

	ARM Developer Suite Developer Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the ARM Developer Guide
	1.1.1 Example code

	1.2 General programing issues
	1.3 Developing for the ARM
	1.3.1 Using the Procedure call standards
	1.3.2 Interworking ARM and Thumb code
	1.3.3 Mixing C, C++, and Assembly Language
	1.3.4 Handling Processor Exceptions
	1.3.5 Writing Code for ROM
	1.3.6 Caches and tightly coupled memory
	1.3.7 Using the Debug Communications Channel

	Using the Procedure Call Standard
	2.1 About the ARM-Thumb Procedure Call Standard
	2.1.1 ATPCS variants
	2.1.2 ARM C libraries
	2.1.3 Conformance to the ATPCS
	2.1.4 Processes and the memory model

	2.2 Register roles and names
	2.2.1 Register roles
	2.2.2 Register names

	2.3 The stack
	2.3.1 Stack terminology
	2.3.2 Stack unwinding
	2.3.3 Eight-byte alignment

	2.4 Parameter passing
	2.4.1 Nonvariadic routines
	2.4.2 Variadic routines
	2.4.3 Result return

	2.5 Stack limit checking
	2.5.1 Rules for stack limit checked code
	2.5.2 Register usage with stack limit checking
	2.5.3 Stack checking in C and C++
	2.5.4 Stack checking in assembly language

	2.6 Read-only position independence
	2.6.1 Register usage with ROPI
	2.6.2 Writing code for ROPI

	2.7 Read-write position independence
	2.7.1 Reentrant routines
	2.7.2 Register usage with RWPI
	2.7.3 Position-independent data addressing
	2.7.4 Writing assembly language for RWPI

	2.8 Interworking between ARM and Thumb states
	2.8.1 Register usage with interworking

	2.9 Floating-point options
	2.9.1 The VFP architecture
	2.9.2 The FPA architecture
	2.9.3 No floating-point hardware
	2.9.4 softVFP+VFP

	Interworking ARM and Thumb
	3.1 About interworking
	3.1.1 When to use interworking
	3.1.2 Using the /interwork option
	3.1.3 Detecting interworking calls

	3.2 Assembly language interworking
	3.2.1 The branch and exchange instruction
	3.2.2 Changing the assembler mode
	3.2.3 Example ARM header
	3.2.4 ARM architecture v5T
	3.2.5 Labels in Thumb code

	3.3 C and C++ interworking and veneers
	3.3.1 Compiling code for interworking
	3.3.2 Basic rules for interworking
	3.3.3 Using two copies of the same function

	3.4 Assembly language interworking using veneers
	3.4.1 Assembly-only interworking using veneers
	3.4.2 C, C++, and assembly language interworking using veneers

	Mixing C, C++, and Assembly Language
	4.1 Using the inline assemblers
	4.1.1 Invoking the inline assembler
	4.1.2 ARM and Thumb instruction sets
	4.1.3 Differences between the inline assemblers and armasm
	4.1.4 Usage
	4.1.5 Examples

	4.2 Accessing C global variables from assembly code
	4.3 Using C header files from C++
	4.3.1 Including system C header files
	4.3.2 Including your own C header files

	4.4 Calling between C, C++, and ARM assembly language
	4.4.1 General rules for calling between languages
	4.4.2 Information specific to C++
	4.4.3 Examples

	Handling Processor Exceptions
	5.1 About processor exceptions
	5.1.1 The vector table
	5.1.2 Use of modes and registers by exceptions
	5.1.3 Exception priorities

	5.2 Entering and leaving an exception
	5.2.1 The processor response to an exception
	5.2.2 Returning from an exception handler
	5.2.3 The return address and return instruction

	5.3 Installing an exception handler
	5.3.1 Installing the handlers at reset
	5.3.2 Installing the handlers from C

	5.4 SWI handlers
	5.4.1 SWI handlers in assembly language
	5.4.2 SWI handlers in C and assembly language
	5.4.3 Using SWIs in Supervisor mode
	5.4.4 Calling SWIs from an application
	5.4.5 Calling SWIs dynamically from an application

	5.5 Interrupt handlers
	5.5.1 Simple interrupt handlers in C
	5.5.2 Reentrant interrupt handlers
	5.5.3 Example interrupt handlers in assembly language

	5.6 Reset handlers
	5.7 Undefined Instruction handlers
	5.8 Prefetch Abort handler
	5.9 Data Abort handler
	5.10 Chaining exception handlers
	5.10.1 A single extended handler
	5.10.2 Several chained handlers

	5.11 Handling exceptions on Thumb-capable processors
	5.11.1 Thumb processor response to an exception
	5.11.2 The return address
	5.11.3 Determining the processor state

	5.12 System mode

	Writing Code for ROM
	6.1 About writing code for ROM
	6.2 Memory map considerations
	6.2.1 ROM at 0x0
	6.2.2 RAM at 0x0

	6.3 Initializing the system
	6.3.1 Initializing the execution environment
	6.3.2 Initializing the application

	6.4 The reference C example using semihosting
	6.4.1 Memory map
	6.4.2 Sample code

	6.5 Loading the ROM image at address 0
	6.5.1 Memory map
	6.5.2 Scatter-load description file
	6.5.3 Sample code
	6.5.4 Building the example

	6.6 Using both scatter loading and remapping
	6.6.1 Memory map
	6.6.2 Scatter-load description file
	6.6.3 Initialization code
	6.6.4 Building the example
	6.6.5 Additional examples of remapping

	6.7 A semihosted application with interrupt handling
	6.7.1 Memory map
	6.7.2 Building the example
	6.7.3 Sample code

	6.8 An embeddable application with interrupt handling
	6.8.1 Memory map
	6.8.2 Building the example
	6.8.3 Scatter-load description file
	6.8.4 Sample code

	6.9 Using scatter loading with memory-mapped I/O
	6.9.1 Using pointers to access I/O
	6.9.2 Using unions
	6.9.3 Using arrays or structs
	6.9.4 Using scatter loading
	6.9.5 Code efficiency

	6.10 Troubleshooting
	6.10.1 Linker error __semihosting_swi_guard
	6.10.2 Setting $top_of_memory
	6.10.3 Vector table code eliminated
	6.10.4 Errors with scatter-loading description files

	6.11 Measuring code and data size
	6.11.1 Interpreting size information
	6.11.2 Calculating ROM and RAM requirements

	Caches and Tightly Coupled Memories
	7.1 About caches and tightly coupled memory
	7.1.1 About caches
	7.1.2 About tightly coupled memory
	7.1.3 Models of caches and tightly coupled memory
	7.1.4 Cache performance

	7.2 System control coprocessor
	7.3 Memory protection units
	7.3.1 Harvard architecture
	7.3.2 Von Neumann architecture
	7.3.3 Overlapping regions

	7.4 Configuring a PU
	7.4.1 Setting protection region addresses and sizes, and enabling each region
	7.4.2 Setting region cacheable and bufferable flags
	7.4.3 Setting region access permissions
	7.4.4 Configuring core operation

	7.5 Memory management units
	7.5.1 Virtual to physical address mapping
	7.5.2 Memory access permissions and domains
	7.5.3 Cacheable and bufferable flags

	7.6 Configuring an MMU
	7.6.1 Altering the translation table during program execution
	7.6.2 Building the translation table
	7.6.3 Setting the location of the translation table
	7.6.4 Aliasing a region
	7.6.5 Configuring core operation

	7.7 Tightly coupled memory
	7.7.1 ARM966E-S memory map
	7.7.2 Initializing the ARM966E-S
	7.7.3 ARM966E-S warm reset
	7.7.4 ARM966E-S performance issues

	Debug Communications Channel
	8.1 About the Debug Communications Channel
	8.2 Command-line debugging commands
	8.3 Enabling comms channel viewing
	8.3.1 Comms channel viewing in AXD

	8.4 Target transfer of data
	8.5 Polled debug communications
	8.5.1 Viewing EmbeddedICE logic registers
	8.5.2 Target to debugger communication
	8.5.3 Debugger to target communication

	8.6 Interrupt-driven debug communications
	8.7 Access from Thumb state
	8.8 Semihosting

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Numerics
	Symbols

