
ARM® Developer Suite
Version 1.2

Developer Guide
Copyright © 1999-2001 ARM Limited. All rights reserved.
ARM DUI 0056D



 

ARM Developer Suite
Developer Guide

Copyright © 1999-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other 
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

November 2000 C Release 1.1

November 2001 D Release 1.2
ii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Contents
ARM Developer Suite Developer Guide

Preface
About this book ............................................................................................  viii
Feedback ...................................................................................................... xii

Chapter 1 Introduction
1.1 About the ARM Developer Guide ................................................................  1-2
1.2 General programing issues .........................................................................  1-4
1.3 Developing for the ARM ..............................................................................  1-5

Chapter 2 Using the Procedure Call Standard
2.1 About the ARM-Thumb Procedure Call Standard .......................................  2-2
2.2 Register roles and names ...........................................................................  2-4
2.3 The stack ....................................................................................................  2-6
2.4 Parameter passing ......................................................................................  2-9
2.5 Stack limit checking ..................................................................................  2-11
2.6 Read-only position independence .............................................................  2-14
2.7 Read-write position independence ............................................................  2-15
2.8 Interworking between ARM and Thumb states .........................................  2-16
2.9 Floating-point options ................................................................................  2-17

Chapter 3 Interworking ARM and Thumb
3.1 About interworking ......................................................................................  3-2
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. iii



Contents
3.2 Assembly language interworking ................................................................  3-6
3.3 C and C++ interworking and veneers .......................................................  3-11
3.4 Assembly language interworking using veneers ......................................  3-15

Chapter 4 Mixing C, C++, and Assembly Language
4.1 Using the inline assemblers ........................................................................  4-2
4.2 Accessing C global variables from assembly code ..................................  4-14
4.3 Using C header files from C++ .................................................................  4-15
4.4 Calling between C, C++, and ARM assembly language ...........................  4-17

Chapter 5 Handling Processor Exceptions
5.1 About processor exceptions .......................................................................  5-2
5.2 Entering and leaving an exception .............................................................  5-5
5.3 Installing an exception handler ...................................................................  5-9
5.4 SWI handlers ............................................................................................  5-14
5.5 Interrupt handlers .....................................................................................  5-23
5.6 Reset handlers .........................................................................................  5-33
5.7 Undefined Instruction handlers .................................................................  5-34
5.8 Prefetch Abort handler ..............................................................................  5-35
5.9 Data Abort handler ...................................................................................  5-36
5.10 Chaining exception handlers ....................................................................  5-38
5.11 Handling exceptions on Thumb-capable processors ................................  5-40
5.12 System mode ............................................................................................  5-45

Chapter 6 Writing Code for ROM
6.1 About writing code for ROM .......................................................................  6-2
6.2 Memory map considerations ......................................................................  6-4
6.3 Initializing the system .................................................................................  6-7
6.4 The reference C example using semihosting ...........................................  6-11
6.5 Loading the ROM image at address 0 ......................................................  6-14
6.6 Using both scatter loading and remapping ...............................................  6-24
6.7 A semihosted application with interrupt handling  ....................................  6-28
6.8 An embeddable application with interrupt handling ..................................  6-33
6.9 Using scatter loading with memory-mapped I/O .......................................  6-36
6.10 Troubleshooting ........................................................................................  6-43
6.11 Measuring code and data size ..................................................................  6-46

Chapter 7 Caches and Tightly Coupled Memories
7.1 About caches and tightly coupled memory .................................................  7-2
7.2 System control coprocessor .......................................................................  7-4
7.3 Memory protection units .............................................................................  7-5
7.4 Configuring a PU ........................................................................................  7-7
7.5 Memory management units ......................................................................  7-12
7.6 Configuring an MMU .................................................................................  7-16
7.7 Tightly coupled memory ...........................................................................  7-19
iv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Contents
Chapter 8 Debug Communications Channel
8.1 About the Debug Communications Channel ...............................................  8-2
8.2 Command-line debugging commands ........................................................  8-3
8.3 Enabling comms channel viewing ...............................................................  8-4
8.4 Target transfer of data ................................................................................  8-5
8.5 Polled debug communications ....................................................................  8-6
8.6 Interrupt-driven debug communications ....................................................  8-12
8.7 Access from Thumb state .........................................................................  8-13
8.8 Semihosting ..............................................................................................  8-14

Glossary
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. v



Contents
vi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Preface

This preface introduces the ARM Developer Suite (ADS) Developer Guide. It contains 
the following sections:

• About this book on page viii

• Feedback on page xii.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. vii



Preface 
About this book

This book provides tutorial information on writing code targeted at the ARM family of 
processors. 

Intended audience

This book is written for all developers writing code for the ARM. It assumes that you 
are an experienced software developer, and that you are familiar with the ARM 
development tools as described in ADS Getting Started.

Using this book

This book is organized into the following chapters:

 Chapter 1 Introduction 

Read this chapter for an introduction to the ARM Developer Suite (ADS).

Chapter 2 Using the Procedure Call Standard 

Read this chapter for details of how to use the ARM/Thumb® Procedure 
Call Standard. Using this standard makes it easier to ensure that 
separately compiled and assembled modules work together. 

Chapter 3 Interworking ARM and Thumb 

Read this chapter for details of how to change between ARM state and 
Thumb state when writing code for processors that implement the Thumb 
instruction set.

Chapter 4 Mixing C, C++, and Assembly Language 

Read this chapter for details of how to write mixed C, C++, and ARM 
assembly language code. It also describes how to use the ARM inline 
assemblers from C and C++.

Chapter 5 Handling Processor Exceptions 

Read this chapter for details of how to handle the various types of 
exception supported by ARM processors.

Chapter 6 Writing Code for ROM 

Read this chapter for details on building ROM images. These can be used 
in, for example, embedded applications. There are also hints on how to 
avoid the most common errors in writing code for ROM.
viii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Preface 
Chapter 7 Caches and Tightly Coupled Memories 

Read this chapter for a description of caches and tightly coupled memory 
on ARM systems.

Chapter 8 Debug Communications Channel 

Read this chapter for a description of how to use the Debug 
Communications Channel (DCC).

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or option 
name.

monospace italic 

Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

monospace bold 

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate, and for ARM processor 
signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda. 

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. ix



Preface 
ARM publications

This book contains general information on developing applications for the ARM family 
of processors. Refer to the following books in the ADS document suite for information 
on other components:

• ADS Installation and License Management Guide (ARM DUI 0139)

• ADS Assembler Guide (ARM DUI 0068)

• CodeWarrior IDE Guide (ARM DUI 0065)

• ADS Compilers and Libraries Guide (ARM DUI 0067)

• ADS Linker and Utilities Guide (ARM DUI 0151)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• Getting Started (ARM DUI 0064).

The following additional documentation is provided with the ARM Developer Suite:

• *** Set the Book and Collection attributes to a supported combination ***  
(ARM DDI 0100). This is supplied in DynaText and PDF format.

• ARM Applications Library Programmer’s Guide. This is supplied in DynaText 
and PDF format.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in 
install_directory\PDF\specs\ARMELF.pdf.

• ARM Firmware Suite User Guide (ARM DUI 0136). This is supplied in DynaText 
and PDF format.

• ARM Firmware Suite Reference Guide (ARM DUI 0102). This is supplied in 
DynaText and PDF format.

• TIS DWARF 2 specification. This is supplied in PDF format in 
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb Procedure Call Standard specification (SWS ESPC 0002). This is 
supplied in PDF format in install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following documentation for specific information relating to 
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.
x Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Preface 
Other publications

The following book gives general information about the ARM architecture:

• ARM System-on-chip Architecture (second edition), Furber, S., (2000). Addison 
Wesley. ISBN 0-201-67519-6.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. xi



Preface 
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its 
documentation.

Feedback on the ARM Developer Suite

If you have any problems with this book, please contact your supplier. To help them 
provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
xii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 1 
Introduction

This chapter introduces the ADS Developer Guide. It contains the following sections:

• About the ARM Developer Guide on page 1-2

• General programing issues on page 1-4

• Developing for the ARM on page 1-5.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About the ARM Developer Guide

This book contains information that will help you with specific issues when developing 
code for ARM-based processors. In general, the chapters in this book assume that you 
are using the ARM Developer Suite (ADS) to develop your code.

ADS consists of a suite of applications, together with supporting documentation and 
examples, that enable you to write and debug applications for the ARM family of RISC 
processors. You can use ADS to develop, build, and debug C, C++, and ARM assembly 
language programs.

The ADS toolkit consists of the following major components:

• command-line development tools

• GUI development tools

• utilities

• supporting software.

See Further reading on page ix for a list of the ADS documentation.

1.1.1 Example code

The code for many of the examples in this book is located in 
install_directory\examples. In addition, the examples directory contains example code 
that is not described in this book. Read the readme.txt for each example directory for 
more information. The examples are installed in the following directories:

asm This directory contains some examples of ARM assembly language 
programming. The examples are used in the ADS Assembler Guide.

cpp This directory contains some simple C++ examples. In addition, the 
subdirectory rw contains the Rogue Wave manual and tutorial examples.

databort This directory contains design documentation and example code for a 
standard data abort handler.

dcc This directory contains example code that demonstrates how to use the 
Debug Communications Channel. The example is described in Chapter 8 
Debug Communications Channel.

dhry This directory contains source for Dhrystone.

dhryansi This directory contains an ANSI C version of Dhrystone.

explasm This directory contains additional ARM assembly language examples.
1-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Introduction 
inline This directory contains examples that show how to use the inline 
assemblers for the C and C++ compilers. The examples are described in 
Chapter 4 Mixing C, C++, and Assembly Language.

interwork This directory contains examples that show how to interwork between 
ARM code and Thumb code. The examples are described in Chapter 3 
Interworking ARM and Thumb.

mmugen This directory contains the source and documentation for the MMUgen 
utility. This utility can generate MMU pagetable data from a rules file that 
describes the virtual to physical address translation required (see 
Chapter 7 Caches and Tightly Coupled Memories).

picpid This directory contains an example of how to write position-independent 
code. See the readme.txt for a detailed description.

embedded This directory contains source code for the examples used in Chapter 6 
Writing Code for ROM. The examples are targeted at the ARM 
Integrator™ board.

sorts This directory contains example code that compares an insertion sort, 
shell sort, and the quick sort used in the ARM C libraries.

swi This directory contains an example SWI handler.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-3



Introduction 
1.2 General programing issues

The ARM family of processors are RISC processors. Many of the programing strategies 
that give efficient code are generic to RISC processors. For example, under the 
ARM-Thumb Procedure Call Standard (ATPCS) the ARM compilers pass the first four 
integer-sized function parameters in registers r0 to r3. Additional parameters are passed 
on the stack. This means that:

• it is more efficient to pass large parameters, such as structs, by reference

• it is more efficient to restrict functions to four or fewer integer-sized parameters, 
where possible.

In addition, as with many RISC processors, the ARM is designed to access aligned data. 
Accesses to unaligned data can be expensive in code size or performance. In some cases 
they do not work as expected. See the ARM Frequently Asked Questions list at 
http://www.arm.com for more information.

If you are porting legacy code from a CISC architecture it is recommended that you 
become familiar with general RISC programing strategies.
1-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Introduction 
1.3 Developing for the ARM

This book gives information and example code for some of the most common ARM 
programing tasks. The following sections summarize the subject of each chapter:

• Using the Procedure call standards

• Interworking ARM and Thumb code

• Mixing C, C++, and Assembly Language on page 1-6

• Handling Processor Exceptions on page 1-6

• Writing Code for ROM on page 1-7

• Caches and tightly coupled memory on page 1-8

• Using the Debug Communications Channel on page 1-8.

1.3.1 Using the Procedure call standards

The ARM-Thumb procedure call standard defines register usage and stack conventions 
that must be followed to enable separately compiled and assembled modules to work 
together. There are a number of variants on the base standard. The ARM C and C++ 
compilers always generate code that conforms to the selected ATPCS variant. The 
linker selects an appropriate standard C or C++ library to link with, if required. 

When developing code for the ARM, you must select an appropriate ATPCS variant. 
For example, if you are writing code that interworks between ARM and Thumb state 
you must select the -apcs /interwork option in the compiler and assembler.

If you are writing code in C or C++, you must ensure that you have selected compatible 
ATPCS options for each compiled module.

If you are writing your own assembly language routines, you must ensure that you 
conform to the appropriate ATPCS variant. See Chapter 2 Using the Procedure Call 
Standard for more information.

If you are mixing C and assembly language, ensure that you understand the ATPCS 
implications.

1.3.2 Interworking ARM and Thumb code

If you are writing code for ARM processors that support the Thumb 16-bit instruction 
set, you can mix ARM and Thumb code as required. If you are writing C or C++ code 
you must compile with the -atpcs /interwork option. The linker detects when an ARM 
function is called from Thumb state, or a Thumb function is called from ARM state and 
alters call and return sequences, or inserts interworking veneers to change processor 
state as necessary.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-5



Introduction 
If you are writing assembly language code you must ensure that you comply with the 
interworking ATPCS variant. There are a number of ways to change processor state, 
depending on the target architecture version. See Chapter 3 Interworking ARM and 
Thumb for more information.

1.3.3 Mixing C, C++, and Assembly Language

You can mix separately compiled and assembled C, C++, and ARM assembly language 
modules in your program. You can use the inline assemblers in the C and C++ compilers 
to write small assembly language routines within your C or C++ code. However, there 
are a number of restrictions to the assembly language code you can write if you are 
using the inline assemblers. These are described in Using the inline assemblers on 
page 4-2. In addition, Chapter 4 Mixing C, C++, and Assembly Language gives general 
guidelines and examples of how to call between C, C++, and assembly language 
modules. 

1.3.4 Handling Processor Exceptions

The ARM processor recognizes seven exception types:

Reset Occurs when the processor reset pin is asserted. This exception is only 
expected to occur for signalling power-up, or for resetting as if the 
processor has just powered up. A soft reset can be done by branching to 
the reset vector (0x0000).

Undefined Instruction 

Occurs if neither the processor, or any attached coprocessor, recognizes 
the currently executing instruction.

Software Interrupt (SWI) 

This is a user-defined interrupt instruction. It allows a program running 
in User mode, for example, to request privileged operations that run in 
Supervisor mode, such as an RTOS function.

Prefetch Abort 

Occurs when the processor attempts to execute an instruction that has 
been prefetched from an illegal address. An illegal address is one at 
which memory does not exist, or one that the memory management 
subsystem has determined is inaccessible to the processor in its current 
mode.

Data Abort Occurs when a data transfer instruction attempts to load or store data at 
an illegal address.
1-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Introduction 
Interrupt (IRQ) 

Occurs when the processor external interrupt request pin is asserted 
(LOW) and IRQ interrupts are enabled (the I bit in the CPSR is clear).

Fast Interrupt (FIQ) 

Occurs when the processor external fast interrupt request pin is asserted 
(LOW) and FIQ interrupts are enabled (the F bit in the CPSR is clear). 
This exception is typically used where interrupt latency must be kept to a 
minimum.

In general, if you are writing an application such as an embedded application that does 
not rely on an operating system to service exceptions, you must write handlers for each 
exception type.

In cases where an exception type can have more than one source, for example SWI or 
IRQ interrupts, you can chain exception handlers for each source. See Chaining 
exception handlers on page 5-38 for more information.

On Thumb-capable processors, the processor switches to ARM state when an exception 
is taken. You can either write your exception handler in ARM code, or use a veneer to 
switch to Thumb state. See Handling exceptions on Thumb-capable processors on 
page 5-40 for more information.

1.3.5 Writing Code for ROM

Many applications written for ARM-based systems are embedded applications that are 
contained in ROM and execute on reset. There are a number of factors that you must 
consider when writing embedded operating systems, or embedded applications that 
execute from reset without an operating system, including:

• address remapping, for example initializing with ROM at address 0, then 
remapping RAM to address 0

• initializing the environment and application

• linking an embedded executable image to place code and data in specific locations 
in memory.

The ARM core usually begins executing instructions from address 0 at reset. For an 
embedded system, this means that there must be ROM at address 0 when the system is 
reset. Typically, however, ROM is slow compared to RAM, and often only 8 or 16 bits 
wide. This affects the speed of exception handling. Having ROM at address 0 means 
that the exception vectors cannot be modified. A common strategy is to remap ROM to 
RAM and copy the exception vectors from ROM to RAM after startup. See Memory 
map considerations on page 6-4 for more information.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-7



Introduction 
After reset, an embedded application or operating system must initialize the system, 
including:

• initializing the execution environment, such as exception vector, stacks, and I/O 
peripherals

• initializing the application, for example copying initial values of nonzero writable 
data to the writable data region and zeroing the ZI data region.

See Initializing the system on page 6-7 for more information.

Embedded systems often implement complex memory configurations. For example, an 
embedded system might use fast, 32-bit RAM for performance-critical code, such as 
interrupt handlers and the stack, slower 16-bit RAM for application RW data, and ROM 
for normal application code. You can use the linker scatter loading mechanism to 
construct executable images suitable for complex systems. For example, a scatter load 
description file can specify the load address and execution address of individual code 
and data regions. See Chapter 6 Writing Code for ROM for a series of worked examples, 
and for information on other issues that affect embedded applications, such as 
semihosting.

1.3.6 Caches and tightly coupled memory

Many ARM cores such as ARM920T have caches integrated onto the same chip as the 
CPU. Some ARM cores such as ARM966E-S have tightly coupled memory integrated 
onto the same chip as the CPU.

Both caches and tightly coupled memory can improve system performance and reduce 
power consumption by reducing off-chip memory accesses. Tightly coupled memory 
has more predictable real-time behavior, and requires less area of silicon than caches. 
Caches can provide improved performance over the whole address range.

See Chapter 7 Caches and Tightly Coupled Memories for more information.

1.3.7 Using the Debug Communications Channel

The EmbeddedICE® logic in ARM cores such as ARM7TDMI® and ARM9TDMI™ 
supports a debug communication channel. This enables data to be passed between the 
target and the host debugger using the JTAG port and a protocol converter such as 
Multi-ICE®, without stopping the program flow or entering debug state. See Chapter 8 
Debug Communications Channel for more information.
1-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 2 
Using the Procedure Call Standard

This chapter describes how to use the ARM-Thumb Procedure Call Standard (ATPCS). 
Adhere to the ATPCS to ensure that separately compiled and assembled modules can 
work together. The chapter contains the following sections: 

• About the ARM-Thumb Procedure Call Standard on page 2-2

• Register roles and names on page 2-4

• The stack on page 2-6

• Parameter passing on page 2-9

• Read-only position independence on page 2-14

• Read-write position independence on page 2-15

• Interworking between ARM and Thumb states on page 2-16

• Floating-point options on page 2-17.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-1



Using the Procedure Call Standard 
2.1 About the ARM-Thumb Procedure Call Standard

Adherence to the ARM-Thumb Procedure Call Standard (ATPCS) ensures that 
separately compiled or assembled subroutines can work together. This chapter 
describes how to use the ATPCS.

ATPCS has several variants. This chapter gives information enabling you to choose 
which variant to use.

Many details of the standard are the same, whichever variant you use. See:

• Register roles and names on page 2-4

• The stack on page 2-6

• Parameter passing on page 2-9.

2.1.1 ATPCS variants

The variants comprise a base standard modified by options that you can select 
independently. Code conforming to the base standard runs faster than, and occupies less 
memory than, code conforming to other variants. However, code conforming to the base 
standard does not provide for:

• interworking between ARM state and Thumb state

• position independence of either data or code

• re-entry to routines with independent data for each invocation

• stack checking.

The compiler or assembler sets attributes in the ELF object file which record the variant 
you have chosen. In general, you must choose one variant and then use it for all 
subroutines that must work together. Exceptions to this rule are described in the text.

The options are dealt with under the following headings:

• Stack limit checking on page 2-11

• Read-only position independence on page 2-14

• Read-write position independence on page 2-15

• Interworking between ARM and Thumb states on page 2-16

• Floating-point options on page 2-17.

2.1.2 ARM C libraries

There are several variants of the ARM C libraries (see ADS Compilers and Libraries 
Guide). The linker selects a variant to link with your object files. It selects the best 
variant compatible with the ATPCS options recorded in your object files. See the linker 
chapter in ADS Linker and Utilities Guide.
2-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.1.3 Conformance to the ATPCS

Routines compiled using the ADS compilers conform to the selected variant of the 
ATPCS.

You are responsible for ensuring that routines written in assembly language conform to 
the selected variant of the ATPCS.

To conform to the ATPCS, an assembly language routine must:

• follow all details of the standard at publicly visible interfaces

• follow the ATPCS rules of stack usage at all times

• be assembled with the -apcs options selected.

2.1.4 Processes and the memory model

ATPCS applies to a single thread of execution or process. The memory state of a process 
is defined by the contents of the processor registers and contents of the memory that it 
can address.

A process can address some or all of these types of memory:

• Read-only memory.

• Statically-allocated read-write memory.

• Dynamically-allocated read-write memory. This is called heap memory.

• Stack memory. See The stack on page 2-6.

A process must not alter the memory state of another process unless the two processes 
are specifically designed to cooperate.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-3



Using the Procedure Call Standard 
2.2 Register roles and names

The ATPCS specifies the registers to use for particular purposes.

2.2.1 Register roles

The following register usage applies in all variants of the ATPCS except where 
otherwise stated. To comply with the ATPCS you must follow these rules:

• Use registers r0-r3 to pass parameter values into routines, and to pass result values 
out. You can refer to r0-r3 as a1-a4 to make this usage apparent. See Parameter 
passing on page 2-9. Between subroutine calls you can use r0-r3 for any purpose. 
A called routine does not have to restore r0-r3 before returning. A calling routine 
must preserve the contents of r0-r3 if it needs them again.

• Use registers r4-r11 to hold the values of a routine’s local variables. You can refer 
to them as v1-v8 to make this usage apparent. In Thumb state, in most instructions 
you can only use registers r4-r7 for local variables.

A called routine must restore the values of these registers before returning, if it 
has used them.

• Register r12 is the intra-call scratch register, ip. It is used in this role in procedure 
linkage veneers, for example interworking veneers. Between procedure calls you 
can use it for any purpose. A called routine does not need to restore r12 before 
returning.

• Register r13 is the stack pointer, sp. You must not use it for any other purpose. 
The value held in sp on exit from a called routine must be the same as it was on 
entry.

• Register r14 is the link register, lr. If you save the return address, you can use r14 
for other purposes between calls.

• Register r15 is the program counter, pc. It cannot be used for any other purpose.
2-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.2.2 Register names

Table 2-1 lists the defined roles of the processor registers, and associated names. These 
names and their synonyms are predefined in the assembler. The compiler uses the 
special names and the basic register names when generating assembler language.

In addition, s0-s31, d0-d15, and f0-f31 are predefined names for registers in 
floating-point coprocessors. See The VFP architecture on page 2-18 and The FPA 
architecture on page 2-20 for more information.

Table 2-1 Register roles and names in ATPCS

Register Synonym Special Role in the procedure call standard

r15 - pc Program counter.

r14 - lr Link register.

r13 - sp Stack pointer.

r12 - ip Intra-procedure-call scratch register.

r11 v8 - ARM-state variable register 8.

r10 v7 sl ARM-state variable register 7. Stack limit pointer 
in stack-checked variants.

r9 v6 sb ARM-state variable register 6. Static base in 
RWPI variants.

r8 v5 - ARM-state variable register 5.

r7 v4 - Variable register 4.

r6 v3 - Variable register 3.

r5 v2 - Variable register 2.

r4 v1 - Variable register 1.

r3 a4 - Argument/result/scratch register 4.

r2 a3 - Argument/result/scratch register 3.

r1 a2 - Argument/result/scratch register 2.

r0 a1 - Argument/result/scratch register 1.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-5



Using the Procedure Call Standard 
2.3 The stack

This section describes how to use the stack in the base standard. See also Stack limit 
checking on page 2-11.

ATPCS specifies:

• a full, descending stack

• eight-byte stack alignment at all external interfaces.

2.3.1 Stack terminology

The following stack-related terms are used in ATPCS:

The stack pointer Addresses the last value written to the stack (pushed).

The stack base Is the address of the top of the stack, from which the stack grows 
downwards. The highest location actually used by the stack is the 
first word below the stack base.

The stack limit Is the lowest address on the stack that the current process is 
allowed to use.

The used stack Is the region of memory between the stack base and the stack 
pointer. It includes the stack pointer but not the stack base.

The unused stack Is the region of memory between the stack pointer and the stack 
limit. It includes the stack limit but not the stack pointer.

Stack frames Are regions of memory allocated on the stack by routines for 
saving registers and holding local variables.

A process might, or might not, have access to the current values of the stack base and 
stack limit.

An interrupt handler can use the stack of the process it interrupts. In this case, it is the 
responsibility of the programmer to ensure that stack limits are not exceeded.
2-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
Figure 2-1 Stack memory layout

2.3.2 Stack unwinding

If you compile with the -g command line option, the resulting object file contains 
DWARF2 debug frame information. The debuggers use this information to unwind the 
stack when necessary during debug. This allows you to view the stack backtrace in a 
debugger

In assembly language, it is your responsibility to describe your stack frames using FRAME 
directives. The assembler uses these to generate DWARF2 debug frame information. 
See the Writing ARM and Thumb Assembly Language, and Directives Reference 
chapters in ADS Assembler Guide.

��������	


��������
��

�����������
�

�	
��	����

���	
��	����

�����
���

	
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-7



Using the Procedure Call Standard 
2.3.3 Eight-byte alignment

For multiple transfers on some systems, eight-byte alignment of addresses can improve 
memory access speed. For LDRD and STRD instructions on ARMv5TE processors, 8-byte 
alignment is required.

Compiler-generated object files preserve 8-byte alignment of the stack at all external 
interfaces. The compilers set a build attribute to indicate this to the linker.

To comply with the ATPCS in assembly language, unless your object file contains no 
external calls, you must:

• Ensure that 8-byte alignment of the stack is preserved at all external interfaces. 
(The stack pointer must always move by an even number of words between entry 
to your code and any external call from your code.)

• Use the PRESERVE8 directive to inform the linker that 8-byte alignment is preserved 
(see the Directives Reference chapter in ADS Assembler Guide).
2-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.4 Parameter passing

A routine with a variable number of arguments is variadic. A routine with a fixed 
number of arguments is nonvariadic. There are different rules about passing parameters 
to variadic and to nonvariadic routines.

This section describes the base standard. For additional information relating to 
floating-point options, see Floating-point options on page 2-17.

2.4.1 Nonvariadic routines

Parameter values are passed to a nonvariadic routine in the following way:

1. The first integer arguments are allocated to r0-r3 in order (but see Allocation of 
long integers). 

2. Remaining parameters are allocated to the stack in order (but see Allocation of 
long integers).

Warning
 Stack accesses are costly in code size and execution speed. Keep the number of 

parameters less than five if possible.

Allocation of long integers

An integer parameter longer than 32 bits, for example a long long, might be allocated 
partly to a register, and partly to the stack. In this case the part allocated to the stack is 
allocated before any FP values, even if this does not correspond to the order in the 
parameter list.

Allocation of floating-point numbers

If your system has floating point hardware, FP parameters are allocated to FP registers 
as follows:

1. Each FP parameter is examined in turn.

2. For each parameter, the available set of FP registers is examined.

3. If one is available, the lowest-numbered, contiguous set of FP registers large 
enough for the parameter is allocated to the parameter.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-9



Using the Procedure Call Standard 
2.4.2 Variadic routines

Parameter values are passed to a variadic routine in integer registers a1-a4, and on the 
stack if necessary (a1-a4 are synonyms for r0-r3).

The order of the words used is as if the parameter values were stored in consecutive 
memory words and then transferred to:

1. a1-a4, a1 first.

2. The stack, lowest address first. (This means that they are pushed onto the stack in 
reverse order.)

Note
 As a consequence, a floating-point value might be passed in integer registers, on the 
stack, or split between integer registers and the stack.

2.4.3 Result return

A function can return:

• A one-word integer value in a1.

• A two to four-word integer value in a1-a2, a1-a3 or a1-a4.

• A floating-point value in f0, d0, or s0.

• A compound floating-point value (such as complex) in f0-fN, or d0-dN. The 
maximum value of N depends on the selected floating-point architecture (see 
Floating-point options on page 2-17).

• A longer value must be returned indirectly, in memory.
2-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.5 Stack limit checking

Select the software stack limit checking (/swst) option unless the maximum amount of 
stack memory required by your complete program can be accurately calculated at the 
design stage.

Select the no software stack limit checking (/noswst) option only if you can accurately 
calculate, at the design stage, the maximum amount of stack memory that your complete 
program requires. This is the default.

It is possible to write assembly code in such a way that stack limit checking is irrelevant. 
The code in a file might not require stack limit checking, but be compatible with other 
code assembled either /swst or /noswst. Use the software stack limit checking not 
applicable (/swstna) option in this case.

2.5.1 Rules for stack limit checked code

In the stack limit checked variants of the ATPCS:

• sl must point at least 256 bytes above the lowest usable address in the stack.

Note
 If an interrupt handler can use the User mode stack, you must allow sufficient 

space for it, between sl and the lowest usable address in the stack, in addition to 
the 256 bytes.

• sl must not be altered by code compiled or assembled with stack limit checking 
selected. (sl is altered by run-time support code).

• The value held in sp must always be greater than or equal to the value in sl.

2.5.2 Register usage with stack limit checking

You must not alter r10, or restore it, in routines assembled or compiled with the stack 
checking option selected. Register r10 is the stack limit pointer, sl.

In all other respects the usage of registers is the same with or without stack limit 
checking (see Register roles and names on page 2-4).

2.5.3 Stack checking in C and C++

If you select the software stack limit checking (/swst) option, the compilers generate 
object code that performs stack checking.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-11



Using the Procedure Call Standard 
2.5.4 Stack checking in assembly language

If you select the software stack checking (/swst) option for your assembly code, it is 
your responsibility to write code that performs stack checking.

A leaf routine is a routine that does not call any other subroutine.

There are three cases to consider:

• Leaf routine using less than 256 bytes of stack

• Nonleaf routine using less than 256 bytes of stack

• Routine using more than 256 bytes of stack on page 2-13.

For this purpose, leaf routines include routines in which every call is a tail call.

Leaf routine using less than 256 bytes of stack

A leaf routine that uses less than 256 bytes of stack does not need to check the stack 
limit. This is a consequence of the rules above (see Rules for stack limit checked code 
on page 2-11).

For this purpose, a leaf routine can be a combination of routines with a total stack usage 
less than 256 bytes.

Nonleaf routine using less than 256 bytes of stack

A nonleaf routine that uses less than 256 bytes of stack can use a limit-checking 
sequence such as the following:

    SUB     sp, sp, #size         ; ARM code version
    CMP     sp, sl
    BLLO    __ARM_stack_overflow

or in Thumb code:

    ADD     sp, #-size            ; Thumb code version
    CMP     sp, sl
    BLLO    __Thumb_stack_overflow

Note
 The names __ARM_stack_overflow and __Thumb_stack_overflow are illustrative and do not 
correspond to any actual implementation.
2-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
Routine using more than 256 bytes of stack

In this case, a new value of sp must be proposed to the limit-checking code using a 
sequence such as the following:

    SUB     ip, sp, #size           ; ARM code version
    CMP     ip, sl
    BLLO    __ARM_stack_overflow

or in Thumb code:

    LDR     r7, #-size              ; Thumb code version
    ADD     r7, sp
    CMP     r7, sl
    BLLO    __Thumb_stack_overflow

This is necessary to ensure that sp cannot become less than the lowest usable address in 
the stack.

Note
 The names __ARM_stack_overflow and __Thumb_stack_overflow are illustrative and do not 
correspond to any actual implementation.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-13



Using the Procedure Call Standard 
2.6 Read-only position independence

A program is Read-Only Position-Independent (ROPI) if all its read-only segments are 
position independent.

An ROPI segment is often position-independent code (PIC), but could be read-only 
data, or a combination of PIC and read-only data.

Select the ROPI option to avoid committing yourself to having to load your code in a 
particular location in memory. This is particularly useful for routines that are:

• loaded in response to run-time events

• loaded into memory with different combinations of other routines in different 
circumstances

• mapped at different addresses during their execution.

2.6.1 Register usage with ROPI

The usage of registers is the same with or without ROPI (see Register roles and names 
on page 2-4).

2.6.2 Writing code for ROPI

When you are writing code for ROPI:

• Every reference from code in an ROPI segment to a symbol in the same ROPI 
segment must be pc-relative. ATPCS does not define any other base register for a 
read-only segment. An address in an ROPI segment cannot be stored in an ROPI 
segment.

• Every reference from code in an ROPI segment to a symbol in a different ROPI 
segment must be pc-relative. The two segments must be fixed relative to each 
other.

• Every other reference from an ROPI segment must be to either:

— an absolute address

— an sb-relative reference to writable data (see Read-write position 
independence on page 2-15).

• A read-write word that addresses a symbol in an ROPI segment must be adjusted 
whenever the ROPI segment is moved.
2-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.7 Read-write position independence

A program is Read-Write Position-Independent (RWPI) if all its read-write segments 
are position independent.

An RWPI segment is usually position-independent data (PID).

Select the RWPI option to avoid committing yourself to a particular location of data in 
memory. This is particularly useful for data that must be multiply instantiated for 
reentrant routines.

2.7.1 Reentrant routines

A reentrant routine can be threaded by several processes at the same time. Each process 
has its own copy of the read-write segments of the routine. Each copy is addressed by a 
different value of the static base register.

2.7.2 Register usage with RWPI

Register r9 is the static base, sb. It must point to the base address of the appropriate static 
data segments whenever you call any externally visible routine.

You can use r9 for other purposes in a routine that does not use sb. If you do this you 
must save the contents of sb on entry to your routine and restore it before exit. You must 
also restore it before any call to an external routine.

In all other respects the usage of registers is the same with or without RWPI (see 
Register roles and names on page 2-4).

2.7.3 Position-independent data addressing

An RWPI segment can be repositioned until it is first used. The address of a symbol in 
an RWPI segment is calculated as follows:

1. The linker calculates a read-only offset from a fixed location in the segment. By 
convention, the fixed location is the first byte of the lowest addressed RWPI 
segment of the program.

2. At runtime, this is used as an offset added to the contents of the static base register, 
sb.

2.7.4 Writing assembly language for RWPI

Construct references from a read-only segment to the RWPI segment by adding a fixed 
(read-only) offset to the value of sb (see DCDO in the Directives Reference chapter in ADS 
Assembler Guide).
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-15



Using the Procedure Call Standard 
2.8 Interworking between ARM and Thumb states

Select the /interwork option when compiling or assembling code if you want:

• ARM routines to be able to return to a Thumb state caller

• Thumb routines to be able to return to an ARM state caller

• the linker to provide the code to change state when calling from ARM to Thumb 
or from Thumb to ARM.

Select the/nointerwork option when compiling or assembling code if either:

• your system does not use Thumb

• you provide the assembler code to handle all changes of state.

The default is:

• /interwork if you are compiling or assembling for an ARM v5T processor

• /nointerwork otherwise.

If you select the interworking option, you can call a routine in a different module 
without considering which instruction set it uses. If necessary, the linker inserts an 
interworking call veneer, or patches the call site. This works for compiled or assembled 
code.

See Chapter 3 Interworking ARM and Thumb for detailed information.

2.8.1 Register usage with interworking

The usage of registers is the same with or without interworking (see Register roles and 
names on page 2-4).
2-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.9 Floating-point options

The ATPCS supports two different floating-point hardware architectures and instruction 
sets:

• The VFP architecture (see The VFP architecture on page 2-18).

• The FPA architecture (see The FPA architecture on page 2-20). This is for 
backwards compatibility only.

Code for one architecture cannot be used on the other architecture.

The ADS compilers and assembler have six floating-point options:

• -fpu VFP

• -fpu FPA

• -fpu softVFP

• -fpu softVFP+VFP

• -fpu softFPA

• -fpu none.

If your target system has floating-point hardware, choose VFP, softVFP+VFP, or FPA.

Use softVFP+VFP if your system has floating-point hardware, and you want to use 
floating-point library routines from Thumb code. 

If your target system does not have floating-point hardware:

• if you require compatibility with an FPA system, or objects produced under SDT, 
choose softFPA

• if the module you are compiling or assembling does not use floating-point 
arithmetic, and you require compatibility with both FPA and VFP systems, 
choose none

• otherwise, choose softVFP. This is the default.

See also No floating-point hardware on page 2-21.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-17



Using the Procedure Call Standard 
2.9.1 The VFP architecture

The VFP architecture has sixteen double-precision registers, d0-d15. Each 
double--precision register can be used as two single-precision registers. As 
single-precision registers they are called s0-s31. d5 for example, is the same as s10 and 
s11.

The VFP architecture does not support extended precision.

Vector and scalar modes

The VFP architecture has two modes of operation:

• Scalar mode

• Vector mode.

The ATPCS applies only to scalar mode operation. On entry to and exit from any 
publicly visible routine conforming to the ATPCS the vector length and vector stride 
must both be set to 1.

Register usage with VFP

You can use the first eight double-precision registers, d0-d7:

• to pass floating-point values into a routine

• to pass floating-point values out of a routine

• as scratch registers within a routine.

Each double-precision register can hold one double-precision value or two 
single-precision values. Floating-point argument values are assigned to floating-point 
registers by assigning each value in turn to the next free register of the appropriate type.

For example, in passing:

1.0 (double) 2.0 (double) 3.0 (single) 4.0 (double) 5.0 (single) 6.0 (single)

the assignment of parameter values to registers looks like:

�������	��


���
�����	��


	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	��

� � � � � � � �� � � �

��
����	��
 �� �� �� �� �� ��
2-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
To comply with ATPCS, if you use registers d8-d15 within a routine, you must save 
their values on entry and restore them before exit. You can save them using a single 
FSTMX instruction and restore them using a single FLDMX instruction. They are saved and 
restored as bit patterns, without interpretation as single or double-precision numbers. N 
single-precision values saved occupy N+1 words.

Format of VFP values

Single-precision and double-precision values conform to the IEEE 754 standard 
formats. Double-precision values are treated as true 64-bit values:

• in little-endian mode, the more significant word of a two-word double-precision 
value, containing the exponent, has the higher address

• in big-endian mode, the more significant word has the lower address.

Note
 Little-endian double-precision values in VFP are pure little-endian. This is different 
from FPA architecture.

Big-endian double-precision values are the same, pure big-endian, in both VFP and FPA 
architectures.

IEEE rounding modes and exception enable flags

The ATPCS does not specify any constraint on the state of these on entry to, or exit 
from, conforming routines.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-19



Using the Procedure Call Standard 
2.9.2 The FPA architecture

The FPA architecture has eight floating-point registers, f0-f7. Each register can hold a 
single-precision, double-precision, or extended-precision value.

Register usage with FPA

You can use the first four floating-point registers, f0-f3:

• to pass floating-point values into a routine

• to pass floating-point results out of a routine

• as scratch registers within a routine.

To comply with ATPCS, if you use floating-point registers f4-f7 within a routine, you 
must save their values on entry and restore them before exit. You can save them using a 
single SFM instruction and restore them using a single LFM instruction. Each value saved 
occupies three words.

Format of FPA values

Single-precision and double-precision values conform to the IEEE 754 standard 
formats. The most significant word of a floating-point value, containing the exponent, 
has the lowest memory address. This is the same whether the byte order within words 
is big-endian or little-endian.

Note
 Little-endian double-precision values are neither pure little-endian nor pure big-endian.

IEEE rounding modes and exception enable flags

The ATPCS does not specify any constraint on the state of these on entry to, or exit 
from, conforming routines.
2-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Using the Procedure Call Standard 
2.9.3 No floating-point hardware

The only difference between softVFP and softFPA is the order of words in 
double-precision values in little-endian mode (see Format of VFP values on page 2-19 
and Format of FPA values on page 2-20).

If you specify -fpu none, you cannot use floating-point values.

Register usage with softVFP and softFPA

Each floating-point argument is converted to a bit pattern in one or two integer words 
as if by storing to memory. The resulting integer values are passed as described in 
Parameter passing on page 2-9.

A single-precision floating-point result is returned as a bit pattern in r0.

A double-precision floating-point result is returned in r0 and r1. r0 contains the word 
corresponding to the lower-addressed word of the representation of the value in 
memory.

2.9.4 softVFP+VFP

Thumb code cannot pass floating-point values in floating-point registers, as Thumb 
does not have coprocessor instructions.

If you have a VFP coprocessor and wish to use floating-point routines from Thumb 
code, select the -fpu softVFP+VFP option.

This instructs the compilers to generate code using the same parameter passing rules as 
for -fpu softVFP. The C library floating-point routines use VFP instructions from ARM 
state.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-21



Using the Procedure Call Standard 
2-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 3 
Interworking ARM and Thumb

This chapter explains how to change between ARM state and Thumb state when writing 
code for processors that implement the Thumb instruction set. It contains the following 
sections: 

• About interworking on page 3-2

• Assembly language interworking on page 3-6

• C and C++ interworking and veneers on page 3-11

• Assembly language interworking using veneers on page 3-15.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-1



Interworking ARM and Thumb 
3.1 About interworking

You can mix ARM and Thumb code as you wish, provided that the code conforms to 
the requirements of the ARM/Thumb Procedure Call Standard. The ARM compilers 
always create code that conforms to this standard. If you are writing ARM assembly 
language modules you must ensure that your code conforms.

The ARM linker detects when an ARM function is being called from Thumb state, or a 
Thumb function is being called from ARM state. The ARM linker alters call and return 
instructions, or inserts small code sections called veneers, to change processor state as 
necessary.

ARM architecture v5T provides methods of changing processor state without using any 
extra instructions. There is normally no cost associated with interworking on ARM 
architecture v5T processors.

If you are linking several source files together, all your files must use compatible 
ATPCS options. If incompatible options are detected, the linker will produce an error 
message.
3-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3.1.1 When to use interworking

When you write code for a Thumb-capable ARM processor, you will probably write 
most of your application to run in Thumb state. This gives the best code density. With 
8-bit or 16-bit wide memory, it also gives the best performance. However, you might 
want parts of your application to run in ARM state for reasons such as: 

Speed Some parts of an application might be speed critical. These sections 
might be more efficient running in ARM state than in Thumb state. In 
some circumstances, a single ARM instruction can do more than the 
equivalent Thumb instruction. 

Some systems include a small amount of fast 32-bit memory. ARM code 
can be run from this without the overhead of fetching each instruction 
from 8-bit or 16-bit memory.

Functionality 

Thumb instructions are less flexible than their ARM equivalents. Some 
operations are not possible in Thumb state. For example, you cannot 
enable or disable interrupts, or access coprocessors. A state change is 
required in order to carry out these operations.

Exception handling 

The processor automatically enters ARM state when a processor 
exception occurs. This means that the first part of an exception handler 
must be coded with ARM instructions, even if it re-enters Thumb state to 
carry out the main processing of the exception. At the end of such 
processing, the processor must be returned to ARM state to return from 
the handler to the main application.

Standalone Thumb programs 

A Thumb-capable ARM processor always starts in ARM state. To run 
simple Thumb assembly language programs under the debugger, add an 
ARM header that carries out a state change to Thumb state and then calls 
the main Thumb routine. See Example ARM header on page 3-8 for an 
example.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-3



Interworking ARM and Thumb 
3.1.2 Using the /interwork option

The option -apcs /interwork is available for all compilers and assemblers. If you set this 
option:

• The compiler or assembler records an interworking attribute in the object file.

• The linker provides interworking veneers for subroutine entry.

• In assembly language, you must write function exit code that returns to the 
instruction set state of the caller, for example BX LR.

• In C or C++, the compiler creates function exit code that returns to the instruction 
set state of the caller

• In C or C++, the compiler uses BX instructions for indirect or virtual calls.

Use the /interwork option if your object file contains:

• Thumb subroutines that might need to return to ARM code

• ARM subroutines that might need to return to Thumb code

• Thumb subroutines that might make indirect or virtual calls to ARM code

• ARM subroutines that might make indirect or virtual calls to Thumb code.

Otherwise, you do not need to use the /interwork option. For example, your object file 
may contain any of the following without requiring /interwork:

• Thumb code that may be interrupted by an exception. The exception forces the 
processor into ARM state so no veneer is needed.

• Exception handling code that may handle exceptions from Thumb code. No 
veneer is needed for the return.

• Thumb code that calls ARM subroutines in other files (the interworking return 
sequences belong to the callee, not the caller).

• ARM code that calls Thumb subroutines in other files (the interworking return 
sequences belong to the callee, not the caller).
3-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3.1.3 Detecting interworking calls

The linker generates an error if it detects a direct ARM/Thumb interworking call where 
the called routine is not built for interworking. You must rebuild the called routine for 
interworking.

For example, Example 3-1 shows the error that is produced if the ARM routine in 
Example 3-3 on page 3-12 is compiled and linked without the -apcs /interwork option.

Example 3-1

Error: L6239E: Cannot call ARM symbol 'arm_function' in non-interworking object
armsub.o from THUMB code in thumbmain.o(.text)

These types of error indicate that an ARM-to-Thumb or Thumb-to-ARM interworking 
call has been detected from the object module object to the routine symbol, but the 
called routine has not been compiled for interworking. You must recompile the module 
that contains the symbol and specify -apcs /interwork.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-5



Interworking ARM and Thumb 
3.2 Assembly language interworking

In an assembly language source file, you can have several areas (these correspond to 
ELF sections). Each area can contain ARM instructions, Thumb instructions, or both.

You can use the linker to fix up calls to, and returns from, routines that use a different 
instruction set from the caller. To do this, use BL to call the routine (see Assembly 
language interworking using veneers on page 3-15).

If you prefer, you can write your code to make the instruction set changes explicitly. In 
some circumstances you can write smaller or faster code by doing this.

The following instructions perform the processor state changes:

• BX, see The branch and exchange instruction on page 3-7

• BLX, LDR, LDM, and POP (ARM architecture v5 and above only), see ARM 
architecture v5T on page 3-10.

The following directives instruct the assembler to assemble instructions from the 
appropriate instruction set (see Changing the assembler mode on page 3-8):

• CODE16

• CODE32.
3-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3.2.1 The branch and exchange instruction

The BX instruction branches to the address contained in a specified register. The value 
of bit 0 of the branch address determines whether execution continues in ARM state or 
Thumb state. See ARM architecture v5T on page 3-10 for additional instructions 
available with ARM architecture v5.

Bit 0 of an address can be used in this way because:

• all ARM instructions are word-aligned, so bits 0 and 1 of the address of any ARM 
instruction are unused

• all Thumb instructions are halfword-aligned, so bit 0 of the address of any Thumb 
instruction is unused.

Syntax

The syntax of BX is one of: 

Thumb BX Rn

ARM BX{cond} Rn

where:

Rn Is a register in the range r0 to r15 that contains the address to branch to. 
The value of bit 0 in this register determines the processor state: 

• if bit 0 is set, the instructions at the branch address are executed in 
Thumb state

• if bit 0 is clear, the instructions at the branch address are executed 
in ARM state.

cond Is an optional condition code. Only the ARM version of BX can be 
executed conditionally.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-7



Interworking ARM and Thumb 
3.2.2 Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By default, it 
assembles ARM code unless it is invoked with the -16 option.

Because all Thumb-capable ARM processors start in ARM state, you must use the BX 
instruction to branch and exchange to Thumb state, and then use the CODE16 directive to 
instruct the assembler to assemble Thumb instructions. Use the corresponding CODE32 
directive to instruct the assembler to return to assembling ARM instructions.

Refer to the ADS Assembler Guide for more information on these directives.

3.2.3 Example ARM header

Example 3-2 on page 3-9 contains four sections of code. The first implements a short 
header section of ARM code that changes the processor to Thumb state.

The header code uses:

• An ADR pseudo-instruction to load the branch address and set the least significant 
bit. The ADR pseudo-instruction generates the address by loading r0 with the value 
pc+offset+1. See ADS Assembler Guide for more information on the ADR 
pseudo-instruction.

• A BX instruction to branch to the Thumb code and change processor state.

The second section of the module, labelled ThumbProg, is prefixed by a CODE16 directive 
that instructs the assembler to treat the following code as Thumb code. The Thumb code 
adds the contents of two registers together.

The processor is changed back to ARM state. The code again uses an ADR instruction to 
get the address of the label, but this time the least significant bit is left clear. The BX 
instruction changes the state.

The third section of the code simply adds together the contents of two registers.

The final section labeled stop uses the semihosting SWI to report normal application 
exit. Refer to the ADS Debug Target Guide for more information on semihosting.

Note
 The Thumb semihosting SWI is a different number from the ARM semihosting SWI 
(0xAB rather than 0x123456).
3-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
Example 3-2

     AREA     AddReg,CODE,READONLY         ; Name this block of code.
     ENTRY                    ; Mark first instruction to call.
main
     ADR r0, ThumbProg + 1    ; Generate branch target address 
                              ; and set bit 0, hence arrive
                              ; at target in Thumb state.
     BX r0                    ; Branch exchange to ThumbProg.
     CODE16                   ; Subsequent instructions are Thumb code.
ThumbProg
     MOV r2, #2               ; Load r2 with value 2.
     MOV r3, #3               ; Load r3 with value 3.
     ADD r2, r2, r3           ; r2 = r2 + r3
     ADR r0, ARMProg
     BX r0
     CODE32                   ; Subsequent instructions are ARM code.
ARMProg
     MOV r4, #4
     MOV r5, #5
     ADD r4, r4, r5
stop MOV r0, #0x18            ; angel_SWIreason_ReportException
     LDR r1, =0x20026         ; ADP_Stopped_ApplicationExit
     SWI 0x123456             ; ARM semihosting SWI 
     END                      ; Mark end of this file.

Building the example

To build and execute the example: 

1. Enter the code using any text editor and save the file as addreg.s.

2. Type armasm -g addreg.s at the command prompt to assemble the source file.

3. Type armlink addreg.o -o addreg to link the file. 

4. Type armsd addreg to load the module into the command-line debugger.

5. Type step to step through the rest of the program one instruction at a time. After 
each instruction, type reg to display the registers. Watch the processor enter 
Thumb state. This is denoted by the T in the Current Program Status Register 
(CPSR) changing from a lowercase t to an uppercase T.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-9



Interworking ARM and Thumb 
3.2.4 ARM architecture v5T

In ARM architecture v5T and above:

• There are two additional interworking instructions available:

BLX address The processor performs a pc-relative branch to address with 
link and changes state. address must be within 32MB of the 
pc in ARM code, or within 4MB of the pc in Thumb code.

BLX register The processor performs a branch with link to an address 
contained in the specified register. The value of bit[0] 
determines the new processor state.

In either case, bit[0] of lr is set to the current value of the Thumb bit in the CPSR. 
The means that the return instruction can automatically return to the correct 
processor state.

• If LDR, LDM, or POP load to the pc, they set the Thumb bit in the CPSR to bit[0] of the 
value loaded to the pc. You can use this to change instruction sets. This is 
particularly useful for returning from subroutines. The same return instruction 
can return to either an ARM or Thumb caller.

For more information, see ADS Assembler Guide and ARM Architecture Reference 
Manual.

3.2.5 Labels in Thumb code

The linker distinguishes between labels referring to:

• ARM instructions

• Thumb instructions

• data.

When the linker relocates a value of a label referring to a Thumb instruction, it sets the 
least significant bit of the relocated value. This means that a branch to a label can 
automatically select the appropriate instruction set. This works if any of the following 
instructions are used for the branch:

• BX in ARM architecture v4T

• BX, BLX, or LDR in architecture v5T and above.

In previous releases of ADS and SDT, it was necessary to mark data in Thumb code with 
the DATA directive. This is no longer necessary.
3-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3.3 C and C++ interworking and veneers

You can freely mix C and C++ code compiled for ARM and Thumb, but in ARM 
architecture v4T small code segments called veneers are required between the ARM 
and Thumb code to carry out state changes. The ARM linker generates these 
interworking veneers when it detects interworking calls.

3.3.1 Compiling code for interworking

The -apcs /interwork compiler option enables all ARM and Thumb C and C++ 
compilers to compile modules containing routines that can be called by routines 
compiled for the other processor state:

tcc -apcs /interwork
armcc -apcs /interwork
tcpp -apcs /interwork
armcpp -apcs /interwork

Modules that are compiled for interworking on ARM architecture v4T generate slightly 
larger code, typically 2% larger for Thumb and less than 1% larger for ARM. There is 
no difference for ARM architecture v5.

In a leaf function, that is a function whose body contains no function calls, the only 
change in the code generated by the compiler is to replace MOV pc,lr with BX lr. The 
MOV instruction does not cause the necessary state change.

In nonleaf functions built for ARM architecture v4T, the Thumb compiler must replace, 
for example, the single instruction:

     POP  {r4,r5,pc}

with the sequence:

     POP  {r4,r5}
     POP  {r3}
     BX   r3

This has a small effect on performance. Compile all source modules for interworking, 
unless you are sure they will never be used with interworking.

The -apcs /interwork option also sets the interwork attribute for the code area the 
modules are compiled into. The linker detects this attribute and inserts the appropriate 
veneer.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-11



Interworking ARM and Thumb 
Note
 ARM code compiled for interworking can only be used on ARM architecture v4T, or 
v5 and above, because other processors do not implement the BX instruction.

Use the armlink -info veneers option to find the amount of space taken by the veneers. 

C interworking example

Example 3-3 shows a Thumb routine that carries out an interworking call to an ARM 
subroutine. The ARM subroutine call makes an interworking call to printf() in the 
Thumb library. These two modules are provided in Examples\Interwork as thumbmain.c 
and armsub.c.

Example 3-3

     /**********************
     *       thumbmain.c      *
     **********************/
     #include <stdio.h>
     extern void arm_function(void);
     int main(void)
     {
          printf("Hello from Thumb World\n");
          arm_function();
          printf("And goodbye from Thumb World\n");
          return (0);
     }
     /**********************
     *        armsub.c       *
     **********************/
     #include <stdio.h>
     void arm_function(void)
     {
          printf("Hello and Goodbye from ARM world\n");
     }

To compile and link these modules:

1. Type tcc -c -apcs /interwork -o thumbmain.o thumbmain.c at the system prompt 
to compile the Thumb code for interworking.

2. Type armcc -c -apcs /interwork -o armsub.o armsub.c to compile the ARM code 
for interworking.
3-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3. Type armlink -o hello armsub.o thumbmain.o to link the object files.

Alternatively, type armlink -info veneers armsub.o thumbmain.o to view the size 
of the interworking veneers (Example 3-4).

Example 3-4

Adding veneers to the image
   Adding AT veneer (12 bytes) for call to '_printf' from armsub.o(.text).
   Adding TA veneer (12 bytes) for call to 'arm_function' from thumbmain.o(.text).
   Adding AT veneer (12 bytes) for call to '__rt_lib_init' from kernel.o(x$codeseg).
   Adding AT veneer (12 bytes) for call to '__rt_lib_shutdown' from kernel.o(x$codeseg).
   Adding AT veneer (12 bytes) for call to '_sys_exit' from kernel.o(x$codeseg).
   Adding AT veneer (12 bytes) for call to '__raise' from rt_raise.o(x$codeseg).
   Adding AT veneer (12 bytes) for call to '_no_fp_display' from printf2.o(x$codeseg).
7 Veneer(s) (total 84 bytes) added to the image.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-13



Interworking ARM and Thumb 
3.3.2 Basic rules for interworking

The following rules apply to interworking within an application:

• You must use the -apcs /interwork command-line option to compile any C or 
C++ modules that contain functions that might return to the other instruction set.

• You must use the -apcs /interwork command-line option to compile any C or 
C++ modules that contain indirect or virtual function calls that might be to 
functions in the other instruction set.

• Never make indirect calls, such as calls using function pointers, to 
non-interworking code from code in the other state.

• If any input object contains Thumb code, the linker selects the Thumb runtime 
libraries. These are built for interworking. 

If you specify one of your own libraries explicitly on the linker command line you 
must ensure that it is an appropriate interworking library. 

3.3.3 Using two copies of the same function

You can have two functions with the same name, one compiled for ARM and the other 
for Thumb. However, we do not recommend this practice. In almost all cases there is no 
significant performance increase over having a single version of the function. 

Note
 Both versions of the function must be compiled with the /interwork option as it is not 
guaranteed that the Thumb version will only be called from Thumb state and the ARM 
version will only be called from ARM state.

The linker allows duplicate definitions provided that one definition defines a Thumb 
routine and the other defines an ARM routine.
3-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
3.4 Assembly language interworking using veneers

The assembly language ARM/Thumb interworking method described in Assembly 
language interworking on page 3-6 carried out all the necessary intermediate 
processing. There was no requirement for the linker to insert interworking veneers. 

This section describes how you can make use of interworking veneers to: 

• interwork between assembly language modules

• interwork between assembly language and C or C++ modules.

3.4.1 Assembly-only interworking using veneers

You can write assembly language ARM/Thumb interworking code to make use of 
interworking veneers generated by the linker. To do this, you write: 

• A caller routine just as any non-interworking routine, using a BL instruction to 
make the call. A caller routine may be assembled /interwork or /nointerwork.

• A callee routine using a BX instruction to return. A callee routine must be 
assembled /interwork.

This is generally only necessary in ARM architecture v4T, or if the caller and callee are 
widely separated or in different areas. In ARM architecture v5T, if the caller and callee 
are sufficiently close together, no veneers are necessary.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-15



Interworking ARM and Thumb 
Example of assembly language interworking using veneers

Example 3-5 shows the code to set registers r0 to r2 to the values 1, 2, and 3 
respectively. Registers r0 and r2 are set by the ARM code. r1 is set by the Thumb code. 
Observe that: 

• the code must be assembled with the option -apcs /interwork 

• a BX lr instruction is used to return from the subroutine, instead of the usual MOV 
pc,lr.

Example 3-5

     ; *****
     ; arm.s
     ; *****
     AREA     Arm,CODE,READONLY   ; Name this block of code.
     IMPORT     ThumbProg
     ENTRY                        ; Mark 1st instruction to call.
ARMProg
     MOV  r0,#1                   ; Set r0 to show in ARM code.
     BL   ThumbProg               ; Call Thumb subroutine.
     MOV  r2,#3                   ; Set r2 to show returned to ARM.
                                  ; Terminate execution.
     MOV  r0, #0x18               ; angel_SWIreason_ReportException
     LDR  r1, =0x20026            ; ADP_Stopped_ApplicationExit
     SWI  0x123456                ; ARM semihosting SWI 
     END
     ; *******
     ; thumb.s
     ; *******
     AREA  Thumb,CODE,READONLY
                                  ; Name this block of code.
     CODE16                       ; Subsequent instructions are Thumb.
     EXPORT ThumbProg
ThumbProg
     MOV  r1, #2                  ; Set r1 to show reached Thumb code.
     BX   lr                      ; Return to ARM subroutine.
     END                          ; Mark end of this file.

Follow these steps to build and link the modules, and examine the interworking veneers: 

1. Type armasm arm.s to assemble the ARM code.

2. Type armasm -16 -apcs /interwork thumb.s to assemble the Thumb code.

3. Type armlink arm.o thumb.o -o count to link the two object files.
3-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Interworking ARM and Thumb 
4. Type armsd count to load the code into the debugger.

5. Type list 0x8000 at the armsd command prompt to list the code. Example 3-6 
shows the output.

Example 3-6

armsd: list 0x8000
ARMProg
      0x00008000: 0xe3a00001  .... : >  mov      r0,#1
      0x00008004: 0xeb000005  .... :    bl       $Ven$AT$$ThumbProg
      0x00008008: 0xe3a02003  . .. :    mov      r2,#3
      0x0000800c: 0xe3a00018  .... :    mov      r0,#0x18
      0x00008010: 0xe59f1000  .... :    ldr      r1,0x00008018 ; = #0x00020026
      0x00008014: 0xef123456  V4.. :    swi      0x123456
      0x00008018: 0x00020026  &... :    dcd      0x00020026  &...
ThumbProg
+0000 0x0000801c: 0x2102      .!   :    mov      r1,#2
+0002 0x0000801e: 0x4770      pG   :    bx       r14
$Ven$AT$$ThumbProg
+0000 0x00008020: 0xe59fc000  .... :    ldr      r12,0x00008028 ; = #0x0000801d
+0004 0x00008024: 0xe12fff1c  ../. :    bx       r12
+0008 0x00008028: 0x0000801d  .... :    dcd      0x0000801d  ....
+000c 0x0000802c: 0xe800e800  .... :    dcd      0xe800e800  ....
+0010 0x00008030: 0xe7ff0010  .... :    dcd      0xe7ff0010  ....
+0014 0x00008034: 0xe800e800  .... :    dcd      0xe800e800  ....
+0018 0x00008038: 0xe7ff0010  .... :    dcd      0xe7ff0010  ....

You can see that the linker has added the required ARM-to-Thumb interworking 
veneer. This is contained in locations 0x8020 to 0x8028. Location 0x8028 contains 
the address of the routine being branch-exchanged to, with bit 0 set, 0x801D.

3.4.2 C, C++, and assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed 
to run in the other state, and vice versa. To do this, write the caller routine as any 
non-interworking routine and, if calling from assembly language, use a BL instruction to 
make the call (see Example 3-7 on page 3-18). Then:

• if the callee routine is in C, compile it using -apcs /interwork

• if the callee routine is in assembly language, assemble with the -apcs /interwork 
option and return using BX lr.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-17



Interworking ARM and Thumb 
Note
 Any assembly language code or user library code used in this manner must conform to 
the ATPCS where appropriate.

Example 3-7

     /**********************
     *       thumb.c      *
     **********************/
     #include <stdio.h>
     extern int arm_function(int);
     int main(void)
     {
          int i = 1;
          printf("i = %d\n", i);
          printf("And now i = %d\n", arm_function(i));
          return (0);
     }
     ; *****
     ; arm.s
     ; *****
     AREA  Arm,CODE,READONLY ; Name this block of code.
     EXPORT arm_function
arm_function
     ADD   r0,r0,#4           ; Add 4 to first parameter.
     BX    LR                 ; Return
     END

Follow these steps to build and link the modules:

1. Type tcc -c -apcs /interwork thumb.c to compile the Thumb code.

2. Type armasm -apcs /interwork arm.s to assemble the ARM code.

3. Type armlink arm.o thumb.o -o add to link the two object files.

4. Type armsd add to load the code.

5. Type go to run the code.

6. Type list main to list the code generated for the main function.

7. Type list arm_function to list the code generated.
3-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 4 
Mixing C, C++, and Assembly Language

This chapter describes how to write mixed C, C++, and ARM assembly language code. 
It also describes how to use the ARM inline assemblers from C and C++. It contains the 
following sections:

• Using the inline assemblers on page 4-2

• Accessing C global variables from assembly code on page 4-14

• Using C header files from C++ on page 4-15

• Calling between C, C++, and ARM assembly language on page 4-17.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-1



Mixing C, C++, and Assembly Language 
4.1 Using the inline assemblers

The inline assembler built into the C and C++ compilers enables you to features of the 
target processor that cannot be accessed directly from C. For example:

• saturating arithmetic (see ADS Assembler Guide)

• custom coprocessors

• the PSR.

The inline assembler supports very flexible interworking with C and C++. Any register 
operand can be an arbitrary C or C++ expression. The inline assembler also expands 
complex instructions and optimizes the assembly language code.

Note
 Inline assembly language is subject to optimization by the compiler if optimization is 
enabled either by default or with the -O1 or -O2 compiler options.

The armcc and armcpp inline assemblers implement most of the ARM instruction set 
including generic coprocessor instructions, halfword instructions and long multiply. 
The tcc and tcpp inline assemblers implement, again with two exceptions, the full 
Thumb instruction set.

Note
 The tcc and tcpp inline assemblers are deprecated and will not be supported in future 
releases of the tools.

See Differences between the inline assemblers and armasm on page 4-6 for information 
on restrictions.

The inline assembler is a high-level assembler. The code it generates is not always 
exactly what you write. Do not use it to generate more efficient code than the compiler 
generates. Use the ARM assembler armasm for this purpose.

Some low-level features that are available to the ARM assembler armasm, such as 
branching by writing to pc, are not supported.

4.1.1 Invoking the inline assembler

The ARM C compilers support inline assembly language with the __asm specifier. 

The ARM C++ compilers support the asm syntax proposed in the ANSI C++ Standard, 
with the restriction that the string literal must be a single string. For example:

asm("instruction[;instruction]");
4-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
The asm syntax is supported by the C++ compilers when compiling both C and C++. The 
asm statement must be inside a C or C++ function. Do not include comments in the string 
literal. An asm statement can be used anywhere a C or C++ statement is expected.

In addition to the asm syntax, ARM C++ supports the C compiler __asm syntax.

The inline assembler is invoked with the assembler specifier. The specifier is followed 
by a list of assembler instructions inside braces. For example:

__asm
{
    instruction [; instruction]
    ...
    [instruction]
}

If two instructions are on the same line, you must separate them with a semicolon. If an 
instruction is on multiple lines, line continuation must be specified with the backslash 
character (\). C or C++ comments can be used anywhere within an inline assembly 
language block.

String copying example

Example 4-1 shows how to use labels and branches in a string copy routine. 

This code is also in install_directory\examples\inline\strcopy.c. 

The syntax of labels inside assembler blocks is the same as in C. Function calls that use 
BL from inline assembly language must specify the input registers, the output registers, 
and the corrupted registers. In this example, the inputs to my_strcpy() are a and b, there 
are no outputs, and the default ATPCS registers, r0-r3, r12, lr, and PSR, are corrupted.

Example 4-1  String copy

#include <stdio.h>
void my_strcpy(const char *src, char *dst)
{
    int ch;
    __asm
    {
    loop:
#ifndef __thumb
        // ARM version
        LDRB    ch, [src], #1
        STRB    ch, [dst], #1
#else
        // Thumb version
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-3



Mixing C, C++, and Assembly Language 
        LDRB    ch, [src]
        ADD     src, #1
        STRB    ch, [dst]
        ADD     dst, #1
#endif
        CMP     ch, #0
        BNE     loop
    }
}
int main(void)
{
    const char *a = "Hello world!";
    char b[20];
    my_strcpy (a, b);
    printf("Original string: '%s'\n", a);
    printf("Copied   string: '%s'\n", b);
    return 0;
}

4.1.2 ARM and Thumb instruction sets

The ARM and Thumb instruction sets are described in the ARM Architecture Reference 
Manual. All instruction opcodes and register specifiers can be written in either 
lowercase or uppercase.

Operand expressions

Any register or constant operand can be an arbitrary C or C++ expression so that 
variables can be read or written. The expression must be integer assignable, that is, of 
type char, short, or int. No sign extension is performed on char and short types. You 
must perform sign extension explicitly for these types. The compiler might add code to 
evaluate these expressions and allocate them to registers. 

When an operand is used as a destination, the expression must be assignable (an lvalue). 
When writing code that uses both physical registers and expressions, you must take care 
not to use complex expressions that require too many registers to evaluate. The compiler 
issues an error message if it detects conflicts during register allocation.

Physical registers

The inline assemblers allow restricted access to the physical registers. It is illegal to 
write to pc. Only branches using B and BL are allowed. In addition, it is inadvisable to 
intermix inline assembler instructions that use physical registers and complex C or C++ 
expressions. 
4-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
The compiler uses r12 (ip) and, in tcc and tcpp, r3 for intermediate results, and r0-r3, 
r12 (ip), r14 (lr) for function calls while evaluating C expressions, so these cannot be 
used as physical registers at the same time. 

Physical registers, like variables, must be set before they can be read. When physical 
registers are used the compiler saves and restores C and C++ variables that might be 
allocated to the same physical register. However, the compiler cannot restore sp, sl, fp, 
or sb in calling standards where these registers have a defined role.

Note
 Using physical register names is not recommended, because it constrains compiler 
register allocation and can cause less efficient code to be generated. It is usually better 
to declare C local variables and use these as operands in inline assembler.

Constants

The constant expression specifier # is optional. If it is used, the expression following it 
must be constant.

Instruction expansion

The constant in instructions with a constant operand is not limited to the values allowed 
by the instruction. Instead, such an instruction is translated into a sequence of 
instructions with the same effect. For example:

    ADD r0, r0, #1023

might be translated into:

   ADD r0, r0, #1024
   SUB r0, r0, #1

With the exception of coprocessor instructions, all ARM and Thumb instructions with 
a constant operand support instruction expansion. In addition, the MUL instruction can be 
expanded into a sequence of adds and shifts when the third operand is a constant.

The effect of updating the CPSR by an expanded instruction is: 

• arithmetic instructions set the NZCV flags correctly.

• logical instructions:

— set the NZ flags correctly

— do not change the V flag

— corrupt the C flag.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-5



Mixing C, C++, and Assembly Language 
Labels

C and C++ labels can be used in inline assembler statements. C and C++ labels can be 
branched to by branch instructions only in the form:

B{cond} label

You cannot branch to C or C++ labels using BL.

Storage declarations

All storage can be declared in C or C++ and passed to the inline assembler using 
variables. Therefore, the storage declarations that are supported by armasm are not 
implemented.

SWI and BL instructions

SWI and BL instructions must specify exactly the calling standard used. Three optional 
register lists follow the normal instruction fields. The register lists specify: 

• the registers that are the input parameters

• the registers that are output parameters after return

• the registers that are corrupted by the called function.

For example:

SWI{cond} swi_num, {input_regs}, {output_regs}, {corrupted_regs} 
BL{cond} function, {input_regs}, {output_regs}, {corrupted_regs}

An omitted list is assumed to be empty, except that BL always corrupts ip, and lr. The 
default corrupted list for BL is r0-r3.

The register lists have the same syntax as LDM and STM register lists. If the NZCV flags 
are modified you must specify PSR in the corrupted register list.

4.1.3 Differences between the inline assemblers and armasm

There are a number of differences and restrictions between the assembly language 
accepted by the inline assemblers and the assembly language accepted by the ARM 
assembler. For the inline assemblers: 

• You cannot get the address of the current instruction using dot notation (.) or 
{PC}.

• The LDR Rn, =expression pseudo-instruction is not supported. Use MOV Rn, 
expression instead (this can generate a load from a literal pool).
4-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
• Label expressions are not supported.

• The ADR and ADRL pseudo-instructions are not supported.

• The & operator cannot be used to denote hexadecimal constants. Use the 0x prefix 
instead. For example:

__asm {AND x, y, 0xF00}

• The notation to specify the actual rotate of an 8-bit constant is not available in 
inline assembly language. This means that where an 8-bit shifted constant is used, 
the C flag should be regarded as corrupted if the NZCV flags are updated.

• Physical registers, such as r0-r3, ip, lr, and the NZCV flags in the CPSR must be 
used with caution. If you use C or C++ expressions, these might be used as 
temporary registers and NZCV flags might be corrupted by the compiler when 
evaluating the expression.

• Do not use C variables with the same name as a physical register. When accessed 
in an __asm block, the actual register will be used instead of the variable. (It is 
possible to access the C variable by enclosing the name in parentheses, but this 
behavior should not be relied upon.)

• LDM and STM instructions only allow physical registers to be specified in the register 
list.

• You cannot write to pc. The BX and BLX instructions are not implemented.

• You should not modify the stack. This is not necessary because the compiler will 
stack and restore any working registers as required automatically. It is not allowed 
to explicitly stack and restore work registers.

• You can change processor modes, alter the ATPCS registers fp, sl, and sb, or alter 
the state of coprocessors, but the compiler is unaware of the change. If you change 
processor mode, you must not use C or C++ expressions until you change back to 
the original mode because the compiler will corrupt the registers for the processor 
mode to which you have changed.

Similarly, if you change the state of a floating-point coprocessor by executing 
floating-point instructions, you must not use floating-point expressions until the 
original state has been restored.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-7



Mixing C, C++, and Assembly Language 
4.1.4 Usage

The following points apply to using inline assembly language:

• Comma is used as a separator in assembly language, so C expressions with the 
comma operator must be enclosed in parentheses to distinguish them:

__asm {ADD x, y, (f(), z)}

• If you are using physical registers, you must ensure that the compiler does not 
corrupt them when evaluating expressions. For example:

__asm 
{
    MOV r0, x 
    ADD y, r0, x / y    // (x / y) overwrites r0 with the result.
}

Because the compiler uses a function call to evaluate x / y, it:

— corrupts r2, r3, ip, and lr

— updates the NZCV flags in the CPSR

— alters r0 and r1 with the dividend and modulo.

The value in r0 is lost. You can work around this by using a C variable instead of 
r0:

    mov var,x
    add y, var, x / y

The compiler can detect the corruption in many cases, for example when it 
requires a temporary register and the register is already in use:

__asm 
{
  MOV ip, #3 
  ADDS x, x, #0x12345678    // this instruction is expanded
  ORR x, x, ip 
}

The compiler uses ip as a temporary register when it expands the ADD instruction, 
and corrupts the value 3 in ip. An error message is issued.

• Do not use physical registers to address variables, even when it seems obvious 
that a specific variable is mapped onto a specific register. If the compiler detects 
this it either generates an error message or puts the variable into another register 
to avoid conflicts:

int bad_f(int x)        // x in r0
{
    __asm
    {
        ADD r0, r0, #1  // wrongly asserts that x is  still in r0
4-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
    }
    return x;             // x in r0
}

This code returns x unaltered. The compiler assumes that x and r0 are two 
different variables, despite the fact that x is allocated to r0 on both function entry 
and function exit. As the assembly language code does not do anything useful, it 
is optimized away. The instruction should be written as:

    ADD x, x, #1

• Do not save and restore physical registers that are used by an inline assembler. 
The compiler will do this for you. If physical registers other than CPSR and SPSR 
are read without being written to, an error message is issued. For example:

int f(int x)
{
    __asm
    {
        STMFD sp!, {r0}    // save r0 - illegal: read before write
        ADD r0, x, 1
        EOR x, r0, x
        LDMFD sp!, {r0}    // restore r0 - not needed.
    }
    return x;
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-9



Mixing C, C++, and Assembly Language 
4.1.5 Examples

Example 4-2 to Example 4-5 on page 4-12 demonstrates some of the ways that you can 
use inline assembly language effectively.

Enabling and disabling interrupts

Interrupts are enabled or disabled by reading the CPSR flags and updating bit 7. 
Example 4-2 shows how this can be done by using small functions that can be inlined. 

This code is also in install_directory\examples\inline\irqs.c. 

These functions work only in a privileged mode, because the control bits of the CPSR 
and SPSR cannot be changed while in User mode.

Example 4-2  Interrupts

__inline void enable_IRQ(void)
{
    int tmp;
    __asm
    {
        MRS tmp, CPSR
        BIC tmp, tmp, #0x80
        MSR CPSR_c, tmp
    }
}
__inline void disable_IRQ(void)
{
    int tmp;
    __asm
    {
        MRS tmp, CPSR
        ORR tmp, tmp, #0x80
        MSR CPSR_c, tmp
    }
}
int main(void)
{
    disable_IRQ();
    enable_IRQ();
}

4-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
Dot product

Example 4-3 calculates the dot product of two integer arrays. It demonstrates how inline 
assembly language can interwork with C or C++ expressions and data types that are not 
directly supported by the inline assembler. The inline function mlal() is optimized to a 
single SMLAL instruction. Use the -S -fs compiler option to view the assembly language 
code generated by the compiler.

long long is the same as __int64.

This code is also in install_directory\examples\inline\dotprod.c. 

Example 4-3  Dot product

#include <stdio.h>
/* change word order if big-endian
#define lo64(a) (((unsigned*) &a)[0])    /* low 32 bits of a long long */
#define hi64(a) (((int*) &a)[1])        /* high 32 bits of a long long */
__inline __int64 mlal(__int64 sum, int a, int b)
{
#if !defined(__thumb) && defined(__TARGET_FEATURE_MULTIPLY)
    __asm
    {
    SMLAL lo64(sum), hi64(sum), a, b
    }
#else
    sum += (__int64) a * (__int64) b;
#endif
    return sum;
}
__int64 dotprod(int *a, int *b, unsigned n)
{
    __int64 sum = 0;
    do
        sum = mlal(sum, *a++, *b++);
    while (--n != 0);
    return sum;
}
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int b[10] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int main(void)
{
    printf("Dotproduct %lld (should be %d)\n", dotprod(a, b, 10), 220);
    return 0;
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-11



Mixing C, C++, and Assembly Language 
Long multiplies

You can use the inline assembler to customize functions that use long long type. 
Example 4-4 shows a simple long multiply routine in C.

Example 4-5 shows how you can use inline assembly language to generate different 
code for the same routine. You can use the inline assembler to write the high word and 
the low word of the long long separately. 

The inline assembly language code depends on the word ordering of long long types, 
because it assumes that the low 32 bits are at offset 0. Change the code if compiling for 
big-endian.

This code is also in install_directory\examples\inline\smull.c. 

Example 4-4  Multiply in C

Writing the multiply routine in C:

// long multiply routine in C
long long smull(int x, int y)
{
    return (long long) x * (long long) y;
}

The compiler generates the following code:

 MOV      r2,r0
 MOV      r0,r1
 MOV      r1,r2
 SMULL    r12,r1,r0,r2
 MOV      r0,r12
 MOV      pc,lr

r12 is corrupted in this routine. This is allowed under ATPCS.

Example 4-5  Multiply in inline assembly language

Writing the same routine using inline assembly language:

long long smull(int x, int y)
{
    long long res;
    __asm { SMULL ((int*)&res)[0], ((int*)&res)[1], x, y }
    return res;
}

4-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
The compiler generates the following code:

    MOV r2,r0
    SMULL r0,r1,r2,r1
    MOV pc,lr
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-13



Mixing C, C++, and Assembly Language 
4.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a 
global variable, use the IMPORT directive to import the global and then load the address 
into a register. You can access the variable with load and store instructions, depending 
on its type. 

For unsigned variables use:

• LDRB/STRB for char

• LDRH/STRH for short (Use two LDRB/STRB instructions for Architecture 3)

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and 
STM instructions. Individual members of structures can be accessed by a load or store 
instruction of the appropriate type. You must know the offset of a member from the start 
of the structure in order to access it.

Example 4-6 loads the address of the integer global globvar into r1, loads the value 
contained in that address into r0, adds 2 to it, then stores the new value back into 
globvar.

Example 4-6  Address of global

    AREA     globals,CODE,READONLY
    EXPORT    asmsubroutine
    IMPORT    globvar
asmsubroutine
    LDR  r1, =globvar   ; read address of globvar into
                        ; r1 from literal pool
    LDR  r0, [r1]
    ADD  r0, r0, #2
    STR  r0, [r1]
    MOV  pc, lr
    END
4-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
4.3 Using C header files from C++

This section describes how to use C header files from your C++ code. C header files 
must be wrapped in extern "C" directives before they are called from C++.

4.3.1 Including system C header files

To include standard system C header files, such as stdio.h, you do not have to do 
anything special. The standard C header files already contain the appropriate extern "C" 
directives. For example:

// C++ code
#include <stdio.h>
int main()
{
    //...
    return 0;
}

The C++ standard specifies that the functionality of the C header files is available 
through C++ specific header files. These files are installed in 
install_directory\include, together with the standard C header files, and can be 
referenced in the usual way. For example:

// C++ code
#include <cstdio>
int main()
{
    // ...
    return 0;
}

In ARM C++, these headers simply #include the C headers.

Note
 The C standard header files and their C++ veneer headers are available in the compiler’s 
in-memory file system. Refer to C compilers in the ADS Compilers and Libraries Guide 
for more information.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-15



Mixing C, C++, and Assembly Language 
4.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern 
"C" statement. You can do this in two ways:

• When the file is #included. This is shown in Example 4-7.

• By adding the extern "C" statement to the header file. This is shown in 
Example 4-8.

Example 4-7  Directive before include file

// C++ code
extern "C"{
#include "my-header1.h"
#include "my-header2.h"
}
int main()
{
    // ...
    return 0;
}

Example 4-8  Directive in file header

/* C header file */
#ifdef __cplusplus    /* Insert start of extern C construct */
extern "C" {
#endif
/* Body of header file */
#ifdef __cplusplus  /* Insert end of extern C construct */
}                   /* The C header file can now be */
#endif              /* included in either C or C++ code. */
4-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
4.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code 
from C++, and to call C++ code from C and assembly language. It also describes calling 
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you 
follow the appropriate procedure ATPCS call standard. For more information on the 
ATPCS, see Chapter 2 Using the Procedure Call Standard.

Note
 The information in this section is implementation dependent and might change in future 
toolkit releases.

4.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language.

You should not rely on the following C++ implementation details. These 
implementation details are subject to change in future releases of ARM C++:

• the way names are mangled

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not plain old data (POD) structures.

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, non-member functions can be declared as extern "C" to specify that they 
have C linkage. In this release of ADS, having C linkage means that the symbol 
defining the function is not mangled. C linkage can be used to implement a 
function in one language and call it from another. 

Note
 Functions that are declared extern "C" cannot be overloaded.

• Assembly language modules must conform to the appropriate ARM/Thumb 
Procedure Calls Standard for the memory model used by the application.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-17



Mixing C, C++, and Assembly Language 
The following rules apply to calling C++ functions from C and assembly language:

• To call a global (non-member) C++ function, declare it extern "C" to give it C 
linkage.

• Member functions (both static and non-static) always have mangled names. 

• C++ inline functions cannot be called from C unless you ensure that the C++ 
compiler generates an out-of-line copy of the function. For example, taking the 
address of the function results in an out-of-line copy.

• Non-static member functions receive the implicit this parameter as a first 
argument in r0, or as a second argument in r1 if the function returns a non int-like 
structure. This might change in future implementations. Static member functions 
do not receive an implicit this parameter.

4.4.2 Information specific to C++

The following applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with the following exceptions: 

• When an object of type struct or class is passed to a function and the object has 
an explicit copy constructor, the object will be copied by the calling code or by 
the subroutine (callee). If the constructor is overloaded the caller makes the copy. 
If the constructor is not overloaded, the callee makes the copy.

• Non-static member functions are called with the implicit this parameter as the 
first argument, or as the second argument if the called function returns a non 
int-like struct. This might change in future implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and 
additions: 

• C++ objects of type struct or class have the same layout as would be expected 
from the ARM C compiler if they have no base classes or virtual functions. If such 
a struct has neither a user-defined copy assignment operator or a user-defined 
destructor, it is a POD structure.

• References are represented as pointers.
4-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
• Pointers to data members and pointers to member functions occupy four bytes. 
They have the same null pointer representation as normal pointers. 

• No distinction is made between pointers to C functions and pointers to C++ 
(non-member) functions.

Symbol name mangling

ARM C++ mangles external names of functions and static data members in a manner 
similar to that described in section 7.2c of Ellis, M.A. and Stroustrup, B., The Annotated 
C++ Reference Manual (1990). The linker unmangles symbols in messages. 

C names must be declared as extern "C" in C++ programs. This is done already for the 
ARM ANSI C headers. Refer to Using C header files from C++ on page 4-15 for more 
information.

4.4.3 Examples

The following sections contain code examples that demonstrate: 

• Calling assembly language from C

• Calling C from assembly language on page 4-20

• Calling C from C++ on page 4-21

• Calling assembly language from C++ on page 4-22

• Calling C++ from C on page 4-23

• Calling C++ from assembly language on page 4-23

• Calling C++ from C or assembly language on page 4-25

• Passing a reference between C and C++ on page 4-24.

The examples assume the default non software-stack checking ATPCS variant because 
they perform stack operations without checking for stack overflow.

Calling assembly language from C

Example 4-9 and Example 4-10 on page 4-20 show a C program that uses a call to an 
assembly language subroutine to copy one string over the top of another string.

Example 4-9  Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{   const char *srcstr = "First string - source ";
    char dststr[] = "Second string - destination ";
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-19



Mixing C, C++, and Assembly Language 
/* dststr is an array since we’re going to change it */
    printf("Before copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    strcopy(dststr,srcstr);
    printf("After copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    return (0);
}

Example 4-10  Assembly language string copy subroutine

    AREA    SCopy, CODE, READONLY
    EXPORT strcopy
strcopy               ; r0 points to destination string.
                      ; r1 points to source string.
    LDRB r2, [r1],#1  ; Load byte and update address.
    STRB r2, [r0],#1  ; Store byte and update address.
    CMP r2, #0        ; Check for zero terminator.
    BNE strcopy       ; Keep going if not.
    MOV pc,lr         ; Return.
    END

Example 4-9 on page 4-19 is located in install_directory\examples\asm as strtest.c 
and scopy.s. Follow these steps to build the example from the command line:

1. Type armasm -g scopy.s to build the assembly language source.

2. Type armcc -c -g strtest.c to build the C source.

3. Type armlink strtest.o scopy.o -o strtest to link the object files

4. Type armsd -e strtest execute the example.

Calling C from assembly language

Example 4-11 on page 4-21 and Example 4-12 on page 4-21 show how to call C from 
assembly language.
4-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
Example 4-11  Defining the function in C

int g(int a, int b, int c, int d, int e) 
{
         return a + b + c + d + e;
}

Example 4-12  Assembly language call

    ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }
    EXPORT f
    AREA f, CODE, READONLY
    IMPORT g           ; i is in r0
    STR lr, [sp, #-4]! ; preserve lr
    ADD r1, r0, r0     ; compute 2*i (2nd param)
    ADD r2, r1, r0     ; compute 3*i (3rd param)
    ADD r3, r1, r2     ; compute 5*i
    STR r3, [sp, #-4]! ; 5th param on stack
    ADD r3, r1, r1     ; compute 4*i (4th param)
    BL g               ; branch to C function
    ADD sp, sp, #4     ; remove 5th param
    LDR pc, [sp], #4   ; return
    END

Calling C from C++

Example 4-13 and Example 4-14 on page 4-22 show how to call C from C++.

Example 4-13  Calling a C function from C++

struct S {            // has no base classes 
                      // or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cfunc(S *); 
// declare the C function to be called from C++
int f(){
    S s(2);           // initialize 's'
    cfunc(&s);        // call 'cfunc' so it can change 's'
   return s.i * 3;
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-21



Mixing C, C++, and Assembly Language 
Example 4-14  Defining the function in C

struct S {
    int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
    p->i += 5;
}

Calling assembly language from C++

Example 4-15 and Example 4-16 show how to call assembly language from C++.

Example 4-15  Calling assembly language from C++

struct S {        // has no base classes
                  // or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void asmfunc(S *);   // declare the Asm function
                                // to be called
int f() {
    S s(2);                    // initialize 's'
    asmfunc(&s);               // call 'asmfunc' so it
                               // can change 's'
    return s.i * 3;
}

Example 4-16  Defining the assembly language function

    AREA Asm, CODE
    EXPORT asmfunc
asmfunc                ; the definition of the Asm
    LDR r1, [r0]       ; function to be called from C++
    ADD r1, r1, #5
    STR r1, [r0]
    MOV pc, lr
    END
4-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
Calling C++ from C

Example 4-17 and Example 4-18 show how to call C++ from C.

Example 4-17  Defining the function to be called in C++

struct S {        // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cppfunc(S *p) {    
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C
    p->i += 5;                //
} 

Example 4-18  Declaring and calling the function in C

struct S {
    int i;
};
extern void cppfunc(struct S *p); 
/* Declaration of the C++ function to be called from C */
int f(void) {
    struct S s;
    s.i = 2;                /* initialize 's' */
    cppfunc(&s);            /* call 'cppfunc' so it */
                            /* can change 's' */
    return s.i * 3;
}

Calling C++ from assembly language

Example 4-19 and Example 4-20 on page 4-24 show how to call C++ from assembly 
language.

Example 4-19  Defining the function to be called in C++

struct S {           // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-23



Mixing C, C++, and Assembly Language 
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C
    p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch 
with link instruction to call it:

Example 4-20  Defining assembly language function

    AREA Asm, CODE
    IMPORT cppfunc    ; import the name of the C++ 
                      ; function to be called from Asm
    EXPORT   f
f
    STMFD  sp!,{lr}
    MOV    r0,#2
    STR    r0,[sp,#-4]! ; initialize struct
    MOV    r0,sp        ; argument is pointer to struct
    BL     cppfunc      ; call 'cppfunc' so it can change
                        ; the struct
    LDR    r0, [sp], #4
    ADD    r0, r0, r0,LSL #1
    LDMFD  sp!,{pc}
    END

Passing a reference between C and C++

Example 4-21 and Example 4-22 on page 4-25 show how to pass a reference between 
C and C++.

Example 4-21  C++ function

extern "C" int cfunc(const int&); 
// Declaration of the C function to be called from C++
extern "C" int cppfunc(const int& r) {
// Definition of the C++ to be called from C.
    return 7 * r;
}
int f() {
4-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Mixing C, C++, and Assembly Language 
    int i = 3;
    return cfunc(i);    // passes a pointer to 'i'
}

Example 4-22  Defining the C function

extern int cppfunc(const int*);    
/* declaration of the C++ to be called from C */
int cfunc(const int* p) {       
/* definition of the C function to be called from C++ */
    int k = *p + 4;
    return cppfunc(&k);
}

Calling C++ from C or assembly language

The code in Example 4-23, Example 4-24 and Example 4-25 on page 4-26 
demonstrates how to call a non-static, non-virtual C++ member function from C or 
assembly language. Use the assembler output from the compiler to locate the mangled 
name of the function.

Example 4-23  Calling a C++ member function

struct T {
    T(int i) : t(i) { }
    int t;
    int f(int i);
};
int T::f(int i) { return i + t; }   
// Definition of the C++ function to be called from C.
extern "C" int cfunc(T*);    
// declaration of the C function to be called from C++
int f() {
    T t(5);                    // create an object of type T
    return cfunc(&t);
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-25



Mixing C, C++, and Assembly Language 
Example 4-24  Defining the C function

struct T;
extern int f__1TFi(struct T*, int);
    /* the mangled name of the C++ */
    /* function to be called */
int cfunc(struct T* t) {   
/* Definition of the C function to be called from C++. */
    return 3 * f__1TFi(t, 2);    /* like '3 * t->f(2)' */
}

Example 4-25  Implementing the function in assembly language

   EXPORT cfunc
   AREA cfunc, CODE
   IMPORT  f__1TFi
   STMFD   sp!,{lr}  ; r0 already contains the object pointer
   MOV r1, #2
   BL f__1TFi
   ADD r0, r0, r0, LSL #1   ; multiply by 3
   LDMFD sp!,{pc}
   END
4-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 5 
Handling Processor Exceptions

This chapter describes how to handle the various types of exception supported by ARM 
processors. It contains the following sections:

• About processor exceptions on page 5-2

• Entering and leaving an exception on page 5-5

• Installing an exception handler on page 5-9

• SWI handlers on page 5-14

• Interrupt handlers on page 5-23

• Reset handlers on page 5-33

• Undefined Instruction handlers on page 5-34

• Prefetch Abort handler on page 5-35

• Data Abort handler on page 5-36

• Chaining exception handlers on page 5-38

• Handling exceptions on Thumb-capable processors on page 5-40

• System mode on page 5-45.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-1



Handling Processor Exceptions 
5.1 About processor exceptions

During the normal flow of execution through a program, the program counter increases 
sequentially through the address space, with branches to nearby labels or branch and 
links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to allow the 
processor to handle events generated by internal or external sources. Examples of such 
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

It is necessary to preserve the previous processor status when handling such exceptions, 
so that execution of the program that was running when the exception occurred can 
resume when the appropriate exception routine has completed.

Table 5-1 shows the seven different types of exception recognized by ARM processors.

Table 5-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception is only expected to occur 
for signalling power-up, or for resetting as if the processor has just powered up. A soft reset 
can be done by branching to the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, or any attached coprocessor, recognizes the currently 
executing instruction.

Software Interrupt (SWI) This is a user-defined synchronous interrupt instruction.It allows a program running in 
User mode, for example, to request privileged operations that run in Supervisor mode, such 
as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that was not fetched, because 
the address was illegala.

Data Abort Occurs when a data transfer instruction attempts to load or store data at an illegal addressa.

IRQ Occurs when the processor external interrupt request pin is asserted (LOW) and the I bit 
in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is asserted (LOW) and the F 
bit in the CPSR is clear.

a. An illegal virtual address is one that does not currently correspond to an address in physical memory, or one that the memory 
management subsystem has determined is inaccessible to the processor in its current mode.
5-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.1.1 The vector table

Processor exception handling is controlled by a vector table. The vector table is a 
reserved area of 32 bytes, usually at the bottom of the memory map. It has one word of 
space allocated to each exception type, and one word that is currently reserved. 

This is not enough space to contain the full code for a handler, so the vector entry for 
each exception type typically contains a branch instruction or load pc instruction to 
continue execution with the appropriate handler.

5.1.2 Use of modes and registers by exceptions

Typically, an application runs in User mode, but servicing exceptions requires 
privileged (that is, non-User mode) operation. An exception changes the processor 
mode, and this in turn means that each exception handler has access to a certain subset 
of the banked registers: 

• its own r13 or Stack Pointer (sp_mode)

• its own r14 or Link Register (lr_mode)

• its own Saved Program Status Register (spsr_ mode).

In the case of a FIQ, each exception handler has access to five more general purpose 
registers (r8_FIQ to r12_FIQ).

Each exception handler must ensure that other registers are restored to their original 
contents upon exit. You can do this by saving the contents of any registers the handler 
needs to use onto its stack and restoring them before returning. If you are using Angel™ 
or ARMulator®, the required stacks are set up for you. Otherwise, you must set them up 
yourself. See Chapter 6 Writing Code for ROM for more information.

Note
 As supplied, the assembler does not predeclare symbolic register names of the form 
register_mode. To use this form, you must declare the appropriate symbolic names with 
the RN assembler directive. For example, lr_FIQ RN r14 declares the symbolic register 
name lr_FIQ for r14. See the directives chapter in ADS Assembler Guide for more 
information on the RN directive.

5.1.3 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of 
priority. Each exception is handled in turn before execution of the user program 
continues. It is not possible for all exceptions to occur concurrently. For example, the 
Undefined Instruction and SWI exceptions are mutually exclusive because they are both 
triggered by executing an instruction.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-3



Handling Processor Exceptions 
Table 5-2 shows the exceptions, their corresponding processor modes and their 
handling priorities.

Because the Data Abort exception has a higher priority than the FIQ exception, the Data 
Abort is actually registered before the FIQ is handled. The Data Abort handler is 
entered, but control is then passed immediately to the FIQ handler. When the FIQ has 
been handled, control returns to the Data Abort handler. This means that the data 
transfer error does not escape detection as it would if the FIQ were handled first.

Table 5-2  Exception priorities

Vector address Exception type Exception mode Priority (1=high, 6=low)

0x0 Reset Supervisor (SVC) 1

0x4 Undefined Instruction Undef 6

0x8 Software Interrupt (SWI) Supervisor (SVC) 6

0xC Prefetch Abort Abort 5

0x10 Data Abort Abort 2

0x14 Reserved Not applicable Not applicable

0x18 Interrupt (IRQ) Interrupt (IRQ) 4

0x1C Fast Interrupt (FIQ) Fast Interrupt (FIQ) 3
5-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.2 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the 
place where an exception occurred after the exception has been handled. The method 
for returning is different depending on the exception type.

5.2.1 The processor response to an exception

When an exception is generated, the processor takes the following actions: 

1. Copies the Current Program Status Register (CPSR) into the Saved Program 
Status Register (SPSR) for the mode in which the exception is to be handled. This 
saves the current mode, interrupt mask, and condition flags.

2. Changes the appropriate CPSR mode bits in order to:

• Change to the appropriate mode, and map in the appropriate banked 
registers for that mode.

• Disable interrupts. IRQs are disabled when any exception occurs. FIQs are 
disabled when a FIQ occurs, and on reset.

3. Sets lr_mode to the return address, as defined in The return address and return 
instruction on page 5-7.

4. Sets the program counter to the vector address for the exception. This forces a 
branch to the appropriate exception handler.

Note
 If the application is running on a Thumb-capable processor, the processor response is 
slightly different. See Handling exceptions on Thumb-capable processors on page 5-40 
for more details.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-5



Handling Processor Exceptions 
5.2.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handler 
uses stack operations or not. In both cases, to return execution to the place where the 
exception occurred an exception handler must: 

• restore the CPSR from spsr_mode

• restore the program counter using the return address stored in lr_mode.

For a simple return that does not require the destination mode registers to be restored 
from the stack, the exception handler carries out these two operations by performing a 
data processing instruction with:

• the S flag set

• the program counter as the destination register.

The return instruction required depends on the type of exception. See The return 
address and return instruction on page 5-7 for instructions on how to return from each 
exception type.

Note
 You do not need to return from the reset handler because the reset handler should 
execute your main code directly.

If the exception handler entry code uses the stack to store registers that must be 
preserved while it handles the exception, it can return using a load multiple instruction 
with the ^ qualifier. For example, an exception handler can return in one instruction 
using:

    LDMFD sp!,{r0-r12,pc}^

if it saves the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing 
instructions described below.

The ^ qualifier specifies that the CPSR is restored from the SPSR. It must be used only 
from a privileged mode. See the description of Implementing stacks with LDM and STM in 
the ADS Assembler Guide for more general information on stack operations.
5-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.2.3 The return address and return instruction

The actual location pointed to by the program counter when an exception is taken 
depends on the exception type. The return address may not necessarily be the next 
instruction pointed to by the program counter. This section details the instructions to 
return correctly from handling code for each type of exception.

Note
 See The return address on page 5-42 for details of the return address on Thumb-capable 
processors when an exception occurs in Thumb state.

Returning from SWI and Undefined Instruction handlers

The SWI and Undefined Instruction exceptions are generated by the instruction itself, 
so the program counter is not updated when the exception is taken. The processor stores 
(pc – 4) in lr_ mode. This makes lr_mode point to the next instruction to be executed. 
Restoring the program counter from the lr with:

    MOVS        pc, lr

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:

    STMFD        sp!,{reglist,lr}
    ;...
    LDMFD        sp!,{reglist,pc}^

Returning from FIQ and IRQ handlers

After executing each instruction, the processor checks to see whether the interrupt pins 
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRQ 
or FIQ exceptions are generated only after the program counter has been updated. The 
processor stores (pc – 4) in lr_mode. This makes lr_mode point one instruction beyond 
the end of the instruction in which the exception occurred. When the handler has 
finished, execution must continue from the instruction prior to the one pointed to by 
lr_mode. The address to continue from is one word (four bytes) less than that in 
lr_mode, so the return instruction is:

    SUBS        pc, lr, #4

The handler entry and exit code to stack the return address and pop it on return is:
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-7



Handling Processor Exceptions 
    SUB        lr,lr,#4
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD        sp!,{reglist,pc}^

Returning from Prefetch Abort handlers

If the processor attempts to fetch an instruction from an illegal address, the instruction 
is flagged as invalid. Instructions already in the pipeline continue to execute until the 
invalid instruction is reached, at which point a Prefetch Abort is generated.

The exception handler loads the unmapped instruction into physical memory and uses 
the MMU, if there is one, to map the virtual memory location into the physical one. The 
handler must then return to retry the instruction that caused the exception. The 
instruction should now load and execute.

Because the program counter is not updated at the time the prefetch abort is issued, 
lr_ABT points to the instruction following the one that caused the exception. The handler 
must return to lr_ABT – 4 with:

    SUBS        pc,lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

    SUB        lr,lr,#4
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD      sp!,{reglist,pc}^

Returning from Data Abort handlers

When a load or store instruction tries to access memory, the program counter has been 
updated. The stored value of (pc – 4) in lr_ABT points to the second instruction beyond 
the address where the exception occurred. When the MMU, if present, has mapped the 
appropriate address into physical memory, the handler should return to the original, 
aborted instruction so that a second attempt can be made to execute it. The return 
address is therefore two words (eight bytes) less than that in lr_ABT, making the return 
instruction:

    SUBS       pc, lr, #8

The handler entry and exit code to stack the return address and pop it on return is:

    SUB        lr,lr,#8
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD      sp!,{reglist,pc}^
5-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.3 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is 
complete, the new handler executes whenever the corresponding exception occurs.

Exception handlers can be installed in two ways:

Branch instruction 

This is the simplest way to reach the exception handler. Each entry in the 
vector table contains a branch to the required handler routine. However, 
this method does have a limitation. Because the branch instruction only 
has a range of 32MB relative to the pc, with some memory organizations 
the branch may be unable to reach the handler.

Load pc instruction 

With this method, the program counter is forced directly to the handler 
address by:

1. Storing the absolute address of the handler in a suitable memory 
location (within 4KB of the vector address).

2. Placing an instruction in the vector that loads the program counter 
with the contents of the chosen memory location.

5.3.1 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program 
execution, you can load the vector table directly from your assembly language reset (or 
startup) code. 

If your ROM is at location 0x0 in memory, you can simply have a branch statement for 
each vector at the start of your code. This could also include the FIQ handler if it is 
running directly from 0x1C (see Interrupt handlers on page 5-23).

Example 5-1 shows code that sets up the vectors if they are located in ROM at address 
zero. You can substitute branch statements for the loads.

Example 5-1

Vector_Init_Block
                LDR    PC, Reset_Addr
                LDR    PC, Undefined_Addr
                LDR    PC, SWI_Addr
                LDR    PC, Prefetch_Addr
                LDR    PC, Abort_Addr
                NOP                     ;Reserved vector
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-9



Handling Processor Exceptions 
                LDR    PC, IRQ_Addr
                LDR    PC, FIQ_Addr
Reset_Addr      DCD    Start_Boot
Undefined_Addr  DCD    Undefined_Handler
SWI_Addr        DCD    SWI_Handler
Prefetch_Addr   DCD    Prefetch_Handler
Abort_Addr      DCD    Abort_Handler
                DCD    0                ;Reserved vector
IRQ_Addr        DCD    IRQ_Handler
FIQ_Addr        DCD    FIQ_Handler

You must have ROM at location 0x0 on reset. Your reset code can remap RAM to 
location 0x0. Before doing this, it must copy the vectors (plus the FIQ handler if 
required) down from an area in ROM into the RAM.

In this case, you must use an LDR pc instruction to address the reset handler, so that the 
reset vector code can be position independent.

Example 5-2 copies down the vectors given in Example 5-1 on page 5-9 to the vector 
table in RAM.

Example 5-2

    MOV        r8, #0
    ADR        r9, Vector_Init_Block
    LDMIA      r9!,{r0-r7}           ;Copy the vectors (8 words)
    STMIA      r8!,{r0-r7}
    LDMIA      r9!,{r0-r7}           ;Copy the DCD'ed addresses
    STMIA      r8!,{r0-r7}           ;(8 words again)

Alternatively, you can use the scatter-loading mechanism to define the load and 
execution address of the vector table. In that case, the C library copies the vector table 
for you (see Chapter 6 Writing Code for ROM).
5-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.3.2 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlers into 
the vectors directly from the main application. As a result, the required instruction 
encoding must be written to the appropriate vector address. This can be done for both 
the branch and the load pc method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for prefetching.

4. Shift the result to the right by two to give a word offset, rather than a byte offset.

5. Test that the top eight bits of this are clear, to ensure that the result is only 24 bits 
long (because the offset for the branch is limited to this).

6. Logically OR this with 0xEA000000 (the opcode for the Branch instruction) to 
produce the value to be placed in the vector.

Example 5-3 shows a C function that implements this algorithm. It takes the following 
arguments:

• the address of the handler

• the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This 
result can be used to create a chain of handlers for a particular exception. See Chaining 
exception handlers on page 5-38 for further details.

Example 5-3

unsigned Install_Handler (unsigned *handlerloc, unsigned *vector)
/* Updates contents of 'vector' to contain LDR pc,,[pc,#offset] */
/* instruction to cause long branch to address in handlerloc */
/* Function return value is original contents of 'vector'.*/
{   unsigned vec, oldvec;
    vec = *handlerloc - (unsigned)vector - 0x8;
    if ((vec & 0xFFFFF000) != 0)
    {
        /* diagnose the fault */
        exit (1);
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-11



Handling Processor Exceptions 
    }
    vec = 0xE59FF000 | vec;
    oldvec = *vector;
    *vector = vec;
    return (oldvec);
}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.

Load pc method

The required instruction can be constructed as follows:

1. Take the address of the word containing the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for prefetching.

4. Check that the result can be represented in 12 bits.

5. Logically OR this with 0xe59FF000 (the opcode for LDR pc, [pc,#offset]) to 
produce the value to be placed in the vector.

6. Put the address of the handler into the storage location.

Example 5-4 shows a C routine that implements this method.

Example 5-4

unsigned Install_Handler (unsigned location, unsigned *vector)
/* Updates contents of 'vector' to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in `location'. */
/* Function return value is original contents of 'vector'. */
{   unsigned vec, oldvec;
    vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000
    oldvec = *vector;
    *vector = vec;
    return (oldvec);
}

5-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
static unsigned pIRQ_Handler = (unsigned)IRQ_handler
Install_Handler (&pIRQHandler, irqvec);

Again in this example the returned, original contents of the IRQ vector are discarded, 
but they could be used to create a chain of handlers. See Chaining exception handlers 
on page 5-38 for more information.

Note
 If you are using a processor with separate instruction and data caches, such as 
StrongARM®, or ARM940T, you must ensure that cache coherence problems do not 
prevent the new contents of the vectors from being used. 

The data cache (or at least the entries containing the modified vectors) must be cleaned 
to ensure the new vector contents are written to main memory. You must then flush the 
instruction cache to ensure that the new vector contents are read from main memory.

For details of cache clean and flush operations, see the technical reference manual for 
your target processor.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-13



Handling Processor Exceptions 
5.4 SWI handlers

When the SWI handler is entered, it must establish which SWI is being called. This 
information can be stored in bits 0-23 of the instruction itself, as shown in Figure 5-1, 
or passed in an integer register, usually one of r0-r3.

Figure 5-1 ARM SWI instruction

The top-level SWI handler can load the SWI instruction relative to the link register (LDR 
swi, [lr, #-4]). Do this in assembly language, or C/C++ inline assembler.

The handler must first load the SWI instruction that caused the exception into a register. 
At this point, lr_SVC holds the address of the instruction that follows the SWI instruction, 
so the SWI is loaded into the register (in this case r0) using:

    LDR r0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required 
operation. The SWI number is extracted by clearing the top eight bits of the opcode:

    BIC r0, r0, #0xFF000000

Example 5-5 shows how you can put these instructions together to form a top-level SWI 
handler.

See Determining the processor state on page 5-43 for an example of a handler that deals 
with both ARM-state and Thumb-state SWI instructions.

Example 5-5

    AREA TopLevelSwi, CODE, READONLY  ; Name this block of code.
    EXPORT     SWI_Handler
SWI_Handler
    STMFD      sp!,{r0-r12,lr}        ; Store registers.
    LDR        r0,[lr,#-4]            ; Calculate address of SWI instruction and load it into r0.
    BIC        r0,r0,#0xff000000      ; Mask off top 8 bits of instruction to give SWI number.
    ;
    ; Use value in r0 to determine which SWI routine to execute.
    ;
    LDMFD        sp!, {r0-r12,pc}^    ; Restore registers and return.
    END                               ; Mark end of this file.

�� �� �� �� �� �� �� �

���� ��!���!�


����
� � � �

��


�����
��
5-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.4.1 SWI handlers in assembly language

The easiest way to call the handler for the requested SWI number is to use a jump table. 
If r0 contains the SWI number, the code in Example 5-6 can be inserted into the 
top-level handler given in Example 5-5 on page 5-14, following on from the BIC 
instruction.

Example 5-6 SWI jump table

    CMP    r0,#MaxSWI          ; Range check
    LDRLS  pc, [pc,r0,LSL #2]
    B      SWIOutOfRange
SWIJumpTable
    DCD    SWInum0
    DCD    SWInum1
                    ; DCD for each of other SWI routines
SWInum0             ; SWI number 0 code
    B    EndofSWI
SWInum1             ; SWI number 1 code
    B    EndofSWI
                    ; Rest of SWI handling code
                    ;
EndofSWI
                    ; Return execution to top level 
                    ; SWI handler so as to restore
                    ; registers and return to program.

5.4.2 SWI handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the 
routines that handle each SWI can be written in either assembly language or in C. See 
Using SWIs in Supervisor mode on page 5-18 for a description of restrictions.

The top-level handler uses a BL (Branch with Link) instruction to jump to the 
appropriate C function. Because the SWI number is loaded into r0 by the assembly 
routine, this is passed to the C function as the first parameter (in accordance with the 
ARM Procedure Call Standard). The function can use this value in, for example, a 
switch() statement.

You can add the following line to the SWI_Handler routine in Example 5-5 on page 5-14:

    BL    C_SWI_Handler     ; Call C routine to handle the SWI

Example 5-7 on page 5-16 shows how the C function can be implemented.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-15



Handling Processor Exceptions 
Example 5-7

void C_SWI_handler (unsigned number)
{ switch (number)
    {case 0 :                /* SWI number 0 code */
        break;
    case 1 :                 /* SWI number 1 code */
        break;
    :
    :
    default :                /* Unknown SWI - report error */
    }
}

The supervisor stack space may be limited, so avoid using functions that require a large 
amount of stack space.

You can pass values in and out of a SWI handler written in C, provided that the top-level 
handler passes the stack pointer value into the C function as the second parameter (in 
r1):

    MOV     r1, sp        ; Second parameter to C routine...
                          ; ...is pointer to register values.
    BL    C_SWI_Handler   ; Call C routine to handle the SWI

and the C function is updated to access it:

void C_SWI_handler(unsigned number, unsigned *reg)

The C function can now access the values contained in the registers at the time the SWI 
instruction was encountered in the main application code (see Figure 5-2 on page 5-17). 
It can read from them:

    value_in_reg_0 = reg [0];
    value_in_reg_1 = reg [1];
    value_in_reg_2 = reg [2];
    value_in_reg_3 = reg [3];

and also write back to them: 

    reg [0] = updated_value_0;
    reg [1] = updated_value_1;
    reg [2] = updated_value_2;
    reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then 
restored into the register by the top-level handler.
5-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
Figure 5-2 Accessing the supervisor stack

������

��

�	

�


��

��
������������

������
������

������
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-17



Handling Processor Exceptions 
5.4.3 Using SWIs in Supervisor mode

When a SWI instruction is executed:

1. The processor enters Supervisor mode.

2. The CPSR is stored into spsr_SVC.

3. The return address is stored in lr_SVC (see The processor response to an exception 
on page 5-5).

If the processor is already in Supervisor mode, lr_SVC and spsr_SVC are corrupted.

If you call a SWI while in Supervisor mode you must store lr_SVC and spsr_SVC to 
ensure that the original values of the link register and the SPSR are not lost. For 
example, if the handler routine for a particular SWI number calls another SWI, you 
must ensure that the handler routine stores both lr_SVC and spsr_SVC on the stack. This 
ensures that each invocation of the handler saves the information needed to return to the 
instruction following the SWI that invoked it. Example 5-8 shows how to do this.

Example 5-8  SWI Handler

    STMFD    sp!,{r0-r3,r12,lr}   ; Store registers.
    MOV      r1, sp               ; Set pointer to parameters.
    MRS      r0, spsr             ; Get spsr.
    STMFD    sp!, {r0}            ; Store spsr onto stack. This is only really needed in case of
                                  ; nested SWIs.
        ; the next two instructions only work for SWI calls from ARM state.
        ; See Example 5-17 on page 5-30 for a version that works for calls from either ARM or Thumb.
    LDR      r0,[lr,#-4]          ; Calculate address of SWI instruction and load it into r0.
    BIC      r0,r0,#0xFF000000    ; Mask off top 8 bits of instruction to give SWI number.
        ; r0 now contains SWI number
        ; r1 now contains pointer to stacked registers
    BL       C_SWI_Handler        ; Call C routine to handle the SWI.
    LDMFD    sp!, {r0}            ; Get spsr from stack.
    MSR      spsr_cf, r0          ; Restore spsr.
    LDMFD    sp!, {r0-r3,r12,pc}^ ; Restore registers and return.

Nested SWIs in C and C++

You can write nested SWIs in C or C++. Code generated by the ARM compilers stores 
and reloads lr_SVC as necessary.
5-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.4.4 Calling SWIs from an application

You can call a SWI from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SWI. 
For example:

    MOV    r0, #65    ; load r0 with the value 65
    SWI    0x0        ; Call SWI 0x0 with parameter value in r0

The SWI instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SWI as an __SWI function, and call it. For example:

    __swi(0) void my_swi(int);
    .
    .
    .
    my_swi(65);

This allows a SWI to compiled inline, without additional calling overhead, provided 
that:

• any arguments are passed in r0-r3 only

• any results are returned in r0-r3 only.

The parameters are passed to the SWI as if the SWI were a real function call. However, 
if there are between two and four return values, you must tell the compiler that the return 
values are being returned in a structure, and use the __value_in_regs directive. This is 
because a struct-valued function is usually treated as if it were a void function whose 
first argument is the address where the result structure should be placed.

Example 5-9 and Example 5-10 on page 5-20 show a SWI handler that provides SWI 
numbers 0x0, 0x1, 0x2 and 0x3. SWIs 0x0 and 0x1 each take two integer parameters and 
return a single result. SWI 0x2 takes four parameters and returns a single result. SWI 0x3 
takes four parameters and returns four results. This example is in Examples\SWI\main.c. 
and Examples\SWI\swi.h.

Example 5-9 main.c

#include <stdio.h>
#include "swi.h"
unsigned *swi_vec = (unsigned *)0x08;
extern void SWI_Handler(void);
int main( void )
{
    int result1, result2;
    struct four_results res_3;
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-19



Handling Processor Exceptions 
    Install_Handler( (unsigned) SWI_Handler, swi_vec );
    printf("result1 = multiply_two(2,4) = %d\n", result1 = multiply_two(2,4));
    printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply_two(3,6));
    printf("add_two( result1, result2 ) = %d\n", add_two( result1, result2 ));
    printf("add_multiply_two(2,4,3,6) = %d\n", add_multiply_two(2,4,3,6));
    res_3 = many_operations( 12, 4, 3, 1 );
    printf("res_3.a = %d\n", res_3.a );
    printf("res_3.b = %d\n", res_3.b );
    printf("res_3.c = %d\n", res_3.c );
    printf("res_3.d = %d\n", res_3.d );
    return 0;
}

Example 5-10 swi.h

__swi(0) int multiply_two(int, int);
__swi(1) int add_two(int, int);
__swi(2) int add_multiply_two(int, int, int, int);
struct four_results
{
    int a;
    int b;
    int c;
    int d;
};
__swi(3) __value_in_regs struct four_results
    many_operations(int, int, int, int);

5.4.5 Calling SWIs dynamically from an application

In some circumstances it can be necessary to call a SWI whose number is not known 
until runtime. This situation can occur, for example, when there are a number of related 
operations that can be performed on an object, and each operation has its own SWI. In 
such a case, the methods described above are not appropriate.

There are several ways of dealing with this, for example, you can:

• Construct the SWI instruction from the SWI number, store it somewhere, then 
execute it.

• Use a generic SWI that takes, as an extra argument, a code for the actual operation 
to be performed on its arguments. The generic SWI decodes the operation and 
performs it.
5-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
The second mechanism can be implemented in assembly language by passing the 
required operation number in a register, typically r0 or r12. You can then rewrite the 
SWI handler to act on the value in the appropriate register. Because some value has to 
be passed to the SWI in the comment field, it would be possible for a combination of 
these two methods to be used.

For example, an operating system might make use of only a single SWI instruction and 
employ a register to pass the number of the required operation. This leaves the rest of 
the SWI space available for application-specific SWIs. You can use this method if the 
overhead of extracting the SWI number from the instruction is too great in a particular 
application. This is how the ARM (0x123456) and Thumb (0xAB) semihosted SWIs are 
implemented.

Example 5-11 shows how __swi can be used to map a C function call onto a semihosting 
SWI. It is derived from Examples\embedded\embed\retarget.c.

Example 5-11 Mapping a C function onto a semihosting SWI

#ifdef __thumb
/* Thumb Semihosting SWI */
#define SemiSWI 0xAB
#else
/* ARM Semihosting SWI */
#define SemiSWI 0x123456
#endif
/* Semihosting SWI to write a character */ 
__swi(SemiSWI) void Semihosting(unsigned op, char *c);
#define WriteC(c) Semihosting (0x3,c)
void write_a_character(int ch)
{

 char tempch = ch;
 WriteC( &tempch );

}

A mechanism is included in the compiler to support the use of r12 to pass the value of 
the required operation. Under the ARM Procedure Call Standard, r12 is the ip register 
and has a dedicated role only during function call. At other times, you can use it as a 
scratch register. The arguments to the generic SWI are passed in registers r0-r3 and 
values are optionally returned in r0-r3 as described earlier. The operation number 
passed in r12 could be, but need not be, the number of the SWI to be called by the 
generic SWI.

Example 5-12 on page 5-22 shows a C fragment that uses a generic, or indirect SWI.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-21



Handling Processor Exceptions 
Example 5-12

__swi_indirect(0x80)
    unsigned SWI_ManipulateObject(unsigned operationNumber,
                                  unsigned object,unsigned parameter);
unsigned DoSelectedManipulation(unsigned object,
                                unsigned parameter, unsigned operation)
{ return SWI_ManipulateObject(operation, object, parameter);
}

This produces the following code:

DoSelectedManipulation PROC
        STMFD    sp!,{r3,lr}
        MOV      r12,r2
        SWI      0x80
        LDMFD    sp!,{r3,pc}
        ENDP

It is also possible to pass the SWI number in r0 from C using the __swi mechanism. For 
example, if SWI 0x0 is used as the generic SWI and operation 0 is a character read and 
operation 1 a character write, you can set up the following:

__swi (0) char __ReadCharacter (unsigned op);
__swi (0) void __WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly fashion by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use r0 in this way, only three registers are available for passing 
parameters to the SWI. Usually, if you need to pass more parameters to a subroutine in 
addition to r0-r3, you can do this using the stack. However, stacked parameters are not 
easily accessible to a SWI handler, because they typically exist on the User mode stack 
rather than the supervisor stack employed by the SWI handler.

Alternatively, one of the registers (typically r1) can be used to point to a block of 
memory storing the other parameters.
5-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.5 Interrupt handlers

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which 
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the 
appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in two ways:

• FIQs are serviced first when multiple interrupts occur.

• Servicing a FIQ causes IRQs to be disabled, preventing them from being serviced 
until after the FIQ handler has re-enabled them. This is usually done by restoring 
the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at address 0x1C) so that the FIQ 
handler can be placed directly at the vector location and run sequentially from that 
address. This removes the need for a branch and its associated delays, and also means 
that if the system has a cache, the vector table and FIQ handler may all be locked down 
in one block within it. This is important because FIQs are designed to service interrupts 
as quickly as possible. The five extra FIQ mode banked registers enable status to be held 
between calls to the handler, again increasing execution speed.

Note
 An interrupt handler must contain code to clear the source of the interrupt.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-23



Handling Processor Exceptions 
5.5.1 Simple interrupt handlers in C

You can write simple C interrupt handlers by using the __irq function declaration 
keyword. You can use the __irq keyword both for simple one-level interrupt handlers, 
and interrupt handlers that call subroutines. However, you cannot use the __irq keyword 
for reentrant interrupt handlers, because it does not cause the SPSR to be saved or 
restored. In this context, reentrant means that the handler re-enables interrupts, and may 
itself be interrupted. See Reentrant interrupt handlers on page 5-26 for more 
information.

The __irq keyword:

• preserves all ATPCS corruptible registers

• preserves all other registers (excluding the floating-point registers) used by the 
function

• exits the function by setting the program counter to (lr – 4) and restoring the 
CPSR to its original value.

If the function calls a subroutine, __irq preserves the link register for the interrupt mode 
in addition to preserving the other corruptible registers. See Calling subroutines from 
interrupt handlers for more information.

Note
 C interrupt handlers cannot be produced in this way using tcc. The __irq keyword is 
faulted by tcc because tcc can only produce Thumb code, and the processor is always 
switched to ARM state when an interrupt, or any other exception, occurs.

However, the subroutine called by an __irq function can be compiled for Thumb, with 
interworking enabled. See Chapter 3 Interworking ARM and Thumb for more 
information on interworking.

Calling subroutines from interrupt handlers

If you call subroutines from your top-level interrupt handler, the __irq keyword also 
restores the value of lr_IRQ from the stack so that it can be used by a SUBS instruction to 
return to the correct address after the interrupt has been handled.

Example 5-13 on page 5-25 shows how this works. The top level interrupt handler reads 
the value of a memory-mapped interrupt controller base address at 0x80000000. If the 
value of the address is 1, the top-level handler branches to a handler written in C.
5-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
Example 5-13

__irq void IRQHandler (void)
{
    volatile unsigned int *base = (unsigned int *) 0x80000000;
    if (*base == 1)          // which interrupt was it?
    {
        C_int_handler();     // process the interrupt
    }
    *(base+1) = 0;           // clear the interrupt
}

Compiled with armcc, Example 5-13 produces the following code:

IRQHandler PROC
        STMFD    sp!,{r0-r4,r12,lr}
        MOV      r4,#0x80000000
        LDR      r0,[r4,#0]
        SUB      sp,sp,#4
        CMP      r0,#1
        BLEQ     C_int_handler
        MOV      r0,#0
        STR      r0,[r4,#4]
        ADD      sp,sp,#4
        LDMFD    sp!,{r0-r4,r12,lr}
        SUBS     pc,lr,#4
        ENDP

Compare this with the result when the __irq keyword is not used:

IRQHandler PROC
        STMFD    sp!,{r4,lr}
        MOV      r4,#0x80000000
        LDR      r0,[r4,#0]
        CMP      r0,#1
        BLEQ     C_int_handler
        MOV      r0,#0
        STR      r0,[r4,#4]
        LDMFD    sp!,{r4,pc}
        ENDP
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-25



Handling Processor Exceptions 
5.5.2 Reentrant interrupt handlers

Note
 The following method works for both IRQ and FIQ interrupts. However, because FIQ 
interrupts are meant to be serviced as quickly as possible there will normally be only 
one interrupt source, so it may not be necessary to allow for reentrancy.

If an interrupt handler re-enables interrupts, then calls a subroutine, and another 
interrupt occurs, the return address of the subroutine (stored in lr_IRQ) is corrupted 
when the second IRQ is taken. Using the __irq keyword in C does not cause the SPSR 
to be saved and restored, as required by reentrant interrupt handlers, so you must write 
your top level interrupt handler in assembly language.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save 
the state for the new processor mode before branching to a nested subroutine or C 
function.

In ARM architecture v4 or later you can switch to System mode. System mode uses the 
User mode registers, and allows privileged access that may be required by your 
exception handler. See System mode on page 5-45 for more information. In ARM 
architectures prior to ARM architecture v4 you must switch to Supervisor mode instead.

The steps needed to safely re-enable interrupts in an IRQ handler are:

1. Construct return address and save on the IRQ stack.

2. Save the work registers and spsr_IRQ.

3. Clear the source of the interrupt.

4. Switch to System mode and re-enable interrupts.

5. Save User mode link register and non callee-saved registers.

6. Call the C interrupt handler function.

7. When the C interrupt handler returns, restore User mode registers and disable 
interrupts.

8. Switch to IRQ mode, disabling interrupts.

9. Restore work registers and spsr_IRQ.

10. Return from the IRQ.

Example 5-14 on page 5-27 shows how this works for System mode. Registers r12 and 
r14 are used as temporary work registers after lr_IRQ is pushed on the stack.
5-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
Example 5-14

    AREA INTERRUPT, CODE, READONLY
    IMPORT C_irq_handler
IRQ
    SUB     lr, lr, #4        ; construct the return address
    STMFD   sp!, {lr}         ; and push the adjusted lr_IRQ
    MRS     r14, SPSR         ; copy spsr_IRQ to r14
    STMFD   sp!, {r12, r14}   ; save work regs and spsr_IRQ
    ; Add instructions to clear the interrupt here
    ; then re-enable interrupts.
    MSR     CPSR_c, #0x1F     ; switch to SYS mode, FIQ and IRQ
                              ; enabled. USR mode registers
                              ; are now current.
    STMFD  sp!, {r0-r3, lr}   ; save lr_USR and non-callee 
                              ; saved registers
    BL      C_irq_handler     ; branch to C IRQ handler.
    LDMFD   sp!, {r0-r3, lr}  ; restore registers
    MSR     CPSR_c, #0x92     ; switch to IRQ mode and disable
                              ; IRQs. FIQ is still enabled.
    LDMFD   sp!, {r12, r14}   ; restore work regs and spsr_IRQ
    MSR     SPSR_cf, r14
    LDMFD   sp!, {pc}^        ; return from IRQ.
    END
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-27



Handling Processor Exceptions 
5.5.3 Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute 
quickly. The following sections give some examples:

• Single-channel DMA transfer

• Dual-channel DMA transfer on page 5-29

• Interrupt prioritization on page 5-30

• Context switch on page 5-31.

Single-channel DMA transfer

Example 5-15 shows an interrupt handler that performs interrupt driven I/O to memory 
transfers (soft DMA). The code is an FIQ handler. It uses the banked FIQ registers to 
maintain state between interrupts. This code is best situated at location 0x1C. 

In the example code:

r8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read. 
Reading this register clears the interrupt.

r9 Points to the memory location to where that data is being transferred.

r10 Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 5-15

    LDR     r11, [r8, #IOData]     ; Load port data from the IO
                                   ; device.
    STR     r11, [r9], #4          ; Store it to memory: update
                                   ; the pointer.
    CMP     r9, r10                ; Reached the end ?
    SUBLSS  pc, lr, #4             ; No, so return.
                                   ; Insert transfer complete
                                   ; code here.

Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the load instruction and the store instruction.
5-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
Dual-channel DMA transfer

Example 5-16 is similar to Example 5-15 on page 5-28, except that there are two 
channels being handled. The code is an FIQ handler. It uses the banked FIQ registers to 
maintain state between interrupts. It is best situated at location 0x1c. 

In the example code:

r8 Points to the base address of the I/O device from which data is 
read.

IOStat Is the offset from the base address to a register indicating which of 
two ports caused the interrupt.

IOPort1Active Is a bit mask indicating if the first port caused the interrupt 
(otherwise it is assumed that the second port caused the interrupt).

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data 
register clears the interrupt for the corresponding port.

r9 Points to the memory location to which data from the first port is 
being transferred.

r10 Points to the memory location to which data from the second port 
is being transferred.

r11, r12 Point to the last address to transfer to (r11 for the first port, r12 for 
the second).

The entire sequence to handle a normal transfer takes nine instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 5-16

    LDR     r13, [r8, #IOStat]      ; Load status register to find which port
                                    ; caused the interrupt.
    TST     r13, #IOPort1Active
    LDREQ   r13, [r8, #IOPort1]     ; Load port 1 data.
    LDRNE   r13, [r8, #IOPort2]     ; Load port 2 data.
    STREQ   r13, [r9], #4           ; Store to buffer 1.
    STRNE   r13, [r10], #4          ; Store to buffer 2.
    CMP     r9, r11                 ; Reached the end?
    CMPLE   r10, r12                ; On either channel?
    SUBNES  pc, lr, #4              ; Return
                            ; Insert transfer complete code here.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-29



Handling Processor Exceptions 
Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the conditional load instructions and the conditional store 
instructions.

Interrupt prioritization

Example 5-17 dispatches up to 32 interrupt sources to their appropriate handler 
routines. Because it is designed for use with the normal interrupt vector (IRQ), it should 
be branched to from location 0x18.

External hardware is used to prioritize the interrupt and present the high-priority active 
interrupt in an I/O register.

In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active 
interrupt.

r13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with 
all registers preserved on the stack).

In addition, the last three instructions of each handler are executed with interrupts 
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts describes multiple-source 
prioritization of interrupts using software, as opposed to using hardware as described 
here.

Example 5-17

    ; first save the critical state
    SUB     lr, lr, #4              ; Adjust the return address
                                    ; before we save it.
    STMFD   sp!, {lr}               ; Stack return address
    MRS     r14, SPSR               ; get the SPSR ...
    STMFD   sp!, {r12, r14}         ; ... and stack that plus a
                                    ; working register too.
5-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
                                    ; Now get the priority level of the
                                    ; highest priority active interrupt.
    MOV     r12, #IntBase           ; Get the interrupt controller's
                                    ; base address.
    LDR     r12, [r12, #IntLevel]   ; Get the interrupt level (0 to 31).
    ; Now read-modify-write the CPSR to enable interrupts.
    MRS     r14, CPSR               ; Read the status register.
    BIC     r14, r14, #0x80         ; Clear the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, r14             ; Write it back to re-enable
                                    ; interrupts and
    LDR     PC, [PC, r12, LSL #2]   ; jump to the correct handler.
                                    ; PC base address points to this
                                    ; instruction + 8
    NOP                             ; pad so the PC indexes this table.
                                    ; Table of handler start addresses
    DCD     Priority0Handler
    DCD     Priority1Handler
    DCD     Priority2Handler
; ...
    Priority0Handler
    STMFD   sp!, {r0 - r11}         ; Save other working registers.
                                    ; Insert handler code here.
; ...
    LDMFD   sp!, {r0 - r11}         ; Restore working registers (not r12).
    ; Now read-modify-write the CPSR to disable interrupts.
    MRS     r12, CPSR               ; Read the status register.
    ORR     r12, r12, #0x80         ; Set the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, r12             ; Write it back to disable interrupts.
    ; Now that interrupt disabled, can safely restore SPSR then return.
    LDMFD   sp!, {r12, r14}         ; Restore r12 and get SPSR.
    MSR     SPSR_csxf, r14          ; Restore status register from r14.
    LDMFD   sp!, {pc}^              ; Return from handler.
Priority1Handler
; ...

Context switch

Example 5-18 on page 5-32 performs a context switch on the User mode process. The 
code is based around a list of pointers to Process Control Blocks (PCBs) of processes 
that are ready to run.

Figure 5-3 on page 5-32 shows the layout of the PCBs that the example expects.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-31



Handling Processor Exceptions 
Figure 5-3 PCB layout

The pointer to the PCB of the next process to run is pointed to by r12, and the end of the 
list has a zero pointer. Register r13 is a pointer to the PCB, and is preserved between 
time slices, so that on entry it points to the PCB of the currently running process.

Example 5-18

    STMIA   r13, {r0 - r14}^        ; Dump user registers above r13.
    MRS     r0, SPSR                ; Pick up the user status
    STMDB   r13, {r0, lr}           ; and dump with return address below.
    LDR     r13, [r12], #4          ; Load next process info pointer.
    CMP     r13, #0                 ; If it is zero, it is invalid
    LDMNEDB r13, {r0, lr}           ; Pick up status and return address.
    MSRNE   SPSR_cxsf, r0           ; Restore the status.
    LDMNEIA r13, {r0 - r14}^        ; Get the rest of the registers
    NOP
    SUBNES  pc, lr, #4              ; and return and restore CPSR.
                    ; Insert "no next process code" here.

��
��
��
��
��
��
�	
�

��
��


�
�

��
�
�
�


�
	
�
�
�
�

�����������

�
������������
���

5-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.6 Reset handlers

The operations carried out by the Reset handler depend on the system for which the 
software is being developed. For example, it may: 

• Set up exception vectors. See Installing an exception handler on page 5-9 for 
details.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 6 Writing Code for ROM for more information.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-33



Handling Processor Exceptions 
5.7 Undefined Instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors 
attached to the system. If the instruction remains unrecognized, an Undefined 
Instruction exception is generated. It could be the case that the instruction is intended 
for a coprocessor, but that the relevant coprocessor, for example a Floating Point 
Accelerator, is not attached to the system. However, a software emulator for such a 
coprocessor might be available.

Such an emulator must:

1. Attach itself to the Undefined Instruction vector and store the old contents.

2. Examine the undefined instruction to see if it should be emulated. This is similar 
to the way in which a SWI handler extracts the number of a SWI, but rather than 
extracting the bottom 24 bits, the emulator must extract bits 27-24. 

These bits determine whether the instruction is a coprocessor operation in the 
following way:

• If bits 27 to 24 = b1110 or b110x, the instruction is a coprocessor 
instruction.

• If bits 8-11 show that this coprocessor emulator should handle the 
instruction, the emulator must process the instruction and return to the user 
program.

3. Otherwise the emulator must pass the exception onto the original handler (or the 
next emulator in the chain) using the vector stored when the emulator was 
installed.

When a chain of emulators is exhausted, no further processing of the instruction can 
take place, so the Undefined Instruction handler should report an error and quit. See 
Chaining exception handlers on page 5-38 for more information.

Note
 The Thumb instruction set does not have coprocessor instructions, so there should be 
no need for the Undefined Instruction handler to emulate such instructions.
5-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.8 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can simply report the error and 
quit. Otherwise the address that caused the abort must be restored into physical memory. 
lr_ABT points to the instruction at the address following the one that caused the abort, 
so the address to be restored is at lr_ABT - 4. The virtual memory fault for that address 
can be dealt with and the instruction fetch retried. The handler should therefore return 
to the same instruction rather than the following one, for example:

    SUBS    pc,lr,#4
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-35



Handling Processor Exceptions 
5.9 Data Abort handler

If there is no MMU, the Data Abort handler should simply report the error and quit. If 
there is an MMU, the handler should deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT - 8 because lr_ABT points two 
instructions beyond the instruction that caused the abort.

Three types of instruction can cause this abort:

Single Register Load or Store (LDR or STR) 

The response depends on the processor type: 

• If the abort takes place on an ARM6-based processor:

— If the processor is in early abort mode and writeback was 
requested, the address register will not have been updated. 

— If the processor is in late abort mode and writeback was 
requested, the address register will have been updated. The 
change must be undone.

• If the abort takes place on an ARM7-based processor, including the 
ARM7TDMI, the address register will have been updated and the 
change must be undone.

• If the abort takes place on an ARM9™, ARM10™, or 
StrongARM-based processor, the address is restored by the 
processor to the value it had before the instruction started. No 
further action is required to undo the change.

Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple (LDM or STM) 

The response depends on the processor type: 

• If the abort takes place on an ARM6-based processor or 
ARM7-based processor, and writeback is enabled, the base register 
will have been updated as if the whole transfer had taken place. 

In the case of an LDM with the base register in the register list, the 
processor replaces the overwritten value with the modified base 
value so that recovery is possible. The original base address can 
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9, ARM10, or 
StrongARM-based processor and writeback is enabled, the base 
register will be restored to the value it had before the instruction 
started.
5-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
In each of the three cases the MMU can load the required virtual memory into physical 
memory. The MMU Fault Address Register (FAR) contains the address that caused the 
abort. When this is done, the handler can return and try to execute the instruction again.

You can find example Data Abort handler code in install_directory/examples/databort. 
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-37



Handling Processor Exceptions 
5.10 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For 
example: 

• Angel uses an Undefined Instruction to implement breakpoints. However, 
Undefined Instruction exceptions also occur when a coprocessor instruction is 
executed, and no coprocessor is present.

• Angel uses a SWI for various purposes, such as entering Supervisor mode from 
User mode, and supporting semihosting requests during development. However, 
an RTOS or an application might also implement some SWIs.

In such situations there are two approaches that can be taken to extend the exception 
handling code:

• A single extended handler

• Several chained handlers.

5.10.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to work 
out what the source of the exception was, and then directly call the appropriate code. In 
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SWIs and 
Undefined Instructions, and the Angel exception handlers can be extended to deal with 
non-Angel SWIs and Undefined Instructions.

However, this approach is only useful if all the sources of an exception are known when 
the single exception handler is written.

5.10.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in which 
a standard Angel debugger is executing, and a standalone user application (or RTOS) 
which wants to support some additional SWIs is then downloaded. The newly loaded 
application may well have its own entirely independent exception handler that it wants 
to install, but which cannot simply replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is able 
to call the old handler if it discovers that the source of the exception is not a source it 
can deal with. For example, an RTOS SWI handler would call the Angel SWI handler 
on discovering that the SWI was not an RTOS SWI, so that the Angel SWI handler gets 
a chance to process it.
5-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
This approach can be extended to any number of levels to build a chain of handlers. 
Although code that takes this approach allows each handler to be entirely independent, 
it is less efficient than code that uses a single handler, or at least it becomes less efficient 
the further down the chain of handlers it has to go.

Both routines given in Installing the handlers from C on page 5-11 return the old 
contents of the vector. This value can be decoded to give:

The offset for a branch instruction 

This can be used to calculate the location of the original handler and 
allow a new branch instruction to be constructed and stored at a suitable 
place in memory. If the replacement handler fails to handle the exception, 
it can branch to the constructed branch instruction, which in turn will 
branch to the original handler.

The location used to store the address of the original handler 

If the application handler failed to handle the exception, it would then 
need to load the program counter from that location.

In most cases, such calculations are not necessary because information on the debug 
monitor or RTOS handlers is available to you. If so, the instructions required to chain 
in the next handler can be hard-coded into the application. The last section of the 
handler must check that the cause of the exception has been handled. If it has, the 
handler can return to the application. If not, it must call the next handler in the chain.

Note
 When chaining in a handler before a debug monitor handler, you must remove the chain 
when the monitor is removed from the system, then directly install the application 
handler.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-39



Handling Processor Exceptions 
5.11 Handling exceptions on Thumb-capable processors

This section describes the additional considerations you must take into account when 
writing exception handlers suitable for use on Thumb-capable processors.

Thumb-capable processors use the same basic exception handling mechanism as 
processors that are not Thumb-capable. An exception causes the next instruction to be 
fetched from the appropriate vector table entry.

Note
 This section applies only to Thumb-capable ARM processors.

The same vector table is used for both Thumb-state and ARM-state exceptions. An 
initial step that switches to ARM state is added to the exception handling procedure 
described in The processor response to an exception on page 5-5. 

5.11.1 Thumb processor response to an exception

When an exception is generated, the processor takes the following actions:

1. Copies cpsr into spsr_mode.

2. Switches to ARM state.

3. Sets the CPSR mode bits.

4. Stores the return address in lr_mode. See The return address on page 5-42 for 
further details.

5. Sets the program counter to the vector address for the exception. The switch from 
Thumb state to ARM state in step 2 ensures that the ARM instruction installed at 
this vector address (either a branch or a pc-relative load) is correctly fetched, 
decoded, and executed. This forces a branch to a top-level veneer that you must 
write in ARM code.
5-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
Handling the exception

Your top-level veneer routine should save the processor status and any required registers 
on the stack. You then have two options for writing the exception handler:

• Write the whole exception handler in ARM code.

• Perform a BX (Branch and eXchange) to a Thumb code routine that handles the 
exception. The routine must return to an ARM code veneer in order to return from 
the exception, because the Thumb instruction set does not have the instructions 
required to restore cpsr from spsr.

This second strategy is shown in Figure 5-4. See Chapter 3 Interworking ARM and 
Thumb for details of how to combine ARM and Thumb code in this way.

Figure 5-4 Handling an exception in Thumb state

�������	
�

�

������	�

�����	
�

�������

�������	
�

���
�������	�������

���������
��������


���������������
����
�� !��
��� 

���������
��������


���������
����������


"� !�
���


#�
���� 

���
���$�� !
�
%���
������


�
����
���$�� !
�
%���
������


& ��'��
 

�

&#����
 

�
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-41



Handling Processor Exceptions 
5.11.2 The return address

If an exception occurs in ARM state, the value stored in lr_mode is (pc – 4) as described 
in The return address and return instruction on page 5-7. However, if the exception 
occurs in Thumb state, the processor automatically stores a different value for each of 
the exception types. This adjustment is required because Thumb instructions take up 
only a halfword, rather than the full word that ARM instructions occupy. 

If this correction were not made by the processor, the handler would have to determine 
the original state of the processor, and use a different instruction to return to Thumb 
code rather than ARM code. By making this adjustment, however, the processor allows 
the handler to have a single return instruction that will return correctly, regardless of the 
processor state (ARM or Thumb) at the time the exception occurred. 

The following sections give a summary of the values to which the processor sets 
lr_mode if an exception occurs when the processor is in Thumb state.

SWI and Undefined Instruction handlers

The handler's return instruction (MOVS pc,lr) changes the program counter to the address 
of the next instruction to execute. This is at (pc – 2), so the value stored by the processor 
in lr_mode is (pc – 2).

FIQ and IRQ handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the 
address of the next instruction to execute. Because the program counter is updated 
before the exception is taken, the next instruction is at (pc – 4). The value stored by the 
processor in lr_mode is therefore pc.

Prefetch Abort handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the 
address of the aborted instruction. Because the program counter is not updated before 
the exception is taken, the aborted instruction is at (pc – 4). The value stored by the 
processor in lr_mode is therefore pc.

Data Abort handlers

The handler's return instruction (SUBS pc,lr,#8) changes the program counter to the 
address of the aborted instruction. Because the program counter is updated before the 
exception is taken, the aborted instruction is at (pc – 6). The value stored by the 
processor in lr_mode is therefore (pc + 2).
5-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.11.3 Determining the processor state

An exception handler may need to determine whether the processor was in ARM or 
Thumb state when the exception occurred. SWI handlers, especially, might need to read 
the processor state. This is done by examining the SPSR T-bit. This bit is set for Thumb 
state and clear for ARM state.

Both ARM and Thumb instruction sets have the SWI instruction. When calling SWIs 
from Thumb state, you must consider three things:

• the address of the instruction is at (lr – 2), rather than (lr – 4)

• the instruction itself is 16-bit, and so requires a halfword load (see Figure 5-5)

• the SWI number is held in 8 bits instead of the 24 bits in ARM state.

Figure 5-5 Thumb SWI instruction

Example 5-19 shows ARM code that handles a SWI from both sources. Consider the 
following points:

• Each of the do_swi_x routines could carry out a switch to Thumb state and back 
again to improve code density if required. 

• You can replace the jump table by a call to a C function containing a switch() 
statement to implement the SWIs.

• It is possible for a SWI number to be handled differently depending upon the state 
it is called from.

• The range of SWI numbers accessible from Thumb state can be increased by 
calling SWIs dynamically (as described in SWI handlers on page 5-14).

Example 5-19

T_bit   EQU    0x20                     ; Thumb bit of CPSR/SPSR, that is, bit 5.
        :
        :
SWIHandler
        STMFD   sp!, {r0-r3,r12,lr}     ; Store registers.
        MRS     r0, spsr                ; Move SPSR into general purpose register.
        TST     r0, #T_bit              ; Occurred in Thumb state?
        LDRNEH  r0,[lr,#-2]             ; Yes: load halfword and...

�� �� �� �� �� �� � � � �

��


�����
��

�!���!�


����
� � �� � ���
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-43



Handling Processor Exceptions 
        BICNE   r0,r0,#0xFF00           ; ...extract comment field.
        LDREQ   r0,[lr,#-4]             ; No: load word and...
        BICEQ   r0,r0,#0xFF000000       ; ...extract comment field.
            ; r0 now contains SWI number
        CMP     r0, #MaxSWI             ; Rangecheck
        LDRLS   pc, [pc, r0, LSL#2]     ; Jump to the appropriate routine.
        B       SWIOutOfRange
switable
        DCD     do_swi_1
        DCD     do_swi_2
        :
        :
do_swi_1    
        ; Handle the SWI.
        LDMFD   sp!, {r0-r3,r12,pc}^   ; Restore the registers and return.
do_swi_2
        :
5-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Handling Processor Exceptions 
5.12 System mode

The ARM Architecture defines a User mode that has 15 general purpose registers, a pc, 
and a CPSR. In addition to this mode there are five privileged processor modes, each of 
which have an SPSR and a number of registers that replace some of the 15 User mode 
general purpose registers. 

Note
 This section only applies to processors that implement ARM architectures v4, v4T and 
later.

When a processor exception occurs, the current program counter is copied into the link 
register for the exception mode, and the CPSR is copied into the SPSR for the exception 
mode. The CPSR is then altered in an exception-dependent way, and the program 
counter is set to an exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before 
changing the program counter, so the subroutine return instruction moves r14 to pc (MOV 
pc,lr).

Together these actions imply that ARM modes that handle exceptions must ensure that 
another exception of the same type cannot occur if they call subroutines, because the 
subroutine return address will be overwritten with the exception return address.

(In earlier versions of the ARM architecture, this problem has been solved by either 
carefully avoiding subroutine calls in exception code, or changing from the privileged 
mode to User mode. The first solution is often too restrictive, and the second means the 
task may not have the privileged access it needs to run correctly.)

ARM architecture v4 and later provide a processor mode called system mode, to 
overcome this problem. System mode is a privileged processor mode that shares the 
User mode registers. Privileged mode tasks can run in this mode, and exceptions no 
longer overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handlers modify the 
CPSR to enter System mode. See Reentrant interrupt handlers on page 5-26 for an 
example.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-45



Handling Processor Exceptions 
5-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 6 
Writing Code for ROM

This chapter describes how to build images for embedded applications. These images 
are typically programmed into ROM or flash memory. There are also suggestions on 
how to avoid the most common errors in writing code for ROM.

This chapter contains the following sections:

• About writing code for ROM on page 6-2

• Memory map considerations on page 6-4

• Initializing the system on page 6-7

• The reference C example using semihosting on page 6-11

• Loading the ROM image at address 0 on page 6-14

• Loading the ROM image at address 0 on page 6-14

• Using both scatter loading and remapping on page 6-24

• A semihosted application with interrupt handling on page 6-28

• An embeddable application with interrupt handling on page 6-33

• Using scatter loading with memory-mapped I/O on page 6-36

• Troubleshooting on page 6-43.

• Measuring code and data size on page 6-46.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-1



Writing Code for ROM 
6.1 About writing code for ROM

This chapter describes how to write code for ROM, and shows different methods for 
simple and complex images. Sample initialization code is given, as well as information 
on initializing data, stack pointers, interrupts, and so on.

This chapter contains examples of using scatter loading to build complex images. For 
detailed reference information on the linker and scatter loading, refer to ADS Linker and 
Utilities Guide.

Note
 The examples used in this chapter target the ARM Integrator board and are located in 
install_directory\Examples\embedded. You can use these examples as the basis for the 
initialization code for your own system.

The reference examples (embed, embed_cpp, ledflash, and rps_irq) can be built in 
different configurations in increasing levels of complexity:

• As a simple semihosted application that links with the C libraries. This example 
uses the semihosting SWI functions of the C libraries for I/O. See The reference 
C example using semihosting on page 6-11.

• As an application that links with the C libraries and can be embedded into ROM 
to execute at address 0x0 using scatter loading. This example does not use the 
semihosting SWI functions, but instead uses a retargeting layer for I/O. See 
Loading the ROM image at address 0 on page 6-14.

• As an application that uses scatter loading and memory remapping to move RAM 
to 0x0 after initialization. See Using both scatter loading and remapping on 
page 6-24.

Additional files are provided to demonstrate function retargeting and processor 
initialization:

• retarget.c implements a retargetting layer for low level input/output

• stack.s, heap.s, uart.c, and scat_c.scf demonstrate placement of stack and heap 
and memory-mapped peripherals using the scatter file

• init.s demonstrates the use of lengths and offsets to initialize stack pointers for 
each mode

• the cache subdirectory contains cache and clock initialization code for a variety of 
ARM cores.
6-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
CodeWarrior IDE projects are available for the examples as embed.mcp, embed_cpp.mcp, 
ledflash.mcp, and rps_irq.mcp.

Additional code examples and information about writing code for ROM is in the ARM 
Firmware Suite (AFS) example code and documentation. Refer to the following ARM 
publications for more details on AFS:

• ARM Firmware Suite User Guide

• ARM Firmware Suite Reference Guide.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-3



Writing Code for ROM 
6.2 Memory map considerations

A major consideration in the design of an embedded ARM application is the layout of 
the memory map, in particular the memory that is situated at address 0x0. Following 
reset, the processor starts to fetch instructions from 0x0, so there must be some 
executable code accessible from that address. In an embedded system, this requires 
ROM to be present, at least initially, at address 0x0.

6.2.1 ROM at 0x0

The simplest layout is to locate the application in ROM at address 0 in the memory map 
(see Figure 6-1). The application can then branch to the real entry point when it executes 
its first instruction (at the reset vector at address 0x0).

Figure 6-1 Example of a system with ROM at 0x0

However, there are disadvantages with this layout. ROM is typically narrow (8 or 16 
bits) and slow (requires more wait states to access it) compared to RAM. This slows 
down the handling of processor exceptions (especially interrupts) through the vector 
table. Also, if the vector table is in ROM, it cannot be modified by the code. 

For more information on exception handling, see Chapter 5 Handling Processor 
Exceptions.

6.2.2 RAM at 0x0

RAM is normally faster and wider than ROM. For this reason, it is better for the vector 
table and interrupt handlers if the memory at 0x0 is RAM.

However, if RAM is located at address 0x0 on power-up, there is not a valid instruction 
in the reset vector entry. Therefore, you must allow ROM to be located at 0x0 at 
power-up (so there is a valid reset vector), but to also allow RAM to be located at 0x0 
during normal execution. The changeover from the reset to the normal memory map is 
normally caused by writing to a memory-mapped register (see Figure 6-2 on page 6-5). 

"#$%

�#$%

#&%
����������

����������

����������

����������
6-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
For example, on reset, an aliased copy of ROM is present at 0x0, but RAM is remapped 
to zero when code writes to the RPS REMAP register. For more information, refer to 
the ARM Reference Peripheral Specification.

Figure 6-2 Example of a system with RAM at 0x0

Implementing RAM at 0x0

A sample sequence of events for implementing RAM at 0x0 is: 

1. Power on to fetch the RESET vector at 0x0 (from the aliased copy of ROM).

2. Execute the RESET vector:

LDR PC, =0x0F000004

This causes a jump to the real address of the next ROM instruction. This 
assembles to a position-independent instruction

LDR PC, [PC, offset]

3. Write to the REMAP register and set REMAP = 1.

4. Complete the rest of the initialization code as described in Initializing the system 
on page 6-7.

System decoder

ROM can be aliased to address 0x0 by the system memory decoder. A simple memory 
decoder might implement this as:

case ADDR(31:24) is
    when "0x00"
        if REMAP = "0" then
            select ROM

"#$%

#&%

#&%
����������

����������

����������

����������

"#$%

�#$%

#&%�����	
����
����
		��'��������
�(�	(	�

��
���
�

#
	
� ����)��
��
*�

���
�+

,��
�-���
	���
#.��#/%$.
�
0�	�
�

#&%
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-5



Writing Code for ROM 
        else
            select SRAM
    when "0x0F"
        select ROM
    when ....
6-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
6.3 Initializing the system

There are two initialization stages:

1. Initializing the execution environment, for example exception vectors, stacks, 
I/O.

2. Initializing the C library and application (C variables for example).

For a hosted application, the execution environment was initialized when the OS starts 
(initialization is done by, for example, Angel, an RTOS, or ARMulator). The application 
is then entered automatically through the main() function. The C library code at __main 
initializes the application.

For an embedded application without an operating system, the code in ROM must 
provide a way for the application to initialize itself and start executing. No automatic 
initialization takes place on reset, so the application entry point must perform some 
initialization before it can call any C code.

After reset, the instruction located at address 0x0, must transfer control to the 
initialization code. The initialization code must:

• set up exception vectors

• initialize the memory system

• initialize the stack pointer registers

• initialize any critical I/O devices

• change processor mode if necessary

• change processor state if necessary.

After the environment has been initialized, the sequence continues with the application 
initialization and should enter the C code. 

These items are described in more detail below. See Example 6-3 on page 6-16 and 
Example 6-4 on page 6-17 for code examples.

6.3.1 Initializing the execution environment

There are some aspects of the execution environment that must be initialized before the 
application starts. If the application is hosted by an operating system, the initialization 
will be done by the application loader. If the application runs standalone, the C library 
can perform the initialization of the environment and call the application entry point at 
main(). If you are using scatter loading, however, you must retarget 
__user_intial_stackheap() to initialize the stack and heap. An example of how to do 
this is in retarget.c.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-7



Writing Code for ROM 
The state of ARM processor cores after reset is:

• SVC mode

• interrupts disabled

• ARM state.

Identifying the entry point

An executable image must have an entry point. An embedded image that can be placed 
in ROM usually has an entry point at 0x0. An entry point can be defined in the 
initialization code by using the assembler directive ENTRY. It is possible to have multiple 
entry points in an embedded application. When there are multiple entry points, one of 
the points must be specified as the initial entry point by using -entry. See also the 
section on linker selection of entry points in the ADS Linker and Utilities Guide.

If you have created a C program that includes a main() function, there is also an entry 
point within the C library initialization code. See also the library chapter in ADS Linker 
and Utilities Guide for more information on creating applications that use the library.

Setting up exception vectors

Your initialization code must set up the required exception vectors, as follows: 

• If the ROM is located at address 0x0, the vectors consist of a sequence of 
hard-coded instructions to branch to the handler for each exception.

• If the ROM is located elsewhere, the vectors must be dynamically initialized by 
the initialization code. Typically this is done by copying the vector table from 
ROM to RAM (See Using both scatter loading and remapping on page 6-24).

See Example 6-4 on page 6-17 for a listing of typical initialization code.

Initializing the memory system

If your system has a Memory Management or Protection Unit, you must make sure that 
it is initialized:

• before interrupts are enabled

• before any code is called that might rely on RAM being accessible at a particular 
address, either explicitly, or implicitly through the use of stack.

See the code in the Examples\embedded\cache directory for examples of cache 
initialization code.
6-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
Initializing the stack pointers

The initialization code initializes the stack pointer registers. You might have to initialize 
some or all of the following stack pointers, depending on the interrupts and exceptions 
you use:

sp_SVC This must always be initialized.

sp_IRQ This must be initialized if IRQ interrupts are used. It must be initialized 
before interrupts are enabled.

sp_FIQ This must be initialized if FIQ interrupts are used. It must be initialized 
before interrupts are enabled.

sp_ABT This must be initialized for Data and Prefetch Abort handling.

sp_UND This must be initialized for Undefined Instruction handling.

Generally, sp_ABT and sp_UND are not used in a simple embedded system. However, you 
might want to initialize them for debugging purposes.

You can set up the stack pointer sp_USR when you change to User mode to start executing 
the application.

Caution
 If you are using scatter loading, you must retarget the function 
__user_initial_stackheap() to place the stack and heap. If you do not, there might be 
link errors because the default implementation provided by the C library attempts to use 
Image$$ZI$$Limit that is not defined when scatter loading is used. See Loading the ROM 
image at address 0 on page 6-14 for more information on retargeting this function.

Initializing any critical I/O devices

Critical I/O devices are any devices that you must initialize before you enable 
interrupts. Typically, you must initialize these devices at this point. If you do not, they 
might cause spurious interrupts when interrupts are enabled.

Changing processor mode

At this stage the processor is still in Supervisor mode. If your application runs in User 
mode, change to User mode and initialize the User mode sp register, sp_USR.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-9



Writing Code for ROM 
Changing processor state

All ARM cores, including Thumb-capable processors, start up in ARM state on reset. 
The initialization code (at least the reset handler) must be ARM code. If the application 
is compiled for Thumb, main() is Thumb code. The linker can add ARM to Thumb 
interworking veneers automatically to change state between the ARM initialization 
code and the Thumb application. 

6.3.2 Initializing the application

An application is initialized by:

• initializing the nonzero writable data by copying the initializing values to the 
writable data region

• setting to zero the ZI writable data region.

After memory initialization, control is passed to the entry point of the application in, for 
example, C library code.

Initializing memory required by C code

The initial values for any initialized variables (RW) must be copied from ROM to RAM. 
All other ZI variables must be initialized to zero. The library initialization code called 
at __main performs the copying and initialization.

Note
 The linker assigns memory addresses for RO code, RW data, and ZI data. If a 
scatter-load description file is not used, the linker uses one of the default layouts. 
Scatter-loading examples are given in Loading the ROM image at address 0 on 
page 6-14 and Using both scatter loading and remapping on page 6-24.

Using the main function

When the compiler compiles a function called main(), it generates a reference to the 
symbol __main to force the linker to include the basic C run-time system from the ANSI 
C library. (The symbol __main is marked as an entry point.)
6-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
6.4 The reference C example using semihosting

This example shows an application that uses the semihosting SWIs. printf() is 
compiled as a call to a C library function that uses a semihosting SWI to display 
information on the debugger console. The application consists of a single C file.

The code for main.c is in install_directory\Examples\Embedded\embed directory, and is 
included in Example 6-1 on page 6-12 for reference. 

To build the example from the CodeWarrior IDE:

1. Use the CodeWarrior IDE project embed.mcp

2. Select Target=Semihosted.

To build the example from the command line, execute build_a.bat or follow the steps 
below:

1. Compile the C file main.c with one of the following commands: 

armcc -g -O1 -c main.c (if compiling for ARM)

tcc -g -O1 -c main.c (if compiling for Thumb)

where:

-O1 Specifies the level of optimization.

-g Instructs the compiler to add debug tables.

-c Instructs the compiler to compile only (not to link).

2. Link the image using the following command:

armlink main.o -o embed.axf 

where:

-o specifies the output file as embed.axf.

3. Use ARMulator to test the image or download the image to a development board 
using Multi-ICE or Angel.

6.4.1 Memory map

Figure 6-3 on page 6-12 shows the memory map of the reference example.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-11



Writing Code for ROM 
Figure 6-3 Memory map for reference example

By default, the linker sets the start of code at address 0x8000. The RW data is placed 
immediately above the program code and the ZI data above the RW data. 

By default, the stack pointer sp is initialized to 0x08000000 for ARMulator. If you are 
using a development board, you must set $top_of_memory. For example, for most 
(unexpanded) ARM Integrator boards, set $top_of_memory to 0x40000.

6.4.2 Sample code

The C code fragment in Example 6-1 shows the use of semihosting SWIs to output text. 
See the main.c source code for the definitions of demo_malloc(), demo_printf(), 
demo_float_print(), and demo_sprintf().

The code selected by the #ifdef EMBEDDED is used in Loading the ROM image at address 
0 on page 6-14 and other examples.

Example 6-1  extract from main.c

int main(void)
{
    printf("C Library Example\n");
  
#ifdef EMBEDDED
/* ensure no C library functions that uses semihosting SWIs are linked */
  #pragma import(__use_no_semihosting_swi)   
#endif
    demo_printf();
    demo_sprintf();

��������

�����������	
���
���������

.��0��

*#&1#2+

�����

3
��

45�����

#2�����

�����������	
��������������������

����������������
6-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
    demo_float_print();
    demo_malloc();
    return 0;
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-13



Writing Code for ROM 
6.5 Loading the ROM image at address 0

Scatter loading provides a flexible mechanism for mapping code and data onto your 
memory map. These options are described in detail in the ADS Linker and Utilities 
Guide.

The scatter-load description file, scat_b.scf, for this example is in 
install_directory\Examples\Embedded\embed. 

6.5.1 Memory map

Figure 6-4 shows:

• ROM is fixed at 0x0 and is not remapped

• RAM is at 0x28000000 to hold the data, stack and heap

• memory-mapped I/O for a UART is at 0x16000000.

Figure 6-4 Memory map for simple scatter loading

6.5.2 Scatter-load description file

The scatter-load description file shown in Example 6-2 on page 6-15 defines: 

• one load region, ROM_LOAD, at 0x0

• five execution regions:

— ROM_EXEC (at 0x0) contains all the read-only code, including the library 
code. The exception vector table in vectors.o is placed first in this region. 
All other read-only code (*) is placed after vectors.o.

#2�����

45�����

6����7�
- /'
�������7�
-

%�������
%�������


#2�����

8
����	9��������


#&%

����� �� �������

�� �������

����������

3
�� #$%

���!������

8
����	9��������


�$#:
6-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
— RAM (at 0x28000000) contains the RW and ZI data regions for the 
application.

— HEAP immediately above the ZI data. The object heap.o contains a symbol 
that is used to set up the heap base. The heap grows up from this address.

— STACKS at 0x28080000. The object stack.o contains a symbol that is used 
to set up the stack top. Stacks grow downward from this address.

— UART0 at 0x16000000. The object uart.o contains symbols that are used to 
reserve the memory-mapped I/O.

Note
 The UNINIT entry means that the marked regions are not zero-initialized by the C library 
initialization code.

Example 6-2  scat_b.scf

ROM_LOAD 0x0
{
    ROM_EXEC 0x0
    {
        vectors.o (Vect, +First)
        * (+RO)
    }
    RAM 0x28000000
    {
        * (+RW,+ZI)
    }
    HEAP +0 UNINIT
    {
        heap.o (+ZI)
    }
    STACKS 0x28080000 UNINIT
    {
        stack.o (+ZI)
    }
    UART0 0x16000000 UNINIT
    {
        uart.o (+ZI)
    }
}

ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-15



Writing Code for ROM 
6.5.3 Sample code

The code in Example 6-3 contains example exception vectors and exception handlers. 
For this application, ROM is fixed at 0x0 and the exception table is hard-coded at 0x0. 
For Loading the ROM image at address 0 on page 6-14, ROM/RAM remapping occurs 
and the vectors are copied from ROM to RAM. 

Example 6-3  vectors.s

 AREA Vect, CODE, READONLY
; Where there is ROM fixed at 0x0 (build_b), these are hard-coded at 0x0.
; Where ROM/RAM remapping occurs (build_c), these are copied from ROM to RAM.
; The copying is done automatically by the C library code inside __main.
; *****************
; Exception Vectors
; *****************
; Note: LDR PC instructions are used here, though branch (B) instructions
; could also be used, unless the ROM is at an address >32MB.
    LDR     PC, Reset_Addr
    LDR     PC, Undefined_Addr
    LDR     PC, SWI_Addr
    LDR     PC, Prefetch_Addr
    LDR     PC, Abort_Addr
    NOP     ; Reserved vector
    LDR     PC, IRQ_Addr
    LDR     PC, FIQ_Addr
    IMPORT  Reset_Handler    ; In init.s 
Reset_Addr      DCD     Reset_Handler
Undefined_Addr  DCD     Undefined_Handler
SWI_Addr        DCD     SWI_Handler
Prefetch_Addr   DCD     Prefetch_Handler
Abort_Addr      DCD     Abort_Handler
IRQ_Addr        DCD     IRQ_Handler
FIQ_Addr        DCD     FIQ_Handler 
; ************************
; Exception Handlers
; The following dummy handlers do not do anything useful in this example.
; They are set up here for completeness.
Undefined_Handler
    B       Undefined_Handler
SWI_Handler
    B       SWI_Handler
Prefetch_Handler
    B       Prefetch_Handler
Abort_Handler
    B       Abort_Handler
IRQ_Handler
    B       IRQ_Handler
6-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
FIQ_Handler
    B       FIQ_Handler
    END

The code in Example 6-4 performs ROM/RAM remapping (if required), initializes 
stack pointers and interrupts for each mode, and finally branches to __main in the C 
library (__main eventually calls main()). On reset, the ARM core starts up in Supervisor 
(SVC) mode, in ARM state, with IRQ and FIQ disabled.

Example 6-4  init.s

 AREA    Init, CODE, READONLY
; - Set up if ROM/RAM remapping required
;                GBLL ROM_RAM_REMAP
;ROM_RAM_REMAP   SETL {TRUE} ; change to {FALSE} if remapping not required
; - ensure no functions that use semihosting SWIs are linked from the C library
                IMPORT __use_no_semihosting_swi
; - Standard definitions of mode bits and interrupt (I & F) flags in PSRs
Mode_USR        EQU     0x10
Mode_FIQ        EQU     0x11
Mode_IRQ        EQU     0x12
Mode_SVC        EQU     0x13
Mode_ABT        EQU     0x17
Mode_UNDEF      EQU     0x1B
Mode_SYS        EQU     0x1F ; available on ARM Arch v4 and later
I_Bit           EQU     0x80 ; when I bit is set, IRQ is disabled
F_Bit           EQU     0x40 ; when F bit is set, FIQ is disabled
; --- System memory locations
CM_ctl_reg      EQU     0x1000000C    ; Address of Core Module Control Register
Remap_bit       EQU     0x04          ; Bit 2 is remap bit of CM_ctl
; --- Amount of memory (in bytes) allocated for stacks
Len_FIQ_Stack   EQU     0
Len_IRQ_Stack   EQU     256
Len_ABT_Stack   EQU     0
Len_UND_Stack   EQU     0
Len_SVC_Stack   EQU     1024
; Len_USR_Stack   EQU     1024
; Add lengths >0 for FIQ_Stack, ABT_Stack, UNDEF_Stack if you need them
; offsets will be loaded as immediate values
; Offsets must be 8 byte aligned
Offset_FIQ_Stack        EQU     0
Offset_IRQ_Stack        EQU     Offset_FIQ_Stack + Len_FIQ_Stack
Offset_ABT_Stack        EQU     Offset_IRQ_Stack + Len_IRQ_Stack 
Offset_UND_Stack        EQU     Offset_ABT_Stack + Len_ABT_Stack
Offset_SVC_Stack        EQU     Offset_UND_Stack + Len_UND_Stack
; Offset_USR_Stack      EQU     Offset_SVC_Stack + Len_SVC_Stack  
        ENTRY
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-17



Writing Code for ROM 
; --- Perform ROM/RAM remapping, if required
    IF :DEF: ROM_RAM_REMAP
; On reset, an aliased copy of ROM is at 0x0.
; Continue execution from 'real' ROM rather than aliased copy
        LDR     pc, =Instruct_2
        
Instruct_2        
; Remap by setting Remap bit of the CM_ctl register
        LDR     r1, =CM_ctl_reg
        LDR     r0, [r1]
        ORR     r0, r0, #Remap_bit
        STR     r0, [r1]
; RAM is now at 0x0.
; The exception vectors (in vectors.s) must be copied from ROM to the RAM
; The copying is done later by the C library code inside __main
    ENDIF
        EXPORT  Reset_Handler
Reset_Handler
; --- Initialize stack pointer registers
; Enter each mode in turn and set up the stack pointer
        IMPORT  top_of_stacks ;defined in stack.s and located by scatter file
        LDR     r0, =top_of_stacks
;       MSR     CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; No interrupts
;       SUB     sp, r0, #Offset_FIQ_Stack
        MSR     CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; No interrupts
        SUB     sp, r0, #Offset_IRQ_Stack
;       MSR     CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit ; No interrupts
;       SUB     sp, r0, #Offset_ABT_Stack
;       MSR     CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit ; No interrupts
;       SUB     sp, r0, #Offset_UND_Stack
        MSR     CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; No interrupts
        SUB     sp, r0, #Offset_SVC_Stack
        ; ...
; --- Initialize memory system
    IF :DEF: CACHE 
        IMPORT  Clock_Speed     ; in CMclocks.s 
        IMPORT  Cache_Init      ; in the core-specific files e.g. 940T.s 
        BL      Clock_Speed 
        BL      Cache_Init 
    ENDIF 
; --- Initialize critical IO devices
        ; ...
; --- Now change to User mode and set up User mode stack.
        MSR     CPSR_c, #Mode_USR:OR:F_Bit           ; IRQs now enabled
        SUB     sp, r0, #Offset_USR_Stack
                
        IMPORT  __main
; --- Now enter the C code
6-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
        B       __main   ; note use B not BL
                         ; because an application will never return this way
        END

The code in Example 6-5 implements a retarget layer for low-level I/O. Typically, this 
contains your own target-dependent implementations of fputc(), ferror(), and so on. 
This example provides implementations of fputc(), ferror(), _sys_exit(), _ttywrch(), 
and __user_initial_stackheap(). 

Semihosting SWIs are used to display text onto the console of the host debugger. This 
mechanism is portable across ARMulator, Angel, Multi-ICE, and EmbeddedICE. 
serial.c is an option that outputs characters from the serial port of an ARM Integrator 
board. To use serial.c, add #define USE_SERIAL_PORT to the code or compile with 
-DUSE_SERIAL_PORT. 

Example 6-5  retarget.c

/*
** This implements a 'retarget' layer for low-level IO.  Typically, this
** would contain your own target-dependent implementations of fputc(),
** ferror(), etc.
** 
** This example provides implementations of fputc(), ferror(),
** _sys_exit(), _ttywrch() and __user_initial_stackheap().
**
** Here, semihosting SWIs are used to display text onto the console 
** of the host debugger.  This mechanism is portable across ARMulator,
** Angel, Multi-ICE and EmbeddedICE.
**
** Alternatively, to output characters from the serial port of an 
** ARM Integrator Board (see serial.c), use:
**
**     #define USE_SERIAL_PORT
**
** or compile with 
**
**     -DUSE_SERIAL_PORT
*/
  
#include <stdio.h> 
#include <rt_misc.h> 
  
#ifdef __thumb 
/* Thumb Semihosting SWI */  
#define SemiSWI 0xAB  
#else  
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-19



Writing Code for ROM 
/* ARM Semihosting SWI */  
#define SemiSWI 0x123456 
#endif 
/* Write a character */
__swi(SemiSWI) void _WriteC(unsigned op, char *c);  
#define WriteC(c) _WriteC (0x3,c) 
/* Exit */
__swi(SemiSWI) void _Exit(unsigned op, unsigned except);  
#define Exit() _Exit (0x18,0x20026) 
struct __FILE { int handle;   /* Add whatever you need here */}; 
FILE __stdout;
extern unsigned int bottom_of_heap; 
extern void sendchar( char *ch );    /* in serial.c */
int fputc(int ch, FILE *f)
{
    char tempch=ch;
    /* Place your implementation of fputc here, for example write a character */
    /* to a UART, or to the debugger console with SWI WriteC */  
#ifdef USE_SERIAL_PORT 
    sendchar( &tempch );  
#else 
    WriteC( &tempch );  
#endif 
    return ch; 
}
int ferror(FILE *f)
{   /* Your implementation of ferror */
    return EOF;
}
void _sys_exit(int return_code)
{
    Exit();         /* for debugging */
label:  goto label; /* endless loop */
}
void _ttywrch(int ch)
{
char tempch = ch; 
#ifdef USE_SERIAL_PORT
    sendchar( &tempch ); 
#else 
    WriteC( &tempch ); 
#endif 
}
__value_in_regs struct __initial_stackheap __user_initial_stackheap(
        unsigned R0, unsigned SP, unsigned R2, unsigned SL)
{
    struct __initial_stackheap config;
    config.heap_base = (unsigned int)&bottom_of_heap; // defined in heap.s
                                                      // placed by scatterfile   
    config.stack_base = SP;   // inherit sp from the execution environment
6-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
    return config;
}
/*
Below is an equivalent example assembler version of __user_initial_stackheap 
It will be entered with the value of the stackpointer in r1 (as set in init.s), 
this does not need to be changed and so can be passed unmodified out of the 
function. 
    IMPORT bottom_of_heap
    EXPORT __user_initial_stackheap
__user_initial_stackheap    
    LDR   r0,=bottom_of_heap
    MOV   pc,lr 
*/    

The code in Example 6-6 implements a simple polled RS232 serial driver for the ARM 
Integrator board. It outputs single characters on Serial Port A at 9600 Baud, eight data 
bits, no parity, and one stop bit. Initialize the port with init_serial_A() before calling 
sendchar(). To monitor the characters output from the board, use a null-modem cable to 
connect the Intergrator serial port A to an RS232 terminal or a PC running a terminal 
emulator.

Example 6-6  serial.c

#include "intgrt.h"      
#include "uart.h"
extern struct uart uart0;
  
#define UART0_DR   uart0.dr  
#define UART0_RSR  uart0.dr  
#define UART0_ECR  uart0.ecr  
#define UART0_LCRH uart0.lcrh  
#define UART0_LCRM uart0.lcrm  
#define UART0_LCRL uart0.lcrl  
#define UART0_CR   uart0.cr  
#define UART0_FR   uart0.fr  
#define UART0_IIR  uart0.iir  
#define UART0_ICR  uart0.iir  
 
 
void init_serial_A(void) 
{
  /* First set the correct baud rate and word length */
  
  UART0_LCRL = LCRL_Baud_38400;       // LCRL and LCRM writes _MUST_
                                      // be performed before the LCRH
  UART0_LCRM = LCRM_Baud_38400;       // write as LCRH generates the
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-21



Writing Code for ROM 
                                      // write strobe to transfer the
  UART0_LCRH = LCRH_Word_Length_8 |   // data.
                LCRH_Fifo_Enabled;    // 
  /* Now enable the serial port */
                                      
  UART0_CR   = CR_UART_Enable;         // Enable UART0 with no interrupts
}
void sendchar( char *ch )
{
  while (UART0_FR & FR_TX_Fifo_Full)
    ;
  if (*ch == '\n')                    // Replace line feed with '\r'
    *ch = '\r';                       
  UART0_DR = *ch;                     // Transmit next character
}

6.5.4 Building the example

You can build the example using either:

• a project file for the CodeWarrior IDE

• a batch file

• the command line.

Using the CodeWarrior IDE

To build the example from the CodeWarrior IDE, load the supplied embed project and 
select Target=EmbeddedScatter.

This creates:

• an ELF debug image (embed.axf) for loading into a debugger (AXD or armsd)

• a binary ROM image (embed.bin) suitable for downloading into the memory of an 
ARM Integrator board.

Using the command line

To build the example from the command line, execute build_b.bat or follow these steps:

1. Assemble the initialization code:

armasm -g vectors.s
armasm -g stack.s
armasm -g heap.s
armasm -g init.s

2. Compile the main example and the new retargeting files retarget.c and, 
optionally, serial.c with the following commands: 
6-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
armcc -c -g -O1 main.c -DEMBEDDED
armcc -c -g -O1 retarget.c
armcc -c -g -O1 serial.c -I..\include

where:

-D Instructs the compiler to define the symbol EMBEDDED.

-I Instructs the compiler where to find the include files.

The use of serial.c is optional. Keep this line if you want the output to be sent 
over the serial port of the Integrator board.

3. Link the image using the following command (all on one line):

armlink vectors.o init.o main.o retarget.o serial.o stack.o heap.o
         -scatter scat_b.scf -o embed.axf
         -entry 0x0 -info totals -info unused

where:

-entry This option defines the reset vector as the unique entry point. 

-o This option specifies the output file.

-info totals

This option tells the linker to print information on the code and data 
sizes of each object file along with the totals for each type of code or 
data. 

4. Run the fromELF utility to produce a plain binary version of the image:

fromelf embed.axf -bin -o embed.bin

where:

-bin Specifies a binary output image with no header.

5. Use ARMulator to test the image or download and execute the ROM image to the 
development board.

• For armsd use:
getfile embed.bin 0x0
readsyms embed.axf

• For AXD select:

File → Load Memory From File and specify embed.bin with load address 
0x0.

File → Load Debug Symbols and specify embed.axf.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-23



Writing Code for ROM 
6.6 Using both scatter loading and remapping

This section describes how to convert the application in Loading the ROM image at 
address 0 on page 6-14 into a more complex scatter-loading application. This example 
uses memory remapping to exchange the ROM and RAM regions after the application 
has started.

The code for this example is in install_directory\Examples\Embedded.

6.6.1 Memory map

Figure 6-5 shows:

• FLASH is at 0x24000000. An aliased copy of the FLASH appears at 0x0 on reset.

• After remapping, 32-bit RAM is at 0x0 to hold the exception vectors.

Figure 6-5 Memory map for remapping

6.6.2 Scatter-load description file

The scatter-load description file shown in Example 6-7 on page 6-25 defines one load 
region (FLASH) and five execution regions: 

• FLASH (at 0x24000000) contains all the read-only code and data

�8
����	

5�������;
�
#2�����

45�����

�� �������

�� �������

.��0��
����

*#&�1�#2+

#

���
�
���
��#/�/:

/'
�������7�
-6����7�
-

.��0��
����

�*#&�1�#2+ #&%

����� ����������

3
��

.��0��
����

*#&�1�#2+

$���	
�����(
������
���

������������ �������

�����#$%

�$#:����!������59&�����
		
	
6-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
• 32bitRAM (at 0x0) contains the vector table from vectors.o

• HEAP (immediately above the RW/ZI data) is the start of the heap 

• STACKS (at 0x40000) is the top of the stack

• UART0 (at 0x16000000) contains memory-mapped I/O. 

Example 6-7  scat_c.scf

FLASH 0x24000000 0x4000000      ; The load region starts at 0x24000000 and has
                                ; a maximum size of 0x4000000 bytes.
{
    FLASH 0x24000000 0x4000000  ; The load and execution addresses are the same.
                                ; Execution region size is less than 0x4000000.
    {
       init.o (Init, +First)    ; The initialization code is placed first.
       * (+RO)                  ; All other RO code and data are placed next.
    }                           ; Library code also goes here.
    32bitRAM 0x0000             ; RAM starts at address 0x0.
    {
       vectors.o (Vect, +First) ; The vector table is placed first in RAM.
       * (+RW,+ZI)              ; All other RW and ZI regions go after vectors.
    }
    HEAP +0 UNINIT              ; The heap is not zero-initialized.
                                ; The +0 specification means that the heap
    {                           ; starts immediately after RW and ZI regions.
       heap.o (+ZI)             ; A symbol in heap.o is used set the heap base.
    }                         
    STACKS 0x40000 UNINIT       ; The stack is not zero-initialized.
    {                           ; The top of stack address is set absolutely.
       stack.o (+ZI)            ; A symbol in stack.o is used to set the 
    }                           ; top of stack.
    UART0 0x16000000 UNINIT     ; The UART is not zero-initialized.
    {                           ; The address is specified absolutely.
       uart.o (+ZI)             ; The symbols in uart.o are used to reserve the
    }                           ; memory-mapped I/O.
}

The program code and data is placed in Flash that resides at 0x24000000. On reset, an 
aliased copy of Flash is remapped by hardware to address 0x0. Program execution starts 
at AREA Init in init.s. The +First option is used to place this code first in the image. 
After reset the first few instructions of init.s remap 32-bit RAM to address 0x0. The 
ARM Integrator Board remaps its Flash in this way.

Most of the RO code executes from Flash. The RO execution address is the same as its 
load address (0x24000000), so it does not have to be moved. 
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-25



Writing Code for ROM 
32bitRAM might be fast on-chip 32-bit SSRAM. Fast RAM is typically used for the stack, 
and for code that must be executed quickly. The exception vectors (AREA Vect in 
vectors.s) are relocated from Flash to the 32bitRAM execution region at address 0x0 
for speed. The Vect code is placed first in the region. The RW data is relocated from 
Flash to the 32bitRAM execution region after the vector code. The ZI data will be created 
above the RW data.

6.6.3 Initialization code

Example 6-8 illustrates the code in init.s that performs ROM/RAM remapping.

Example 6-8  ROM/RAM remapping

; --- Set up if ROM/RAM remapping required
                GBLL ROM_RAM_REMAP
ROM_RAM_REMAP   SETL {TRUE} ; change to {FALSE} if remapping not required
 ...
; --- Perform ROM/RAM remapping, if required
    IF :DEF: ROM_RAM_REMAP
; On reset, an aliased copy of ROM is at 0x0.
; Continue execution from 'real' ROM rather than aliased copy
        LDR     pc, =Instruct_2
        
Instruct_2        
; Remap by setting Remap bit of the CM_ctl register
        LDR     r1, =CM_ctl_reg
        LDR     r0, [r1]
        ORR     r0, r0, #Remap_bit
        STR     r0, [r1]
        
; RAM is now at 0x0.
; The exception vectors (in vectors.s) must be copied from ROM to the RAM
; The copying is done later by the C library code inside __main

The initialization code in the C library copies the RO and RW execution regions from 
their load addresses to their execution addresses before creating any zero-initialized 
areas. See also Loading the ROM image at address 0 on page 6-14.

6.6.4 Building the example

To build the example, either:

• open the supplied embed.mcp project with the CodeWarrior IDE and select the 
EmbeddedScatterRemap build target.
6-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
• use the build_c.bat batch file or a makefile containing the following (the indented 
lines are a continuation of the single line above): 
armasm -g vectors.s
armasm -g -PD "ROM_RAM_REMAP SETL {TRUE}" init.s
armasm -g stack.s
armasm -g heap.s
REM Use the following two lines to build without using the serial port. 
armcc -c -g -O1 main.c -DEMBEDDED -DROM_RAM_REMAP
armcc -c -g -O1 retarget.c
REM Use the following two lines to build using the serial port. 
REM armcc -c -g -O1 main.c -DEMBEDDED -DROM_RAM_REMAP -DUSE_SERIAL_PORT
REM armcc -c -g -O1 retarget.c -DUSE_SERIAL_PORT
armcc -c -g -O1 uart.c -I..\include
armcc -c -g -O1 serial.c -I..\include
armlink vectors.o init.o main.o retarget.o uart.o serial.o stack.o heap.o
                  -scatter scat_c.scf -o embed.axf -entry 0x24000000 
                  -info totals -info unused
fromelf embed.axf -bin -o embed.bin

This creates:

• an ELF debug image (embed.axf) for loading into an ARM debugger

• a binary ROM image (embed.bin) suitable for downloading into the RAM or Flash 
memory of the ARM development boards.

The readme.txt file contains additional details of how the image can be downloaded to 
the Flash memory of an ARM Integrator Board and debugged there.

6.6.5 Additional examples of remapping

The install_directory\Examples\Embedded\ledflash directory contains a simple 
interrupt-driven LED flasher that runs on an ARM Integrator board. It uses ROM/RAM 
remapping and scatter loading.

To build the example, a batch-file (build.bat) and a CodeWarrior IDE project file 
(ledflash.mcp) are provided. Full instructions for downloading the code to Flash are 
available in the directory.

See also Using scatter loading with memory-mapped I/O on page 6-36.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-27



Writing Code for ROM 
6.7 A semihosted application with interrupt handling 

This section illustrates an Reference Peripheral Specification (RPS) based 
interrupt-driven timer, suitable for embedded applications. The main() function 
initializes and starts two RPS timers. 

When a timer expires, an interrupt is generated. The interrupt is handled in 
int_handler.c. The code simply sets a flag and clears the interrupt. The interrupt flags 
are checked below in a endless loop. If a flag is set, a message is displayed and the flag 
is then cleared. 

6.7.1 Memory map

There are no memory specification options in the linker command options and the 
default values are used. The code region starts at 0x08000. The RW data region and the 
ZI data region are placed sequentially after the code region. The stack top is 0x80000. 

6.7.2 Building the example

To build the example, either:

• load the supplied rps_irq.mcp project into the CodeWarrior IDE

• use a batch file (build_a.bat) or makefile containing the following: 

armcc -c -g -O1 main.c -I..\include
armcc -c -g -O1 int_handler.c -I..\include
armlink main.o int_handler.o -o rps_irq.axf -info totals

6.7.3 Sample code

The code in Example 6-9 is compiled and linked on its own and executed in the 
semihosting environment and Install_Handler is called to install the interrupt vector. 
The code in Example 6-10 on page 6-31 demonstrates an interrupt handler. The 
example can also be built as an embedded application with no semihosting (see An 
embeddable application with interrupt handling on page 6-33).

Example 6-9  Sample main.c code for rps_irq

/*
** Copyright (C) ARM Limited, 2000. All rights reserved.
*/
  
#include <stdio.h>  
#include <stdlib.h>  
6-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
#include "stand_i.h" 
 
#include "rpsarmul.h"       /* EITHER: to use with the ARMulator */
/* #include "intgrt.h" */   /* OR: to use with the Integrator board */
int IntCT1 = 0;
int IntCT2 = 0;
int Count  = 0;
  
#ifndef EMBEDDED
extern IRQ_Handler(void);
unsigned *irqvec = (unsigned *)0x18;
unsigned Install_Handler (unsigned routine, unsigned *vector)
  /* Updates contents of 'vector' to contain branch instruction */
  /* to reach 'routine' from 'vector'. Function return value is */
  /* original contents of 'vector'. */
  /* NB: 'Routine' must be within range of 32MB from 'vector'.  */
{ unsigned vec, oldvec;
  vec = ((routine - (unsigned)vector - 0x8)>>2);
  if (vec & 0xff000000)
  {
    printf ("Installation of Handler failed");
    exit(1);
  }
  vec = 0xea000000 | vec;
  oldvec = *vector;
  *vector = vec;
  return (oldvec);
}  
#endif
/* Enabling and disabling interrupts
   Interrupts are enabled or disabled by reading the cpsr flags
   and updating bit 7. 
   These functions work only in a privileged mode, because the 
   control bits of the cpsr and spsr cannot be changed while in
   User mode.
*/
__inline void enable_IRQ(void)
{
  int tmp;
  __asm
  {
    MRS tmp, CPSR
    BIC tmp, tmp, #0x80
    MSR CPSR_c, tmp
  }
}
__inline void disable_IRQ(void)
{
  int tmp;
  __asm
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-29



Writing Code for ROM 
  {
    MRS tmp, CPSR
    ORR tmp, tmp, #0x80
    MSR CPSR_c, tmp
  }
}
  
#ifdef EMBEDDED
extern void init_serial_A(void); 
#endif
int main(void)
{  
#ifdef EMBEDDED 
  #pragma import(__use_no_semihosting_swi)  // ensure no functions that use
                                            // semihosting SWIs are linked in
                                            // from the C library 
#ifdef USE_SERIAL_PORT
  init_serial_A();            // Initialize serial port A  
#endif  
#endif 
  printf("RPS Timer Interrupt Example\n");
  
#ifdef EMBEDDED  
#ifdef ROM_RAM_REMAP  
  printf("Embedded (ROM/RAM remap, no SWIs) version\n");  
#else 
  printf("Embedded (ROM at 0x0, no SWIs) version\n");  
#endif  
#else 
  Install_Handler ((unsigned)IRQ_Handler, irqvec); 
  printf("Normal (RAM at 0x8000, semihosting) version\n\n");  
#endif
  printf("Initializing...\n");
  enable_IRQ();
  *IRQEnableClear = ~0;      // Clear/disable all interrupts
  *Timer1Control = 0;        // Disable counters by clearing the control bytes
  *Timer2Control = 0;
  *Timer1Clear = 0 ;         // Clear counter/timer interrupts by writing to
  *Timer2Clear = 0 ;         // the clear register - any data will work
  *Timer1Load = FAST_LOAD;   // Load counter values 
  *Timer2Load = MED_FAST_LOAD;    
  *Timer1Control = (TimerEnable   |   // Enable the Timer            
                    TimerPeriodic |   // Periodic Timer producing interrupt
                    TimerPrescale8 ); // Set Maximum Prescale - 8 bits     
  *Timer2Control = (TimerEnable   |   // Enable the Timer                  
                    TimerPeriodic |   // Periodic Timer producing interrupt
                    TimerPrescale8 ); // Set Maximum Prescale - 8 bits     
  *IRQEnableSet = IRQTimer1 | IRQTimer2; // Enable the counter timer interrupts
  printf("Running...\n");
  IntCT1 = 0;          // Clear CT 1 Flag
6-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
  IntCT2 = 0;          // Clear CT 2 Flag
  Count  = 0;
  while ( Count < 20 )
  {
    if (IntCT1 != 0)        // Timer 1 Interrupt occurred   
    { 
      Count++; 
      printf("IntCT1\n"); 
      IntCT1 = 0;           // Reset the Timer 1 Interrupt Flag 
    } 
    if (IntCT2 != 0)        // Timer 2 Interrupt occurred 
    { 
      Count++;
      printf("IntCT2\n");
      IntCT2 = 0;           // Reset the Timer 2 Interrupt Flag
    }
  }
  disable_IRQ();
}

Example 6-10  Sample int_handler.c code

/*
** Copyright (C) ARM Limited, 2000. All rights reserved.
*/
  
#include "stand_i.h" 
 
#include "rpsarmul.h"       /* EITHER: to use with the ARMulator */ 
/* #include "intgrt.h" */   /* OR: to use with the Integrator board */ 
/******************************************************************************
* IRQHandler                                                                  *
*                                                                             *
* This function handles IRQ interrupts.  In this example, these may come from *
* Timer 1 or Timer 2.                                                         *
*                                                                             *
* This handler simply clears the interrupt and sets corresponding flags.      *
* These flags are then checked by the main application.                       *
*                                                                             *
*******************************************************************************/
void __irq IRQ_Handler(void)
{
  unsigned status;
  status = *IRQStatus;
  /* Deal with source of interrupt */
  /* RMC source definitions used for CT1, CT2 */
  if (status & IRQTimer1)
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-31



Writing Code for ROM 
  {
    *Timer1Clear = 0;/* clear the interrupt */
    IntCT1++;        /* set the flag        */
  } 
  else if (status & IRQTimer2)
  {
    *Timer2Clear = 0;/* clear the interrupt */
    IntCT2++;        /* set the flag        */
  } 
}

6-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
6.8 An embeddable application with interrupt handling

This section describes how to convert the application in A semihosted application with 
interrupt handling on page 6-28 into an embeddable application. Converting the 
application requires additional files:

vectors.s This file contains exception vectors and exception handlers. For this 
example ROM is fixed at 0x0.

init.s This file performs ROM/RAM remapping (if required), initializes stack 
pointers and interrupts for each mode, and branches to __main in the C 
library. The C library code at __main eventually calls main().

ROM/RAM remapping is not used in this example. A sample scatter-load 
description for remapping is available in 
install_directory\Examples\embedded\rps_irq.

retarget.c This file implements a retarget layer for low-level I/O. Typically, this 
would contain your own target-dependent implementations. This 
example provides implementations of fputc(), ferror(), _sys_exit(), 
_ttywrch() and __user_initial_stackheap(). 

The #define USE_SERIAL_PORT selects code to output characters from the 
serial port of an ARM Development (PID) Board.

serial.c This file implements a simple polled RS232 serial driver for the ARM 
Integrator board. It outputs single characters on Serial Port A at 9600 
Baud, 8 bit, no parity, 1 stop bit.

The file uart.c instantiates the uart0 structure. The scatter-loading files 
place this structure over the peripheral registers. See Using scatter 
loading with memory-mapped I/O on page 6-36 for details on defining 
I/O structures.

heap.s This file exports the symbol bottom_of_heap. 

stack.s This file exports the symbol top_of_stacks. 

To ensure that no semihosting SWI-using function is linked in from the C library, 
#pragma import(__use_no_semihosting_swi) is referenced from main(). 
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-33



Writing Code for ROM 
6.8.1 Memory map

The scatter-load descriptor file defines one load region, FLASH, and five execution 
regions:

FLASH The entire program is placed in ROM. The RO code executes from FLASH. 
The execution address of FLASH is the same as its load address 
(0x24000000), so it does not have to be moved. 

32bitRAM The exception vector table vectors.s must appear in RAM at 0x0, so the 
+First command is used to place it first in the image. The RW data is 
relocated from FLASH to 32bitRAM above the vector code at 0x0. The ZI data 
is initialized in RAM above the RW data. 

ROM/RAM remapping is not used in this example. A sample scatter-load 
description for remapping is available in 
install_directory\Examples\Embedded\rps_irq.

HEAP The heap is located at the end of memory used by the variables. The 
object heap.o contains a symbol that is used to setup the heap base.

STACKS The top of stack at 0x40000. The object stack.o contains a symbol that is 
used to set up the stack top.

UART0 Memory-mapped I/O at 0x16000000. The object uart.o contains symbols 
that are used to reserve the memory-mapped I/O. This memory is not 
zero-initialized.

6.8.2 Building the example

To build the example, use the build_c.bat batch file, the CodeWarrior IDE project file 
rps_irq.mcp with a target of EmbedScatter, or a makefile containing the following (the 
indented lines are a continuation of the single line above):

armasm -g vectors.s
armasm -g -PD "ROM_RAM_REMAP SETL {TRUE}" init.s
armasm -g stack.s
armasm -g heap.s
REM Use the following lines to build without using the serial port. 
armcc -c -g -O1 main.c -I..\include -DEMBEDDED -DROM_RAM_REMAP
armcc -c -g -O1 retarget.c
REM Use the following lines to build using the serial port. 
REM armcc -c -g -O1 main.c -I..\include -DEMBEDDED -DROM_RAM_REMAP
REM                 -DUSE_SERIAL_PORT
REM armcc -c -g -O1 retarget.c -DUSE_SERIAL_PORT
armcc -c -g -O1 uart.c -I..\include
armcc -c -g -O1 serial.c -I..\include
armcc -c -g -O1 int_handler.c -I..\include
6-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
armlink vectors.o init.o main.o retarget.o uart.o serial.o stack.o heap.o
                 int_handler.o -scatter scat_c.scf -o rps_irq.axf 
                 -entry 0x24000000 -info totals -info unused
fromelf rps_irq.axf -bin -o rps_irq.bin

6.8.3 Scatter-load description file

The scatter-load description file is listed below.

FLASH 0x24000000 0x4000000
{
    FLASH 0x24000000 0x4000000
    {
        init.o (Init, +First)
        * (+RO)
    }
    32bitRAM 0x0000
    {
        vectors.o (Vect, +First)
        * (+RW,+ZI)
    }
    HEAP +0 UNINIT
    {
        heap.o (+ZI)
    }
        
    STACKS 0x40000 UNINIT
    {
        stack.o (+ZI)
    }
        
    UART0 0x16000000 UNINIT
    {
        uart.o (+ZI)
    }
}

6.8.4 Sample code

The retargetting code is the same as the code used in Loading the ROM image at address 
0 on page 6-14. The source is available in 
install_directory\Examples\Embedded\rps_irq.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-35



Writing Code for ROM 
6.9 Using scatter loading with memory-mapped I/O

In most ARM embedded systems, peripherals are located at specific addresses in 
memory. You often need to access a memory-mapped register in a peripheral by using 
a C variable. In your code, you will need to consider not only the size and address of the 
register, but also its alignment in memory.

ARM recommends word alignment of peripheral registers even if they are 16-bit or 
8-bit peripherals. In a little-endian system, the peripheral databus can connect directly 
to the least significant bits of the ARM databus and there is no need to multiplex (or 
duplicate) the peripheral databus onto high bits of the ARM databus. In a big-endian 
system, the peripheral databus can connect directly to the most significant bits of the 
ARM databus and there is no need to multiplex (or duplicate) the peripheral databus 
onto low bits of the ARM databus.

The AMBA™ APB bridge uses this technique to simplify the bridge design. The result 
is that only word-aligned addresses should be used (whether byte, halfword, or word 
transfer), and a read will read garbage on any bits that are not connected to the 
peripheral.

6.9.1 Using pointers to access I/O

The simplest way to implement memory-mapped variables is to use pointers to fixed 
addresses. If the memory is changeable by external factors, for example by some 
hardware, it must be labelled as volatile. For example:

volatile unsigned *port = (unsigned int *) 0x40000000;

The data on the port can be accessed by:

*port = value;    /* write to port */   
value = *port;    /* read from port */

The use of volatile ensures that the compiler always carries out the memory accesses, 
rather than optimizing them out. If the access was in a loop and the variable was not 
volatile, only one read of the memory address would be done.

This approach can be used to access 8-bit, 16-bit, or 32-bit registers, but you must 
declare the variable with the appropriate type for its size, int for 32-bit registers, short 
for 16-bit, and char for 8-bit. This ensures that the compiler generates the correct single 
load/store instructions, LDR/STR, LDRH/STRH, or LDRB/STRB.
6-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
You must also ensure that the memory-mapped registers lie on appropriate address 
boundaries. Alignment must be either all word-aligned or on their natural size 
boundaries. The natural size of 16-bit registers is on half-word addresses. ARM 
recommends that all registers, whatever their size, be aligned on word boundaries, see 
Using arrays or structs on page 6-38.

You can use #define to simplify your code. For example, the source code in 
Example 6-11 produces the interleaved code in Example 6-12.

Example 6-11

#define PORTBASE  0x40000000    /* Counter/Timer Base */ 
#define PortLoad  ((volatile unsigned int *) PORTBASE)           /* 32 bits */ 
#define PortValue ((volatile unsigned short *)(PORTBASE + 0x04)) /* 16 bits */ 
#define PortClear ((volatile unsigned char *)(PORTBASE + 0x08))  /*  8 bits */ 
void init_regs(void)
{
    unsigned int int_val;
    unsigned short short_val;
    unsigned char char_val;
    *PortLoad = (unsigned int) 0xF00FF00F;
     int_val = *PortLoad;
    *PortValue = (unsigned short) 0x0000;
     short_val = *PortValue;
    *PortClear = (unsigned char) 0x1F;
     char_val = *PortClear;
}

Example 6-12 Output fragment from compiler using -S and -fs

                          AREA ||.text||, CODE, READONLY
                  init_regs PROC
;;;7      {
;;;8          unsigned int int_val;
;;;9          unsigned short short_val;
;;;10         unsigned char char_val;
;;;11         *PortLoad = (unsigned int) 0xF00FF00F;
000000  e59f1024          LDR      r1,|L1.44|
000004  e3a00440          MOV      r0,#0x40000000
000008  e5801000          STR      r1,[r0,#0]
;;;12          int_val = *PortLoad;
00000c  e5901000          LDR      r1,[r0,#0]
;;;13         *PortValue = (unsigned short) 0x0000;
000010  e3a01000          MOV      r1,#0
000014  e1c010b4          STRH     r1,[r0,#4]
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-37



Writing Code for ROM 
;;;14          short_val = *PortValue;
000018  e1d010b4          LDRH     r1,[r0,#4]
;;;15         *PortClear = (unsigned char) 0x1F;
00001c  e3a0101f          MOV      r1,#0x1f
000020  e5c01008          STRB     r1,[r0,#8]
;;;16          char_val = *PortClear;
000024  e5d00008          LDRB     r0,[r0,#8]
;;;17     }000028  e1a0f00e          MOV      pc,lr
                  |L1.44|
00002c  f00ff00f          DCD      0xf00ff00f
                          ENDP
        END

6.9.2 Using unions

Example 6-13 shows how to access 16-bit memory mapped peripheral registers that are 
aligned on word boundaries. The example uses a union to force word alignment.

Example 6-13

/* header file */
typedef union { short x; int pad; } X;       /* force alignment of type X to  */
                                             /* the natural alignment of int  */
static X *const device = (X *) 0xffff00c0;   /* use of static and const enable*/
                                             /* the compiler to better        */
                                             /* optimize the code             */
/* C file */
void f(void) { device[2].x = 3; }            /* write the value 3 to the      */
                                             /* third 16-bit value of device  */

6.9.3 Using arrays or structs

The following examples show how to use arrays or structs to access peripheral registers.

Using an array of shorts

To access some 16-bit peripheral registers on 16-bit alignment, you can write:

volatile unsigned short u16_IORegs[20];
6-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
For little-endian systems, this works if your peripheral controller can route the 
peripheral databus to the high part (D31..D16) of the ARM databus as well as the low 
part (D15..D0) depending on the address that you are accessing. You must check if this 
multiplexing logic exists in your design (the standard ARM APB bridge does not 
support this).

Using a struct

The advantages of using a struct over an array are:

• descriptive names can be used (more maintainable and legible)

• different register widths can be accommodated.

Padding should be made explicit rather than relying on automatic padding added by the 
compiler, for example:

struct PortRegs {
  unsigned short ctrlreg;  /* offset 0 */
  unsigned short dummy1;
  unsigned short datareg;  /* offset 4 */
  unsigned short dummy2;
  unsigned int data32reg;  /* offset 8 */
} iospace;
x = iospace.ctrlreg;
iospace.ctrlreg = newval;

Note
 Peripheral locations should not be accessed using __packed structs (where unaligned 
members are allowed and there is no internal padding), or using C bitfields. This is 
because it is not possible to control the number and type of memory access that is being 
performed by the compiler. 

The result is code that is non-portable, has undesirable side effects, and will not work 
as intended. The recommended way of accessing peripherals is through explicit use of 
architecturally-defined types such as int, short, char on their natural alignment.

Using a pointer to struct/array

struct PortRegs {
  unsigned short ctrlreg;  /* offset 0 */
  unsigned short dummy1;
  unsigned short datareg;  /* offset 4 */
  unsigned short dummy2;
  unsigned int data32reg;  /* offset 8 */
};
volatile struct PortRegs *iospace = 
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-39



Writing Code for ROM 
                (struct PortRegs *)0x40000000;
x = iospace->ctrlreg;
iospace->ctrlreg = newval;

The pointer can be either local or global. If you want the pointer to be global in order to 
avoid the base pointer being reloaded after function calls, make iospace a constant 
pointer to the struct by changing its definition to: 

volatile struct PortRegs * const iospace =
    (struct PortRegs *)0x40000000;

6.9.4 Using scatter loading

The variable, array, or struct must be declared in a file on its own. When it is compiled, 
the object code for this file contains only data. This data can be placed at a specified 
address using the ARM scatter-loading mechanism. This is the recommended method 
for placing regions at required locations in the memory map.

Create a file, for example iovar.c that contains a declaration of the variable, array, or 
struct. For example:

volatile unsigned short u16_IORegs[20];

or

struct{
   volatile unsigned reg1;
   volatile unsigned reg2;
} mem_mapped_reg;

Create a scatter-load description file, called for example scatter.scf, containing the 
code in Sample file.

Example 6-14 Sample file

ALL 0x8000      ; one load region ALL at 0x8000
{
     ALL 0x8000 ; by default, everything goes into this region
     {
         * (+RO,+RW,+ZI)
     }
     IO  0x40000000 UNINIT ; register variables go here
                           ; initial zeros are not written
     {
         iovar.o (+ZI)     ; a single module is selected by name
     }
}

6-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
The scatter-load description file must be specified to the linker using the -scatter 
scatter.scf command-line option. The UNINIT keyword in the description file indicates 
that the ZI region will not be initialized with zeros when the application is reset. If you 
want the peripheral registers to have zero written to them on reset, omit the UNINIT 
keyword. The scatter-load description file creates two different regions in your image 
(ALL and IO). The zero-init area from iovar.o (containing your array or struct) goes into 
the IO area located at 0x40000000. All code (RO) and data areas (RW and ZI) from other 
object files go into the ALL region that starts at 0x8000.

If you have more than one group of variables (more than one set of memory mapped 
registers) you must define each group of variables as a separate execution region (they 
could, however, all lie within a single load region). Each group of variables must be 
defined in a separate module.

The benefits of using a scatter description file are:

• All the (target-specific) absolute addresses chosen for your devices, code, and 
data are located in one file and maintenance is simplified.

• If you decide to change your memory map (for example if peripherals are moved), 
you do not have to rebuild your entire project but only to re-link the existing 
objects.

For a description of scatter loading, see the ADS Linker and Utilities Guide. For a 
description of how to specify code and data sections from C and C++, see the section 
on pragmas in the ADS Compilers and Libraries Guide.

6.9.5 Code efficiency

The ARM compiler normally uses a base register plus the immediate offset field 
available in the load/store instruction to compile struct member or specific array 
element access. 

The ARM instruction set, LDR/STR word/byte have a 4Kbyte range, but LDRH/STRH has a 
smaller immediate offset of 256bytes. 

The Thumb instruction set is much more restricted in addressing range than the ARM 
instructions. The Thumb LDR/STR has a range of 32 words, LDRH/STRH has a range of 32 
halfwords, LDRB/STRB has a range of 32 bytes. You must group related peripheral 
registers near to each other if possible. The compiler will generally do a good job of 
minimizing the number of instructions required to access the array elements or structure 
members by using base registers.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-41



Writing Code for ROM 
There is a choice between one big C struct/array for the whole I/O space and smaller 
per-peripheral structs. There is not much difference in efficiency. The big struct might 
be a benefit if you are using ARM code where a base pointer can have a 4Kbyte range 
(for word/byte access) and the entire I/O space is less than 4KB. Smaller structs for each 
peripheral are more maintainable.
6-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
6.10 Troubleshooting

This section provides solutions to the following common problems:

• Linker error __semihosting_swi_guard

• Setting $top_of_memory

• Vector table code eliminated on page 6-44.

• Errors with scatter-loading description files on page 6-44.

6.10.1 Linker error __semihosting_swi_guard

The linker reports __semihosting_swi_guard as being multiply defined.

Cause

The linker loaded the semihosting implementation of a function from the ANSI C 
library. This error message is issued if you have imported the semihosting guard symbol 
with #pragma import(__use_no_semihosting_swi), or called the C guard function 
__use_no_semihosting_swi(), and have also called a library function that uses 
semihosting.

Solution

This problem can be fixed in one of the following ways:

• Redefine the semihosted functions with your own implementation. The new 
functions are used instead of the C library versions.

• If the semihosted functions are used only when building an application version of 
your ROM image for debugging purposes, comment them out with an #ifdef 
when building a ROM image.

To locate the functions that use semihosting, link with -verbose -errors file.txt and 
search the output log file for occurrences of __I_use_semihosting_swi.

6.10.2 Setting $top_of_memory

The debugger internal variable $top_of_memory tells the debugger where the highest 
writable address is in the memory map of a remote target. By default, this address is 
used to place the stack and heap. The default value for $top_of_memory is 0x80000.

Different boards might have different memory maps, so $top_of_memory must be 
changed to one plus the address of the top of the RAM for your board. This must be 
done before running an application, otherwise you may experience data aborts or code 
crashes.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-43



Writing Code for ROM 
For an unexpanded Integrator core module, set $top_of_memory to 0x40000.

If your board has extra DRAM modules fitted, you should change $top_of_memory 
appropriately.

$top_of_memory only applies to Multi-ICE and EmbeddedICE. It does not apply to Angel 
or ARMulator. (The top of memory for Angel is hard-coded in the porting and the 
stackbase in ARMulator is determined by a config file.)

6.10.3 Vector table code eliminated

By default, the linker removes code sections that are never executed, or data that is never 
referred to, from the final image. To see if any sections have been removed, link with 
the -info unused option.

Follow the steps below to ensure that the vector table is not inadvertently removed.

1. Mark all entry points with the assembler directive ENTRY. The C library has an 
entry point at __main().

2. Use the command-line option -entry to select one of the entry points as the image 
entry point. If a unique entry point is not specified, the linker warns: 

Image does not have an entry point. (Not specified or not set due to 
multiple choices).

The recommended link options for embedded images are:

armlink obj1.o obj2.o -scatter scat.scf -info unused -entry 0x0 -o prog.axf

6.10.4 Errors with scatter-loading description files

If you encounter errors when you attempt to link using scatter-loading description file, 
try to simplify the build process and gradually add more complexity. Some techniques 
that might be useful are listed below.

Retarget __user_initial_stackheap() 

__user_initial_stackheap() must be reimplemented if you are using 
scatter loading. Ensure that you have reimplemented the function 
correctly and that the new module is linked with your code. Use the 
reimplementation provided in the Examples directory as a starting point 
for your reimplementation.

Make regions large enough to hold the code and data 

If you specify a maximum size in the scatter-loading description file, 
ensure that the size is big enough to hold the related code or data. 
6-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
If you specify absolute addresses for each region, ensure that the regions 
do not overlap. 

Use an ANY specifier in the description file 

If you are using very specific names to allocate code and data, you might 
have some code that does not match the specification and is not placed. 
Use the * or ANY specifications to provide a location for all unmatched 
code and data.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-45



Writing Code for ROM 
6.11 Measuring code and data size

To measure code size, do not look at the linked image size or object module size, as 
these include symbolic information that is not part of the binary data. Instead, use one 
of the following armlink options:

-info sizes This option gives a breakdown of the code and data sizes of each 
object file or library member making up an image.

-info totals This option gives a summary of the total code and data sizes of all 
object files and all library members making up an image.

6.11.1 Interpreting size information

The information provided by the -info sizes and -info totals options can be broken 
down into:

• code (or read-only) segments

• data (or read-write) segments

• debug data.

Code (or read-only) segments

code size Size of code, excluding any data that has been placed in the code 
segment.

RO data Size of read-only data included in the code segment by the compiler. 

This data contains:

• the addresses of variables that are accessed by the code

• floating-point immediate values

• immediate values that cannot be loaded directly into a register

• short inline strings

• the addresses of longer inline strings in RO data.
6-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Writing Code for ROM 
Data (or read-write) segments

RW data Size of read-write data. This is data that is read-write and also has an 
initializing value. Read-write data occupies the displayed amount of 
RAM at run-time, but also requires the same amount of ROM to hold the 
initializing values that are copied into RAM on image startup.

ZI data Size of read-write data that is zero-initialized at image startup.

Typically this contains arrays that are not initialized in the C source code. 
Zero-initialized data requires the displayed amount of RAM at run-time 
but does not require any space in ROM.

Debug data

debug data Reports the size of any debugging data.

6.11.2 Calculating ROM and RAM requirements

The linker calculates the ROM and RAM requirements for code and data as follows:

ROM Code size + RO data + RW data

RAM RW Data + ZI data.

In addition you must allow some RAM for stacks and heap.

In more complex systems, you may require part (or all) of the code segment to be 
downloaded from ROM into RAM at run-time. This increases the system RAM 
requirements but could be necessary if, for example, RAM access times are faster than 
ROM access times and the execution speed of the system is critical.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-47



Writing Code for ROM 
6-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 7 
Caches and Tightly Coupled Memories

This chapter describes some aspects of initializing cached processors. It also describes 
processors with tightly coupled memory, and ARMulator models of cached processors. 
It contains the following sections:

• About caches and tightly coupled memory on page 7-2

• System control coprocessor on page 7-4

• Memory protection units on page 7-5

• Configuring a PU on page 7-7

• Memory management units on page 7-12

• Configuring an MMU on page 7-16

• Tightly coupled memory on page 7-19.

See also ARM Architecture Reference Manual and the Technical Reference Manual for 
your processor.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-1



Caches and Tightly Coupled Memories 
7.1 About caches and tightly coupled memory

Most modern processor cores can process instructions and data much faster than 
off-chip memory systems can deliver them. Caches and Tightly Coupled Memories 
(TCMs) are different methods of improving system performance when the external 
memory is narrow, slower than the core, or both.

Caches and TCMs are small, fast memories closely coupled with the processor. They 
can:

• enable good system performance even with slow or narrow off-chip memory

• reduce total system power consumption by reducing off-chip memory accesses.

Note
 An uncached core is normally a better choice if off-chip memory is as fast as the core, 
and 32 bits wide.

7.1.1 About caches

Caches hold copies of the contents of memory locations. In general, these are memory 
locations that have been loaded from recently. These copies are automatically used in 
preference to off-chip memory.

Caches only give an advantage if the cached memory locations are used again. In a real 
system this is very common, for example:

• instruction loops

• frequently referenced data.

Cache operation is transparent to the programmer. However, you must initialize the core 
to specify what off-chip memory locations are to be cached.

7.1.2 About tightly coupled memory

TCMs replace an area of off-chip memory when they are enabled.

TCM has the following advantages when compared with caches:

• it uses about half the die area

• it gives precisely predictable real-time performance.

To take advantage of a TCM, you must consider the TCM when writing your system 
software. For example, you are likely to place the following in TCM:

• interrupt handling code

• data that changes frequently, such as the stack.
7-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
For further information see Tightly coupled memory on page 7-19.

7.1.3 Models of caches and tightly coupled memory

ARMulator models of processors that have caches or TCMs include models of the 
caches or TCMs.

To initialize the model caches or TCMs, you can program the PU or MMU models 
exactly as you program the real hardware.

ARMulator Pagetable model

In addition, ARMulator includes a model, Pagetable, that can initialize the model 
caches or TCMs for you (see the ARMulator Basics chapter in ADS Debug Target 
Guide).

You can do any of the following:

• use the Pagetable model throughout your development work, unless you are 
writing an operating system. This option is recommended if you are writing a 
User Mode program.

• write your own PU or MMU programming code from the beginning

• use the Pagetable model during the early stages of development, then write your 
own PU or MMU programming code later.

Default initial state of ARMulator models of caches and TCMs

On initialization:

• ARMulator models of caches are enabled by the Pagetable model

• ARMulator models of TCMs are disabled.

You can change these defaults in the peripherals.ami file (see ADS Debug Target 
Guide).

7.1.4 Cache performance

If part of your main memory is 32 bits wide, and as fast as the core, a cache might reduce 
system performance.

Most systems have memory slower than the core, or narrower than 32 bits.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-3



Caches and Tightly Coupled Memories 
7.2 System control coprocessor

CP15 is the system control coprocessor. You must write to registers in CP15 to 
configure your core, and any caches or TCM.

The registers in CP15 can only be accessed using the MCR and MRC instructions (for 
details of these instructions see the ARM Instructions chapter in ADS Assembler 
Guide).

For details of the registers in CP15, see ARM Architecture Reference Manual, and the 
Technical Reference Manual for your processor.

Note
 If your system has an MMU, you must also write pagetables to memory before enabling 
the MMU (see Configuring an MMU on page 7-16).
7-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.3 Memory protection units

Protection Units (PUs) partition memory into regions. For each region you can specify:

Size Typically this might range from 4KB to 4GB.

Base address 

A region must start on a memory boundary that is a multiple of its size.

Access permissions 

For example, you can mark a region for read access only from User mode.

When the PU is enabled, it aborts accesses to addresses outside any defined region.

7.3.1 Harvard architecture

ARM cached Harvard cores have separate instruction and data caches, but use the same 
bus to access external memory. You can define the properties of memory regions for 
data and instructions separately.

Before you enable the PU, you must define:

• at least one memory region for instructions

• at least one memory region for data.

These can define the same region of memory.

7.3.2 Von Neumann architecture

Von Neumann cores access data and instructions over the same bus.

You must define at least one memory region before you enable the PU.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-5



Caches and Tightly Coupled Memories 
7.3.3 Overlapping regions

You can define overlapping memory protection regions. If several memory regions map 
the same memory, the PU uses the highest numbered region to control access to the 
memory.

Figure 7-1 shows an example of memory regions. In this example, a background region 
covers the whole address space. The foreground regions overlap the background region.

Figure 7-1 Example memory regions

Note
 Instruction regions have corresponding data regions to allow for access to data 
contained in literal pools within code.

5�	����������
0���	�7�
- "�����
0���	�7�
-

#&%

.
���<
���	

#&%

=���0�����=���0�����

"���

,��
,��
#
������(
,��<
�

#
���-���

�����<
�
)�������
�
�

#
���-���

,��<
�
=���
�
�

#
������(
,��<
�

#
������(
,��<
�

#
������(
,��<
�
7-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.4 Configuring a PU

To configure a PU, you must do the following:

1. Define the starting addresses and sizes of protection regions, and enable them. To 
do this, write to coprocessor register c6 in CP15, the system control coprocessor 
(see Setting protection region addresses and sizes, and enabling each region on 
page 7-8).

2. Set the cacheable and bufferable attributes for each region. To do this, write to 
CP15 registers c2 and c3 (see Setting region cacheable and bufferable flags on 
page 7-9).

3. Set access permissions for each region. To do this, write to CP15 register c5 (see 
Setting region access permissions on page 7-10).

4. Enable the caches and enable the PU. To do this, write to CP15 register c1 (see 
Configuring core operation on page 7-11).

Note
 The Pagetable model can do this for you if you are using ARMulator (see Models of 
caches and tightly coupled memory on page 7-3 and the ARMulator Basics chapter in 
ADS Debug Target Guide).

Note
 Details of configuration vary from core to core. See the Technical Reference Manual for 
your particular core.

The following examples show the general methods of programming. They do not show 
correct details for every core.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-7



Caches and Tightly Coupled Memories 
7.4.1 Setting protection region addresses and sizes, and enabling each region

Example 7-1 sets the addresses and sizes of protection regions.

Note
 Enabling the protection regions has no effect until you enable the PU.

Example 7-1 Setting protection regions

    LDR r0,=0xFFFF801D         ; define ROM with base address 0xFFFF8000, size 32KB, enabled
    MCR p15,0,r0,c6,c1,0       ; apply this definition to data region 1
    MCR p15,0,r0,c6,c1,1       ; apply the same definition to instruction region 1
    LDR r0,=0xB0000039         ; define Peripherals with base address 0xB0000000, size 512MB, enabled
    MCR p15,0,r0,c6,c2,0       ; apply this definition to data region 2
    LDR r0,=0x4000001F         ; define Data with base address 0x40000000, size 64KB, enabled
    MCR p15,0,r0,c6,c3,0       ; apply this definition to data region 3
    MOV r0,#0x1D               ; define Code with base address 0x0, size 32KB, enabled
    MCR p15,0,r0,c6,c4,0       ; apply this definition to data region 4
    MCR p15,0,r0,c6,c4,1       ; apply the same definition to instruction region 4

Coprocessor register 6

Use c6 as the first coprocessor register to select the registers for region bases and sizes.

Selects the region using the second coprocessor register number, c1-c4 in the example.

The value in the ARM register, r0 in the example, contains:

• the base address, in bits [31:12]

• bits [11:6] must be zero

• the region size in bits [5:1] (see the Technical Reference Manual for your 
processor for details)

• setting bit [0] enables the region.

Opcode2

Opcode2 is only used for cores with separate data and instruction regions (see the 
Technical Reference Manual for your processor for details).

Opcode2 must be zero if your processor does not support separate data and instruction 
regions. If it does support them, 0 is for data regions, 1 for instruction regions.
7-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.4.2 Setting region cacheable and bufferable flags

Coprocessor register c2 of CP15 is the region cacheable flags register. Coprocessor 
register c3 of CP15 is the region bufferable flags register. Example 7-2 sets the 
cacheable and bufferable flags for each data region.

If you set a region to be cacheable:

• When you load from that region, the cache is searched. If the item is found, it is 
loaded from the cache. If the item is not found, a complete cache line including 
the required address is loaded. Some other cache line is evicted from the cache, 
unless there is an unused cache line available.

• When you save to that region, the cache is searched. If the item is found, the save 
is made to the cache. If the item is not found, the save is made to memory.

The exact effect of the bufferable flag varies (see the Technical Reference Manual for 
your processor for details).

Bits [7:0] of register c2 in CP15 are the cacheable flags. Opcode 2 is used to select 
instruction or data regions.

Bits [7:0] of register c3 in CP15 are the bufferable flags. Opcode 2 must be 0 because 
bufferable flags can only be used for data regions.

Operand2 specifies data or instruction regions.

Example 7-2 Setting cacheable and bufferable flags

    MOV r0,#2_00011010        ; set data regions 1, 3 and 4 as cacheable, all others noncacheable
    MCR p15,0,r0,c2,c0,0
    MOV r0,#2_00010010        ; set instruction regions 1 and 4 as cacheable, all others noncacheable
    MCR p15,0,r0,c2,c0,1
    MOV r0,#2_00001000        ; set data region 3 as write bufferable, all others nonbufferable
    MCR p15,0,r0,c3,c0,0
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-9



Caches and Tightly Coupled Memories 
7.4.3 Setting region access permissions

Coprocessor register c5 of CP15 is the region access permissions register. Example 7-3 
sets Region access permissions.

Operand2 specifies data or instruction regions.

Example 7-3 Setting access permissions

    MOV r0,#2_1111111100    ; set data region 1, 2, 3 and 4 as full access
    MCR p15,0,r0,c5,c0,0
    MOV r0,#2_1000001000    ; set instruction region 1 and 4 as:
    MCR p15,0,r0,c5,c0,1    ; Privileged Mode, full access; User Mode, read only

Table 7-1 and Table 7-2 show the meanings of the bits in the access permission register.

Note
 Some processors have four bits per region (see the Technical Reference Manual for your 
processor for details).

Table 7-1  Region bit mapping scheme

Register bit Function

[15:14] access permission bits [1:0] of area 7

[13:12] access permission bits [1:0] of area 6

[11:10] access permission bits [1:0] of area 5

... ...

Table 7-2  Region access permission bit definition

bits [1:0] Meaning

00 No access

01 Access from privileged mode only

10 Full access from privileged mode, read only from User mode

11 Full access
7-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.4.4 Configuring core operation

Coprocessor register c1 of CP15 is the core configuration register. You must use a 
read-modify-write cycle to alter the contents of c1. Example 7-4 configures the core and 
enables the PU.

Example 7-4 Configuring core operation (ARM940T only)

    MRC p15,0,r0,c1,c0,0    ; read core configuration register
    ORR r0,r0,#0xC0000000   ; set asynchronous clocks and not fastbus mode
    ORR r0,r0,#0x1000       ; enable instruction cache
    ORR r0,r0,#0x5          ; enable data cache and PU
    MCR p15,0,r0,c1,c0,0    ; write modified value to core configuration register

Table 7-3 shows the meanings of the core configuration bits for an ARM940T.

Note
 The details of the core configuration register vary from core to core. See the Technical 
Reference Manual for your processor for details.

Table 7-3 Core configuration register (ARM940T)

Register bits Functions

[31] Asynchronous clocking select (iA)

[30] nFastBus select (nF)

[29:14] Reserved (must be zero, or use read-modify-write)

[13] Alternate vectors select (V)

[12] Instruction cache enable flag (I)

[11:8] Reserved (must be zero, or use read-modify-write)

[7] Big-end bit (E)

[6:3] Reserved (must be one, or use read-modify-write)

[2] Data cache enable flag (D)

[1] Reserved (must be zero, or use read-modify-write)

[0] PU enable (P)
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-11



Caches and Tightly Coupled Memories 
7.5 Memory management units

Memory Management Units (MMUs):

• translate virtual addresses into physical addresses

• control memory access permissions.

If the MMU is disabled, the external address bus outputs addresses without translation.

MMUs are much more versatile than PUs. They can:

• provide fine grained control of the memory system

• relocate memory at runtime.

You can use an MMU to implement a demand-paged virtual memory system.

7.5.1 Virtual to physical address mapping

Addresses generated by the ARM processor are virtual addresses. When the MMU is 
enabled, it translates these virtual addresses into physical addresses. This means that 
you can access code or data at a chosen virtual address, when the physical address is at 
a different location. You can use this for various purposes, for example to allocate 
memory to different processes with conflicting address maps.

The translation tables are stored in main memory. In addition to holding address 
translations, the tables hold fields to control:

• memory access permissions for each region (see Memory access permissions and 
domains on page 7-14)

• flags to control whether accesses to a region are cacheable and bufferable (see 
Cacheable and bufferable flags on page 7-15).

Figure 7-2 on page 7-13 shows the general principle of virtual to physical address 
mapping.
7-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
Figure 7-2 Virtual to physical address mapping

Warning
 Caches contain virtual addresses. It is your responsibility to ensure that virtual 
addresses from different processes are not mapped to the same physical address, unless 
you intend the processes to share an area of memory.

For full details of translation tables see ARM Architecture Reference Manual and the 
Technical Reference Manual for your processor.

8������



��(

:���	����������
�<
����0�

�<���	


.<(	����



��(

#&%

#$%

#$%

8#$%

#$%

#$%

#$%

:���	������
����
	

.���
		�,

.���
		�=

.���
		�$

%���0
�

.���
		�"
%%�

.���
���������������	

5
:6=

"
:6=
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-13



Caches and Tightly Coupled Memories 
7.5.2 Memory access permissions and domains

Translation tables also hold access permission fields and a domain field.

There are 16 domains, Each region defined in the translation tables is controlled by the 
domain specified in the corresponding domain field.

Each domain has two bits in the domain access control register in CP15. According to 
the value in these bits, attempts to access regions belonging to the domain can:

• be allowed only if the permissions set in the translation table allow

• generate a domain fault

• be allowed regardless of the permissions set in the translation table.

When the processor generates a request for a memory access, the MMU checks the 
permissions as follows:

1. The MMU looks up the domain number in the translation table.

2. Using the domain number found in step 1, it checks the domain access permission 
for the domain in the domain access control register.

3. According to the value found in the domain access control register, the MMU can 
either:

• allow the access unconditionally

• disallow the access unconditionally

• check the region access permissions in the translation table.

This system enables you to change context easily. For each application, an operating 
system can:

• allow free access, restricted access, or no access to different areas of memory

• change access permissions to large numbers of regions simultaneously by 
changing a single entry in the domain access control register.
7-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.5.3 Cacheable and bufferable flags

Translation tables also hold cacheable and bufferable flags.

If you set a region to be cacheable:

• When you load from that region, the cache is searched. If the item is found, it is 
loaded from the cache. If the item is not found, a complete cache line including 
the required address is loaded. Some other cache line is evicted from the cache, 
unless there is an unused cache line available.

• When you save to that region, the cache is searched. If the item is found, the save 
is made to the cache. If the item is not found, the save is made to memory.

The exact effect of the bufferable flag varies (see the Technical Reference Manual for 
your processor for details).

It is often desirable to prevent certain areas of memory being cached or buffered, for 
example:

• memory mapped I/O

• large arrays that you access randomly.

For full details, see ARM Architecture Reference Manual and the Technical Reference 
Manual for your processor.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-15



Caches and Tightly Coupled Memories 
7.6 Configuring an MMU

To configure an MMU, you must do the following:

1. Build the translation table in memory. Translation tables include:

• virtual to physical translation

• cacheable and bufferable flags

• domain number

• access permissions.

See Building the translation table on page 7-17.

2. Store the location of the translation table in CP15 register c2 (see Setting the 
location of the translation table on page 7-17).

3. Enable the caches and enable the MMU by writing to CP15 register c1 (see 
Configuring core operation on page 7-18).

Note
 The PageTable model can do this for you if you are using ARMulator (see Models of 
caches and tightly coupled memory on page 7-3 and the ARMulator Basics chapter in 
ADS Debug Target Guide).

You are recommended to:

• set permissions on the translation table for privileged mode access only 

• map virtual addresses to identical physical addresses for the region containing the 
translation table.

7.6.1 Altering the translation table during program execution

You can alter the translation table without disabling the MMU. After doing this, you 
must flush the Translation Lookaside Buffers (TLBs). For details, see ARM Architecture 
Reference Manual and the Technical Reference Manual for your processor.
7-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.6.2 Building the translation table

Example 7-5 initializes a translation table that maps every virtual address to an identical 
physical address (this is called flat mapping). It creates a table with 4096 entries for 
addresses 0x000xxxxx to 0xFFFxxxxx, with full access for all regions.

Example 7-5 A flat translation table

    LDR     r0,=TTB                 ; Set start of translation table base (on 16KB boundary)
    LDR     r1, =0xFFF              ; Set loop counter for 4096
    MOV     r2,   #2_110000000000   ; Set access permissions for full access (bits 11:10)
    ORR     r2,r2,#2_000111100000   ; Set domain number to 15 (bits 8:5)
    ORR     r2,r2,#2_000000010000   ; Set bit 4 to 1
    ORR     r2,r2,#2_000000000010   ; Set as 1MB section (bits 1:0)
                                    ; All unused bits are 0
loop
    ORR     r3,r2,r1,LSL#20         ; Build pattern into empty register
    STR     r3,[r0,r1,LSL#2]        ; Use loop counter to create individual table base addresses
    SUBS    r1,r1,#1                ; Decrement loop counter
    BPL     loop                    ; Loop until r1 goes negative

See Aliasing a ROM region at 0x0 to 0xFFF00000 on page 7-18 for an example of how 
to set up non-flat translations.

7.6.3 Setting the location of the translation table

Example 7-6 sets the translation table base register (c2) in CP15.

Example 7-6 Set translation table base

    LDR r0,=TTB             : Set start of translation table base (on 16KB boundary)
    MCR p15,0,r0,c2,c2,0    ; Write value to CP15 c2
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-17



Caches and Tightly Coupled Memories 
7.6.4 Aliasing a region

Example 7-7 shows how to alias a ROM region.

Example 7-7 Aliasing a ROM region at 0x0 to 0xFFF00000

    LDR r0,=TTB           : Set start of translation table base (on 16KB boundary)
    LDR r1,=0x0           ; Read first entry in translation table, which points to a 1MB section at 0x0
    LDR r2,[r0,r1,LSL#2]
    ORR r2,r2,#2_1000     ; Set cacheable flag
    LDR r1,=0xFFF00000    ; Remap 0x0 to 0xFFF00000
    STR r2,[r0,r1,LSL#2]
    MOV r0,#0xC0000000    ; Set permissions for domain 15
    MCR p15,0,r0,c3,c0,0  ; Write value to CP15 c3

7.6.5 Configuring core operation

Example 7-8 sets the bits in the core control register (c1) in CP15.

Example 7-8 Set core control parameters (ARM920T only)

    MRC p15,0,r0,c1,c0,0          ; Read control register
    ORR r0,r0,#0xC00000000        ; Set asynchronous clocking mode bits
    ORR r0,r0,#0x1000             ; Set enable instruction cache bit
    ORR r0,r0,#0x5                ; Set enable data cache and MMU bits
    MCR p15,0,r0,c1,c0,0          ; Write to control register

Note
 The details of the core configuration register vary from core to core. See the Technical 
Reference Manual for your processor for details. 
7-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.7 Tightly coupled memory

Use normal memory access instructions to access TCM. The address is the only 
difference between an instruction to access TCM and an access to off-chip memory.

Some cores, ARM966E-S for example, have TCM and no cache.

Other cores, ARM946E-S for example, have both TCM and caches. TCM and caches 
can be enabled at the same time, but in general must not map the same regions of 
physical memory.

Some details of ARM966E-S are described below. Details for other cores vary. For 
additional information see the Technical Reference Manual for your processor.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-19



Caches and Tightly Coupled Memories 
7.7.1 ARM966E-S memory map

Figure 7-3 shows an example of a memory map of an ARM966E-S.

Figure 7-3  ARM966E-S memory map

.<(	�����


��(�7�
- :,%�����	��0

����������

��>=

��>=

����������

����������

����������

���%=

��%=

���"������

����������

����������

����������

����������

���#������

��>=

��>=

��>=

��>=

��%=

$3=�����
�
�

"��������	�����

"��������	��

"����


��(

5�	�������������	�����

5�	�������������	��

5�	���������


��(

"����


��(

5�	���������


��(

$3=�������
�
�
���%=

���%=
$3=�������
�
�

 
 
 

 
 
 

 
 
 

���������� ���"������
7-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
Multiply aliased memory

The ARM966E-S has up to 64MB of instruction memory, and up to 64 MB of data 
memory, in TCM.

In the example shown in Figure 7-3 on page 7-20, the implementation only has 64KB 
of instruction memory in TCM. This memory can be addressed at 1024 different 
locations, and the TCM ignores bits [25:16] for instruction fetches.

The implementation also has only 32KB of data memory in TCM. This memory can be 
addressed at 2048 different locations, and the TCM ignores bits [25:15] for data 
accesses.

Instruction and data memory

The instruction and data TCMs have independent enables.

When a TCM is disabled, all accesses to its address range result in off-chip access. 
Off-chip memory and TCM at the same address are completely independent.

Data accesses to instruction TCM are allowed. This is necessary to allow you to:

• use literal pools

• set software breakpoints for debugging

• download code

• write self-modifying code.

Instruction fetches from data TCM are not allowed.

Warning
 An attempt to load an instruction from data TCM might result in an access to off-chip 
memory at the same address. This is core dependent. Refer to the Technical Reference 
manual for your processor.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-21



Caches and Tightly Coupled Memories 
7.7.2 Initializing the ARM966E-S

The initial configuration of the core is controlled by two input pins:

VINITHI • HIGH, the vector table is located at 0xFFFF0000

• LOW, the vector table is located at 0x0. 

INITRAM • HIGH, TCM is enabled

• LOW, TCM is disabled.

These pins determine the configuration of the core on power-up, and on reset. You can 
override these configurations in software by writing to CP15.

You can:

• Tie both INITRAM and VINITHI HIGH.

Execution starts at 0xFFFF0000. Boot code initializes TCM, then relocates the 
vector table to 0x0 for improved performance.

• Tie INITRAM low, and VINITHI HIGH.

Execution starts at 0xFFFF0000. Boot code enables and initializes TCM, then 
relocates the vector table to 0x0 for improved performance.

• Tie both INITRAM and VINITHI LOW.

Execution starts at 0x0, in off-chip memory. Boot code must branch out of the 
bottom 128MB address range before TCM can be enabled and initialized.

Caution
 Do not tie INITRAM HIGH with VINITHI tied LOW. The result is unpredictable.
7-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Caches and Tightly Coupled Memories 
7.7.3 ARM966E-S warm reset

You can implement a warm reset running in TCM.

INITRAM and VINITHI can be controlled by memory-mapped registers. You can 
then have different behavior for power-on reset and warm reset.

For example, both pins might be LOW for power on reset. Boot code reconfigures the 
warm reset behavior before branching to the application.

You can implement a warm reset running in TCM.

To implement a warm reset:

• TCM must be initialized

• INITRAM must be HIGH

• VINITHI must be LOW.

7.7.4 ARM966E-S performance issues

The ARM966E-S runs at peak performance when:

• executing code contained in TCM

• accessing data contained in TCM

• the write buffer is enabled.

The ARM9E core stalls:

• For one cycle, when a read from data TCM immediately follows a write to data 
TCM.

• For one cycle, when a data read from instruction TCM occurs.

• For two cycles, when a data write to instruction TCM occurs.

• When external memory is accessed. In this case, the number of stalled cycles 
depends on:

— the write buffer draining

— the external memory system.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-23



Caches and Tightly Coupled Memories 
7-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Chapter 8 
Debug Communications Channel

This chapter explains how to use of the Debug Communications Channel (DCC). It 
contains the following sections:

• About the Debug Communications Channel on page 8-2

• Command-line debugging commands on page 8-3

• Enabling comms channel viewing on page 8-4

• Target transfer of data on page 8-5

• Polled debug communications on page 8-6

• Interrupt-driven debug communications on page 8-12

• Access from Thumb state on page 8-13

• Semihosting on page 8-14.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-1



Debug Communications Channel 
8.1 About the Debug Communications Channel

The EmbeddedICE logic in ARM cores such as ARM7TDMI and ARM9TDMI 
contains a debug communications channel. This enables data to be passed between the 
target and the host debugger using the JTAG port and a protocol converter such as 
Multi-ICE, without stopping the program flow or entering debug state. This chapter 
describes how the debug communications channel can be accessed by a program 
running on the target, and by the host debugger.

ADS provides the following methods of accessing the debug communications channel:

• the armsd command-line debugger

• the Channel Viewer mechanism in AXD

• Multi-ICE semihosting.
8-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
8.2 Command-line debugging commands

To access the debug communications channel from a command line using armsd use the 
following commands:

ccin filename Selects a file containing data for reading into the target. This 
command also enables host to target comms channel 
communication.

ccout filename Selects a file to write data from the target. This command also 
enables target to host comms channel communication.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-3



Debug Communications Channel 
8.3 Enabling comms channel viewing

Debug communications channel viewing is supported in AXD.

8.3.1 Comms channel viewing in AXD

To enable channel viewing in AXD, refer to the description of the Control system view 
pop-up menu in chapter 5 of the AXD and armsd Debuggers Guide.

To use a channel viewer in AXD, refer to the description of the Comms Channel 
processor view in chapter 5 of the AXD and armsd Debuggers Guide.
8-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
8.4 Target transfer of data

The debug communications channel is accessed by the target as coprocessor 14 on the 
ARM core using the ARM instructions MCR and MRC.

Two registers are provided to transfer data:

Comms data read register 

A 32-bit wide register used to receive data from the debugger. The 
following instruction returns the read register value in Rd:

MRC p14, 0, Rd, c1, c0

Comms data write register 

A 32-bit wide register used to send data to the debugger. The following 
instruction writes the value in Rn to the write register:

MCR p14, 0, Rn, c1, c0

Caution
 Refer to the ARM10 Technical Reference Manual for information on accessing DCC 
registers for the ARM 10. The instructions used, positions of the status bits, and 
interpretation of the status bits are different for processors later than ARM9. 
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-5



Debug Communications Channel 
8.5 Polled debug communications

In addition to the comms data read and write registers, a comms data control register is 
provided by the debug communications channel.

The following instruction returns the control register value in Rd:

    MRC p14, 0, Rd, c0, c0

Two bits in this control register provide synchronized handshaking between the target 
and the host debugger:

Bit 1 (W bit) Denotes whether the comms data write register is free (from the 
target point of view):

W = 0 New data can be written by the target application.

W = 1 The host debugger can scan new data out of the write 
register.

Bit 0 (R bit) Denotes whether there is new data in the comms data read register 
(from the target point of view):

R = 1 New data is available to be read by the target 
application.

R = 0 The host debugger can scan new data into the read 
register.

Note
 The debugger cannot use coprocessor 14 to access the debug communications channel 
directly, because this has no meaning to the debugger. Instead, the debugger can read 
from and write to the debug communications channel registers using the scan chain. The 
debug communications channel data and control registers are mapped into addresses in 
the EmbeddedICE logic, see Viewing EmbeddedICE logic registers.

The contents of the Embedded ICE logic registers can be viewed in armsd as 
coprocessor 0.

8.5.1 Viewing EmbeddedICE logic registers

You can view the EmbeddedICE logic registers in AXD:

• from the GUI: click on Processor Views, click on Registers, and select EICE, 
EICE Watch 0, or EICE Watch 1

• from the command line: type reg EICE.

Refer to MultiICE documentation for further information.
8-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
8.5.2 Target to debugger communication

This is the sequence of events for an application running on the ARM core to 
communicate with the debugger running on the host:

1. The target application checks if the debug communications channel write register 
is free for use. It does this using the MRC instruction to read the debug 
communications channel control register to check that the W bit is clear.

2. If the W bit is clear, the debug communication write register is clear and the 
application writes a word to it using the MCR instruction to coprocessor 14. The 
action of writing to the register automatically sets the W bit. If the W bit is set, 
the debug communication write register has not been emptied by the debugger. If 
the application needs to send another word, it must poll the W bit until it is clear.

3. The debugger polls the debug communication control register through scan chain 
2. If the debugger sees that the W bit is set, it can read the debug communications 
channel data register to read the message sent by the application. The process of 
reading the data automatically clears the W bit in the debug communication 
control register.

Example 8-1 shows how this works. The example code is available in 
Install_directory\Examples\dcc\outchan.s.

Example 8-1

     AREA  OutChannel, CODE, READONLY
     ENTRY
     MOV   r1,#3          ; Number of words to send
     ADR   r2, outdata    ; Address of data to send
pollout
     MRC   p14,0,r0,c0,c0 ; Read control register
     TST   r0, #2
     BNE   pollout        ; if W set, register still full
write
     LDR   r3,[r2],#4     ; Read word from outdata
                          ; into r3 and update the pointer
     MCR   p14,0,r3,c1,c0 ; Write word from r3
     SUBS  r1,r1,#1       ; Update counter
     BNE   pollout        ; Loop if more words to be written
     MOV   r0, #0x18      ; Angel_SWIreason_ReportException
     LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit
     SWI   0x123456       ; ARM semihosting SWI
outdata    
     DCB "Hello there!"
     END
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-7



Debug Communications Channel 
To execute the example:

1. Assemble outchan.s:

armasm -g outchan.s

2. Link the output object:

armlink outchan.o -o outchan.axf

The link step creates the executable file outchan.axf

3. Load the image, enable comms channel viewing, and execute the image. This 
procedure depends on which debugger you are using. See:

• Using armsd

• Using AXD.

Using armsd

If you are using armsd:

1. Load the image into armsd with the command:

armsd -li -adp -port s=1 outchan.axf

2. Enable communication and open the output file, then execute the program:

ccout output
go

3. Quit armsd when execution finishes. You should be able to view the file and see 
that transfer has occurred.

Using AXD

If you are using AXD:

1. Enable channel viewing. See the description of the Control system view pop-up 
menu in chapter 5 of the AXD and armsd Debuggers Guide.

2. Load the image created above into AXD.

3. Use the channel viewer in AXD. See the description of the Comms Channel 
processor view in chapter 5 of the AXD and armsd Debuggers Guide.

4. In the AXD main screen, select Go from the Execute menu (or press F5) to 
execute the image.

The data sent from the target (in this example, Hello there!) should now be 
displayed in the Channel Viewer window.
8-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
8.5.3 Debugger to target communication

This is the sequence of events for message transfer from the debugger running on the 
host to the application running on the core:

1. The debugger polls the debug communication control register R bit. If the R bit is 
clear, the debug communication read register is clear and data can be written there 
for the target application to read.

2. The debugger scans the data into the debug communication read register via scan 
chain 2. The R bit in the debug communication control register is automatically 
set by this.

3. The target application polls the R bit in the debug communication control register. 
If it is set, there is data in the debug communication read register that can be read 
by the application, using the MRC instruction to read from coprocessor 14. The R 
bit is cleared as part of the read instruction.

The following piece of target application code, supplied in file 
Install_directory\Examples\dcc\inchan.s, shows this in action:

     AREA  InChannel, CODE, READONLY
     ENTRY
     MOV   r1,#3          ; Number of words to read
     LDR   r2, =indata    ; Address to store data read
pollin
     MRC   p14,0,r0,c0,c0 ; Read control register
     TST   r0, #1
     BEQ   pollin         ; If R bit clear then loop
read
     MRC   p14,0,r3,c1,c0 ; read word into r3
     STR   r3,[r2],#4     ; Store to memory and
                          ; update pointer
     SUBS  r1,r1,#1       ; Update counter
     BNE   pollin         ; Loop if more words to read
     MOV   r0, #0x18      ; Angel_SWIreason_ReportException
     LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit
     SWI   0x123456       ; ARM semihosting SWI
     AREA  Storage, DATA, READWRITE
indata
     DCB   "Duffmessage#"
     END

4. Create an input file on the host containing, for example, And goodbye!.

5. Assemble and link this code using the following commands:

armasm -g inchan.s
armlink inchan.o -o inchan.axf
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-9



Debug Communications Channel 
You have created an executable image in a file called inchan. Your next steps depend on 
your choice of debugger.

You can load the image, enable comms channel viewing, and execute the image by 
using:

• armsd (for command-line operation)

• AXD.

Issuing commands

If you are issuing commands:

1. Load the image into armsd using the following command:

armsd -li -adp -port s=1 inchan.axf

If you view the area of memory indata, you see its initial random contents:

examine indata

2. Enable communication and open the input file, then execute the program:

ccin input
go

3. When execution completes, view memory again and you can see the input has 
been read in:

examine indata

Using AXD

If you are using AXD:

1. Enable channel viewing. See the description of the Control system view pop-up 
menu in chapter 5 of the AXD and armsd Debuggers Guide.

2. Load the image created above into AXD.

3. Use the channel viewer in AXD. See the description of the Comms Channel 
processor view in chapter 5 of the AXD and armsd Debuggers Guide.

4. In the Send field of the Channel Viewer, type And goodbye!, and click the Send 
button. The Left to Send counter should show the number of bytes stored for 
sending to the target.

If you view the area of memory indata, you see its initial contents:

examine indata
8-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
5. In the AXD main screen, select Go from the Execute menu (or press F5) to 
execute the image.

6. When execution is complete, view memory again and you can see that the input 
has been read in:

examine indata
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-11



Debug Communications Channel 
8.6 Interrupt-driven debug communications

The examples given above demonstrate polling the DCC. You can convert these to 
interrupt-driven examples by connecting up COMMRX and COMMTX signals from the 
Embedded ICE logic to your interrupt controller.

The read and write code given above could then be moved into an interrupt handler.

See Interrupt handlers on page 5-23 for information on writing interrupt handlers.
8-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Debug Communications Channel 
8.7 Access from Thumb state

Because the Thumb instruction set does not contain coprocessor instructions, you 
cannot use the debug communications channel while the core is in Thumb state.

There are three possible ways around this:

• You can write each polling routine in a SWI handler, which can then be executed 
while in either ARM or Thumb state. Entering the SWI handler immediately puts 
the core into ARM state where the coprocessor instructions are available. Refer 
to Chapter 5 Handling Processor Exceptions for more information on SWIs.

• Thumb code can make interworking calls to ARM subroutines which implement 
the polling. Refer to Chapter 3 Interworking ARM and Thumb for more 
information on mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The 
interrupt handler would be written in ARM instructions, so the coprocessor 
instructions can be accessed directly.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-13



Debug Communications Channel 
8.8 Semihosting

You can use the debug communications channel for semihosting if you are using 
Multi-ICE with $semihosting_enabled=2. See the Multi-ICE User Guide for more 
information.
8-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Glossary

ADS See ARM Developer Suite.

ANSI American National Standards Institute. An organization that specifies standards for, 
among other things, computer software.

Angel Angel is a debug monitor that enables you to develop and debug applications running 
on ARM-based hardware. Angel can debug applications running in either ARM state or 
Thumb state.

ARM Developer 
Suite

A suite of applications, together with supporting documentation and examples, that 
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended 
Debugger

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that 
enables you to make use of a debug agent in order to examine and control the execution 
of software running on a debug target. AXD is supplied in both Windows and UNIX 
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the 
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger 
providing high-level debugging support for languages such as C, and low-level support 
for assembly language. It is a command-line debugger that runs on all supported 
platforms.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-1



Glossary 
ATPCS ARM and Thumb Procedure Call Standard defines how registers and the stack will be 
used for subroutine calls.

AXD See ARM eXtended Debugger.

Big-Endian Memory organization where the least significant byte of a word is at a higher address 
than the most significant byte.

Canonical Frame 
Address

In DWARF 2, this is an address on the stack specifying where the call frame of an 
interrupted function is located.

CFA See Canonical Frame Address.

Coprocessor An additional processor which is used for certain operations. Usually used for 
floating-point math calculations, signal processing, or memory management.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.

DWARF Debug With Arbitrary Record Format

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable Linkable Format

Execution view The address of regions and sections after the image has been loaded into memory and 
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.

Heap The portion of computer memory that can be used for creating new variables.

ICE In Circuit Emulator.

IDE Integrated Development Environment (Code Warrior).

Image An executable file which has been loaded onto a processor for execution.

A binary execution file loaded onto a processor and given a thread of execution. An 
image may have multiple threads. An image is related to the processor on which its 
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a 
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections
Glossary-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Glossary 
Input section Contains code or initialized data or describes a fragment of memory that must be set to 
zero before the application starts.

See also Output sections

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single 
repository.

Linker Software which produces a single image from one or more source assembler or 
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address 
than the most significant byte. See also Big-endian.

Local An object that is only accessible to the subroutine that created it.

Load view The address of regions and sections when the image has been loaded into memory but 
has not yet started execution.

Memory 
management unit

Hardware that controls caches and access permissions to blocks of memory, and 
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor debug agent. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same RO, RW, or ZI attributes. 
The sections are grouped together in larger fragments called regions. The regions will 
be grouped together into the final executable image.

See also Region

PCS Procedure Call Standard.

See also ATPCS

PIC Position Independent Code.

See also ROPI

PID Position Independent Data or the ARM Platform-Independent Development (PID) 
board. 

See also RWPI

Profiling Accumulation of statistics during execution of a program being debugged, to measure 
performance or to determine critical areas of code.

Program image See Image.
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-3



Glossary 
Reentrancy The ability of a subroutine to have more that one instance of the code active. Each 
instance of the subroutine call has its own copy of any required static data.

Remapping Changing the address of physical memory or devices after the application has started 
executing. This is typically done to allow RAM to replace ROM when the initialization 
has been done.

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO, RW, 
and ZI).

Retargeting The process of moving code designed for one execution environment to a new execution 
environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at 
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at 
run-time.

Scatter-loading Assigning the address and grouping of code and data sections individually rather than 
using single large blocks.

Section A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application 
code to the host system, rather than attempting to support the I/O itself.

SWI Software Interrupt. An instruction that causes the processor to call a 
programer-specified subroutine. Used by ARM to handle semihosting.

Target The actual target processor, (real or simulated), on which the application is running.

Thread A context of execution on a processor. A thread is always related to a processor and may 
or may not be associated with an image. 

Veneer A small block of code used with subroutine calls when there is a requirement to change 
processor state or branch to an address that cannot be reached in the current processor 
state.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.
Glossary-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Index
A
Accessing

debug comms channel   1-8, 8-2
ANSI C   4-19

header files   4-19
ARM architecture v5T

interworking ARM and Thumb   
3-10

Assembler
inline, armasm differences   4-6
inline, see Inline assemblers
mode changing   3-8

Assembly language
calling from C   4-19
inline, armasm differences   4-6
interrupt handlers   5-28
interworking ARM and Thumb   3-6, 

3-15
interworking using veneers   3-15

ATPCS   2-1
conformance criteria   2-3
floating-point options   2-17

interworking ARM and Thumb   
2-16, 3-2, 7-2

leaf routine   2-12
local variables   2-4
memory state   2-3
parameter passing   2-4, 2-9
process   2-3
processes   2-15
read-only position independence   

2-14
read-write position independence   

2-15
reentrant routines   2-15
register names   2-5
register roles   2-4
ROPI   2-14
RWPI   2-15
stack limit checking   2-11
stack terminology   2-6
static base register   2-15
swstna   2-11
threads   2-3, 2-15
variadic routines   2-10

variants   2-2
ATPCS options

/interwork   3-4

B
Banked registers   5-3
Base classes

in mixed languages   4-18
Bit 0, use in BX instruction   3-7
BL instruction   4-6
BX instruction   3-7, 4-7

bit 0 usage   3-7

C
C

calling
from assembler   4-17
from C++   4-17

calling assembler   4-19
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-1



Index
global variables from assembly 
language   4-14

Interworking ARM and Thumb   
3-11

linkage   4-17
using header files from C++   4-15

Calling
assembler from C++   4-17
C from assembly language   4-17
C from C++   4-17, 4-19
C++ from assembly language   4-17
interworking examples
interworking veneers
language conventions   4-17

Chaining exception handlers   5-38
Code

density and interworking   3-3, 7-3
Code size

measuring   6-46
Command-line operation

of debug comms channel   8-3
Comments

inline assemblers   4-3
Comms channel, debug   8-1
Comms data registers   8-5
Constants, inline assemblers   4-5
Context switch   5-31
Coprocessor 14   8-5
Coprocessors

Undefined Instruction handlers   
5-34

CPSR   5-5
C++

asm   4-2
calling

from assembler   4-17
from C   4-17

calling conventions   4-18
data types in mixed languages   4-18
string literal   4-2

D
Data Abort

exception   5-2
handler   5-36, 5-42
LDM   5-36
LDR   5-36

returning from   5-8
STM   5-36
STR   5-36
SWP   5-36

Data size, measuring   6-46
Data types   4-18
Debug

comms channel viewing   8-4
communications channel   8-1
interrupt-driven comms   8-12
polled communications   8-6

Debuggers
communicating with target   8-9

Directives, assembler
ENTRY   6-8

Directives, assembly language
IMPORT   4-14

E
Enabling DCC viewing   8-4
Exception handlers

chaining   5-38
Data Abort   5-36, 5-42
extending   5-38
FIQ   5-42
installing   5-9
installing from C   5-11
installing on reset   5-9
interrupt   5-23
IRQ   5-42
nested   5-24
Prefetch Abort   5-35, 5-42
reentrant   5-24
Reset   5-33
returning from   5-6
subroutines in   5-45
SWI   5-14, 5-15, 5-18, 5-42
Thumb   5-40
Undefined Instruction   5-34, 5-42

Exceptions   5-2
Data Abort   5-8
entering   5-5
FIQ   5-7
initialization code for ROM images   

6-8
installing handlers   5-9
IRQ   5-2, 5-7

leaving   5-5
Prefetch Abort   5-2, 5-8
priorities   5-3
reset   5-2
response by processors   5-5
returning from   5-7, 5-42
SWI   5-2, 5-7
SWI handlers   5-14, 5-15, 5-18
Undefined Instruction   5-2, 5-7
use of modes   5-3
use of registers   5-3
vector table   5-3, 5-9

Execution
speed   3-3, 5-23

Extending exception handlers   5-38
extern "C"   4-15, 4-17, 4-19

F
Fault address register   5-37
FIQ   5-2, 5-23

handler   5-7, 5-23, 5-42
registers   5-23

Floating-point
ATPCS options   2-17
FPA   2-20
VFP   2-18

FPA
Undefined Instruction handlers   

5-34
FPA architecture   2-20

I
IEEE 754   2-19
Illegal address   5-2
implicit this   4-17
IMPORT directive   4-14
Inline assemblers   4-2

accessing structures   4-14
ADR pseudo-instruction   4-7
ADRL pseudo-instruction   4-7
ALU flags   4-5, 4-7, 4-8
BL instruction   4-6
branches   4-3
BX instruction   4-7
C global variables   4-14
Index-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D



Index
C variables   4-4, 4-8
commas   4-8
comments   4-3
complex expressions   4-4
constants   4-5
corrupted registers   4-3
CPSR   4-5
C, C++ expressions   4-4, 4-7
DC directives   4-6
examples   4-10
floating point instructions   4-7
instruction expansion   4-5
interrupts   4-10
invoking   4-2
labels   4-3
LDM instruction   4-7
long multiply   4-12
MUL instruction   4-5
multiple lines   4-3
operand expressions   4-4
physical registers   4-4, 4-7
register corruption   4-6, 4-8
saving registers   4-9
sign extension   4-4
stacking registers   4-9
STM instruction   4-7
storage declaration   4-6
subroutine parameters   4-6
SWI instruction   4-6
writing to pc   4-2, 4-4
#   4-5

Instruction expansion   4-5
Instructions, assembly language

BL   4-6
BX   3-7
SWI   4-6, 5-14
SWI (Thumb)   5-43

Interrupt handlers   5-23
Interrupt-driven debug comms   8-12
Interrupts

prioritization   5-30
Interworking ARM and Thumb   3-1, 

7-1
ARM architecture v5T   3-10
assembly language   3-6, 3-15
ATPCS   3-2, 3-18, 7-2
BX instruction   3-7
C   3-12
C and C++   3-11

C and C++ libraries   3-14
compiler command-line options   

3-14
compiling code   3-11
CPSR   3-9
detecting calls   3-5
duplicate functions   3-14
examples   3-9, 3-12, 3-16
exceptions   3-3
leaf functions   3-11
mixed languages   3-15, 3-17, 7-2, 

7-12
non-Thumb processors   3-12
procedure call standards   3-2, 7-2
rules   3-14
veneers   3-11, 3-15

IRQ   5-23
handler   5-7, 5-42

IRQ exception   5-2
I/O devices, ROM applications   6-9

J
JTAG   1-8, 8-2
Jump table   5-15, 5-43

L
Labels, inline assemblers   4-6
Leaf functions   3-11
Leaf routine   2-12
Link register   5-3
Linking

and interworking   3-5, 3-11
the C library   6-43

M
Mangling symbol names   4-17, 4-19
Memory management unit   6-8
Memory map

layout   6-4
organization of   6-4
RAM at address 0   6-4
ROM at address 0   6-4

Mixed endian   2-20

Mixed language programming
interworking ARM and Thumb   

3-15, 3-17, 7-2, 7-12

N
Nested interrupts   5-24
Nested SWIs   5-18

O
Operand expressions, inline assemblers   

4-4

P
PIC   2-14
PID   2-15
Pointers

data members   4-19
member functions   4-19

Polled debug communications   8-6
Power-up   1-6, 5-2
Prefetch Abort   5-2

handler   5-35, 5-42
returning from   5-8

Process control blocks   5-31
Processors

responding to exceptions   5-5
Protocol converter   1-8, 8-2
Pure endian   2-19

R
RAM

at address 0   6-4
measuring requirements   6-47

Reentrant routines   2-15
References   4-18
Registers

debug comms channel   8-5
REMAP   6-5

REMAP register   6-5
Reset exception   5-2
Reset exception handler   5-33
ARM DUI 0056D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-3



Index
RESET vector   6-5
Return address   5-7
Return instruction   5-7
ROM

at address 0   6-4
measuring requirements   6-47

ROPI   2-14
RWPI   2-15

S
Scalar mode   2-18
Scatter load description file

examples   6-14, 6-24
Scatter loading

writing code for ROM   6-14, 6-24
Semihosting mode   8-14
Soft reset   1-6, 5-2
Software FPA emulator

Undefined Instruction handlers   
5-34

Software interrupt, see SWIs
SPSR   5-3, 5-5

T bit   5-43
Stack terminology   2-6
Stacks   5-3

initialization code for ROM images   
6-9

stack pointer   5-3
supervisor   5-16

Static base   2-15
Storage declaration, inline assemblers   

4-6
String copying

assembler   4-19
Supervisor mode   5-18
Supervisor stack   5-16
SWI exception   5-2
SWI instruction   4-6, 5-14

Thumb   5-43
SWIs

handlers   5-14, 5-15, 5-18, 5-42
indirect   5-21
returning from   5-7
Thumb state   5-43

swstna   2-11
Symbol names, mangling   4-17, 4-19
System decoder   6-5

System mode   5-45

T
Target

communicating with debugger   8-7
this, implicit   4-17
Threads   2-15
Thumb

access to DCC   8-13
and __irq   5-24
BX instruction   3-7
changing to Thumb state, example   

3-8
code for ROM applications   6-10
exception handler   5-40
handling exceptions   5-40
inline assemblers   4-2
interworking with ARM   3-3, 7-3
return address   5-42
using duplicate function names   

3-14

U
Undefined Instruction exception   5-2
Undefined Instruction handler   5-7, 

5-34, 5-42
User mode   5-3

V
Variadic routines   2-10
Vector mode   2-18
Vector table   5-3, 5-9, 5-23, 5-40
Vector table and caches   5-13
Vectors

exception   6-8
RESET   6-5

Veneers, see Interworking
VFP architecture   2-18

W
Writing code for ROM

common problems   6-43
critical I/O devices   6-9
entry point   6-8
exception vectors   6-8
initialization   6-7
memory for C code   6-10
MMU   6-8
processor mode   6-9
processor state   6-10
RAM at address 0   6-4
ROM at address 0   6-4, 6-11
ROM at its base address   6-11
scatter loading   6-14, 6-24
stack pointers   6-9
undefined __main   6-43
vector code eliminated   6-44

Numerics
0-init data   6-47

Symbols
$top_of_memory   6-9
__semihosting_swi_guard   6-43
__user_initial_stackheap()   6-9
__use_no_semihosting_swi pragma   

6-33, 6-43
Index-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0056D


	ARM Developer Suite Developer Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book


	Introduction
	1.1 About the ARM Developer Guide
	1.1.1 Example code

	1.2 General programing issues
	1.3 Developing for the ARM
	1.3.1 Using the Procedure call standards
	1.3.2 Interworking ARM and Thumb code
	1.3.3 Mixing C, C++, and Assembly Language
	1.3.4 Handling Processor Exceptions
	1.3.5 Writing Code for ROM
	1.3.6 Caches and tightly coupled memory
	1.3.7 Using the Debug Communications Channel


	Using the Procedure Call Standard
	2.1 About the ARM-Thumb Procedure Call Standard
	2.1.1 ATPCS variants
	2.1.2 ARM C libraries
	2.1.3 Conformance to the ATPCS
	2.1.4 Processes and the memory model

	2.2 Register roles and names
	2.2.1 Register roles
	2.2.2 Register names

	2.3 The stack
	2.3.1 Stack terminology
	2.3.2 Stack unwinding
	2.3.3 Eight-byte alignment

	2.4 Parameter passing
	2.4.1 Nonvariadic routines
	2.4.2 Variadic routines
	2.4.3 Result return

	2.5 Stack limit checking
	2.5.1 Rules for stack limit checked code
	2.5.2 Register usage with stack limit checking
	2.5.3 Stack checking in C and C++
	2.5.4 Stack checking in assembly language

	2.6 Read-only position independence
	2.6.1 Register usage with ROPI
	2.6.2 Writing code for ROPI

	2.7 Read-write position independence
	2.7.1 Reentrant routines
	2.7.2 Register usage with RWPI
	2.7.3 Position-independent data addressing
	2.7.4 Writing assembly language for RWPI

	2.8 Interworking between ARM and Thumb states
	2.8.1 Register usage with interworking

	2.9 Floating-point options
	2.9.1 The VFP architecture
	2.9.2 The FPA architecture
	2.9.3 No floating-point hardware
	2.9.4 softVFP+VFP


	Interworking ARM and Thumb
	3.1 About interworking
	3.1.1 When to use interworking
	3.1.2 Using the /interwork option
	3.1.3 Detecting interworking calls

	3.2 Assembly language interworking
	3.2.1 The branch and exchange instruction
	3.2.2 Changing the assembler mode
	3.2.3 Example ARM header
	3.2.4 ARM architecture v5T
	3.2.5 Labels in Thumb code

	3.3 C and C++ interworking and veneers
	3.3.1 Compiling code for interworking
	3.3.2 Basic rules for interworking
	3.3.3 Using two copies of the same function

	3.4 Assembly language interworking using veneers
	3.4.1 Assembly-only interworking using veneers
	3.4.2 C, C++, and assembly language interworking using veneers


	Mixing C, C++, and Assembly Language
	4.1 Using the inline assemblers
	4.1.1 Invoking the inline assembler
	4.1.2 ARM and Thumb instruction sets
	4.1.3 Differences between the inline assemblers and armasm
	4.1.4 Usage
	4.1.5 Examples

	4.2 Accessing C global variables from assembly code
	4.3 Using C header files from C++
	4.3.1 Including system C header files
	4.3.2 Including your own C header files

	4.4 Calling between C, C++, and ARM assembly language
	4.4.1 General rules for calling between languages
	4.4.2 Information specific to C++
	4.4.3 Examples


	Handling Processor Exceptions
	5.1 About processor exceptions
	5.1.1 The vector table
	5.1.2 Use of modes and registers by exceptions
	5.1.3 Exception priorities

	5.2 Entering and leaving an exception
	5.2.1 The processor response to an exception
	5.2.2 Returning from an exception handler
	5.2.3 The return address and return instruction

	5.3 Installing an exception handler
	5.3.1 Installing the handlers at reset
	5.3.2 Installing the handlers from C

	5.4 SWI handlers
	5.4.1 SWI handlers in assembly language
	5.4.2 SWI handlers in C and assembly language
	5.4.3 Using SWIs in Supervisor mode
	5.4.4 Calling SWIs from an application
	5.4.5 Calling SWIs dynamically from an application

	5.5 Interrupt handlers
	5.5.1 Simple interrupt handlers in C
	5.5.2 Reentrant interrupt handlers
	5.5.3 Example interrupt handlers in assembly language

	5.6 Reset handlers
	5.7 Undefined Instruction handlers
	5.8 Prefetch Abort handler
	5.9 Data Abort handler
	5.10 Chaining exception handlers
	5.10.1 A single extended handler
	5.10.2 Several chained handlers

	5.11 Handling exceptions on Thumb-capable processors
	5.11.1 Thumb processor response to an exception
	5.11.2 The return address
	5.11.3 Determining the processor state

	5.12 System mode

	Writing Code for ROM
	6.1 About writing code for ROM
	6.2 Memory map considerations
	6.2.1 ROM at 0x0
	6.2.2 RAM at 0x0

	6.3 Initializing the system
	6.3.1 Initializing the execution environment
	6.3.2 Initializing the application

	6.4 The reference C example using semihosting
	6.4.1 Memory map
	6.4.2 Sample code

	6.5 Loading the ROM image at address 0
	6.5.1 Memory map
	6.5.2 Scatter-load description file
	6.5.3 Sample code
	6.5.4 Building the example

	6.6 Using both scatter loading and remapping
	6.6.1 Memory map
	6.6.2 Scatter-load description file
	6.6.3 Initialization code
	6.6.4 Building the example
	6.6.5 Additional examples of remapping

	6.7 A semihosted application with interrupt handling 
	6.7.1 Memory map
	6.7.2 Building the example
	6.7.3 Sample code

	6.8 An embeddable application with interrupt handling
	6.8.1 Memory map
	6.8.2 Building the example
	6.8.3 Scatter-load description file
	6.8.4 Sample code

	6.9 Using scatter loading with memory-mapped I/O
	6.9.1 Using pointers to access I/O
	6.9.2 Using unions
	6.9.3 Using arrays or structs
	6.9.4 Using scatter loading
	6.9.5 Code efficiency

	6.10 Troubleshooting
	6.10.1 Linker error __semihosting_swi_guard
	6.10.2 Setting $top_of_memory
	6.10.3 Vector table code eliminated
	6.10.4 Errors with scatter-loading description files

	6.11 Measuring code and data size
	6.11.1 Interpreting size information
	6.11.2 Calculating ROM and RAM requirements


	Caches and Tightly Coupled Memories
	7.1 About caches and tightly coupled memory
	7.1.1 About caches
	7.1.2 About tightly coupled memory
	7.1.3 Models of caches and tightly coupled memory
	7.1.4 Cache performance

	7.2 System control coprocessor
	7.3 Memory protection units
	7.3.1 Harvard architecture
	7.3.2 Von Neumann architecture
	7.3.3 Overlapping regions

	7.4 Configuring a PU
	7.4.1 Setting protection region addresses and sizes, and enabling each region
	7.4.2 Setting region cacheable and bufferable flags
	7.4.3 Setting region access permissions
	7.4.4 Configuring core operation

	7.5 Memory management units
	7.5.1 Virtual to physical address mapping
	7.5.2 Memory access permissions and domains
	7.5.3 Cacheable and bufferable flags

	7.6 Configuring an MMU
	7.6.1 Altering the translation table during program execution
	7.6.2 Building the translation table
	7.6.3 Setting the location of the translation table
	7.6.4 Aliasing a region
	7.6.5 Configuring core operation

	7.7 Tightly coupled memory
	7.7.1 ARM966E-S memory map
	7.7.2 Initializing the ARM966E-S
	7.7.3 ARM966E-S warm reset
	7.7.4 ARM966E-S performance issues


	Debug Communications Channel
	8.1 About the Debug Communications Channel
	8.2 Command-line debugging commands
	8.3 Enabling comms channel viewing
	8.3.1 Comms channel viewing in AXD

	8.4 Target transfer of data
	8.5 Polled debug communications
	8.5.1 Viewing EmbeddedICE logic registers
	8.5.2 Target to debugger communication
	8.5.3 Debugger to target communication

	8.6 Interrupt-driven debug communications
	8.7 Access from Thumb state
	8.8 Semihosting

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Numerics
	Symbols


