosing a default project 3-21
Class browser view (browser) 7-3
Class Display button, in browser 7-10
Class Name field

of New Class wizard 7-31
Class View pop-up menu 7-9
Classes

assigning to build targets 7-34
describing name and location of

7-31, 7-35
specifying base classes and methods

for 7-32
Classes pane

and items not displayed in 7-12
in browser 7-10

Clear All Breakpoints command D-18
Clear All Watchpoints command D-18
Clear Breakpoint command D-17
Clear command 5-12, D-6
Clear Floating Toolbar command D-26
Clear Window Toolbar command D-26
Close command D-3
Closing projects 3-17
Code column 3-7
Code disassembly 3-83
Code generation, configuring 9-61
Code listings, assembler 9-43
CodeWarrior

available tools 1-2
browser 7-1
converting makefiles to projects

3-19, 3-20
menu reference D-2
reference information D-1

CodeWarrior Help command D-24
Collapsing groups 3-43
Color Syntax option

and printing 2-18
Command line, editing 9-31

Commands
Add Window 3-41
New Class 7-30
New Data Member 7-30
New Member Function 7-30
New Project 3-13
Open 3-15
Open Recent 3-16
Save A Copy As 3-18
Show Private 7-15
Show Protected 7-15
Show Public 7-15
Touch 3-47
View As Implementor 7-15
View As Subclass 7-15
View As User 7-15

Comment (VCS operation) 10-11
Comments, coloring 8-27
Compare Files command D-12
Comparing

XML-formatted projects 2-26
Comparing files and folders 2-20
Comparison column (comparing and

merging) 2-21
Compile command D-14
Compiler

associating with a filename
extension 9-25

Compiler options
Assignment in condition warning

9-52
-auto_float_constants 9-62
Enum container always int 9-61
Implicit constructor warning 9-55
Lower precision in wider context

warning 9-53
Non-ANSI header warning 9-53
-split_ldm 9-62
-Wk 9-63

Compiler Relative Path 9-17
Compiler Thread Stack (K) 8-7
Compilers

Access control violations option
9-57

ANSI C extensions option 9-52
ARM/Thumb interworking option

9-50
Assignment in condition option

9-52

C to C++ incompatibility option
9-53

configuring warning 9-51
Double to float option 9-54
Enable debug of inline functions

option 9-58
Enable debug table generation 9-58
Enum container always int option

9-61
Error messages 9-56
For space option 9-59
For time option 9-59
Header file not guarded option 9-53
Implicit constructor option 9-55
Implicit int types option 9-57
Implicit narrowing option 9-54
Implicit pointer casts option 9-56
Implicit virtual option 9-55
Include preprocessor symbols 9-58
Junk at end of #endif/#else/#undef

option 9-57
Linkage conflicts option 9-57
Lower precision in wider context

option 9-53
macro definition 9-60
Member and base inits out of order

option 9-54
No warnings option 9-52
Non-ANSI header option 9-53
One ELF section per function 9-63
Other dubious casts option 9-57
Padding in struct option 9-53
Plain char is signed option 9-61
Read-only position independent

option 9-50
Read-write position independent

option 9-51
Software stack check option 9-50
suppressing error messages 9-55
Unused declaration option 9-53
Unused this in non-static member

function option 9-54
Warn for all conditions option 9-52
Zero-length arrays option 9-57

Compiling
one file 3-77
project 3-74
selected files 3-78
source files 3-78
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-3

Index
speeding up 9-14
Compiling and linking

debugging 4-10
overview 3-74
preprocessing 3-79
removing object code 3-81
setting file extension 3-75
Synchronizing Modification Dates

3-78
Completion of symbol names 7-27
Configuring

Miscellaneous 9-89
the ARM assembler 9-34
the ARM compilers 9-45
the ARM linker 9-65
the ARM Runner 9-88

Connect on Open (VCS option) 10-5
Connect (VCS operation) 10-11
Const checkbox

of New Data Member wizard 7-38
of New Member Function wizard

7-36
Constructor Parameters field, of New

Class wizard 7-33
Contents view (browser) 7-2
Contents window

browser 7-16
Controlling syntax highlighting within a

window 8-27
Converting ARM projects to Thumb

projects 3-29
Converting Executable image projects

to Library projects 3-34
Copy command 5-12, D-6
Copy message window to clipboard

4-19
Create New Group command D-13
Create New Target command D-13
Creating

build target dependencies 3-60
build targets 3-56
groups 3-42
interworking projects 3-27
libraries with armar 3-85
project stationery 3-35
ROMable output 3-35

Creating files 2-3
Cross-references option 9-43
Custom Keywords

coloring 8-27
Custom Keywords settings 9-80
Customizing

toolbars 8-41
Cut command 5-12, D-6

D
Data column 3-7
Data directory 9-10
Data Member Declaration section, of

New Data Member wizard 7-37
Data members

declaring 7-37
viewing in browser 7-9

Data Members pane, in browser 7-11
Database Path (VCS option) 10-5
Dates

synchronizing modification dates
3-47

Debug column 3-7, 3-11, 4-5
Debug Info marker 4-5
Debug information

generating for single files 4-4
in the linker 9-71

Debug Menu 8-20, D-16
Break on C++ Exception command

D-18
Break on Java Exception command

D-18
Clear All Watchpoints command

D-18
Clear Breakpoint command D-17
Enable Breakpoint command D-17
Enable Watchpoint command D-18
Hide Breakpoints command D-18
Kill command D-17, D-21, D-22
Restart command D-17
Set Breakpoint command D-9
Set Watchpoint command D-18
Show Breakpoints command D-18
Step Into command D-17
Step Out command D-17
Step Over command D-17
Switch To Monitor command D-18,

D-19, D-20
Debug tables

assembler 9-40

compilers 9-58
including in fromELF output 9-77

Debugging
activating for source code 4-4
and optimization 9-57
configuring the debugger 9-81
generating debug information 9-40
inline functions 9-58
loading symbols only 9-86
using a third-party debugger 9-82

Debugging a project 4-10
Declaration field

of New Data Member wizard 7-39
of New Member Function wizard

7-36
Declaration File field

of New Class wizard 7-31
Default Text File Format 8-22
Definition

of subproject 3-53, 3-67
Definition field

of New Data Member wizard 7-39
of New Member Function wizard

7-36
Destination file column (comparing and

merging) 2-21
Differences list (comparing and

merging) 2-21
Dimensions option 9-44
Directives, assembly language

RLIST 9-40
SETA 9-41
SETL 9-41
SETS 9-41

Dirty File marker 5-5
Disassemble command D-15
Disassembling code 3-83, 9-78
Disconnect (VCS operation) 10-11
Double to float option 9-54
Drag & Drop editing support 8-21
Dragging and dropping text 5-13
Dump internal browser information

option 9-22

E
Edit Menu D-5

Balance command D-7
Index-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
Clear All Breakpoints command
D-18

Clear command D-6
Copy command D-6
Cut command D-6
Multiple Redo D-6
Multiple Undo D-6
Paste command D-6, D-7, D-10,

D-11, D-12, D-13
Preferences command D-7
Redo command D-6
Select All command D-7
Shift Left command D-7
Shift Right command D-7
Target Settings command D-7
Undo command D-5
Version Control Settings command

D-7
Editing code in the browser 7-28
Editor 5-1

adding text 5-11
balancing punctuation 5-14
basic navigation 5-10
color syntax 5-16
configuring 5-7
deleting text 5-11
drag and drop 8-21
font 5-7
font preferences 8-19
Go Back and Go Forward 5-21
go to line number 5-20
moving text 5-13
navigating text 5-17
opening related file 5-21
overview 5-2
panes 5-8
saving window settings 5-9
selecting text 5-12
text editing 5-10
text size 5-7
undoing changes 5-15
user interface elements 5-3

Editor Settings preference panel 8-18
ELF

converting to other formats 9-76
Empty project stationery 3-13
Empty projects 3-13
Emulated Clock Speed option (armsd)

9-85

Enable Breakpoint command D-17
Enable debug of inline functions option

9-58
Enable debug table generation option

9-58
Enable Watchpoint command D-18
End key 3-4
Enter Find String command 6-3, D-11
Enum container always int option 9-61
Enumerations

as signed integers 9-61
Environment variable, in source trees

9-27
Equivalent Command Line 9-31
Error Button 4-13
Error messages 4-11

compilers 4-15
controlling 9-55

Errors & Warnings Window command
D-9

Existing button
of New Class wizard 7-32
of New Member Function wizard

7-36
Exit command D-5
Expanding groups 3-43
Export Project command D-4
Exporting project as XML 3-22
Expressions Window command D-9
Extra Information Button 4-14

F
Factory Settings button 8-5, 9-6
FDI 8-10
File column 3-6, 3-10
File Control popup menu 3-11
File Control pop-up menu 3-9
File Locations section, of New Member

Function wizard 7-36, 7-38
File mappings

selecting a compiler 9-25
File Menu D-3

Close command D-3
Exit command (Windows) D-5
Export Project command D-4
Find and Open File command D-3
Import Project command D-4

New command D-3
Open Recent command D-5
Print command D-4
Print Setup command (Windows)

D-4
Revert command D-4
Save A Copy As command D-4
Save All command D-3
Save As command D-4
Save command D-3

File Path Caption 5-5
File Sets List 6-12
File view

Checkout Status column 3-9
Data column 3-7
Debug column 3-7, 3-11
File column 3-10
File Control pop-up menu 3-9
Interface pop-up menu 3-8, 3-11
Project Checkout Status icon 3-9
Target column 3-8
Touch column 3-8, 3-11

Files
activating debugging 4-4
adding files to projects 3-38
adding to projects 3-39
assigning with the Project Inspector

3-58
assigning with the Target column

3-58
backing up 3-18
closing 2-15
comparing 2-20
comparing XML-formatted projects

2-26
empty project 3-13
ignoring in build 9-25
items saved with projects 3-18
managing project files 3-37
merging 2-20
moving 3-44
naming 9-10
naming projects 3-15
opening 5-21
opening existing 2-3
opening project files from other

hosts 3-16
permissions

Checked out 10-8
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-5

Index
Locked 10-9
Modify Read-Only 10-9
Read-Only 10-8
Unlocked 10-9

printing 2-17
project stationery 3-13
removing 3-45
reverting to saved 2-19
saving 2-11
saving a copy of a project 3-18
saving in default text format 8-22
selecting 3-37
touching and untouching 3-47

Files view 3-5
Filtering members by access type 7-15
Find and Open File command D-3
Find and Replace

Ignore Case option 6-5, 6-9
Regexp option 6-5
Wrap option 6-5

Find command D-10
Find Definition command 5-18, D-12
Find in Next File command D-10
Find Next command D-10
Find Selection command D-11
Finding

function overrides in browser 7-26
Finding and replacing text 6-2
Floating Document Interface 8-10
Floating Point option (Assembler) 9-35
Folders

comparing 2-20
merging 2-20

Font and Tabs panel, Preferences
window 8-22

Font Preferences 8-19
FPA option 9-35
fromELF 9-10, 9-76

Include debug sections in output
option 9-77

Output format option 9-77
FTP Postlinker 9-10
Functions

describing name and location of
7-35

specifying file locations for 7-36,
7-38

virtual 7-26
Functions pop-up menu 5-17

Future compatibility warning 9-53

G
Generate Constructors and Destructors

checkbox, of New Class wizard
7-32

Generating debug information 9-58,
9-77

Get (VCS operation) 10-11
Give progress information while linking

option (linker) 9-71
Global Variables Window command

D-9
Go Back command D-12

limitations of 7-21
Go Forward command D-12

limitations of 7-21
Go To Line command D-12
Grouping files 3-42
Groups

creating 3-42
expanding and collapsing 3-43
moving 3-44
naming 3-43
removing 3-45
removing with menu commands

3-45
selecting 3-37

H
Header file not guarded option 9-53
Header files

Non-ANSI header warning 9-53
non-ANSI include warning 9-53
opening 2-7, 2-11
recursive searches 9-14
searching for 9-11, 9-12

Header Files pop-up menu 2-8, 5-21
Help Menu D-24

About Metrowerks command D-25
Hide Breakpoints command D-18
Hide Window Toolbar command D-25
Hierarchy expansion triangle 7-19
Hierarchy view, browser 7-3
History (VCS operation) 10-11

Home key 3-4
Host Flags option 9-20

I
IDE

about 1-2
available tools 1-2
browser 7-1
menu reference D-2
Preferences window 8-3
reference information D-1

IDE Extras preference panel 8-8
IDE Preferences

discarding changes 8-4
opening 8-3
overview 8-2
saving changes 8-4

Identifier icon, in browser 7-11
Ignore Case option (Find and Replace)

6-5, 6-9
Ignore C-style escape characters option

9-40
Ignored by Make flag 9-25
Ignored by make flag 9-25
Image

and fromELF 9-77
converting format 9-77
generating ROMable 9-76
including debug tables 9-77
layout 9-72
output section information 9-75
section placement 9-73
setting the entry point 9-72
specifying image structure 9-68

Image map option (linker) 9-74
Images, partial, simple, scattered 9-67
Implicit constructor option 9-55
Implicit int types option 9-57
Implicit narrowing option 9-54
Implicit pointer casts option 9-56
Implicit virtual option 9-55
Import Project command D-4
Importing project as XML 3-22
Include debug sections in output option

(fromELF) 9-77
Include debugging information option

(linker) 9-71
Index-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
Include File Automatically Added For
Member Type field

of New Data Member wizard 7-39
Include files

searching for 9-11, 9-12
Include Files Automatically Added For

Return Type And Parameters
field

of New Member Function wizard
7-37

Include preprocessor symbols option
9-58

Inheritance
analyzing in browser 7-18

Inherited access icon 7-10, 7-11
Initial State option 9-36
Inline checkbox

of New Member Function wizard
7-36

Inline functions, debugging 9-58
Insert template commands 7-23
Instructions, assembly language

LDM 9-40
STM 9-40

Interface pop-up menu 3-8, 3-11, 3-47
Interrupt latency 9-62
Interworking

linker veneers 9-75
Interworking ARM and Thumb 9-50
Interworking projects, creating 3-27

J
Junk at end of #endif/#else/#undef

option 9-57

K
Keep Symbols option 9-40
Key bindings 8-36
Keywords, coloring 8-27
Kill command D-17, D-21, D-22

L
Label (VCS operation) 10-11

Latency, interrupts 9-62
Launchable flag 9-25
LDM instruction 9-40
Libraries

and the ARMLIB environment
variable 9-71

creating with armar 3-85
Line button in hierarchy window 7-19
Line Number Button 5-6
line number, going to 5-20
Link information 9-75
Link Order view 3-9
Link order, setting 3-80
Linkage conflicts option 9-57
Linker

and file mappings 9-23
configuring 9-66
fromELF 9-10
Give progress information while

linking option 9-71
Image map option 9-74
Include debugging information

option 9-71
Mangled C++ option 9-74
options 9-9

Symbols 9-74
Output local symbols option 9-71
Partial option 9-67
prelinker 9-10
Remove unused sections option

9-70
Report "might fail" conditions as

errors option 9-71
RO Base option 9-68
RO section base address 9-68
Ropi option 9-69
RW Base option 9-68
Rwpi option 9-69
Scattered option 9-67
Search standard libraries option

9-71
Section cross-references option

9-74
selecting 9-5, 9-9
Sizes option 9-75
specifying image entry point

Entry point, configuring 9-72
Split Image option 9-69
symbols

mangled names 9-74
used in link step 9-74

Symbols option 9-74
Totals option 9-75
undefined symbol resolution 9-75
undefined symbols 9-76
unresolved symbols 9-76
Unused option 9-75
Use ARMLIB to find libraries option

9-71
Veneers option 9-75
via files 9-75

Listing
Page settings 9-44

Listing on option 9-43
Listings 9-75
Load configuration option (armsd)

9-86
Local Path (VCS option) 10-5
Local symbols in liinker output 9-71
Lower precision in wider context option

9-53
Lower precision warning 9-53

M
Macros, defining 9-60
Make command D-15
Makefile Importer 3-19, 3-20
Makefile Importer Wizard 3-19
Makefiles

converting to projects 3-19, 3-20
Managing files in a project 3-37
Mangled C++ option (linker) 9-74
Markers 5-19

adding 5-19
removing 5-20

Markers Pop-up Menu 5-4
MDI 8-10
Member and base inits out of order

option 9-54
Member Fucntion Declaration section,

of New Member Function wizard
7-35

Member functions
specifying file locations for 7-36,

7-38
viewing in browser 7-9
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-7

Index
Member Functions pane, in browser
7-10

Merging files and folders 2-20
Message List Pane 4-14
Message Window

command D-9
error and warning messages 4-11
stepping through messages 4-15

Message window
copying to clipboard 4-19
printing 4-18
saving 4-19

Messsage window 4-11
Method option 10-4
Modification dates, synchronizing

3-47
Modifiers section

of New Data Member wizard 7-38
of New Member Function wizard

7-36
Moving

files and groups 3-44
projects 3-22

Multi-ICE
and armsd 9-84

Multiple build targets and subprojects
3-52

Multiple Document Interface 8-10
Multiple redo D-6
multiple Redo command 5-16
Multiple undo D-6
Multiple Undo command 5-16
Multi-user projects 3-50
Mutable option, of Specifier pop-up

menu 7-38

N
Name and Location section, of New

Class wizard 7-31, 7-35
Name field

of New Data Member wizard 7-38
Namespace field

of New Class wizard 7-32
Namespaces Required For Parameters

field
of New Member Function wizard

7-35

Navigating
code in the browser 7-24
Project window 3-4
through code in the browser 7-24

Navigation
editor window 5-10

New button
of New Class wizard 7-32
of New Member Function wizard

7-36
New Class Browser command D-8
New Class command 7-30, D-20
New Class wizard

Access pop-up menu 7-32
After option 7-32
Base Classes and Methods section

7-32
Base Classes field 7-32
Before option 7-32
Class Name field 7-31
Constructor Parameters field 7-33
Declaration File field 7-31
Existing button 7-32
Generate Constructors and

Destructors checkbox 7-32
Name and Location section 7-31,

7-35
Namespace field 7-32
New button 7-32
Targets section 7-34
Use separate file for member

definitions checkbox 7-32
Virtual destructor checkbox 7-33

New command D-3
New Data Member command D-21
New Data Member wizard

Additional Header Include Files
7-39

Const checkbox 7-38
Data Member Declaration section

7-37
Declaration field 7-39
Definition field 7-39
Include File Automatically Added

For Member Type field 7-39
Modifiers section 7-38
Name field 7-38
Type field 7-38
Volatile checkbox 7-38

New Event Set wizard
Set button 7-31

New Member Function command
7-30, D-21

New Member Function wizard
Additional Header Include Files

7-37
Const checkbox 7-36
Declaration field 7-36
Definition field 7-36
Existing button 7-36
File Locations section 7-36, 7-38
Include Files Automatically Added

For Return Type And Parameters
field 7-37

Inline checkbox 7-36
Member Function Declaration

section 7-35
Modifiers section 7-36
Namespaces Required For

Parameters field 7-35
New button 7-36
Parameters field 7-35
Return Type field 7-35

New Project command 3-13
No Warning option (Assembler) 9-40
No warning option (Compilers) 9-52
Non-ANSI header option 9-53
Non-ANSI include warning 9-53
None option, of Specifier pop-up menu

7-38

O
Object output 9-10
One ELF section per function 9-63
Open command 3-15
Open Recent command 3-16, D-5
Open recent command 3-16
Open Recent Menu 8-9
Opening

a project 3-15
project files from other hosts 3-16
source files with the browser 7-28

Opening files 2-3
Opening subprojects 3-16
Optimization

compiler options 9-58
Index-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
configuring 9-57
for space or time 9-59

Options
browser display 8-18, 8-23, 8-25
Build Extras 9-20
Build target settings 9-8
Custom Keywords panel 9-79
Editor settings 8-18
IDE extras 8-8
key bindings 8-36
overview 8-2
setting in browser 7-6

Options Pop-up Menu 5-4
Other dubious casts option 9-57
Output

from fromELF 9-78
Output Directory 9-10
Output format option (fromELF) 9-77
Output local symbols option 9-71
Overrides, finding 7-26

P
Padding inserted in struct option 9-53
Padding inserted in structure warning

9-53
Page Down key 3-4, 5-11
Page size for assembler listings 9-44
Page Up key 3-4
Pane Resize Bar 4-14
Pane Splitter Controls 5-6
Pane zoom box, of Browser window

7-9
Panes, in editor window 5-8
Parameters field

of New Member Function wizard
7-35

Partial option (linker) 9-67
Paste command 5-12, D-6, D-7, D-10,

D-11, D-12, D-13
Performance

reducing compile time 9-14
Performance reducing build time

Cache subprojects option 9-21
Perl scripting A-1, C-1

with IDE plug-in API C-7
Perl software plug-ins

installation C-2

Perl target settings panel
configuring C-4

PIC 9-39, 9-50, 9-68
PID 9-39, 9-51, 9-69
plain binary images 9-76
Plain char is signed option 9-61
Plugin Diagnostics 8-11
Port Specification option (armsd) 9-85
Position-independent 9-39, 9-50, 9-51

code 9-50, 9-68
data 9-51, 9-69

Postlinker
selecting 9-5

Precompile command D-14
Precompiled flag 9-25
Predeclared Register Names option

9-38
Predefined macros 9-60
Preferences command D-7
Preferences window 8-3
Prefix key

Quote Key 8-37
timeout 8-37

Preprocess command D-14
Preprocessing code 3-79
preprocessor 3-79
Print command D-4
Print Selection Only 2-18
Print Setup command (Windows) D-4
Printing

message window 4-18
window 2-17
with syntax coloring 2-18

Private option, of Access pop-up menu
7-38

Processes Window command D-9
Project Checkout Status icon 3-9
Project Information Caption 4-13
Project Inspector 3-58
Project Inspector command D-8
Project Menu

Add Files command D-13
Add Window command D-13
Bring Up To Date command D-15
Check Syntax command D-14
Compile command D-14
Create New Group command D-13
Create New Target command D-13
Disassemble command D-15

Make command D-15
Precompile command D-14
Preprocess command D-14
Remove Binaries command D-15
Remove Object Code command

D-15
Re-Search for Files command D-15
Reset File Paths command D-14
Reset Project Entry Paths command

D-16
Run command D-16
Set Current Target command D-16
Set Default Project command D-16
Stop Build command D-15
Synchronize Modification Dates

command D-16
Project Relative Path 9-17
Project stationery 3-13, 3-23, 9-3

creating 3-35
Project structure 3-2
Project window 10-7

Checkout Status column 3-9
Data column 3-7
Debug column 3-11
File column 3-10
File Control pop-up menu 3-9
guided tour 3-4
Interface pop-up menu 3-8, 3-11
Link Order view 3-9
navigating 3-4
Project Checkout Status icon 3-9
Target column 3-8
Targets view 3-12
toolbar 3-4
Touch column 3-8, 3-11

Project (VCS operation) 10-10
Projects

about project stationery 3-23
adding files 3-38, 3-40
backing up 3-18
Build target settings 9-8
build targets 1-2
building 3-15, 3-74
choosing stationery 3-13
closing 3-17
compiling 3-74, 3-78
converting makefiles 3-19, 3-20
copying language settings between

9-31
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-9

Index
creating groups 3-42
debugging 4-10
defined 1-2
empty project 3-13
expanding and collapsing groups

3-43
grouping files 3-42
items saved with 3-18
managing files 3-37
moving 3-22
moving around 3-4
moving files and groups 3-44
multi-user 3-50
naming 3-15
new 3-13
opening project files from other

hosts 3-16
output directory 9-5, 9-10
removing files and groups 3-45
renaming groups 3-43
revision control 3-9
running 4-9
saving 3-18
saving a copy 3-18
selecting files 3-37
selecting files and groups 3-37
selecting groups 3-37
setting link order 3-80
stationery 3-13
subproject definition 3-53, 3-67
switching between 3-15
synchronizing modification dates

3-47
updating 3-78

Properties (VCS operation) 10-11
Protected option, of Access pop-up

menu 7-38
Public option, of Access pop-up menu

7-38
Pure-endian softfp option 9-35

Q
Quote Key prefix 8-37

R
Read-only position independence 9-68
Read-only position independent code

option 9-39
Read-only position independent option

9-50
Read-write position independence

9-69
Read-write position independent code

option 9-39
Read-write position independent option

9-51
Recent Documents 8-9
Recent Projects 8-9
Recompiling files 3-78
Recursion (VCS operation) 10-11
Recursive search of access paths 9-14
Redo command D-6
Regexp option (Find and Replace) 6-5
Registry key, in source trees 9-27
Regular expressions 6-17
Relative access paths 9-17
Relative paths 9-10
Remember options, Preferences

window 8-19
Remove Binaries command D-15
Remove Object Code command D-15
Remove unused sections option (linker)

9-70
Removing

files and groups 3-45
Removing a marker 5-20
Removing access paths 9-19
Replace All command D-11
Replace & Find Next command D-11
Report "might fail" conditions as error

option (linker) 9-71
Re-Search for Files command D-15
Reset File Paths command D-14
Reset Floating Toolbar command D-26
Reset Project Entry Paths command

D-16
Reset Window Toolbar command

D-25
Resize bar, in browser 7-9
Resource file flag 9-24
Restart command D-17
Return Type field

of New Member Function wizard
7-35

Revert command D-4
Revert Panel button 8-5, 9-7
Revert to most recent saved copy of file

2-19
Revision control systems 3-9
RLIST directive 9-40
RO Base option (linker) 9-68
ROM images 9-76
ROPI 9-39, 9-50, 9-68
Ropi option (linker) 9-68
Routine pop-up menu 5-17
Run command D-16
Running a project 4-9
Running batch files 9-10
Running image files 9-88
Runtime settings panel 9-22
Run/Debug button, configuring the

Runner 9-88
RW Base option (linker) 9-68
RWPI 9-39, 9-51, 9-69
Rwpi option (linker) 9-69

S
Save A Copy As command 2-14, 3-18,

D-4
Save All command D-3
Save As command 2-13, D-4
Save command D-3
Save Project Entries Using Relative

Paths option 9-10
Saving

a copy of a project 3-18
all files 2-12
backup copies of files 2-13
files automatically 2-12
items saved with projects 3-18
message window 4-19
projects 3-18

Scatter loading 9-67
Scattered option (linker) 9-67
Script file option (armsd) 9-86
Scripting

using Perl A-1, C-1
Search Menu D-10

Compare Files command D-12
Index-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
Enter Find String command D-11
Find command D-10
Find Definition D-12
Find in Next File command D-10
Find Next command D-10
Find Selection command D-11
Go Back command D-12
Go Forward command D-12
Go To Line command D-12
Replace All command D-11
Replace & Find Next command

D-11
Search Menu Find Selection command

D-11
Search paths

source tree relative 9-18
Search standard libraries option (linker)

9-71
Searching 6-3

find and replace 6-8
for selected text 6-3
for selection 6-3

Section cross-references option (linker)
9-74

Section elimination 9-75
Section placement, in the linker 9-73
Select All command D-7
Select configuration option (armsd)

9-87
Selected text search 6-3
Selecting text in the editor 5-12
Selection

by keyboard 3-37
by mouse-clicking 3-37
finding 6-3
printing 2-18

Selection Position 8-19
Seleting ARM debugger and ARM

runner 4-2
Set Breakpoint command D-9
Set button

of New Event Set wizard 7-31
Set Current Target command D-16
Set Default Project command D-16
Set Watchpoint command D-18
SETA directive 9-41
SETL directive 9-41
SETS directive 9-41
Setting

options in browser 7-6
Setting current build target 3-54
Setting link order 3-80
Shift Left command D-7
Shift Right command D-7
Show Breakpoints command D-18
Show Catalog Window command D-8
Show Floating Toolbar command D-26
Show Global Toolbar D-26
Show Inherited checkbox 7-10, 7-11
Show Private command 7-15
Show Protected command 7-15
Show Public command 7-15
Show Window Toolbar command

D-25
Sizes option (linker) 9-75
Softfp option 9-35
Software stack check option 9-50
Software stack checking option 9-39
Sort function popup, Preferences

window 8-22
Source code

activating debugging 4-4
Source Code Disclosure Triangle 4-14
Source Code Pane 4-14
Source file column (comparing and

merging) 2-21
Source files

compiling 3-78
opening with the browser 7-28

Source Line Debug option 9-40
Source pane, in browser 7-11
Source Tree Relative option 9-18
Source tree relative search paths 9-18
Source trees 9-26
Special opterators (regular expressions)

6-17
Specifier pop-up menu

Mutable option 7-38
None option 7-38
Static option 7-38

Split image option (Linker) 9-69
Stack checking 9-39, 9-50
Stack command D-22
Standard C++

and error messages 9-55
Standard libraries 9-71
Static option, of Specifier pop-up menu

7-38

Stationery 3-23
creating 3-35
project stationery 3-13

Stationery, project 9-3
Status area

of browser 7-12
Status (VCS operation) 10-11
Step Into command D-17
Step Out command D-17
Step Over command D-17
Stepping Buttons 4-14
STM instruction 9-40
Stop Build command D-15
Subproject

definition 3-53, 3-67
Subprojects

opening 3-16
Switch To Monitor command D-18,

D-19, D-20
Symbol colours 7-6
Symbol name completion 7-27
Symbol window, in browser 7-26
Symbols

linker 9-74
loading into armsd 9-86
undefined 9-76

Symbols file option (armsd) 9-86
Symbols option (linker) 9-74
Synchronize Modification Dates

command D-16
Synchronize Status (VCS operation)

10-10
Synchronizing

modification dates 3-47
Synchronizing modification dates 3-47
Syntax Coloring

and printing 2-18
Syntax Coloring, Preferences window

8-25
System header files

search paths 9-11
System paths 9-11, 9-12
System Paths Pane 9-11
System Relative Path 9-18

T
Target column 3-8, 3-58
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-11

Index
Target name 9-9
Target Name option 9-9
Target name, changing 9-5
Target processor (armsd) 9-85
Target Settings command D-7
Target Settings panel 9-8
Targets

copying language settings between
9-31

creating build targets 3-56
Targets section

of New Class wizard 7-34
Targets view 3-12

of Project window 3-12
Terse option 9-43
Text

drag and drop of 5-13
Text Editing Area 5-6
Text replacing

in multiple files 6-8
Replace All 6-6, 6-10
replacing found text 6-6, 6-10
single file 6-3

Text search
activating multi-file search 6-8
controlling range 6-5
for selection 6-3
multiple file 6-8
regular expressions 6-17

text search
finding text 6-4

Thumb
ARM/Thumb interworking veneers

9-75
interworking with ARM 9-39, 9-50
specifying initial state 9-36

Thumb ARM interworking stationery,
using 3-27

Toolbar Disclosure Button 5-6
Toolbar Submenu D-25

Clear Floating Toolbar command
D-26

Clear Window Toolbar command
D-26

Hide Window Toolbar command
D-25

Reset Floating Toolbar command
D-26

Reset Window Toolbar command
D-25

Show Floating Toolbar command
D-26

Show Window Toolbar command
D-25

Toolbar (comparing and merging) 2-21
Toolbars

adding elements 8-43
customizing 8-41
elements 8-41
modifying 8-42
Project window toolbar 3-4
removing elements 8-45
showing and hiding 8-42
window toolbar 8-42

Tools Submenu D-25
Totals option (linker) 9-75
Touch column 3-8, 3-11, 3-47
Touch command 3-47
Touching files 3-47
Type field

of New Data Member wizard 7-38

U
Unapplying a difference 2-24
Undo Checkout (VCS operation) 10-11
Undo command D-5, D-6
Untouching files 3-47
Unused declaration option 9-53
Unused option (linker) 9-75
Unused section elimination 9-70
Unused this in non-static member

function option 9-54
Updating projects 3-78
updating projects 3-78
Use ARMLIB to find libraries option

9-71
Use modification date caching option

9-21
Use separate file for member definitions

checkbox
of New Class wizard 7-32

Use Third Party Editor 8-9
Use Version Control option 10-4
User paths 9-11
Username field 10-5

Using the Thumb ARM interworking
stationery 3-27

V
Variables (VCS operation) 10-11
VCS Message window 10-13
VCS Pop-up menu 10-11, 10-12
VCS Setup panel 10-3
Veneers option (linker) 9-75
Version Control pop-up menu 5-5
Version Control Settings command

D-7
Version Control Settings (VCS option)

10-4
Version Control System (VCS)

file permissions
Checked out 10-8
Locked 10-9
Modify Read-Only 10-9
Read-Only 10-8
Unlocked 10-9

menus
VCS Pop-up menu 10-11

operations
About 10-11
Add 10-11, 10-13
Checkin 10-11, 10-13
Checkout 10-11, 10-13
Comment 10-11
Connect 10-11
Disconnect 10-11
Get 10-11, 10-13
History 10-11
Label 10-11
Make Writable 10-13
Project 10-10
Properties 10-11
Recursion 10-11
Status 10-11
Synchronize Status 10-10
Undo Checkout 10-11, 10-13
Unlock 10-12
Variables 10-11

windows
Project window 10-7
VCS Message Window 10-13

VFP option 9-35
Index-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

Index
Via files
compiler 9-64
linker 9-75

via files
assembler 9-44

View
class or member declarations 7-24
function definitions 7-25
member functions and data members

in browser 7-9
View As Implementor command 7-15
View As Subclass command 7-15
View As User command 7-15
Views 3-5
Views, browser 7-8
Virtual destructor checkbox

of New Class wizard 7-33
Virtual function overrides 7-26
Volatile checkbox

of New Data Member wizard 7-38

W
Warn for all conditions option 9-52
Warning Button 4-13
Warning messages, compilers 4-11

assignment operator 9-52
bitfield type 9-52
configuring 9-51
double constants automatically

converted to float 9-54
future compatibility 9-53
implicit constructor 9-55
implicit narrowing cast 9-54
implicit virtual 9-55
lower precision 9-53
member and base inits out of order

9-54
non-ANSI include 9-53
padding inserted in structure 9-53
unused this 9-54

Watchpoints Window command D-9
Wildcard searching 6-17
Window Menu D-22

Browser Catalog Window command
D-8

Build Progress Window command
D-9

Errors & Warnings Window
command D-9

Expressions Window command
D-9

Global Variables Window command
D-9

New Class Browser command D-8
Processes Window command D-9
Project Inspector command D-8
Show Catalog Window command

D-8
Stack command D-22
Watchpoints Window command

D-9
Window Position and Size 8-19
Window Toolbar 8-42
Windows

class browser 7-8, 7-12
help D-24
Help Menu D-24
Project window Link Order view

3-9
Project window navigation 3-4
Project window Targets view 3-12
Project window toolbar 3-4

Wrap option (Find and Replace) 6-5

X
XML

comparing files 2-26
importing and exporting as 3-22
XML- formatted projects,

comparing 2-26

Z
Zero-length arrays option 9-57
ARM DUI 0065D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-13

Index
Index-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0065D

	ARM Developer Suite CodeWarrior IDE Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the CodeWarrior IDE
	1.2 About the CodeWarrior IDE for the ARM Developer Suite
	1.2.1 Unused menu commands and windows
	1.2.2 Converting old projects

	1.3 Where to go from here
	1.3.1 Online documentation and online help

	Working with Files
	2.1 About working with files
	2.2 Creating and opening files
	2.2.1 Creating a new file
	2.2.2 Opening files from the File menu
	2.2.3 Opening files from the project window
	2.2.4 Opening header files from an editor window

	2.3 Saving files
	2.3.1 Saving project files
	2.3.2 Saving editor files
	2.3.3 Saving a backup copy of a file

	2.4 Closing files
	2.4.1 Closing project files
	2.4.2 Closing editor files

	2.5 Printing files
	2.5.1 Setting print options
	2.5.2 Printing a window

	2.6 Reverting to the most recently saved version of a file
	2.7 Comparing and merging files and folders
	2.7.1 File comparison and merge overview
	2.7.2 Choosing files to compare
	2.7.3 Applying and unapplying differences
	2.7.4 Choosing folders to compare
	2.7.5 Comparing XML-formatted projects

	Working with Projects
	3.1 About working with projects
	3.1.1 Project structure overview

	3.2 Overview of the project window
	3.2.1 Navigating the project window
	3.2.2 Project views

	3.3 Working with simple projects
	3.3.1 Creating a new project
	3.3.2 Opening a project
	3.3.3 Closing a project
	3.3.4 Saving a project
	3.3.5 Importing makefiles into projects
	3.3.6 Choosing a default project
	3.3.7 Moving a project
	3.3.8 Importing and exporting a project as XML

	3.4 Working with project stationery
	3.4.1 Project stationery overview
	3.4.2 Using ARM-supplied project stationery
	3.4.3 Creating your own project stationery

	3.5 Managing files in a project
	3.5.1 Selecting files and groups
	3.5.2 Adding files to a project
	3.5.3 Grouping files in a project
	3.5.4 Moving files and groups
	3.5.5 Removing files and groups
	3.5.6 Touching and untouching files
	3.5.7 Examining and changing project information for a file

	3.6 Configuring the CodeWarrior IDE for complex or multi-user projects
	3.7 Working with multiple build targets and subprojects
	3.7.1 Overview of complex projects
	3.7.2 Creating a new build target
	3.7.3 Assigning files to build targets
	3.7.4 Changing a build target name
	3.7.5 Creating build target dependencies
	3.7.6 Building all targets in a project
	3.7.7 Creating subprojects within projects

	3.8 Compiling and linking a project
	3.8.1 Overview of compiling and linking
	3.8.2 Compiling files
	3.8.3 Making a project
	3.8.4 Removing objects from a project

	3.9 Processing output
	3.9.1 Disassembling code
	3.9.2 Converting output ELF images to other formats
	3.9.3 Creating libraries with armar
	3.9.4 Running batch files with the batch runner

	Working with the ARM Debuggers
	4.1 About working with the ARM debuggers
	4.1.1 How the ARM debuggers work with the CodeWarrior IDE

	4.2 Generating debug information
	4.2.1 Generating debug information for individual source files
	4.2.2 Generating debug information for all source files in a build target

	4.3 Running and debugging your code
	4.3.1 Running a project
	4.3.2 Debugging a project

	4.4 Using the message window
	4.4.1 Overview of the message window
	4.4.2 Using the message window

	Editing Source Code
	5.1 About editing source code
	5.2 Overview of the editor window
	5.3 Configuring the editor window
	5.3.1 Setting text size and font
	5.3.2 Displaying window controls
	5.3.3 Splitting the window into panes
	5.3.4 Saving editor window settings

	5.4 Editing text
	5.4.1 Basic editor window navigation
	5.4.2 Basic text editing
	5.4.3 Selecting text
	5.4.4 Moving text with drag and drop
	5.4.5 Balancing punctuation
	5.4.6 Shifting text left and right
	5.4.7 Undoing changes
	5.4.8 Controlling color

	5.5 Navigating text
	5.5.1 Finding a function
	5.5.2 Finding symbol definitions
	5.5.3 Using markers
	5.5.4 Going to a specific line
	5.5.5 Using Go Back and Go Forward
	5.5.6 Opening a related header file

	Searching and Replacing Text
	6.1 About finding and replacing text
	6.2 Finding and replacing text in a single file
	6.2.1 Searching for selected text
	6.2.2 Finding and replacing text with the Find and Replace dialog

	6.3 Finding and replacing text in multiple files
	6.3.1 Using multi-file search
	6.3.2 Using file sets

	6.4 Using grep-style regular expressions
	6.4.1 Special operators
	6.4.2 Using regular expressions

	Working with the Browser
	7.1 About working with the browser
	7.1.1 Understanding the browser strategy

	7.2 Activating the browser
	7.2.1 Configuring browser options

	7.3 Using browser views
	7.3.1 Viewing data by class with the Class browser view
	7.3.2 Viewing data by type with the Contents view
	7.3.3 Viewing class hierarchies and inheritance with the hierarchy view

	7.4 Using the browser
	7.4.1 Using Go Back and Go Forward
	7.4.2 Using the Browser context menu
	7.4.3 Finding declarations, definitions, overrides, and multiple implementations
	7.4.4 Using symbol name completion
	7.4.5 Editing code in the browser

	7.5 Creating classes and members with browser wizards
	7.5.1 Using the New Class wizard
	7.5.2 Using the New Member Function wizard
	7.5.3 Using the New Data Member wizard

	Configuring IDE Options
	8.1 About configuring the CodeWarrior IDE
	8.2 Overview of the IDE Preferences window
	8.2.1 Using the IDE Preferences window

	8.3 Choosing general preferences
	8.3.1 Configuring build settings
	8.3.2 Configuring IDE extras
	8.3.3 Configuring plug-in settings
	8.3.4 Configuring shielded folders
	8.3.5 Configuring global source trees

	8.4 Choosing editor preferences
	8.4.1 Editor settings
	8.4.2 Font & Tabs
	8.4.3 Text Colors

	8.5 Choosing debugger preferences
	8.6 Setting commands and key bindings
	8.6.1 Opening the Customize IDE Commands window
	8.6.2 Adding your own commands to the CodeWarrior IDE
	8.6.3 Customizing keybindings

	8.7 Customizing toolbars
	8.7.1 Toolbar overview
	8.7.2 Showing and hiding a toolbar
	8.7.3 Modifying a toolbar

	Configuring a Build Target
	9.1 About configuring a build target
	9.1.1 Configuration recommendations
	9.1.2 Creating project stationery

	9.2 Overview of the Target Settings window
	9.2.1 Using the Target Settings window

	9.3 Configuring general build target options
	9.3.1 Configuring target settings
	9.3.2 Configuring access paths
	9.3.3 Configuring build extras
	9.3.4 Configuring runtime settings
	9.3.5 Configuring file mappings
	9.3.6 Configuring source trees
	9.3.7 Configuring the ARM target

	9.4 Using the Equivalent Command Line text box
	9.5 Configuring assembler and compiler language settings
	9.5.1 Configuring the ARM assembler
	9.5.2 Configuring the compilers

	9.6 Configuring linker settings
	9.6.1 Configuring the ARM linker
	9.6.2 Configuring fromELF

	9.7 Configuring editor settings
	9.7.1 Custom Keywords

	9.8 Configuring the debugger
	9.8.1 Other Executables
	9.8.2 Debugger Settings
	9.8.3 Configuring the ARM Debugger
	9.8.4 Configuring the ARM Runner

	9.9 Configuring Miscellaneous settings
	9.9.1 ARM Features

	Using the CodeWarrior IDE with Version Control Systems
	10.1 About version control systems
	10.1.1 Commercially available VCS plug-ins

	10.2 Activating VCS
	10.2.1 VCS plug-in software
	10.2.2 Activating VCS software

	10.3 Using your VCS from the CodeWarrior IDE
	10.3.1 Using the Version Control Login window
	10.3.2 Performing common VCS operations

	Running the CodeWarrior IDE from the Command Line
	A.1 Using the CodeWarrior IDE from the command line

	CodeWarrior IDE Installation and Preference Settings
	B.1 The CodeWarrior IDE preferences directory
	B.2 Using different versions of the CodeWarrior IDE

	Perl Scripts
	C.1 Perl software plug-ins
	C.1.1 Installing Perl software plug-ins

	C.2 Configuring your project for Perl
	C.2.1 Configuring file mappings
	C.2.2 Configuring a prefix file

	C.3 Using Perl scripting
	C.3.1 Adding Perl files to you project
	C.3.2 Restrictions
	C.3.3 Example

	CodeWarrior IDE Reference
	D.1 CodeWarrior IDE menu reference
	D.1.1 File menu
	D.1.2 Edit menu
	D.1.3 View Menu
	D.1.4 Search menu
	D.1.5 Project menu
	D.1.6 Debug menu
	D.1.7 Data menu
	D.1.8 Browser menu
	D.1.9 Layout Menu
	D.1.10 Window menu
	D.1.11 Version Control System (VCS) menu
	D.1.12 Help menu
	D.1.13 Toolbar submenu

	D.2 CodeWarrior IDE default key bindings
	D.2.1 File menu
	D.2.2 Edit menu
	D.2.3 View menu
	D.2.4 Search menu
	D.2.5 Project menu
	D.2.6 Window menu
	D.2.7 Miscellaneous
	D.2.8 Editor commands

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

