
ARM® Developer Suite
Version 1.2

Debug Target Guide
Copyright © 1999-2001 ARM Limited. All rights reserved.
ARM DUI0058D

ARM Developer Suite
Debug Target Guide

Copyright © 1999-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

November 2000 C Release 1.1

November 2001 D Release 1.2
ii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Contents
ARM Developer Suite Debug Target Guide

Preface
About this book .. vi
Feedback ... x

Chapter 1 Introduction
1.1 Debug target overview .. 1-2

Chapter 2 ARMulator Basics
2.1 About ARMulator ... 2-2
2.2 ARMulator components .. 2-3
2.3 Tracer .. 2-5
2.4 Profiler ... 2-12
2.5 ARMulator cycle types .. 2-14
2.6 Pagetable module ... 2-19
2.7 Default memory model .. 2-26
2.8 Memory modelling with mapfiles ... 2-27
2.9 Semihosting .. 2-31
2.10 Peripheral models ... 2-32

Chapter 3 Writing ARMulator models
3.1 The ARMulator extension kit ... 3-2
3.2 Writing a new peripheral model ... 3-5
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. iii

Contents
3.3 Building a new model ... 3-7
3.4 Configuring ARMulator to use a new model ... 3-8
3.5 Configuring ARMulator to disable a model ... 3-10

Chapter 4 ARMulator Reference
4.1 ARMulator models .. 4-2
4.2 Communicating with the core ... 4-3
4.3 Basic model interface ... 4-12
4.4 Coprocessor model interface .. 4-15
4.5 Exceptions .. 4-26
4.6 Events ... 4-29
4.7 Handlers ... 4-33
4.8 Memory access functions ... 4-38
4.9 Event scheduling functions ... 4-40
4.10 General purpose functions ... 4-41
4.11 Accessing the debugger ... 4-52
4.12 Tracer ... 4-57
4.13 Map files ... 4-59
4.14 ARMulator configuration files .. 4-63
4.15 ToolConf ... 4-68
4.16 Reference peripherals .. 4-75

Chapter 5 Semihosting
5.1 Semihosting .. 5-2
5.2 Semihosting implementation .. 5-5
5.3 Adding an application SWI handler .. 5-8
5.4 Semihosting SWIs .. 5-11
5.5 Debug agent interaction SWIs .. 5-27

Glossary
iv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Preface

This preface introduces the ARM debug targets and their reference documentation. It
contains the following sections:

• About this book on page vi

• Feedback on page x.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. v

Preface
About this book

This book provides reference information for the ARM Developer Suite (ADS). It
describes:

• ARMulator®, the ARM processor simulator

• Semihosting SWIs, the means for your ARM programs to access facilities on your
host computer.

Intended audience

This book is written for all developers who are using the ARM debuggers, armsd and
AXD. It assumes that you are an experienced software developer, and that you are
familiar with the ARM development tools as described in Getting Started.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the material in this book, and a
summary description of the range of ARM debug targets.

Chapter 2 ARMulator Basics

Read this chapter for a description of ARMulator, the ARM instruction
set simulator.

Chapter 3 Writing ARMulator models

Read this chapter for help in writing your own extensions and
modifications to ARMulator.

Chapter 4 ARMulator Reference

This chapter provides further details to help you use ARMulator.

Chapter 5 Semihosting

Read this chapter for information about how to access facilities on the
host computer from your ARM programs.
vi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Preface
Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. vii

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains information that is specific to the versions of ARMulator and the
semihosting SWIs supplied with the ARM Developer Suite (ADS). Refer to the
following books in the ADS document suite for information on other components of
ADS:

• ADS Installation and License Management Guide (ARM DUI 0139)

• Getting Started (ARM DUI 0064)

• ADS Assembler Guide (ARM DUI 0068)

• ADS Compilers and Libraries Guide (ARM DUI 0067)

• ADS Linker and Utilities Guide (ARM DUI 0151)

• CodeWarrior IDE Guide (ARM DUI 0065)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• ADS Developer Guide (ARM DUI 0056)

• ARM Applications Library Programmer’s Guide (ARM DUI 0081).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
DynaText format as part of the online books, and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.
viii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Preface
• ARM/Thumb® Procedure Call Specification (SWS ESPC 0002). This is supplied
in PDF format in install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. ix

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To your supplier provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
x Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Chapter 1
Introduction

This chapter introduces the debug support facilities provided in the ADS version 1.2. It
contains the following section:

• Debug target overview on page 1-2.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-1

Introduction
1.1 Debug target overview

You can debug your prototype software using either of the debuggers described in AXD
and armsd Debuggers Guide, or a third party debugger. The debugger runs on your host
computer. It is connected to a target system that your prototype software runs on.

Your target system can be any one of:

• a software simulator, ARMulator, simulating ARM hardware

• an ARM evaluation or development board

• a third-party ARM-based development board

• ARM-based hardware of your own design.

1.1.1 ARMulator

A software simulator, ARMulator, is supplied with ADS. ARMulator runs on the same
host computer as the debugger. It includes facilities for communication with the
debugger.

ARMulator is an instruction set simulator. It simulates the instruction sets and
architecture of ARM processors, together with a memory system and peripherals. You
can extend it to simulate other peripherals and custom memory systems (see Chapter 3
Writing ARMulator models).

You can use ARMulator for software development and for benchmarking
ARM-targeted software. It models the instruction set and counts cycles. There are limits
to the accuracy of benchmarking, see Accuracy on page 2-2.

This book is mainly concerned with the ARMulator.

1.1.2 Hardware targets

You can use one of three different arrangements for a debugger to communicate with a
hardware target system:

• You can run a debug monitor, such as Angel or RealMonitor, on the target system,
in addition to your application code. The debug monitor handles communication
with the debugger.

• If your target processor has EmbeddedICE® logic, you can set:

— breakpoints in your code

— watchpoints in memory.
1-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Introduction
Execution halts at breakpoints, or when watchpoints are accessed. You can then
examine the state of your system, alter it, and restart it. In this way you can avoid
having any code other than your prototype software running on your target
system.

• If your target system has an Embedded Trace Macrocell, you can examine the
operation of your system while it is running.

For details see the documentation accompanying the hardware.

1.1.3 Semihosting

You can use the I/O facilities of the host computer, instead of providing the facilities on
your target system. This is called semihosting (see Chapter 5 Semihosting).

C and C++ code uses semihosting facilities by default.

To access semihosting facilities from assembly code, use semihosting Software
Interrupts (SWIs). Any of the following intercept semihosting SWIs and request service
from the host computer:

• ARMulator

• your debug monitor

• Multi-ICE®.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Chapter 2
ARMulator Basics

This chapter describes ARMulator, a collection of programs that provide software
simulation of ARM processors. It contains the following sections:

• About ARMulator on page 2-2

• ARMulator components on page 2-3

• Tracer on page 2-5

• Profiler on page 2-12

• ARMulator cycle types on page 2-14

• Pagetable module on page 2-19

• Default memory model on page 2-26

• Memory modelling with mapfiles on page 2-27

• Peripheral models on page 2-32.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-1

ARMulator Basics
2.1 About ARMulator

ARMulator is an instruction set simulator. It simulates the instruction sets and
architecture of various ARM processors. To run software on ARMulator, you must
access it either through the ARM symbolic debugger, armsd, through the ARM GUI
debugger, AXD, or through a third party debugger. See AXD and armsd Debuggers
Guide for details.

ARMulator is suited to software development and benchmarking ARM-targeted
software. It models the instruction set and counts cycles (see ARMulator cycle types on
page 2-14). There are limits to the accuracy of benchmarking and cycle counting, see
Accuracy.

ARMulator provides all the facilities needed to allow complete C or C++ programs to
run on the simulated system. See also Chapter 5 Semihosting for information on the C
library semihosting SWIs supported by ARMulator.

2.1.1 Accuracy

ARMulator is not 100% cycle accurate, because it is not based on the actual processor
design. In general, models of the less complex, uncached ARM processor cores are
cycle accurate, but models of the cached variants might not correspond exactly with the
actual hardware.

ARMulator is suitable for use as a software development tool for system design, but a
hardware model must be used if 100% accuracy is required.

You can use ARMulator for benchmarking if either:

• the core you are modelling does not have a cache

• you are only interested in approximate comparisons.

ARMulator does not model Asynchronous Mode on cached cores. If you set the control
bits in CP15 to specify Asynchronous Mode, ARMulator gives a warning:

Set to Asynch mode, WARNING this is not supported

You can continue debugging, but ARMulator behaves exactly as it does in Synchronous
Mode.
2-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.2 ARMulator components

ARMulator consists of a series of modules, implemented as Dynamic Link Libraries
(.dll files) for Windows, or as Shared Objects (.so files for Linux or Solaris, .sl files
for HPUX).

The main modules are:

• a model of the ARM processor core

• a model of the memory used by the processor.

There are alternative predefined modules for each of these parts. You can select the
combination of processor and memory model you want to use.

One of the predefined memory models, mapfile, allows you to specify a simulated
memory system in detail. mapfile allows you to specify narrow memories and wait
states (see Memory modelling with mapfiles on page 2-27).

In addition there are predefined modules which you can use to:

• model additional hardware, such as a coprocessor or peripherals

• model pre-installed software, such as a C library, semihosting SWI handler, or an
operating system

• extract debugging or benchmarking information (see Tracer on page 2-5 and
Profiler on page 2-12).

You can use different combinations of predefined modules and different memory maps
(see Configuring ARMulator on page 2-4).

You can write your own modules, or edit copies of the predefined ones, if the modules
provided do not meet your requirements. For example:

• to model a different peripheral, coprocessor, or operating system

• to model a different memory system

• to provide additional debugging or benchmarking information.

The source code of some modules is supplied. You can use these as examples to help
you write your own modules (see Chapter 3 Writing ARMulator models).
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-3

ARMulator Basics
2.2.1 Configuring ARMulator

You can configure some of the details of ARMulator from armsd, or from your GUI
debugger (see AXD and armsd Debuggers Guide). The current configurations are
announced in the debugger startup banner.

To make other configuration adjustments you must edit copies of .ami files. Six .ami
files are supplied with ADS:

• bustypes.ami

• default.ami

• example1.ami

• peripherals.ami

• processors.ami

• vfp.ami

These files are located in:

• install_directory\Bin for Windows installations

• install_directory/linux86/Bin for Linux installations

• install_directory/solaris/Bin for Solaris installations

• install_directory/cchppa/Bin for HPUX installations.

If you write any ARMulator models of your own, you can produce additional .ami files
to allow your models to be configured. See ARMulator configuration files on page 4-63
for details of how to do this.

When ARMulator is started by a debugger, it reads all the .ami files on any of the paths
it finds in the environment variable armconf. This is initially set up to point to
install_directory\Bin.

The following sections describe each of the predefined modules in turn, and how they
can be configured.

Note
 Where there is a conflict between configuration settings in a .ami file, and settings you
have made from AXD, the AXD settings take precedence.
2-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.3 Tracer

You can use Tracer to trace instructions, memory accesses, and events. The
configuration file peripherals.ami controls what is traced (see ARMulator
configuration files on page 4-63).

This section contains the following subsections:

• Debugger support for tracing

• Interpreting trace file output on page 2-6

• Configuring Tracer on page 2-10.

2.3.1 Debugger support for tracing

There is no direct debugger support for tracing. Instead, Tracer uses bit 4 of the RDI
logging level ($rdi_log) variable to enable or disable tracing.

Using AXD

Select System Views → Debugger Internals → Internal Variables, and then
double-click on the $rdi_log value to edit it:

• to enable tracing, set $rdi_log to 0x00000010

• to disable tracing, set $rdi_log to 0x00000000.

Using armsd

Enter the following at the command prompt:

• to enable tracing under armsd, type $rdi_log=16

• to disable tracing, type $rdi_log=0.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-5

ARMulator Basics
2.3.2 Interpreting trace file output

This section describes how you interpret the output from Tracer.

Example of a trace file

The following example shows part of a trace file:

Date: Thu Aug 9 16:41:36 2001
Source: Armul
Options: Trace Instructions (Disassemble) Trace Memory Cycles
BNR4O___ A0000000 00000C1E
BNR8O___ 00008000 E28F8090 E898000F
BSR8O___ 00008008 E0800008 E0811008
BSR8O___ 00008010 E0822008 E0833008
BSR8O___ 00008018 E240B001 E242C001
MNR4O___ 00008000 E28F8090
IT 00008000 e28f8090 ADD r8,pc,#0x90 ; #0x8098
MNR4O___ 00008004 E898000F
IT 00008004 e898000f LDMIA r8,{r0-r3}
BNR4O___ A0000000 00000C1E
BNR8O___ 00008098 00007804 00007828
BSR8O___ 00008080 10844009 E3C44003
BSR8O___ 00008088 E2555004 24847004
BSR8O___ 00008090 8AFFFFFC EAFFFFF2
MNR8____ 00008098 00007804 00007828
BNR8O___ 000080A0 00007828 00007840
BSR8O___ 000080A8 E3A00840 E1A0F00E
BSR8O___ 000080B0 E92D400C E28F0014
BSR8O___ 000080B8 E5901000 E5900004
MNR8____ 000080A0 00007828 00007840
MNR4O___ 00008008 E0800008
IT 00008008 e0800008 ADD r0,r0,r8
MNR4O___ 0000800C E0811008
IT 0000800C e0811008 ADD r1,r1,r8
MNR4O___ 00008010 E0822008

In a trace file, there can be five types of line:

• Trace memory (M lines) on page 2-7

• Trace instructions (I lines) on page 2-8

• Trace events (E lines) on page 2-8

• Trace registers (R lines) on page 2-9

• Trace bus (B lines) on page 2-9.
2-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
Trace memory (M lines)

M lines indicate:

• memory accesses, for cores without on-chip memory

• on-chip memory accesses, for cores with on-chip memory.

They have the following format for general memory accesses:

M<type><rw><size>[O][L][S] <address> <data>

where:

<type> indicates the cycle type:

S sequential

N nonsequential.

<rw> indicates either a read or a write operation:

R read

W write.

<size> indicates the size of the memory access:

4 word (32 bits)

2 halfword (16 bits)

1 byte (8 bits).

O indicates an opcode fetch (instruction fetch).

L indicates a locked access (SWP instruction).

S indicates a speculative instruction fetch.

<address> gives the address in hexadecimal format, for example 00008008.

<data> can show one of the following:

value gives the read/written value, for example EB00000C

(wait) indicates nWAIT was LOW to insert a wait state

(abort) indicates ABORT was HIGH to abort the access.

Trace memory lines can also have any of the following formats:

MI for idle cycles

MC for coprocessor cycles

MIO for idle cycles on the instruction bus of Harvard architecture processors
such as ARM9TDMI™.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-7

ARMulator Basics
Trace instructions (I lines)

The format of the trace instruction (I) lines is as follows:

[IT | IS] <instr_addr> <opcode> [<disassembly>]

For example:

IT 00008044 e04ec00f SUB r12,r14,pc

where:

IT indicates that the instruction was taken.

IS indicates that the instruction was skipped (almost all ARM
instructions are conditional).

<instr_addr> shows the address of the instruction in hexadecimal format, for
example 00008044.

<opcode> gives the opcode in hexadecimal format, for example e04ec00f.

<disassembly> gives the disassembly (uppercase if the instruction is taken), for
example, SUB r12,r14,pc. This is optional and is enabled by
setting Disassemble=True in peripherals.ami.

Branches with link in Thumb code appear as two entries, with the first marked:

1st instr of BL pair.

Trace events (E lines)

The format of the event (E) lines is as follows:

E <word1> <word2> <event_number>

For example:

E 00000048 00000000 10005

where:

<word1> gives the first of a pair of words, such as the pc value.

<word2> gives the second of a pair of words, such as the aborting address.

<event_number> gives an event number, for example 0x10005. This is MMU
Event_ITLBWalk. Events are described in Events on page 4-29.
2-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
Trace registers (R lines)

The format of the event (R) lines is as follows:

R <register>=<newvalue>[,<anotherregister>=<newvalue>[...]]

For example:

R r14=20000060, cpsr=200000d3

where:

<register> is a register that has a new value as a result of the current
instruction

<newvalue> is the new contents of <register>.

Trace bus (B lines)

The format of bus (B) lines is the same as the format of M lines. B lines indicate off-chip
memory accesses.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-9

ARMulator Basics
2.3.3 Configuring Tracer

Tracer has its own section in the ARMulator peripherals configuration file
(peripherals.ami):

{ Default_Tracer=Tracer
;; Output options - can be plaintext to file, binary to file or to RDI log
;; window. (Checked in the order RDILog, File, BinFile.)
RDILog=False
File=armul.trc
BinFile=armul.trc
;; Tracer options - what to trace
TraceInstructions=True
TraceRegisters=False
OpcodeFetch=True
;;Normally True is useful, but sometimes it's too expensive.
TraceMemory=True
;TraceMemory=False
TraceIdle=True
TraceNonAccounted=False
TraceEvents=False
;;If there is a non-core bus, do we trace it (as well).
TraceBus=True
;; Flags - disassemble instructions; start up with tracing enabled;
Disassemble=True
TraceEIS=False
StartOn=False
}

where:

RDILog instructs Tracer to output to the RDI log window (in AXD) or the
console (under armsd).

File defines the file where the trace information is written.
Alternatively, you can use BinFile to store data in a binary format.

The other options control what is being traced:

TraceInstructions traces instructions.

TraceRegisters traces registers.

OpcodeFetch traces instruction fetch memory accesses.

TraceMemory traces memory accesses.

TraceIdle traces idle cycles.
2-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
TraceNonAccounted traces unaccounted RDI accesses to memory. That is, those
accesses made by the debugger.

TraceEvents traces events. For more information, see Tracing events below.

TraceBus may be:

TRUE Bus (off-chip accesses traced)

FALSE Core (off-chip accesses not traced).

Disassemble disassembles instructions. Simulation is much slower if you
enable disassembly.

TraceEIS if set TRUE, changes output to a format compatible with other
simulators. This allows tools to compare traces.

StartOn instructs ARMulator to trace as soon as execution begins.

Other tracing controls

You can also control tracing using:

Range=low address,high address

tracing is carried out only within the specified address range.

Sample=n only every nth trace entry is sent to the trace file.

Tracing events

When tracing events, you can select the events to be traced using:

EventMask=mask,value

only those events whose number when masked (bitwise-AND)
with mask equals value are traced.

Event=number only number is traced. (This is equivalent to
EventMask=0xFFFFFFFF,number.)

For example, the following traces only MMU/cache events:

EventMask=0xFFFF0000,0x00010000

See Events on page 4-29 for more information.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-11

ARMulator Basics
2.4 Profiler

Profiler is controlled by the debugger. For details see AXD and armsd Debuggers Guide.

In addition to profiling program execution time, Profiler allows you to use the profiling
mechanism to profile events, such as cache misses.

When you turn profiling on from the debugger, you specify a number, n, to control the
frequency of profiling. See Configuring Profiler on page 2-13 for details.

Profiler can profile both C and assembler language functions. To profile assembler
language functions you must mark the functions with FUNCTION and ENDFUNC directives.
See ADS Assembler Guide for details.
2-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.4.1 Configuring Profiler

Profiler has its own section in peripherals.ami, the ARMulator peripherals
configuration file:

{ Default_Profiler=Profiler
;; For example - to profile the PC value when cache misses happen, set:
;Type=Event
;Event=0x00010001
;EventWord=pc
;;Alternatives for Type are
;; Event, Cycle, Microsecond.
;;If type is Event then alternatives for EventWord are
;; Word1,Word2,PC.
}

Every line in this section is a comment, so the ARMulator will perform its default
profiling. The default is to take profiling samples at intervals of 100 microseconds.
Refer to AXD and armsd Debuggers Guide for further information.

If this section is uncommented, data cache misses are profiled. See Events on page 4-29
for more information.

The Type entry controls how the profiling interval is interpreted:

Type=Microsecond instructs Profiler to take samples every n microseconds. This is the
default.

Type=Cycle instructs Profiler to take samples every n instructions, and record
the number of memory cycles since the last sample.

Type=Event instructs Profiler to profiles every relevant events, see Events on
page 4-29. n is ignored.

EventMask=mask,value is also allowed (see Tracer on page 2-5).
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-13

ARMulator Basics
2.5 ARMulator cycle types

In addition to simulating instruction execution on ARM cores, ARMulator counts bus
and processor cycles. You can access these counts as $statistics from your debugger.
This section describes the meaning of the various types of cycles counted. It contains
the following sections:

• Uncached von Neumann cores on page 2-15

• Uncached Harvard cores on page 2-16

• Cached cores with MMUs or PUs and AMBA ASB interfaces on page 2-16

• Cached cores with MMUs or PUs and AMBA AHB interfaces on page 2-17

• Internal cycle types for cached cores on page 2-17

• strongARM1 on page 2-18

• Core-specific verbose statistics on page 2-18.
2-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.5.1 Uncached von Neumann cores

Table 2-1 shows the meanings of cycle types for uncached von Neumann cores.
ARM7TDMI, for example, is an uncached von Neumann core.

Sequential cycles

The CPU requests transfer to or from:

• the same address as the address accessed in the immediately preceding cycle

• an address that is one word after the address accessed in the immediately
preceding cycle

• for Thumb instruction fetches only, an address that is one half-word after the
address accessed in the immediately preceding cycle.

Merged I-S cycles

A memory controller can start speculatively decoding an address during an I-Cycle. If
the I_Cycle is followed by an S_Cycle, the memory controller can be ready to issue it
earlier than otherwise. The timing of this cycle depends on the memory controller
implementation.

Table 2-1 Cycle type meanings for uncached von Neumann cores

Cycle type
SEQ
signal

nMREQ
signal

Meaning

S_Cycles 1 1 Sequential cycles. See Sequential cycles for details.

N_Cycles 0 1 Nonsequential cycles. The CPU requests a transfer to or from an address
unrelated to the address used in the immediately preceding cycle.

I_Cycles 1 0 Internal cycles. The CPU does not require a transfer because it is
performing an internal function.

C_Cycles 0 0 Coprocessor cycles.

Total - - The sum of S_Cycles, N_Cycles, I_Cycles, C_Cycles, and Waits.

IS - - Merged I-S cycle. See Merged I-S cycles for details.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-15

ARMulator Basics
2.5.2 Uncached Harvard cores

Table 2-2 shows the meanings of cycle types for uncached Harvard cores. ARM9TDMI,
for example, is an uncached Harvard core.

2.5.3 Cached cores with MMUs or PUs and AMBA ASB interfaces

Table 2-3 shows the meanings of the bus cycle types for cached cores with AMBA ASB
interfaces. For additional cycle types for these cores, see Internal cycle types for cached
cores on page 2-17.

ARM920T, for example, is a cached core with an MMU. ARM940T is an example of a
cached core with a PU.

There are no N_Cycles for these cores. Nonsequential accesses use an A_Cycle
followed by an S_Cycle. This is the same as a merged I-S cycle.

Table 2-2 Cycle type meanings for uncached Harvard cores

Cycle types Instruction bus Data bus Meaning

Core cycles - - The total number of ticks of the core clock. This includes pipeline
stalls due to interlocks and instructions that take more than one cycle.

ID_Cycles Active Active -

I_Cycles Active Idle -

Idle Cycles Idle Idle -

D_Cycles Idle Active -

Total - - The sum of core cycles, ID_Cycles, I_Cycles, Idle_Cycles,
D_Cycles, and Waits.

Table 2-3 Cycle type meanings for cached cores with AMBA ASB interfaces

Cycle types Meaning

A_Cycles An address is published speculatively. No data is transferred. Listed as I_Cycles in $statistics.

S_Cycles Sequential data is transferred from the current address.
2-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.5.4 Cached cores with MMUs or PUs and AMBA AHB interfaces

Table 2-4 shows the types of transfer that can occur on the Advanced High-speed Bus
(AHB). ARM946E-S, for example, is a cached core with an AHB interface. For
additional cycle types for these cores, see Internal cycle types for cached cores.

2.5.5 Internal cycle types for cached cores

Table 2-5 shows the meaning of internal cycle types for cached cores.

Note
 If you want to count execution time, use external bus cycle counts (see Cached cores
with MMUs or PUs and AMBA ASB interfaces on page 2-16 or Cached cores with
MMUs or PUs and AMBA AHB interfaces). You cannot use F_Cycles to count
execution time, because F_Cycles does not increment for uncached accesses.

Table 2-4 Cycle types on AMBA AHB interfaces

Cycle types Meaning

IDLE The bus master does not want to use the bus. Slaves must respond with a zero wait state OKAY
response on HRESP.

BUSY The bus master is in the middle of a burst, but cannot proceed to the next sequential access.
Slaves must respond with a zero wait state OKAY response on HRESP.

NON-SEQ The start of a burst or single access. The address is unrelated to the address of the previous
access.

SEQ Continuing with a burst. The address is equal to the previous address plus the data size.

Table 2-5 Internal cycle types for cached cores

Cycle types Meaning

F_Cycles Fast clock (FLCK) cycles. These are internal core cycles accessing the cache. F_Cycles is
not incremented for uncached accesses because the core clock switches to the bus clock.

Core Cycles Core cycles are clock ticks to the core. Core Cycles are incremented for each tick, whether
the core is running FCLK (cache accesses) or bus clock (BCLK, non-cache accesses).

True Idle Cycles Idle cycles that are not part of a merged I-S cycle.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-17

ARMulator Basics
2.5.6 strongARM1

Table 2-6 shows the meaning of cycle types reported for strongARM1.

2.5.7 Core-specific verbose statistics

There is a line in the default.ami file:

Counters=False

You can change this to read:

Counters=True

If you do this, additional statistics, such as cache hits and cache misses, are counted by
ARMulator and appear in $statistics. These statistics are core-specific.

Table 2-6 strongARM specific cycle types

Cycle types Meaning

Core_Idle No instruction fetched from instruction cache. No data fetched from data cache.

Core_IOnly Instruction fetched from instruction cache. No data fetched from data cache.

Core_DOnly No instruction fetched from instruction cache. Data fetched from data cache.

Core_ID Instruction fetched from instruction cache. Data fetched from data cache.
2-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.6 Pagetable module

This section contains the following subsections:

• Overview of the pagetable module

• Controlling the MMU or PU and cache on page 2-20

• Controlling registers 2 and 3 on page 2-20

• Memory regions on page 2-21

• Pagetable module and memory management units on page 2-23

• Pagetable module and protection units on page 2-24.

2.6.1 Overview of the pagetable module

The pagetable module enables you to run code on a model of a system with a Memory
Management Unit (MMU) or a Protection Unit (PU), without having to write
initialization code for the MMU or PU.

Note
 This module allows you to debug code, or perform approximate benchmarking. For a
real system. you must write initialization code to set up the MMU or PU. You can debug
your initialization code on the ARMulator by disabling the pagetable module.

On models of ARM architecture v4 and v5 processors with an MMU, the pagetable
module sets up pagetables and initializes the MMU. On processors with a PU, the
pagetable module sets up the PU. To control whether to include the pagetable model,
find the Pagetables tag in the ARMulator configuration file, default.ami, and alter it as
appropriate:

{Pagetables=Default_Pagetables
}

or

{ Pagetables=No_Pagetables
}

The Pagetables section in peripherals.ami controls the contents of the pagetables, and
the configuration of the caches and MMU or PU. To locate the Pagetables section, find
this line:

{Default_Pagetables=Pagetables

For full details of the flags, control register and pagetables described in this section, see
ARM Architecture Reference Manual, or the technical reference manual for the
processor you are simulating.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-19

ARMulator Basics
2.6.2 Controlling the MMU or PU and cache

The first set of flags enables or disables features of the caches and MMU or PU:

MMU=Yes
AlignFaults=No
Cache=Yes
WriteBuffer=Yes
Prog32=Yes
Data32=Yes
LateAbort=Yes
BigEnd=No
BranchPredict=Yes
ICache=Yes
HighExceptionVectors=No
FastBus=No

Each flag corresponds to a bit in the system control register, c1 of CP15.

Some flags only apply to certain processors. For example:

• BranchPredict only applies to the ARM810™

• ICache applies to SA™-110 and ARM940T™ processors, but not ARM720 for
example.

These flags are ignored by other processor models.

The FastBus flag is used by some cores such as ARM940T. Refer the technical reference
manual for your core. If your system uses FastBus Mode, set FastBus=Yes for
benchmarking. If set FastBus=No, ARMulator assumes that the memory clock is slower
than the core clock by a factor of MCCFG. ARMulator does not model Asynchronous
mode.

The MMU flag is used to enable the PU in processors with a PU.

2.6.3 Controlling registers 2 and 3

The following options apply only to processors with an MMU:

PageTableBase=0xA0000000
DAC=0x00000001

They control:

• the translation table base register (system control register 2)

• the domain access control register (system control register 3).

You must align the address in the translation table base register to a 16KB boundary.
2-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.6.4 Memory regions

The rest of the Pagetables configuration section defines a set of memory regions. Each
region has its own set of properties.

By default, peripherals.ami contains a description of a two regions:

{ Region[0]
VirtualBase=0
PhysicalBase=0
Size=4GB
Cacheable=No
Bufferable=No
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}
{ Region[1]
VirtualBase=0
PhysicalBase=0
Size=128Mb
Cacheable=Yes
Bufferable=Yes
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}

You can add more regions following the same general form:

Region[n] names the regions, starting with Region[0]. n is an integer.

VirtualBase applies only to a processor with an MMU. It gives the address of
the base of the region in the virtual address space of the processor.
This address must be aligned to a 1MB boundary. It is mapped to
PhysicalBase by the MMU.

PhysicalBase gives the physical address of the base of the region. On a processor
with an MMU, this address must be aligned to a 1MB boundary.

On a processor with a PU it must be aligned to a boundary that is
a multiple of the size of the region.

Size specifies the size of this region. On a processor with an MMU Size
must be a whole number of megabytes. On a processor with a PU,
Size must be 4KB or a power-of-two multiple of 4KB.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-21

ARMulator Basics
Cacheable specifies whether the region is to be marked as cacheable. If it is,
reads from the region will be cached.

Bufferable specifies whether the region is to be marked as bufferable. If it is,
writes to the region will use the write buffer.

Updateable applies only to the ARM610™ processor. It controls the U bit in the
translation table entry.

Domain applies only to processors with an MMU. It specifies the domain
field of the table entry.

AccessPermissions specifies the access controls to the region. Refer to the processor
technical reference manual for further information.

Translate controls whether accesses to this region cause translation faults.
Setting Translate=No for a region causes an abort to occur
whenever the processor reads from or writes to that region.

You must ensure that you do not define more regions than your target hardware
supports. At least one region must be defined.
2-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.6.5 Pagetable module and memory management units

Processors such as ARM720T™ and ARM920T™ have an MMU.

An MMU uses a set of page tables, stored in memory, to define memory regions. On
reset, the pagetable module writes out a top-level page table to the address specified in
the translation table base register. The table corresponds to the regions you define in the
Pagetables section of peripherals.ami.

For example, the default configuration details, given in Memory regions on page 2-21,
define the following page table:

• The entire address space, 4GB, is defined as a single region. This region is not
cacheable or bufferable. Virtual addresses are mapped directly to the same
physical addresses over the whole address space.

• The first 128MB of the address space is defined as a second region overlapping
the first. This region is cacheable and bufferable. Virtual addresses are mapped
directly to physical addresses.

They also set up the control registers as follows:

• The translation table base register, register 2, is initialized to point to this page
table in memory, at 0xA0000000.

• The domain access control register, register 3, is initialized with value 0x00000001.
This sets the access to the region as client.

• The M, C and W bits of the control register, register 1, are configured to enable
the MMU, cache, and write buffer. If the processor has separate instruction and
data caches, the I bit configures the instruction cache enabled.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-23

ARMulator Basics
2.6.6 Pagetable module and protection units

Processors such as ARM740T™ and ARM940T™ have a PU.

A PU uses a set of protection regions. The base and size of each protection region is
stored in registers in the PU. On reset, the page table module initializes the PU.

For example, the default configuration details given above define a single region,
region 0. This region is marked as read/write, cacheable, and bufferable. It occupies the
whole address range, 0 to 4GB.

ARM740T PU

For an ARM740T, the PU is initialized as follows:

• The P, C, and W bits are set in the configuration register, register 1, to enable the
protection unit, the cache and the write buffer.

• The cacheable register, register 2, is initialized to 1, marking region 0 as
cacheable.

• The write buffer control register, register 3, is initialized to 1, marking region 0 as
bufferable.

• The protection register, register 5, is initialized to 3, marking region 0 as
read/write access. This is configured in the AccessPermissions line.

• The protection region base and size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and marking the region as enabled. The
protection region base and size register for region 0 is part of register 6. Register 6
is actually a set of eight registers, each being the protection region base and size
register for one region. See the technical reference manual for the processor for
further details.

• The protection region base and size register for region 1 is initialized to set the
size of region 0 as 128MB and enabled.
2-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
ARM940T PU

For an ARM940T, the PU is initialized as follows:

• The P, D, W, and I bits are set in the configuration register, register 1, to enable
the PU, the write buffer, the data cache and the instruction cache.

• Both the cacheable registers, register 2, are initialized to 1, marking region 0 as
cacheable for the I and D caches. This is displayed in the debugger as 0x0101,
where:

— the low byte (bits 0..7) represent the data cache cacheable register

— the high byte (bits 8..15) represent the instruction cache cacheable register.

• The write buffer control register, register 3, is initialized to 1, marking region 0 as
bufferable. This applies only to the data cache. The instruction cache is read only.

• Both the protection registers, register 5, are initialized to 3, marking region 0 as
allowing full access for both instruction and data caches. This is displayed in the
debugger as 0x00030003, where:

— the low halfword (bits 0..15) represent the data cache protection register

— the high halfword (bits 16..31) represent the instruction cache protection
register.

The first register value shown is for region 0, the second for region 1 and so on.

• The protection region base and size register for regions 0 and 1 are initialized to
mark the sizes of the regions and mark them as enabled. The protection region
base and size registers for all regions are part of register 6. Register 6 is really a
set of sixteen registers, each being the protection region base and size register for
one region. See the data sheet for the processor for further details.

• Register 7 is a control register. Reading from it is unpredictable. At startup the
debugger shows a value of zero. It is not written to by the page table module.

• The programming lockdown registers, register 9, are both initialized to zero. The
first register value shown in the debugger is for data lockdown control, the second
is for instruction lockdown control.

• The test and debug register, register 15, is initialized to zero. Only bits 2 and 3
have any effect in ARMulator. These control whether the cache replacement
algorithm is random or round-robin.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-25

ARMulator Basics
2.7 Default memory model

The default memory model, flatmem, is a model of a zero-wait state memory system.
The simulated memory size is not fixed. Host memory is allocated in chunks of 64KB
each time a new region of memory is accessed. The memory size is limited by the host
computer, but in theory all 4GB of the address space is available. The default memory
model does not generate aborts.

The default memory model is used if you do not specify a mapfile in AXD.

armsd looks in the current directory for a file called armsd.map. If it cannot find one, the
default memory model is used.

The default memory model routes memory accesses to memory-mapped peripheral
models as appropriate. Routing is based on configuration details you provide in
peripherals.ami, or another .ami file.
2-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.8 Memory modelling with mapfiles

This section contains the following subsections:

• Overview of memory modelling with mapfiles

• Clock frequency

• Selecting the mapfile memory model on page 2-28

• How the mapfile memory model calculates wait states on page 2-28

• Configuring the map memory model on page 2-29.

2.8.1 Overview of memory modelling with mapfiles

mapfile is a memory model which you can configure yourself. You can specify the size,
access width, access type and access speeds of individual memory blocks in the memory
system in a memory map file (see Map files on page 4-59).

ARMulator simulates each memory access as it occurs. It counts wait states according
to the type of memory access.

The debugger internal variables $memstats and $statistics give details of accesses of
each cycle type, regions of memory accessed and time spent accessing each region (see
AXD and armsd Debuggers Guide for information on retrieving details of debugger
internal variables).

2.8.2 Clock frequency

You can configure the clock frequency used by mapfile from the debugger. See AXD and
armsd Debuggers Guide for details.

The clock frequency is used to determine the number of wait states to be added to each
memory access, as well as to calculate time from number of cycles.

If you do not specify a clock speed, a value of 20MHz is used. If you specify a number
without units, the units are Hz. You can specify Hz, kHz, or MHz.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-27

ARMulator Basics
2.8.3 Selecting the mapfile memory model

Under armsd, the map memory model inserts itself automatically, if loaded, as the
memory model to use whenever an armsd.map file exists in the directory where armsd is
started.

Under AXD, the map memory model is automatically inserted whenever a memory map
file is specified. Specify map files using the Memory Maps tab of the ARMulator
configuration dialog.

2.8.4 How the mapfile memory model calculates wait states

The memory map file specifies access times in nanoseconds for
nonsequential/sequential reads/writes to various regions of memory. By inserting wait
states, the map memory model ensures that every access from the ARM processor takes
at least that long.

The number of wait states inserted is the least number required to take the total access
time over the number of nanoseconds specified in the memory map file. Consider this
when designing your system.

For example, with a clock speed of 33MHz (a period of 30ns), an access specified to
take 70ns in a memory map file results in two wait states being inserted, to lengthen the
access to 90ns.

If the access time is 60ns (only 14% faster) the model inserts only one wait state (33%
quicker).

A mismatch between processor clock-speed and memory map file can sometimes lead
to faster processor speeds having worse performance. For example, a 100MHz
processor (10ns period) takes five wait states to access 60ns memory (a total access time
of 60ns). At 110MHz, the map memory model must insert six wait states (a total access
time of 63ns). So the 100MHz-processor system is faster than the 110MHz processor.
(This does not apply to cached processors, where the 110MHz processor would be
faster.)

Note
 For accurate simulation of the real hardware, access times specified in the memory map
file must include propagation delays and memory controller decode time as well as the
access time of the memory devices. For example, for 70ns RAM, if there is a 10ns
propagation delay, configure the map file as 80ns.
2-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.8.5 Configuring the map memory model

You can configure the map memory model to model several different types of memory
controller, by editing its entry in the peripherals.ami file:

{ Default_Mapfile=Mapfile
AMBABusCounts=False
;SpotISCyles=True|False
SpotISCyles=True
;ISTiming=Late|Early|Speculative
ISTiming=Late
}

Counting AMBA™ decode cycles

You can configure the model to insert an extra decode cycle for every nonsequential
access from the processor. This models the decode cycle seen on some AMBA bus
systems. Enable this by setting AMBABusCounts=True in peripherals.ami.

Merged I-S cycles

All ARM processors, particularly cached processors, can perform a nonsequential
access as a pair of idle and sequential cycles, known as merged I-S cycles. By default,
the model treats these cycles as a nonsequential access, inserting wait states on the
S-cycle to lengthen it for the nonsequential access.

You can disable this by setting SpotISCycles=False in peripherals.ami. However, this is
likely to result in exaggerated performance figures, particularly when modeling cached
ARM processors.

The model can simulate merged I-S cycles using one of three strategies:

Speculative This models a system where the memory controller hardware
speculatively decodes all addresses on idle cycles. The controller can use
both the I- and S-cycles to perform the access. This results in one fewer
wait state.

Early This starts the decode when the ARM declares that the next cycle is going
to be an S-cycle, that is, half-way through the I-cycle. This can sometimes
result in one fewer wait states. (Whether or not there are fewer wait states
depends on the cycle time and the nonsequential access time for that
region of memory.)

This is the default setting. You can change this by setting ISTiming=Spec
or ISTiming=Late in peripherals.ami.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-29

ARMulator Basics
Late This does not start the decode until the S-cycle. In effect all S-cycles that
follow an I-cycle are treated as if they are N-cycles.

See ARMulator cycle types on page 2-14 for details of merged I-S cycles.
2-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.9 Semihosting

Semihosting provides code running on an ARM target use of facilities on a host
computer that is running an ARM debugger. Examples of such facilities include the
keyboard input, screen output, and disk I/O.

See Chapter 5 Semihosting for further details.

2.9.1 Semihosting configuration

The semihosting SWI handler configuration is controlled by a section in
peripherals.ami. It has the following items:

{Default_Semihost=Semihost
; Demon is only needed for validation.
DEMON=False
ANGEL=TRUE
AngelSWIARM=0x123456
AngelSWIThumb=0xab
; And the default memory map
HeapBase=0x00000000
HeapLimit=0x07000000
StackBase=0x08000000
StackLimit=0x07000000}
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-31

ARMulator Basics
2.10 Peripheral models

ARMulator includes several peripheral models. This section gives basic user
information about them.

This section contains the following subsections:

• Configuring ARMulator to use the peripheral models

• Interrupt controller on page 2-33

• Timer on page 2-34

• Watchdog on page 2-35

• Stack tracker on page 2-36

• Tube on page 2-36.

2.10.1 Configuring ARMulator to use the peripheral models

Enable or disable each peripheral model by changing the relevant entry in your copy of
the default.ami file, for example:

{ WatchDog=No_watchdog
}

can be changed to:

{ Watchdog=Default_WatchDog
}

Other peripheral models are controlled in the same way, using the No_ and Default_
prefixes to the peripheral names.

2.10.2 Configuring details of the peripherals

Configuration details for the peripheral models are in peripherals.ami. See Configuring
ARMulator on page 2-4 for information about how to alter .ami files.
2-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.10.3 Interrupt controller

The interrupt controller is an implementation of the reference interrupt controller (see
Interrupt controller on page 4-75).

The configuration of the interrupt controller model is controlled by a section in
peripherals.ami. It has the following items:

{ Default_Intctrl=Intctrl
Range:Base=0x0a000000
WAITS=0
}

Range:Base specifies the area in memory into which the interrupt controller registers are
mapped. For details of the interrupt controller registers, see Interrupt controller on
page 4-75.

WAITS specifies the number of wait states that accessing the interrupt controller imposes
on the processor. The maximum is 30.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-33

ARMulator Basics
2.10.4 Timer

The timer is an implementation of the reference timer. It provides two counter-timers.
For details see Timer on page 4-77.

The configuration of the timer model is controlled by a section in peripherals.ami. It
has the following items:

{Default_Timer=Timer
Range:Base=0x0a800000
;Frequency of clock to controller.
CLK=20000000
;; Interrupt controller source bits - 4 and 5 as standard
IntOne=4
IntTwo=5WAITS=0
}

Range:Base specifies the area in memory into which the timer registers are mapped. For
details of the interrupt controller registers, see Timer on page 4-77.

CLK is used to specify the clock rate of the peripheral. This is usually the same as the
processor clock rate.

IntOne specifies the interrupt line connection to the interrupt controller for timer 1
interrupts. IntTwo specifies the interrupt line connection to the interrupt controller for
timer 2 interrupts.

WAITS specifies the number of wait states that accessing the timer imposes on the
processor. The maximum is 30.
2-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Basics
2.10.5 Watchdog

Use Watchdog to prevent a failure in your program locking up your system. If your
program fails to access Watchdog before a predetermined time, Watchdog halts
ARMulator and returns control to the debugger.

Note
 This is a generic model of a watchdog timer. It is supplied to help users model their
system environment. It does not model any actual hardware supplied by ARM.

The Watchdog configuration is controlled by a section in peripherals.ami. It has the
following items:

{Default_WatchDog=WatchDog
Range:Base=0xb0000000
KeyValue=0x12345678
WatchPeriod=0x80000
IRQPeriod=3000
IntNumber=16
StartOnReset=True
RunAfterBark=TrueWAITS=0
}

Range:Base specifies the area in memory into which the watchdog registers are mapped.

This is a two-timer watchdog.

If StartOnReset is True, the first timer starts on reset. If StartOnReset is False, the first
timer starts only when your program writes the configured key value to the KeyValue
register. This is located at the address given in the Range:Base line (0xB0000000).

The first timer generates an IRQ after WatchPeriod memory cycles, and starts the second
timer. The second timer times out after IRQPeriod memory cycles, if your program has
not written the configured key value to the KeyValue register. Configure IRQPeriod to a
suitable value to allow your program to react to the IRQ.

If RunAfterBark is True, Watchdog halts ARMulator if the second timer times out. You
can continue to execute, or debug.

If RunAfterBark is False, Watchdog halts ARMulator and returns control to the
debugger.

IntNumber specifies the interrupt line number that Watchdog is attached to.

WAITS specifies the number of wait states that accessing the watchdog imposes on the
processor. The maximum is 30.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-35

ARMulator Basics
2.10.6 Stack tracker

The stack tracker examines the contents of the stack pointer (r13) after each instruction.
It keeps a record of the lowest value and from this it can work out the maximum size of
the stack. ARMulator runs more slowly with stack tracking enabled.

The StackUse model continually monitors the stack pointer andreports the amount of
stack used in $statistics. It mustbe configured with the location of the stack.

The stack tracker is disabled by default. To enable the stack tracker, edit your copy of
default.ami:

1. Find the line:

{ StackUse=No_StackUse

2. Change it to:

{ StackUse=Default_StackUse

Before initialization the stack pointer can contain values outside the stack limits. You
must configure the stack limits so that the stack tracker can ignore these
pre-initialization values. This configuration is in peripherals.ami:

{ Default_StackUse=StackUse
StackBase=0x80000000
StackLimit=0x70000000
}

StackBase is the address of the top of the stack. StackLimit is a lower limit for the stack.
Changing these values does not reposition the stack in memory. To reposition the stack,
you must reconfigure the debug monitor model.

2.10.7 Tube

The tube is a memory-mapped register. If you write a printable character to it, the
character appears on the console. It allows you to check that writes are taking place to
a specified location in memory.

You can change the address at which the Tube is mapped. This is controlled by an entry
in peripherals.ami:

{Default_Tube=Tube
Range:Base=0x0d800020
}

This is the default address.
2-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Chapter 3
Writing ARMulator models

This chapter is intended to assist you in writing your own models to add to ARMulator.
It contains the following sections:

• The ARMulator extension kit on page 3-2

• Writing a new peripheral model on page 3-5

• Building a new model on page 3-7

• Configuring ARMulator to use a new model on page 3-8

• Configuring ARMulator to disable a model on page 3-10.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-1

Writing ARMulator models
3.1 The ARMulator extension kit

You can add extra models to ARMulator without altering the existing models. Each
model is self-contained, and communicates with ARMulator through defined interfaces.
The definition of these interfaces is in Chapter 4 ARMulator Reference.

3.1.1 Location of files

The ARMulator extension kit contains the source code of some models. You can make
copes of these models, and modify the copies. The ARMulator extension kit is only
installed if you install a full or custom installation of ADS.

Depending on your system, the source code of the models for you to copy is in one of:

• install_directory\ARMulate\ARMulext

• install_directory/solaris/Source/armulext

• install_directory/linux/Source/armulext

• install_directory/hpux/Source/armulext

There are also header files in:

• install_directory\ARMulate\ARMulif

• install_directory/solaris/Source/armulif

• install_directory/linux/Source/armulif

• install_directory/hpux/Source/armulif

Makefiles are supplied in:

• install_directory\ARMulate\ARMulext\model\intelrel

• install_directory/solaris/Source/armulext/model/gccsolrs

• install_directory/linux/Source/armulext/model/linux86

• install_directory/hpux/Source/armulext/model/cchppa

Use these files as examples to help you write your own models. To help you choose
suitable models to examine, this chapter includes a list of them with brief descriptions
of what they do (see Supplied models on page 3-3).
3-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Writing ARMulator models
3.1.2 Supplied models

ARMulator is supplied with source code for the following groups of models:

• Basic models

• Peripheral models on page 3-4

Basic models

tracer.c The tracer module can trace instruction execution and events from within
ARMulator (see Tracer on page 4-57). You can link your own tracing
code onto the tracer module.

profiler.c The profiler module provides the profiling function (see Profiler on
page 2-12). This includes basic instruction sampling and more advanced
use, such as profiling cache misses. It does this by providing an
UnkRDIInfoHandler that handles the profiling requests from the debugger
(see Unknown RDI information handler on page 4-35).

pagetab.c On reset, this module sets up cache, PU or MMU and associated
pagetables inside ARMulator (see Pagetable module on page 2-19).

stackuse.c If enabled this model tracks the stack size. Stack usage is reported in the
ARMulator memory statistics. You can set the stack upper and lower
bounds in the peripherals.ami file (see Stack tracker on page 2-36).

nothing.c This model does nothing. You can use this in the peripherals.ami file to
disable models (see Configuring ARMulator to disable a model on
page 3-10).

semihost.c This model provides the semihosting SWIs described in Chapter 5
Semihosting.

dcc.c This is a model of a Debug Communications Channel (DCC).

mapfile.c This model allows you to specify the characteristics of a memory system.
See Map files on page 4-59 for further information.

flatmem.c flatmem models a zero-wait state memory system. See Default memory
model on page 2-26 for further information.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-3

Writing ARMulator models
Peripheral models

intc.c See Interrupt controller on page 2-33. intc is a model of the
interrupt controller peripheral described in the Reference
Peripherals Specification (RPS).

timer.c See Timer on page 2-34. timer is a model of the RPS timer
peripheral. Two timers are provided. timer must be used in
conjunction with an interrupt controller, but not necessarily intc.

millisec.c A simple millisecond timer.

watchdog.c Watchdog. See Watchdog on page 2-35. watchdog is a generic
watchdog model. It does not model any specific watchdog
hardware, but provides generic watchdog functions.

tube.c Tube. See Tube on page 2-36. tube is a simple debugging aid. It
allows you to check that writes are taking place to a specified
location in memory.
3-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Writing ARMulator models
3.2 Writing a new peripheral model

This section contains the following subsections:

• Using a sample model as a template

• Return values

• Initialization, finalization, and state macros on page 3-6

• Registering your model on page 3-6.

3.2.1 Using a sample model as a template

To write a new model, the best procedure is to copy one of the supplied models and then
edit the copy. To do this:

1. Select which model is closest to the model you want to write. This might be, for
example, Timer.

2. Copy the source file, in this case timer.c, with a new name such as mymodel.c.

3. Copy the make subdirectory, in this case timer.b, with a corresponding new name,
in this case mymodel.b.

4. Find the Makefile for your model (see Location of files on page 3-2).

Load Makefile into a text editor and change all instances of timer to mymodel.

You can now edit MyModel.

3.2.2 Return values

A model must return one of the following states for memory accesses:

PERIP_OK If the model is able to service the request.

PERIP_BUSY If a memory access requires wait-states. A model must not return
this state to a debugger access.

PERIP_DABORT If a peripheral asserts the DABORT signal on the bus.

PERIP_NODECODE If the model has been called with an address which belongs to it,
but which has no meaning to it. The memory model handles the
call as a memory access.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-5

Writing ARMulator models
3.2.3 Initialization, finalization, and state macros

To help you to write new ARMulator models, the following six macros are provided in
minperip.h:

• BEGIN_INIT()

• END_INIT()

• BEGIN_EXIT()

• END_EXIT()

• BEGIN_STATE_DECL()

• END_STATE_DECL().

Use the following to define an initialization function for your model:

BEGIN_INIT(your_model)
{
 /*
 * (your initialization code here)
 */
}
END_INIT(your_model)

Use the following to define a finalization function for your model:

BEGIN_EXIT(your_model)
{
 /*
 * (your finalization code here)
 */
}
END_EXIT(your_model)

The BEGIN_INIT() macro defines a structure to hold any private data used by your model,
and the END_EXIT() macro frees it. Declare the data structure using:

BEGIN_STATE_DECL(your_model)
 /*
 * (your private data here)
 */
END_STATE_DECL(your_model)

3.2.4 Registering your model

Your model must register itself by calling registerPeripFunc(). This enables
ARMulator to call your model with accesses to memory locations that belong to your
model. See ARMul_BusRegisterPeripFunc on page 4-41.
3-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Writing ARMulator models
3.3 Building a new model

To build your new model:

1. Change your current directory to:

mymodel.b\targetwhere target is one of:

• intelrel

• linux86

• gccsolaris

• cchppa.

2. Build the model using the make utility installed on your system. This might be
one of:

• nmake for Windows

• make for Linux, Solaris or HPUX.

3. Depending on your system:

• On Windows, mymodel.dll appears in:

install_directory\ARMulate\armulext\mymodel.b\intelrel

Move mymodel.dll to:

install_directory\Bin

• On Linux or Solaris, mymodel.so appears in:

install_directory/Source/armulext/mymodel.b/target

Move mymodel.so to:

install_directory/target/bin

• On HPUX, mymodel.sl appears in:

install_directory/Source/armulext/mymodel.b/cchppa

Move mymodel.sl to:

install_directory/cchppa/bin

ARMulator expects to find models in install_directory\bin or
install_directory/os/bin, where os is one of:

• solaris

• linux

• hpux.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-7

Writing ARMulator models
3.4 Configuring ARMulator to use a new model

ARMulator determines which models to use by reading the .ami and .dsc configuration
files. See ARMulator configuration files on page 4-63.

Before a new model can be used by ARMulator, you must add a .dsc file for your model,
and references to it must be added to the configuration files default.ami and
peripherals.ami.

The procedures are described in the following subsections:

• Adding a .dsc file

• Editing default.ami and peripherals.ami on page 3-9.

3.4.1 Adding a .dsc file

Create a file called MyModel.dsc and place it in install_directory\Bin. It must contain
the following:

;; ARMulator configuration file type 3
{ Peripherals
 {MyModel
 MODEL_DLLfilename=MyModel
 }
 {
 No_MyModel=Nothing
 }
}

where the name of your model is one of:

• MyModel.dll

• MyModel.so

• MyModel.sl

Nothing is a predefined model that does nothing. The No_MyModel=Nothing line allows the
use of No_MyModel in a .ami file. This allows a user to configure ARMulator to exclude
your model (see Configuring ARMulator to disable a model on page 3-10).

You can include other configuration details in your MyModel.dsc file if required. See the
supplied .dsc files in install_directory\Bin for examples.
3-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Writing ARMulator models
3.4.2 Editing default.ami and peripherals.ami

This description assumes that your model was based on Timer:

1. Load the default.ami file into a text editor, and find the following lines:

{Timer=Default_Timer
}

2. Add the reference to your model:

{Timer=Default_Timer
}
{MyModel=Default_MyModel
}

3. Save your edited default.ami file.

4. Load the peripherals.ami file into a text editor, and find the Timer section:

{ Default_Timer=Timer
.
.
.
}

5. Using this as an example, add a configuration section for your model. Depending
on how much your model differs from Timer, it may be easiest to edit a copy of
the Timer section.

6. Save your edited peripherals.ami file.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-9

Writing ARMulator models
3.5 Configuring ARMulator to disable a model

You can disable a model by changing its entry in peripherals.ami. For example, to
disable the Tube model:

1. Find the following lines in peripherals.ami:

{Default_Tube=Tube
Range:Base=0x0d800020
}

2. Change them to read:

{Default_Tube=No_Tube
Range:Base=0x0d800020
}

This uses the nothing.c model to override the tube.c model. nothing ignores any
configuration details such as Range:Base.
3-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Chapter 4
ARMulator Reference

This chapter gives reference information about ARMulator. It contains the following
sections:

• ARMulator models on page 4-2

• Communicating with the core on page 4-3

• Basic model interface on page 4-12

• Coprocessor model interface on page 4-15

• Exceptions on page 4-26

• Events on page 4-29

• Memory access functions on page 4-38

• Event scheduling functions on page 4-40

• General purpose functions on page 4-41

• Accessing the debugger on page 4-52

• Tracer on page 4-57

• Map files on page 4-59

• ARMulator configuration files on page 4-63

• ToolConf on page 4-68

• Reference peripherals on page 4-75.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-1

ARMulator Reference
4.1 ARMulator models

ARMulator comprises a collection of models that simulate ARM-based hardware. They
enable you to benchmark, develop, and debug software before your hardware is
available.

4.1.1 Configuring models through ToolConf

ARMulator models are configured through ToolConf. ToolConf is a database of tags and
values that ARMulator reads from configuration files (.dsc and .ami files) during
initialization (see ToolConf on page 4-68).

A number of functions are provided for looking up values from this database. The full
set of functions is defined in install_directory\ARMulate\clx\toolconf.h. All the
functions take an opaque handle called a toolconf.
4-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.2 Communicating with the core

During initialization, all the models receive a pointer to an mdesc structure of type
RDI_ModuleDesc *. They copy this structure into their own state as a field called coredesc.
This is passed as the first parameter to most ARMulif (ARMulator interface) functions.
ARMulator exports these functions to enable models to access the ARMulator state
through this handle.

The following functions provide read and write access to ARM registers:

• ARMulif_GetReg on page 4-5

• ARMulif_SetReg on page 4-5

• ARMulif_GetPC and ARMulif_GetR15 on page 4-6

• ARMulif_SetPC and ARMulif_SetR15 on page 4-6

• ARMulif_GetCPSR on page 4-7

• ARMulif_SetCPSR on page 4-7

• ARMulif_GetSPSR on page 4-8

• ARMulif_SetSPSR on page 4-8.

A model must pass a pointer to their coredesc structure when calling a function in
ARMulif that calls the core.

The following functions provide convenient access to specific bits or fields in the CPSR:

• ARMulif_ThumbBit on page 4-9

• ARMulif_GetMode on page 4-9.

The following functions call the read and write methods for a coprocessor:

• ARMulif_CPRead on page 4-10

• ARMulif_CPWrite on page 4-11.

Note
 It is not appropriate to access some parts of the state from certain parts of a model. For
example, you must not set the contents of an ARM register from a memory access
function, because the memory access function can be called during simulation of an
instruction. In contrast, it is sometimes necessary to set the contents of ARM registers
from a SWI handler function.

4.2.1 Mode numbers

A number of the following functions take an unsigned mode parameter to specify the
processor mode. The mode numbers are defined in armdefs.h, and are listed here:

• USER32MODE
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-3

ARMulator Reference
• FIQ32MODE

• IRQ32MODE

• SVC32MODE

• ABORT32MODE

• UNDEF32MODE

• SYSTEM32MODE

In addition, the special value CURRENTMODE is defined. This enables ARMulif_GetReg(), for
example, to return registers of the current mode.
4-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.2.2 ARMulif_GetReg

This function reads a register for a specified processor mode.

Syntax

ARMword ARMulif_GetReg(RDI_ModuleDesc *mdesc, ARMword mode, unsigned reg)

where:

mdesc is the handle for the core.

mode is the processor mode. Values for mode are defined in armdefs.h (see
Mode numbers on page 4-3).

reg is the register to read. Valid values are 0 to 14 for registers r0 to r14, PC,
or CPSR.

Return

The function returns the value in the given register for the specified mode.

4.2.3 ARMulif_SetReg

This function writes a register for a specified processor mode.

Syntax

void ARMulif_SetReg(RDI_ModuleDesc *mdesc, ARMword mode,
unsigned reg, ARMword value)

where:

mdesc is the handle for the core.

mode is the processor mode. Mode numbers are defined in armdefs.h (see Mode
numbers on page 4-3).

reg is the register to write. Valid values are 0 to 14 for registers r0 to r14, PC,
or CPSR.

value is the value to be written to register reg for the specified processor mode.

Usage

You can use this function to write to any of the general purpose registers r0 to r14, the
PC, or CPSR.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-5

ARMulator Reference
4.2.4 ARMulif_GetPC and ARMulif_GetR15

This function reads the pc. ARMulif_GetPC and ARMulif_GetR15 are synonyms.

Syntax

ARMword ARMulif_GetPC(RDI_ModuleDesc *mdesc)

ARMword ARMulif_GetR15(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

This function returns the value of the pc.

4.2.5 ARMulif_SetPC and ARMulif_SetR15

This function writes a value to the pc. ARMulif_SetPC and ARMulif_SetR15 are synonyms.

Syntax

void ARMulif_SetPC(RDI_ModuleDesc *mdesc, ARMword value)

void ARMulif_SetR15(RDI_ModuleDesc *mdesc, ARMword value)

where:

mdesc is the handle for the core.

value is the value to be written to the pc.
4-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.2.6 ARMulif_GetCPSR

This function reads the CPSR.

Syntax

ARMword ARMulif_GetCPSR(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

The function returns the value of the CPSR.

4.2.7 ARMulif_SetCPSR

This function writes a value to the CPSR.

Syntax

void ARMulif_SetCPSR(RDI_ModuleDesc *mdesc, ARMword value)

where:

mdesc is the handle for the core.

value is the value to be written to the CPSR.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-7

ARMulator Reference
4.2.8 ARMulif_GetSPSR

This function returns the current contents of the SPSR for a specified processor mode.

Syntax

ARMword ARMulif_GetSPSR(RDI_ModuleDesc *mdesc, ARMword mode)

where:

mdesc is the handle for the core.

mode is the processor mode for the SPSR you want to read.

User mode

ARMulif_GetSPSR returns the current contents of the CPSR if mode is USER32MODE.

4.2.9 ARMulif_SetSPSR

This function writes a value to the SPSR for a specified processor mode.

Syntax

void ARMulif_SetSPSR(RDI_ModuleDesc *mdesc, ARMword mode, ARMword value)

where:

mdesc is the handle for the core.

mode is the processor mode for the SPSR you want to write.

value is the value to be written to the SPSR for the specifiedmode.

User mode

ARMulif_SetSPSR does nothing if mode is USER32MODE.
4-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.2.10 ARMulif_ThumbBit

This function returns 1 if the core is in Thumb state, 0 if the core is in ARM state.

Syntax

unsigned ARMulif_ThumbBit(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

4.2.11 ARMulif_GetMode

This function reads the current processor mode.

Syntax

unsigned ARMulif_GetMode(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-9

ARMulator Reference
4.2.12 ARMulif_CPRead

This function calls the read method for a coprocessor.

Syntax

int ARMulif_CPRead(RDI_ModuleDesc *mdesc, unsigned cpnum,
unsigned reg, ARMword *data)

where:

mdesc is the handle for the core.

cpnum is the number of the coprocessor.

reg is the number of the coprocessor register to read from, as indexed by CRn
in an LDC or STC instruction.

data is a pointer for the data read from the coprocessor register. The number
of words transferred, and the order of the words, is coprocessor
dependent.

Return

The function must return:

• ARMul_DONE, if the register can be read

• ARMul_CANT, if the register cannot be read.
4-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.2.13 ARMulif_CPWrite

This function calls the write method for a coprocessor. It also intercepts calls to write
the FPE emulated registers.

Syntax

int ARMulif_CPWrite(RDI_ModuleDesc *mdesc, unsigned cpnum,
unsigned reg, ARMword *data)

where:

mdesc is the handle for the core.

cpnum is the number of the coprocessor.

reg is the number of the coprocessor register to read from, as indexed by CRn
in an LDC or STC instruction.

data is a pointer for the data read from the coprocessor register. The number
of words transferred, and the order of the words, is coprocessor
dependent.

Return

The function must return:

• ARMul_DONE, if the register can be written

• ARMul_CANT, if the register cannot be written.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-11

ARMulator Reference
4.3 Basic model interface

This section has the following subsections:

• Declaration of a private state data structure on page 4-13

• Model initialization on page 4-14

• Model finalization on page 4-14.

For each model, you must write an initialization function. For additional functionality,
you must register callbacks.

Macros are provided in minperip.h for the following abstractions:

• Declaration of a private state data structure on page 4-13

• Model initialization on page 4-14

• Model finalization on page 4-14.

See also Initialization, finalization, and state macros on page 3-6.
4-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.3.1 Declaration of a private state data structure

Each model must store its state in a private data structure. Initialization and finalization
macros are provided by ARMulif. These macros require the use of certain fields in this
data structure.

To declare a state data structure, use the BEGIN_STATE_DECL and END_STATE_DECL macros
as follows:

 /*
 * Create a YourModelState data structure
 */
 BEGIN_STATE_DECL(YourModel)
 /*
 * Your private data here
 */
 END_STATE_DECL(YourModel)

This declares a structure:

 typedef struct YourModelState

This structure contains:

• predefined data fields:

— toolconf config

— const struct RDI_HostosInterface *hostif

— RDI_ModuleDesc coredesc;

— RDI_ModuleDesc agentdesc

• the private data you put between the macros.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-13

ARMulator Reference
4.3.2 Model initialization

The BEGIN_INIT() and END_INIT() macros form the start and finish of the initialization
function for the model. The initialization function is called:

• during ARMulator initialization

• whenever a new image is downloaded from the debugger.

The following local variables are provided in the initialization function:

• bool coldboot

TRUE if ARMulator is initializing, FALSE ifa new image is being downloaded from
the debugger.

• YourModelState *state

A pointer to the private state data structure. Memory for this is allocated and
cleared by the initialization macro, and the predefined data fields are initialized.

In the initialization function, your model must:

• initialize any private data

• install any callbacks.

4.3.3 Model finalization

The BEGIN_EXIT() and END_EXIT() macros form the start and finish of the finalization
function for the model. The finalization function is called when ARMulator is closing
down.

The following local variable is provided in the finalization function:

YourModelState *state

Your model must de-install any callbacks in the finalization function.

The END_EXIT() macro frees memory allocated for state.
4-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4 Coprocessor model interface

The coprocessor model interface is defined in armul_copro.h. The basic coprocessor
functions are:

• ARMulif_InstallCoprocessorV5 on page 4-16

• LDC on page 4-17

• STC on page 4-18

• MRC on page 4-19

• MCR on page 4-20

• MRC on page 4-19

• MCR on page 4-20

• MCRR on page 4-21

• MRRC on page 4-22

• CDP on page 4-23.

In addition, two functions are provided that enable a debugger to read and write
coprocessor registers through the Remote Debug Interface (RDI). They are:

• read on page 4-24

• write on page 4-25.

If a coprocessor does not handle one or more of these functions, it must leave their
entries in the ARMul_CPInterface structure unchanged.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-15

ARMulator Reference
4.4.1 ARMulif_InstallCoprocessorV5

Use this function to register a coprocessor handler.

This function is prototyped in armul_copro.h.

Syntax

unsigned ARMulif_InstallCoprocessorV5(RDI_ModuleDesc *mdesc, unsigned number,
struct ARMul_CoprocessorV5 *cpv5, void *handle)

where:

mdesc is the handle for the core.

number is the coprocessor number.

cpv5 is a pointer to the coprocessor interface structure.

handle is a pointer to private data to pass to each coprocessorfunction.

Return

This function returns either:

• ARMulErr_NoError, if there is no error

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error must be passed
through Hostif_RaiseError() for formatting (see Hostif_RaiseError on page 4-45).
4-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4.2 LDC

This function is called when an LDC instruction is recognized for a coprocessor.

Syntax

unsigned LDC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of coprocessor access. This can be oneof:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

ARMul_CP_TRANSFER indicates that the ARM is about to perform the load.

ARMul_CP_DATA indicates that valid data is included in data.

instr the current opcode.

data is a pointer to the data being loaded to the coprocessor from memory.

Return

The function must return one of:

• ARMul_CP_INC, to request more data from the core (only in response to
ARMul_CP_FIRST, ARMul_CP_BUSY, or ARMul_CP_DATA)

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_CP_DATA)

• ARMul_CP_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_CP_FIRST or ARMul_CP_BUSY)

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_CP_FIRST or
ARMul_CP_BUSY).

• ARMUL_CP_LAST, to indicate that the next load is the last in the sequence. This is only
needed for ARM9.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-17

ARMulator Reference
4.4.3 STC

This function is called when an STC instruction is recognized for a coprocessor.

Syntax

unsigned STC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later. In that case the type
will be reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates that the coprocessor must return valid data
in *data.

instr is the current opcode.

data is a pointer to the location of the data being saved to memory.

Return

The function must return one of:

• ARMul_CP_INC, to indicate that there is more data to transfer to the core (only in
response to ARMul_CP_FIRST, ARMul_CP_BUSY, or ARMul_CP_DATA)

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_CP_DATA)

• ARMul_CP_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_CP_FIRST or ARMul_CP_BUSY)

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_CP_FIRST or
ARMul_CP_BUSY).

• ARMUL_CP_LAST, to indicate that the next save is the last in the sequence. This is
only needed for ARM9.
4-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4.4 MRC

This function is called when an MRC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function must
return ARMul_CP_CANT.

Syntax

unsigned MRC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates that valid data is included in *data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete, and valid
data has been returned to *data.

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-19

ARMulator Reference
4.4.5 MCR

This function is called when an MCR instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function must
return ARMul_CP_CANT.

Syntax

unsigned MCR(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
4-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4.6 MCRR

This function is called when an MCRR instruction is recognized for a coprocessor.

The function must return ARMul_CP_CANT if:

• the requested coprocessor register does not exist

• the requested coprocessor register cannot be written to

• the coprocessor is ARM architecture v4T or earlier.

Syntax

unsigned MCRR(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-21

ARMulator Reference
4.4.7 MRRC

This function is called when an MRRC instruction is recognized for a coprocessor.

The function must return ARMul_CP_CANT if:

• the requested coprocessor register does not exist

• the requested coprocessor register cannot be read from

• the coprocessor is ARM architecture v4T or earlier.

Syntax

unsigned MRRC(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

ARMul_CP_DATA indicates valid data is included in data.

instr is the current opcode.

data is a pointer to the data being transferred from the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.
4-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4.8 CDP

This function is called when a CDP instruction is recognized for a coprocessor. If the
requested coprocessor operation is not supported, the function must return
ARMul_CP_CANT.

Syntax

unsigned CDP(void *handle, int type, ARMword instr, ARMword *data)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

type is the type of the coprocessor access. This canbe one of:

ARMul_CP_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_CP_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_CP_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor must
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_CP_FIRST.

instr is the current opcode.

data is not used.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_BUSY, to indicate that the coprocessor is busy

• ARMul_CP_CANT, to indicate that the instruction is not supported.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-23

ARMulator Reference
4.4.9 read

This function enables a debugger to read a coprocessor register via RDI. The function
reads the coprocessor register numbered reg and transfers its value to the location
addressed by value.

If the requested coprocessor register does not exist, or the register cannot be read, the
function must return ARMul_CP_CANT.

Syntax

unsigned read(void *handle, int reg, ARMword instr, ARMword *value)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

reg is the register number of the coprocessor registerto be read.

instr is not used.

value is a pointer to the location of the data to be read from the coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_CANT, to indicate that the register is not supported.

Usage

This function is called by the debugger via RDI.
4-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.4.10 write

This function enables a debugger to write to a coprocessor register via RDI.

The function writes the value at the location addressed by value to the coprocessor
register numbered reg.

If the requested coprocessor does not exist or the register cannot be written, the function
must return ARMul_CP_CANT.

Syntax

unsigned write(void *handle, int reg, ARMword instr, ARMword *value)

where:

handle is the handle from ARMulif_InstallCoprocessorV5.

reg is the register number of the coprocessor registerthat is to be written.

instr is not used.

value is a pointer to the location of the data that is to be written to the
coprocessor.

Return

The function must return one of:

• ARMul_CP_DONE, to indicate that the coprocessor operation is complete

• ARMul_CP_CANT, to indicate that the register is not supported.

Usage

This function is called by the debugger via RDI.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-25

ARMulator Reference
4.5 Exceptions

The following functions enable a model to set or clear signals:

• ARMulif_SetSignal

• ARMulif_GetProperty on page 4-27.

4.5.1 ARMulif_SetSignal

The ARMulif_SetSignal function is used to set the state of signals or properties.

Syntax

void ARMulif_SetSignal(RDI_ModuleDesc *mdesc, ARMSignalType sigType,
SignalState sigState)

where:

mdesc is the handle for the core.

sigtype is the signal to be set. sigtype can be any one of:

RDIPropID_ARMSignal_IRQ

Assert an interrupt.

RDIPropID_ARMSignal_FIQ

Assert a fast interrupt.

RDIPropID_ARMSignal_RESET

Assert the reset signal. The core will reset, and will not restart
until the reset signal is de-asserted.

RDIPropID_ARMSignal_BigEnd

Set this signal for big-endian operation, or clear it for
little-endian operation.

RDIPropID_ARMSignal_HighException

Set the base location of exception vectors.

RDIPropID_ARMSignal_BranchPredictEnable

(ARM10 only)

RDIPropID_ARMSignal_LDRSetTBITDisable

(ARM10 only)

RDIPropID_ARMSignal_WaitForInterrupt

(ARM10 and XScale only)

RDIPropID_ARMSignal_DebugState

Enter or exit debug state.
4-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
RDIPropID_ARMulProp_CycleDelta

Wait the core for a specified number of cycles.

RDIPropID_ARMulProp_Accuracy

Select the modelling accuracy, as a percentage in the range 0%
to 100%. Currently this only affects ARM10 models. A setting
less than 50% turns of interlock modelling. ARMulator runs
faster with interlock modelling turned off, but cycling count
accuracy is reduced.

sigstate For signals, you must give sigstate one of the following values:

FALSE Signal off

TRUE Signal on.

For properties, you must give sigstate an integer value.

Note
 For information about signalling interrupts when using an interrupt controller see
Interrupt controller on page 4-75.

4.5.2 ARMulif_GetProperty

The ARMulif_GetProperty function is used to read the values of properties and signals.

Syntax

void ARMulif_GetProperty(RDI_ModuleDesc *mdesc, ARMSignalType id,
ARMword *value)

where:

mdesc is the handle for the core.

id is the signal or property to read. id can be any one of:

RDIPropID_ARMSignal_IRQ

TRUE if the interrupt signal is asserted.

RDIPropID_ARMSignal_FIQ

TRUE if the fast interrupt signal is asserted.

RDIPropID_ARMSignal_RESET

TRUE if the reset signal is asserted.

RDIPropID_ARMSignal_BigEnd

TRUE if the bigend signal is asserted.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-27

ARMulator Reference
RDIPropID_ARMSignal_HighException

TRUE if the vector table is at 0xFFFF0000.

RDIPropID_ARMSignal_BranchPredictEnable

(ARM10 only)

RDIPropID_ARMSignal_LDRSetTBITDisable

(ARM10 only)

RDIPropID_ARMSignal_WaitForInterrupt

(ARM10 and XScale only)

RDIPropID_ARMulProp_CycleCount

Count of the number of cycles executed since initialization.

RDIPropID_ARMulProp_RDILog

Current setting of the RDI log level. Generally, this is zero if
logging is disabled, and nonzero if it is enabled.

RDIPropID_ARMSignal_ProcessorProperties

The properties word associated with the processor being
simulated. This is a bitfield of properties, defined in armdefs.h.

value is a pointer to a block to write the property to. This allows for properties
with more than 32 bits. However, all the properties listed are actually 32
bits wide at most.
4-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.6 Events

ARMulator has a mechanism for broadcasting and handling events. These events
consist of an event number and a pair of words. The number identifies the event. The
details depends on the event.

The core ARMulator generates some example events, defined in armdefs.h. They are
divided into three groups:

• events from the ARM processor core, listed in Table 4-2 on page 4-30

• events from the MMU and cache (not on StrongARM®-110), listed in Table 4-1

• events from the prefetch unit (ARM8™-based processors only), listed in Table 4-3
on page 4-30

• configuration change events, listed in Table 4-5 on page 4-31.

These events can be logged in the trace file if tracing is enabled, and trace events is
turned on. Additional modules can provide new event types that will be handled in the
same way. User defined events must have values between UserEvent_Base (0x100000)
and UserEvent_Top (0x1FFFFF).

You can catch events by installing an event handler (see Event handler on page 4-37).
You can raise an event by calling ARMulif_RaiseEvent() (see ARMulif_RaiseEvent on
page 4-32).

Table 4-1 Events from the MMU and cache (not on StrongARM-110)

Event name Word 1 Word 2 Event number

MMUEvent_DLineFetch Miss address Victim address 0x10001

MMUEvent_ILineFetch Miss address Victim address 0x10002

MMUEvent_WBStall Physical address of write Number of words in write buffer 0x10003

MMUEvent_DTLBWalk Miss address Victim address 0x10004

MMUEvent_ITLBWalk Miss address Victim address 0x10005

MMUEvent_LineWB Miss address Victim address 0x10006

MMUEvent_DCacheStall Address causing stall Address fetching 0x10007

MMUEvent_ICacheStall Address causing stall Address fetching 0x10008
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-29

ARMulator Reference
Table 4-2 Events from the ARM processor core

Event name Word 1 Word 2
Event
number

CoreEvent_Reset - - 0x1

CoreEvent_UndefinedInstr pc value Instruction 0x2

CoreEvent_SWI pc value SWI number 0x3

CoreEvent_PrefetchAbort pc value - 0x4

CoreEvent_DataAbort pc value Aborting address 0x5

CoreEvent_AddrExceptn pc value Aborting address 0x6

CoreEvent_IRQ pc value - 0x7

CoreEvent_FIQ pc value - 0x8

CoreEvent_Breakpoint pc value RDI_PointHandle 0x9

CoreEvent_Watchpoint pc value Watch address 0xA

CoreEvent_IRQSpotted pc value - 0x17

CoreEvent_FIQSpotted pc value - 0x18

CoreEvent_ModeChange pc value New mode 0x19

CoreEvent_Dependency pc value Interlock register
bitmask

0x20

Table 4-3 Events from the prefetch unit (ARM810 only)

Event name Word 1 Word 2 Event number

PUEvent_Full Next pc value - 0x20001

PUEvent_Mispredict Address of branch - 0x20002

PUEvent_Empty Next pc value - 0x20003
4-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
Table 4-4 Debug events

Event name Word 1 Word 2 Event number

DebugEvent_InToDebug - - 0x40001

DebugEvent_OutOfDebug - - 0x40002

DebugEvent_DebuggerChangedPC pc - 0x40003

Table 4-5 Config events

Event name Word 1 Word 2 Event number

ConfigEvent_AllLoaded - - 0x50001

ConfigEvent_Reset - - 0x50002

ConfigEvent_VectorsLoaded - - 0x50003

ConfigEvent_EndiannessChanged 1 (big end) or 2
(little end)

- 0x50005
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-31

ARMulator Reference
4.6.1 ARMulif_RaiseEvent

This function invokes events. The events are passed to the user-supplied event handlers.

Syntax

void ARMulif_RaiseEvent(RDI_ModuleDesc *mdesc, ARMword event,
ARMword data1, ARMword data2)

where:

mdesc is the handle for the core.

event is one of the event numbers defined in Table 4-1 on page 4-29, Table 4-2
on page 4-30, Table 4-3 on page 4-30, or Table 4-4 on page 4-31.

data1 is the first word of the event.

data2 is the second word of the event.
4-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.7 Handlers

ARMulator can be made to call back your model when some state values change. You
do this by installing the relevant event handler.

You must provide implementations of the event handlers if you want to use them in your
own models. See the implementations in the ARM supplied models for examples.

You can use event handlers to avoid having to check state values on every access. For
example, a peripheral model is expected to present the ARM core with data in the
correct byte order for the value of the ARM processor bigend signal. A peripheral
model can attach to the EventHandler() (see Event handler on page 4-37) to be informed
when this signal changes.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-33

ARMulator Reference
4.7.1 Exception handler

This event handler is called whenever the ARM processor takes an exception.

Syntax

typedef unsigned GenericCallbackFunc(void *handle, void *data)

where:

handle is the handle passed to ARMulif_InstallExceptionHandler.

data must be cast to (ARMul_Event *),and contain:

((ARMul_Event *)data)->event

is the core event causing the exception (see Table 4-2 on
page 4-30).

((ARMul_Event *)data)->data1

is the address of the hardware vector for the exception.

((ARMul_Event *)data)->data2

is the instruction that caused the exception.

Usage

As an example, this can be used by an operating system model to intercept and simulate
SWIs. If an installed handler returns nonzero, the ARM does not take the exception (the
exception is ignored).

Note
 If the processor is in Thumb state, the equivalent ARM instruction will be supplied.

Install the exception handler using:

int ARMulif_InstallExceptionHandler(RDI_ModuleDesc *mdesc,
GenericCallbackFunc *func, void *handle)

Remove the exception handler using:

int ARMulif_RemoveExceptionHandler(RDI_ModuleDesc *mdesc,
GenericCallbackFunc *func, void *handle)
4-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.7.2 Unknown RDI information handler

The unknown RDI information function is called if ARMulator cannot handle an
RDI_InfoProc request itself. It returns an RDIError value. This function can be used by a
model extending the RDI interface between ARMulator and the debugger. For example,
the profiler module (in profiler.c) provides the RDIProfile info calls.

Syntax

typedef int RDI_InfoProc(void *handle, unsigned type,
ARMword *arg1, ARMword *arg2)

where:

handle is the handle passed to ARMulif_InstallUnkRDIInfoHandler.

type is the RDI_InfoProc subcode. These are defined in rdi_info.h. See below
for some examples.

arg1/arg2 are arguments passed to the handler from ARMulator.

Usage

ARMulator stops calling RDI_InfoProc() functions when one returns a value other than
RDIError_UnimplementedMessage.

The following codes are examples of the RDI_InfoProc subcodes that can be specified as
type:

RDIInfo_Target

This enables models to declare how to extend the functionality of the
target. For example, profiler.c intercepts this call to set the
RDITarget_CanProfile flag.

RDIInfo_SetLog

This is passed around so that models can switch logging information on
and off. For example, tracer.c uses this call to switch tracing on and off
from bit 4 of the rdi_log value.

RDIRequestCyclesDesc

This enables models to extend the list of counters provided by the
debugger in $statistics. Models call ARMul_AddCounterDesc() (see
General purpose functions on page 4-41) to declare each counter in turn.
It is essential that the model also trap the RDICycles RDI info call.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-35

ARMulator Reference
RDICycles Models that have declared a statistics counter by trapping
RDIRequestCyclesDesc must also respond to RDICycles by calling
ARMul_AddCounterValue() (see General purpose functions on page 4-41)
for each counter in turn, in the same order as they were declared.

The above RDI info calls have already been dealt with by ARMulator, and are passed
for information only, or so that models can add information to the reply. Models must
always respond to these messages with RDIError_UnimplementedMessage, so that the
message is passed on even if the model has responded.

Install the handler using:

int ARMulif_InstallUnkRDIInfoHandler(RDI_ModuleDesc *mdesc,
RDI_InfoProc *func, void *handle)

Remove the handler using:

int ARMulif_RemoveUnkRDIInfoHandler(RDI_ModuleDesc *mdesc,
RDI_InfoProc *func, void *handle)

Example

The semihost.c model supplied with ARMulator uses the UnkRDIInfoUpcall() to interact
with the debugger:

RDIErrorP returns errors raised by the program running under ARMulator to
the debugger.

RDISet_Cmdline finds the command line set for the program by the debugger.

RDIVector_Catch intercepts the hardware vectors.
4-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.7.3 Event handler

This handler catches ARMulator events (see Events on page 4-29).

Syntax

typedef unsigned GenericCallbackFunc(void *handle, void *data)

where:

handle is the handle passed to ARMulif_InstallEventHandler.

data must be cast to (ARMul_Event *),and contain:

((ARMul_Event *)data)->event

is one of the event numbers defined in Table 4-1 on page 4-29,
Table 4-2 on page 4-30, and Table 4-3 on page 4-30.

((ARMul_Event *)data)->addr1

is the first word of the event.

((ARMul_Event *)data)->addr2

is the second word of the event.

Usage

Install the handler using:

void *ARMulif_InstallEventHandler(RDI_ModuleDesc *mdesc, uint32 events,
GenericCallbackFunc *func, void *handle)

Specify one or more of the following for events:

• CoreEventSel

• MMUEventSel

• PUEventSel

• DebugEventSel

• TraceEventSel

• ConfigEventSel.

Remove the handler using:

int ARMulif_RemoveEventHandler(RDI_ModuleDesc *mdesc, void *node)

Example handler installation

ARMulif_InstallEventHandler(mdesc, CoreEventSel | ConfigEventSel, func, handle)
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-37

ARMulator Reference
4.8 Memory access functions

The memory system can be probed by a peripheral model using a set of functions for
reading and writing memory. These functions access memory without inserting cycles
on the bus. If your model inserts cycles on the bus, it must install itself as a memory
model, possibly between the core and the real memory model.

Note
 It is not possible to tell if these calls result in a data abort.

4.8.1 Reading from a given address

The following functions return the word, halfword, or byte at the specified address.
Each function accesses the memory without inserting cycles on the bus.

Syntax

ARMword ARMulif_ReadWord(RDIModuleDesc *mdesc, ARMword address)

ARMword ARMulif_ReadHalfword(RDIModuleDesc *mdesc, ARMword address)

ARMword ARMulif_ReadByte(RDIModuleDesc *mdesc, ARMword address)

where:

mdesc is the handle for the core.

address is the address in simulated memory from which the word, halfword, or
byte is to be read.

Return

The functions return the word, halfword, or byte, as appropriate.
4-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.8.2 Writing to a specified address

The following functions write the specified word, halfword, or byte at the specified
address. Each function accesses memory without inserting cycles on the bus.

Syntax

void ARMulif_WriteWord(RDIModuleDesc *mdesc, ARMword address, ARMword data)

void ARMulif_WriteHalfword(RDIModuleDesc *mdesc, ARMword address, ARMword data)

void ARMulif_WriteByte(RDIModuleDesc *mdesc, ARMword address, ARMword data)

where:

mdesc is the handle for the core.

address is the address in simulated memory to write to.

data is the word or byte to write.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-39

ARMulator Reference
4.9 Event scheduling functions

The following functions enable you to schedule or remove events:

• ARMulif_ScheduleTimedFunction

• ARMulif_DescheduleTimedFunction.

4.9.1 ARMulif_ScheduleTimedFunction

This function schedules events using memory system cycles. It enables a function to be
called at a specified number of cycles in the future.

Syntax

void *ARMulif_ScheduleTimedFunction(RDI_ModuleDesc *mdesc,
ARMul_TimedCallback *tcb)

where:

mdesc is the handle for the core.

tcb is a handle for you to use if you want to deschedule the function.

Note
 The function can be called only on the first instruction boundary following the specified
cycle.

4.9.2 ARMulif_DescheduleTimedFunction

ARMul_DescheduleTimedFunction() removes a previously-scheduled memory cycle based
event.

Syntax

unsigned ARMulif_DescheduleTimedFunction(RDI_ModuleDesc *mdesc, void *tcb);

where:

mdesc is the handle for the core.

tcb is the handle supplied by ARMulif_ScheduleTimedFunction whenthe event
was first set up.
4-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.10 General purpose functions

The following are general purpose ARMulator functions. They include functions to
access processor properties, add counter descriptions and values, stop ARMulator and
execute code:

• ARMul_BusRegisterPeripFunc

• ARMulif_ReadBusRange on page 4-44

• Hostif_RaiseError on page 4-45

• ARMulif_Time on page 4-45

• ARMul_AddCounterDesc on page 4-46

• ARMul_AddCounterValue on page 4-47

• ARMulif_StopExecution on page 4-49

• ARMulif_EndCondition on page 4-49

• ARMulif_GetCoreClockFreq on page 4-50.

4.10.1 ARMul_BusRegisterPeripFunc

A peripheral model must call this function to register the peripheral with the
ARMulator. This enables ARMulator to call the model whenever it makes accesses to
memory locations belonging to the peripheral.

Syntax

int ARMul_BusRegisterPeripFunc(enum BusRegAct act,
ARMul_BusPeripAccessRegistration *breg);

where:

act is the action you want. act must have one of the following values: insert
or remove.

breg is a structure containing information for the ARMulator. You can obtain
this structure by calling ARMulif_ReadBusRange (see
ARMulif_ReadBusRange on page 4-44).

breg is a structure of type ARMul_BusPeripAccessRegistration (see
ARMul_BusPeripAccessRegistration on page 4-42 for details).
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-41

ARMulator Reference
ARMul_BusPeripAccessRegistration

This structure and type are declared in armul_bus.h, in
install_directory\ARMulate\armulif. The declaration is as follows:

typedef struct ARMul_BusPeripAccessRegistration {
 ARMul_BusPeripAccessFunc *access_func;
 void *access_handle;
 uint32 capabilities; /* See PeripAccessCapability_* below */
 struct ARMul_Bus *bus;
 /* 0=> normal peripheral, earlier in list than anything it
 * overlaps with. */
 unsigned priority;
 /* 0..100%
 * A higher number will be placed earlier in the list than
 * anything that it doesn't overlap with and has a lower access_frequency.
 */
 unsigned access_frequency;
 unsigned addr_size; /* Number of elements in range[] */
 AddressRange range[1];
} ARMul_BusPeripAccessRegistration;

where:

access_func Pointer to the function to call for a memory access in the given
address range.

access_handle Pointer to object data for access_func.

capabilities See PeripAccessCapability on page 4-43.

bus This is returned by ARMulif_QueryBus. Do not alter it.

priority Use this field to assign a priority to peripherals. Zero is the highest
priority. If peripherals have overlapping address ranges, the
highest priority peripheral is accessed first. Lower priority
peripherals are only accessed if higher priority peripherals return
without processing the call.

access_frequency Use this field to inform ARMulator which peripheral you expect
to be accessed more frequently. This allows ARMulator to access
peripherals more efficiently. Assign the frequency as a percentage
in the range 0% to 100%.

addr_size This is for future expansion. 1 is for 32-bit addresses. This is the
only address size currently supported.

range The address range occupied by this peripheral.
4-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
PeripAccessCapability

This parameter defines the capabilities of the peripheral. It is the sum of the values of
the individual capabilities (see Table 4-6).

For example:

• A value of 0x20020 means that the peripheral can handle word data accesses, but
not bytes, halfwords, or double words, and understands the Endian signal. This
value is predefined as PeripAccessCapability_Minimum.

• A value of 0x20038 means that the peripheral can handle byte, halfword, and word
data accesses, but not doubleword, and understands the Endian signal. This value
is predefined as PeripAccessCapability_Typical.

Table 4-6 Peripheral access capabilities

Capability Predefined name Value

Byte PeripAccessCapability_Byte 0x8

Half word PeripAccessCapability_HWord 0x10

Word PeripAccessCapability_Word 0x20

Double word PeripAccessCapability_DWord 0x40

Peripheral accepts idle cycles PeripAccessCapability_Idles 0x10000 (unsigned long)

Peripheral understands Endian signal PeripAccessCapability_Endian 0x20000 (unsigned long)

Peripheral understands bytelanes PeripAccessCapability_Bytelane 0x40000 (unsigned long)
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-43

ARMulator Reference
4.10.2 ARMulif_ReadBusRange

You must supply a breg structure to register a peripheral. Call this function to initialize
the fields in this structure.

Syntax

int ARMulif_ReadBusRange(struct RDI_ModuleDesc *mdesc,
struct RDI_HostosInterface const *hostif,
 toolconf config,
 struct ARMul_BusPeripAccessRegistration *breg,
 uint32 default_base, uint32 default_size,
 char const *default_bus_name);

where:

mdesc is the handle for the core.

hostif is the handle for the host interface.

config is the configuration passed in to your model in BEGIN_INIT.

breg is a structure containing information for the ARMulator. You need this for
registerPeripFunc() (see ARMul_BusRegisterPeripFunc on page 4-41).

For details of the structure, see armulbus.h in
<install_directory>\armulate\armulif.

default_base is the default base address to use for your peripheral. This address is used
if config does not contain a base address for your peripheral.

default_size is the default size of the area in memory to use for your peripheral. This
is used if config does not contain a size for your peripheral.

default_bus_name

is a pointer to a string. This string is used if no bus name is found in the
config parameter for this peripheral, for example in a .dsc or .ami file.
4-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.10.3 Hostif_RaiseError

Several initialization and installation functions can return errors of type ARMul_Error.
These errors must be passed through Hostif_RaiseError(). This is a printf-like function
that formats the error message associated with an ARMul_Error error code.

Hostif_RaiseError only prints the error message. After calling this function, the model
must return with an appropriate error, such as RDIError_UnableToInitialise.

Hostif_RaiseError must only be used during initialization.

Syntax

void Hostif_RaiseError(const struct RDI_HostosInterface *hostif,
const char *format, ...)

where:

hostif is the handle for the host interface.

format is the error code for the error message to be formatted.

... are printf-style format specifiers of variadic type.

4.10.4 ARMulif_Time

This function returns the number of memory cycles executed since system reset.

Syntax

ARMTime ARMulif_Time(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.

Return

The function returns the total number of cycles executed since system reset.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-45

ARMulator Reference
4.10.5 ARMul_AddCounterDesc

The ARMul_AddCounterDesc() function adds new counters to $statistics.

Syntax

int ARMul_AddCounterDesc(void *handle, ARMword *arg1, ARMword *arg2,
const char *name)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

name is a string that names the statistic counter. The string must be less than 32
characters long.

Return

The function returns one of:

• RDIError_BufferFull

• RDIError_UnimplementedMessage.

Usage

When ARMulator receives an RDIRequestCycleDesc() call from the debugger, it uses the
UnkRDIInfoUpcall() (see Unknown RDI information handler on page 4-35) to ask each
module in turn if it wishes to provide any statistics counters. Each module responds by
calling ARMul_AddCounterDesc() with the arguments passed to the UnkRDIInfoUpcall().

All statistics counters must be either a 32-bit or 64-bit word, and be monotonically
increasing. That is, the statistic value must go up over time. This is a requirement
because of the way the debugger calculates $statistics_inc.
4-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.10.6 ARMul_AddCounterValue

This function provides the facility for your model to supply statistics for the debugger
to display.

Syntax

int ARMul_AddCounterValue(void *handle, ARMword *arg1, ARMword *arg2, bool is64,
const ARMword *counter)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

is64 denotes whether the counter is a pair of 32-bit words making a 64-bit
counter (least significant word first), or a single 32-bit value. This enables
modules to provide a full 64-bit counter.

counter is a pointer to the current value of the counter.

Return

The function always returns RDIError_UnimplementedMessage.

Usage

Your model must call this function, or ARMul_AddCounterValue64, from its
UnkRDIInfoUpcall() handler. ARMul_AddCounterValue64 is identical to
ARMul_AddCounterValue except for the word order of the counter.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-47

ARMulator Reference
4.10.7 ARMul_AddCounterValue64

This function provides the facility for your model to supply statistics for the debugger
to display.

Syntax

int ARMul_AddCounterValue64(void *handle, ARMword *arg1, ARMword *arg2,
const uint64 counterval)

where:

handle is no longer used.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

counterval is the current value of the counter.

Return

The function always returns RDIError_UnimplementedMessage.

Usage

Your model must call this function, or ARMul_AddCounterValue, from its
UnkRDIInfoUpcall() handler. This function is identical to ARMul_AddCounterValue except
that the word order is big-endian or little-endian according to the word order of the host
system.
4-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.10.8 ARMulif_StopExecution

This function stops simulator execution at the end of the current instruction, giving a
reason code.

Syntax

void ARMulif_StopExecution(RDI_ModuleDesc *mdesc, unsigned reason)

where:

mdesc is the handle for the core.

reason is an RDIError error value. Thedebugger interprets reason and issues a
suitable message. Expected errors are:

RDIError_NoError

Program ran to a natural termination.

RDIError_BreakpointReached

Stop condition was a breakpoint.

RDIError_WatchPointReached

Stop condition was a watchpoint.

RDIError_UserInterrupt

Execution interrupted by the user.

4.10.9 ARMulif_EndCondition

This function returns the reason passed to ARMulif_StopExecution.

Syntax

unsigned ARMulif_EndCondition(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-49

ARMulator Reference
4.10.10 ARMulif_GetCoreClockFreq

This function returns the CPUSPEED in Hertz.

Syntax

ARMTime ARMulif_GetCoreClockFreq(RDI_ModuleDesc *mdesc)

where:

mdesc is the handle for the core.
4-50 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.10.11 ARMulif_InstallHourglass

Use this function to install an hourglass callback from ARMulator to your model.

Syntax

void *ARMulif_InstallHourglass(RDI_ModuleDesc *mdesc,
armul_Hourglass *newHourglass, void *handle);

where:

mdesc is the handle for the core.

newHourglass is a function of type armul_Hourglass. You can find the prototype for
armul_Hourglass in armul_types.h , in
install_directory\ARMulate\armulif.

handle is a pointer to the data required by your function, newHourglass.

Usage

When you install an hourglass, ARMulator gives your model a callback each time an
instruction is executed.

Return

This function returns a handle for your model to use to remove the hourglass callback.

4.10.12 ARMulif_RemoveHourglass

Use this function to remove an hourglass callback.

Syntax

int ARMulif_RemoveHourglass(RDI_ModuleDesc *mdesc, void *node);

where:

mdesc is the handle for the core.

node is the handle returned by ARMulif_InstallHourglass.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-51

ARMulator Reference
4.11 Accessing the debugger

This section describes the input, output, and RDI functions that you can use to access
the debugger.

Several functions are provided to display messages in the host debugger. Under armsd,
these functions print messages to the console. Under AXD, they display messages to the
relevant window:

• Hostif_DebugPrint

• Hostif_ConsolePrint on page 4-53

• Hostif_PrettyPrint on page 4-53

• Hostif_DebugPause on page 4-56.

All of these functions take the following as the first parameter:

const struct RDI_HostosInterface *hostif

This value is available in the state datastructure of themodel, as defined between the
BEGIN_STATE_DECL() and END_STATE_DECL() macros (see Basic model interface on
page 4-12).

4.11.1 Hostif_DebugPrint

This function displays a message in the RDI logging window under a GUI debugger, or
to the console under armsd.

Syntax

void Hostif_DebugPrint(const struct RDI_HostosInterface *hostif,
const char *format, ...)

where:

hostif is the handle for the host interface.

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.
4-52 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.11.2 Hostif_ConsolePrint

This function prints the text specified in the format string to the ARMulator console.
Under AXD, the text appears in the console window.

Syntax

void Hostif_ConsolePrint(const struct RDI_HostosInterface *hostif,
const char *format, ...)

where:

hostif is the handle for the host interface.

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.

Note
 Use Hostif_PrettyPrint() to display startup messages.

4.11.3 Hostif_PrettyPrint

This function prints a string in the same way as Hostif_ConsolePrint(), but in addition
performs line-break checks so that wordwrap is avoided. Use it to display startup
messages.

Syntax

void Hostif_PrettyPrint(const struct RDI_HostosInterface *hostif,
struct hashblk * /*toolconf*/ config,
 const char *format, ...)

where:

hostif is the handle for the host interface.

config is a pointer to the toolconf configuration database of the model. This
value is available in the state datastructure of the model, as defined
between the BEGIN_STATE_DECL() and END_STATE_DECL() macros (see Basic
model interface on page 4-12).

format is a pointer to a printf-style formatted output string.

... are a variable number of parameters associated with format.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-53

ARMulator Reference
4.11.4 Hostif_ConsoleReadC

This function reads a character from the ARMulator console.

Syntax

int Hostif_ConsoleReadC(const struct RDI_HostosInterface
*hostif)

where:

hostif is the handle for the host interface.

Return

This function returns the ASCII value of the character read, or EOF.

4.11.5 Hostif_WriteC

This function writes a character to the ARMulator console.

Syntax

void Hostif_ConsoleWriteC(const struct
RDI_HostosInterface *hostif, int c)

where:

hostif is the handle for the host interface.

c is the character to write. c is converted to an unsigned char.
4-54 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.11.6 Hostif_ConsoleRead

This function reads a string from the ARMulator console. Reading terminates at a
newline or if the end of the buffer is reached.

Syntax

char *Hostif_ConsoleRead(const struct RDI_HostosInterface *hostif,
char *buffer, int len)

where:

hostif is the handle for the host interface.

buffer is a pointer to a buffer to hold the string.

len is the maximum length of the buffer.

Return

This function returns a pointer to a buffer, or NULL on error or end of file.

The buffer contains at most len-1 characters, terminated by a zero. If a newline is read,
it is included in the string before the zero.

4.11.7 Hostif_ConsoleWrite

This function writes a string to the ARMulator console.

Syntax

int Hostif_ConsoleWrite(const struct RDI_HostosInterface *hostif,
const char *buffer, int len)

where:

hostif is the handle for the host interface.

buffer is a pointer to a buffer holding a zero-terminated string.

len is the length of the buffer.

Return

This function returns the number of characters actually written. This is len unless an
error occurs.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-55

ARMulator Reference
4.11.8 Hostif_DebugPause

This function waits for the user to press any key.

Syntax

void Hostif_DebugPause(const struct RDI_HostosInterface *hostif)

where:

hostif is the handle for the host interface.
4-56 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.12 Tracer

This section describes the functions provided by the tracermodule, tracer.c.

Note
 These functions are not exported. If you want to use any of these functions in your
model, you must build your model together with tracer.c.

The default implementations of these functions can be changed by compiling tracer.c
with EXTERNAL_DISPATCH defined.

The formats of Trace_State and Trace_Packet are documented in tracer.h.

4.12.1 Tracer_Open

This function is called when the tracer is initialized.

Syntax

unsigned Tracer_Open(Trace_State *ts)

Usage

The implementation in tracer.c opens theoutput file from this function, and writes a
header.

4.12.2 Tracer_Dispatch

This function is called on each traced event for every instruction, event, or memory
access.

Syntax

void Tracer_Dispatch(Trace_State *ts, Trace_Packet *packet)

Usage

In tracer.c, this function writes the packetto the trace file.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-57

ARMulator Reference
4.12.3 Tracer_Close

This function is called at the end of tracing.

Syntax

void Tracer_Close(Trace_State *ts)

Usage

The file tracer.c uses this to close thetrace file.

4.12.4 Tracer_Flush

This function is called when tracing is disabled.

Syntax

extern void Tracer_Flush(Trace_State *ts)

Usage

The file tracer.c uses this to flush outputto the trace file.
4-58 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.13 Map files

The type and speed of memory in a simulated system can be detailed in a map file. A
map file defines the number of regions of attached memory, and for each region:

• the address range to which that region is mapped

• the data bus width in bytes

• the access time for the memory region.

armsd expects the map file to be called armsd.map, in the current working directory.

AXD accepts map files of any name. See AXD and armsd Debuggers Guide for details
of how to use a particular map file in a debugging session.

To calculate the number of wait states for each possible type of memory access, the
ARMulator uses the access times supplied in the map file, and the clock frequency from
the debugger (see AXD and armsd Debuggers Guide).

See also Memory modelling with mapfiles on page 2-27.

Note
 A memory map file defines the characteristics of the memory areas defined in
peripherals.ami (see ARMulator configuration files on page 4-63). A .map file must
define rw areas that are at least as large as those specified for the heap and stack in
peripherals.ami, and at the same locations. If this is not the case, Data Aborts are likely
to occur during execution.

4.13.1 Format of a map file

The format of each line is:

start size name width access{*} read-times write-times

where:

start is the start address of the memory region in hexadecimal,for example
80000.

size is the size of the memory region in hexadecimal, for example, 4000.

name is a single word that you can use to identify the memory region when
memory access statistics are displayed. You can use any name. To ease
readability of the memory access statistics, give a descriptive name such
as SRAM, DRAM, or EPROM.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-59

ARMulator Reference
width is the width of the data bus in bytes (that is, 1 for an 8-bit bus, 2 for a
16-bit bus, or 4 for a 32-bit bus).

access describes the type of accesses that can be performed on this region of
memory:

r for read-only.

w for write-only.

rw for read-write.

- for no access. Any access causes a Data or Prefetch Abort.

An asterisk (*) can be appended to access to describe a Thumb-based
system that uses a 32-bit data bus to memory, but which has a 16-bit latch
to latch the upper 16 bits of data, so that a subsequent 16-bit sequential
access can be fetched directly out of the latch.

read-times

describes the nonsequential and sequential read times in nanoseconds.
These must be entered as the nonsequential read access time followed by
a slash (/), followed by the sequential read access time. Omitting the
slash and using only one figure indicates that the nonsequential and
sequential access times are the same.

Note
 For accurate modelling of real devices, you might have to add a signal

propagation delay (20 to 30ns) to the read and write times quoted for a
memory chip.

write-times

describes the nonsequential and sequential write times. The format is the
same as that given for read times.

The following examples assume a clock speed of 20MHz, the default.

Example 1

0 80000000 RAM 4 rw 135/85 135/85

This describes a system with a single continuous section of RAM from 0 to 0x7FFFFFFF
with a 32-bit data bus, read-write access, nonsequential access time of 135ns, and
sequential access time of 85ns.
4-60 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
Example 2

This example describes a typical embedded system with 32KB of on-chip memory,
16-bit ROM and 32KB of external DRAM:

00000000 8000 SRAM 4 rw 1/1 1/1
00008000 8000 ROM 2 r 100/100 100/100
00010000 8000 DRAM 2 rw 150/100 150/100
7FFF8000 8000 Stack 2 rw 150/100 150/100

There are four regions of memory:

• A fast region from 0 to 0x7FFF with a 32-bit data bus. This is labeled SRAM.

• A slower region from 0x8000 to 0xFFFF with a 16-bit data bus. This is labelled
ROM and contains the image code. It is marked as read-only.

• A region of RAM from 0x10000 to 0x17FFF that is used for image data.

• A region of RAM from 0x7FFF8000 to 0x7FFFFFFF that is used for stack data. The
stack pointer is initialized to 0x80000000.

In the final hardware, the two distinct regions of the external DRAM are combined. This
does not make any difference to the accuracy of the simulation.

To represent fast (no wait state) memory, the SRAM region is given access times of 1ns.
In effect, this means that each access takes 1 clock cycle, because ARMulator rounds
this up to the nearest clock cycle. However, specifying it as 1ns allows the same map
file to be used for a number of simulations with differing clock speeds.

Note
 To ensure accurate simulations, make sure that all areas of memory likely to be accessed
by the image you are simulating are described in the memory map.

To ensure that you have described all areas of memory that you think the image
accesses, you can define a single memory region that covers the entire address range as
the last line of the map file. For example, you could add the following line to the above
description:

00000000 80000000 Dummy 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory
you expect using the print $memory_statistics command.

Note
 A dummy memory region must be the last entry in a map file.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-61

ARMulator Reference
Reading the memory statistics

To read the memory statistics use the command:

print $memory_statistics

print $memstats is a short version of print $memory_statistics.

Example 4-1 shows the form of reports given.

Example 4-1

address name W acc R(N/S) W(N/S) reads(N/S) writes(N/S) time (ns)
00000000 Dummy 4 - 1/1 1/1 0/0 0/0 0
7FFF8000 Stack 2 rw 150/100 150/100 9290/10590 4542/11688 8538300
00010000 DRAM 2 rw 150/100 150/100 18817/18 11031/140 8915800
00008000 ROM 2 r 100/100 100/100 48638/176292 0/0 44817000
00000000 SRAM 4 rw 1/1 1/1 0/0 0/0 0

The report in Example 4-1 shows that:

• ROM access is critical to this application. Consider using faster ROM, using
burst-capable ROM, or making the ROM wider (32 bits).

• No use was made of SRAM at 0x0. Consider locating the stack, or other data at
0x0.
4-62 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.14 ARMulator configuration files

This section contains the following subsections:

• Predefined tags on page 4-64

• Processors on page 4-64

• Changing the cache or TCM size of a synthesizable processor on page 4-66.

ARMulator configuration files (.ami files) are ToolConf files. See ToolConf on
page 4-68.

Depending on your system, these are located in one of:

• install_directory\Bin

• install_directory/linux/bin

• install_directory/solaris/bin

• install_directory/hpux/bin.

You can make copies of .ami files, and edit them. Make a suitable directory for your new
.ami files, and add its path to the ARMCONF environment variable. Ensure that your
directory appears before the bin directory in ARMCONF.

By default, there are the following .ami files, all in the Bin directory:

• bustypes.ami

• default.ami

• example1.ami

• peripherals.ami

• processors.ami

• vfp.ami

ARMulator loads all .ami files it finds on any of the paths it finds in the environment
variable ARMCONF. This is initially set up to point to install_directory\Bin or
install_directory/arch/bin.

If a configuration is specified differently in two files, the first specification is used. If
there are several directories in ARMCONF, ARMulator loads .ami files from directories in
the order that they appear in the list. ARMulator loads .ami files from within each
directory in an unpredictable order.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-63

ARMulator Reference
4.14.1 Predefined tags

Before reading .ami files, ARMulator creates several tags itself, based on the settings
you give to the debugger. These are given in Table 4-7. Preprocessing directives in .ami
files use these tags to control the configuration.

4.14.2 Processors

The processors region is a child ToolConf database (see ToolConf on page 4-68). It has
a full list of processors supported by the ARMulator. This list is the basis of the list of
processors in AXD, and the list of accepted arguments for the -processor option of
armsd.

You can add a variant processor to this list, for example to include a particular memory
model in the definition. See install_directory\Bin\example1.ami for examples.

Default specifies the processor to use if no other processor is specified. Each other entry
in the Processors region is the name of a processor.

Example 4-2 on page 4-65 declares two processors, TRACED_ARM10 and
PROFILED_ARM7. In this example, MCCFG is the ratio of the clock frequency on the
processor to the clock frequency on the external bus.

Table 4-7 Tags predefined by ARMulator

Tag Description

CPUSpeed Set to the speed set in the configuration window of AXD, or in the
-clock command line option for armsd. For example,
CPUSpeed=30MHz.

FCLK Set to the same value as CPUSpeed, if that value is not zero. Not set
if CPUSpeed is zero.

MCLK Set to the same value as FCLK for uncached cores. Set to FCLK/MCCFG
for cached cores.

ByteSex Set to L or B if a bytesex is specified from the debugger. Not set
otherwise.

FPE Set to True or False from the debugger.
4-64 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
Example 4-2 Processors in a toolconf file

{Processors
 {TRACED_ARM10=ARM10200E
 ;CPUSPEED=400MHz
 ;Memory clock divisor.
 ;(The AHB runs this many times slower than the core.)
 MCCFG=4
 {Flatmem
 {Peripherals
 {Tracer=Default_Tracer
 ;; Output options - can be plaintext to file, binary to file or to RDI
log
 ;; window. (Checked in the order RDILog, File, BinFile.)
 RDILog=False
 File=armul.trc
 BinFile=armul.trc
 ;; Tracer options - what to trace
 TraceInstructions=True
 TraceRegisters=False
 TraceMemory=True
 TraceEvents=False
 ;; Flags - disassemble instructions; start up with tracing enabled.
 Disassemble=True
 StartOn=True
 }
 }
 }
 ;End TRACED_ARM10
 }
 {PROFILED_ARM7=ARM720T
 {Flatmem
 {Peripherals
 {Profiler=Default_Profiler
 }
 }
 }
 }
;End Processors
}

Finding the configuration for a selected processor

ARMulator uses the following algorithm to find a configuration for a selected
processor:

1. Set the current region to be Processors.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-65

ARMulator Reference
2. Find the selected processor in the current region.

3. If the tag has a child, that child is the required configuration.

Adding a variant processor model

Suppose you have created a memory model called MyASIC, designed to be combined with
an ARM7TDMI® processor core to make a new microcontroller called ARM7TASIC. To
allow this to be selected from AXD, or armsd, add a .ami file modeled on example1.ami.

4.14.3 Changing the cache or TCM size of a synthesizable processor

To change the cache or TCM size of a synthesizable processor, make a copy of the
processors.ami file, place it in the appropriate directory (see ARMulator configuration
files on page 4-63), and edit it.

For example, to change both caches of the ARM946E-S to 8KB:

1. Find the following lines in your copy of the processors.ami file:

{ARM946E-S=ARM946E-S-REV1
}

2. Insert lines so that this section reads:

{ARM946E-S=ARM946E-S-REV1
ICache_Lines=256
DCache_Lines=256
}

This overrides the corresponding lines in armulate.dsc.

Caution
 Any cores that inherit properties from ARM946E-S, such as ARM946E-S-ETM-(L),
ARM946E-S-ETM-(M), or ARM946E-S-ETM-(S), are also affected if you make this
change.

Cores that do not inherit their properties from ARM946E-S, such as
ARM946E-S-REV0 or ARM946E-S-REV1 are not affected.

If you want to change the cache or TCM size of a processor that does not already have
a section in processors.ami, you can add a section. For example, to change the
instruction RAM size of the ARM926EJ-S from 64KB to 32KB:

1. Find the following lines at the end of your copy of the processors.ami file:

{ARM926EJ-S=ARM926EJ-S-REV0
}
;End of Processors
4-66 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
2. Insert lines so that this becomes:

{ARM926EJ-S=ARM926EJ-S-REV0
}
{ARM926EJ-S-MyVersion
IRamSize=0x8000
}
;End of Processors

This overrides the corresponding line in armulate.dsc.

Any details that are not specified in your file remain unaltered from what is specified in
armulate.dsc.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-67

ARMulator Reference
4.15 ToolConf

This section contains the following subsections:

• Toolconf overview

• File format on page 4-69

• Boolean flags in a ToolConf database on page 4-71

• SI units in a ToolConf database on page 4-72

• ToolConf_Lookup on page 4-73

• ToolConf_Cmp on page 4-74.

4.15.1 Toolconf overview

ToolConf is a module within ARMulator. A ToolConf file is a tree-structured database
consisting of tag and value pairs. Tags and values are strings, and are usually
case-insensitive. ToolConf files are files of type .ami or .dsc.

You can find a value associated with a tag from a ToolConf database, or add or change
a value.

If a tag is given a value more than once, the first value is used.
4-68 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.15.2 File format

The following are typical ToolConf database lines:

TagA=ValueA
TagA=NewValue
Othertag
Othertag=Othervalue
;; Lines starting with ; (semicolon) are comments.
; Tag=Value

The first line creates a tag in the ToolConf called TagA, with value ValueA.

The second line has no effect, as TagA already has a value.

The third line creates a tag called Othertag, with no value.

The fourth line gives the value Othervalue to Othertag.

There must be no whitespace at the beginning of database lines, in tags, in values, or
between tags or values and the = symbol.

Conventionally, ordinary comments start with two semicolons. Lines starting with one
semicolon are usually commented-out lines. You can comment out a line to disable it,
or uncomment a commented-out line to enable it.

A comment must be on a line by itself.

File header

If you add any ToolConf files, the first line of the file must be:

;; ARMulator configuration file type 3

ARMulator ignores any .ami or .dsc files that do not begin with this header.

Tree structure

Each tag can have another ToolConf database associated with it, called its child. When
a tag lookup is performed on a child, if the tag is not found in the child, the search
continues in the parent, and if necessary in the parent’s parent and so on until the tag is
found.

This means that the child only includes tags whose values are different from those of
the same tag in the parent.

If child databases are specified more than once for the same parent, the child databases
are merged.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-69

ARMulator Reference
Specifying children

There are two ways of specifying children in a ToolConf database.

One is more suited to specifying large children:

{ TagP=ValueP
TagC1=ValueC1
TagC2=ValueC2
}

This creates a tag called TagP, with the value ValueP, and a child database. Two tags are
given values in the child.

The other is more suited to specifying small children:

TagP:TagC=ValueC

This creates a tag called TagP, with no value. TagP has a child in which one tag is
created, TagC, with value ValueC. It is equivalent to:

{ TagP
TagC=ValueC
}

Conditional expressions

The full #if...#elif...#else...#endif syntax is supported. You can use this to skip
regions of a ToolConf database. Expressions use tags from the file, for example, the C
preprocessor sequence:

#define Control True
#if defined(Control) && Control==True
#define controlIsTrue Yes
#endif

maps to the ToolConf sequence:

Control=True
#if Control && Control=True
ControlIsTrue=Yes
#endif
4-70 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
A condition is evaluated from left to right, on the contents of the configuration at that
point. Table 4-8 shows the operators that can be used in ToolConf conditional
expressions.

File inclusion

You can use the #include directive to include one ToolConf file in another. The directive
is ignored if it is in a region which is being skipped under control of a conditional
expression.

4.15.3 Boolean flags in a ToolConf database

Table 4-9 shows the full set of permissible values for Boolean flags. The strings are
case-insensitive.

Table 4-8 Operators in ToolConf preprocessor expressions

Operator Example Description

none Tag Test for existence of tag definition

== Tag==Value Case-insensitive string equality test

!= Tag!=Value Case-insensitive string inequality test

(...) (Tag==Value) Grouping

&& TagA==ValueA && TagB==ValueB Boolean AND

|| TagA==ValueA || TagB==ValueB Boolean OR

! !(Tag==Value) Boolean NOT

Table 4-9 Boolean values

True False

True False

On Off

High Low

Hi Lo

1 0

T F
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-71

ARMulator Reference
4.15.4 SI units in a ToolConf database

Some values can be specified using SI (Système Internationale) units, for example:

ClockSpeed=10MHz
MemorySize=2Gb

The scaling factor is set by the prefix to the unit. ARMulator only accepts k, M, or G
prefixes for kilo, mega, and giga. These correspond to scalings of 103, 106, and 109, or
210, 220, and 230. ARMulator decides which scaling to use according to context.
4-72 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.15.5 ToolConf_Lookup

This function performs a lookup on a specified tag in an .ami or .dsc file. If the tag is
found, its associated value is returned. Otherwise, NULL is returned.

Syntax

const char *ToolConf_Lookup(toolconf hashv, tag_t tag)

where:

hashv is the database to perform the lookup on.

tag is the tag to search for in the database. The tagis case-dependent.

Return

The function returns:

• a const pointer to the tag value, if the search is successful

• NULL, if the search is not successful.

Example

const char *option = ToolConf_Lookup(db, ARMulCnf_Size);
/* ARMulCnf_Size is defined in armcnf.h */
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-73

ARMulator Reference
4.15.6 ToolConf_Cmp

This function performs a case-insensitive comparison of two ToolConf database tag
values.

Syntax

int ToolConf_Cmp(const char *s1, const char *s2)

where:

s1 is a pointer to the first string value to compare.

s2 is a pointer to the second string value to compare.

Return

The function returns:

• 1, if thestrings are identical

• 0, if the strings are different.

Example

if (ToolConf_Cmp(option, "8192"))
4-74 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.16 Reference peripherals

Two reference peripherals are detailed here:

• Interrupt controller

• Timer on page 4-77.

4.16.1 Interrupt controller

The base address of the interrupt controller, IntBase, is configurable (see Interrupt
controller on page 2-33).

Table 4-10 shows the location of individual registers.

Table 4-10 Interrupt controller memory map

Address Read Write

IntBase IRQStatus Reserved

IntBase + 004 IRQRawStatus Reserved

IntBase + 008 IRQEnable IRQEnableSet

IntBase + 00C Reserved IRQEnableClear

IntBase + 010 Reserved IRQSoft

IntBase + 100 FIQStatus Reserved

IntBase + 104 FIQRawStatus Reserved

IntBase + 108 FIQEnable FIQEnableSet

IntBase + 10C Reserved FIQEnableClear
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-75

ARMulator Reference
Interrupt controller defined bits

The FIQ interrupt controller is one bit wide. It is located on bit 0.

Table 4-11 gives details of the interrupt sources associated with bits 1 to 5 in the IRQ
interrupt controller registers. You can use bit 0 for a duplicate FIQ input.

Note
 Timer 1 and Timer 2 can be configured to use different bits in the IRQ controller
registers, see Timer on page 2-34.

Table 4-11 Interrupt sources

Bit Interrupt source

0 FIQ source

1 Programmed interrupt

2 Communications channel Rx

3 Communications channel Tx

4 Timer 1

5 Timer 2
4-76 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

ARMulator Reference
4.16.2 Timer

The base address of the timer, TimerBase, is configurable (see Timer on page 2-34).

See Table 4-12 for the location of individual registers.

Timer load registers

Write a value to one of these registers to set the initial value of the corresponding timer
counter. You must write the top 16 bits as zeroes.

If the timer is in periodic mode, this value is also reloaded to the timer counter when the
counter reaches zero.

If you read from this register, the bottom 16 bits return the value that you wrote. The top
16 bits are undefined.

Timer value registers

Timer value registers are read-only. The bottom 16 bits give the current value of the
timer counter. The top 16 bits are undefined.

Table 4-12 Timer memory map

Address Read Write

TimerBase Timer1Load Timer1Load

TimerBase + 04 Timer1Value Reserved

TimerBase + 08 Timer1Control Timer1Control

TimerBase + 0C Reserved Timer1Clear

TimerBase + 10 Reserved Reserved

TimerBase + 20 Timer2Load Timer2Load

TimerBase + 24 Timer2Value Reserved

TimerBase + 28 Timer2Control Timer2Control

TimerBase + 2C Reserved Timer2Clear

TimerBase + 30 Reserved Reserved
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-77

ARMulator Reference
Timer clear registers

Timer clear registers are write-only. Writing to one of them clears an interrupt generated
by the corresponding timer.

Timer control registers

See Table 4-14 and Table 4-13 for details of timer register bits. Only bits 7, 6, 3, and 2
are used. You must write all others as zeroes.

The counter counts downwards. It counts BCLK cycles, or BCLK cycles divided by 16
or 256. Bits 2 and 3 define the prescaling applied to the clock.

In free-running mode, the timer counter overflows when it reaches zero, and continues
to count down from 0xFFFF.

In periodic mode, the timer generates an interrupt when the counter reaches zero. It then
reloads the value from the load register and continues to count down from this value.

Table 4-13 Clock prescaling using bits 2 and 3

Bit
3

Bit
2

Clock
divided by

Stages of
prescale

0 0 1 0

0 1 16 4

1 0 256 8

1 1 Undefined -

Table 4-14 Timer enable and mode control using bits 6 and 7

0 1

Bit 7 Timer disabled Timer enabled

Bit 6 Free-running
mode

Periodic mode
4-78 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Chapter 5
Semihosting

This chapter describes the semihosting mechanism. Semihosting provides code running
on an ARM target use of facilities on a host computer that is running an ARM debugger.
Examples of such facilities include the keyboard input, screen output, and disk I/O. This
chapter contains the following sections:

• Semihosting on page 5-2

• Semihosting implementation on page 5-5

• Adding an application SWI handler on page 5-8

• Semihosting SWIs on page 5-11

• Debug agent interaction SWIs on page 5-27.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-1

Semihosting
5.1 Semihosting

Semihosting is a mechanism for ARM targets to communicate input/output requests
from application code to a host computer running a debugger. This mechanism could be
used, for example, to allow functions in the C library, such as printf() and scanf(), to
use the screen and keyboard of the host rather than having a screen and keyboard on the
target system.

This is useful because development hardware often does not have all the input and
output facilities of the final system. Semihosting allows the host computer to provide
these facilities.

Semihosting is implemented by a set of defined software interrupt (SWI) operations.
The application invokes the appropriate SWI and the debug agent then handles the SWI
exception. The debug agent provides the required communication with the host.

In many cases, the semihosting SWI will be invoked by code within library functions.
The application can also invoke the semihosting SWI directly. Refer to the C library
descriptions in the ADS Compilers and Libraries Guide for more information on
support for semihosting in the ARM C library.

Figure 5-1 shows an overview of semihosting.

Figure 5-1 Semihosting overview

�������	
�����	��

���

�����	
��������

����
�������

�����
�������
������
���

���

�����	�
��������
�������������
������

����������
���
��������	���

����
	�������

�
����

����
5-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
The semihosting SWI interface is common across all debug agents provided by ARM.
Semihosted operations will work under ARMulator, RealMonitor, Angel, or Multi-ICE
without any requirement for porting.

For further information on semihosting and the C libraries, see the C and C++ Libraries
chapter in ADS Compilers and Libraries Guide. See also the Writing Code for ROM
chapter in ADS Developer Guide.

5.1.1 The SWI interface

The ARM and Thumb SWI instructions contain a field that encodes the SWI number
used by the application code. This number can be decoded by the SWI handler in the
system. See the chapter on exception handling in ADS Developer Guide for more
information on SWI handlers.

Semihosting operations are requested using a single SWI number. This leaves the other
SWI numbers available for use by the application or operating system. The SWI used
for semihosting is:

0x123456 in ARM state

0xAB in Thumb state

The SWI number indicates to the debug agent that the SWI is a semihosting request. In
order to distinguish between operations, the operation type is passed in r0. All other
parameters are passed in a block that is pointed to by r1.

The result is returned in r0, either as an explicit return value or as a pointer to a data
block. Even if no result is returned, assume that r0 is corrupted.

The available semihosting operation numbers passed in r0 are allocated as follows:

0x00 to 0x31 These are used by ARM.

0x32 to 0xFF These are reserved for future use by ARM.

0x100 to 0x1FF These are reserved for user applications. They will not be used by
ARM.

If you are writing your own SWI operations, however, you are
advised to use a different SWI number rather than using the
semihosted SWI number and these operation type numbers.

0x200 to 0xFFFFFFFF These are undefined. They are not currently used and not
recommended for use.

In the following sections, the number in parentheses after the operation name is the
value placed into r0. For example SYS_OPEN (0x01).
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-3

Semihosting
If you are calling SWIs from assembly language code it is best to use the operation
names that are defined in semihost.h. You can define the operation names with an EQU
directive. For example:

SYS_OPEN EQU 0x01
SYS_CLOSE EQU 0x02

Changing the semihosting SWI numbers

It is strongly recommended that you do not change the semihosting SWI numbers
0x123456 (ARM) or 0xAB (Thumb). If you do so you must:

• change all the code in your system, including library code, to use the new SWI
number

• reconfigure your debugger to use the new SWI number.
5-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.2 Semihosting implementation

The functionality provided by semihosting is basically the same on all debug hosts. The
implementation of semihosting, however, differs between hosts.

5.2.1 ARMulator

When a semihosting SWI is encountered, ARMulator traps the SWI directly and the
instruction in the SWI entry in the vector table is not executed.

To turn the support for semihosting off in ARMulator, change Default_Semihost in the
default.ami file to No_Semihost.

See Peripheral models on page 2-32 for more details.

5.2.2 RealMonitor

RealMonitor implements a SWI handler that must be integrated with your system to
enable semihosting support.

When the target executes a semihosted SWI instruction, the RealMonitor SWI handler
carries out the required communication with the host.

For further information refer to the documentation supplied with RealMonitor.

5.2.3 Angel

The Angel debug monitor installs a SWI handler during its initialization. This occurs
when the target powers up.

When the target executes a semihosted SWI instruction, the Angel SWI handler carries
out the required communication with the host.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-5

Semihosting
5.2.4 Multi-ICE

When using Multi-ICE in default configuration, semihosting is implemented as follows:

1. On ARM7 processors:

a. A breakpoint is set on the SWI vector.

b. When this breakpoint is hit, Multi-ICE examines the SWI number.

c. If the SWI is recognized as a semihosting SWI, Multi-ICE emulates it and
transparently restarts execution of the application.

If the SWI is not recognized as a semihosting SWI, Multi-ICE halts the
processor and reports an error.

2. On other processors:

a. Vector-catch logic traps SWIs.

b. If the SWI is recognized as a semihosting SWI, Multi-ICE emulates it and
transparently restarts execution of the application.

If the SWI is not recognized as a semihosting SWI, Multi-ICE halts the
processor and reports an error.

This semihosting mechanism can be disabled or changed by the following debugger
internal variables:

$semihosting_enabled

Set this variable to 0 to disable semihosting. If you are debugging an
application running from ROM, this allows you to use an additional
watchpoint unit.

Set this variable to 1 to enable semihosting. This is the default.

Set this variable to 2 to enable Debug Communications Channel
semihosting.

The S bit in $vector_catch has no effect unless semihosting is disabled.

$semihosting_vector

This variable controls the location of the breakpoint set by Multi-ICE to
detect a semihosted SWI. It is set to the SWI entry in the exception vector
table (0x8) by default.

If your application requires semihosting as well as having its own SWI
handler, set $semihosting_vector to an address in your SWI handler. This
address must point to an instruction that is only executed if your SWI
handler has identified a call to a semihosting SWI. All registers must
already have been restored to whatever values they had on entry to your
SWI handler.
5-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
Multi-ICE handles the semihosted SWI and then examines the contents
of lr and returns to the instruction following the SWI instruction in your
code.

Regardless of the value of $vector_catch, all exceptions and interrupts are
trapped and reported as an error condition.

For details of how to modify debugger internal variables, see the appropriate debugger
documentation.

5.2.5 Multi-ICE DCC semihosting

Multi-ICE can also use the debug communications channel so that the core is not
stopped while semihosting takes place. This is enabled by setting $semihosting_enabled
to 2. Refer to the Multi-ICE User Guide for more details.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-7

Semihosting
5.3 Adding an application SWI handler

It can be useful to have both the semihosted SWIs and your own application-specific
SWIs available. In such cases you must ensure that the two SWI mechanisms cooperate
correctly. The way to ensure this depends upon the debug agent in use.

5.3.1 ARMulator

To get your own handler and the semihosting handler to cooperate, simply install your
SWI handler into the SWI entry in the vector table. No other actions are required.

When an appropriate SWI is reached in your code, ARMulator detects that it is not a
semihosting SWI and executes the instruction in the SWI entry of the vector table
instead. This instruction must branch to your own SWI handler.

5.3.2 RealMonitor

The RealMonitor SWI handler must be integrated with your application to enable
semihosting (see the documentation supplied with RealMonitor).

5.3.3 Angel

Application SWI handlers are added by:

1. Saving the SWI vector (as installed by Angel).

2. Adjusting the contents of the SWI vector to point to the application SWI handler.
(This is called chaining.) This is described in more detail in the exception
handling section of the ADS Developer Guide.

5.3.4 Multi-ICE

To ensure that the application SWI handler will successfully cooperate with Multi-ICE
semihosting mechanism:

1. Install the application SWI handler into the vector table.

2. Modify $semihosting_vector to point to a location at the end of the application
handler. This point in the handler must only be reached if your handler does not
handle the SWI.

Before Multi-ICE traps the SWI, your SWI handler must restore all registers to the
values they had when your SWI handler was entered. Typically, this means that your
SWI handler must store the registers to a stack on entry and restore them before falling
through to the semihosting vector address.
5-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
Caution
 It is essential that the actual position $semihosting_vector points to within the
application handler is correct.

See exception handling in the ADS Developer Guide for writing SWI handlers.

The following example SWI handler can detect if it fails to handle a SWI. In this case,
it branches to an error handler:

; r0 = 1 if SWI handled
 CMP r0, #1 ; Test if SWI has been handled.
 BNE NoSuchSWI ; Call unknown SWI handler.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cxsf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.

This code could be modified to co-operate with Multi-ICE semihosting as follows:

; r0 = 1 if SWI handled
 CMP r0, #1 ; Test if SWI has been handled.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cxsf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12,lr} ; Restore registers.
 MOVEQS pc, lr ; Return if SWI handled.
Semi_SWI
 MOVS pc,lr ; Fall through to Multi-ICE
 ; interface handler.

The $semihosting_vector variable must be set up to point to the address of Semi_SWI. The
instruction at Semi_SWI never gets executed because Multi-ICE returns directly to the
application after processing the semihosted SWI (see Figure 5-2 on page 5-10).

Caution
 Using a normal SWI return instruction ensures that the application does not crash if the
semihosting breakpoint is not set up. The semihosting action requested is not carried out
and the handler simply returns.

You must also be careful if you modify $semihosting_vector to point to the fall-through
part of the application SWI handler. If $semihosting_vector changes value before the
application starts execution, and semihosted SWIs are invoked before the application
SWI handler is installed, an unknown watchpoint error will occur.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-9

Semihosting
Figure 5-2 Semihosting with breakpoint

The error occurs because the vector table location for the SWI has not yet had the
application handler installed into it and might still contain the software breakpoint bit
pattern. Because the $semihosting_vector address has moved to a place that cannot
currently be reached, Multi-ICE no longer knows about the triggered breakpoint. To
prevent this from happening, you must change the contents of $semihosting_vector only
at the point in your code where the application SWI handler is installed into the vector
table.

Note
 If semihosting is not required at all by an application, this process can be simplified by
setting $semihosting_enabled to 0.

5.3.5 Multi-ICE DCC semihosting

When using the DCC semihosting mechanism, adding an application SWI handler must
be done in exactly the same way as non-DCC semihosting (see Multi-ICE on page 5-8).

�����

�����

�����

�����
�
 �����

���

����

����

����

!�	���
�
���

"����

��#��
�����������

���#��	�������

$
�
������

"����%��

�"&

'�&

(��#���

����

����

����

����

����

 ����)��*

+��
,����

�����
����

���
�����

�����
���	�

���

�������
���
��������������
�����������

�� !"�#$
����������

-����������.�
�����/�0
-����������.%�	����/�1�231
5-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4 Semihosting SWIs

The SWIs listed in Table 5-1 implement the semihosted operations. These operations
are used by C library functions such as printf() and scanf(). They can be treated as
ATPCS function calls. However, except for r0 that contains the return status, they
restore the registers they are called with before returning.

Some targets provide additional semihosting calls. See the ARM Firmware Suite (AFS)
documentation for details of SWIs provided by AFS.

Table 5-1 Semihosting SWIs

SWI Description

SYS_OPEN (0x01) on page 5-12 Open a file on the host

SYS_CLOSE (0x02) on page 5-14 Close a file on the host

SYS_WRITEC (0x03) on page 5-14 Write a character to the console

SYS_WRITE0 (0x04) on page 5-14 Write a null-terminated string to the console

SYS_WRITE (0x05) on page 5-15 Write to a file on the host

SYS_READ (0x06) on page 5-16 Read the contents of a file into a buffer

SYS_READC (0x07) on page 5-17 Read a byte from the console

SYS_ISERROR (0x08) on page 5-17 Determine if a return code is an error

SYS_ISTTY (0x09) on page 5-18 Check whether a file is connected to an interactive device

SYS_SEEK (0x0A) on page 5-18 Seek to a position in a file

SYS_FLEN (0x0C) on page 5-19 Return the length of a file

SYS_TMPNAM (0x0D) on page 5-19 Return a temporary name for a file

SYS_REMOVE (0x0E) on page 5-20 Remove a file from the host

SYS_RENAME (0x0F) on page 5-20 Rename a file on the host

SYS_CLOCK (0x10) on page 5-21 Number of centiseconds since execution started

SYS_TIME (0x11) on page 5-21 Number of seconds since January 1, 1970

SYS_SYSTEM (0x12) on page 5-22 Pass a command to the host command-line interpreter

SYS_ERRNO (0x13) on page 5-23 Get the value of the C library errno variable

SYS_GET_CMDLINE (0x15) on page 5-24 Get the command-line used to call the executable
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-11

Semihosting
Note
 When used with Angel, these SWIs use the serializer and the global register block, and
they can take a significant length of time to process.

5.4.1 SYS_OPEN (0x01)

Open a file on the host system. The file path is specified either as relative to the current
directory of the host process, or absolutely, using the path conventions of the host
operating system.

The ARM targets interpret the special path name :tt as meaning the console input
stream (for an open-read) or the console output stream (for an open-write). Opening
these streams is performed as part of the standard startup code for those applications
that reference the C stdio streams.

Entry

On entry, r1 contains a pointer to a three-word argument block:

word 1 This is a pointer to a null-terminated string containing a file or device
name.

word 2 This is an integer that specifies the file opening mode. Table 5-2 gives the
valid values for the integer, and their corresponding ANSI C fopen()
mode.

word 3 This is an integer that gives the length of the string pointed to by word 1.
The length does not include the terminating null character that must be
present.

SYS_HEAPINFO (0x16) on page 5-25 Get the system heap parameters

SYS_ELAPSED (0x30) on page 5-26 Get the number of target ticks since execution started

SYS_TICKFREQ (0x31) on page 5-26 Determine the tick frequency

Table 5-1 Semihosting SWIs (continued)

SWI Description

Table 5-2 Value of mode

mode 0 1 2 3 4 5 6 7 8 9 10 11

ANSI C fopen mode r rb r+ r+b w wb w+ w+b a ab a+ a+b
5-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
Return

On exit, r0 contains:

• a nonzero handle if the call is successful

• –1 if the call is not successful.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-13

Semihosting
5.4.2 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with
SYS_OPEN.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a file handle referring to an open file.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if the call is not successful.

5.4.3 SYS_WRITEC (0x03)

Writes a character byte, pointed to by r1, to the debug channel. When executed under
an ARM debugger, the character appears on the display device connected to the
debugger.

Entry

On entry, r1 contains a pointer to the character.

Return

None. Register r0 is corrupted.

5.4.4 SYS_WRITE0 (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM
debugger, the characters appear on the display device connected to the debugger.

Entry

On entry, r1 contains a pointer to the first byte of the string.

Return

None. Register r0 is corrupted.
5-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.5 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file
position is specified either:

• explicitly, by a SYS_SEEK

• implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

Perform the file operation as a single action whenever possible. For example, do not
split a write of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, r1 contains a pointer to a three-word data block:

word 1 This contains a handle for a file previously opened with SYS_OPEN

word 2 This points to the memory containing the data to be written

word 3 This contains the number of bytes to be written from the buffer to the file.

Return

On exit, r0 contains:

• 0 if the call is successful

• the number of bytes that are not written, if there is an error.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-15

Semihosting
5.4.6 SYS_READ (0x06)

Reads the contents of a file into a buffer. The file position is specified either:

• explicitly by a SYS_SEEK

• implicitly one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed. Perform the file operation as a single action whenever possible.For
example, do not split a read of 16KB into four 4KB chunks unless there is no alternative.

Entry

On entry, r1 contains a pointer to a four-word data block:

word 1 This contains a handle for a file previously opened with SYS_OPEN.

word 2 This points to a buffer.

word 3 This contains the number of bytes to read to the buffer from the file.

Return

On exit:

• r0 contains zero if the call is successful.

• If r0 contains the same value as word 3, the call has failed and end-of-file is
assumed.

• If r0 contains a greater value than word 3, the call was partially successful. No
error is assumed, but the buffer has not been filled.

If the handle is for an interactive device (that is, SYS_ISTTY returns –1 for this handle),
a nonzero return from SYS_READ indicates that the line read did not fill the buffer.
5-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.7 SYS_READC (0x07)

Reads a byte from the console.

Entry

Register r1 must contain zero. There are no other parameters or values possible.

Return

On exit, r0 contains the byte read from the console.

5.4.8 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or
not. This call is passed a parameter block containing the error code to examine.

Entry

On entry, r1 contains a pointer to a one-word data block:

word 1 This is the required status word to check.

Return

On exit, r0 contains:

• 0 if the status word is not an error indication

• a nonzero value if the status word is an error indication.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-17

Semihosting
5.4.9 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a handle for a previously opened file object.

Return

On exit, r0 contains:

• 1 if the handle identifies an interactive device

• 0 if the handle identifies a file

• a value other than 1 or 0 if an error occurs.

5.4.10 SYS_SEEK (0x0A)

Seeks to a specified position in a file using an offset specified from the start of the file.
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, r1 contains a pointer to a two-word data block:

word 1 This is a handle for a seekable file object.

word 2 This is the absolute byte position to be sought to.

Return

On exit, r0 contains:

• 0 if the request is successful

• A negative value if the request is not successful. SYS_ERRNO can be used to
read the value of the host errno variable describing the error.

Note
 The effect of seeking outside the current extent of the file object is undefined.
5-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.11 SYS_FLEN (0x0C)

Returns the length of a specified file.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a handle for a previously opened, seekable file object.

Return

On exit, r0 contains:

• the current length of the file object, if the call is successful

• –1 if an error occurs.

5.4.12 SYS_TMPNAM (0x0D)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, r1 contains a pointer to a three-word argument block:

word 1 This is a pointer to a buffer.

word 2 This is a target identifier for this filename. Its value must be an integer in
the range 0 to 255.

word 3 This contains the length of the buffer. The length must be at least the
value of L_tmpnam on the host system.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if an error occurs.

The buffer pointed to by r1 contains the filename, prefixed with a suitable directory
name.

If you use the same target identifier again, the same filename is returned.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-19

Semihosting
5.4.13 SYS_REMOVE (0x0E)

Caution
 Deletes a specified file on the host filing system.

Entry

On entry, r1 contains a pointer to a two-word argument block:

word 1 This points to a null-terminated string that gives the pathname of the file
to be deleted.

word 2 This is the length of the string.

Return

On exit, r0 contains:

• 0 if the delete is successful

• a nonzero, host-specific error code if the delete fails.

5.4.14 SYS_RENAME (0x0F)

Renames a specified file.

Entry

On entry, r1 contains a pointer to a four-word data block:

word 1 This is a pointer to the name of the old file.

word 2 This is the length of the old file name.

word 3 This is a pointer to the new file name.

word 4 This is the length of the new file name.

Both strings are null-terminated.

Return

On exit, r0 contains:

• 0 if the rename is successful

• a nonzero, host-specific error code if the rename fails.
5-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.15 SYS_CLOCK (0x10)

Returns the number of centiseconds since the execution started.

Values returned by this SWI can be of limited use for some benchmarking purposes
because of communication overhead or other agent-specific factors. For example, with
Multi-ICE the request is passed back to the host for execution. This can lead to
unpredictable delays in transmission and process scheduling.

Use this function to calculate time intervals (the length of time some action took) by
calculating differences between intervals with and without the code sequence to be
timed

Some systems allow more accurate timing (see SYS_ELAPSED (0x30) on page 5-26
and SYS_TICKFREQ (0x31) on page 5-26).

Entry

Register r1 must contain zero. There are no other parameters.

Return

On exit, r0 contains:

• the number of centiseconds since some arbitrary start point, if the call is
successful

• –1 if the call is unsuccessful (for example, because of a communications error).

5.4.16 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970. This is real-world time,
regardless of any ARMulator configuration.

Entry

There are no parameters.

Return

On exit, r0 contains the number of seconds.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-21

Semihosting
5.4.17 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This enables you to execute a
system command such as dir, ls, or pwd. The terminal I/O is on the host, and is not
visible to the target.

Caution
 The command passed to the host is actually executed on the host. Ensure that any
command passed will have no unintended consequences.

Entry

On entry, r1 contains a pointer to a two-word argument block:

word 1 This points to a string that is to be passed to the host command-line
interpreter.

word 2 This is the length of the string.

Return

On exit, r0 contains the return status.
5-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.18 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host
implementation of the semihosting SWIs. The errno variable can be set by a number of
C library semihosted functions, including:

• SYS_REMOVE

• SYS_OPEN

• SYS_CLOSE

• SYS_READ

• SYS_WRITE

• SYS_SEEK.

Whether errno is set or not, and to what value, is entirely host-specific, except where
the ANSI C standard defines the behavior.

Entry

There are no parameters. Register r1 must be zero.

Return

On exit, r0 contains the value of the C library errno variable.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-23

Semihosting
5.4.19 SYS_GET_CMDLINE (0x15)

Returns the command line used to call the executable.

Entry

On entry, r1 points to a two-word data block to be used for returning the command string
and its length:

word 1 This is a pointer to a buffer of at least the size specified in word two.

word 2 This is the length of the buffer in bytes.

Return

On exit:

• Register r1 points to a two-word data block:

word 1 This is a pointer to null-terminated string of the command line.

word 2 This is the length of the string.

The debug agent might impose limits on the maximum length of the string that
can be transferred. However, the agent must be able to transfer a command line of
at least 80 bytes.

In the case of the Angel debug monitor using ADP, the maximum is slightly more
than 200 characters.

• Register r0 contains an error code:

— 0 if the call is successful

— –1 if the call is unsuccessful (for example, because of a communications
error).
5-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.4.20 SYS_HEAPINFO (0x16)

Returns the system stack and heap parameters. The values returned are typically those
used by the C library during initialization. For ARMulator, the values returned are the
those provided in peripherals.ami. For Multi-ICE, the values returned are the image
location and the top of memory.

The C library can override these values (see ADS Compilers and Libraries Guide for
more information on memory management in the C library).

The host debugger determines the actual values to return by using the $top_of_memory
debugger variable.

Entry

On entry, r1 contains the address of a pointer to a four-word data block. The contents of
the data block are filled by the function. See Example 5-1 for the structure of the data
block and return values.

Example 5-1

struct block {
 int heap_base;
 int heap_limit;
 int stack_base;
 int stack_limit;
 };
struct block *mem_block, info;
mem_block = &info;
AngelSWI(SYS_HEAPINFO, (unsigned) &mem_block);

Note
 If word one of the data block has the value zero, the C library replaces the zero with
Image$$ZI$$Limit. This value corresponds to the top of the data region in the memory
map.

Return

On exit, r1 contains the address of the pointer to the structure.

If one of the values in the structure is 0, the system was unable to calculate the real
value.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-25

Semihosting
5.4.21 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since the support code started execution. Use
SYS_TICKFREQ to determine the tick frequency.

Entry

On entry, r1 points to a two-word data block to be used for returning the number of
elapsed ticks:

word 1 The least significant word in the doubleword value.

word 2 The most significant word.

Return

On exit, :

• r0 contains –1 if r1 does point to a doubleword containing the number of elapsed
ticks. Multi-ICE does not support this SWI and always returns –1 in r0.

• r1 points to a doubleword (low-order word first) that contains the number of
elapsed ticks.

5.4.22 SYS_TICKFREQ (0x31)

Returns the tick frequency.

Entry

Register r1 must contain 0 on entry to this routine.

Return

On exit, r0 contains either:

• the number ticks per second

• –1 if the target does not know the value of one tick. Multi-ICE does not support
this SWI and always returns –1.
5-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.5 Debug agent interaction SWIs

In addition to the C library semihosted functions described in Semihosting SWIs on
page 5-11, the following SWIs support interaction with the debug agent:

• The ReportException SWI. This SWI is used by the semihosting support code as
a way to report an exception to the debugger.

• The EnterSVC SWI. This SWI sets the processor to Supervisor mode.

• The reason_LateStartup SWI. This SWI is obsolete and no longer supported.

These are described below.

5.5.1 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor (SVC) mode and disables all interrupts by setting both
interrupt mask bits in the new CPSR. With RealMonitor, Angel, or Multi-ICE, the User
stack pointer (r13_USR) is copied to the Supervisor stack pointer (r13_SVC) and the I
and F bits in the current CPSR are set, disabling normal and fast interrupts.

Note
 If debugging with ARMulator:

• r0 is set to zero indicating that no function is available for returning to User mode

• the User mode stack pointer is not copied to the Supervisor stack pointer.

Entry

Register r1 is not used. The CPSR can specify User or Supervisor mode.

Return

On exit, r0 contains the address of a function to be called to return to User mode. The
function has the following prototype:

void ReturnToUSR(void)

If EnterSVC is called in User mode, this routine returns thecaller to User mode and
restores the interrupt flags. Otherwise, the action of this routine is undefined.

If entered in User mode, the Supervisor stack is lost as a result of copying the user stack
pointer. The return to User routine restores r13_SVC to the Angel Supervisor mode
stack value, but this stack must not be used by applications.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-27

Semihosting
After executing the SWI, the current link register will be r14_SVC, not r14_USR. If the
value of r14_USR is required after the call, it must be pushed onto the stack before the
call and popped afterwards, as for a BL function call.
5-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Semihosting
5.5.2 angel_SWIreason_ReportException (0x18)

This SWI can be called by an application to report an exception to the debugger directly.
The most common use is to report that execution has completed, using
ADP_Stopped_ApplicationExit.

Entry

On entry r1 is set to one of the values listed in Table 5-3 and Table 5-4. These values are
defined in adp.h.

The hardware exceptions are generated if the debugger variable $vector_catch is set to
catch that exception type, and the debug agent is capable of reporting that exception
type. Angel cannot report exceptions for interrupts on the vector it uses itself.

Exception handlers can use these SWIs at the end of handler chains as the default action,
to indicate that the exception has not been handled.

Table 5-3 Hardware vector reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BranchThroughZero 0x20000

ADP_Stopped_UndefinedInstr 0x20001

ADP_Stopped_SoftwareInterrupt 0x20002

ADP_Stopped_PrefetchAbort 0x20003

ADP_Stopped_DataAbort 0x20004

ADP_Stopped_AddressException 0x20005

ADP_Stopped_IRQ 0x20006

ADP_Stopped_FIQ 0x20007

Table 5-4 Software reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BreakPoint 0x20020

ADP_Stopped_WatchPoint 0x20021

ADP_Stopped_StepComplete 0x20022
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-29

Semihosting
* next to values in Table 5-4 on page 5-29 indicates that the value is not supported by
the ARM debuggers. The debugger reports an Unhandled ADP_Stopped exception for
these values.

Return

No return is expected from these calls. However, it is possible for the debugger to
request that the application continue by performing an RDI_Execute request or
equivalent. In this case, execution continues with the registers as they were on entry to
the SWI, or as subsequently modified by the debugger.

5.5.3 angel_SWIreason_LateStartup (0x20)

This SWI is obsolete.

ADP_Stopped_RunTimeErrorUnknown *0x20023

ADP_Stopped_InternalError *0x20024

ADP_Stopped_UserInterruption 0x20025

ADP_Stopped_ApplicationExit 0x20026

ADP_Stopped_StackOverflow *0x20027

ADP_Stopped_DivisionByZero *0x20028

ADP_Stopped_OSSpecific *0x20029

Table 5-4 Software reason codes (continued)

Name (#defined in adp.h) Hexadecimal value
5-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

ADP See Angel Debug Protocol.

ADS See ARM Developer Suite.

Advanced Microcontroller Bus Architecture
On-chip communications standard for high-performance 32-bit and 16-bit embedded
microcontrollers.

AMBA See Advanced Microcontroller Bus Architecture.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

Angel Debug
Protocol

Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol.

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM eXtended Debugger
The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM Symbolic Debugger
An interactive source-level debugger providing high-level debugging support for
languages such as C, and low-level support for assembly language. It is a command-line
debugger that runs on all supported platforms.

armsd See ARM Symbolic Debugger.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

AXD See ARM eXtended Debugger.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-endian.

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image. See also Watchpoint.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

CPSR Current Program Status Register. See Program Status Register.

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Function A C++ method or free function.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Host A computer which provides data and other services to another computer.

ICE In-Circuit Emulator.

Image A file of executable code which can be loaded into memory on a target and executed by
a processor there.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.
Glossary-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Glossary
Memory management unit
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Processor An actual processor, real or emulated running on the target. A processor always has at
least one context of execution.

Processor Status Register
See Program Status Register.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program Status Register
Program Status Register (PSR), containing some information about the current program
and some information about the current processor. Often, therefore, also referred to as
Processor Status Register.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

Protection Unit Hardware that controls caches and access permissions to blocks of memory.

PSR See Program Status Register.

PU See Protection Unit.

RDI See Remote Debug Interface.

Remote Debug Interface
The Remote Debug Interface (RDI) is an ARM standard procedural interface between
a debugger and the debug agent. RDI gives the debugger a uniform way to communicate
with:

a debug agent running on the host (for example, ARMulator)

a debug monitor running on ARM-based hardware accessed through a communication
link (for example, Angel)
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-3

Glossary
a debug agent controlling an ARM processor through hardware debug support (for
example, Multi-ICE).

Saved Program Status Register
See Program Status Register

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Software Interrupt SWI. An instruction that causes the processor to call a programer-specified subroutine.
Used by ARM to handle semihosting.

Source File A file which is processed as part of the image building process. Source files are
associated with images.

SPSR Saved Program Status Register. See Program Status Register.

SWI See Software Interrupt.

Target The target processor (real or simulated), on which the target application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Tracing Recording diagnostic messages in a log file, to show the frequency and order of
execution of parts of the image. The text strings recorded are those that you specify
when defining a breakpoint or watchpoint. See Breakpoint and Watchpoint. See also
Stack backtracing.

Watchpoint A location in the image that is monitored. If the value stored there changes, the debugger
halts execution of the image. See also Breakpoint.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
Glossary-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Index
A
AddCounterDesc 4-46
AddCounterValue 4-47, 4-48
adp.h 5-29
ADP_Stopped_ApplicationExit 5-29
Angel

adding SWI handler 5-8
debug agent interaction SWIs 5-27
Enter SVC mode 5-27
Report Exception SWI 5-29
semihosting SWIs 5-11

angel_SWIreason_EnterSVC 5-27
angel_SWIreason_ReportException

5-29
armflat.c ARMulator model 2-26
armmap.c ARMulator model 2-27
armsd.map 2-28
ARMulator

accuracy 1-2, 2-2
armul.cnf 4-63
benchmarking 1-2, 2-2
callback 4-33

configurable memory model 2-27
configuring tracer 2-10, 2-13
counters 4-35
data abort 4-38
event scheduling 4-40
events 4-29
exceptions 4-26, 4-34
functions see Functions, ARMulator
initializing PU 2-20
interrupt controller 4-75
logging 4-35
map files 4-59
memory access 4-38
memory statistics 4-62
models see Models, ARMulator
overview 2-2
predefined tags 4-64
profiling 4-35
PU initialization 2-20
RDI logging level 2-5
reference peripherals 4-75
and remote debug interface 4-15
remote debug interface 4-35, 4-52

state 4-3
tags 4-2, 4-64
timer 4-77
ToolConf 4-2, 4-63, 4-68
trace file interpretation 2-6
tracing 4-35
upcalls see Upcalls, ARMulator

armul.cnf 4-63
ARM740T model, ARMulator 2-24
ARM940T model, ARMulator 2-25
arm.h 5-4

C
C library

errno 5-23
Semihosting SWIs 5-2

Callback, ARMulator 4-33
cdp, ARMulator function 4-23
ConsolePrint 4-53, 4-54, 4-55
Coprocessor

ARMulator model 4-15
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-1

Index
Counters, ARMulator 4-35
CPRead,ARMulator function 4-10
CPWrite, ARMulator function 4-11

D
Debug interaction SWIs 5-27
Debugger variables

$memory_statistics 4-62
$memstate 2-27
$statistics 2-27

DebugPause 4-56
DebugPrint 4-52
default.ami 2-4, 3-8

E
EndCondition, ARMulator function

4-49
Endianness

bigend signal 4-33
errno, C library 5-23
Eventscheduling, ARMulator 4-40
Events, ARMulator 4-29
EventUpcall, ARMulator 4-37
Exceptions

and debug agent 5-29
reporting in debug agent 5-29

Exceptions, ARMulator 4-26, 4-34
ExceptionUpcall, ARMulator 4-34

F
Files

adp.h 5-29
arm.h 5-4

Functions, ARMulator
ARMulif_EndCondition 4-49
ARMulif_GetCoreClockFreq 4-50
ARMulif_InstallHourglass 4-51
ARMulif_RemoveHourglass 4-51
ARMulif_StopExecution 4-49
ARMul_AddCounterDesc 4-46
ARMul_AddCounterValue 4-47,

4-48

ARMul_ConsolePrint 4-53, 4-54,
4-55

ARMul_CPRead 4-10
ARMul_CPWrite 4-11
ARMul_DebugPause 4-56
ARMul_DebugPrint 4-52
ARMul_GetCPSR 4-7
ARMul_GetMode 4-9
ARMul_GetPC 4-6
ARMul_GetReg 4-5
ARMul_GetR15 4-6
ARMul_GetSPSR 4-8
ARMul_PrettyPrint 4-53, 4-54,

4-55
ARMul_RaiseError 4-45
ARMul_RaiseEvent 4-32
ARMul_ReadByte 4-38
ARMul_ReadHalfWord 4-38
ARMul_ReadWord 4-38
ARMul_ScheduleEvent 4-40
ARMul_SetCPSR 4-7
ARMul_SetNfiq 4-26, 4-27
ARMul_SetNirq 4-26, 4-27
ARMul_SetPC 4-6
ARMul_SetReg 4-5
ARMul_SetR15 4-6
ARMul_SetSPSR 4-8
ARMul_ThumBit 4-9
ARMul_Time 4-45
ARMul_WriteByte 4-39
ARMul_WriteHalfWord 4-39
ARMul_WriteWord 4-39
cdp 4-23
ldc 4-17
mcr 4-20, 4-21, 4-22
mrc 4-19
read 4-24
stc 4-18
ToolConf_Cmp 4-74
ToolConf_Lookup 4-73
write 4-25

G
GetCoreClockFreq,ARMulator

function 4-50
GetCPSR,ARMulator function 4-7
GetMode,ARMulator function 4-9

GetPC, ARMulator function 4-6
GetReg, ARMulator function 4-5
GetR15, ARMulator function 4-6
GetSPSR,ARMulator function 4-8
Glossary Glossary-1

I
Input/Output

semihosting SWIs 5-11
InstallHourglass, ARMulator function

4-51
Interrupt controller 4-75

L
ldc, ARMulator function 4-17
Logging level, RDI 2-5
Logging, ARMulator 4-35

M
Map file, ARMulator 4-59
mcr, ARMulator function 4-20, 4-21,

4-22
Memory statistics, ARMulator 4-62
$memory_statistics 4-62
Models, ARMulator

bus cycle insertion 4-38
coprocessor 4-15
memory 4-38
pagetab.c 3-3
profiler.c 2-12, 3-3
stackuse.c 3-3
tracer.c 2-5, 3-3

mrc, ARMulator function 4-19
Multi-ICE and EmbeddedICE

DCC 5-10

P
pagetab.c ARMulator model 3-3
peripherals.ami 2-4, 3-3, 3-8
PrettyPrint 4-53, 4-54, 4-55
profiler.c 4-35
Index-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

Index
profiler.c ARMulator model 2-12, 3-3
Protection unit 2-24, 2-25
PU initialization, ARMulator 2-20

R
RaiseError 4-45
RaiseEvent 4-32
RDI logging level 2-5
ReadByte, ARMulator function 4-38
ReadHalfWord 4-38
ReadWord, ARMulator function 4-38
read, ARMulator function 4-24
Reference peripherals 4-75
Remote debug interface

and ARMulator 4-15
ARMulator 4-35, 4-52

Remotedebug interface
ARMulator 4-52

RemoveHourglass, ARMulator
function 4-51

Reporting exceptions 5-29
Return codes, ARMulator functions

ARMul_BUSY 4-17, 4-18, 4-19,
4-20, 4-21, 4-22, 4-23

ARMul_CANT 4-17, 4-18, 4-19,
4-20, 4-21, 4-22, 4-23, 4-24, 4-25

ARMul_DONE 4-17, 4-18, 4-19,
4-20, 4-21, 4-22, 4-23, 4-24, 4-25

S
ScheduleEvent 4-40
Semihosting SWIs 5-11

adding to application 5-8
C library 5-2
implementation 5-5
interface 5-3
intro 5-1
SYS_CLOCK 5-21
SYS_CLOSE 5-14
SYS_ELAPSED 5-26
SYS_ERRNO 5-23
SYS_FLEN 5-19
SYS_GET_CMDLINE 5-24
SYS_HEAPINFO 5-25
SYS_ISERROR 5-17

SYS_ISTTY 5-18
SYS_OPEN 5-12
SYS_READ 5-16
SYS_READC 5-17
SYS_RENAME 5-20
SYS_SEEK 5-18
SYS_SYSTEM 5-22
SYS_TICKFREQ 5-26
SYS_TIME 5-21
SYS_TMPNAM 5-19
SYS_WRITE 5-15
SYS_WRITEC 5-14
SYS_WRITEO 5-14

SetCPSR, ARMulator function 4-7
SetNfiq, ARMulator function 4-26,

4-27
SetNirq, ARMulator function 4-26,

4-27
SetPC, ARMulator function 4-6
SetReg, ARMulator function 4-5
SetR15, ARMulator function 4-6
SetSPSR, ARMulator function 4-8
stackuse.c ARMulator model 3-3
$statistics variable 4-35
stc, ARMulator function 4-18
StopExecution, ARMulator function

4-49
Supervisor mode

entering from debug 5-27
SWIs

debug interaction SWIs 5-27
SYS_CLOCK 5-21
SYS_CLOSE 5-14
SYS_ELAPSED 5-26
SYS_ERRNO 5-23
SYS_FLEN 5-19
SYS_GET_CMDLINE 5-24
SYS_GET_HEAPINFO 5-25
SYS_ISERROR 5-17
SYS_ISTTY 5-18
SYS_OPEN 5-12
SYS_READ 5-16
SYS_READC 5-17
SYS_RENAME 5-20
SYS_SEEK 5-18
SYS_SYSTEM 5-22
SYS_TICKFREQ 5-26
SYS_TIME 5-21
SYS_TMPNAM 5-19

SYS_WRITE 5-15
SYS_WRITEC 5-14
SYS_WRITEO 5-14

T
Terminology Glossary-1
ThumBit, ARMulator function 4-9
Timer 4-77
Time,ARMulator function 4-45
ToolConf 4-2, 4-63, 4-68
ToolConf_Cmp 4-74
ToolConf_Lookup 4-73
Tracer

configuring 2-10, 2-13
events 2-11
output to RDI log window 2-10

Tracer, interpreting output 2-6
tracer.c 4-35
tracer.c ARMulator model 3-3
Tracing, ARMulator 4-35

U
Unhandled ADP_Stopped exception

5-30
UnkRDIInfoUpcall, ARMulator 4-35
Upcalls, ARMulator 4-33

armul_EventUpcall 4-37
ExceptionUpcall 4-34
UnkRDIInfoUpcall 4-35

V
Variables

errno 5-23
$memory_statistics 4-62
$memstate 2-27
$statistics 2-27, 4-35
$top_of_memory 5-25
$vector_catch 5-29

W
Wait state calculation 2-28
ARM DUI0058D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-3

Index
WriteByte, ARMulator function 4-39
WriteHalfWord 4-39
WriteWord, ARMulator function 4-39
write, ARMulator function 4-25

Z
Zero wait state memory model 2-26

Symbols
$memory_statistics 4-62
$statistics variable 4-35
$top_of_memory debugger variable

5-25
$vector_catch debugger variable 5-29
Index-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI0058D

	ARM Developer Suite Debug Target Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 Debug target overview
	1.1.1 ARMulator
	1.1.2 Hardware targets
	1.1.3 Semihosting

	ARMulator Basics
	2.1 About ARMulator
	2.1.1 Accuracy

	2.2 ARMulator components
	2.2.1 Configuring ARMulator

	2.3 Tracer
	2.3.1 Debugger support for tracing
	2.3.2 Interpreting trace file output
	2.3.3 Configuring Tracer

	2.4 Profiler
	2.4.1 Configuring Profiler

	2.5 ARMulator cycle types
	2.5.1 Uncached von Neumann cores
	2.5.2 Uncached Harvard cores
	2.5.3 Cached cores with MMUs or PUs and AMBA ASB interfaces
	2.5.4 Cached cores with MMUs or PUs and AMBA AHB interfaces
	2.5.5 Internal cycle types for cached cores
	2.5.6 strongARM1
	2.5.7 Core-specific verbose statistics

	2.6 Pagetable module
	2.6.1 Overview of the pagetable module
	2.6.2 Controlling the MMU or PU and cache
	2.6.3 Controlling registers 2 and 3
	2.6.4 Memory regions
	2.6.5 Pagetable module and memory management units
	2.6.6 Pagetable module and protection units

	2.7 Default memory model
	2.8 Memory modelling with mapfiles
	2.8.1 Overview of memory modelling with mapfiles
	2.8.2 Clock frequency
	2.8.3 Selecting the mapfile memory model
	2.8.4 How the mapfile memory model calculates wait states
	2.8.5 Configuring the map memory model

	2.9 Semihosting
	2.9.1 Semihosting configuration

	2.10 Peripheral models
	2.10.1 Configuring ARMulator to use the peripheral models
	2.10.2 Configuring details of the peripherals
	2.10.3 Interrupt controller
	2.10.4 Timer
	2.10.5 Watchdog
	2.10.6 Stack tracker
	2.10.7 Tube

	Writing ARMulator models
	3.1 The ARMulator extension kit
	3.1.1 Location of files
	3.1.2 Supplied models

	3.2 Writing a new peripheral model
	3.2.1 Using a sample model as a template
	3.2.2 Return values
	3.2.3 Initialization, finalization, and state macros
	3.2.4 Registering your model

	3.3 Building a new model
	3.4 Configuring ARMulator to use a new model
	3.4.1 Adding a .dsc file
	3.4.2 Editing default.ami and peripherals.ami

	3.5 Configuring ARMulator to disable a model

	ARMulator Reference
	4.1 ARMulator models
	4.1.1 Configuring models through ToolConf

	4.2 Communicating with the core
	4.2.1 Mode numbers
	4.2.2 ARMulif_GetReg
	4.2.3 ARMulif_SetReg
	4.2.4 ARMulif_GetPC and ARMulif_GetR15
	4.2.5 ARMulif_SetPC and ARMulif_SetR15
	4.2.6 ARMulif_GetCPSR
	4.2.7 ARMulif_SetCPSR
	4.2.8 ARMulif_GetSPSR
	4.2.9 ARMulif_SetSPSR
	4.2.10 ARMulif_ThumbBit
	4.2.11 ARMulif_GetMode
	4.2.12 ARMulif_CPRead
	4.2.13 ARMulif_CPWrite

	4.3 Basic model interface
	4.3.1 Declaration of a private state data structure
	4.3.2 Model initialization
	4.3.3 Model finalization

	4.4 Coprocessor model interface
	4.4.1 ARMulif_InstallCoprocessorV5
	4.4.2 LDC
	4.4.3 STC
	4.4.4 MRC
	4.4.5 MCR
	4.4.6 MCRR
	4.4.7 MRRC
	4.4.8 CDP
	4.4.9 read
	4.4.10 write

	4.5 Exceptions
	4.5.1 ARMulif_SetSignal
	4.5.2 ARMulif_GetProperty

	4.6 Events
	4.6.1 ARMulif_RaiseEvent

	4.7 Handlers
	4.7.1 Exception handler
	4.7.2 Unknown RDI information handler
	4.7.3 Event handler

	4.8 Memory access functions
	4.8.1 Reading from a given address
	4.8.2 Writing to a specified address

	4.9 Event scheduling functions
	4.9.1 ARMulif_ScheduleTimedFunction
	4.9.2 ARMulif_DescheduleTimedFunction

	4.10 General purpose functions
	4.10.1 ARMul_BusRegisterPeripFunc
	4.10.2 ARMulif_ReadBusRange
	4.10.3 Hostif_RaiseError
	4.10.4 ARMulif_Time
	4.10.5 ARMul_AddCounterDesc
	4.10.6 ARMul_AddCounterValue
	4.10.7 ARMul_AddCounterValue64
	4.10.8 ARMulif_StopExecution
	4.10.9 ARMulif_EndCondition
	4.10.10 ARMulif_GetCoreClockFreq
	4.10.11 ARMulif_InstallHourglass
	4.10.12 ARMulif_RemoveHourglass

	4.11 Accessing the debugger
	4.11.1 Hostif_DebugPrint
	4.11.2 Hostif_ConsolePrint
	4.11.3 Hostif_PrettyPrint
	4.11.4 Hostif_ConsoleReadC
	4.11.5 Hostif_WriteC
	4.11.6 Hostif_ConsoleRead
	4.11.7 Hostif_ConsoleWrite
	4.11.8 Hostif_DebugPause

	4.12 Tracer
	4.12.1 Tracer_Open
	4.12.2 Tracer_Dispatch
	4.12.3 Tracer_Close
	4.12.4 Tracer_Flush

	4.13 Map files
	4.13.1 Format of a map file

	4.14 ARMulator configuration files
	4.14.1 Predefined tags
	4.14.2 Processors
	4.14.3 Changing the cache or TCM size of a synthesizable processor

	4.15 ToolConf
	4.15.1 Toolconf overview
	4.15.2 File format
	4.15.3 Boolean flags in a ToolConf database
	4.15.4 SI units in a ToolConf database
	4.15.5 ToolConf_Lookup
	4.15.6 ToolConf_Cmp

	4.16 Reference peripherals
	4.16.1 Interrupt controller
	4.16.2 Timer

	Semihosting
	5.1 Semihosting
	5.1.1 The SWI interface

	5.2 Semihosting implementation
	5.2.1 ARMulator
	5.2.2 RealMonitor
	5.2.3 Angel
	5.2.4 Multi-ICE
	5.2.5 Multi-ICE DCC semihosting

	5.3 Adding an application SWI handler
	5.3.1 ARMulator
	5.3.2 RealMonitor
	5.3.3 Angel
	5.3.4 Multi-ICE
	5.3.5 Multi-ICE DCC semihosting

	5.4 Semihosting SWIs
	5.4.1 SYS_OPEN (0x01)
	5.4.2 SYS_CLOSE (0x02)
	5.4.3 SYS_WRITEC (0x03)
	5.4.4 SYS_WRITE0 (0x04)
	5.4.5 SYS_WRITE (0x05)
	5.4.6 SYS_READ (0x06)
	5.4.7 SYS_READC (0x07)
	5.4.8 SYS_ISERROR (0x08)
	5.4.9 SYS_ISTTY (0x09)
	5.4.10 SYS_SEEK (0x0A)
	5.4.11 SYS_FLEN (0x0C)
	5.4.12 SYS_TMPNAM (0x0D)
	5.4.13 SYS_REMOVE (0x0E)
	5.4.14 SYS_RENAME (0x0F)
	5.4.15 SYS_CLOCK (0x10)
	5.4.16 SYS_TIME (0x11)
	5.4.17 SYS_SYSTEM (0x12)
	5.4.18 SYS_ERRNO (0x13)
	5.4.19 SYS_GET_CMDLINE (0x15)
	5.4.20 SYS_HEAPINFO (0x16)
	5.4.21 SYS_ELAPSED (0x30)
	5.4.22 SYS_TICKFREQ (0x31)

	5.5 Debug agent interaction SWIs
	5.5.1 angel_SWIreason_EnterSVC (0x17)
	5.5.2 angel_SWIreason_ReportException (0x18)
	5.5.3 angel_SWIreason_LateStartup (0x20)

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	P
	R
	S
	T
	U
	V
	W
	Z
	Symbols

