
Multi-ICE®

Version 2.2

User Guide
Copyright © 1998-2002 ARM Limited. All rights reserved.
ARM DUI 0048F

Multi-ICE
User Guide

Copyright © 1998-2002 ARM® Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change history

Date Issue Change

June 1998 A First release

November 1998 B Internal release

December 1998 C Updated for Multi-ICE Release 1.3

January 2001 D Updated for Multi-ICE Version 2.0

September 2001 E Updated for Multi-ICE Version 2.1

February 2002 F Updated for Multi-ICE Version 2.2
ii Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Web Address

http://www.arm.com
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. iii

Conformance Notices

This section contains ElectroMagnetic Conformity (EMC) notices and other important notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under
section 15.103 (c).

CE Declaration of Conformity

This equipment has been tested according to ISE/IEC Guide 22 and EN 45014. It conforms to the following
product EMC specifications:

The product herewith complies with the requirements of EMC Directive 89/336/EEC as amended.
iv Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Contents
Multi-ICE User Guide

Preface
About this document .. xiv
Feedback .. xx

Chapter 1 Introduction
1.1 About Multi-ICE ... 1-2
1.2 Availability and compatibility ... 1-3
1.3 Basic principles ... 1-4
1.4 Introduction to the Multi-ICE components ... 1-7
1.5 New features and changes from previous versions 1-11

Chapter 2 Getting Started
2.1 System requirements .. 2-2
2.2 Connecting the Multi-ICE hardware .. 2-6
2.3 Connecting to nonstandard hardware ... 2-11
2.4 Starting the software ... 2-14

Chapter 3 Using the Multi-ICE Server
3.1 About the Multi-ICE server menus .. 3-2
3.2 Multi-ICE server device configuration files .. 3-9
3.3 Server configuration .. 3-14
3.4 Using the Multi-ICE server with multiple processors 3-25
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. v

Contents
Chapter 4 Debugging with Multi-ICE
4.1 Compatibility with ARM debuggers ... 4-2
4.2 Connecting Multi-ICE to ADW, ADU, or AXD ... 4-3
4.3 Configuring the Multi-ICE DLL .. 4-8
4.4 Configuring and debugging multiple processors 4-27
4.5 Debugger internal variables .. 4-36
4.6 Post-mortem debugging ... 4-45
4.7 Access to CP15 .. 4-49
4.8 Semihosting .. 4-50
4.9 Watchpoints and breakpoints ... 4-55
4.10 Cached data ... 4-60
4.11 Debugging applications in ROM ... 4-62
4.12 Accessing the EmbeddedICE logic directly .. 4-65

Chapter 5 Troubleshooting
5.1 Troubleshooting .. 5-2
5.2 Error messages .. 5-12

Chapter 6 System Design Guidelines
6.1 About the system design guidelines ... 6-2
6.2 System design .. 6-3
6.3 ASIC guidelines .. 6-9
6.4 PCB guidelines ... 6-12
6.5 JTAG signal integrity and maximum cable lengths 6-15
6.6 Compatibility with EmbeddedICE interface target connectors 6-17

Appendix A Server Configuration File Syntax
A.1 IR length configuration file .. A-2
A.2 Device configuration file ... A-3

Appendix B Breakpoint Selection Algorithm
B.1 Multi-ICE internal breakpoints .. B-2
B.2 How the debugger steps and runs code ... B-4
B.3 Breakpoint and watchpoint allocation algorithm ... B-5

Appendix C Command-line Syntax
C.1 Multi-ICE server .. C-2

Appendix D Processor-specific Information
D.1 The ARM1020T (Rev 0) processor ... D-2
D.2 Intel XScale microarchitecture processors ... D-3

Appendix E CP15 Register Mapping
E.1 About register mapping .. E-2
E.2 ARM710T processor registers .. E-3
vi Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Contents
E.3 ARM720T processor registers .. E-4
E.4 ARM740T processor registers .. E-5
E.5 ARM920T and ARM922T processor registers .. E-6
E.6 ARM925T processor registers .. E-10
E.7 ARM926EJ-S processor registers ... E-14
E.8 ARM940T processor registers .. E-18
E.9 ARM946E-S processor registers ... E-21
E.10 ARM1020T and ARM10200T processor registers E-24
E.11 XScale microarchitecture processor registers ... E-28

Appendix F JTAG Interface Connections
F.1 Multi-ICE JTAG interface connections .. F-2
F.2 Multi-ICE JTAG port timing characteristics ... F-5
F.3 TCK frequencies ... F-7
F.4 TCK values ... F-11

Appendix G User I/O Connections
G.1 Multi-ICE user I/O pin connections ... G-2

Glossary
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. vii

Contents
viii Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

List of Tables
Multi-ICE User Guide

Change history .. ii
Table 2-1 Supported operating systems for Multi-ICE .. 2-2
Table 3-1 TCK frequency for autoconfigure .. 3-3
Table 3-2 Scale and multiplier values ... 3-23
Table 3-3 Scale values for clocking speeds .. 3-23
Table 4-1 ARM7 family debugger variable support ... 4-37
Table 4-2 ARM9 family debugger variable support ... 4-38
Table 4-3 ARM10 family and XScale microarchitecture debugger variable support 4-39
Table 4-4 Cache selection type values ... 4-40
Table 4-5 Breakpoints ... 4-57
Table E-1 ARM710T processor registers .. E-3
Table E-2 ARM720T processor registers .. E-4
Table E-3 ARM740T processor registers .. E-5
Table E-4 ARM920T and ARM922T processor registers .. E-6
Table E-5 ARM920T and ARM922T cp15 register 7 accesses ... E-8
Table E-6 ARM920T and ARM922T cp15 register 8 accesses ... E-9
Table E-7 ARM925T processor registers .. E-10
Table E-8 ARM925T cp15 register 7 accesses ... E-11
Table E-9 ARM925T cp15 register 8 accesses ... E-12
Table E-10 ARM925T cp15 register 7 accesses ... E-13
Table E-11 ARM926EJ-S processor registers ... E-14
Table E-12 ARM926EJ-S cp15 register 7 accesses .. E-16
Table E-13 ARM926EJ-S cp15 register 8 accesses .. E-17
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. ix

List of Tables
Table E-14 ARM940T processor registers .. E-18
Table E-15 ARM940T cp15 register 7 accesses ... E-19
Table E-16 ARM946E-S processor registers .. E-21
Table E-17 ARM946E-S cp15 register 7 accesses ... E-23
Table E-18 ARM1020T and ARM10200T processor registers .. E-24
Table E-19 ARM1020T and ARM10200T cp15 register 7 accesses ... E-25
Table E-20 ARM1020T and ARM10200T cp15 register 8 accesses ... E-26
Table F-1 JTAG pinouts .. F-3
Table F-2 Multi-ICE IEEE 1149.1 timing requirements ... F-5
Table F-3 TCK frequencies ... F-7
Table F-4 TCK values ... F-11
Table G-1 User I/O connections .. G-2
x Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

List of Figures
Multi-ICE User Guide

Key to timing diagram conventions ... xvii
Figure 1-1 The Multi-ICE interface unit ... 1-7
Figure 1-2 Connecting multiple debuggers and multiple targets .. 1-9
Figure 2-1 The Multi-ICE product kit ... 2-7
Figure 2-2 Multi-ICE interface unit cable connection .. 2-8
Figure 2-3 Location of jumper J8 .. 2-9
Figure 2-4 Multi-ICE current consumption with voltage .. 2-13
Figure 2-5 Start menu items for Multi-ICE .. 2-14
Figure 2-6 Unconfigured Multi-ICE server window ... 2-16
Figure 2-7 Multi-ICE server window configured for an ARM7TDMI .. 2-17
Figure 3-1 Multi-ICE server menu items ... 3-2
Figure 3-2 The File menu ... 3-3
Figure 3-3 The View menu ... 3-5
Figure 3-4 The Run Control menu .. 3-6
Figure 3-5 The Connection menu ... 3-7
Figure 3-6 The Settings menu .. 3-7
Figure 3-7 The Help menu .. 3-8
Figure 3-8 Autoconfiguring an ARM940T ... 3-10
Figure 3-9 TAP driver status dialog .. 3-15
Figure 3-10 TAP Controller Device ID register format .. 3-16
Figure 3-11 The Start-up Options dialog .. 3-16
Figure 3-12 The Port Settings dialog .. 3-18
Figure 3-13 The User Output Bits dialog .. 3-20
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. xi

List of Figures
Figure 3-14 Status of the user input bits .. 3-21
Figure 3-15 The JTAG Settings dialog ... 3-21
Figure 3-16 Setting up interaction between devices .. 3-28
Figure 3-17 Cascade operation .. 3-29
Figure 3-18 Setting up the poll frequency .. 3-30
Figure 4-1 The AXD Options menu .. 4-4
Figure 4-2 The AXD Choose Target dialog .. 4-4
Figure 4-3 Selecting the Multi-ICE DLL using AXD .. 4-5
Figure 4-4 The ADW and ADU Options menu ... 4-5
Figure 4-5 ADW configuration dialog with Multi-ICE active .. 4-6
Figure 4-6 Selecting the Multi-ICE DLL using ADW ... 4-6
Figure 4-7 Multi-ICE Configuration dialog .. 4-8
Figure 4-8 Multi-ICE Welcome dialog .. 4-9
Figure 4-9 Driver Details dialog .. 4-10
Figure 4-10 Server Browse dialog .. 4-12
Figure 4-11 Multi-ICE Processor Settings tab showing cache setting 4-15
Figure 4-12 Multi-ICE Processor Settings tab showing XScale settings 4-16
Figure 4-13 Multi-ICE Advanced settings tab ... 4-18
Figure 4-14 Board tab .. 4-21
Figure 4-15 Trace configuration tab ... 4-22
Figure 4-16 About tab .. 4-23
Figure 4-17 Channel viewer controls ... 4-24
Figure 4-18 Saving a named target configuration .. 4-28
Figure 4-19 Configuring AXD to run a configuration script ... 4-31
Figure 4-20 Three AXDs and the Multi-ICE server configured for a multiple processor target .. 4-32
Figure 4-21 Relating top_of_memory to single section program layout 4-43
Figure 4-22 Register view showing EmbeddedICE logic registers .. 4-66
Figure 4-23 The View Registers menu ... 4-67
Figure 4-24 The Display Co-processor Regs dialog .. 4-67
Figure 4-25 EmbeddedICE logic registers in the Raw Co-processor 0 view 4-68
Figure 6-1 Basic JTAG port synchronizer .. 6-4
Figure 6-2 Timing diagram for the Basic JTAG synchronizer in Figure 6-1 on page 6-4 6-5
Figure 6-3 JTAG port synchronizer for single rising-edge D-type ASIC design rules 6-5
Figure 6-4 Timing diagram for the D-type JTAG synchronizer in Figure 6-3 on page 6-5 6-6
Figure 6-5 Example reset circuit logic .. 6-8
Figure 6-6 Example reset circuit using power supply monitor ICs ... 6-8
Figure 6-7 TAP Controllers serially chained in an ASIC .. 6-10
Figure 6-8 Typical PCB connections .. 6-12
Figure 6-9 Target interface voltage levels .. 6-13
Figure F-1 JTAG pin connections, top view ... F-2
Figure F-2 Multi-ICE JTAG port timing diagram ... F-5
Figure G-1 User I/O pin connections .. G-2
Figure G-2 Converting user-input signals to TTL levels .. G-4
xii Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Preface

This preface introduces the Multi-ICE Version 2.2 User Guide. It explains the structure
of the user guide and lists other sources of information that relate to Multi-ICE and
ARM debuggers.

This preface contains the following sections:

• About this document on page xiv

• Feedback on page xx.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. xiii

Preface
About this document

This document describes the ARM MULTI-processor embeddedICE interface unit
(Multi-ICE) Version 2.2.

Intended audience

This document is written for users of Multi-ICE on Windows or Unix platforms, using
either the ARM Software Development Toolkit (SDT) or ARM Developer Suite (ADS)
development environments. It is assumed that you are a software engineer with some
experience of the ARM architecture, or a hardware engineer designing a product that is
compatible with Multi-ICE.

Parts of this document assume you have some knowledge of JTAG technology. If you
require more information on JTAG, refer to IEEE Standard 1149.1, available from the
Institute of Electrical and Electronic Engineers (IEEE). Refer to the IEEE website for
more information at:

http://www.ieee.org/

Organization

This document is organized into the following chapters and appendices:

Chapter 1 Introduction

Read this chapter for a description of:

• what is provided in the Multi-ICE product

• the purpose of the EmbeddedICE® logic within the CPU

• what has changed between Multi-ICE Version 2.2 and Version 2.1,
between Multi-ICE Version 2.1 and Version 2.0, between
Version 2.0 and Release 1.4, and between Release 1.4 and
Release 1.3.

Chapter 2 Getting Started

Read this chapter for information on how to start working with
Multi-ICE. The chapter includes the hardware and software system
requirements, how to connect up the hardware, and how to start the
Multi-ICE server.

Chapter 3 Using the Multi-ICE Server

This chapter describes how you use the Multi-ICE server, including a
more detailed description of configuring the server. There are also
sections describing the execution control and user I/O features.
xiv Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Preface
Chapter 4 Debugging with Multi-ICE

This chapter describes how to:

• connect Multi-ICE to an ARM debugger

• change the behavior of Multi-ICE using internal variables

• implement watchpoints and breakpoints and what this means to
you

• access the EmbeddedICE logic directly.

You must read this chapter in conjunction with the debugger user
documentation, for example the ADS Debuggers Guide.

Chapter 5 Troubleshooting

Read this chapter for a troubleshooting guide and a list of error messages.

Chapter 6 System Design Guidelines

Read this chapter for information about designing ARM-based ASICs
and PCBs that can be debugged using Multi-ICE.

It includes:

• suggested clocking and reset circuit diagrams

• how to chain TAP controllers

• suggested physical connector types and pinouts

• a description of logic voltage level adaption

• how power consumption varies with supply voltage.

Appendix A Server Configuration File Syntax

This appendix describes the server configuration file. This file describes
a target device group to Multi-ICE.

Appendix B Breakpoint Selection Algorithm

This appendix describes how Multi-ICE allocates your breakpoints and
internally generated breakpoints to the hardware. You must read it if you
require specific types of breakpoint to be allocated to target memory
regions.

Appendix C Command-line Syntax

This appendix describes the command-line syntax of the Multi-ICE
server.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. xv

Preface
Appendix D Processor-specific Information

This appendix describes the differences in the way that Multi-ICE
behaves on the ARM10 and XScale microarchitecture processors.

Appendix E CP15 Register Mapping

This appendix contains details relating to register mapping information
for the ARM7-based, ARM9-based, ARM10-based, and XScale
processors containing a system control coprocessor (CP15).

Appendix F JTAG Interface Connections

This appendix describes and illustrates the JTAG pin connections.

Appendix G User I/O Connections

This appendix describes and illustrates the additional input and output
connections provided in Multi-ICE.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. Can also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

monospace Denotes text that can be entered at the keyboard, such as commands, file
names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands or functions where the argument is to
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code.
xvi Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Preface
Timing diagram conventions

This manual contains timing diagrams. The following diagram shows the components
used in these diagrams. Any variations are clearly labeled when they occur. Therefore,
no additional meaning must be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Further reading

This section lists publications by ARM Limited, and by third parties, that are related to
this product.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com/arm/documentation for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/arm/tech_faqs.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. xvii

Preface
ARM publications

This document contains information that is specific to Multi-ICE. The following
documents also relate specifically to Multi-ICE:

• Multi-ICE TAPOp API Reference Guide (ARM DUI 0154)

• ARM Multi-ICE Installation Guide (ARM DSI 0005)

• Multi-ICE file Readme.txt, supplied on the Multi-ICE distribution CD and
installed with the product

• Multi-ICE file proclist.txt, a list of the processors supported by Multi-ICE and
installed with the product.

If you are using Multi-ICE with the ARM Developer Suite (ADS) v1.2, refer to the
following books in the ADS document suite for information on other components of
ADS:

• Installation and License Management Guide (ARM DUI 0139)

• Getting Started (ARM DUI 0064)

• CodeWarrior IDE Guide (ARM DUI 0065)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• Compilers and Libraries Guide (ARM DUI 0067)

• Linker and Utilities Guide (ARM DUI 0151)

• Assembler Guide (ARM DUI 0068)

• Developer Guide (ARM DUI 0056)

• Debug Target Guide (ARM DUI 0058)

• Trace Debug Tools User Guide (ARM DUI 0118)

• ARM Application Library Programmers Guide (ARM DUI 0081).

The following additional documentation that might be useful is provided with the ARM
Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
Dynatext format as part of the online books, and as a PDF file.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.
xviii Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Preface
Other publications

The following publications might also be useful to you, and are available from the
indicated sources:

• The Intel® XScale™ Core Developer’s Manual, Datasheet, advance information.
Ref 27341401-002. Intel Corp. 2000.

• Hot-Debug for Intel XScale Core Debug, White paper. Ref 273539-002. Intel
Corp. 2001.

• IEEE Standard Test Access Port and Boundary Scan Architecture
(IEEE Std. 1149.1) describes the JTAG ports with which Multi-ICE
communicates.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. xix

Preface
Feedback

ARM Limited welcomes feedback both on Multi-ICE and on the documentation.

Feedback on Multi-ICE

If you have any problems with Multi-ICE, please contact your supplier. To help us
provide a rapid and useful response, please give:

• the Multi-ICE version you are using

• details of the platforms you are using, including both the host and target hardware
types and operating system

• where appropriate, a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• if possible, sample output illustrating the problem

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xx Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 1
Introduction

This chapter introduces Multi-ICE, and describes its software components and
documentation. It contains the following sections:

• About Multi-ICE on page 1-2

• Availability and compatibility on page 1-3

• Basic principles on page 1-4

• Introduction to the Multi-ICE components on page 1-7

• New features and changes from previous versions on page 1-11.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About Multi-ICE

Multi-ICE is the EmbeddedICE logic debug solution from ARM. It enables you to
debug software running on ARM processor cores that include the EmbeddedICE logic.

Multi-ICE provides the software and hardware interface between a Joint Test Action
Group (JTAG) IEEE Standard 1149.1 port on the hardware using a small interface unit
and a Windows or UNIX debugger using the ARM Remote Debug Interface (RDI)
running on a workstation.

You can use Multi-ICE with systems that contain one or more ARM CPUs or DSP
processors. It also supports the Embedded Trace Macrocell (ETM). The external
hardware and software to decode this information is available separately from ARM
Limited.

The Multi-ICE product comprises:

• An interface unit that connects the parallel port of a workstation to the JTAG
interface of an ASIC that includes debug and EmbeddedICE capability.

• A cable to connect the interface unit to a parallel port. (This is underneath the
foam packaging.)

• A 20-way ribbon cable. This connects the Multi-ICE interface unit to the target.

• Software on CD-ROM that enables an ARM debugger to communicate with the
interface unit. The software includes the following components:

— the Multi-ICE server

— a Dynamic Link Library (DLL) to use with the debugger

— documentation in PDF and Dynatext formats

— example programs demonstrating the TAPOp Application Program
Interface (API).

• Documentation, including:

— a printed copy of this User Guide

— the installation CD insert

— a warranty notice and end user license.

A 20-way to 14-way cable adaptor for use with targets that use a 14-way target
connection is available on request from ARM, part number HPI-0027.
1-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
1.2 Availability and compatibility

Multi-ICE is available from ARM Limited and its resellers as a package that includes:

• a JTAG hardware interface

• a software interface component that connects, using RDI, to an external debugger,
supplied separately.

Upgrades from earlier versions of Multi-ICE are available. Please contact your reseller
or check on the ARM Limited website for details.

The ADS Version 1.2 product includes the following fully supported debuggers:

• ARM eXtended Debugger (AXD, both Windows and UNIX versions)

• ARM Debugger for Windows (ADW)

• ARM Debugger for UNIX (ADU).

Multi-ICE is also compatible with third-party debuggers that conform to the ARM
standard RDI 1.5.1 interface.

Contact ARM Limited directly regarding OEM licenses.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-3

Introduction
1.3 Basic principles

The EmbeddedICE logic and the ARM processor debug extensions enable Multi-ICE
to debug software running on an ARM processor. The following topics are covered:

• Debug extensions to the ARM core

• The EmbeddedICE logic

• The ICE extension unit on page 1-5

• How Multi-ICE differs from a debug monitor on page 1-5.

Note
 To determine whether a specific ARM processor has support for JTAG debugging, refer
to the datasheet or technical reference manual.

1.3.1 Debug extensions to the ARM core

The extensions consist of a number of scan chains around the processor core and some
additional signals that are used to control the behavior of the core for debug purposes.
The most significant of these additional signals are:

BREAKPT This core signal enables external hardware to halt processor execution for
debug purposes. When HIGH, the current memory access is tagged as
breakpointed and the core stops when this instruction is executed.

DBGRQ This core signal is a level-sensitive input that causes the CPU core to
enter debug state when the current instruction has completed.

DBGACK This core signal is an output from the CPU core that goes HIGH when the
core is in debug state allowing external devices to determine the current
state of the core.

Multi-ICE uses these, and other signals, by using the debug interface of the processor
core, for example by writing to the control register of the EmbeddedICE logic. For more
details, refer to the debug interface section of the ARM datasheet or technical reference
manual for your core.

1.3.2 The EmbeddedICE logic

The EmbeddedICE logic is the integrated on-chip logic that provides JTAG debug
support for ARM cores. EmbeddedICE/RT is a superset of EmbeddedICE that includes
extensions supporting real-time debug, including setting breakpoints on a running
target.
1-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
The EmbeddedICE logic is accessed through the TAP controller on the ARM core using
the JTAG interface. See Chapter 6 System Design Guidelines for details of designing
this into your own target.

The standard EmbeddedICE logic consists of:

• two watchpoint units

• a control register

• a status register

• a set of registers implementing the Debug Communications Channel link.

For more details on the Debug Communications Channel (DCC), see the ADS
Developer Guide.

You can program one or both of the watchpoint units to halt the execution of instructions
by the ARM CPU core. Execution is halted when a match occurs between the values in
the watchpoint registers and the values currently appearing on the address bus, data bus,
and selected control signals.

You can mask any bit to prevent it from affecting the comparison. Either watchpoint unit
can be configured to be a watchpoint (monitoring data accesses) or a breakpoint
(monitoring instruction fetches).

For more information, refer to the relevant section of the appropriate ARM datasheet or
a technical reference manual.

1.3.3 The ICE extension unit

The ICE Extension Unit (IEU) is a logic block that can be added to the EmbeddedICE
logic when a processor is fabricated. The IEU extends the number of hardware
breakpoint units available to the debugger using extra comparators and an extra JTAG
scan chain. It is available in different sizes, providing up to 30 additional units.
Multi-ICE supports the logic automatically on processors that include it.

1.3.4 How Multi-ICE differs from a debug monitor

A debug monitor, such as the Angel™ debug monitor provided with the ARM Firmware
Suite (AFS), is an application that runs on your target hardware in conjunction with your
application, and requires target resources (for example, memory, access to exception
vectors, and time) to be available.

The EmbeddedICE debug architecture requires almost no resources. Rather than being
an application on the board, it works by using:

• additional debug hardware within the core, that is, parts that enable the host to
communicate with the target
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-5

Introduction
• an external interface unit that buffers and translates the core signals into
something usable by a host computer.

The EmbeddedICE debug architecture allows debugging to be as non-intrusive as
possible:

• the target being debugged requires very little special hardware to support
debugging

• in most cases you do not have to set aside memory for debugging in the system
being debugged and you do not have to incorporate special software into the
application

• execution of the system being debugged is only halted when a breakpoint or
watchpoint unit is triggered, or you request that execution is halted.
1-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
1.4 Introduction to the Multi-ICE components

This section introduces the components of the Multi-ICE product, and describes how
they fit together:

• The Multi-ICE interface unit

• The Multi-ICE parallel port driver

• The Multi-ICE server on page 1-8

• The portmap application on page 1-9.

If you are using the Multi-ICE DLL on a UNIX workstation, you must connect that
workstation to the Windows workstation running the server using a TCP/IP network.

For more information about the Multi-ICE server see Chapter 2 Getting Started and
Chapter 3 Using the Multi-ICE Server. For more information about the Multi-ICE
Debugger interface see Chapter 4 Debugging with Multi-ICE.

1.4.1 The Multi-ICE interface unit

The Multi-ICE interface unit provides the hardware to allow a Windows workstation to
control multiple JTAG capable devices. The unit is shown in Figure 1-1. The unit has a
parallel port at one end, and a 20-pin JTAG connector and external power input at the
other. A cable is supplied to connect the interface unit to the workstation parallel port.

Figure 1-1 The Multi-ICE interface unit

The interface unit gives the Windows workstation direct control of basic JTAG
operations. This means new debugging features and support for new processors can be
added with software updates.

1.4.2 The Multi-ICE parallel port driver

Although the Multi-ICE interface unit connects to your Windows workstation through
a standard parallel port, Multi-ICE does not use the standard parallel port driver.
Instead, an optimized driver is used that allows high-speed communication with the
interface unit. This driver is installed automatically when you install Multi-ICE, and is
configured using options in the Multi-ICE server. It is only required on the Windows
workstation that runs the Multi-ICE server.

����� ��	

��
�
���������

�����������

��������
����

	
�� ��
�
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-7

Introduction
To access this driver:

• On Windows NT 4.0:

1. Choose Start → Settings → Control Panel.

2. Double-click on the Devices icon.

3. In the list of devices, select the Multi-ICE driver.

• On Windows 2000:

1. Choose Start → Settings → Control Panel.

2. Double-click on the System icon.

3. Select the Hardware tab.

4. Click on the Device Manager button.

5. Choose View → Show hidden devices.

6. Expand the list of Non-Plug and Play Drivers.

7. Select the Multi-ICE driver.

• On the other supported variants of Windows, you cannot access the driver.

1.4.3 The Multi-ICE server

The Multi-ICE server is an application that runs on the Windows workstation connected
to the interface unit. The Multi-ICE server can address each JTAG device individually,
without affecting other devices on the board. It uses this ability to create virtual
connections for each of the JTAG devices on the board. Debugging software can attach
to one of these virtual connections, and perform debugging operations with no
knowledge of the other devices on the board, as shown in Figure 1-2 on page 1-9.

The Multi-ICE server enables multiple concurrent connections, so if you have a target
with multiple processors, you can run several debuggers and connect each one to a
different processor on the board. This allows you to easily debug multiprocessor
systems. The server can also perform a synchronized start or stop of processors, for
debugging multiprocessor systems where the processors interact with each other.
1-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
Figure 1-2 Connecting multiple debuggers and multiple targets

The Multi-ICE server also supports connections across a network, so the debugging
software can be run on a different computer to the server, or on several different
computers if that is appropriate.

1.4.4 The portmap application

To support network connections, an additional application must be running on the
Windows workstation that runs the Multi-ICE server. This application is called the
portmapper, and allows software on other computers on the network to locate the
Multi-ICE server.

The portmapper is normally started automatically by the Multi-ICE server. It runs in a
minimized console window, and requires no intervention by you. You can change the
Multi-ICE server settings to prevent the portmapper being started if you do not require
network connections, or if you already have another portmapper running on your
Windows workstation.

��������
������������
��������

��������
������������
��������

��������
������������
��������

�������� �������� ��������

������

!����"�#$
	�����

!����"�#$
��������������

������������
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-9

Introduction
1.4.5 The Multi-ICE DLL

The Multi-ICE DLL is a software module that translates debugger commands, for
example, start, stop, and download, into JTAG control sequences for a particular
processor. It fits between a debugger, for example AXD, providing the user interface
and the Multi-ICE server controlling the JTAG devices.

The Multi-ICE DLL is supplied in the form of a Windows or UNIX dynamically linked
library. The Multi-ICE DLL provides support for debugging on a wide range of ARM
cores (see proclist.txt for a list of supported cores). It can also be used with any
graphical debugger that supports the RDI 1.5.1 interface. This includes all current ARM
graphical debuggers (AXD, ADW, and ADU)
1-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
1.5 New features and changes from previous versions

This section describes the new features and other changes to the product:

• New features in Multi-ICE Version 2.2

• Changes in Multi-ICE Version 2.2 on page 1-12

• New features in Multi-ICE Version 2.1 on page 1-12

• Changes in Multi-ICE Version 2.1 on page 1-13

• New features in Multi-ICE Version 2.0 on page 1-13

• Changes in Multi-ICE Version 2.0 on page 1-14

• New features in Release 1.4 on page 1-14.

1.5.1 New features in Multi-ICE Version 2.2

The new features in Multi-ICE Version 2.2 are:

New processor support

ARM7 cores ARM7TDMI-S™ (Rev 4), ARM7EJ-S™ (Rev 1),
and Samsung S3C4510B.

ARM9 cores ARM926EJ-S™ (Rev 0), and
ARM966E-S™ (Rev 2).

Intel XScale microarchitecture
Intel PXA210, Intel PXA250, and Intel 80321.

New operating system support

Redhat Linux 6.2 and 7.1, Solaris 8.0, and HP-UX 11.

eXDI support

A driver that maps the Microsoft eXDI interface to the ARM RDI
protocol is now bundled with Multi-ICE. Using this driver, you can
connect to Multi-ICE from Microsoft Platform Builder.

For more information, see the Multi-ICE Installation Guide, and the
online documentation that is supplied with the driver.

Support for peripherals and microcontrollers

An extra tab has been added to the configuration dialog for the Multi-ICE
DLL. You can use this tab to select a specific target board. The debugger
then shows the registers for the peripherals and microcontrollers on the
selected board. For more information, see Board configuration tab on
page 4-21.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-11

Introduction
Updated processor description files

Updated processor description files are supplied for use with ADS
versions 1.1 and 1.2.

1.5.2 Changes in Multi-ICE Version 2.2

Changes in Multi-ICE Version 2.2 are:

XScale processor detection

The Intel 80200 processor is now detected as an XScale-80200 processor,
rather than as an XScale processor. Other XScale processors are now
detected.

XScale performance counter behavior

The behavior of XScale performance counters in debug state has been
slightly changed, to provide better support of Multi-ICE trace. See
Performance counters on page D-6 for more information.

1.5.3 New features in Multi-ICE Version 2.1

The new features in Multi-ICE Version 2.1 are:

New processor support

ARM9 cores ARM922T™ (Rev 0), ARM925T™, and
ARM946E-S™ (Rev 1).

New operating system support

Windows Me.

Improved XScale processor support

Changes to the way XScale processors are supported means that it is no
longer necessary to reset the processor when connecting to it. See Intel
XScale microarchitecture processors on page D-3 for more information.

Improved hardware interface

The Multi-ICE interface unit now includes an external power supply
option, enabling it to be connected to systems that cannot supply
sufficient power.

Hot-plug support

The new power supply capabilities enable the Multi-ICE interface unit to
be plugged into a running target board and the running program analyzed
without restarting the target.
1-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
1.5.4 Changes in Multi-ICE Version 2.1

Changes in Multi-ICE Version 2.1 are:

TAPOp API Minor changes to the TAPOp API clarify and streamline the affected
functions.

1.5.5 New features in Multi-ICE Version 2.0

The new features in Multi-ICE Version 2.0 were:

New processor support

ARM7 cores ARM7TDMI-S™ (Rev 1 and Rev 2), ARM7TDI-S™
(Rev 2), and Samsung KS32C50100.

ARM9 cores ARM9E-S™ (Rev 0), ARM920T™ (Rev 1),
ARM946E-S™ (Rev 0), and ARM966E-S™ (Rev 0).

ARM10 cores ARM1020T™ (Rev 0), ARM10200T™ (Rev 0).

Intel XScale microarchitecture
Intel 80200.

New operating system support

Windows 2000 and Solaris 7.0.

Support for the ARM Developer Suite

Full support for ADS v1.1, including the Trace Debug Tools (TDT).

Better target processor descriptions

Targets that have additional components, for example, system
coprocessors and floating point units, can now be described and
presented more clearly in the user interface, and are also no longer hard
coded in the Multi-ICE DLL.

New Configuration dialog

The configuration dialog is now simpler to use, and includes support for
the ARM TDT, and you can now search for Multi-ICE servers running on
workstations using the Windows Network Browser service.

Embedded Trace Macrocell (ETM) and MultiTrace™ support

Multi-ICE supports access to the ETM.

MultiTrace is the ARM execution trace solution (available as a separate
product) that includes the additional software and hardware.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-13

Introduction
RealMonitor support

Multi-ICE supports access to RealMonitor (RM), the ARM real-time
debug solution.

EmbeddedICE/RT is supported

Multi-ICE supports processors containing ARM cores that contain the
EmbeddedICE/RT extensions.

Autoconfiguration extensions

Autoconfiguration now supports the ARM Integrator™ boards in
configuration mode, making the FPGA firmware on these boards easier
to modify.

1.5.6 Changes in Multi-ICE Version 2.0

Changes in Multi-ICE Version 2.0 were:

Start Menu The Windows Start → Programs menu entry is now ARM Multi-ICE
v2.0 and the default install location is Program Files\ARM, for consistency
with other ARM applications.

Breakpoint algorithm changes

The watchpoint and breakpoint allocation algorithms have been rewritten
and so the actual allocation to hardware breakpoint units has changed.

For more detail see Appendix B Breakpoint Selection Algorithm.

arm9_restart_code_address

The ARM debugger internal variable arm9_restart_code_address has
been removed, and an interface providing equivalent functionality added
to the Multi-ICE configuration dialog.

1.5.7 New features in Release 1.4

The features that were new in Release 1.4 are:

New Processor Support

ARM920T (Rev 0) and ARM940T™ (Rev 1). A software update to
Release 1.4 provided support for ARM966E-S (Rev 0).

New Operating System Support

Windows 98.
1-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Introduction
Support for the ARM Developer Suite

Full support for ADS v1.0, including support for RDI 1.5.1.

Improved demand paged memory support

Demand paged memory can make it hard to know where the system
memory is in the address space, so extra facilities were added to support
this.

Performance enhancements

Debugging performance was improved, especially with ARM9 cores.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 1-15

Introduction
1-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 2
Getting Started

This chapter describes how to connect the parts of Multi-ICE together and how to
configure the Multi-ICE server software. It contains the following sections:

• System requirements on page 2-2

• Connecting the Multi-ICE hardware on page 2-6

• Connecting to nonstandard hardware on page 2-11

• Starting the software on page 2-14.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-1

Getting Started
2.1 System requirements

This section describes the hardware and software requirements of Multi-ICE:

• Host software requirements

• Host hardware requirements on page 2-3

• Target hardware requirements on page 2-4.

2.1.1 Host software requirements

There are two distinct software components in Multi-ICE:

• the Multi-ICE server, that must be run on the computer the interface unit is
attached to

• the Multi-ICE DLL, that can be run on another computer.

Table 2-1 identifies the operating systems you can use for each of these components.

The graphical debuggers supplied in v1.0.1 (or later) of ADS, and SDT 2.51 are all
compatible with the Multi-ICE DLL, as are debuggers supplied by third parties that
conform to the ARM RDI 1.5.1 specification.

If you are running a debugger under UNIX, for example AXD, you must use another
computer connected to it that can run the Multi-ICE server software. The workstation
running UNIX must have networking software that supports a TCP/IP connection to the
Multi-ICE server, and must meet the minimum software requirements specified in the
debugger installation notes.

Table 2-1 Supported operating systems for Multi-ICE

Operating system Multi-ICE server Multi-ICE DLL

Windows 95 Yes Yes

Windows 98 Yes Yes

Windows Me Yes Yes

Windows NT 4.0 (Intel) Yes Yes

Windows 2000 Yes Yes

Solaris 2.6, 7.0, or 8.0 No Yes

HP-UX 10 or 11 No Yes

Redhat Linux 6.2 or 7.1 No Yes
2-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
Networking software

If you require remote access to the server, your operating system must be installed with
its supplied networking software. If the TCP/IP stack is not present during installation,
the following warning text is displayed:

TCP/IP protocol does not appear to have been set up on this computer. Setup will
continue. Please install TCP/IP if you want to use Multi-ICE remote access
features.

Automatic dialup

Automatic dialup might be triggered when you use Multi-ICE because Multi-ICE uses
network facilities. You can prevent unnecessary dialups by either:

• disabling Allow Network Connections on the Multi-ICE server Settings menu
and only using This Computer as the server name in the DLL

• disabling automatic dialup.

2.1.2 Host hardware requirements

This section defines the minimum recommended hardware requirements for installing
and running the Multi-ICE DLL and, on Windows, the Multi-ICE server.

Disk space

If you carry out a full installation of the software, up to 20MB of hard disk space is
required.

To use the Multi-ICE software on Windows

To use the Multi-ICE server and DLL on Windows, you require the following:

• 200MHz Pentium processor

• system memory:

— 32MB RAM for Windows 95, Windows 98, and Windows Me

— 64MB RAM for Windows NT 4.0 and Windows 2000.

• CD-ROM drive (this can be a networked CD-ROM drive)

• an OS supported graphics device capable of VGA resolution or better

• parallel port

• network card (if remote access to the server is required).
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-3

Getting Started
To use the Multi-ICE DLL on Solaris

To use the Multi-ICE DLL on Solaris, you require the following:

• Sun UltraSparc or compatible machine

• Solaris 2.6, 7.0, or 8.0, with the Common Desktop Environment (CDE)

• CD-ROM drive (this can be a networked CD-ROM drive)

• connected network interface.

To use the Multi-ICE DLL on HP-UX

To use the Multi-ICE DLL on HP-UX, you require the following:

• HP PA-RISC v1.1 or v2.0 processor

• HP-UX 10.20 or 11

• CD-ROM drive (this can be a networked CD-ROM drive)

• connected network interface.

To use the Multi-ICE DLL on Linux

To use the Multi-ICE DLL on Linux, you require the following:

• 200MHz Pentium processor

• Redhat Linux 6.2 or 7.1

• CD-ROM drive (this can be a networked CD-ROM drive)

• connected network interface.

2.1.3 Target hardware requirements

Multi-ICE has been designed to be very flexible, but it has the following target hardware
requirements:

• A device interface conforming to the IEEE1149.1 (JTAG) specification.

• Electronic signals available to the interface, and within the limits of current and
voltage specified in Chapter 6 System Design Guidelines.

• An IDC connector on the target board wired as described in Multi-ICE JTAG
interface connections on page F-2, unless you are using the old 14-way
EmbeddedICE connector or you construct a new cable.

• A maximum cable length between target board and Multi-ICE interface unit of
20cm, unless one or more of the modifications described in Chapter 6 System
Design Guidelines is used.
2-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
• One or more ARM architecture CPUs containing supporting debug logic that is
linked into a JTAG scan chain. This includes most ARM7 and ARM9 cores, the
ARM1020T core, and Intel XScale microarchitecture processors. It does not
include the StrongARM® processors.

A full list of supported processors, including full CPUs, is provided with the installation
in the file proclist.txt.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-5

Getting Started
2.2 Connecting the Multi-ICE hardware

This section explains how to set up the hardware for Multi-ICE:

• What you require

• Connection instructions on page 2-8.

2.2.1 What you require

To set up the hardware you require the following items from the Multi-ICE product kit,
shown in Figure 2-1 on page 2-7:

• the parallel cable, a round cable with a male D connector at each end

• the JTAG cable, a flat ribbon cable with a square Insulation Displacement
Connector (IDC) socket at each end

• the Multi-ICE interface unit.

Depending on the type of target hardware you are using you might also require the
following items:

• The supplied power adaptor, set to supply 9V to the Multi-ICE interface unit
using a 2.1mm jack plug. Using this prevents Multi-ICE drawing its power from
the target.

• The JTAG interface adaptor, ARM part number HPI-0027B. This is a small PCB
with one 14-way and one 20-way connector mounted on it, and is available from
ARM on request.

You must also provide the following items:

• a Windows workstation with an available parallel port, running an operating
system supported by the Multi-ICE server (see Table 2-1 on page 2-2)

• some target hardware containing a JTAG-capable device supported by Multi-ICE
(see Target hardware requirements on page 2-4).
2-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
Figure 2-1 The Multi-ICE product kit

!����"�#$���������������

����� ��	

�����������

��������
����

	
�� ��
� ���
!����"�#$%��	�����&�
'	��������

(�����
�

��������������#����

�����

��
�
���������

#�")*!������������	�������

��� ���

+�

��
�������

������	�,,�
����,���
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-7

Getting Started
2.2.2 Connection instructions

You must connect the Multi-ICE interface unit to the your workstation and to the target
hardware. An example is shown in Figure 2-2.

Figure 2-2 Multi-ICE interface unit cable connection

To connect the hardware together:

1. Ensure the Multi-ICE software is installed on the host machine. This is described
in the section on installing the Multi-ICE software in the Multi-ICE Installation
Guide.

!����"�#$
	���������
��������

��� �������	

������
�����

������
,�����	�,,�

!����"�#$
��������������

�-"��

��
�������

��
��������
��#�,���

����� ��	

��
�
���������

��������
���������

���������,���
�����

!����"�#$
,�����	�,,�

��������
�����
2-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
2. Connect one end of the parallel cable to the parallel port of the host computer
(variously labeled Printer, Parallel, IEEE 1284, or with a graphic), and the other
end of the cable to the Multi-ICE interface unit.

3. Ensure that the Multi-ICE unit has a power source:

• Determine the Model No. of your Multi-ICE interface unit. This is printed
on the underneath of the unit. If the interface unit is model 83 or later, and
it is to draw power from the target, you must ensure that a link is fitted to
jumper J8. This jumper is situated under the removable cover on the
interface unit, as shown in Figure 2-3.

Figure 2-3 Location of jumper J8

• If independent power to the Multi-ICE interface unit is required, for
example because the target cannot supply sufficient current or because you
are connecting to an already-running target, you must connect the external
power supply to the Multi-ICE interface unit and switch it on.

Note
 If you are connecting Multi-ICE to hardware that is powered and running,

for example to find out what is happening, refer to Post-mortem debugging
on page 4-45.

4. Connect one end of the JTAG cable to the JTAG connector on the Multi-ICE
interface unit, and the other end of the cable to either:

• the JTAG connector on the target board, if this is a 20-way IDC connector
conforming to the Multi-ICE connection standard

• the 20-way connector on the optional JTAG interface adaptor, if the target
JTAG connector is a 14-way IDC connector conforming to the
EmbeddedICE Interface Unit connection standard.

The IDC sockets used for this cable are keyed using a small protrusion that must
be matched up with a slot in the plug.

��
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-9

Getting Started
If the target board has another variety of connector, see Connecting to
nonstandard hardware on page 2-11.

5. If it is not already powered up, switch on the power to the target board.
2-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
2.3 Connecting to nonstandard hardware

This section describes how to set up the Multi-ICE hardware when the target board does
not have the ARM style 20-way IDC connector. It is split into the following sections:

• Compatibility with PID, PIE, and PIV ARM development boards

• Nonstandard connectors

• Power supply on page 2-12.

2.3.1 Compatibility with PID, PIE, and PIV ARM development boards

To use Multi-ICE with early ARM development boards, you must short the following
resistors:

ARM7TDMI® header (HHI-0016B)

Resistor R1 (only if modification box number 1 is not marked with an X).

ARM PIV7T board (HBI-0008B)

Resistor R12.

ARM PIE7 board (HBI-0004B)

Resistor R53.

These modifications do not make the target board incompatible with the EmbeddedICE
interface unit.

Note
 You must manually reset the ARM Development Board (PID) before loading and
running an image because power-up does not always provide a clean reset.

2.3.2 Nonstandard connectors

The Multi-ICE product is supplied with cables using 20-way IDC sockets wired to the
ARM standard. Plugs suitable for this connector are fitted on all current ARM
development boards and several third-party target boards. Some ARM development
targets, for example the ARM Development Board (PID) CPU header cards, use a
14-way socket that is signal-compatible with the new 20-way socket. An adaptor card
is available from ARM on request to allow connection to these boards.

Boards made using the Texas Instruments (TI) JTAG interface definition use the same
14-way IDC connector as the ARM boards, but use a different signal assignment. If you
think your target might use this connector (for example, if the board is made by TI), you
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-11

Getting Started
must check the target board reference manual before using Multi-ICE. An adaptor to
allow Multi-ICE to connect to these boards is available from ARM free of charge on
request. Quote part number HPI 0068A.

If the target you are using does not use an ARM style connector, or you are involved in
designing a target board, refer to the Multi-ICE TAPOp API Reference Guide for more
information.

2.3.3 Power supply

Power is supplied to the Multi-ICE interface unit through:

• pin 2 (Vsupply) on the 20-way JTAG connector, drawing current from the target
power supply

Note
 On Multi-ICE Version 2.1 and later, this power passes through jumper J8.

• the power input jack.

The minimum target power supply voltage is 2V, and the maximum is 5V. You can
calculate the approximate operating current using the formula:

A graph of this function is shown in Figure 2-4 on page 2-13. On power-up, the
Multi-ICE interface unit draws more current than the graph shows, and the power
supply must be capable of delivering this. As a general guide, 440mA at 3.3V has been
measured. If the target supply voltage or its current capability is too low, you must use
the external power input jack.

You can provide power to the Multi-ICE interface unit using the power input jack from
a consumer power transformer (sometimes referred to as a wall-wart). The transformer
must be rated to supply between 9 and 12V at 500mA minimum. If you use the external
power jack, you can connect to targets using logic voltages of 1V to 5V.

Note
 The original EmbeddedICE interface unit literature stated that the target power supply
Vdd must have a series resistor in the feed to the JTAG interface power pin. For
Multi-ICE to operate correctly from the target power supply, this resistor must not be
present.

� �������	

��

�������

�

2-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
Shorting out this resistor does not affect the operation of the ARM EmbeddedICE
Interface Unit, and, on target boards built by ARM Limited, does not affect the
operation of the target board.

Figure 2-4 Multi-ICE current consumption with voltage

	
���

�
�

-

.-

�--

�.-

�--

�.-

/--

/.-

0--

0.-

.--

� �&. � �&. / /&. 0 0&. . .&.

������
*,�������
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-13

Getting Started
2.4 Starting the software

This section explains how to get the Multi-ICE software running. More detailed
information on the software is provided in:

• Chapter 3 Using the Multi-ICE Server

• Chapter 4 Debugging with Multi-ICE.

If you have not already installed the software, do so now. Details on how to install the
software are given in the Multi-ICE Installation Guide.

The following sections describe:

• Microsoft Windows start program menu for Multi-ICE

• Starting the Multi-ICE server on page 2-15

• Other Multi-ICE server startup features on page 2-17.

2.4.1 Microsoft Windows start program menu for Multi-ICE

After you have installed Multi-ICE on a Microsoft Windows computer, the menu items
shown in Figure 2-5 are available on the Windows Programs menu. The order of items
on this menu might differ from that shown.

Figure 2-5 Start menu items for Multi-ICE

The items are:

Help for Multi-ICE Server

Displays the Multi-ICE server online help files.

Help for Multi-ICE

Displays the Multi-ICE online help files.

Multi-ICE Server

Runs the Multi-ICE server.

Portmap Runs the Portmap application, required for network access to the server.
2-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
Readme View the product Readme file in Windows Notepad. This contains any
additional comments that are not included in the manuals.

Setup for Multi-ICE

Runs the Multi-ICE setup program. This enables you to install additional
components, repair, or remove the Multi-ICE software from your
workstation.

Files that have been moved from their original location, and files created
in the Multi-ICE installation directory since the installation occurred, are
not deleted when you remove or repair the installation.

TAPOp Guide

Display the Multi-ICE TAPOp API Reference Guide using the installed
PDF file viewer.

Note
 This item is only available if you have installed the PDF documentation.

User Guide Display the Multi-ICE User Guide using the installed PDF file viewer.
The user guide is also supplied as a printed manual.

Note
 This item is only available if you have installed the PDF documentation.

2.4.2 Starting the Multi-ICE server

To start the Multi-ICE server:

1. Ensure that:

• the Multi-ICE interface unit is plugged into the workstation

• the Multi-ICE interface unit is plugged into the target JTAG connector

• the target is powered up

• the green power light on the interface unit is glowing brightly.

For more information refer to Connecting the Multi-ICE hardware on page 2-6.

2. Select Start → Programs → ARM Multi-ICE v2.2 → Multi-ICE Server.

The software displays the Multi-ICE server window, shown in Figure 2-6 on
page 2-16. The portmap application might also be started and minimized,
depending on the host computer configuration.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-15

Getting Started
Figure 2-6 Unconfigured Multi-ICE server window

3. If a dialog box appears informing you that the Multi-ICE hardware cannot be
found, click on OK and recheck the items listed in step 1.

4. Configure the server. This can usually be done using the Autoconfiguration
command. Select File → Auto-configure and wait until the server has examined
the target. If the server reports that the device is UNKNOWN then the server has to be
configured manually. Refer to Chapter 3 Using the Multi-ICE Server for details
of manually configuring the server. If the configuration works, the screen looks
similar to Figure 2-7 on page 2-17.
2-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Getting Started
Figure 2-7 Multi-ICE server window configured for an ARM7TDMI

More information on configuration and the autoconfigure command is provided
in Server configuration on page 3-14.

2.4.3 Other Multi-ICE server startup features

This section includes more information about starting the Multi-ICE server.

Using the server on a workstation without a TCP/IP stack installed

If there is no TCP/IP stack installed on the workstation when you start the Multi-ICE
server for the first time, a warning message is displayed and the Settings item Allow
Network Connections is automatically unchecked.

Network settings are remembered between sessions.

Starting without hardware

You can start the Multi-ICE server software without the interface unit being connected.
A message box appears containing the text:

Could not find the Multi-ICE hardware. Please check that the hardware is properly

connected to the parallel port and powered up
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 2-17

Getting Started
This message is just a warning. To start using the server:

1. Ensure the interface unit is connected to the parallel port and to the target, and that
it is powered.

2. Load a configuration into the server using File → Load configuration or File →
Auto-configure.

No network connection

In some circumstances, on machines with no network software installed or with
incorrect network settings, the Multi-ICE server terminates immediately after it starts
up. This means you have no opportunity to switch off the Allow Network Connections
setting (see Using the server on a workstation without a TCP/IP stack installed on
page 2-17 and Settings menu on page 3-7).

If you experience this problem, run the script Non_tcp_ip.reg (in the Multi-ICE
installation directory) by Opening it in Windows Explorer. This prevents the server
trying to use the network by switching off the Allow Network Connections setting in
the system registry.

Starting the server minimized

You can create a shortcut icon to start the server minimized, as follows:

1. Right-click over the server icon and choose Create Shortcut.
2. Right-click over the shortcut and choose Properties.

3. Click on the Shortcut tab.

4. Select Minimized from the Run drop-down menu.

5. Click OK.

To start the server minimized, double click on the shortcut icon.
2-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 3
Using the Multi-ICE Server

This chapter describes how you use the Multi-ICE server. It contains the following
sections:

• About the Multi-ICE server menus on page 3-2

• Multi-ICE server device configuration files on page 3-9

• Server configuration on page 3-14

• Using the Multi-ICE server with multiple processors on page 3-25.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-1

Using the Multi-ICE Server
3.1 About the Multi-ICE server menus

This section gives an overview of the menu items on the Multi-ICE server:

• Menu structure

• File menu

• View menu on page 3-5

• Run control menu on page 3-5

• Connection menu on page 3-6

• Settings menu on page 3-7

• Help menu on page 3-8.

3.1.1 Menu structure

Figure 3-1 shows the submenus and their items.

Figure 3-1 Multi-ICE server menu items

3.1.2 File menu

The File menu allows you to configure the Multi-ICE server and control the logging of
TAPOp requests, and is shown in Figure 3-2 on page 3-3.
3-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
Figure 3-2 The File menu

The menu contains the following items:

Load Configuration

Displays a dialog box that you use to enter the name and path of a
configuration file. This item is used for the manual configuration of
Multi-ICE. This is described in The IRlength.arm configuration file on
page 3-13.

Auto-Configure

Interrogates the device(s) connected to the JTAG scan chain and creates
a configuration file containing what was found. See Table 3-1 for the
actual frequencies used.

Autoconfiguration is described in Automatic device configuration on
page 3-9. Unrecognized devices are marked as UNKNOWN, but you can add
these to a lookup table, as described in The IRlength.arm configuration
file on page 3-13.

Table 3-1 TCK frequency for autoconfigure

Menu entry
TCK frequency
during
autoconfigure

TCK frequency in
normal operation

Auto-Configure 1MHz 10MHza

a. 1MHz for targets with more than one TAP, or for devices that are known to
need a slower frequency unless adaptive clocking is used.

Auto-Configure at
20kHz

20kHz 20kHz
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-3

Using the Multi-ICE Server
Note
 If autoconfiguration of a known processor fails (showing UNKNOWN), reset

the processor using a hardware reset button or a power-cycle and try the
autoconfigure again.

Auto-Configure at 20kHz

This item does the same as the Auto-Configure item, but uses a TCK
frequency that never exceeds 20kHz. See Table 3-1 on page 3-3 for the
actual frequencies used. This can be useful when the JTAG cable or the
device is not capable of reliable operation at higher frequencies, or when
the device might be in a sleep mode (when the slow system clock prevents
the device responding sufficiently quickly to faster TCKs).

When manual configuration is used, the TCK frequencies indicated for
Auto-Configure in Table 3-1 on page 3-3 are used unless the
configuration file specifies alternate timing parameters.

Reset Target

Resets the target hardware. Clicking the Reset Target button in the
toolbar is equivalent to selecting this menu item.

You can control the action of Reset Target, so that it asserts nSRST,
nTRST, or both signals. (nSRST and nTRST are explained in the
Glossary.) You can do this either from the JTAG Settings dialog (see The
JTAG Settings dialog on page 3-21) or from a Reset section in the
configuration file (see Multi-ICE server device configuration files on
page 3-9).

You can also reset the target hardware from the debugger, using the
system_reset internal variable (see Debugger internal variables on
page 4-36). This method asserts nSRST, but does not assert nTRST.

Log Turns remote procedure call logging on or off. When turned on, a tick is
displayed next to the menu item and text describing the TAPOp protocol
requests received by the server are written to a log file.

Use Set Log File to specify the filename that is used.

Set Log File...

Displays a dialog box that you use to enter the name and path of a log file.

Recent File Displays a list of the eight most recent configuration files you have used.

Exit Closes the Multi-ICE server.
3-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
3.1.3 View menu

The View menu controls the display of the Multi-ICE server window and is shown in
Figure 3-3:

Figure 3-3 The View menu

The menu contains the following items:

Toolbar Turns the tool bar on or off. When the tool bar is displayed, a tick is
displayed next to the menu item. The tool bar gives you quick access to
the following functions:

 File → Auto-Configure attempts to automatically configure the
server

 File → Load Configuration prompts you for the name of a
configuration file

 File → Reset Target resets the target using nTRST or nSRST or
both

 Help → Help Topics displays the Multi-ICE online help.

Status Bar Turns the status bar on or off. When the status bar is displayed, a tick is
displayed next to the menu item. The Status bar displays information on
the current state of Multi-ICE.

RPC Calls Turns the debug window on or off. When the debug window is active, a
tick is displayed next to the menu item and all the TAPOp requests are
displayed in the debug window.

Clear Debug Window

Clears all text in the debug window.

3.1.4 Run control menu

The Run Control menu controls the synchronized stopping and starting of multiple
cores and is shown in Figure 3-4 on page 3-6.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-5

Using the Multi-ICE Server
Figure 3-4 The Run Control menu

The menu contains the following items:

Independent Makes all configured devices behave independently. There is no
interaction between devices.

All Run Starts all devices as close to simultaneously as the hardware
allows.

All Run/Stop Makes all configured devices:

• run when all connected debuggers have indicated that their
processor can start

• stop if any one of the devices stop.

Custom Makes configured devices interact as you have specified using the
Set-up Custom action.

Set-up Custom... Displays a dialog box that enables you to specify the way in which
devices interact. See Setting up interaction between devices on
page 3-28 and Setting up the poll frequency on page 3-30 for more
information.

Load Settings... Displays a dialog box that enables you to load run control settings
previously saved using Save Settings.

Save Settings... Displays a dialog box that enables you to save the run control
settings to a file.

The items on this menu are described in detail in the section Using the Multi-ICE server
with multiple processors on page 3-25.

3.1.5 Connection menu

The Connection menu lists all TAP controllers in use and gives you the option to kill
connections individually, and is shown in Figure 3-5 on page 3-7.
3-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
Figure 3-5 The Connection menu

Caution
 Only kill connections when other attempts to disconnect the client have failed.

Killing a connection between the server and an active client can result in the client
crashing or exhibiting other undesirable behavior.

3.1.6 Settings menu

The Settings menu allows you to configure the way the server uses the JTAG port, and
is shown in Figure 3-6.

Figure 3-6 The Settings menu

The menu contains the following items:

Port Settings....

Displays a dialog box that you use to select the required parallel port
address, with the option of forcing 4-bit access. It also shows the current
port mode. Port settings are described in more detail in Parallel port
settings dialog on page 3-18.

User Output Bits...

Displays a dialog box to control the user output bits. These bits
correspond to two logic-level outputs available from the User
Input/Output (I/O) connector (see User output bits dialog on page 3-19
and the Multi-ICE TAPOp API Reference Guide). You can use these
signals to remotely control user logic at the server location.

JTAG Settings...

Displays a dialog box that you use to set the clock speed. You can select
the clock speed from preset frequencies, by using the Set Periods
Manually option, or by including the information in a configuration file.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-7

Using the Multi-ICE Server
See section JTAG settings dialog on page 3-21 for more information. If
timing information is included in the configuration file, it is selected
automatically.

Start-up Options

Displays a dialog box that you use to specify what the server does when
it starts up. For more information, see Start-up Options dialog on
page 3-16.

3.1.7 Help menu

The Help menu gives you access to the online help and some information on Multi-ICE,
and is shown in Figure 3-7.

Figure 3-7 The Help menu

The menu contains the following items:

Help Topics Starts Multi-ICE help.

About Multi-ICE Server...

Displays version information for software and hardware modules of
Multi-ICE. You must provide this information when contacting your
vendor technical support.
3-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
3.2 Multi-ICE server device configuration files

The Multi-ICE server uses a configuration file to store information on the devices on
the board. Multi-ICE requires configuration data to select the correct driver. It already
has configuration data on the supported ARM devices.

Creating configuration files is described in the following sections:

• Automatic device configuration

• Manual device configuration on page 3-12.

3.2.1 Automatic device configuration

If all cores in your ASIC are supported ARM cores, Multi-ICE can create the
configuration file by scanning the ASIC and creating the file autoconfig.cfg. Do this
using the menu item File → Auto-Configure, or for slower devices use File →
Auto-Configure at 20KHz.

The configuration file contains information on each TAP controller. The Multi-ICE
product contains the necessary information on all supported JTAG capable ARM
devices. If non-ARM devices are used in the device, you can declare these to Multi-ICE
so that they are named in the configuration diagram.

To create a configuration file automatically, select File → Auto-Configure. Multi-ICE
displays a pictorial representation of the devices found and the order in which they
appear in the scan chain. Figure 3-8 on page 3-10 shows the result of configuring an
ARM940T.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-9

Using the Multi-ICE Server
Figure 3-8 Autoconfiguring an ARM940T

Note
 Autoconfigure issues several system resets while determining the configuration. If this
must not be done for your target, you must configure the server manually. Refer to The
IRlength.arm configuration file on page 3-13.

Figure 3-8 shows:

• The name of this configuration. This enables you to label your configurations.

• The order of the devices found in the scan chain. The arrow marked TDI (Test
Data In) represents JTAG data coming from the Multi-ICE interface unit, and the
arrow marked TDO (Test Data Out) represents data going into the Multi-ICE
interface unit.

• A box for each device found. Within the box are:

— The state of each core using the following symbols:

[S] denotes that the core is stopped

#���������������1�

2������,��	������
���������������	

���������3
3-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
[R] denotes that the core is running

[D] denotes that the core is downloading

[X] denotes that the core state is unknown (no debugger connected).

— The TAP number of this device.

— The generic name of this device. This name is the name listed in
irlength.arm and cannot be changed.

Multi-ICE writes the automatically generated configuration to a file as well as loading
it for immediate use. The file is written to the Multi-ICE program directory (for
example, C:\Program Files\ARM\ARM Multi-ICE\) with the name autoconf.cfg. The file
corresponding to the configuration shown in Figure 3-8 on page 3-10 is shown in
Example 3-1.

Example 3-1 Autoconfig file for an ARM940T

;Total IR length = 4
[TITLE]
Auto-detected TAP Configuration
[TAP 0] ;IR_len=4, ID_code=1F0F0F0F
ARM940T
[Timing]
Adaptive=OFF

The file contains the configuration name, an entry for TAP 0 that references the
ARM940T, and some timing data. The semicolon ; introduces a comment into the file
that continues to the end of the line.

For a detailed description of the contents of this file, see Appendix A Server
Configuration File Syntax.

Note
 By copying and renaming the automatically generated configuration file you can create
a number of different server configurations without having to write your own
configuration file or let Multi-ICE reset the board as part of an autoconfigure.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-11

Using the Multi-ICE Server
3.2.2 Manual device configuration

You configure the Multi-ICE server manually by creating a server configuration file and
loading it into the Multi-ICE server. A complete description of the structure and
contents of the configuration file is provided in Device configuration file on page A-3.
To create the file:

1. Start by checking proclist.txt to determine if the device you are configuring is
supported by Multi-ICE:

• If the device type is not supported, you can name the device by creating a
device entry that tells Multi-ICE how long the scan chain select register for
the device is. See Naming an unsupported device on page 3-13.

• If the device type is supported, note the name of the device entry in the file
IRlength.arm. See The IRlength.arm configuration file on page 3-13 for
more information about this file.

2. Open a text file editor, and create a new file, using the file extension .cfg.

3. Enter entries in the text file for at least:

• A TITLE section.

• A TAP 0 section, containing the name used in IRlength.arm for the first
device.

Additional sections in the file might be required depending on the devices you are
configuring. Refer to Device configuration file on page A-3 for more information.

4. Save the file.

5. In the Multi-ICE server, click File → Load Configuration....

6. Locate the configuration file you created, and click Open.

7. The Multi-ICE server is configured to expect the devices you put in the
configuration.

Note
 When you load a manual configuration, the Multi-ICE server does not check that

the devices you configure match the actual scan chain. It is your responsibility to
ensure this.
3-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
Naming an unsupported device

To name a single UNKNOWN device:

1. You must find out the length of the TAP controller instruction register (IR) in the
unknown device. You can do this by:

a. Autoconfiguring the target.

b. Double clicking on the UNKNOWN device box in the Multi-ICE server window.
A dialog box appears that includes the IR length.

2. Create a text file called USERDRVn.TXT (where n is the IR length of the unknown
device) to the Multi-ICE installation directory. The file must contain the name of
the device.

For example, to name a target that included a TAP controller for a DSP that had an IR
length of 4 bits, you would create a file called USERDRV4.TXT containing the text DSP.

Note
 You cannot name multiple devices that have the same IR length because the Multi-ICE
server cannot distinguish between them.

The IRlength.arm configuration file

The Multi-ICE server calculates the length of the scan chain by adding the length of
each IR register it finds in the JTAG chain. This information is held in a file called
IRlength.arm. You can edit this to store information on other devices that you use, for
example a DSP. This file is stored in the Multi-ICE installation directory. An extract
from the IRlength.arm file is shown in Example 3-2.

Example 3-2 Extract from irlength.arm configuration file

;ARM7 series cores
ARM7TDMI=4
ARM7TDMI-S=4
ARM740T=4
;ARM9 series cores
ARM9TDMI=4
ARM920T=4
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-13

Using the Multi-ICE Server
3.3 Server configuration

This section describes in more detail the configuration of the Multi-ICE server program.
In particular, it describes:

• Chip driver settings dialog

• Start-up Options dialog on page 3-16

• Parallel port settings dialog on page 3-18

• User output bits dialog on page 3-19

• User input bits on page 3-21

• JTAG settings dialog on page 3-21.

3.3.1 Chip driver settings dialog

If you double-click on the square outline of the core in Figure 3-8 on page 3-10 the
Multi-ICE server provides more information about the devices it is connected to. The
device information is obtained by reading the device TAP controller settings and
interpreting them according to a standard table that is built into the server. The dialog
box is shown in Figure 3-9 on page 3-15.

At the top of the dialog box the List of Drivers contains the names of the Multi-ICE
drivers that are applicable to a particular TAP controller. The list always contains the
main driver (the ARM940T in Figure 3-9 on page 3-15), which has a positive IR
Length. It might also contain alias drivers, declared in the irlength.arm file with an IR
Length of zero. An example of this is an ARM920T with an ETM attached.

Information in the Driver Details region of the dialog box changes for every
connection, and so also between each device in the List of Drivers:

Connected To The name assigned to the connection.

At The time this connection was made.

connectId The connection number assigned to the connection, which is also
visible in the RPC Log file.

Vers. Reqd The version number of the server protocol that the client requested
when the connection was made.
3-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
Figure 3-9 TAP driver status dialog

Information about the device itself is available in the Device Details region of the dialog
box. Other than the Device Name, the information in this region does not change when
a different driver is selected in the List of Drivers because it relates to the device, not
the driver used.

The dialog box contains the following items:

IR Length The length in bits of the Instruction Register, a primary element in
the JTAG TAP Controller.

Device Name The name given to the device.

Device No. The number assigned by the manufacturer of the device.

Version No. The chip version number.

Manufacturer A textual version of the manufacturer number.

Man No. The JTAG manufacturer code.

The device, version, and manufacturer numbers are read from the ID register in the TAP
controller. Values in this register conform to the format shown in Figure 3-10 on
page 3-16.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-15

Using the Multi-ICE Server
Figure 3-10 TAP Controller Device ID register format

Note
 According to the IEEE 1149.1 specification for device identifiers the value 0xF0F0 in the
Device No. field and 0x787 in the Man No. field is invalid.

ARM Limited puts these values into the device logic when the logic is supplied to the
silicon manufacturer, with the intention that it is overridden with manufacturer and
device-specific codes.

If the default ARM values are not overridden, the Multi-ICE DLL uses the string
UNKNOWN (Generic ARM) as the manufacturer. The device name and part number are
determined from the device characteristics when this is possible. When it is not possible
the device fails to autoconfigure and must be manually configured. Multi-ICE also
displays the true manufacturer number and string if this can be determined.

3.3.2 Start-up Options dialog

This section describes the parts of the Start-up Options dialog shown in Figure 3-11.

Figure 3-11 The Start-up Options dialog

�� ���� �� �� � �

	
��
�� ���������
� ����������
��
�
��
�� �
3-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
The dialog box is accessed from the Settings → Start-up Options... menu, and is split
into two groups:

• Network Settings
• Start-up Configuration.

The Network Settings items enable or disable the network abilities of the Multi-ICE
server. Other settings control the initial JTAG device configuration.

The dialog box contains the following items:

Allow Network Connections

When selected, the Multi-ICE server enables its clients to connect
remotely over a network using the Sun RPC protocol. This requires that
a TCP/IP stack is set up on both workstations. However, you can deselect
it to:

• prohibit network connections to sensitive devices

• enable a workstation without a TCP/IP stack set up to use the
server.

Start Portmap Service

If you select this option, when you next start the Multi-ICE server the
Portmap program also starts. If the Start Portmap Service box is not
checked, you must start the portmap service in another way (for example,
by selecting Start → Programs → ARM Multi-ICE v2.2 → Portmap)
before the Multi-ICE server is started.

Note
 If the automatic start of the portmap service is not selected and a

portmapping service is not being provided by another application, no
warning message is displayed. The result is that the client fails to connect
to the server and after a short time it reports that an error has occurred.

To overcome this you must start the Multi-ICE server again, select the
Start Portmap Service option, close the Multi-ICE server, and then
restart the Multi-ICE server.

This option is disabled when Allow Network Connections is deselected,
because the portmapping service is not required.

None If this is chosen, no autoconfiguration or load configuration file action is
performed. When the server starts up the window looks similar to
Figure 2-6 on page 2-16 and the server must be configured before it can
be used.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-17

Using the Multi-ICE Server
Auto-Configure

This option automatically creates a configuration file naming all devices
found as described in Automatic device configuration on page 3-9.
Unrecognized devices are marked as UNKNOWN.

Auto-Configure at 20kHz

The 20kHz autoconfigure is useful with systems that have slow clocks,
such as emulation environments, or with processors in Sleep mode.

Load Configuration

Presents a dialog box for you to enter the name and path of a
configuration file. This option is used for the manual configuration of
Multi-ICE, and is described in The IRlength.arm configuration file on
page 3-13.

3.3.3 Parallel port settings dialog

This section describes how you use the Port Settings dialog. This is accessed from the
Settings menu.

Figure 3-12 The Port Settings dialog

The dialog box contains the following items:

Port Address

Is the parallel port address to be used. Can be one of:

AUTO Automatically selects the parallel port to use.

LPT1 Selects LPT1 as the parallel port to use.

LPT2 Selects LPT2 as the parallel port to use.

Note
 You must connect the Multi-ICE interface to a parallel port that uses

standard parallel port hardware at addresses 0x278 or 0x378.
3-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
Force 4-bit access

Forces the parallel port to use 4-bit data transfer.

Current Port Mode

This item indicates the operational mode of the parallel port. Many
parallel ports can operate in one of several modes, defined by the BIOS
settings. See your computer hardware manual for more information.
Multi-ICE understands the following parallel port modes:

4-bit Basic unidirectional parallel port.

8-bit 8-bit bidirectional parallel port.

ECP Enhanced Capability Port. This mode is faster than 8-bit mode
because it is possible to use block data transfers.

Multi-ICE does not understand the Enhanced Parallel Port (EPP) mode,
and uses these ports in bidirectional 8-bit mode. Multi-ICE can use an
IEEE 1284 port in ECP compatibility mode.

Note
 • The Windows 95, Windows 98, and Windows Me drivers do not

use ECP mode because the ECP-aware parallel port driver
interferes with the operation of the Multi-ICE parallel port driver.

• Some machines might exhibit random communication failures due
to nonconforming parallel ports. If you have difficulty in
connecting to the Multi-ICE hardware, or experience timeout
errors during operation, try forcing 4-bit access.

3.3.4 User output bits dialog

The user output bits correspond to two TTL logic-level outputs available from the user
I/O connector (see Appendix G User I/O Connections). You can use these signals to
remotely control user logic at the server location.

You access the User Output Bits dialog shown in Figure 3-13 on page 3-20 from the
Settings menu.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-19

Using the Multi-ICE Server
Figure 3-13 The User Output Bits dialog

Note
 The state of the user output bits changes as soon as you click on them. You do not have
to click on OK for the changes to take effect.

The dialog box contains the following items:

Set Low Turns the bit permanently LOW.

Set High Turns the bit permanently HIGH.

Set by Debugger/Driver

Enables the output bits to be controlled by either:

• the TAPOp procedure calls TAPOp_WriteMICEUser1 and
TAPOp_WriteMICEUser2, described in the Multi-ICE TAPOp API
Reference Guide

• the debugger internal variables output_bit_1 and output_bit_2,
described in Internal variable descriptions on page 4-39.

Set on Download

Sets bit 1 HIGH while a debugger is downloading to the specified TAP
controller.

Set on Go Sets bit 2 HIGH while a debugger is executing an image file on the
specified TAP controller.

You can select the TAP controller to use with the user output bits by selecting its number
from the Tap Position drop-down box. All configured TAP controllers are listed.
3-20 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
3.3.5 User input bits

The user input bits correspond to two TTL logic-level outputs available from the user
input/output connector (see Appendix G User I/O Connections). You can use these
signals to remotely control user logic at the server location.

The user input bits are shown at the bottom-right corner of the Multi-ICE server window
as shown in Figure 3-14. Each bit is:

• light green when HIGH

• dark green when LOW.

Figure 3-14 Status of the user input bits

3.3.6 JTAG settings dialog

The JTAG Settings dialog shown in Figure 3-15 enables you to select how Multi-ICE
generates the JTAG clock and reset signals. The menu entry is disabled until the target
is configured. You must either autoconfigure the target or load a configuration file.

Figure 3-15 The JTAG Settings dialog
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-21

Using the Multi-ICE Server
Settings that are not defined in the selected target configuration file are set to a default
value. Using the dialog box you can:

• use timing and reset signal settings from the selected configuration file

• define your own timing and reset signal settings.

To use settings defined in the configuration file unchanged, click Use Settings from
Config File.

To modify the settings defined in the configuration file, click Use Settings Below.
Doing this enables the JTAG Bit Transfer Timing and Reset Behavior control groups.
The initial setting for these controls is taken from the current configuration of the server.

In the JTAG Bit Transfer Timing group, you can define the basic TCK frequency, and
choose whether adaptive clocking is used:

• Select a preset TCK frequency from: 10MHz, 5MHz, 1MHz or 20kHz.

• Select Set Periods Manually to define a specific TCK pattern. Refer to Setting
TCK periods manually.

• Select Adaptive when adaptive clocking must be used for the target device. Refer
to Adaptive clocking on page 3-24 and Chapter 6 System Design Guidelines.

In the Reset Behavior group, you can define the signals that are asserted when you tell
Multi-ICE to reset the target system. There are two signals that the Multi-ICE interface
unit can control:

nTRST When connected correctly, asserting this signal resets only the JTAG
logic on the target.

nSRST When connected correctly, asserting this signal resets the target processor
and connected peripherals, but does not reset the JTAG logic.

The radio buttons enable you to select the combination that is asserted when you choose
File → Reset Target or click on the red reset toolbar button.

You must refer to the target documentation to determine the actions these signals have
for your target.

Setting TCK periods manually

If you select Set Periods Manually, or include the clocking information in a
configuration file, the periods and frequency are calculated using the following
formulas:
3-22 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
HIGH period = 50ns * (high_scale * (high_multiplier + 1))
LOW period = 50ns * (low_scale * (low_multiplier + 1))
Total period = HIGH period + LOW period

Frequency = 1 / Total period

For a precalculated table of frequencies and values, refer to TCK frequencies on
page F-7 and TCK values on page F-11. The same HIGH and LOW period values are
used in the server configuration file (see Appendix A Server Configuration File Syntax)

Note
 At very low JTAG clock rates, the parallel port driver used by the server uses a large
proportion of the workstation processing time. This causes any applications that are
running to execute at a reduced speed.

You can enter values between 0–255 for the HIGH and LOW periods. The 8-bit values
you enter are split into three and five bits to form the scale (S) and the multiplier (M)
values as shown in Table 3-2.

The multiplier is formed from the lower five bits, allowing values from 0 to 31.
Table 3-3 shows the scale value. SSS are the three most significant bits. Scale is the
value to be used in the formula:

Table 3-2 Scale and multiplier values

Scale Multiplier

7 6 5 4 3 2 1 0

S S S M M M M M

Table 3-3 Scale values for clocking speeds

SSS Scale

0 1

1 2

2 4

3 8

4 16
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-23

Using the Multi-ICE Server
Example 3-3 shows how you might encode some sample frequencies:

Example 3-3 Deriving values for JTAG HIGH and LOW settings

100kHz (approx) HIGH = LOW = 162 [SSS = 5 (S = 32) M = 2]
500kHz HIGH = LOW = 19 [SSS = 0 (S = 1) M = 19]
2MHz HIGH = LOW = 4 [SSS = 0 (S = 1) M = 4]

Adaptive clocking

If the target provides the RTCK signal, select the Adaptive clocking function to
synchronize the clock to the processor clock outside the core. This ensures there are no
synchronization problems over the JTAG interface.

Note
 If you use the adaptive clocking feature, transmission delays, gate delays, and
synchronization requirements result in a lower maximum clock frequency than with
non-adaptive clocking. Do not use adaptive clocking unless it is required by the
hardware design.

For a full description of the concept of adaptive clocking, see Chapter 6 System Design
Guidelines.

5 32

6 64

7 128

Table 3-3 Scale values for clocking speeds (continued)

SSS Scale
3-24 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
3.4 Using the Multi-ICE server with multiple processors

If you have more than one processor in your target, Multi-ICE enables you to connect a
separate debugger to each of your processors. You can debug code running on each
processor entirely independently, setting breakpoints, downloading images, or start and
stop processors, without affecting the other processors.

To do this:

1. Ensure the Multi-ICE server is showing all processors on the target.

2. Run an instance of your chosen debugger for each processor.

3. Use the Multi-ICE DLL configuration dialog from each debugger to select the
different processors.

Note
 If you are using an ARM debugger you can use the debugger session feature to avoid
having to configure every debugger separately each time you start. Refer to Configuring
and debugging multiple processors on page 4-27 for more information.

Using Multi-ICE with multiple processors is described in the following sections:

• Controlling device execution

• Run control and the debugger on page 3-26

• About run control on page 3-27

• Setting up interaction between devices on page 3-28

• Setting up the poll frequency on page 3-30.

3.4.1 Controlling device execution

In multiprocessor systems, the processors interact to produce the required results. The
Multi-ICE server provides a feature called run control to help you debug these systems.
Run control enables you to start and stop several processors at the same time in a
configurable way. Using run control you can:

• Set several processors to a particular program location and state, and start them
together. This is called synchronous starting. Multi-ICE ensures the processors
start at exactly the same time, to within one TCK period.

• Force all the processors to stop if any of them hits a breakpoint, so you can see
the collective state of the system when the breakpoint is reached. This is called
synchronous stopping. The processors stop at almost the same time (limited by
their response time to the stop request).
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-25

Using the Multi-ICE Server
You can also set up more complex start and stop conditions.

3.4.2 Run control and the debugger

Run control is a feature of the Multi-ICE server. Because the Multi-ICE server is the
only place that has information about each of the processors in the system, it is on the
server that you configure and control the interactions between different processors.

Note
 • If you require run control to debug a specific part of your program, it is

recommended that you initially set the server to Independent run control, so that
no unexpected stop events occur. When the program reaches the area of interest,
set up the desired run control settings in the server and start debugging.

• Make sure all the processors in the system are stopped when you change run
control settings, because the settings are only applied when execution is started.

Synchronous starting

If you set up a synchronous start group that includes a particular processor, when you
start that processor it does not start immediately. The debugger displays a message
indicating that the server is waiting for other processors to start. You must use the other
debuggers to start every processor in the synchronous start group before all of the
waiting messages disappear and the processors all start together.

Note
 If you require synchronous stopping as well as starting, you have to set up the server to
do this before you start any of the processors in the group.

Synchronous stopping

When one of the processors stops (for example, due to a breakpoint or watchpoint), the
debugger connected to that processor displays the processor state. If you have set up the
Multi-ICE server to stop other processors together with this processor, the Multi-ICE
server stops them and the debuggers connected to the other processors display the
message:

Server stopped the processor

You can now examine the state of any processor in the group.
3-26 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
3.4.3 About run control

A processor can stop for a variety of reasons. These include:

• a debugger in halt processor mode connects to the processor

• the stop button is pressed in the debugger

• the processor hits a breakpoint or watchpoint

• the processor passes through a vector and vector catch is enabled

• the program running on the processor makes a semihosting call and standard
semihosting is selected in the debugger

• the debugger steps to the next instruction

• external hardware, for example the ETM, asserts the DBGRQ signal on the core.

All of these stop events are detected by the server, and are dealt with according to your
run control settings. When you use a setting other than Independent run control this
means other processors might be stopped as well. This has a number of implications:

• If multiple device execution control is required while making semihosting calls,
DCC Semihosting must be set in the Processor Properties dialog in AXD. In
ADW, the debugger internal variable semihosting_enabled must be set to 2. See
the description of semihosting_enabled=2 in Debugger internal variables on
page 4-36 for more details.

• The debugger uses breakpoints for its own purposes, but these are treated
identically to your breakpoints by the Multi-ICE server. For example, if you
create a breakpoint with a count value of 50 in AXD, the processor stops every
time it hits the breakpoint, and then restarts until it has hit the breakpoint 50 times.
This has the following consequences:

— Every time the processor stops, the server actions the stop events you have
specified. This might not be the behavior you are expecting.

— Every time the processor is restarted (49 times in this example), the run
control settings are applied. If you have set up synchronous starting and
stopping, all the synchronously stopped processors stop each time the
processor you are debugging hits the counted breakpoint. When the
debugger tries to restart the breakpointed processor, the Multi-ICE server
waits until the synchronously stopped processors are also started.

• When you click Step in the debugger, stop events are actioned for that processor.
This is because the step is implemented by setting a breakpoint on the next
instruction and then starting the processor. When the processor hits the breakpoint
the server carries out stop events as in every other case.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-27

Using the Multi-ICE Server
• Usually when you load an image using a debugger, a breakpoint is automatically
placed on the function main. Clicking Go runs through the initialization code to
this point and you must press Go again to run the program. This breakpoint is
treated just like any other breakpoint.

3.4.4 Setting up interaction between devices

The run control dialog device interaction tab is shown in Figure 3-16. There can be
several tabs of device TAP controller numbers that list all the available devices in blocks
of four. The tabs enable you to set up the interaction between single devices or a range
of devices.

On tabs containing fewer than four devices, NOT VALID is displayed for the unused boxes
and the controls are grayed out.

Figure 3-16 Setting up interaction between devices

Each device listed on the tab has a number of control settings:

Range field This is the drop-down list box directly beneath each of the device
descriptions. It enables you to select any devices that are to be stopped by
the current device. The default setting is All Devices.

If there are more than two devices available, you can select all devices,
individual device numbers, or a range of devices.

For example, if you had 10 devices listed, you can stop devices 2, 5, 7, 8,
and 9 using the following notation:
3-28 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
2, 5, 7-9

Disabled Stop events from this device are disabled and have no control over other
devices.

Single Forces any devices in the range field that are currently running to stop. If
any of the devices in the range field are forced to stop in this manner then
no stop events for these devices are actioned.

Cascade Forces any devices in the range field that are currently running to stop. If
any of the devices in the range field are forced to stop in this manner then
any stop events for these devices are also actioned. If a device is not
running and a stop event is actioned for that device, then the stop event is
completely ignored.

Note
 Stop events do not cascade through processors that are already stopped.

For example, assuming that initially devices one to ten are all running,
Figure 3-17 shows that when device 1 stops, three other devices stop.
This in turn stops a further set of devices.

Sync. Start When enabled, this processor is part of the synchronous start group.
When one processor is started in the synchronous start group, the
processor is marked ready to start. Every processor in the start group
starts at the same time when they are all ready to start.

Figure 3-17 Cascade operation

�
�
�
��

�
�
�
�� �
�
�
�� �
�
�
��

�
�
�
��

�
�
�
���

�
�
�
���
�
�
�

�
�
�
���

�
�
�
��

�
�
�
�!

"
�����#
���
�
�
����$�

�
%������&
�
&��
�
�
�����$

�
%������&
�
&��
�
�
�����$

�
%����#�&
�
&��
�
�
�����$
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-29

Using the Multi-ICE Server
Combining settings

To provide finer control, you can combine settings to achieve individual results. Using
the diagram in Figure 3-17 on page 3-29 as an example:

• If device 4 is disabled, devices 5, 7, 9, 10, and 11 are not affected by the control
settings from device 1.

• If devices 4 and 5 are set to Cascade, but device 7 is disabled, the control settings
from device 1 reach device 9, but not devices 10 or 11.

• If device 6 is set to Single instead of Cascade, device 8 is not affected by the
control settings from device 1.

3.4.5 Setting up the poll frequency

The Settings tab on the Run Control dialog is shown in Figure 3-18. It displays a
control that allows you to change the poll frequency that Multi-ICE uses. You can do
this to find a balance between the responsiveness of your host computer and the number
of times Multi-ICE polls the devices to find out their status.

Figure 3-18 Setting up the poll frequency

There is a delay between a processor entering debug state and Multi-ICE noticing this
and acting upon it. The settings are:

Low Good debugger responsiveness, with minimal status polling. If the
processor stops it might not be noticed quickly.
3-30 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Using the Multi-ICE Server
High Fast status polling, with very poor debugger responsiveness. If the
processor stops it is noticed quickly.

The default setting is midway on the scale.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 3-31

Using the Multi-ICE Server
3-32 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 4
Debugging with Multi-ICE

This chapter describes how to connect the Multi-ICE DLL to the supported ARM
debuggers, and describes the features of the Multi-ICE DLL.

This chapter must be read in conjunction with the manuals for the debugger you are
using, for example the ADS Debuggers Guide and the ADS Debug Target Guide. It
contains the following sections:

• Compatibility with ARM debuggers on page 4-2

• Connecting Multi-ICE to ADW, ADU, or AXD on page 4-3

• Configuring the Multi-ICE DLL on page 4-8

• Configuring and debugging multiple processors on page 4-27

• Debugger internal variables on page 4-36

• Post-mortem debugging on page 4-45

• Access to CP15 on page 4-49

• Semihosting on page 4-50

• Watchpoints and breakpoints on page 4-55

• Cached data on page 4-60

• Debugging applications in ROM on page 4-62

• Accessing the EmbeddedICE logic directly on page 4-65.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-1

Debugging with Multi-ICE
4.1 Compatibility with ARM debuggers

To debug your ARM-targeted image using any of the ARM debugging systems, you can
use any of the following ARM debuggers:

• ARM eXtended Debugger (AXD) for Windows or UNIX

• ARM Debugger for Windows (ADW) (SDT 2.51, ADS v1.0.1, or ADS v1.1)

• ARM Debugger for UNIX (ADU) (SDT 2.51, ADS v1.0.1, or ADS v1.1).

The debugger works in conjunction with Multi-ICE. Multi-ICE provides the ability to
access the target, and tools to configure the debugger to access the target in the correct
way. The debugger provides the user interface items such as register windows and
disassemblers that make it possible to debug your application.

Refer to the documentation supplied with your target board for more information on
development boards.
4-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.2 Connecting Multi-ICE to ADW, ADU, or AXD

After loading a configuration file or using Auto-Configure, the debugger must be
connected to the Multi-ICE server. The procedure for the ARM debuggers varies and is
described in the following sections:

• Connecting AXD on page 4-4

• Connecting ADW and ADU on page 4-5.

The procedure is identical for Windows and UNIX based systems, so although the
screen shots presented are from Windows, the same instructions apply to ADU and
AXD running on Solaris, HP-UX, and Linux.

Note
 This note only applies to workstations running a version of Microsoft Windows.

By default Windows Explorer, and therefore the file open dialog box, hides files with
the file extension .dll. As a result, unless this setting is changed, the Multi-ICE DLL is
not shown.

To show .dll files in Windows 95 or Windows NT 4.0 without the Desktop Update:

1. Open a Windows Explorer Window and select View → Options.

2. Select the View tab.

3. Select the Show all files radio button.

4. Click on the Options dialog OK button.

To show .dll files in Windows 95 or Windows NT 4.0 with the Desktop Update, and
Windows 98, Windows ME, or Windows 2000:

1. Open a Windows Explorer Window and select View → Folder Options.

2. Select the View tab.

3. Within the tree view, find Files and Folders → Hidden Files. Select the Show
all files radio button in that group.

4. Click on the Folder Options dialog OK button.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-3

Debugging with Multi-ICE
4.2.1 Connecting AXD

Use this procedure to activate the Multi-ICE DLL within AXD using Windows or
UNIX.

1. Select Options → Configure Target as shown in Figure 4-1.

Figure 4-1 The AXD Options menu

This displays the Choose Target dialog shown in Figure 4-2.

Figure 4-2 The AXD Choose Target dialog

2. If Multi-ICE is listed in the Target Environments list, select it (by clicking on it)
and go on to step 3. If it is not listed:

a. Select Add. A Windows Open dialog is displayed.

b. Navigate to the Multi-ICE install directory (for example, C:\Program
Files\ARM\Multi-ICE).

c. Find the file Multi-ICE.dll, select it, and click on the dialog Open button
as shown in Figure 4-3 on page 4-5.
4-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Figure 4-3 Selecting the Multi-ICE DLL using AXD

Clicking on Open dismisses the dialog box.

The file path name of the Multi-ICE DLL is displayed in the Target
Environments list.

3. Select Configure to display the Multi-ICE configuration dialog.

4. Now go to Configuring the Multi-ICE DLL on page 4-8.

4.2.2 Connecting ADW and ADU

Use this procedure to activate the Multi-ICE DLL within ADW or ADU.

1. Start ADW or ADU. The last debug target used, or ARMulator® if the debugger
has just been installed, is activated automatically. If the Target Warning dialog
appears, click on No. This causes ADW or ADU to activate ARMulator.

2. Select Options → Configure Debugger as shown in Figure 4-4.

Figure 4-4 The ADW and ADU Options menu
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-5

Debugging with Multi-ICE
The debugger displays a Debugger Configuration dialog similar to Figure 4-5.
Select the Target tab.

Figure 4-5 ADW configuration dialog with Multi-ICE active

3. If Multi-ICE is listed in the Target Environment list as shown in Figure 4-5, go
on to step 4.

If Multi-ICE is not listed:

a. Select Add. The Open dialog is displayed.

b. Navigate to the Multi-ICE install directory (for example, C:\Program
Files\ARM\Multi-ICE).

c. Find the file Multi-ICE.dll, and select it as shown in Figure 4-6. Click on
the dialog Open button.

Clicking on Open dismisses the Open dialog and the file path name of the
Multi-ICE DLL is displayed in the Target Environment list.

Figure 4-6 Selecting the Multi-ICE DLL using ADW
4-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4. Select Configure in the Debugger Configuration dialog. This displays the
Multi-ICE Configuration dialog.

5. Now go to Configuring the Multi-ICE DLL on page 4-8.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-7

Debugging with Multi-ICE
4.3 Configuring the Multi-ICE DLL

This section describes the elements of the Multi-ICE configuration dialog. The dialog
box is tabbed, using the following headings:

• Connect configuration tab

• Processor Settings Tab on page 4-14

• Advanced configuration tab on page 4-18

• Board configuration tab on page 4-21

• Trace configuration tab on page 4-22

• About Multi-ICE tab on page 4-23

• Channel viewer configuration tab on page 4-24.

The last section describes how the configuration settings are stored:

• Persistence of DLL settings on page 4-26.

4.3.1 Connect configuration tab

The Multi-ICE server connection configuration dialog is shown in Figure 4-7. You use
it to select the Multi-ICE server and processor to debug.

Figure 4-7 Multi-ICE Configuration dialog
4-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
If you have not yet successfully configured Multi-ICE, the Welcome to Multi-ICE
dialog, shown in Figure 4-8, is also displayed. After reading it, dismiss it by clicking
OK.

Figure 4-8 Multi-ICE Welcome dialog

The configuration dialog includes the following items:

Location of Multi-ICE

You must enter the name of the workstation that Multi-ICE contacts to
find the Multi-ICE server and the Multi-ICE interface unit. If you:

• have an existing connection, the name of the workstation is shown
here, and the device details are shown in Device selection

• have not connected to a server, this area and the Device selection
area are empty.

Click on the button labeled This computer... if the Multi-ICE interface
unit is connected to the workstation you are using. If there is no
Multi-ICE server running, the software asks if it should start one.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-9

Debugging with Multi-ICE
Click on Another computer... if the server is running on a different
workstation. The Select server location dialog appears, and you can
enter the name of a server in Network address or select it from the
network list. See Remote Multi-ICE servers on page 4-11 for more
information.

 Device selection

You must select the desired processor device (or core) from the device
tree. The devices correspond to those shown in the TAP configuration
area on the Multi-ICE server window, with device aliases shown as
subordinate to the main device.

If you require more information on the selected device, click Details... to
display the Driver Details dialog (Figure 4-9).

Figure 4-9 Driver Details dialog

The fields contain the following information:

Driver Name The name Multi-ICE uses to refer to the device.
This is the same name that is used in the driver
information file IRlength.arm.

Type The processor type, for example, ARM 7, ARM 9,
XScale.

Version The version number of the software driver used to
control the device.

Server Requires The version of the Multi-ICE server required to use
this driver.

Connection name

An entry here is optional. If you want to you can enter a name for this
connection. This helps you identify the engineers or test programs that
are using the device. The name is displayed in the debug pane on the
server when the connection is made.
4-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
To accept your settings and connect to the target processor:

1. Click on OK. You return to the Debugger Configuration dialog.

2. Click OK in the configuration dialog to connect to the target processor. If the
connection is successful, the device name turns red in the server window and
connection information is displayed in the server console window. Otherwise, an
error message is displayed.

Remote Multi-ICE servers

The Another computer... button on the Connect configuration tab (see Multi-ICE
Configuration dialog on page 4-8) configures Multi-ICE to connect to a Multi-ICE
server on another computer. The dialog box that is displayed depends on the network
software that is configured on your workstation:

• if you have a Unix workstation, or a Windows workstation but no local area
network software installed, refer to Workstations with no Network Neighborhood

• if you have a Windows workstation and network software and can use the
Windows Network Neighborhood, refer to Workstations with a Network
Neighborhood.

Workstations with no Network Neighborhood

On UNIX workstations, and Windows workstations that do not have the Windows
Computer Browser service available, a dialog box is displayed so that you can type in
the name of a machine to connect to.

If you are using a TCP/IP network with Windows 95, Windows 98, or Windows Me,
you might have to install the Windows Computer Browser service before the network
browse dialog shown in Figure 4-10 on page 4-12 can be used.

Workstations with a Network Neighborhood

On Windows workstations that have the Windows Computer Browser service available,
the dialog box shown in Figure 4-10 on page 4-12 is displayed, enabling you to browse
the Network for Multi-ICE servers to connect to. Only workstations that have both the
Windows Computer Browser service and a remotely accessible Multi-ICE server
running are shown in the browser.

You can use the dialog box in two ways:

• If you know the workstation you want to connect to, you can enter its name in the
Server name text field. You can enter either the textual name (for example, PC2)
or the IP address (in dotted quad form, for example 192.168.3.1). Click on OK to
finish.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-11

Debugging with Multi-ICE
• You can search for servers using the tree view.

To browse your network, expand the names in the list area by clicking on the icon
until you see the names of workstations. These have a Multi-ICE server, with the Allow
Network Connections setting enabled, running on them.

To list the Multi-ICE servers in a group, every workstation in the group has to be
contacted. Multi-ICE contacts many workstations at a time, displaying a message at the
top of the dialog box as it does so.

If no workstations in the group have a server running on them that can be contacted, the
group name is displayed without the icon.

When a machine is displayed, selecting the icon next to its name displays the list of
processors currently configured on that server.

Figure 4-10 Server Browse dialog

The icon beside the device name indicates the current connection state:

• A red circle over the icon indicates a device that has an active connection.

• A turquoise ARM powered icon indicates an ARM device that Multi-ICE can debug.

• A indicates a device that Multi-ICE cannot debug, for example an FPGA, a
DSP core or a Flash memory device.

• A indicates an extension device connected to the same TAP controller, for
example an Embedded Trace Macrocell (ETM). See the Trace Debug Tools User
Guide for more information for more information about the ETM.

�����������

)!�,����		��

��
)!
,����		�������	�

�����,���
�������������
������	

���� 	����������4
��!����"�#$�	�����

��
)!�,����		��
���4����������
$�!�5�����6������

�4��(�����	���1���
������ ����,���1�

�4����1�������	���,����
����4����� 	��������������
�4��	�����
4-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
If you select a device to connect to and then click on OK before the list is complete, no
further information is added to the display. However, current activity must be allowed
to complete, and while this is happening, the message text starts with Stopping.... It
might take several seconds for this process to complete.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-13

Debugging with Multi-ICE
4.3.2 Processor Settings Tab

The Processor Settings tab enables you to change processor specific settings before you
connect to the target. The settings you can define depend on the processor you are
connecting to, and so you must select a processor (using the Connect tab) before this tab
can be used. You can change the following settings:

Cache clean code address

This setting, shown in Figure 4-11 on page 4-15, is the base address of an
area of 128 bytes of memory that is used to store a code sequence that
ensures that all of the dirty data in the Data Cache (DCache) is written
into main memory.

Cleaning the DCache is important because when the processor caches are
enabled, program instructions that are written to target memory are
written through the DCache but read through the instruction cache. If the
DCache is not cleaned, some or all of the instructions are not written to
main memory before the processor executes them, and so the previous
contents of memory at that address is executed instead.

Multi-ICE loads the cache clean code as required. The area must be
program memory, readable and writable, and must not be used for any
other purpose. If Multi-ICE cannot load code to this memory you see the
error Could not clean D-Cache - memory may appear incoherent in
writeback regions. Refer to Multi-ICE server messages on page 5-12 for
more information about this message.

For some processor types, restart code must also be downloaded that
enables Multi-ICE to restart the processor when a breakpoint or
exception is handled. For these processors, the restart code is written to
the cache clean code address.
4-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Figure 4-11 Multi-ICE Processor Settings tab showing cache setting

Cache clean data address

This setting for XScale microarchitecture processors, shown in
Figure 4-12 on page 4-16, is the base address of a 32KB region of
memory that Multi-ICE uses when cleaning the processor cache. This
memory region:

• must be cachable

• must be aligned to a 32KB address (that is, the least significant
15 bits of the address must be zero)

• must be 32KB in size.

Note
 Physical memory does not have to exist at this location.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-15

Debugging with Multi-ICE
Figure 4-12 Multi-ICE Processor Settings tab showing XScale settings

XScale debug handler options

These settings, shown in Figure 4-12, configure the behavior of the debug
handler that is used with an XScale microarchitecture processor.

The following settings are available:

Debug handler address
The base address of a region of memory that can be used by
the debug handler code. This memory:

• must be aligned to a 2KB address (that is, the least
significant 11 bits of the address must be zero)

• must be 2KB in size

• must be in the range of an ARM branch instruction
(approximately ±32MB) from address 0

• must not be used for any other purpose.

Note
 Physical memory does not have to exist at this location.

If you enter an invalid address a message box reports that The
address you have entered is invalid.
4-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Hot-debug enabled
A toggle that enables or prevents Multi-ICE from connecting
to an already running XScale microarchitecture processor by
using a debug handler:

• If you enable hot-debug, ARM Limited recommends
that the target provides firmware support for this feature:

— For details of the code that is required, see Debug
handler firmware support on page D-7.

— If you do add this firmware support, you must
check the Flush debug handler cache if running
on exit box, and select the Leave processor in
Monitor mode on exit button.

• If you disable hot-debug, Multi-ICE always resets the
processor when connecting.

Flush debug handler cache if running on exit
A toggle that controls whether or not the debug handler is
flushed from the cache on exit from the debugger:

• If this box is checked, and the processor is running, the
debug handler is flushed from the cache. The debugger
cannot later reconnect to the handler.

• If this box is not checked, the debug handler is not
flushed from the cache. The debugger can later
reconnect to the handler.

Note
 Any code that subsequently alters the exception vectors

does not function correctly (see Intel XScale
microarchitecture processors on page D-3).

Leave processor in Halt mode on exit, Leave processor in Monitor
mode on exit

Buttons that set whether to leave the processor in Halt or
Monitor mode on exit from the debugger:

• If you leave the processor in Halt mode, and a reset
subsequently occurs, the debug handler is not flushed
from the cache. The processor halts, waiting for the
debugger to connect to the handler.

• If you leave the processor in Monitor mode, and a reset
subsequently occurs, the debug handler is flushed from
the cache, and the processor resets.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-17

Debugging with Multi-ICE
4.3.3 Advanced configuration tab

The Advanced configuration tab contains items that enable you to configure the
debugger to match the memory endianness of your target, whether to cache information,
and the debugger software interface method. The tab is shown in Figure 4-13.

Figure 4-13 Multi-ICE Advanced settings tab

The dialog box contains the following items:

Target Settings

You can specify whether the target is Little-endian or Big-endian using
the Target Settings radio buttons in the target configuration dialog.

These buttons are unavailable if you are using older software, such as
SDT 2.51 or ADU. You must instead:

1. Choose Configure Debugger from the Options menu of your
debugger.

2. Click the Debugger tab.

3. Select one of the Endian buttons.
4-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Read-ahead Cache

This is a check box allowing you to enable or disable caching target
memory in the host while the processor is stopped. The checkbox setting
is the initial value of internal_cache_enabled. You can flush the cache at
a specific time by setting the debugger internal variable
internal_cache_flush to 1. You can switch the cache off temporarily by
setting the debugger internal variable internal_cache_enabled to 0. See
Internal variable descriptions on page 4-39 for more information.

Read-ahead caching improves memory read performance by reading
more memory than the debugger requests, and caching the rest in case it
is required. This improves performance considerably for some
operations, such as when you are stepping through code with a lot of
string variables displayed in a debugger window.

Initially the DLL does not read ahead. When the first successful read
request is made for a region of memory, the DLL learns it can safely
access that region. It then caches that region until the debugger restarts.

All of the ADS debuggers save the read ahead setting between sessions,
but the version of ADW in SDT 2.51 does not.

Note
 Read-ahead caching is on by default. You must switch this feature off if:

• you are trying to debug a system with demand paged memory

• you are using the debugger to read hardware registers, and you do
not want to unintentionally read neighboring registers.

Debugger Interface Settings

Multi-ICE supports debuggers that conform to RDI 1.5.1 and also allows
you to connect to debuggers that conform to RDI 1.5. This item shows
you the RDI version that is currently in use.

You can select the RDI version to be used from the dialog box.

Automatic Selects the most appropriate mode for the debugger,
using an automatic version negotiation scheme.
This is the default setting.

RDI 1.5 Forces the Multi-ICE DLL to use RDI version 1.5.

RDI 1.5.1 Forces the Multi-ICE DLL to use RDI
version 1.5.1.

If you are using an ARM debugger, it is recommended that you use the
Automatic setting, because this works correctly with all ARM
debuggers.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-19

Debugging with Multi-ICE
Note
 AXD only supports RDI 1.5.1, and Automatic version negotiation

selects RDI 1.5.1. If you force AXD to connect to Multi-ICE using
RDI 1.5, the AXD Stop button does not work.

Report non-fatal errors on startup

This setting relates to errors that occur while the debugger is first
connecting to a Multi-ICE target. If you check this option, then both fatal
and non-fatal errors are reported. This is the default, and means that you
are informed of any problems that Multi-ICE detects.

Some debuggers consider that any error detected during configuration is
fatal, and this can prevent you from being able to connect to your target.
If this happens, you must uncheck this item, so that Multi-ICE only
reports fatal errors.
4-20 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.3.4 Board configuration tab

The Board configuration tab has a list of target boards. When you select a board, the
debugger then shows the memory mapped registers for the peripherals and
microcontrollers on that board.

Figure 4-14 Board tab

Note
 This tab only appears if you are using a recent toolset that supports this functionality
(such as ADS 1.2 or later), but you are not using RealMonitor.

If you are using RealMonitor, you can instead set the board that you are using with
RealMonitor.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-21

Debugging with Multi-ICE
4.3.5 Trace configuration tab

The Trace tab is displayed, as shown in Figure 4-15, when the ARM Trace Debug Tools
(TDT) have been installed on your workstation. If TDT is not installed, the Trace tab is
not shown.

Figure 4-15 Trace configuration tab

The Trace tab enables you to configure the trace component that you use to capture trace
information. For more information on the TDT, including how to use the Multi-ICE
Trace configuration tab, refer to the Trace Debug Tools User Guide.
4-22 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.3.6 About Multi-ICE tab

Information about the version of Multi-ICE that you are using is displayed on the About
tab shown in Figure 4-16. It displays the full version information of the Multi-ICE DLL
that you are using with the components that are connected to it.

If TDT is installed and configured, the version number of the DLL used to control trace
capture, for example, multitrace.dll, is included in this list.

Figure 4-16 About tab
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-23

Debugging with Multi-ICE
4.3.7 Channel viewer configuration tab

Channel viewers allow information transferred across the DCC to be manipulated by a
program external to the debugger. There is a viewer supplied with ARM debuggers,
called ThumbCV, that interprets the words sent over the DCC and displays them in a
window. It also provides a text entry area that enables characters to be sent to the target.
For more information refer to the ADS Developer Guide.

To see how Multi-ICE buffers the information passed over the DCC channel, refer to
Channel viewer buffering in Multi-ICE on page 4-25.

Using channel viewers with AXD

The Multi-ICE configuration dialog Channel Viewers tab is only available when using
ADW. The use of channel viewers in AXD is described in the AXD documentation (see
the ADS Debuggers Guide).

Using Channel viewers with ADW

Channel viewers can enable the host to monitor the target in more complex ways, or
simulate the presence of external sensors. See the ADS Debuggers Guide for more
information on channel viewers. The DCC hardware is described in detail in the
technical reference manual for the ARM core you are using.

The channel viewer controls shown in Figure 4-17 enable or disable the selected
channel viewer DLL.

Figure 4-17 Channel viewer controls

Note
 • You cannot use the channel viewer and DCC semihosting (by setting

semihosting_enabled = 2) at the same time because they use the same DCC.
Therefore, if you have DCC semihosting enabled, attempting to add or use a
channel viewer fails.
4-24 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
• You cannot use DCC channel viewers with the ARM10 (Rev 0) processor or with
XScale microarchitecture processors.

There are three controls. The Enabled checkbox enables the channel viewer functions
(and also disables other uses of the DCC). When Enabled is checked, the two buttons
Add and Remove allow you to manipulate the list of channel viewer DLLs that are
available to Multi-ICE:

Add Adds a channel viewer DLL.

Remove Removes the selected DLL.

Adding the viewer causes the channel viewer to be initialized and, in the case of the
supplied ThumbCV viewer, this creates a new window on the screen.

Channel viewer buffering in Multi-ICE

The Multi-ICE DLL has an internal 1024-word buffer for DCC transfers from the
debugger to the target. Data being sent to the target is cached in this buffer until the
target program requests it.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-25

Debugging with Multi-ICE
4.3.8 Persistence of DLL settings

The persistence of the DLL settings between sessions, and how they are stored, depends
on the debugger you are using:

ADW (SDT 2.51) Saves most of the DLL session settings in the registry. However,
it does not save session settings that have been introduced since
Multi-ICE Release 1.3, such as the state of the read-ahead cache
enabled check box.

ADW (ADS 1.0.1), ADU (ADS 1.0.1)

Saves all the DLL session settings in a file within the user profiles.
For example, on Windows NT the filename is:

c:\winnt\profiles\username\adwtoolconf-default.cnf

If you use the -session name parameter to start ADS 1.0 ADW, the
settings for each session are stored in different files, where
default is replaced by name.

AXD (ADS 1.0.1) Saves all the DLL session settings in the registry.

AXD (ADS 1.1 or later)

Saves all the DLL session settings in the registry, or in the file you
specify when you select File → Save Session.
4-26 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.4 Configuring and debugging multiple processors

This section describes setting up a multiple processor system using the AXD debugger
from ADS v1.1 (or a later version), and Multi-ICE Version 2.1 (or later). It is split into
the following sections:

• Configuration using named AXD target configurations

• Configuration using session files on page 4-29.

Select the method that best suits the way you work. Multiple targets is the simpler
method, but session files enable a more automated setup.

Note
 To use AXD with a multiple processor system connected to the Multi-ICE interface
unit, you must run an instance of AXD for each processor that you want to debug. It is
not possible to connect one instance of AXD to more than one processor.

4.4.1 Configuration using named AXD target configurations

AXD enables you to use one or more named target configurations. This is useful in a
multiple processor setup, because you can create one target for each processor and
switch between them easily.

To set this up:

1. Run AXD.

2. Select Options → Configure Target... to display the target configuration dialog.

3. Add Multi-ICE to the list of targets using the Add button if it is not already
present, as described in Configuring the Multi-ICE DLL on page 4-8.

4. Copy the Multi-ICE target configuration to create one target configuration for
each processor on the target board, as follows:

a. Select the Multi-ICE target in the list.

b. Click Save As to display the target configuration Save dialog.

c. Enter the new name of the target configuration, as shown in Figure 4-18 on
page 4-28.

d. Click OK.

For example, in a three processor setup you can create two more copies of
Multi-ICE called Multi-ICE_TAP1 and Multi-ICE_TAP2, and then you can click
Rename to rename the original to Multi-ICE_TAP0.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-27

Debugging with Multi-ICE
Figure 4-18 Saving a named target configuration

5. Configure these targets separately by selecting the name in the Target
Environments list and clicking Configure. Refer to Configuring the Multi-ICE
DLL on page 4-8 for more information.

6. Click on OK in the AXD Configure Target dialog when you have completed the
configuration of each target. AXD will save all the settings for all the targets and
connect to the one you selected.

You can now easily swap between the processors in your system by selecting a different
target in the target configuration dialog.

Configuring AXD to select a target on startup

In its default configuration, when you run AXD it automatically selects the target that
was last in use when you run it. You can change this behavior, so that it brings up the
target configuration dialog on startup, rather than connecting to the default target. To do
this:

1. Ensure the Multi-ICE server is correctly configured for your target board.

2. Run AXD.

3. Select Options → Configure Interface…, to display the Interface Configuration
dialog.

4. Disable the Reselect Target option on the Session File tab.

5. Exit AXD.
4-28 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Starting AXD from CodeWarrior

The CodeWarrior IDE supplied with ADS provides a button that builds your project and
then runs it by starting up AXD automatically. If you have multiple processors AXD
always tries to run your project on the most recently used processor. It is therefore
recommended that you make the changes described in Configuring AXD to select a
target on startup on page 4-28.

4.4.2 Configuration using session files

If you require a more automated way of running several debuggers, you can use the
session feature in AXD. An AXD session file includes debugger settings, for example
the name of an executable image file and the locations of windows, and also the current
target configuration. A command-line argument to AXD enables you to select a
particular session file on startup. In this way you can automatically connect AXD to a
particular processor by changing the session file you use.

This method is less flexible than the multiple target procedure described in
Configuration using named AXD target configurations on page 4-27, especially if you
frequently change the processor you connect to. However, specifying a processor when
you start AXD enables a greater level of automation.

To configure the first AXD session file:

1. Ensure the Multi-ICE server is correctly configured for your target board.

2. Run AXD.

3. Select Multi-ICE as the target configuration. It is recommended that you click
Remove to delete all but one copy of the Multi-ICE configuration, to avoid
confusion in making any further changes.

4. Configure Multi-ICE to connect to one of the target board processors.

5. Select Options → Configure Interface....

6. Enable the Reselect target option in the Session File tab.

If you do not have this option enabled, the session files you create will not select
any target when you load them back into AXD.

7. Click OK.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-29

Debugging with Multi-ICE
Changing session settings

You must now create a session file for each processor in your system. For each
processor on your target board:

1. Select Options → Configure Target...

2. Select Multi-ICE in the target configuration list

3. Configure Multi-ICE for that processor.

4. Click OK in the Multi-ICE configuration dialog to accept the configuration.

5. Click OK in the Configure Target dialog to connect to the processor.

6. If you want AXD to load a specific executable image when it connects to this
processor:

a. Click File → Load Image to load the file.

b. Select Options → Configure Interface....

c. Enable the Reload Images option in the Session File tab (Figure 4-19 on
page 4-31).

d. Click OK.

7. If you want to run a configuration script as AXD starts up, for example to set the
processor into a particular state:

a. Select Options → Configure Interface....

b. Select Run Configuration Script in the Session File tab.

c. Use the Browse... button to locate the configuration script, or type the name
into the text field, as shown in Figure 4-19 on page 4-31.

d. Click OK.
4-30 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Figure 4-19 Configuring AXD to run a configuration script

8. Save the session file by selecting File → Save Session…. You must use the file
extension .ses. It is recommended that you use a name that refers to the processor
this configuration connects to.

It is recommended you save session files together in an easily-accessible
directory.

You can now select which processor to connect to by specifying the appropriate session
file in AXD's command line. For example:

axd -session C:\sessions\tap1.ses

An example of three AXDs connected to a Multi-ICE server and a multiple processor
target is shown in Figure 4-20 on page 4-32.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-31

Debugging with Multi-ICE
Figure 4-20 Three AXDs and the Multi-ICE server configured for a multiple processor target

By putting several AXD session file commands into a script, you can automatically start
up the required number of instances of AXD, one connected to each processor. Example
files are shown in Example 4-1 on page 4-33 and Example 4-2 on page 4-33. The Unix
script file command source ads.cshrc sets up the path and environment for the ADS
executables. The Windows versions of these files are in the examples directory of your
Multi-ICE installation.
4-32 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Note
 Under Windows the pause command is used. This is because several copies of AXD
cannot be loaded concurrently under Windows. The pause command waits for you to
press a key, and you must do this after each copy of AXD has loaded and initialized.

Example 4-1 Windows batch file

start axd -session C:\sessions\tap0.ses
pause
start axd -session C:\sessions\tap1.ses
pause
start axd -session C:\sessions\tap2.ses

Example 4-2 Unix shell script

source ads.cshrc
axd -session sessions/tap0.ses &
axd -session sessions/tap1.ses &
axd -session sessions/tap2.ses &

You can also create a shortcut on your desktop for each processor. To do this under
Windows, you must:

1. Right click on the desktop to bring up the context menu

2. Select New → Shortcut

3. In the Create Shortcut dialog, click Browse

4. Use the browse dialog to locate AXD.exe. If you installed AXD in the default
location, it is in C:\Program Files\ARM\ADSv1_1\Bin\axd.exe.

5. Click Open.

6. Press the End key to move the cursor to the end of the line, and type a space and
then:

-session “C:\sessions\tap0.ses”

The line should now look something like:

"C:\Program Files\ARM\ADSv1_1\Bin\axd.exe" -session “C:\sessions\tap0.ses”

7. Click Next>
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-33

Debugging with Multi-ICE
8. Enter a name for the shortcut, for example, AXD on Tap0.

9. Click Finish.

Double clicking on this shortcut launches AXD and automatically connects to the
configured processor with the settings you saved in the session file.

You can configure your Unix desktop in a similar way. Refer to the system
documentation for your desktop environment (for example, CDE or OpenWindows) for
more information.

Note
 If you want to change any of the settings in a session file, you must re-save it. AXD does
not automatically update the session file it was started from if you change settings.

Using sessions from CodeWarrior

When you have set up your sessions, you might also want to configure CodeWarrior so
that clicking on the Run button automatically selects one of your sessions. This works
best if you have a different CodeWarrior project for each processor. Otherwise you have
to change the project settings each time you want to use a different processor.

To configure a project to load into AXD with a particular session:

1. In the CodeWarrior IDE, display the project settings dialog and in the settings
pane tree control select ARM Runner in the Debugger section.

2. Select the Choose Debugger tab.

3. Select AXD.

4. In the Equivalent Command Line control, enter the -session parameter as
described in Changing session settings on page 4-30.

For example:

axd -session C:\sessions\tap0.ses -exec &1

Note
 The -session parameter and the session file name must be together and must

precede a -debug or -exec parameter on the command line.

5. Click on Save and close the dialog.
4-34 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Caution
 If you subsequently change any of the other settings in this panel you must enter the
-session argument again.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-35

Debugging with Multi-ICE
4.5 Debugger internal variables

The debugger internal variables that are always present are described in the relevant
debugger user guides. This section describes additional debugger internal variables that
become available when you install the Multi-ICE software. This section includes
information on:

• Accessing debugger internal variables

• Internal variable support by processor

• Internal variable descriptions on page 4-39.

4.5.1 Accessing debugger internal variables

Debugger internal variables are values that control the behavior of the debugger or the
way it accesses the target. Some variables control the front-end debugger (for example,
searchpath). Others enable you to control the operation of Multi-ICE without using the
Multi-ICE configuration dialog.

In AXD, the variables vector_catch, vector_address, semihosting_enabled, and
semihosting_dcchandler_address are all accessed using the Properties menu item on the
right mouse button menu from the processor icon.

AXD also has a Debugger Internals window that you can use to access other variables.

4.5.2 Internal variable support by processor

The set of variables that is available depends partly on the processor that is selected. For
example, variables relating to the system coprocessor are not available on processors
that do not have a system coprocessor.

Table 4-1 on page 4-37, Table 4-2 on page 4-38, and Table 4-3 on page 4-39 describe
the variables available for each processor group. For a description of the function and
allowed values of the variables see Internal variable descriptions on page 4-39.

Variables marked with a delta Δ are not used by the AXD debugger in ADS v1.1 (or a
later version). AXD and Multi-ICE Version 2.1 (or later) both support a mechanism that
describes the target to the debugger, making these variables unnecessary.
4-36 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Variables marked with a sigma Σ are incorporated into the AXD properties interface and
do not appear in the debugger internals variable list.

Table 4-1 ARM7 family debugger variable support

Variable name ARM7a ARM7Tb Samsungc ARM7xxTd ARM7EJ-S

cp_access_code_address Yes Yes Yes Yes No

cp15_current_memory_area Δ No No No Yese No

icebreaker_lockedpoints Yes Yes Yes Yes Yes

internal_cache_enabled Yes Yes Yes Yes Yes

internal_cache_flush Yes Yes Yes Yes Yes

ks32c_special_base_address No No Yes No No

safe_non_vector_address Yes Yes Yes Yes Yes

semihosting_dcchandler_address Σf No Yes Yes Yes Yes

semihosting_enabled =0 or =1 Σ Yes Yes Yes Yes Yes

semihosting_enabled =2 Σ No Yes Yes Yes Yes

sw_breakpoints_preferred Yes Yes Yes Yes Yes

system_reset Yes Yes Yes Yes Yes

top_of_memory Yes Yes Yes Yes Yes

user_input_bit [1,2] Yes Yes Yes Yes Yes

user_output_bit [1,2] Yes Yes Yes Yes Yes

vector_address No No No Yesg Yesh

a. ARM7 includes ARM7DI, ARM7DMI, and devices using these cores.
b. ARM7T includes ARM7TDI, ARM7TDMI, ARM7TDI-S, ARM7TDMI-S, and devices using these cores.
c. Samsung includes the KS32C50100 and the S3C4510B.
d. ARM7xxT includes ARM710T™, ARM720T™, and ARM740T™.
e. Only ARM740T.
f. This must be in the range of an ARM branch instruction (approximately ±32MB) from the SWI vector. It must

not rely on a negative branch from low memory wrapping around to high memory.
g. Only ARM720T.
h. There is no system coprocessor.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-37

Debugging with Multi-ICE
Table 4-2 ARM9 family debugger variable support

Variable name ARM9Ta ARM9xxTb ARM9E-S ARM9xxE-Sc

cp_access_code_address No Yes No Yes

cp15_cache_selected Δ No Yes No Yes

cp15_current_memory_area Δ No Yesd No Yese

icebreaker_lockedpoints Yes Yes Yes Yes

internal_cache_enabled Yes Yes Yes Yes

internal_cache_flush Yes Yes Yes Yes

safe_non_vector_address Yes Yes Yes Yes

semihosting_dcchandler_address Σf Yes Yes Yes Yes

semihosting_enabled Σ Yes Yes Yes Yes

sw_breakpoints_preferred Yes Yes Yes Yes

system_reset Yes Yes Yes Yes

top_of_memory Yes Yes Yes Yes

user_input_bit [1,2] Yes Yes Yes Yes

user_output_bit [1,2] Yes Yes Yes Yes

vector_address No Yesg Yesh Yes

a. ARM9T includes ARM9TDMI™ and devices using the cores.
b. ARM9xxT includes ARM920T, ARM922T™, ARM925T™, and ARM940T.
c. Includes ARM926EJ-S, ARM946E-S, and ARM966E-S.
d. Only ARM940T.
e. Only ARM946E-S.
f. This must be in the range of an ARM branch instruction (approximately ±32MB) from the SWI

vector. It must not rely on a negative branch from low memory wrapping around to high memory.
g. Excludes ARM940T (Rev 0).
h. There is no system coprocessor.
4-38 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.5.3 Internal variable descriptions

This is a list of the debugger internal variables that Multi-ICE makes available to you
through the debugger. Refer to the manual for your debugger for information on reading
and writing them:

cp_access_code_address

This specifies an area of memory, of at least 40 bytes, that can be used by
Multi-ICE during read or write coprocessor operations. Multi-ICE
ensures that this memory is reloaded with its original values after use.
This area of memory must be readable, writable, and executable.

Table 4-3 ARM10 family and XScale microarchitecture debugger variable support

Variable name ARM10a XScale

cp15_cache_selected Δ Yes No

icebreaker_lockedpoints No No

internal_cache_enabled Yes Yes

internal_cache_flush Yes Yes

safe_non_vector_address No No

semihosting_dcchandler_address Σb Yes No

semihosting_enabled Σ Yes Yes

sw_breakpoints_preferred Yes Yes

system_reset Yes Yes

top_of_memory Yes Yes

user_input_bit [1,2] Yes Yes

user_output_bit [1,2] Yes Yes

vector_address Yes Yes

a. Includes ARM1020T, and ARM10200T.
b. This must be in the range of an ARM branch instruction

(approximately ±32MB) from the SWI vector. It must not
rely on a negative branch from low memory wrapping
around to high memory.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-39

Debugging with Multi-ICE
cp15_cache_selected

This is only valid on Harvard Architecture processors. This includes the
ARM9 and ARM10 families, but excludes the ARM7 family. It is not
valid with XScale processors.

Note
 If you are using AXD, this variable is not available. Instead, Multi-ICE

describes the target coprocessor register names and access information to
AXD. AXD includes the described registers in the processor register
view, enabling you to read and modify the values as required.

It indicates the alias of the CP15 register that is read/written. Use one of
the values from Table 4-4.

For further information on the CP15 registers, refer to Appendix E CP15
Register Mapping, and to the ARM technical reference manual for the
processor being used.

cp15_current_memory_area (0-7=Memory areas 0-7)

This selects the memory area to be accessed in register 6 on processors
that support multiple protection regions. If necessary, the
cp15_cache_selected variable selects between a data or instruction
memory area.

For further information on the CP15 registers, refer to Appendix E CP15
Register Mapping, and to the ARM technical reference manual for the
processor being used.

Table 4-4 Cache selection type values

Value CPU type Description

0 ARM9 or ARM10
(Harvard) cores

Select the Data Cache (DCache)

1 ARM9 or ARM10
(Harvard) cores

Select the Instruction Cache (ICache)

2 ARM946E-S,
ARM966E-S

Select tightly-coupled instruction memory

3 ARM946E-S,
ARM966E-S

Select tightly-coupled data memory
4-40 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Note
 If you are using AXD, this variable is not available. Instead, Multi-ICE

describes the target coprocessor register names and access information to
AXD. AXD includes the described registers in the processor register
view, enabling you to read and modify the values as required.

icebreaker_lockedpoints

This variable controls user access to the EmbeddedICE logic watchpoint
registers. It is a bitmask, with bit 0 relating to watchpoint unit 0 and bit 1
relating to watchpoint unit 1. If an IEU is built into the processor, then
bit 2 relates to IEU unit 0, bit 3 to IEU unit 1, up to bit 31 relating to IEU
unit 29.

If a bit in the bitmask is set (1) then Multi-ICE does not use the related
watchpoint unit. If it is unset (0), then Multi-ICE can use the unit. Refer
to Using the EmbeddedICE logic values on page 4-69 for more
information.

internal_cache_enabled (0=disabled, 1=enabled)

This variable controls the behavior of the memory cache within the
Multi-ICE DLL. On AXD startup, it has the same value as the Cache
Enabled flag in the Multi-ICE Advanced Settings window. The user can
then change this value to override the initial value, and so enable or
disable the cache.

internal_cache_flush

This variable always reads as 0. Writing a nonzero value to it causes the
Multi-ICE internal memory cache to be flushed.

ks32c_special_base_address

This variable contains the address of the special system registers in the
Samsung KS32C50100 or Samsung S3C4510B processor. These
registers can be mapped to one of many pages of memory, and it is not
possible to ask the device where they are. One register from this bank is
required by the Multi-ICE cache manipulation code.

safe_non_vector_address

This variable defaults to 0x10000. This variable must be set to the base
address of a 64KB area of memory that does not overlap the 64KB block
of memory starting at vector_address. The block of memory that is
referenced must be safe, in that the Multi-ICE DLL might cause some
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-41

Debugging with Multi-ICE
reads from this area to occur, and these reads must be harmless. Memory
reads must not cause Data Aborts and must not affect I/O devices.
Multi-ICE does not write to this memory area.

semihosting_dcchandler_address

When the value of semihosting_enabled is 2, the value of
semihosting_dcchandler_address is the address of the SWI handler. See
Semihosting on page 4-50.

semihosting_enabled

This variable controls the semihosting facility in the Multi-ICE DLL. See
Semihosting on page 4-50.

sw_breakpoints_preferred

This variable controls the breakpoint selection algorithm. If it is nonzero,
the breakpoint selection algorithm chooses to use software breakpoints
wherever possible (for example, it does not set software breakpoints in
ROM).

If it is zero, it chooses to use hardware breakpoints unless the number of
breakpoints required exceeds the number of hardware breakpoint units
available. See Appendix B Breakpoint Selection Algorithm for more
information.

system_reset

When read, this is always zero. If written with a nonzero value the target
board is immediately reset using system reset pulse of approximately
250ms.

top_of_memory

This variable defines the highest address in memory that the C-library
uses for stack space. The value is transferred to the target in the result of
the SYS_HEAPINFO semihosting SWI call. The default value is 0x80000,
meaning that the first word pushed to the stack is written to 0x7FFFC.

For the purposes of SYS_HEAPINFO, Multi-ICE assumes the memory map
shown in Figure 4-21 on page 4-43.
4-42 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Figure 4-21 Relating top_of_memory to single section program layout

Note
 • If the application is scatterloaded the application must include a

user-defined function (__user_initial_stackheap) that defines the
stack and heap limits. Therefore, if the application does not call
SYS_HEAPINFO explicitly, the target ignores the value of
top_of_memory.

• The value of top_of_memory must be higher than the sum of the
program base address and program size. If set incorrectly, the
program might crash because of stack corruption or because the
program overwrites its own code.

• There is no requirement that top_of_memory is at the true top of
memory. A C or assembler program can use memory at higher
addresses.

user_input_bit1, user_input_bit2

These variables show the state of the two user input bits. These are not
polled, so they show the state at the time the Debugger Internals window
was displayed, the core was last stopped, or the command-line command
was executed.

user_output_bit1, user_output_bit2

These variables allow you to alter the state of the user output bits. You can
only change the output bits if they are assigned to this connection, and if
the Set by Driver option is enabled. These are set on the server using
User Output Bits, found under the Settings menu (see User output bits

7��,���	�

�����������	

������1
5)*8)(6

9���

7��,

:������

)(�����

������1���	�
�����		

9��� ���	�

$������,�����1

7��,���1��

9��� ���1��

��

����������
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-43

Debugging with Multi-ICE
dialog on page 3-19). These are not polled, so they show the state at the
time the Debugger Internals window was displayed or the command-line
command was executed.

vector_address

This variable applies only to processors that support movable vector
tables, such as ARM720T™ and ARM920T. It tells Multi-ICE where the
exception vector table is. The default value is the vector address that was
current the last time the processor stopped. The address is determined by
reading the V bit from CP15 Register 1. You can set it to either 0 or
0xFFFF0000. There must be readable memory at this address.
4-44 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.6 Post-mortem debugging

This section describes how to examine the state of a system that has previously been
running but that is currently not connected to Multi-ICE. For example, you can find out
why a program has stopped.

Before you can examine a running target with Multi-ICE, you must configure the
Multi-ICE interface unit and the server for that target. If you have a target that is
operating without a Multi-ICE interface unit connected, and you must examine it to find
out why it is behaving in a particular way, you must power up Multi-ICE interface unit
and configure the server without disturbing the state of the target. This requires that the
Multi-ICE interface unit is powered before it is connected to the target. The possible
ways of powering Multi-ICE are described in:

• Powering the interface unit using the power jack (Multi-ICE Version 2.1 or later)

• Powering the interface unit using a modified cable on page 4-46

• Powering the interface unit using the 14-way JTAG adaptor, HPI-0027 on
page 4-47.

4.6.1 Powering the interface unit using the power jack (Multi-ICE Version 2.1 or later)

From Version 2.1 onwards, the Multi-ICE interface hardware supplied with Multi-ICE
includes:

• a power input jack socket next to the JTAG connector

• power conditioning and switching circuit that enables you to plug and unplug the
JTAG cable without affecting the target.

The power jack accepts a 2.1mm plug with center positive polarity. You can use power
supplies with output voltages from 9V to 12V DC and a minimum continuous power
rating of 500mA.

Note
 The voltage reference used by the interface unit JTAG circuit is generated from the
VTref signal present on the JTAG connector. If this signal is not connected at the target,
you must modify the target or the JTAG cable to supply a suitable reference. Typically,
connecting VTref to Vsupply is sufficient.

To connect to a running target:

1. Ensure that the Multi-ICE interface unit is not already powered from the target.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-45

Debugging with Multi-ICE
2. The JTAG input lines TDI, TMS, nSRST, and nTRST must have pull-up
resistors (normal practice) and TCK must have a pull-down resistor so that when
the adaptor is not connected from the target these lines are in their quiescent state.

3. Plug the power jack into the interface unit.

4. Configure the Multi-ICE server. You must either manually configure the server or
autoconfigure using a separate test system. Leave the server running.

Note
 Do not use autoconfigure on the target that must be debugged. Doing so resets the

processor.

5. Plug the 20-way JTAG cable into the target.

6. Start the debugger. The debugger can then stop the processor and display the
stopped state.

To get a high-level (source code) view of the problem, you must load the symbol
table for your target program into the debugger. For AXD, use File → Load
debug symbols.... For ADW or ADU, use File → Load symbols only....

7. Press the Go or Run button and unplug the JTAG connector to restart the system.
Then exit the debugger.

4.6.2 Powering the interface unit using a modified cable

Note
 Use this method if you are not using the Multi-ICE Version 2.1 (or later) interface unit,
and you have a 20-way JTAG connector on the target.

To connect to a running target with a modified cable:

1. Ensure that the Multi-ICE interface unit is not already powered from the target.

2. You must make a special IDC cable to split off pin 1 (VTref), pin 2 (Vsupply) and
GND.

3. Connect a 5V power supply between Vsupply and GND to power the Multi-ICE
interface unit, but do not switch it on.

4. Connect a voltage suitable for your target to pin 1 of the 20-way Multi-ICE
connector (VTref) through a 1kΩ resistor. Only a very small power supply current
is required into VTref. You can use the same power supply for this reference
4-46 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
voltage as that used to power the Multi-ICE interface unit if your target uses 3.3V
or 5V logic. If your target runs at a lower voltage, you must apply that voltage to
VTref (see Chapter 6 System Design Guidelines for more details about VTref).

5. The JTAG input lines TDI, TMS, nSRST, and nTRST must have pull-up
resistors (normal practice) and TCK must have a pull-down resistor so that when
the cable is disconnected from the target these lines are in their quiescent state.

6. Switch on the power between Vsupply and GND, and between VTref and GND.
The power light on the Multi-ICE interface unit glows brightly.

7. Configure the Multi-ICE server. You must either manually configure the server or
autoconfigure using a separate test system. Leave the server running.

Note
 Do not use autoconfigure on the target that must be debugged. Doing so resets the

processor.

8. Plug the 20-way JTAG cable into the target.

9. Start the debugger. The debugger can then stop the processor and display the
stopped state.

To get a high-level (source code) view, you must load the symbol table for your
target program into the debugger. For AXD, use File → Load debug symbols....
For ADW or ADU, use File → Load symbols only....

10. Press the Go or Run button and unplug the JTAG connector to restart the system.
Then exit the debugger.

4.6.3 Powering the interface unit using the 14-way JTAG adaptor, HPI-0027

To connect to a running target using the optional 14-way adaptor:

1. Ensure that the Multi-ICE interface unit is not already powered from the target.

2. You must remove the link on connector J3 of the 14-way adaptor and connect a
5V power supply to the +5V and 0V pins. The VTref signal is permanently
connected to the target power supply.

3. The JTAG input lines TDI, TMS, nSRST, and nTRST must have pull-up
resistors (normal practice) and TCK must have a pull-down resistor so that when
the adaptor is disconnected from the target these lines are in their quiescent state.

4. Switch on the power between Vsupply and GND. The power light on the
Multi-ICE interface unit glows brightly.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-47

Debugging with Multi-ICE
5. Configure the Multi-ICE server. You must either manually configure the server or
autoconfigure using a separate test system. Leave the server running.

Note
 Do not use autoconfigure on the target that must be debugged. Doing so resets the

processor.

6. Plug the 20-way JTAG cable into the target.

7. Start the debugger. The debugger can then stop the processor and display the
stopped state.

To get a high-level (source code) view of the problem, you must load the symbol
table for your target program into the debugger. For AXD, use File → Load
debug symbols.... For ADW or ADU, use File → Load symbols only....

8. Press the Go or Run button and unplug the JTAG connector to restart the system.
Then exit the debugger.
4-48 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.7 Access to CP15

Multi-ICE provides support for coprocessors. Part of the description of the ARM
processors includes a description of the system control coprocessor, CP15, so you do
not have to describe them to the debugger.

For a general description of the ARM coprocessor architecture and the general form of
CP15, see the ARM Architecture Reference Manual. For information on the precise
facilities offered by your processor, see the processor technical reference manual. Many
of these are available in PDF form from the ARM website and on paper on request.
Additional information is available in Appendix E CP15 Register Mapping.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-49

Debugging with Multi-ICE
4.8 Semihosting

Semihosting enables the ARM processor target to make I/O requests to the computer
running the debugger. This means the target does not require a screen, keyboard, or disk
during the development period. These requests are made as a result of calls to C library
functions, for example, printf() and getenv(). Semihosting using Multi-ICE is
described in the following sections:

• Enabling semihosting

• Adding an application SWI handler when using Multi-ICE on page 4-52.

4.8.1 Enabling semihosting

When using the Multi-ICE DLL, semihosting is handled with either a real SWI exception
handler, or by emulating a handler using breakpoints. You can modify this semihosting
mechanism using the following debugger internal variables:

semihosting_enabled

By default, this variable is set to 1 to enable breakpoint semihosting but
you can set it to the following values:

0 Disables semihosting.

1 Enables start-stop semihosting, using breakpoint-based
emulation of the SWI handler.

2 Enables DCC semihosting, using an exception handler that
uses DCC to communicate with the host.

The S bit in vector_catch must not be used as an alternative to changing
semihosting_enabled.

semihosting_vector

This variable controls the location of the breakpoint set by the Multi-ICE
DLL to detect a semihosted SWI. It is set to 8 by default unless
vector_address specifies high vectors are in use.

In ADW and ADU, you can access both of these variables by selecting Debugger
Internals from the View menu. In AXD, debugger internal variables are accessed with
dedicated windows. See the ADS Debuggers Guide for more information.

Start-stop semihosting

Start-stop, or standard, semihosting involves setting a breakpoint either on the SWI
vector or somewhere else in cooperation with your own SWI handler, depending on the
value of semihosting_vector.
4-50 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
When the breakpoint is hit Multi-ICE interprets it as a semihosting request:

• the processor registers and memory are read as required to decode the request

• the request is executed on the host

• the return value is placed in register R0 and, when required, memory is modified

• the pc is modified so the next instruction is the instruction following the SWI

• execution is resumed.

Note
 Using Multi-ICE standard semihosting with systems that include time-sensitive
interrupt-driven software is not recommended. The processor must be halted while a
semihosting operation is performed, and so interrupts will be missed. Use DCC
semihosting or ARM RealMonitor to debug these systems

The breakpoint on the SWI vector uses breakpoint resources that might be required for
other purposes.

DCC semihosting

DCC semihosting offers two advantages to standard breakpoint-based semihosting:

• it is in most cases faster

• it does not cause the target processor to enter debug state and so interrupts
continue to be serviced.

Standard semihosting is the initial semihosting mode because DCC semihosting is more
intrusive on the target.

Because DCC semihosting does not cause the processor to halt, this method of
semihosting is more suitable for real-time systems. It is also more useful for targets that
use two or more processors in a JTAG chain, because DCC semihosting does not
interfere with automatic starting and stopping of processors.

You cannot use the DCC for other purposes (for example, Channel Viewers) while DCC
semihosting is enabled.

The DCC semihosting SWI handler is installed in target memory at the address in the
variable semihosting_dcchandler_address. It is vital that:

• The address is in the range of an ARM branch instruction (approximately
±32MB) from the SWI vector. It must not rely on a negative branch from low
memory wrapping around to high memory.

• The memory that the debugger writes the handler to is unused.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-51

Debugging with Multi-ICE
The SWI handler is no more than 0.75KB in size and is written to memory whenever
either:

• DCC semihosting is enabled by setting semihosting_enabled to two

• semihosting_dcchandler_address is changed and DCC semihosting is already
enabled.

The default value for semihosting_dcchandler_address is 0x70000. To change the
location of the handler, you must:

1. Disable semihosting by setting semihosting_enabled to zero.

2. Change the address of the handler by setting the variable
semihosting_dcc-handler_address to a new value.

3. Enable DCC semihosting by setting semihosting_enabled to two.

Note
 With processors that use Rev C or earlier AMBA wrappers you cannot use DCC-hosted
semihosting (semihosting_enabled=2). Use semihosting_enabled=1 (stop/start
semihosting) instead.

4.8.2 Adding an application SWI handler when using Multi-ICE

Many applications require their own SWI handlers as well as using semihosting SWIs.
You must do this so that the application SWI handler cooperates with the Multi-ICE
semihosting mechanism as follows:

1. Install the application SWI handler into the vector table.

2. For standard semihosting, modify the value of semihosting_vector to point to a
location that is only reached if your handler does not recognize the SWI, or
recognizes it as a semihosting SWI.

3. For DCC semihosting, install the application SWI handler on the SWI vector.
When a SWI the application does not recognize occurs, branch to
semihosting_dcchandler_address+12 with the processor state as it was on entry to
the SWI handler. The DCC semihosting handler executes the request and returns
to the calling code.

For example, a particular SWI handler might detect if it has failed to handle a SWI and
branch to an error handler (see the ADS documentation for further details of writing
SWI handlers). An example of a basic exception handler is shown in Example 4-3 on
page 4-53.
4-52 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Example 4-3 Basic SWI handler

; r0 = 1 if SWI handled
CMP r0, #1 ; Test if SWI has been handled.
BNE NoSuchSWI ; Call unknown SWI handler.
LDMFD sp!, {r0} ; Unstack SPSR...
MSR spsr_cf, r0 ; ...and restore it.
LDMFD sp!, {r0-r12, pc}^ ; Restore registers and return.

You can modify this code for use in conjunction with Multi-ICE start-stop semihosting
as shown in Example 4-4.

Example 4-4 SWI handler with Multi-ICE link

; r0 = 1 if SWI handled
CMP r0, #1 ; Test if SWI has been handled.
LDMFD sp!, {r0} ; Unstack SPSR...
MSR spsr_cf, r0 ; ...and restore it.
LDMFD sp!, {r0-r12, lr} ; Restore registers.
MOVEQS pc, lr ; Return if SWI handled.

Semi_SWI
MOVS pc, lr

You must then set up the semihosting_vector with the address of Semi_SWI. The
instruction at this address is never actually executed because the Multi-ICE DLL returns
directly to the application after processing the semihosted SWI. Using a normal SWI
return instruction ensures that the application does not crash if the semihosting
breakpoint is not set up.

If the application is linked with the semihosted ARM C library, and therefore uses the
C library startup code, you must change the contents of semihosting_vector just before
the application installs its own handler, typically by setting a breakpoint in the main
code. This is because, if semihosting_vector is set to the fall-through part of the
application SWI handler before the application starts execution, the semihosted SWIs
that are called by the library initialization can trigger an unknown watchpoint error. At
this point, the SWI vector has not yet had the application handler written to it, and might
still contain the software breakpoint bit pattern. This triggers a breakpoint that the
Multi-ICE DLL does not know about because the semihosting_vector address has
moved to a place that cannot currently be reached.

Note
 If semihosting is not required by your application, including the startup code, you can
simplify this process by setting semihosting_enabled to zero.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-53

Debugging with Multi-ICE
You must take care when moving an application that previously ran in conjunction with
the Angel debug monitor onto a Multi-ICE system. On Angel debug monitor systems,
application SWI handlers are typically added by moving and adjusting the contents of
the Angel installed SWI vector to another place, and installing the application SWI
handler into the SWI vector. This method does not apply to the Multi-ICE DLL because
there is no instruction to move out of the SWI vector, and no code to jump to. Therefore,
when moving an application onto a Multi-ICE based system, you must convert to the
Multi-ICE way of installing the application and semihosted SWI handlers.
4-54 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.9 Watchpoints and breakpoints

The ARM debuggers provide break and watch facilities with Multi-ICE targets. The
following sections describe the facilities that are implemented and what the
implications for you are:

• Watchpoints

• Breakpoints on page 4-56

• Watchpoints, breakpoints, and the program counter on page 4-56

• Vector breakpoints and exceptions on page 4-57

• Vector catch with ROM at 0x0 on page 4-58

• Stopping the processor on page 4-58.

Refer to Appendix B Breakpoint Selection Algorithm for more information on how the
breakpoint hardware is managed.

4.9.1 Watchpoints

All ARM debugger watchpoints are data-changed watchpoints. That is, they are not
activated if the data point is read or written to with the same data value as the one
currently in memory. See Accessing the EmbeddedICE logic directly on page 4-65 for
details of how to implement other forms of watchpoint.

Hardware versus software watchpoints

Hardware watchpoints are implemented using an EmbeddedICE logic point to detect
data writes to addresses that fall inside a mask. This type of watchpoint is efficient
because execution stops only when the relevant data is written. However, it completely
ties up an EmbeddedICE logic point.

Note
 If a structure or an array is being watchpointed, the mask is likely to include some
addresses that are not part of the object being watchpointed. In this case, writes to these
unwanted addresses are filtered out by the debugger. Execution performance is slightly
degraded because the processor is stopped when the unwanted watchpoint is hit, and
then restarted automatically by the debugger.

Software watchpoints use the EmbeddedICE logic differently. Instead, after each
instruction is executed, the data locations concerned are examined to see whether their
values have changed. If a value has changed, execution is halted. Otherwise, execution
is restarted. This type of watchpoint significantly reduces execution performance. In
addition, it cannot be used on write-only areas of memory, such as some types of
memory-mapped device register.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-55

Debugging with Multi-ICE
4.9.2 Breakpoints

When you inspect the current breakpoints and watchpoints (using the watch or break
commands without arguments in the ADW command window, or by viewing the
Breakpoints or Watchpoints windows in ADW, AXD, or ADU), the output specifies
whether they are hardware or software breakpoints or watchpoints.

Hardware versus software breakpoints

Hardware breakpoints are implemented using an EmbeddedICE logic point to detect an
instruction fetch from the appropriate address. This works in all cases, even if the
program being debugged modifies itself as it executes, or if the code is in ROM.
However, it completely ties up one of the two available EmbeddedICE logic point units.

For ARM processors prior to ARM architecture v5, software breakpoints are
implemented using an EmbeddedICE logic unit to detect an instruction fetch of a
particular bit pattern. This bit pattern has been stored previously at the appropriate
location, and the real instruction stored in the host debugger memory. Any number of
software breakpoints can be supported using a single EmbeddedICE logic point.

ARM architecture v5 processors have specific breakpoint instructions, so extra
EmbeddedICE logic is not required.

Self-modifying code, code in ROM, or code paged from disk file cannot be debugged
using software breakpoints. If you attempt to set a breakpoint on a location in ROM,
Multi-ICE detects that the memory is not writable and tries to use a hardware
breakpoint.

4.9.3 Watchpoints, breakpoints, and the program counter

Watchpoints are taken when the data being watchpointed has changed. When this
happens, the program counter is updated to point to the instruction following the one
that caused the watchpoint to be taken. The value of the watchpointed data is therefore
the new value, not the old value.

Breakpoints are taken when the instruction being breakpointed reaches the Execute
stage of the pipeline, but before it is executed. So, when the breakpoint is taken, the
program counter is not updated, and retains the address of the breakpointed instruction.

Note
 Inside the core of an ARM CPU, the program counter typically points to two
instructions beyond the currently executing instruction. (Historically, this is the address
of the instruction currently being loaded into the Fetch stage of the pipeline.) The ARM
4-56 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
debuggers simplify this by reporting a modified value for the program counter so that
when it is displayed within the debugger its contents are the address of the instruction
being, or about to be, executed.

4.9.4 EmbeddedICE/RT breakpoints

The EmbeddedICE/RT logic is an upgrade of the EmbeddedICE logic. It is included in
ARM7TDMI processor cores from Rev 4 onwards and ARM9TDMI processor cores
from Rev 2 onwards, and provides support for real time debugging. Many of the
improvements are only useful to a target based monitor, such as RealMonitor.
Multi-ICE can, however, use the RT extensions to set breakpoints and watchpoints
while the target program is running. This is only possible when the target debugger also
supports this capability. The version of AXD included with ADS v1.1 or later does
include this support.

4.9.5 Vector breakpoints and exceptions

The Multi-ICE DLL puts into place any breakpoints that have been requested in the
order they are received, including those implicitly requested by the debugger internal
variable vector_catch. The Multi-ICE DLL uses the breakpoint resources it has
available as efficiently as possible, but the presence of a vector catch breakpoint
sometimes requires software breakpoints to be used.

The vector_catch variable indicates whether or not execution must be trapped when one
of the conditions described in Table 4-5 arises. The default value is, for ADW
%RUsPDAifE, and for AXD %RUsPDif where capital letters indicate that the condition is to
be intercepted.

Table 4-5 Breakpoints

Vector Description

R Reset

U Undefined instruction

S Software interrupt (SWI)

P Instruction prefetch abort

D Data access abort

Aa Address exception
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-57

Debugging with Multi-ICE
On ARM9TDMI and ARM10TDMI family devices, and on XScale microarchitecture
processors, additional hardware in the core enables you to perform vector catching
without setting general breakpoints on the vectors. See the ARM9TDMI Technical
Reference Manual or ARM1020T Technical Reference Manual for more details.

In normal usage, the SWI flag within vector_catch remains lowercase, as finer control is
provided by the debugger internal variables semihosting_enabled and
semihosting_vector (see Semihosting on page 4-50).

Note
 If you set the S bit in vector_catch with semihosting_enabled nonzero, vector catch takes
precedence over semihosting.

4.9.6 Vector catch with ROM at 0x0

In systems where there is ROM at address 0x0, you must take care with the setting of
vector_catch. See Debugging applications in ROM on page 4-62 for more details.

4.9.7 Stopping the processor

There are two ways to stop an ARM processor:

• Asserting DBGRQ and waiting for DBGACK. This is the standard method.

• Asserting nSRST and pulsing nTRST, setting a breakpoint on the Reset vector,
and then releasing nSRST. This is the alternative method.

If the standard method fails, then you are asked whether the alternative method can be
tried. This resets both the core and TAP controller and leaves the TAP controller
operating. It then programs a hardware breakpoint on address 0, releases system reset,
and waits to see if the processor hits the breakpoint.

I Interrupt request (IRQ)

F Fast interrupt request (FIQ)

Eb Error

a. Not used by AXD.
b. Not used by AXD or ADW.

Table 4-5 Breakpoints (continued)

Vector Description
4-58 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
The reset method is useful if the core is not being clocked, for example if nWait is
permanently asserted, because it allows the debugger to regain control of the processor.

Note
 This alternative method is more intrusive than the standard method, because it resets all
processors in a multi-processor system.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-59

Debugging with Multi-ICE
4.10 Cached data

The way that Multi-ICE handles cached data depends on the type of processor that is
being debugged:

• If you are debugging a processor with an ARM7, ARM9, or ARM10 core, see
Cached data on ARM architecture processors.

• If you are debugging an XScale microarchitecture processor, see Cached data on
XScale microarchitecture processors on page 4-61.

4.10.1 Cached data on ARM architecture processors

When debugging a cached processor with an ARM7, ARM9, or ARM10 core,
Multi-ICE preserves as much of the cache contents as possible. In the ideal case, it uses
the following strategy:

• When the processor enters debug state with caches enabled, Multi-ICE does the
following:

— it disables line fills to both the ICache and the DCache

— it stores the current write behavior for the DCache.

— it selects write-through behavior for the DCache.

• If data is read from cachable memory in debug state, Multi-ICE does not read it
into the cache, because line fills have been disabled.

• If data is written to memory in debug state, Multi-ICE does the following:

1. It invalidates all cache lines in the ICache that contain an address within the
data.

All other cache lines in the ICache remain unaffected.

2. It update the data values in all cache lines in the DCache that contain an
address within the data. It writes the data through into memory, because of
the write-through behavior.

All other cache lines in the DCache remain unaffected.

Note
 If an address within the data is not in the cache prior to the write, it is not

added to the cache, because line fills have been disabled.

• When the processor leaves debug state, Multi-ICE does the following:

— it re-enables line fills to both the ICache and the D cache

— it restores the stored write behavior for the DCache.
4-60 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
Note
 The effectiveness of cache preservation depends on the exact processor and revision
being used. In some cases, limitations in the design of the processor prevent Multi-ICE
from using this ideal cache preservation strategy. However, it always ensures that no
data is lost, and that cache coherency is maintained.

Locked-Down Data

If you invalidate a cache line that is in a lockdown block, any dirty data in the cache line
is lost. The lock down remains in effect. Because the cache line has been invalidated, no
further cache hits occur for that line, and so that cache line remains unused, even after
exiting debug state. Any subsequent accesses to the invalidated addresses instead use
the unlocked region of the cache.

4.10.2 Cached data on XScale microarchitecture processors

When debugging a cached XScale microarchitecture processor, Multi-ICE uses the
following strategy:

• When the processor enters debug state with the DCache enabled, Multi-ICE does
the following:

— it cleans the entire DCache, and so flushes its contents (but see
Locked-Down Data).

• If data is read from cachable memory in debug state, Multi-ICE reads it into the
cache, because line fills have not been disabled.

• If data is written to memory in debug state, Multi-ICE does the following:

1. It flushes the entire ICache.

2. It update the data values in all cache lines in the DCache that contain an
address within the data. It writes the data through into memory, simulating
write-through behavior.

All other cache lines in the DCache remain unaffected.

Locked-Down Data

All XScale microarchitecture processors protect lockdown blocks from cache clean and
invalidate operations. So on entry to debug state, cache lines that are in a lockdown
block are not cleaned and flushed. If you subsequently disable the cache through the
debugger, data written to locked cache regions might be lost.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-61

Debugging with Multi-ICE
4.11 Debugging applications in ROM

This section describes some of the issues involved with debugging applications in ROM
using Multi-ICE in the following sections:

• Debugging from reset

• Debugging systems with ROM at zero on page 4-64.

4.11.1 Debugging from reset

You can use the Multi-ICE DLL to debug systems running in ROM. Typically, when a
target board with an application stored in ROM is powered up, the application begins
running. Therefore, when the debugger is started up on the host, the processor on the
target is stopped. At this stage, the application can be at any point in its execution
lifetime, depending on when the debugger was started.

This means that you can examine the state of the system and restart execution from the
current place. In some cases, this is sufficient. However in many cases it is preferable to
restart execution of the application as if from power-on. There are two ways to do this:

• Simulating a reset

• Carrying out a real reset on page 4-63.

When you debug code running from ROM, ensure that at least one watchpoint unit
remains available to allow breakpoints to be set on code in ROM, because you cannot
use software breakpoints. The chances of the debugger taking these units for its own use
can be reduced by not using standard semihosting or vector catching. To do this on a
processor without vector catch hardware you must set the following debugger internal
variables as soon as possible after starting up the debugger:

semihosting_enabled = 0
vector_catch = 0

Next set up any ROM breakpoints before any non-ROM breakpoints or watchpoints are
set. Otherwise the watchpoint units might be full, causing the attempt to set the ROM
breakpoint to fail with a debugger-dependent message saying that there are too many
breakpoints already set to add another.

Another factor in debugging a system in ROM is that the ROM image does not contain
any debug information. When debugging using the Multi-ICE DLL, symbol or source
code information is available by loading the relevant information into the debugger
from a file on the host, for example by using Load Symbols....

Simulating a reset

You can often simulate a reset from within the debugger by setting:

• pc to 0 (the address of the reset vector)
4-62 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
• cpsr to %IF_SVC (to change into Supervisor mode with interrupts disabled).

This simulates the state of the ARM processor at power-on or reset, but it does not allow
for a reset memory map or the initialization of any target-specific features such as
peripheral registers. You are recommended to modify any of these target-specific
features to resemble their startup state before executing the application again, if this is
possible. You can automate this procedure with the scripting facilities of your debugger,
as shown in Example 4-5 for ADW. The name embed.axf must be replaced with the
name of the file that the target is executing. You might also have to change the
top_of_memory value shown, depending on the memory layout of your target.

Example 4-5 Suggested reset script for ADS versions of ADW, ADU

readsyms embed.axf
pc = 0x0
cpsr = %IFt_SVC
$vector_catch = 0
$semihosting_enabled = 0
$top_of_memory = 0x40000

The same example for AXD is shown in Example 4-6.

Example 4-6 Suggested reset script for AXD

loadsymbols embed.axf
setpc 0
sreg cpsr 0xd3
spp vector_catch 0
spp semihosting_enabled 0
let $top_of_memory 0x40000

Carrying out a real reset

Depending on the design of the reset circuitry, you might be able to carry out a real reset
of the board. However, take care about when this is done, because if the EmbeddedICE
logic is also reset, the debugger might not be able to regain synchronization. Two forms
of reset are required on the board:

• a full power-on reset that resets everything on the board

• a reset button that resets everything on the board except the EmbeddedICE logic.

See Chapter 6 System Design Guidelines for more information about the different forms
of reset.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-63

Debugging with Multi-ICE
If a hardware breakpoint is set on the reset vector (or on the start address of the reset
code) and the recommended reset circuit is used, when the target is reset, it halts on reset
as required.

Note
 If Multi-ICE is unable, because of the wiring of the hardware, to detect a reset on your
target, you are recommended to delete all other software breakpoints and watchpoints
before resetting the processor.

Example using the ARM Integrator board

The ARM Integrator board implements the required two levels of reset. The reset switch
carries out the required initialization reset, so enabling debug from reset. All that is
required is to set the hardware breakpoint, and then press the Reset button.

4.11.2 Debugging systems with ROM at zero

When debugging processors without vector catch hardware and with ROM rather than
RAM at zero, you must set vector_catch to zero. This prevents Multi-ICE from trying
to set software breakpoints on the vector table.
4-64 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.12 Accessing the EmbeddedICE logic directly

To manipulate EmbeddedICE logic registers you use the commands that display and set
coprocessor registers, with coprocessor number specified as zero.

Note
 • The XScale microarchitecture processors do not have an EmbeddedICE logic

block, and on these processors coprocessor zero is a real hardware coprocessor.

• The EmbeddedICE logic coprocessor is not emulated for the ARM10 processor
because the EmbeddedICE logic is different.

The following sections describe how to access and use the EmbeddedICE logic registers
from a debugger:

• Reading EmbeddedICE logic registers from AXD

• Reading EmbeddedICE logic registers from ADW on page 4-67

• Using the EmbeddedICE logic values on page 4-69

• Support for the ICE Extension Unit on page 4-69.

See also the description of the cwrite or setreg command in the documentation for your
ADS debugger.

4.12.1 Reading EmbeddedICE logic registers from AXD

To access the coprocessor zero registers using the AXD GUI, select Processor
Views → Registers. This displays the registers window, from which you can select the
coprocessor zero registers as shown in Figure 4-22 on page 4-66.

Note
 If you are using ADS v1.0.1 the EmbeddedICE logic registers in the window are not
individually named, and appear under the heading CoProc 0.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-65

Debugging with Multi-ICE
Figure 4-22 Register view showing EmbeddedICE logic registers

The AXD command line interface command reg displays the registers in a named
group. The bank name varies between different versions of AXD:

ADS 1.0.1 The name is Coproc 0

ADS 1.1 or later The name is EICE

For example, with ADS 1.2, the command registers EICE displays the contents of the
EmbeddedICE logic registers, as shown in Example 4-7.

Example 4-7 Displaying coprocessor 0 registers using AXD

Debug >reg EICE
Registers Bank: EICE
Index Name Value
#1 c0 0x05
#2 c1 0x0D
#3 c2 0x1F
4-66 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
#4 c4 0x00
#5 c5 0x703008AD
#6 c8 0x00000000
#7 c9 0x00000000
#8 c10 0x00000000
#9 c11 0x00000000
#10 c12 0x0000
#11 c13 0x00
#12 c16 0x00000000
#13 c17 0x00000000
#14 c18 0x00000000
#15 c19 0x00000000
#16 c20 0x0000
#17 c21 0x00

4.12.2 Reading EmbeddedICE logic registers from ADW

To access the coprocessor zero registers using the ADW GUI, select View → Registers
as shown in Figure 4-23.

Figure 4-23 The View Registers menu

Display the Coprocessor dialog box. Enter 0 for Co-processor Number and check the
Raw (Unformatted) display option as shown in Figure 4-24.

Figure 4-24 The Display Co-processor Regs dialog

Select OK to display the coprocessor registers window shown in Figure 4-25 on
page 4-68.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-67

Debugging with Multi-ICE
Figure 4-25 EmbeddedICE logic registers in the Raw Co-processor 0 view

The ADW Command Window command cregisters 0 displays the EmbeddedICE
logic registers, as shown in Example 4-8.

Example 4-8 Example coprocessor 0 register values

Debug: cregisters 0
c0 = 0x05
c1 = 0x09
c4 = 0x00
c5 = 0x00000000
c8 = 0x516ce8da
c9 = 0xbfdf0ea6
c10 = 0xbff6fd7d
c11 = 0xfbaffbff
c12 = 0x0000
c13 = 0xff
c16 = 0x00000008
c17 = 0x00000003
c18 = 0x7dfeeffb
c19 = 0xffffffff
c20 = 0x0100
c21 = 0xf6
4-68 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Debugging with Multi-ICE
4.12.3 Using the EmbeddedICE logic values

The register address field in the EmbeddedICE logic scan chain is the coprocessor zero
register number. For more information about the EmbeddedICE logic, refer to one of
the ARM technical reference manuals on an ARM core with debug capabilities (for
example, ARM7TDI or ARM9TDMI).

You can read EmbeddedICE logic registers freely in this manner, but writing to them
requires more care. This is because the Multi-ICE DLL also uses EmbeddedICE logic
registers to set up breakpoints and watchpoints. When you write to an EmbeddedICE
logic register (for example, using the ADW command cwrite 0 20 0x44), the Multi-ICE
DLL checks to see if that breakpoint register is in use. If it is, the Multi-ICE DLL
attempts to free it by degrading hardware breakpoints to software breakpoints. It then
sets a lock on that breakpoint register so that the Multi-ICE DLL makes no further
attempt to use it.

You can find out the breakpoints that have been locked by displaying the value of
icebreaker_lockedpoints. You can also write to this variable to unlock breakpoints. In
the ARM7 and ARM9 processor families, the breakpoints are numbered 1 and 2, and
bits 1 and 2 in icebreaker_lockedpoints indicate their status.

If a breakpoint or watchpoint that has been defined by writing to coprocessor zero is
taken, the Multi-ICE DLL halts execution with the report Unknown Watchpoint. This
indicates the breakpoint was outside the control of the Multi-ICE DLL.

Note
 Do not write to EmbeddedICE logic registers 0 and 1, the control and status registers.
The Multi-ICE DLL uses these to perform many of its operations and changes you make
are likely to be lost or to cause the DLL to malfunction.

Debugger requests to read or write EmbeddedICE logic registers do not necessarily
cause the registers to be read or written immediately. This is because, for efficiency, the
Multi-ICE software only updates the registers just before execution of the program is
resumed.

4.12.4 Support for the ICE Extension Unit

Multi-ICE includes support for the ARM ICE Extension Unit (IEU). This is a logic
block that can be added to a processor when it is built and that extends the number of
breakpoint units available to the debugger.

If this unit is present, it is used automatically. The IEU breakpoint registers are
numbered from two to 31. The corresponding icebreaker_lockedpoints bits are 0x4 to
0x80000000.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 4-69

Debugging with Multi-ICE
4-70 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 5
Troubleshooting

This chapter explains the solutions to some of the problems you might encounter when
using Multi-ICE. It is split into the following sections:

• Troubleshooting on page 5-2

• Error messages on page 5-12.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-1

Troubleshooting
5.1 Troubleshooting

This section describes the following situations:

• The Multi-ICE server fails to autoconfigure the chip on page 5-3

• The debugger reports “Attempt to force the processor to enter debug state failed
- execution continues” on page 5-5

• The debugger reports “Target processor would not enter debug state when
requested. Do you want to try asserting System Reset with a breakpoint on
address 0?” on page 5-5

• The debugger reports “*** Data abort ***” in the execution window on page 5-6

• Random stopping or failure to start the debugger on page 5-6

• The debugger reports “Hardware interface timeout” on page 5-7

• The debugger reports “Unable to set vector catch breakpoints on exception
vectors” on page 5-8

• Data aborts or crashes when loading or running applications on page 5-8

• DCC semihosting, the channel viewer, or the DCC fails on page 5-9

• A program that prints strings seems to load and run, but displays garbled text on
page 5-9

• A 'C' program including string handling or uses char arrays works on some ARM
processors but not on others on page 5-9

• When trying to connect Multi-ICE and a logic analyzer to an ARM Integrator
board to trace a program, Multi-ICE continually reports "The target is being
reset, unable to connect" on page 5-10

• My application works using ARMulator but quickly crashes when I use Multi-ICE
on page 5-10

• Running the Multi-ICE server makes my computer run very slowly on page 5-11

• I cannot connect to a Multi-ICE server from the computer that is running it on
page 5-11.
5-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
5.1.1 The Multi-ICE server fails to autoconfigure the chip

The following can be the cause of this problem:

• The chip contains devices that are not supported by autoconfiguration

• You have a signal fault

• The server cannot stop the processor during autoconfiguration on page 5-4

• There is insufficient or no power to the Multi-ICE interface unit on page 5-4

• There is some other problem with the TAP controller on page 5-4.

The chip contains devices that are not supported by autoconfiguration

If the autoconfiguration process detects a working TAP controller attached to an
unknown device, a TAP box is shown in the server window labeled UNKNOWN. The list of
supported devices is in the file proclist.txt. If autoconfiguration of your device is not
supported there are two alternatives:

• Use manual configuration. See Manual device configuration on page 3-12.

• Double click the TAP box. A dialog box appears that shows the IR length for the
detected TAP controller. If you only have one device in your chip with this IR
length (excluding devices that are autoconfigurable), you can tell the server what
the device is. To do this add a file called USERDRVn.TXT (where n is the IR length)
to the Multi-ICE installation directory. The file must contain the name of the
device to use on the first and only line in the file. For example, if you have a DSP
with an IR length of 4, add a file called USERDRV4.TXT that contains the text DSP.

You have a signal fault

The most common faults are:

• There is no pull-up resistor on the nTRST signal. This signal has an open
collector drive from the Multi-ICE interface unit. There is no pull-up in the unit.
In the EmbeddedICE interface unit this signal was driven with a push-pull driver
so no pull-up was required (although it is specified as being required).

• Signals nTRST and nSRST are not correctly driven by the target. Details on
driving these signals correctly are in Chapter 6 System Design Guidelines.

• The TCK frequency is too high for the chip. The following circumstances are
known to cause this:

— When using a simulated TAP controller in a Quickturn/IKOS unit. In this
case the default frequency of 1MHz might be too high. Try autoconfiguring
at 20kHz instead by selecting File → Autoconfigure at 20KHz. If this
fails, manually configure the server.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-3

Troubleshooting
— Using a chip whose MCLK setting is much slower than 1MHz. A common
example is a telephone pager or similar device that contains power-saving
(sleep mode) circuitry. On some boards the software can write to a register
to switch the clock frequency between fast, for example 20MHz, and slow,
say 25kHz. If the processor MCLK is running at 25kHz then
autoconfiguration fails. Try autoconfiguring at 20kHz instead. If this fails,
manually configure the server.

The default TCK frequency for autoconfiguration is 1MHz. For all normally
working chips this is not a problem.

The server cannot stop the processor during autoconfiguration

This results in UNKNOWN being displayed in the TAP controller box. The most common
cause is that the processor has not been reset properly. Press the reset button and retry
autoconfiguration. If this fails, check that the processor reset line is not continuously
asserted (held LOW). If it is, find and fix this problem, and try autoconfiguring again.

There is insufficient or no power to the Multi-ICE interface unit

Multi-ICE requires between 2V and 5V DC on pin 2 of the 20-way JTAG connector, or
between 9V and 12V DC on the external power input jack, and a power source that can
deliver sufficient current (see Power supply on page 2-12 for more details). If you are
using a PID board with an ARM7TDMI header card, resistor R1 must be shorted out in
order to deliver this.

When the Multi-ICE interface unit is correctly powered, the Power LED is brightly lit.

There is some other problem with the TAP controller

Other possibilities include:

• The signal nTDOen is not correctly implemented. The nTDOen signal is used to
enable the pad tristate driver for the TDO pin.

• The target hardware is driving nWAIT permanently LOW, or alternatively,
HWAIT or BWAIT permanently HIGH. These signals gate the processor core
clock, preventing the EmbeddedICE logic from taking the core into debug state.
If this is happening, it usually indicates a fault in the hardware.
5-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
5.1.2 The debugger reports “Attempt to force the processor to enter debug state failed -
execution continues”

Multi-ICE waits for the target to enter debug state when it asserts the DBGRQ signal.
If this does not happen within the timeout period this error is reported. The following
might be the cause of the problem:

• The JTAG clock frequency is too high for this device or this cable length. Try a
lower clock frequency.

• The server has been incorrectly configured manually (incorrect number, type, or
order of devices, or incorrect IR length given in IRlength.arm file).

• The processor is being held in reset state.

• The processor signal DBGEN is held LOW (deasserted), preventing the DBGRQ
being recognized.

• The processor memory interface signal nWAIT (or the equivalent bus signals
BWAIT and HWAIT) are permanently asserted, or there is no processor core
clock. The processor only acknowledges DBGRQ at the end of an instruction,
and so anything that prevents the current instruction terminating also prevents the
processor entering debug state.

• One or more of the JTAG signals, most often TCK, are not of sufficient quality.
This can result from a variety of problems in the design of the PCB or the length
and type of wiring.

If the device can be autoconfigured (see The Multi-ICE server fails to
autoconfigure the chip on page 5-3) but does not work reliably, there is a problem
with JTAG signal quality. If you manually configure the server, you get the error
message Can't stop processor.

5.1.3 The debugger reports “Target processor would not enter debug state when requested.
Do you want to try asserting System Reset with a breakpoint on address 0?”

The debugger has tried to use Multi-ICE to access the processor, for example, to stop it,
but when the Multi-ICE DLL tried to do this the processor did not respond as expected.
This could be because:

• The JTAG clock frequency is too high for this device or this cable length. Try a
lower clock frequency.

• The server has been incorrectly configured manually (incorrect number, type, or
order of devices, or incorrect IR length given in IRlength.arm file).

• The processor is being held in reset state.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-5

Troubleshooting
• The processor signal DBGEN is held LOW (deasserted), preventing the DBGRQ
being recognized.

• The processor memory interface signal nWAIT (or the equivalent bus signals
BWAIT and HWAIT) are permanently asserted, or there is no processor core
clock. The processor only acknowledges DBGRQ at the end of an instruction,
and so anything that prevents the current instruction terminating also prevents the
processor entering debug state.

• One or more of the JTAG signals, most often TCK, are not of sufficient quality.
This can result from a variety of problems in the design of the PCB or the length
and type of wiring.

If the device can be autoconfigured (see The Multi-ICE server fails to
autoconfigure the chip on page 5-3) but does not work reliably, there is a problem
with JTAG signal quality. If you manually configure the server, you get the error
message Can't stop processor.

You can often regain control of the processor by placing a breakpoint on location zero
and then resetting the processor, but this cannot be done without resetting the whole of
the target, including any other processors connected to the JTAG chain. Therefore,
Multi-ICE asks if it is acceptable to do this.

Note
 This method of gaining access to the processor does not work properly unless the
system reset nSRST and TAP reset line nTRST are connected independently, as
described in Chapter 6 System Design Guidelines, because Multi-ICE must be able to
program the TAP controller while the processor is in reset.

5.1.4 The debugger reports “*** Data abort ***” in the execution window

When the debugger starts up, it can stop the processor and read the current value of the
pc. The execution window displays the memory around the address of the program
counter. If there is no memory at the location, the memory accesses abort causing the
observed display. You must load an image file or set the pc register explicitly to point
to executable code.

5.1.5 Random stopping or failure to start the debugger

There can be many causes for random failures, mainly due to hardware timing or logic
problems. The most common cause of this behavior is failing to pulse nTRST LOW
when the ARM processor is reset on power-up. Unless this is done, the EmbeddedICE
logic is in an undefined state.
5-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
5.1.6 The debugger reports “Hardware interface timeout”

The following can cause this problem:

• The target hardware has been disconnected from the Multi-ICE interface unit.

• The Multi-ICE interface unit has been disconnected from the workstation.

• There is insufficient power to the Multi-ICE interface unit.

Multi-ICE requires between 2V and 5V DC on pin 2 of the 20-way JTAG
connector, or between 9V and 12V DC on the external power input jack, and a
power source that can deliver sufficient current (see Power supply on page 2-12
for more details). If you are using a PID board with an ARM7TDMI header card,
resistor R1 must be shorted out to deliver this.

• The server cannot establish contact with the Multi-ICE interface unit, because of
problems or incompatibilities with the parallel port on your PC.

The most common causes for this are as follows:

— The port that Multi-ICE is using is not mapped to its standard address. This
must be 0x378 for LPT1, and 0x278 for LPT2.

The facilities to determine and configure this address are dependent on the
hardware and operating system that you are using. For more information,
refer to the documentation supplied with your computer.

Note
 PCI-based ports are typically not mapped to these addresses, and so

Multi-ICE is unlikely to work with them.

— The port that Multi-ICE is using is configured to use an incompatible
operational mode.

Reboot your computer, and change the BIOS settings for the parallel port
from ECP or EPP to 8-bit bidirectional (sometimes called Standard or
Normal). If this succeeds, the Port Settings dialog for Multi-ICE then
reports that its Current Port Mode is standard 8-bit bidirectional. See
Parallel port settings dialog on page 3-18.

— Autodetection of the Multi-ICE interface unit is failing.

In the Port Settings dialog for Multi-ICE, select the specific port that
Multi-ICE is using (such as LPT1), instead of the default setting of AUTO.
See Parallel port settings dialog on page 3-18.

— A printer is configured to use the same port as Multi-ICE.

On the Windows Start menu, choose Settings → Printers, and open the
Properties dialog for each printer. If a printer is configured to use the same
port as Multi-ICE, reconfigure it to use a different port.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-7

Troubleshooting
— There is a conflict or other problem with the port that Multi-ICE is using.

The facilities to determine conflicts and to troubleshoot problems are
dependent on the version of Windows that you are using. For more
information, refer to the documentation supplied with your computer.

— Another peripheral is interfering with the parallel ports.

IR ports on laptops are particularly likely to do this. Disable these, and then
disable any other peripherals that you do not require.

— The port only works correctly with Multi-ICE as a basic unidirectional port.

In the Port Settings dialog for Multi-ICE, check the Force 4-bit access
box. See Parallel port settings dialog on page 3-18.

• The server has lost contact with the Multi-ICE interface unit or the target
hardware.

The most common cause is switching on adaptive clocking and failing to provide
a good RTCK signal. If autoconfiguration is used, the presence of the RTCK
signal is also autoconfigured. However, if the target circuitry provides an RTCK
signal during autodetection, but subsequently fails to generate RTCK, a hardware
interface timeout occurs.

5.1.7 The debugger reports “Unable to set vector catch breakpoints on exception vectors”

On an ARM7-based system, Multi-ICE tries to set software breakpoints on the vector
table entries indicated by the value of vector_catch. However, if you have ROM at
address 0x0, then Multi-ICE is unable to do this and reports this error message.

On ARM9 family, ARM10 family, and XScale microarchitecture processors, there is
built-in vector catch hardware so there is no problem with ROM at zero.

5.1.8 Data aborts or crashes when loading or running applications

The ARM compiler and linker tools use a default code address of 0x8000 so, unless you
select an alternative address, there must be usable memory in the target memory map at
0x8000 and above. This is true for the ARM Development Board, the ARM PIE and
ARM PIV boards, and the ARM Integrator core modules.

The Multi-ICE DLL has to assume a memory map for the target board when:

• the C library uses semihosting to get stack and heap information

• DCC semihosting is enabled, for the location of the DCC semihosting handler.

By default, the Multi-ICE DLL assumes that there is writable memory between
(approximately) 0x60000, and 0x80000. These addresses are valid if the target had 512KB
RAM located at the bottom of the address map. The DCC semihosting code is
downloaded at 0x70000 by default.
5-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
To change the location of the stack and heap you must change the debugger variable
top_of_memory. To change where the DCC semihosting handler is located, you must
change the debugger variable semihosting_dcchandler_address.

5.1.9 DCC semihosting, the channel viewer, or the DCC fails

The following can be the cause of the problem:

• The processor you are using does not have a DCC, for example the ARM7DI
processor that is used on the ARM Evaluation Board (HBI0041).

• You cannot use a channel viewer and DCC semihosting at the same time. Choose
one or the other.

• You are using a core with a revision C or earlier AMBA® wrapper.

September 1998 versions of the Atmel AT91 chip suffer from this problem. There
is no known workaround other than to replace the device.

5.1.10 A program that prints strings seems to load and run, but displays garbled text

The target memory controller does not support byte reads. This is a common and serious
problem because any C code that accesses chars does not work correctly.

None of the built-in string handling functions (for example, strcmp, strlen, and strcpy)
work properly without byte-readable memory, and accesses to arrays of chars also fail.
It is a misconception that because ARM code is all 32-bit (or all 16-bit for Thumb), that
only word and halfword accesses must be supported by the memory controller. Code
can be specially written to work with memory controllers designed like this, but
processors using these controllers do not run generic C code correctly.

5.1.11 A 'C' program including string handling or uses char arrays works on some ARM
processors but not on others

The target memory controller does not support byte reads. This is a common and serious
problem because any C code that accesses chars does not work correctly.

See A program that prints strings seems to load and run, but displays garbled text for
more details.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-9

Troubleshooting
5.1.12 When trying to connect Multi-ICE and a logic analyzer to an ARM Integrator board to
trace a program, Multi-ICE continually reports "The target is being reset, unable to connect"

The pullup fitted to nSRST on Integrator CM7TDMI boards is a 47KΩ resistor. This is
a relatively weak pullup, and can result in a voltage level on nSRST that Multi-ICE
detects as a logic zero (a reset condition). This is more likely to occur when a logic
analyzer cable is connected to the trace port because the trace port includes the nSRST
signal.

It might be possible to get Multi-ICE to connect by unplugging the analyzer and
plugging it back in again. The permanent solution is to replace the pullup resistor R22
with a 10KΩ device. Follow this procedure to replace the resistor (or contact ARM
technical support for assistance):

1. Remove the 47KΩ resistor at position R22. R22 is on the top side of the board
near the Multi-ICE connector.

2. Fit a 10KΩ 0603 resistor at position R22.

5.1.13 My application works using ARMulator but quickly crashes when I use Multi-ICE

This fault might be because there is no memory where in memory the application stack
has been placed by Multi-ICE, or because stack memory and other memory used by the
application overlap.

The default memory model for ARMulator creates memory pages as required through
the whole address space, and therefore the ARMulator configuration file can specify a
value for top of stack in high memory. Consequently, programs in low memory do not
normally interfere with the stack.

Multi-ICE must use whatever memory the target has available, but is never told what
the memory map of the target is. Whether this matters depends on the how the
application is linked:

Simple semihosted image

The location of the stack is defined by the debugger variable
top_of_memory. The default value is 0x80000. It is important that
this variable is set correctly.

Scatterloaded The location of the stack and heap is defined by a function called
by the C-library, and Multi-ICE is not involved.

Refer to Internal variable descriptions on page 4-39 for more information about
top_of_memory and how the ARM C-library uses it.
5-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
5.1.14 Running the Multi-ICE server makes my computer run very slowly

When you run the Multi-ICE server the Multi-ICE parallel port driver is activated. On
some machines with more than one parallel port, the parallel port driver can consume a
very large proportion of the available processor time in trying to check whether a second
parallel port has a Multi-ICE unit connected.

There is no problem if there is only one parallel port.

To avoid this slowdown, explicitly select the parallel port you are using with the
Multi-ICE interface unit, as described in Parallel port settings dialog on page 3-18. Do
not leave the setting on Auto. From Multi-ICE Version 2.1 onwards, this setting is
retained between sessions.

5.1.15 I cannot connect to a Multi-ICE server from the computer that is running it

If you start a Multi-ICE server, and later try to connect to it from the same computer,
you might get the error message:

Initialisation failed: Failed to connect to the server application - check

location of server.

If this happens, try to connect from a different computer. If this succeeds, it indicates
that the cause of the problem is the type of connection to the server.

Connecting on a local machine uses shared memory transfer by default. The protection
for this mechanism is stronger than for RPC access. For example, if you start the server
logged in as one user, but then attempt to connect to it as a different user, this fails if you
use shared memory transfer, but succeeds if you use RPC.

To fix such problems, when you select the Multi-ICE server to debug (see Connect
configuration tab on page 4-8), do not click the button labeled This computer. Instead,
you must click the Another computer button, and then select your workstation in the
Select server location dialog that appears. This forces RPC access, and so local access
to the Multi-ICE server behaves the same way as remote access.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-11

Troubleshooting
5.2 Error messages

This section explains the error messages that are displayed in dialog boxes, and provides
a way to recover from the error wherever possible. The messages are described in the
following sections:

• Multi-ICE server messages

• Multi-ICE DLL messages on page 5-16.

5.2.1 Multi-ICE server messages

These are the server error messages:

An error occurred while attempting to set up the TAP configuration.

The hardware cannot be configured, or the application ran out of memory.

An error occurred while opening the selected port.

An unexpected software error has occurred. Contact technical support.

An error occurred while retrieving the hardware details. This application will now

terminate.

Contact technical support at your supplier.

An error prevented retrieval of hardware details.

Contact technical support at your supplier.

Hardware Interface Timeout.

See The debugger reports “Hardware interface timeout” on page 5-7.

Auto-Configuration failed. Check the target power is on. Your chip may require

manual configuration.

This might be because:

• The power is off.

• The Multi-ICE directory does not exist, or cannot be written to.
Check that the directory exists and that you have sufficient access
to it.

• The chip might not be an ARM chip. You must write a manual
configuration file. See Server configuration on page 3-14.

Could not clean D-Cache - memory may appear incoherent in writeback regions.

For targets that have separate data and instruction caches (such as the
ARM920T), Multi-ICE uses the Cache clean code address setting in the
Multi-ICE configuration dialog (see Processor Settings Tab on
5-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
page 4-14) to specify memory it can use to store and execute the cache
cleaning code. Multi-ICE downloads and runs relocatable code into this
memory the first time it is required. If it cannot download the code
correctly, it displays this warning message.

Multi-ICE can fail to download the code to the target for one or more of
the following reasons:

• There is no memory at the Cache clean code address

• The memory at Cache clean code address is in read only memory
(either true ROM or memory that requires a special write
procedure, such as EEPROM)

• There is an active Memory Management Unit (MMU) and the page
containing Cache clean code address is marked read-only.

You can take one or more of the following steps to correct this:

• You can change Cache clean code address to an address in RAM
that Multi-ICE can access and that is not used by the application

• You can ensure that the MMU page descriptor for the memory you
specified enables data reads, data writes and instruction reads.

You can force Multi-ICE to download the cache clean code again by
changing the Cache clean code address setting in the Multi-ICE
configuration dialog.

If you ignore the error, you must be aware of the following:

• The Data Cache (DCache) uncachable bit is not set, and the
DCache is not cleaned while in debug state.

This means that memory is still read precisely as the processor sees
it, so there is no inconsistency even when the DCache has dirty data
in it. However, any data read in cachable regions causes DCache
linefills to occur, so new addresses are written into the DCache and
old data is evicted.

• Any data that is written to memory is written as normal.

This means that any writes that hit addresses in the DCache do not
get into memory, but only into the cache. This matters if the data is
actually code.

A side-effect of this is that software breakpoints set on addresses
that have been cached in the DCache are not read correctly on
processor instruction fetches and so are not taken.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-13

Troubleshooting
Note
 If the Fault Address Register (FAR) and Fault Status Register (FSR) are

implemented by the system coprocessor, they are read on debug state
entry. The values are available in the system coprocessor (number 15)
register display and get restored before leaving debug state, unless you
write new values. If you perform a debug action that causes a memory
abort, then an error is returned that includes the FSR and FAR values just
after the abort.

TAP configuration failed. Please check that the target hardware and the Multi-ICE

unit are properly connected and powered up.

Check that the Multi-ICE interface unit has power, and is connected to the
workstation using the cable supplied with Multi-ICE.

The Multi-ICE parallel port driver requires that the parallel port interface
on the host workstation is at one of the two standard addresses. This is
0x378 for LPT1, and 0x278 for LPT2. If your hardware uses a different
address, the Multi-ICE interface unit cannot be used.

If you are using Multi-ICE with a 14-way connector on the target board:

• If power is being supplied by the target, check that jumper J3 on the
14-way JTAG adaptor is linking +5V and TP and that, if necessary,
the series resistor on your target has been shorted. See Connecting
to nonstandard hardware on page 2-11.

• If power is being supplied externally, check that the supply voltage
is correct and switched on. See Connecting the Multi-ICE
hardware on page 2-6.

Failed to open parallel port. The port may be in use.

This might be because:

• another device is using the parallel port (for example, a printer)

• you have faulty parallel port hardware

• there are other problems or incompatibilities with the parallel port
on your PC, as described in The debugger reports “Hardware
interface timeout” on page 5-7.
5-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
Multi-ICE device driver failure. Please check that the Multi-ICE device driver is

installed and running and there is no other Multi-ICE Server running.

The Multi-ICE parallel port driver is not present or has not started. The
driver is started in different ways depending on the operating system:

Windows NT 4.0 In the devices control panel look in the device list
for the name Multi-ICE and check the driver is
present and has started.

Windows 95, 98, Me, and 2000
The Multi-ICE driver is started automatically by the
server.

The server could not initialize correctly. Please close down one or more

applications and re-start.

Other applications are using system resources required by the Multi-ICE
server, for example, system timers, graphics resources, or main memory.
Close down other applications if there are any. If not, the error might
indicate that Windows must be restarted.

The server installation is incomplete or damaged. You may wish to re-install the

software.

The server cannot find a required entry in the system registry. This might
happen if:

• this version of Multi-ICE has not been installed on this computer

• the Windows system registry of the computer has been damaged.

If you have an existing installation of Multi-ICE, you must first uninstall
it. You must then reinstall the Multi-ICE software.

Note
 It is recommended that you check for any wanted configuration files

stored in the Multi-ICE directory before uninstalling.

The attached device is not compatible with this server.

The hardware attached to the parallel port is either:

• not a Multi-ICE interface unit

• a faulty Multi-ICE interface unit.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-15

Troubleshooting
Check that the Multi-ICE interface unit is connected to the correct
parallel port. If it is, check that the unit is connected as indicated in
Connecting the Multi-ICE hardware on page 2-6 and that the cable is
working properly. If the error persists you must contact technical support
at your supplier.

The decision to read core information has been re-specified in file filename at

line number.

It has been specified more than once in the configuration file whether
core information is automatically read from the connected devices. You
must remove one of the two entries from the configuration file.

The selected server is not compatible with this debugger.

The ARM Multi-ICE DLL can only be used with the ARM Multi-ICE
server.

5.2.2 Multi-ICE DLL messages

These are the debugger error messages:

The driver for device could not be found.

The.MUL file corresponding to the device does not exist in the expected
location.

The driver for device could not be found. This was due to an installation problem.

Please re-install the Multi-ICE software.

The Multi-ICE DLL cannot find an entry in the registry.

The driver for device could not be read.

This is because:

• the.MUL file corresponding to the device has been opened by
another application

• the.MUL file does not exist

• the.MUL file is corrupted or out of date.

The format of the driver for device is not valid.

The.MUL file corresponding to the device has been corrupted, or the.MUL
file for the device is out-of-date. The installation has probably become
corrupted. Reinstall the software.
5-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Troubleshooting
The previously connected device is no longer available.

This is because the server that you were connected to when the debugger
session was last saved is no longer connected to the same processor.

The server found on location has not been initialized.

The server was found, but it had not been configured (either by automatic
or manual configuration). The server window looks similar to Figure 2-6
on page 2-16. Configure the server and try connecting again.

The server on location returned an unexpected error of [number]. The server may

be incompatible.

The Multi-ICE DLL and Multi-ICE server versions are incompatible.
Display the Help → About Multi-ICE dialog on the Multi-ICE server to
determine the version you are using and compare it to the version number
in the title string of the Multi-ICE DLL configuration window. Upgrade
or reinstall the software as required to bring the server in line with the
DLL.

The server on location returned too much driver information. The version of the

server software may not be compatible with your current debugger.

The Multi-ICE DLL and Server versions are incompatible. You must use
the Multi-ICE server Help → About Multi-ICE dialog to determine the
server version you are using and upgrade or reinstall the software.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 5-17

Troubleshooting
5-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Chapter 6
System Design Guidelines

This chapter provides information on developing ARM-based devices and PCBs that
can be debugged using Multi-ICE. It contains the following sections:

• About the system design guidelines on page 6-2

• System design on page 6-3

• ASIC guidelines on page 6-9

• PCB guidelines on page 6-12

• JTAG signal integrity and maximum cable lengths on page 6-15

• Compatibility with EmbeddedICE interface target connectors on page 6-17.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-1

System Design Guidelines
6.1 About the system design guidelines

This chapter describes the following:

• How to connect multiple TAP controllers in systems comprising more than one
unit. For example, connecting an ARM core plus a Digital Signal Processor
(DSP).

• Support for demand-paged systems.

• Using the Multi-ICE adaptive clocking feature to control the JTAG clock rate.

• Reset signals, providing examples of circuits.

• Compatibility with EmbeddedICE connectors.

Refer to Appendix F JTAG Interface Connections for details of the JTAG interface
connector pinout.
6-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
6.2 System design

This section describes how to design clocking and reset circuits that are compatible with
Multi-ICE. It contains the following sections:

• Mixing ARM cores with other devices

• Using adaptive clocking to synchronize the JTAG port

• Reset signals on page 6-6.

6.2.1 Mixing ARM cores with other devices

You can use Multi-ICE to debug systems that mix ARM processor cores with other
devices. The TAP controllers must be daisy-chained as described in ICs containing
multiple devices on page 6-9. When accessing a particular device, Multi-ICE places all
other TAP Controllers in bypass mode. Multi-ICE is shipped to you with the instruction
register lengths for many ARM TAP controllers in a database file IRlength.arm. You
must add entries to the database for any TAP controllers you use that are not present in
this database.

Multi-ICE provides a software interface layer that enables you to write drivers to access
non-ARM devices. For more information, refer to the Multi-ICE TAPOp API Reference
Guide.

6.2.2 Using adaptive clocking to synchronize the JTAG port

ARM-based devices using only hard macrocells, for example ARM7TDMI and
ARM920T, use the standard five-wire JTAG interface (TCK, TMS, TDI, TDO, and
nTRST). Some target systems, however, require that JTAG events are synchronized to
a clock in the system. To handle this case an extra signal is included on the JTAG port.
For example, this synchronization is required in:

• an ASIC with single rising-edge D-type design rules, such as one based on an
ARM7TDMI-S processor core

• a system where scan chains external to the ARM macrocell must meet single
rising-edge D-type design rules.

The adaptive clocking feature of Multi-ICE addresses this requirement. When adaptive
clocking is enabled, Multi-ICE issues a TCK signal and waits for the RTCK (Returned
TCK) signal to come back. Multi-ICE does not progress to the next TCK until RTCK
is received.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-3

System Design Guidelines
Note
 • If you use the adaptive clocking feature, transmission delays, gate delays, and

synchronization requirements result in a lower maximum clock frequency than
with non-adaptive clocking. Do not use adaptive clocking unless it is required by
the hardware design.

• If, when autoconfiguring a target, the Multi-ICE interface unit receives pulses on
RTCK in response to TCK it assumes that adaptive clocking is required, and
enables adaptive clocking in the target configuration. If the hardware does not
require adaptive clocking, the target is driven slower than it could be. You can
disable adaptive clocking using controls on the JTAG settings dialog.

You can use adaptive clocking as an interface to targets with slow or widely varying
clock frequency, such as battery-powered equipment that varies its clock speed
according to processing demand. In this system, TCK might be hundreds of times faster
than the system clock, and the debugger loses synchronization with the target system.
Adaptive clocking ensures that the JTAG port speed automatically adapts to slow
system speed.

Figure 6-1 illustrates a circuit for basic applications, with a partial timing diagram
shown in Figure 6-2 on page 6-5. The delay can be reduced by clocking the flip-flops
from opposite edges of the system clock, because the second flip-flop only provides
better immunity to metastability problems. Even a single flip-flop synchronizer never
completely misses TCK events, because RTCK is part of a feedback loop controlling
TCK.

Figure 6-1 Basic JTAG port synchronizer

�����

���

���

�	

���

�	�

'()*

����
	
 	

����

����

�	

�	�

���

���

�����

���
6-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
Figure 6-2 Timing diagram for the Basic JTAG synchronizer in Figure 6-1 on page 6-4

It is common for an ASIC design flow and its design rules to impose a restriction that
all flip-flops in a design are clocked by one edge of a single clock. To interface this to
a JTAG port that is completely asynchronous to the system, it is necessary to convert the
JTAG TCK events into clock enables for this single clock, and to ensure that the JTAG
port cannot overrun this synchronization delay. Figure 6-3 shows one possible
implementation of this circuit, and Figure 6-4 on page 6-6 shows a partial timing
diagram, showing how TCKFallingEn and TCKRisingEn are each active for exactly
one period of CLK. It also shows how these enable signals gate the RTCK and TDO
signals so that they only change state at the edges of TCK.

Figure 6-3 JTAG port synchronizer for single rising-edge D-type ASIC design rules

�+,

-�,

.-�,

����

��

������

���

���� �'��*���
(�	�

�	�
��

��

(�	�
*
	��

����������������

�����������

��������

	

����

	

����

	

����

	

�	

���

���

�����

���

����

�	�
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-5

System Design Guidelines
Figure 6-4 Timing diagram for the D-type JTAG synchronizer in Figure 6-3 on page 6-5

6.2.3 Reset signals

This section describes the reset signals that are available on ARM devices and how
Multi-ICE expects them to be wired. It is presented in the following sections:

• ARM reset signals

• Multi-ICE reset signals on page 6-7

• Example reset circuits on page 6-7.

ARM reset signals

All ARM cores have a main processor reset that might be called nRESET, BnRES, or
HRESET. This is asserted by one or more of these conditions:

• power on

• manual push button

• remote reset from the debugger (using Multi-ICE)

• watchdog circuit (if appropriate to the application).

Any ARM processor core including the JTAG interface has a second reset input called
nTRST (TAP Reset). This resets the EmbeddedICE logic, the TAP controller, and the
boundary scan cells. This is activated by one or more of these conditions:

• power on

• remote JTAG reset (from Multi-ICE).

�+,

-�,.
�
�/0�

-�,

-�,"�&&
�/0�

.-�,

-��������

-12
6-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
It is strongly recommended that both signals are separately available on the JTAG
connector. If the nRESET and nTRST signals are linked together, resetting the system
also resets the TAP controller. This means that:

• it is not possible to debug a system from reset, because any breakpoints previously
set are lost

• you might have to start the debug session from the beginning, because Multi-ICE
does not recover when the TAP controller state is changed.

Multi-ICE reset signals

The Multi-ICE interface unit has two reset signals connected to the debug target board:

• nTRST drives the JTAG nTRST signal on the ARM processor core. It is an open
collector output that is activated whenever the Multi-ICE software has to
re-initialize the debug interface in the target system.

• nSRST is a bidirectional signal that both drives and senses the system reset signal
on the target board. The open collector output is driven LOW by the debugger to
re-initialize the target system.

The target board must include a pull-up resistor on both reset signals.

Example reset circuits

The circuits shown in Figure 6-5 on page 6-8 and Figure 6-6 on page 6-8 illustrate how
the behavior described in Reset signals on page 6-6 can be achieved. The MAX823 used
in Figure 6-6 on page 6-8 is a typical power supply supervisor. It has a current limited
nRESET output that can be overdriven by the Multi-ICE interface unit.

When the Multi-ICE server detects a reset, it records this event so that clients can find
out about it when they next ask for the target status. The record is kept for each active
connection, so that one client cannot prevent another client from finding out about the
reset. This is particularly useful if the target system is using a watchdog reset circuit
because there might be no other evidence that the system has reset.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-7

System Design Guidelines
Figure 6-5 Example reset circuit logic

Figure 6-6 Example reset circuit using power supply monitor ICs

��

��

3	

�������

� ��! ��"������

�"#�$
������

����

�%���&���������
��#
��&�/
����������

!��	�������	�	�

�.�
$���
����

�����

�����

�����

��
�
�
�
��
��
��

�
�
�
�
�$

�
��
��
��

�&
�
4

��
0
��
-�

5
��
��

�

��
�� �

�

'�(

'�(

��

�.�
$���
����

�%���&���������
��#
��&�/
����������

�����

�����

���#�������
�
�
�

'�(

��

�

�

�
�	�	�

� �	�	�

��6���

��6���

!��	����
��	�	����
)�	�	�

�����

�
�
�
�
�
��
��
��

�
�
�
�
�$

�
��
��
��
�&
�
4

��
0
��
-�

5
��
��
�

��
��
6-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
6.3 ASIC guidelines

This section describes:

• ICs containing multiple devices

• Constraints imposed by the Multi-ICE server on page 6-10

• Boundary scan test vectors on page 6-11.

6.3.1 ICs containing multiple devices

The JTAG standard originally described daisy-chaining multiple devices on a PCB. This
concept is now extended to multiple cores within a single package. If more than one
JTAG TAP controller is present within your ASIC, they must all be serially chained so
that Multi-ICE can communicate with all of them simultaneously. The chaining can
either be within the ASIC or external to it.

There are a few possible configurations of multiple TAP controllers:

• TAP controllers serially-chained within the ASIC

• each set of JTAG connections is pinned out separately

• multiplexing of data signals.

TAP controllers serially chained within the ASIC

This is the natural extension of the JTAG board-level interconnection, and is the one
recommended for use with Multi-ICE. There is no increase in package pin count, and
only a very small impact on speed because unaddressed TAP controllers can be put into
bypass mode, as shown in Figure 6-7 on page 6-10.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-9

System Design Guidelines
Figure 6-7 TAP Controllers serially chained in an ASIC

Each set of JTAG connections is pinned out separately

This gives the greatest flexibility on the PCB, but at the cost of many pins on the device
package. If this method is chosen to simplify device testing, the JTAG ports must be
serially chained on the PCB when Multi-ICE is to be used. The separate JTAG ports can
be tracked to separate headers on the PCB, but this then requires one Multi-ICE
interface unit per header, and is unnecessary.

Multiplexing of data signals

There is no support in Multi-ICE for multiplexing TCK, TMS, TDI, TDO, and RTCK,
between a number of different processors.

6.3.2 Constraints imposed by the Multi-ICE server

The Multi-ICE Server has a number of design constraints that may affect the ability to
debug your system.

The following constraints apply to all systems:

• The IR (Instruction Register) for each TAP controller must be between 2 and
63 bits long (inclusive).

���

���

;��	���
��������

��

�
�
#���������

�
�

�����

�
�

��

���

9�������
��������

��

�
�
#����������
�

�����
�
�

�
�
�����
�
�
6-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
• The maximum total length of the IR scan chain is 64 bits.

• The maximum number of TAP controllers is 64.

The following constraints apply only if your TAP controller contains an SCSR (Scan
Chain Select Register):

• The length of the SCSR for each TAP controller must not exceed either of the
following:

— 32 bits

— (65 - (number of TAP controllers)) bits

• The maximum scan chain number is 63.

6.3.3 Boundary scan test vectors

If you use the JTAG boundary scan test methodology to apply production test vectors,
you might want to have independent external access to each TAP controller. This avoids
the requirement to merge test vectors for more than one block in the device. One
solution to this is to adopt a hybrid, using a pin on the package that switches elements
of the device into a test mode. This can be used to break the internal daisy chaining of
TDO and TDI signals, and to multiplex out independent JTAG ports on pins that are
used for another purpose during normal operation.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-11

System Design Guidelines
6.4 PCB guidelines

This section contains guidelines on the physical and electrical connections present on
the target PCB:

• PCB connections

• Target interface logic levels.

For Multi-ICE JTAG header connectors refer to Multi-ICE JTAG interface connections
on page F-2.

6.4.1 PCB connections

It is recommended that you place the JTAG header as closely as possible to the target
device, as this minimizes any possible signal degradation due to long PCB tracks.

Figure 6-8 shows the layout of possible PCB connections.

Figure 6-8 Typical PCB connections

6.4.2 Target interface logic levels

Multi-ICE is designed to interface with a wide range of target system logic levels. It
does this by adapting its output drive and input threshold to a reference voltage supplied
by the target system.

�� �#
�# �-+�-+

�-+

�-"��

4�����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����

��
�
��

��

��

��
�
��

��

��

��

��

�
��

�� �

!	

9�#

)�	��
#������

"�#
6-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
VTref (pin 1 on the JTAG header connector) feeds the reference voltage to the
Multi-ICE interface unit. This voltage, clipped at approximately 3.2V, is used as the
output high voltage (Voh) for logic 1s (ones) on TCK, TDI, and TMS. 0V is used as
the output low voltage for logic 0s (zeroes). The input logic threshold voltage (Vi(th))
for the TDO, RTCK, and nSRST inputs is 50% of the Voh level, and so is clipped to
approximately 1.55V. The relationships of Voh and Vi(th) to VTref are shown in
Figure 6-9.

Figure 6-9 Target interface voltage levels

The adaptive interface levels work down to VTref less than 1V. If, however, VTref
becomes less than approximately 0.85V, Multi-ICE interprets this condition as Target
Not Present, and the software reports this as an error condition.

The nTRST output from Multi-ICE is effectively driven open collector, so it is actively
pulled to 0V but relies on a pull-up resistor within the target system to end the reset
state. This is because it is common to wire-OR this signal with another source of
nTRST, such as power-on reset in the target system.

-&--

-&.-

�&--

�&.-

�&--

�&.-

/&--

/&.-

- � � / 0 . <

$%&'��	
�'(�)	*

	

+
�,
�	
�)
�+
*�
)	
*

%��,����4��	4���
%���,����4��	4���
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-13

System Design Guidelines
The nSRST output from Multi-ICE is similarly driven open collector, and must be
pulled-up with a resistor in the target system. As this signal is also an input to the
Multi-ICE interface unit, there is a large-value internal pull-up resistor (51kΩ to Voh).
This is to avoid spurious lows on the input when nSRST is not connected to the target
system.

The input and output characteristics of the Multi-ICE interface unit are compatible with
logic levels from TTL-compatible, or CMOS logic in target systems. For information
when assessing compatibility with other logic systems, the output impedance of all
signals is approximately 100Ω.
6-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
6.5 JTAG signal integrity and maximum cable lengths

For JTAG-based debugging, you must have a very reliable connection between
Multi-ICE and the target board because there is no way to detect or correct errors. For
this reason it is important to guarantee good signal integrity.

One factor that can limit the maximum cable length is propagation delays. Normally the
Multi-ICE interface unit samples data returning from the target using the same clock as
for sending data, TCK. If the propagation delay gets too long then the Multi-ICE
interface unit samples the signal at the wrong time. This can be resolved by using
adaptive clocking. In this mode the target returns a clock, RTCK, and Multi-ICE does
not sample data on TDO, or send further data on TDI, until clocked by this signal.

In an ASIC or ASSP (for example, in ARM processor based microcontrollers) the TDO
and RTCK signals are not typically implemented with a stronger driver than other
signals on the device. The strength of these drivers varies from device to device. An
example specification is to sink or source 4mA. Many designs connect these pins on the
device directly to the corresponding pins on the Multi-ICE connector.

Over very short lengths of cable, such as the one supplied with Multi-ICE, this type of
weak driver is adequate. However, if longer cables are used then the cable becomes
harder to drive as the capacitive load increases. When using longer cables it becomes
essential to consider the cable as a transmission line and to provide appropriate
impedance matching, otherwise reflections occur.

Multi-ICE has much stronger drivers and they are connected through 100Ω series
resistors to impedance match with the JTAG cable. The output circuitry of Multi-ICE
can easily sink or source over 40mA of current. This is very much better than the typical
circuit used at the target end.

With the typical situation at the target end (weak drivers, no impedance matching
resistors) you can only expect reliable operation over short cables (approximately
20cm). If operation over longer cables is required you must improve the circuitry used
at the target end.

The recommended solution is to add an external buffer with good current drive and a
100Ω series resistor for the TDO (and RTCK if used) signals on your target board.
Using this technique you can debug over a significantly longer cable, up to several
metres. Depending on cable length and propagation delays through your buffers and
cables it might still be necessary to use adaptive clocking.

If you are not already using adaptive clocking in your design, you can generate RTCK
at the target end by using the TCK signal fed through the same buffer and impedance
matching circuit as used for TDO. If even longer cables are required, another solution
is to buffer the JTAG signals through differential drivers, for example, RS422 and
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-15

System Design Guidelines
connect to differential receivers at the remote end using twisted pair cable. You must
use adaptive clocking to allow for propagation delays in the cable and drivers. Reliable
operation is possible over tens of metres using this technique.

Reducing the JTAG clock speed in the Multi-ICE server avoids some, but not all, of the
problems associated with long cables. If reducing the speed of downloading code and
reading memory in the debugger is not a significant problem, try experimenting with
lowering this clock speed.
6-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

System Design Guidelines
6.6 Compatibility with EmbeddedICE interface target connectors

The EmbeddedICE Interface Unit uses a 14-way connector for the interface to the target
system. ARM Limited provides an adaptor board, HPI-0027, so that the Multi-ICE
interface unit can be connected to target boards with 14-way connectors. On request,
ARM can also supply a board that allows you to connect EmbeddedICE Interface Units
to targets using the 20-way connector.

6.6.1 Adaptor to connect a Multi-ICE interface unit to 14-way connectors

The 14-way socket on the adaptor board plugs into a target board with the older header,
and the Multi-ICE ribbon cable is connected to the 20-way header on the adaptor board.

The three-pin header J3 has the following connections:

Pin 1 0V, Gnd.

Pin 2 Multi-ICE connector pin 2, Vsupply.

Pin 3 Target connector pin 1, SPU.

The jumper link supplied on the adaptor board connects pins 2 and 3 so that the
Multi-ICE interface unit draws its power from the target system in the normal manner.
If the target system cannot source a suitable voltage or current, an external 2V to 5V DC
supply can be connected to pins 1 and 2.

The three-pin header J4 has the following connections:

Pin 1 0V.

Pin 2 Multi-ICE connector pin 11, RTCK.

Pin 3 Resistor fed by Multi-ICE connector pin 9, TCK.

The jumper link supplied on the adaptor board connects 0V back to the Multi-ICE
RTCK input. If the target system is to use adaptive clocking, TCK can be tapped off
here, and the synchronized version used to clock the target can be fed back as RTCK.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. 6-17

System Design Guidelines
6-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix A
Server Configuration File Syntax

This appendix documents the server configuration file format. It includes the following
sections:

• IR length configuration file on page A-2

• Device configuration file on page A-3.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. A-1

Server Configuration File Syntax
A.1 IR length configuration file

Multi-ICE must calculate the length of the scan chain it is connected to. It does this by
adding the length of each TAP IR register it finds in the scan chain. This is possible by
identifying the devices in the chain and using information in a file called IRlength.arm.
This file is stored in the Multi-ICE installation directory. An extract from the
IRlength.arm file is shown in Example A-1.

Example A-1 Extract from IRlength.arm configuration file

;ARM7 series cores
ARM7TDMI=4
ARM7TDMI-S=4
ARM740T=4
;ARM9 series cores
ARM9TDMI=4
ARM920T=4

A.1.1 File syntax

The file syntax is:

• Blank lines are ignored.

• Comments begin with a semicolon and continue to the end of the line.

• Other text in the file must have the form name=value, where name is the name of a
device, and value is the length of the IR for that device. Spaces are not allowed
between name and value.

The file provided with the product includes all the devices that are recognized by the
Multi-ICE DLL.

A.1.2 Device aliases

You can add an entry to the IRlength.arm file with an IR length value of 0. You can then
use the name in a manually-produced configuration file as an alias for another device.
This is useful, for example, when two cooperating clients require access to the same
device. By using an alias the server allows both clients to connect. Using the deselect
parameter in TAPOp calls enables the two clients to arbitrate access to the device.
A-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Server Configuration File Syntax
A.2 Device configuration file

A device configuration file is a text file containing the information required to set up the
Multi-ICE server for a particular target. You can store configuration files wherever it is
convenient.

A.2.1 Syntax

A device configuration file is a text file with the file suffix.cfg. The syntax is similar to
the Windows INI file format:

• Blank lines are ignored.

• Comments begin with a semicolon and continue to the end of the line.

• Text enclosed in square brackets [] indicates the start of a section of the file and
must be one of the following strings (case is not important):

— TITLE

— TAP n

— RESET

— TIMING

— TAPINFO

The n in Tap n must be the number of the TAP controller you are describing,
starting at 0.

The contents of each section of the configuration file is as follows:

Title

The title string.

Tap n

The name of the device (which must have an entry in IRlength.arm) as shown in
Example A-2 on page A-4. If the software requires a device alias this must be placed on
the next line in the same format. The syntax is:

Name DriverOptions, DriverVersion

The DriverOptions field is an optional text string passed to the driver for a specific
device. There must be a space between the driver name and the driver options, but the
driver options can contain spaces. The field is terminated by a comma or newline.

If there is at least one asterisk * in the option string, the Multi-ICE server does not
display the status indicator [X] in the TAP window.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. A-3

Server Configuration File Syntax
The DriverVersion field is an integer number. Specifying a value indicates that only
drivers with this version number or higher are acceptable.

Example A-2 Configuration file TAP section

[TAP 0]
ARM7TDMI ;Plain, no options
[TAP 1]
ARM7TDMI , 2 ;Requires V2 or higher
[TAP 2]
ARM7TDMI *ABC ;Driver=ARM7TDMI, Options="ABC", no status

Reset

The section contains one or both of the words, as shown in Example A-3:

nSRST Resetting the system involves asserting nSRST.

nTRST Resetting the system involves asserting nTRST.

If no reset section is present then resetting the system using the Multi-ICE server GUI
asserts both signals.

Example A-3 Configuration file Reset section

[Reset]
nTRST
nSRST

Timing

The timing section defines how the TCK signal is generated as shown in Example A-4
on page A-5. The following name value pairs are allowed in this section:

High The period for which TCK is HIGH (positive voltage), specified as a
value from TCK frequencies on page F-7.

Low The period for which TCK is LOW (zero voltage), specified as a value
from TCK frequencies on page F-7.

Adaptive YES if the target drives RTCK, NO if it is not driven.
A-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Server Configuration File Syntax
The HIGH and LOW values correspond to those in the server Settings → JTAG
Settings dialog box.

Example A-4 Configuration file Timing section

[TIMING]
High=100
Low=50
Adaptive=ON

Tapinfo

The TAPINFO section (see Example A-5) tells the server whether to read additional
information from the device after loading the configuration file. If the section contains
YES then the server reads any additional information, otherwise it does not. You can view
the information by double-clicking on a TAP controller within the server Configuration
window.

Example A-5 Configuration file Tapinfo section

[TAPINFO]
YES

A TAPINFO option is included in a configuration file to provide flexibility for ASIC
developers during testing. When the Auto-configure facility is used, TAPINFO is always
provided. By default, when loading a configuration file TAPINFO is not provided.

A.2.2 Example configuration file

Example A-6 shows a configuration file with all types of data.

Example A-6 A complete configuration File

[TITLE]
Example TAP Configuration
[TAP 0]
ARM7TDMI
[TAP 1]
ARM9TDMI
[Reset]
 ; When you reset:
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. A-5

Server Configuration File Syntax
nTRST ; reset tap controller
nSRST ; and reset the target board
[TIMING]
High=100 ; These HIGH and LOW values correspond to
Low=50 ; those in the server Settings->JTAG Settings
 ; dialog box.
Adaptive=ON ; Use the RTCK adaptive clocking signal.
[TAPINFO]
YES ; Tells the server to gather core information
 ; after loading this.cfg file.
A-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix B
Breakpoint Selection Algorithm

This appendix contains a description of the breakpoint allocation algorithm. It might
help you to make the most of the limited breakpoint resources present in a processor. It
contains the following sections:

• Multi-ICE internal breakpoints on page B-2

• How the debugger steps and runs code on page B-4.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. B-1

Breakpoint Selection Algorithm
B.1 Multi-ICE internal breakpoints

Multi-ICE maintains a list of the currently requested breakpoints, marking each of them
as being internal or external. External breakpoints and watchpoints (those that are
explicitly set by you, or the main breakpoint that is set on your behalf) are displayed in
the debugger lists of breakpoints and watchpoints. Internally set breakpoints are not
displayed by the debugger. Internal breakpoints do, however, potentially compete for
the breakpoint resources available on the processor, and so can affect you. The use of
these internal breakpoints is described below:

Vector catch breakpoints

On an ARM7T-based core vector catch is implemented using
breakpoints. This means that breakpoints you set and vector catch
breakpoints compete for the hardware breakpoint resources. With the
default vector_catch setting and hardware, most or all of the vector catch
breakpoints are set as soft breakpoints because there are only two
breakpoint units available.

One effect of this is that a system with ROM at address 0 runs out of
hardware breakpoint units for vector catch, resulting in the following
error message:

Unable to set breakpoints on exception vectors as specified by

vector_catch

To avoid this, run with RAM at address 0 or reduce the number of
breakpoints required by changing vector_catch.

On XScale microarchitecture processors, ARM9 processor cores, and
ARM10 processors, vector catch is implemented in special hardware in
the core. Therefore there is no competition between vector catch and your
breakpoints, so the above restriction does not apply.

Vector catch breakpoints are set when the debugger starts up and when
vector_catch is changed.

Semihosting SWI breakpoint

The breakpoint on the SWI vector is treated as a special case. Its
allocation is controlled by two debugger internal variables:

• vector_catch

• semihosting_enabled.

By default the S bit in vector_catch is not set and semihosting_enabled is
1 which means there is a breakpoint on the SWI vector but it is treated as
a semihosting request when hit, rather than just stopping.
B-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Breakpoint Selection Algorithm
If the S bit in vector_catch is set then Multi-ICE takes a breakpoint on
SWI instructions and ignores the setting of semihosting_enabled. If the S
bit in vector_catch is unset, the setting of semihosting_enabled
determines how Multi-ICE responds to subsequent SWI instructions.

Stepping breakpoints

When stepping through code the debugger sets a breakpoint where the
processor must stop. This is also done when the execution type Run to
cursor is requested.

Single-stepping breakpoints are not set until you request the processor to
starts execution. This means that the exact allocation of your breakpoints
to hard or soft breakpoints shown in the breakpoint views of the debugger
changes when stepping code.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. B-3

Breakpoint Selection Algorithm
B.2 How the debugger steps and runs code

The following algorithm is used to step code:

1. If the current instruction has a breakpoint on it, it is removed. If it was a
breakpoint you defined, it is put back after the step. If it was a breakpoint from a
previous step, it is discarded.

2. The instruction is read and decoded (the decoding scheme chosen is based upon
the current value of the T bit in the CPSR). The address of the next instruction to
be executed is calculated and a breakpoint placed on that address. Typically this
is pc+4 for ARM code and pc+2 for Thumb® code but if a branch instruction is to
be stepped the branch address is calculated.

3. The processor is restarted. If an interrupt is pending at this point and interrupts are
enabled, the interrupt is taken, executed to completion and the single instruction
is stepped after the ISR has completed. Consequently, if an ISR fails to complete,
the step also fails to complete.

4. Single stepping a branch to itself is not supported by this algorithm so an error is
generated in this case.

The following algorithm is used to run code:

1. If the current instruction has no breakpoint on it the processor is restarted.

2. If the current instruction has a stepping breakpoint on it, it is removed and the
processor is restarted.

3. If the current instruction has your breakpoint on it, it is removed and a single step
is performed to the next location using the stepping algorithm above. Your
breakpoint is put back and the processor is restarted from the new location (unless
there is also one of your breakpoints on the new location).

This is done so that restarting from a breakpoint does not miss any subsequent hits
on the same breakpoint. For example, when in a loop, you might execute one pass
of the loop by pressing Go. This mechanism ensures that only one loop is
executed each time you press Go.

Stepping through high-level language code involves a combination of these techniques.

Note
 Multi-ICE does not rewrite software breakpoint instructions every time you press Go in
the debugger. This means that if you are using scatter-loaded images or self-modifying
code you must manually set and unset software breakpoints around code that changes.
B-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Breakpoint Selection Algorithm
B.3 Breakpoint and watchpoint allocation algorithm

This simplified algorithm illustrates the basic process that Multi-ICE follows to map
your breakpoints and debugger internal breakpoints on to the available hardware
resources:

1. Any hardware breakpoint resources currently allocated to you (see
icebreaker_lockedpoints) are not used. They are considered as unavailable to
Multi-ICE and are removed from the list of available hardware.

2. Any watchpoints that have been requested are allocated next, followed by any
breakpoints which are on ROM. (Both of these types require dedicated hardware
resources.) If there are not enough hardware breakpoint units to set all of these
then an error indicating that no more breakpoints or watchpoints can be set is
displayed.

3. The remaining breakpoints are assigned as hardware or software breakpoints.
Preference is given to your breakpoints over debugger internal breakpoints, and
your preference is taken from the value of sw_breakpoints_preferred, as follows:

• If it is zero (the default), your breakpoints are allocated as hardware
breakpoints if any breakpoint units are still free, or software if not.

• If it is nonzero, your breakpoints are allocated as software breakpoints if
possible. If it is not possible (for example, the location is in ROM), but a
hardware breakpoint can be used instead, then it is used.

If it is not possible to set a breakpoint, an error indicating that no more
breakpoints or watchpoints can be set is displayed.

4. Stepping breakpoints are allocated as hardware breakpoints if possible. This is so
that:

• stepping in/out of ROM does not change the allocation of every breakpoint

• performance is improved.

For example, with a standard ARM7 core, assuming that none of your breakpoints are
already set, vector_catch=0 and semihosting_enabled=0 (so no internal breakpoints are
set), the behavior as breakpoints are added is as follows:

1. The first of your breakpoints is hardware.

2. When a second breakpoint is set, the first breakpoint is downgraded to software
(if possible) and the second is made hardware.

3. When subsequent breakpoints are set, the last breakpoint is hardware and all
others are software.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. B-5

Breakpoint Selection Algorithm
B-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix C
Command-line Syntax

This appendix describes the command-line syntax for the Multi-ICE server:

• Multi-ICE server on page C-2.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. C-1

Command-line Syntax
C.1 Multi-ICE server

You can start the Multi-ICE server from the DOS command line (from the Win9x MS-DOS
Prompt, the Windows NT, or Windows 2000 Command Prompt) or by using Start → Run
to issue an individual command. It is a full Win32 API program.

It understands the following syntax:

Multi-ICEServer [-A | config_file]

where:

-A Instructs the server to autoconfigure at standard TCK rate.

This parameter is ignored unless the Start-up Configuration is set to
None in the Start-up Options dialog (see Start-up Options dialog on
page 3-16). All other values for the Start-up Configuration override the
-A parameter.

config_file

Specifies a configuration file to use. The settings in the file override the
settings in the Start-up Options dialog.
C-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix D
Processor-specific Information

This appendix documents information specific to particular processors. It includes the
following sections:

• The ARM1020T (Rev 0) processor on page D-2

• Intel XScale microarchitecture processors on page D-3.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. D-1

Processor-specific Information
D.1 The ARM1020T (Rev 0) processor

The ARM1020T processor includes an enhanced CPU, a vector floating-point
coprocessor, and integrated debug logic. For more information on the processor see
ARM1020T (Rev 0) Technical Reference Manual.

This section describes how to use Multi-ICE to debug programs running on an
ARM1020T.

D.1.1 Limitations of the ARM1020T (Rev 0) processor

Multi-ICE does not support the following facilities when connected to an ARM1020T
(Rev 0) processor:

• big-endian systems

• synchronized start/stop of multiple processors

• hardware watchpoints.

The processor does not implement writing to memory in debug state when the cache is
switched on correctly. This affects several debugger actions, including downloading
code and setting software breakpoints. You must therefore obey the following rules:

• Always download code with the cache off.

• Do not set more than four breakpoints in code with the cache on. This leaves two
hardware breakpoint units that the debugger can use to control program
execution.

If the DCache is switched on when the processor enters debug state, Multi-ICE must
clean the DCache. To do this it downloads some code to memory at the configured cache
clean code address and runs it. Because the processor does not correctly implement
writing memory in debug state when the cache is switched on, Multi-ICE might not be
able to download this code. To ensure that it can, you must:

• ensure that there is memory at the cache clean code address

• the memory is not in either the ICache or the DCache at any time the processor
enters debug state.

You can do this by either:

• specifying a cache clean address region that is never referenced by the application
and never referenced by the debugger or operating system (for example, to check
memory integrity)

• marking the memory as non-cachable in the MMU tables.
D-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Processor-specific Information
D.2 Intel XScale microarchitecture processors

Intel XScale microarchitecture processors are the successors to the Intel StrongARM,
and include an enhanced CPU with several coprocessors. For more information on these
processors see The Intel® XScale™ Core Developer’s Manual.

This section includes information on how to use Multi-ICE to debug programs running
on Intel XScale microarchitecture processors. It is divided into the following sections:

• Behavior on system reset

• Debug mode on page D-5

• Performance counters on page D-6

• Coprocessors on page D-7

• Debug handler firmware support on page D-7

• Summary on page D-9.

D.2.1 Behavior on system reset

The XScale processor debug architecture differs significantly from that of other
processors based on the ARM architecture. It enters debug state, for example when a
breakpoint is hit, by branching to a debugger-specific handler in a new processor mode
called Debug. This handler is stored in a special part of the processor instruction cache,
and is usually put there when the processor is held in reset.

Multi-ICE is limited to the following ways that it can connect to an XScale
microarchitecture processor:

• Multi-ICE uses nSRST to hold the processor in reset while downloading the
debug handler. It then asserts a debug signal before letting the processor come out
of reset, essentially causing it to branch to the reset handler.

• The debug handler remains in the cache if the following are all true:

— Multi-ICE has previously downloaded the debug handler

— the Flush debug handler cache if running on exit box is not checked in
the Processor Settings tab of the Multi-ICE configuration dialog (see
Processor Settings Tab on page 4-14)

— if the Leave processor in Monitor mode on exit option is selected in the
Processor Settings tab, the processor has not been reset

— the processor has not been power cycled.

In such cases, Multi-ICE does not have to download the debug handler again. You
can therefore reconnect to a debug session. This is supported whether or not the
processor was left running when the previous debug session was terminated.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. D-3

Processor-specific Information
• The reset handler in the system firmware can support Intel hot-debug. In this case,
a processor can be booted from power-on (or any other kind of) reset, allowed to
run, and a debugger can later attach to the processor without having to reset it
again. Because the system is not reset, its state at the point of connection is not
lost. Contact Intel for more information on using hot-debug.

Note
 Multi-ICE Version 2.0 only supports connection using a reset.

If you want to reset the processor to connect to it:

• Deselect the Enable hot-debug checkbox on the Processor Settings tab on the
Multi-ICE configuration dialog.

• The signals nTRST and nSRST must be connected on the target board.

• You cannot perform post-mortem debugging, other than to examine the state of
static memory. The contents of dynamic memory might not survive system reset.

• You cannot debug multiple XScale processors connected together, nor can you
debug an XScale and ARM-designed processor unless you connect a debugger to
the XScale processor first.

If you intend to reconnect to a previously set up debug handler installed either through
the use of hot-debug enabled system firmware or from a previous Multi-ICE session:

• You must ensure that the application does not make any SWI calls while the
debugger is disconnected. If the application does, it hangs, and the debugger
cannot then reconnect without resetting the processor.

• The XScale processor is always stopped when the debugger connects. It is not
possible to do nonstop debugging with an XScale processor.

• When you reconnect, Multi-ICE discovers the address the debug handler runs at.
If this differs from the currently configured address, a message box asks you to
accept the existing address (click Yes), reload at the new address (click No), or to
Cancel the connection attempt (although the processor is already stopped).

• If Multi-ICE cannot establish a connection with the debug handler, a message box
is displayed asking you to confirm connection by resetting the processor. If you
click No, the connection attempt is aborted.

Use the Processor Settings tab on the Multi-ICE configuration dialog to configure the
debug handler address in the special cache that is used (see Processor Settings Tab on
page 4-14).
D-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Processor-specific Information
D.2.2 Debug mode

The XScale microarchitecture adds a new processor mode, analogous to existing modes
such as Undef mode, called Debug mode. The processor enters Debug mode when a
debug event occurs, such as:

• the processor encounters a breakpoint

• the debug request signal input is asserted.

The debug handler uses the DCC on the chip to communicate with the host debugger.
Because of this, the DCC cannot be used in other ways, for example:

• for DCC semihosting

• to support the ARM RealMonitor debug agent

• with DCC channel viewers.

There is no debug vector. Instead, the reset vector is overloaded so both the normal reset
handler and the debug handler use it. There are therefore two cases:

• When a power-on reset occurs, the processor uses the true reset vector, loaded
from ROM.

• If a debugger resets the processor, it installs a debug handler while nSRST is
asserted. When the debugger deasserts nSRST, the processor vectors to the debug
handler.

The consequence of this overloading is that your application program cannot use a
branch to location zero as a way of simulating a hard reset when a debugger is
connected. However, because Multi-ICE has control over the processor it can emulate
such a simulated reset, so if you force pc to zero within the debugger, Multi-ICE
translates the branch to zero into a branch to the reset handler, so running the reset code.
However, to do this it must emulate the instruction at the reset vector, and it only does
this for the instructions:

• LDR <rd>, [<rn>, #Immed12]

• B loc

• {MOV|MVN} <rd>, <rn>, {<rm> |#Immed}

• {ADD|SUB|RSB|AND|EOR|ORR} <rd>, <rn>, {<rm> |#Immed}

where loc is an address offset.

The debug version of the reset vector is held in a cache line in a part of the cache called
the mini-ICache. The mini-ICache is mapped over the memory starting at 0x0 and at
0xffff0000 and is used when the processor is in debug state.

Cache lines on current XScale processors are big enough to include every exception
vector, not just the reset vector. This means that when a debugger is active, other
exceptions, for example interrupts, also use the debug vectors, and might therefore fail.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. D-5

Processor-specific Information
Multi-ICE copies the currently defined vectors from normal memory to the mini-ICache
before executing a program, and also before resuming after a single step or breakpoint.
This works well provided that the program does not change the vectors itself. However,
if a program changes an exception vector and then that exception occurs (for example,
with a SWI opcode), the changed vector is ignored and the old value is used instead.

To avoid this:

1. Place a breakpoint between writing to the exception vector address and the first
time the exception can happen.

2. Run the program.

3. When the breakpoint is hit, use the debugger Continue or Go commands to
continue program execution. As a result of continuing, Multi-ICE rewrites the
mini-ICache vectors from main memory and so exceptions vector to the new
handler.

D.2.3 Performance counters

The ADS debuggers enable you to see the performance counters in the Intel XScale
processor. However, the XScale processor does not automatically disable its
performance counters when it enters debug state. Because using the debug monitor
involves executing code, the performance counters increment when in debug state.

The Multi-ICE debug monitor disables the performance counters in debug state, and
re-enables them on exit from debug state.

Because the debug handler cannot disable the counters immediately, some effect of
debug state is seen on the counters whenever the processor enters and leaves debug
state. For example, if a performance counter is configured to count the number of
instructions executed, single stepping a single instruction counts 13 instructions
executed, rather than the one expected. This is because 12 instructions are executed in
entering debug state and disabling the counter, and later in re-enabling the counters and
exiting debug state, as well as the single instruction stepped.

When starting execution from a breakpointed instruction, the debugger first single-steps
past the breakpointed instruction, and then resumes execution of the program. Therefore
when running from one breakpointed instruction to another breakpoint, the effect is
doubled, and 26 additional instructions are recorded. When using semihosting this
effect is seen for every semihosting SWI instruction executed.

Note
 The figures given here are implementation-dependent, and might vary with different
versions of Multi-ICE or XScale microarchitecture processor.
D-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Processor-specific Information
D.2.4 Coprocessors

The XScale microarchitecture processors include several coprocessors:

• coprocessor 0, used for signal processing

• coprocessor 14, used for debugging

• coprocessor 15, used for system control.

The real coprocessor 0 registers found on XScale microarchitecture processors replace
the emulation of the EmbeddedICE registers as coprocessor 0 found in ADW.

You must take care when using coprocessors 14 and 15 because the valid instructions
and registers are not the same as those on ARM processors.

D.2.5 Debug handler firmware support

The code in Example D-1 is an example of a reset handler that enables hot-debug when
it is included in your target firmware, and you are using Multi-ICE Version 2.1 or later.

Example D-1 Example hot-debug firmware

reset_handler_start
 ; The reset handler must first check whether this is a debug exception,
 ; or a real RESET event.
 ; NOTE: r13 is the only safe scratch register to use:
 ;
 ; - for a RESET, any register can be used
 ;
 ; - for a debug exception, r13 = r13_dbg, and using r13 prevents
 ; the application registers from being corrupted before the debug
 ; handler can save.
 MRS r13, cpsr
 AND r13, r13, #0x1f
 CMP r13, #0x15 ; Are we in DBG mode?
 BEQ dbg_handler_stub ; if so, go to the dbg handler stub;
 MOV r13, #0x8000001c ; otherwise, enable debug, set MOE bits,
 MCR p14, 0, r13, c10, c0, 0 ; and continue with the reset handler.
 ; Normal reset handler initialization follows code here,
 ; or branch to the reset handler.
 ALIGN 32 ; Align code to a cache line boundary (32 byte aligned).
dbg_handler_stub
 ; First save the state of the IC enable/disable bit in r14_dbg[0].
 MRC p15, 0, r13, c1, c0, 0
 AND r13, r13, #0x1000
 ORR r14, r14, r13, lsr #12
 ; Next, enable the IC.
 MRC p15, 0, r13, c1, c0, 0
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. D-7

Processor-specific Information
 ORR r13, r13, #0x1000
 MCR p15, 0, r13, c1, c0, 0
 ; Do a sync operation to ensure all outstanding instruction fetches
 ; have completed before continuing.
 ;
 ; The invalidate cache line function serves as a synchronization
 ; operation, and that is why it is used here. The target line is some
 ; scratch address in memory, reserved at the end of this code.
 ADR r13, line2
 MCR p15, 0, r13, c7, c5, 1
 ; Invalidate the BTB.
 ;
 ; Make sure that the downloaded vector table does not hit one of the
 ; application’s branches that is cached in the BTB, and therefore
 ; branch to the wrong place.
 MCR p15, 0, r13, c7, c5, 6
 ; Now, send a ‘ready for download’ message to the debugger, indicating
 ; that the debugger can begin the download.
 ;
 ; NOTE: ‘ready for download’ = 0x00B00000.
TXloop
 MRC p14, 0, r15, c14, c0, 0 ; First ensure TX register is available,
 BVS TXloop ; looping if it is not.
 MOV r13, #0x00B00000 ; Create ‘ready for download’ message,
 MCR p14, 0, r13, c8, c0, 0 ; and write it to the TX register
 ; Wait for the debugger to indicate that the download is complete.
RXloop
 MRC p14, 0, r15, c14, c0, 0 ; Wait for data from the debugger in
 BPL RXloop ; the RX register, looping if none.
 ; Before reading the RX register to get the address to branch to,
 ; restore the state of the IC (saved in DBG_r14[0]) to the value that
 ; it had at the start of the debug handler stub.
 ;
 ; NOTE: the state of the IC must be restored before reading the RX
 ; register, because r13 is the only usable scratch register.
 MRC p15, 0, r13, c1, c0, 0
 ; First, check r14_dbg[0] to see if the IC was enabled or disabled.
 TST r14, #0x1
 ; If the IC was previously disabled, then disable it now.
 ;
 ; (Otherwise, there is no need to change the state, because the IC is
 ; already enabled.)
 BICEQ r13, r13, #0x1000
 MRC p15, 0, r13, c1, c0, 0
 ; Now r13 can be used to read the RX register and get the target
 ; address to branch to.
 MRC p14, 0, r13, c9, c0, 0 ; Read the RX register, and
 MOV pc, r13 ; branch to the downloaded address.
 ; Scratch memory space used by the invalidate IC line function above.
 ALIGN 32 ; Make sure it starts at a cache line
D-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Processor-specific Information
 ; boundary, so nothing else is affected.
line2
 SPACE 32 ; Allocate 32 bytes of zeroed memory.

There are several restrictions to debug handlers:

• The code must be in a cachable region of memory. If the code is noncachable, then
it might conflict for some of the hardware used by Multi-ICE when it downloads
the new monitor.

• The entry point reset_handler_start is entered, in the case of an actual debug
exception, in Debug Mode. The only register that might be corrupted is R13
because this does not form any part of the state of the application being debugged.
However, the use of R13 is itself restricted by the XScale microarchitecture. No
registers other than R15 can be changed in getting to reset_handler_start.

• The scratch space line2 must be a region of 32 bytes (1 cache line) aligned to a
32-byte boundary, in cachable memory.

• The normal reset handler must also enable debug and signal hot-debug support in
the way shown. That is bit 31 and bits [5:3] of the DCSR must all be set.

• The word the target sends up to the debugger must be the value 0x00B00000.
Multi-ICE tests for this value and only allows hot-debug if this value is received.

• To ensure correct operation of hot-debug, you must set appropriate options in the
Processor Settings tab of the Multi-ICE configuration dialog (see Processor
Settings Tab on page 4-14).

D.2.6 Summary

This is a summary of the things you must, and must not do when using the XScale
microarchitecture processors with Multi-ICE.

Things you must do

You must:

• wire up the reset signals to the Multi-ICE interface unit

• put a breakpoint between writing to an exception vector or changing the memory
map and the first time the exception can happen

• use LDR pc, [loc] or B loc instructions in the exception vectors.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. D-9

Processor-specific Information
Things you must not do

You must not:

• write programs that branch to address 0x0, or a branch to addresses 0xFFFF0000,
for example to simulate a reset

• use the 2KB of address space from addresses 0x0 or 0XFFFF0000 to store code

• expect coprocessor zero to show you EmbeddedICE logic registers.
D-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix E
CP15 Register Mapping

This appendix contains information about the system coprocessor register mapping. It
contains the following sections:

• About register mapping on page E-2

• ARM710T processor registers on page E-3

• ARM720T processor registers on page E-4

• ARM740T processor registers on page E-5

• ARM920T and ARM922T processor registers on page E-6

• ARM925T processor registers on page E-10

• ARM926EJ-S processor registers on page E-14

• ARM940T processor registers on page E-18

• ARM946E-S processor registers on page E-21

• ARM1020T and ARM10200T processor registers on page E-24

• XScale microarchitecture processor registers on page E-28.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-1

CP15 Register Mapping
E.1 About register mapping

From ADS v1.1 onwards, AXD can accept descriptions of the target, and display the
coprocessor registers named and decoded into bitfields.

However, ADW and ADU only support the display of coprocessor registers in a list
format where each entry corresponds to one of the 16 standard registers. This leaves a
problem because the standard register numbers in CP15 are used for more than one
function. For example, on the ARM710T device, CP15 r8 is used to either flush the
entire TLB or flush a single TLB entry. To work around this, Multi-ICE uses two
debugger internal variables to specify the actual coprocessor register that is accessed
when a coprocessor register is read.

Only the standard registers appear in the coprocessor window. The values of debugger
internal variables defined by Multi-ICE and the data value written to a register are used
to determine the exact meaning of each coprocessor register access.

The extra debugger internal variables that have been defined are:

• cp15_cache_selected

• cp15_current_memory_area.

See Debugger internal variables on page 4-36.
E-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
E.2 ARM710T processor registers

Table E-1 describes the ARM710T processor registers.

The encodings to read or write the registers are as follows:

c0 to c3, c5, c6

All data reads and writes occur as expected.

c7 Writing any value invalidates the ID Cache.

c8 Writing 0 invalidates the whole TLB.

Writing an address with bit 0 set to 1 invalidates the TLB entry for that
address.

Table E-1 ARM710T processor registers

Register Description Access Data

c0 ID register Read-only -

c1 Control register Read/write Config value

c2 Translation Table Base register Read/write Base address

c3 Domain Access Control register Read/write Domain value

c5 Fault Status register Read/write Fault value

c6 Fault Address register Read/write Fault address

c7 Cache Operations:

• Invalidate ID Cache

Write-only

SBZ

c8 TLB Operations:

• Invalidate whole TLB

• Invalidate Single Entry

Write-only

SBZ

Virtual address
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-3

CP15 Register Mapping
E.3 ARM720T processor registers

Table E-2 describes the ARM720T processor registers.

The encodings to read or write the registers are as follows:

c0 to c3, c5, c6

All data reads and writes occur as expected.

c7 Writing any value invalidates the ID Cache.

c8 Writing 0 invalidates the whole TLB.

Writing an address with bit 0 set to 1 invalidates the TLB entry for that
address.

c13 All data reads and writes occur as expected.

Table E-2 ARM720T processor registers

Register Description Access Data

c0 ID register Read-only -

c1 Control register Read/write Configuration data

c2 Translation Table Base register Read/write Base address

c3 Domain Access Control register Read/write Domain value

c5 Fault Status register Read/write Fault value

c6 Fault Address register Read/write Fault address

c7 Cache operations:

• Invalidate ID Cache

Write-only

SBZ

c8 TLB operations:

• Invalidate whole TLB

• Invalidate Single Entry

Write-only

SBZ

Virtual address

c13 Process ID register (WinCE) Read/write Process ID
E-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
E.4 ARM740T processor registers

Table E-3 describes the ARM740T processor registers.

The encodings to read or write the registers are as follows:

c0 to c3, c5 All data reads and writes occur as expected.

c6 The data that is read or written is a memory area definition, and consists
of a base address, a size value, and an enable flag. The memory area is
specified by the cp15_current_memory_area variable.

c7 Writing any value invalidates the ID Cache.

Table E-3 ARM740T processor registers

Register Description Access Data

c0 ID register Read-only -

c1 Control register Read/write Configuration data

c2 Cache control Read/write Cache control flags

c3 Bufferable control Read/write Buffer control flags

c5 Memory protection Read/write Memory protection
data

c6 Memory area definition:

• Memory Region 0 to 7

Read/write

Base, size, and
enable

c7 Cache operations:

• Invalidate ID Cache

Write-only

SBZ
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-5

CP15 Register Mapping
E.5 ARM920T and ARM922T processor registers

Table E-4 describes the ARM920T and ARM922T processor registers.

Table E-4 ARM920T and ARM922T processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

ID information

Cache configurationa

c1 Control register Read/write Configuration flags

c2 Translation Table Base Read/write Translation table base

c3 Domain Access Control Read/write Access flags

c5 Fault Status register

Prefetch Fault Status register

Read/write

Read/write

Status info

Status infob

c6 Fault Address register Read/write Fault address

c7 Cache operations:

• Invalidate ICache and DCache

• Invalidate ICache

• Invalidate I single entry (VA)

• Prefetch ICache Line

• Invalidate DCache

• Invalidate D single entry (VA)

• Clean D single entry (VA)

• Clean and Invalidate D single entry

• Clean D single entry (index)

• Clean and Invalidate D single entry (index)

• Drain Write Buffer

Write-only

SBZ

SBZ

VA

VA

SBZ

VA

VA

VA

Index and segment

Index and segment

SBZ

c8 TLB operations:

• Invalidate ITLB and DTLB

• Invalidate ITLB

• Invalidate ITLB single entry (VA)

• Invalidate DTLB

• Invalidate DTLB single entry (VA)

Read/write

SBZ

SBZ

VA

SBZ

VA

c9 Cache lockdown control:

• Data Lockdown Control

• Instruction Lockdown Control

Read/write

Base and victim

Base and victim
E-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

A data read with cp15_cache_selected = 1 accesses the Cache
Configuration register.

c1, c2, c3 All data reads and writes occur as expected.

c5 A data read with cp15_cache_selected = 0 accesses the FSR (Data
aborts).

A data read with cp15_cache_selected = 1 accesses the PFSR (Prefetch
aborts).

Note
 The PFSR only exists on revision 1 of the processor onwards.

c6 All data reads and writes occur as expected.

c10 TLB lockdown control:

• Data Lockdown Base

• Instruction Lockdown Base

Read/write

Base and victim

Base and victim

c13 Process ID Read/write Process ID

c15 Test and Debug register Read/write DCAM and ICAM flags

a. Revision 1 onwards.
b. Revision 1 onwards.

Table E-4 ARM920T and ARM922T processor registers (continued)

Register Description Access Data
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-7

CP15 Register Mapping
c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [2:0] of the data that is written,
as shown in Table E-5.

The encoded function uses bits [31:3] of the data that is written, with
bits [2:0] cleared.

Table E-5 ARM920T and ARM922T cp15 register 7 accesses

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

1 0 0 0 Invalidate ICache and
DCache

1 0 0 1 Invalidate ICache

1 0 1 0 Invalidate I single entry
(VA)

1 0 1 1 Prefetch ICache Line

0 0 0 0 Invalidate DCache

0 0 0 1 Invalidate D single entry

0 0 1 0 Clean D single entry
(VA)

0 0 1 1 Clean and Invalidate D
single entry (VA)

0 1 0 0 Clean D single entry
(index)

0 1 0 1 Clean and Invalidate D
single entry

0 1 1 0 Drain Write Buffer
E-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
c8 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [1:0] of the data that is written,
as shown in Table E-6.

The encoded function uses bits [31:2] of the data that is written, with
bits [1:0] cleared.

c9 A data read or write with cp15_cache_selected = 0 accesses the Data
Cache Lockdown Base.

A data read with cp15_cache_selected = 1 accesses the Instruction Cache
Lockdown Base.

c10 A data read or write with cp15_cache_selected = 0 accesses the Data TLB
Lockdown register.

A data read with cp15_cache_selected = 1 accesses the Instruction TLB
Lockdown register.

c13 All data reads and writes occur as expected.

Note
 The cp15_current_memory_area variable is not used with the ARM920T processor.

Table E-6 ARM920T and ARM922T cp15 register 8 accesses

cp15_cache_selected Bit 1 Bit 0 Purpose

1 0 0 Invalidate ITLB and DTLB

1 0 1 Invalidate ITLB

1 1 0 Invalidate ITLB single entry (VA)

0 0 0 Invalidate DTLB

0 0 1 Invalidate DTLB single entry (VA)
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-9

CP15 Register Mapping
E.6 ARM925T processor registers

Table E-7 describes the ARM925T processor registers.

Table E-7 ARM925T processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

ID information

Cache configurationa

c1 Control register Read/write Configuration flags

c2 Translation Table Base Read/write Translation table base

c3 Domain Access Control Read/write Access flags

c5 Fault Status register Read/write Status info

c6 Fault Address register Read/write Fault address

c7 Cache operations:

• Invalidate ICache and DCache

• Invalidate ICache

• Invalidate I single entry (VA)

• Prefetch ICache Line

• Invalidate DCache

• Invalidate D single entry (VA)

• Invalidate D single entry (index)

• Clean entire DCache

• Clean D single entry (VA)

• Clean and Invalidate D single entry

• Clean D single entry (index)

• Clean and Invalidate D single entry (index)

• Drain Write Buffer

Write-only

SBZ

SBZ

VA

VA

SBZ

VA

Index and segment

SBZ

VA

VA

Index and segment

Index and segment

SBZ

c8 TLB operations:

• Invalidate ITLB and DTLB

• Invalidate ITLB

• Invalidate ITLB single entry (VA)

• Invalidate DTLB

• Invalidate DTLB single entry (VA)

Read/write

SBZ

SBZ

VA

SBZ

VA
E-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

A data read with cp15_cache_selected = 1 accesses the Cache
Configuration register.

c1, c2, c3 All data reads and writes occur as expected.

c5 All data reads and writes access the FSR, which only records Data
Aborts. Prefetch Aborts (caused by faulting an instruction access) are not
recorded.

c6 All data reads and writes access the FAR, which only records Data
Aborts. Prefetch Aborts (caused by faulting an instruction access) are not
recorded.

c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [2:0] of the data that is written,
as shown in Table E-8.

c10 TLB lockdown control:

• Data Lockdown Base

• Instruction Lockdown Base

Read/write

Base and victim

Base and victim

c13 Process ID Read/write Process ID

c15 TI specific registers:

• I-max

• I-min

• Thread ID

• ARM925T status register

Read/write Configuration bits

I-max

I-min

Thread ID

Status bits

a. Revision 1 onwards.

Table E-7 ARM925T processor registers (continued)

Register Description Access Data

Table E-8 ARM925T cp15 register 7 accesses

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

1 0 0 0 Invalidate ICache and DCache

1 0 0 1 Invalidate ICache

1 0 1 0 Invalidate I single entry (VA)
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-11

CP15 Register Mapping
The encoded function uses bits [31:3] of the data that is written, with
bits [2:0] cleared.

c8 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [1:0] of the data that is written,
as shown in Table E-9.

The encoded function uses bits [31:2] of the data that is written, with
bits [1:0] cleared.

1 0 1 1 Prefetch ICache Line (VA)

1 1 0 0 Drain Write Buffer

0 0 0 0 Invalidate DCache

0 0 0 1 Invalidate D single entry

0 0 1 0 Invalidate D single entry (index)

0 0 1 1 Clean entire DCache

0 1 0 0 Clean D single entry (VA)

0 1 0 1 Clean and Invalidate D single entry
(VA)

0 1 1 0 Clean D single entry (index)

0 1 1 1 Clean and Invalidate D single entry
(index)

Table E-8 ARM925T cp15 register 7 accesses (continued)

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

Table E-9 ARM925T cp15 register 8 accesses

cp15_cache_selected Bit 1 Bit 0 Purpose

1 0 0 Invalidate ITLB and DTLB

1 0 1 Invalidate ITLB

1 1 0 Invalidate ITLB single entry (VA)

0 0 0 Invalidate DTLB

0 0 1 Invalidate DTLB single entry (VA)
E-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
c10 A data read or write with cp15_cache_selected = 0 accesses the Data TLB
Lockdown register.

A data read with cp15_cache_selected = 1 accesses the Instruction TLB
Lockdown register.

c13 All data reads and writes occur as expected.

c15 The function performed is determined by the value of the
cp15_current_memory_area variable (although the functions are not related
to memory areas), as shown in Table E-10.

Table E-10 ARM925T cp15 register 7 accesses

cp15_current_memory_area Access Purpose

0 Read/write ARM925T configuration register

1 Read/write I-max

2 Read/write I-min

3 Read/write Thread ID

4 Read only ARM925T status register
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-13

CP15 Register Mapping
E.7 ARM926EJ-S processor registers

Table E-11 describes the ARM926EJ-S processor registers.

Table E-11 ARM926EJ-S processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

Read-only

ID information

Cache configuration

Tightly coupled memory
information

c1 Control register Read/write Configuration flags

c2 Translation Table Base Read/write Translation table base

c3 Domain Access Control Read/write Access flags

c5 Fault Status register Read/write Status info

c6 Fault Address register Read/write Fault address

c7 Cache operations:

• Invalidate ICache and DCache

• Invalidate ICache

• Invalidate I single entry (VA)

• Invalidate I single entry (set/way)

• Prefetch ICache Line

• Invalidate DCache

• Invalidate D single entry (VA)

• Invalidate D single entry (set/way)

• Test and clean DCache

• Clean D single entry (VA)

• Clean D single entry (set/way)

• Test, clean, and invalidate DCache

• Clean and invalidate D single entry (VA)

• Clean and invalidate D single entry (set/way)

• Drain Write Buffer

Write-only

SBZ

SBZ

VA

Set and way

SBZ

SBZ

VA

Set and way

SBZ

VA

Set and way

SBZ

VA

Set and way

SBZ
E-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

A data read with cp15_cache_selected = 1 accesses the Cache
Configuration register.

A data read with cp15_cache_selected = 2 accesses the Tightly coupled
memory information register.

c1, c2, c3

All data reads and writes occur as expected.

c5 A data read with cp15_cache_selected = 0 accesses the Data side FSR.

A data read with cp15_cache_selected = 1 accesses the Instruction side
FSR.

c6 All data reads and writes occur as expected.

c8 TLB operations:

• Invalidate ITLB and DTLB

• Invalidate ITLB and DTLB single entry (VA)

• Invalidate ITLB

• Invalidate ITLB single entry (VA)

• Invalidate DTLB

• Invalidate DTLB single entry (VA)

Read/write

SBZ

VA

SBZ

VA

SBZ

VA

c9 Lockdown control:

• Data Lockdown Control

• Instruction Lockdown Control

• Tightly Coupled DMemory Control

• Tightly Coupled IMemory Control

Read/write

DCtrl value

ICtrl value

DMemory value

IMemory value

c10 TLB lockdown control Read/write Base and victim

c13 Process identifiers:

• FCSE PID

• Context ID

Read/write

FCSE process ID

ETM context ID

c15 Test and Debug register:

• Trace Control register

• Memory Region Remap register

Read/write

Control flags

Remap information

Table E-11 ARM926EJ-S processor registers (continued)

Register Description Access Data
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-15

CP15 Register Mapping
c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [2:0] of the data that is written,
as shown in Table E-12.

The encoded function uses bits [31:3] of the data that is written, with
bits [2:0] cleared.

Table E-12 ARM926EJ-S cp15 register 7 accesses

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

2 0 0 0 Test, clean, and invalidate
DCache

2 0 0 1 Clean and invalidate D single
entry (VA)

2 0 1 1 Clean and invalidate D single
entry (set/way)

2 1 1 0 Drain Write Buffer

1 0 0 0 Invalidate ICache and DCache

1 0 0 1 Invalidate ICache

1 0 1 0 Invalidate I single entry (VA)

1 0 1 1 Invalidate I single entry
(set/way)

1 1 0 0 Prefetch ICache Line

1 1 0 1 Drain Write Buffer

0 0 0 0 Invalidate DCache

0 0 0 1 Invalidate D single entry (VA)

0 0 1 0 Invalidate D single entry
(set/way)

0 0 1 1 Test and clean DCache

0 0 1 0 Clean D single entry (VA)

0 0 1 0 Clean D single entry (set/way)
E-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
c8 The function performed is determined by the value of the
cp15_cache_selected variable, and by bit 0 of the data that is written, as
shown in Table E-13.

The encoded function uses bits [31:1] of the data that is written, with bit 0
cleared.

c9 A data read or write with cp15_cache_selected = 0 accesses the Data
Lockdown control.

A data read with cp15_cache_selected = 1 accesses the Instruction
Lockdown control.

A data read or write with cp15_cache_selected = 2 accesses the Tightly
Coupled DMemory control.

A data read with cp15_cache_selected = 3 accesses the Tightly Coupled
IMemory control.

c10 All data reads and writes occur as expected.

c13 A data read or write with cp15_cache_selected = 0 accesses the FCSE
process ID.

A data read with cp15_cache_selected = 1 accesses the ETM context ID.

c15 A data read or write with cp15_cache_selected = 0 accesses the Trace
Control register.

A data read with cp15_cache_selected = 1 accesses the Memory Region
Remap register.

Table E-13 ARM926EJ-S cp15 register 8 accesses

cp15_cache_selected Bit 0 Purpose

2 0 Invalidate ITLB and DTLB

2 1 Invalidate ITLB and DTLB single
entry (VA)

1 0 Invalidate ITLB

1 1 Invalidate ITLB single entry (VA)

0 0 Invalidate DTLB

0 1 Invalidate DTLB single entry (VA)
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-17

CP15 Register Mapping
E.8 ARM940T processor registers

Table E-14 describes the ARM940T processor registers.

Table E-14 ARM940T processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

ID information

Cache configurationa

c1 Control register Read/write Configuration flags

c2 Cache control:

• Data Cache Control

• Instruction Cache Control

Read/write

DCache control flags

ICache control flags

c3 Bufferable Control Read/write DBuffer control flags

c5 Memory protection:

• Data Cache Control

• Instruction Cache Control

Read/write

DCache protection flags

ICache protection flags

c6 Memory Area Definition:

• D memory region 0 to 7

• I memory region 0 to 7

Read/write

Base, size, and enable

Base, size, and enable

c7 Cache operations:

• Flush ICache

• Flush ICache Single Entry

• Flush DCache

• Flush DCache Single Entry

• Clean DCache Entry

• Prefetch ICache Line

• Clean and Flush DCache entry

• Drain Write Buffer

Write-only

SBZ

Index and segment

SBZ

Index and segment

Index and segment

Address

Index and segment

SBZ

c9 Cache lockdown control:

• Data Lockdown Control

• Instruction Lockdown Control

Read/write

D-control value

I-control value

c15 Test and Debug register Read/write Map I or D CAM flags

a. Revision 1 onwards.
E-18 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

From revision 1 onwards, a data read with cp15_cache_selected = 1
accesses the Cache Configuration register.

c1 All data reads and writes occur as expected.

c2 A data read or write with cp15_cache_selected = 0 accesses the DCache
bits.

A data read or write with cp15_cache_selected = 1 accesses the ICache
bits.

c3 All data reads and writes occur as expected.

c5 A data read or write with cp15_cache_selected = 0 accesses the data
protection access permissions.

A data read or write with cp15_cache_selected = 1 accesses the
instruction protection access permissions.

c6 The data that is read or written is a memory area definition, and consists
of a base address, a size value, and an enable flag. The memory area is
specified by the cp15_current_memory_area variable, and the
cp15_cache_selected variable selects between the D area (when 0) and
the I area (when 1).

c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [1:0] of the data that is written,
as shown in Table E-15.

Table E-15 ARM940T cp15 register 7 accesses

cp15_cache_selected Bit 1 Bit 0 Purpose

0 0 0 Flush DCache

0 0 1 Flush 1 entry DCache

0 1 0 Clean DCache entry

0 1 1 Clean and flush DCache entry

1 0 0 Flush ICache
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-19

CP15 Register Mapping
The encoded function uses bits [31:2] of the data that is written, with
bits [1:0] cleared. So if 0x80000002 is written to r7, and
cp15_cache_selected = 1, then the instruction data at 0x80000000 is
prefetched into the ICache.

c8 A data read or write with cp15_cache_selected = 0 accesses the data
lockdown control.

A data read or write with cp15_cache_selected = 1 accesses the
instruction lockdown control.

c15 All data reads and writes occur as expected.

1 0 1 Flush 1 entry ICache

1 1 0 Prefetch ICache cache line

1 1 1 Drain write buffera

a. Revision 1 onwards.

Table E-15 ARM940T cp15 register 7 accesses (continued)

cp15_cache_selected Bit 1 Bit 0 Purpose
E-20 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
E.9 ARM946E-S processor registers

Table E-16 describes the ARM946E-S processor registers.

Table E-16 ARM946E-S processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

Read-only

ID information

Cache configuration

Tightly coupled memory
information

c1 Control register Read/write Configuration flags

c2 Cache control:

• Data Cache Control

• Instruction Cache Control

Read/write

DCache control flags

ICache control flags

c3 Bufferable Control Read/write DBuffer control flags

c5 Memory protection:

• Data Cache Control

• Instruction Cache Control

Read/write

DCache protection flags

ICache protection flags

c6 Memory Area Definition:

• D memory region 0 to 7

• I memory region 0 to 7

Read/write

Base, size, and enable

Base, size, and enable

c7 Cache operations:

• Flush ICache

• Flush ICache Entry by VA

• Prefetch ICache Line

• Flush DCache

• Flush DCache Entry by VA

• Clean DCache Entry by VA

• Clean and Flush DCache entry by VA

• Clean DCache Entry by index

• Clean and Flush DCache entry by index

Write-only

SBZ

VA

Address

SBZ

VA

VA

VA

Index and segment

Index and segment
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-21

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

A data read with cp15_cache_selected = 1 accesses the Cache
Configuration register.

A data read with cp15_cache_selected = 2 accesses the Tightly coupled
memory information register.

c1 All data reads and writes occur as expected.

c2 A data read or write with cp15_cache_selected = 0 or
cp15_cache_selected = 2 accesses the DCache bits.

A data read or write with cp15_cache_selected = 1 or
cp15_cache_selected = 3 accesses the ICache bits.

c3 All data reads and writes occur as expected.

c5 A data read and write with cp15_cache_selected = 0 or
cp15_cache_selected = 2 accesses the data protection access permissions.

A data read or write with cp15_cache_selected = 1 accesses the
instruction protection access permissions.

c6 The data that is read or written is a memory area definition, and consists
of a base address, a size value, and an enable flag. The memory area is
specified by the cp15_current_memory_area variable.

Note
 Unlike the ARM940T processor, there are not separate I and D versions

of these registers.

c9 Cache lockdown control:

• Data Lockdown Control

• Instruction Lockdown Control

• Tightly coupled D memory control

• Tightly coupled I memory control

Read/write

D-control value

I-control value

D-mem value

I-mem value

c13 Trace process ID register Read/write Trace process ID

c15 Test and Debug register Read/write Not supported by Multi-ICE

Table E-16 ARM946E-S processor registers (continued)

Register Description Access Data
E-22 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [2:0] of the data that is written,
as shown in Table E-17.

The encoded function uses bits [31:3] of the data that is written, with
bits [2:0] cleared. So if 0x80000002 is written to r7, and
cp15_cache_selected = 1, then the instruction data at 0x80000000 is
prefetched into the ICache.

c9 A data read or write with cp15_cache_selected = 0 accesses the data
lockdown control.

A data read or write with cp15_cache_selected = 1 accesses the
instruction lockdown control.

A data read or write with cp15_cache_selected = 2 accesses the tightly
coupled data memory control.

A data read or write with cp15_cache_selected = 3 accesses the tightly
coupled instruction memory control.

c13 All data reads and writes occur as expected.

Table E-17 ARM946E-S cp15 register 7 accesses

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

0 0 0 0 Flush DCache

0 0 0 1 Flush DCache entry by VA

0 0 1 0 Clean DCache entry by VA

0 0 1 1 Clean and flush DCache entry by VA

0 1 0 0 Clean DCache Entry by index

0 1 0 1 Clean and flush DCache Entry by index

1 0 0 0 Flush ICache

1 0 0 1 Flush ICache entry by VA

1 0 1 0 Prefetch ICache line
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-23

CP15 Register Mapping
E.10 ARM1020T and ARM10200T processor registers

Table E-18 describes the ARM1020T and ARM10200T processor registers.

Table E-18 ARM1020T and ARM10200T processor registers

Register Description Access Data

c0 ID register Read-only

Read-only

ID information

Cache configuration

c1 Control register Read/write Configuration flags

c2 Translation Table Base Read/write Translation table base

c3 Domain Access Control Read/write Access flags

c5 Fault Status register Read/write Status info

c6 Fault Address register Read/write Fault address

c7 Cache operations:

• Invalidate ICache and DCache

• Invalidate ICache

• Invalidate I single entry (VA)

• Prefetch ICache Line

• Invalidate DCache

• Invalidate D single entry (VA)

• Clean D single entry (VA)

• Clean and Invalidate D single entry

• Clean D single entry (index)

• Clean and Invalidate D single entry (index)

• Drain Write Buffer

Write-only

SBZ

SBZ

VA

VA

SBZ

VA

VA

VA

Index and segment

Index and segment

SBZ

c8 TLB operations:

• Invalidate ITLB and DTLB

• Invalidate ITLB

• Invalidate ITLB single entry (VA)

• Invalidate DTLB

• Invalidate DTLB single entry (VA)

Read/write

SBZ

SBZ

VA

SBZ

VA

c9 Cache lockdown control:

• Data Lockdown base

• Instruction Lockdown base

Read/write

Base and victim

Base and victim
E-24 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
The encodings to read or write the registers are as follows:

c0 A data read with cp15_cache_selected = 0 accesses the ID register.

A data read with cp15_cache_selected = 1 accesses the Cache
Configuration register.

c1, c2, c3, c5

All data reads and writes occur as expected.

c6 A data read with cp15_cache_selected = 0 accesses the Data side FAR.

A data read with cp15_cache_selected = 1 accesses the Instruction side
FAR.

c7 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [2:0] of the data that is written,
as shown in Table E-19.

c10 TLB lockdown control:

• Data Lockdown base

• Instruction Lockdown base

Read/write

Base and victim

Base and victim

c13 Process ID Read/write Process ID

c15 Test and Debug register Read/write Not supported by
Multi-ICE

Table E-18 ARM1020T and ARM10200T processor registers (continued)

Register Description Access Data

Table E-19 ARM1020T and ARM10200T cp15 register 7 accesses

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose

1 0 0 0 Invalidate ICache and DCache

1 0 0 1 Invalidate ICache

1 0 1 0 Invalidate ICache single entry
(VA)

1 0 1 1 Prefetch ICache Line

0 0 0 0 Invalidate DCache

0 0 0 1 Invalidate DCache single entry
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-25

CP15 Register Mapping
The encoded function uses bits [31:3] of the data that is written, with
bits [2:0] cleared.

c8 The function performed is determined by the value of the
cp15_cache_selected variable, and by bits [1:0] of the data that is written,
as shown in Table E-20.

The encoded function uses bits [31:2] of the data that is written, with
bits [1:0] cleared.

c9 A data read or write with cp15_cache_selected = 0 accesses the Data
Cache Lockdown base.

A data read with cp15_cache_selected = 1 accesses the Instruction Cache
Lockdown base.

0 0 1 0 Clean DCache single entry
(VA)

0 0 1 1 Clean and Invalidate DCache
single entry (VA)

0 1 0 0 Clean DCache single entry
(index)

0 1 0 1 Clean and Invalidate DCache
single entry

0 1 1 0 Drain Write Buffer

Table E-20 ARM1020T and ARM10200T cp15 register 8 accesses

cp15_cache_selected Bit 1 Bit 0 Purpose

1 0 0 Invalidate ITLB and DTLB

1 0 1 Invalidate ITLB

1 1 0 Invalidate ITLB single entry (VA)

0 0 0 Invalidate DTLB

0 0 1 Invalidate DTLB single entry (VA)

Table E-19 ARM1020T and ARM10200T cp15 register 7 accesses (continued)

cp15_cache_selected Bit 2 Bit 1 Bit 0 Purpose
E-26 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

CP15 Register Mapping
c10 A data read or write with cp15_cache_selected = 0 accesses the Data TLB
Lockdown register.

A data read with cp15_cache_selected = 1 accesses the Instruction TLB
Lockdown register.

c13 All data reads and writes occur as expected.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. E-27

CP15 Register Mapping
E.11 XScale microarchitecture processor registers

XScale microarchitecture processors include several coprocessors that are described in
the The Intel® XScale™ Core Developer’s Manual.

The Multi-ICE support for the coprocessor registers on XScale microarchitecture
processors depends on the debugger you are using:

• if you use the ADS v1.1 (or later) AXD then Multi-ICE supports access to all
coprocessor registers

• if you are using ADW, or ADS v1.0.1, then only the coprocessor registers that can
be accessed using coprocessor instructions with both CRm and opcode_2 equal to
zero can be used.

The variables cp15_cache_selected and cp15_current_memory_area are not used when
accessing XScale microarchitecture processors.
E-28 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix F
JTAG Interface Connections

This appendix describes and illustrates the JTAG pin connections. It contains the
following sections:

• Multi-ICE JTAG interface connections on page F-2

• Multi-ICE JTAG port timing characteristics on page F-5

• TCK frequencies on page F-7

• TCK values on page F-11.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-1

JTAG Interface Connections
F.1 Multi-ICE JTAG interface connections

The JTAG connector is situated at one end of the Multi-ICE interface unit. The
connector is a 20-Way Insulation Displacement Connector (IDC) keyed box header
(2.54mm male) that mates with IDC sockets mounted on a ribbon cable (see
Figure F-1).

Figure F-1 JTAG pin connections, top view

Note
 All GND pins must be connected to 0V on the target board.

F.1.1 JTAG pinouts

Table F-1 on page F-3 shows the JTAG pinouts.

�

�

�

�

�

��

��

��

��

�

�

�

�

��

��

��

��

��

��

��

�����

�����

�	�

���

���

����

�	

�����

	���

	��*��

���++��

��	

��	

��	

��	

��	

��	

��	

��	

��	
F-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
Table F-1 JTAG pinouts

Pin Signal I/O Description

Pin 1 VTref Input This is the target reference voltage. It indicates that the target has power and
it is also used to create the logic-level reference for the input comparators on
TDO and RTCK. It also controls the output logic levels to the target. It is
normally fed from Vdd on the target board and might have a series resistor
(though this is not recommended).

Pin 2 Vsupply Input This is the supply voltage to Multi-ICE. It draws its supply current from this
pin through a step-up voltage convertor. This is normally fed by the target Vdd
which must not have a series resistor in the feed to this pin. If the target supply
voltage or its current capability is too LOW, this path is broken by an external
power jack on the EmbeddedICE adaptor.

Pin 3 nTRST Output Open collector output from Multi-ICE to the Reset signal on the target JTAG
port. This pin must be pulled HIGH on the target to avoid unintentional resets
when there is no connection.

Pin 4 GND - Ground.

Pin 5 TDI Output Test Data In signal from Multi-ICE to the target JTAG port. It is recommended
that this pin is pulled to a defined state.

Pin 6 GND - Ground.

Pin 7 TMS Output Test Mode signal from Multi-ICE to the target JTAG port. This pin must be
pulled up on the target so that the effect of any spurious TCKs when there is
no connection is benign.

Pin 8 GND - Ground.

Pin 9 TCK Output Test Clock signal from Multi-ICE to the target JTAG port. It is recommended
that this pin is pulled to a defined state.

Pin 10 GND - Ground.

Pin 11 RTCK Input Return Test Clock signal from the target JTAG port to Multi-ICE. Some
targets must synchronize the JTAG inputs to internal clocks. To assist in
meeting this requirement, you can use a returned, and retimed, TCK to
dynamically control the TCK rate. Multi-ICE provides Adaptive Clock
Timing, which waits for TCK changes to be echoed correctly before making
further changes. Targets that do not have to process TCK can simply ground
this pin.

Pin 12 GND - Ground.

Pin 13 TDO Input Test Data Out from the target JTAG port to Multi-ICE.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-3

JTAG Interface Connections
Pin 14 GND - Ground.

Pin 15 nSRST Input/output Open collector output from Multi-ICE to the target system reset. This is also
an input to Multi-ICE so that a reset initiated on the target can be reported to
the debugger.

This pin must be pulled up on the target to avoid unintentional resets when
there is no connection.

Pin 16 GND - Ground.

Pin 17 DBGRQ - This pin is not connected in the Multi-ICE interface unit. It is reserved for
compatibility with other equipment to be used as a debug request signal to the
target system.

Pin 18 GND - Ground.

Pin 19 DBGACK - This pin is not connected in the Multi-ICE interface unit. It is reserved for
compatibility with other equipment to be used as a debug acknowledge signal
from the target system.

Pin 20 GND - Ground.

Table F-1 JTAG pinouts (continued)

Pin Signal I/O Description
F-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
F.2 Multi-ICE JTAG port timing characteristics

Figure F-2 and Table F-2 show the timing characteristics of the Multi-ICE unit. These
must be considered if you design a target device or board and want to be able to connect
Multi-ICE at a particular TCK frequency. The characteristics relate to the Multi-ICE
hardware. You must consider them in parallel with the characteristics of your target.

In a JTAG device that fully complies to IEEE1149.1, TDI and TMS are sampled on the
rising edge of TCK, and TDO changes on the falling edge of TCK. To take advantage
of these properties, Multi-ICE samples TDO on the rising edge of TCK and changes its
TDI and TMS signals on the falling edge of TCK. This means that with a fully
compliant target, issues with minimum setup and hold times can always be resolved by
simply decreasing the TCK frequency, because this increases the separation between
signals changing and being sampled.

Figure F-2 Multi-ICE JTAG port timing diagram

Table F-2 Multi-ICE IEEE 1149.1 timing requirements

Parameter Programmed Min Max Description Note

Tbscl Yes 50ns 204.8μs TCK LOW period a

a. The Multi-ICE server software enables you to change the TCK LOW and HIGH periods (see Chapter 3 Using the
Multi-ICE Server) between the values shown in Table F-2. The other parameters shown in Table F-2 must be considered
with the specific values of Tbscl and Tbsch that you have chosen. The default values for an autoconfigured single-TAP
system are, nominally, Tbscl=50ns and Tbsch=50ns.

Tbsch Yes 50ns 204.8μs TCK HIGH period b

Tbsod No - 10ns TDI and TMS valid from TCK (falling) c

Tbsis No 27ns - TDO setup to TCK (rising) d

Tbsih No 10ns - TDO hold from TCK (rising) -

-������
-1�

-�,
-���& -���#

-��
� -��
#

-12

-����
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-5

JTAG Interface Connections
b. The Multi-ICE server software enables you to change the TCK LOW and HIGH periods (see Chapter 3 Using the
Multi-ICE Server) between the values shown in Table F-2 on page F-5. The other parameters shown in Table F-2 on
page F-5 must be considered with the specific values of Tbscl and Tbsch that you have chosen. The default values for an
autoconfigured single-TAP system are, nominally, Tbscl=50ns and Tbsch=50ns.

c. Tbsod is the maximum delay between the falling edge of TCK and valid levels on the TDI and TMS Multi-ICE output
signals. The target samples these signals on the following rising edge of TCK and so the minimum setup time for the
target, relative to the rising edge of TCK, is Tbscl–Tbsod.

d. Tbsis is the minimum setup time for the TDO input signal, relative to the rising edge of TCK when Multi-ICE samples
this signal. The target changes its TDO value on the previous falling edge of TCK and so the maximum time for the
target TDO level to become valid, relative to the falling edge of TCK, is Tbscl–Tbsis.
F-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
F.3 TCK frequencies

Table F-3 gives the values that must be entered into the TCK fields on the JTAG settings
dialog for a particular TCK frequency. For example, for a 3.33MHz TCK rate, use a
value of 2 for TCK HIGH and TCK LOW.

Table F-3 TCK frequencies

Frequency
(kHz)

Half-
period
(ns)

Value
Frequency
(kHz)

Half-
period
(ns)

Value

10000.00 50 0 454.55 1100 21

5000.00 100 1 434.78 1150 22

3333.33 150 2 416.67 1200 23

2500.00 200 3 400.00 1250 24

2000.00 250 4 384.62 1300 25

1666.67 300 5 370.37 1350 26

1428.57 350 6 357.14 1400 27

1250.00 400 7 344.83 1450 28

1111.11 450 8 333.33 1500 29

1000.00 500 9 322.58 1550 30

909.09 550 10 312.50 1600 31

833.33 600 11 294.12 1700 48

769.23 650 12 277.78 1800 49

714.29 700 13 263.16 1900 50

666.67 750 14 250.00 2000 51

625.00 800 15 238.10 2100 52

588.24 850 16 227.27 2200 53

555.56 900 17 217.39 2300 54

526.32 950 18 208.33 2400 55

500.00 1000 19 200.00 2500 56
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-7

JTAG Interface Connections
476.19 1050 20 192.31 2600 57

185.19 2700 58 59.52 8400 116

178.57 2800 59 56.82 8800 117

172.41 2900 60 54.35 9200 118

166.67 3000 61 52.08 9600 119

147.06 3400 80 50.00 10000 120

138.89 3600 81 48.08 10400 121

131.58 3800 82 46.30 10800 122

125.00 4000 83 44.64 11200 123

119.05 4200 84 43.10 11600 124

113.64 4400 85 41.67 12000 125

108.70 4600 86 40.32 12400 126

104.17 4800 87 39.06 12800 127

100.00 5000 88 36.76 13600 144

96.15 5200 89 34.72 14400 145

92.59 5400 90 32.89 15200 146

89.29 5600 91 31.25 16000 147

86.21 5800 92 29.76 16800 148

83.33 6000 93 28.41 17600 149

80.65 6200 94 27.17 18400 150

78.13 6400 95 26.04 19200 151

73.53 6800 112 25.00 20000 152

69.44 7200 113 24.04 20800 153

65.79 7600 114 23.15 21600 154

Table F-3 TCK frequencies (continued)

Frequency
(kHz)

Half-
period
(ns)

Value
Frequency
(kHz)

Half-
period
(ns)

Value
F-8 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
62.50 8000 115 22.32 22400 155

21.55 23200 156 7.44 67200 212

20.83 24000 157 7.10 70400 213

20.16 24800 158 6.79 73600 214

19.53 25600 159 6.51 76800 215

18.38 27200 176 6.25 80000 216

17.36 28800 177 6.01 83200 217

16.45 30400 178 5.79 86400 218

15.63 32000 179 5.58 89600 219

14.88 33600 180 5.39 92800 220

14.20 35200 181 5.21 96000 221

13.59 36800 182 5.04 99200 222

13.02 38400 183 4.88 102400 223

12.50 40000 184 4.60 108800 240

12.02 41600 185 4.34 115200 241

11.57 43200 186 4.11 121600 242

11.16 44800 187 3.91 128000 243

10.78 46400 188 3.72 134400 244

10.42 48000 189 3.55 140800 245

10.08 49600 190 3.40 147200 246

9.77 51200 191 3.26 153600 247

9.19 54400 208 3.13 160000 248

8.68 57600 209 3.00 166400 249

8.22 60800 210 2.89 172800 250

Table F-3 TCK frequencies (continued)

Frequency
(kHz)

Half-
period
(ns)

Value
Frequency
(kHz)

Half-
period
(ns)

Value
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-9

JTAG Interface Connections
7.81 64000 211 2.79 179200 251

2.69 185600 252 2.52 198400 254

2.60 192000 253 2.44 204800 255

Table F-3 TCK frequencies (continued)

Frequency
(kHz)

Half-
period
(ns)

Value
Frequency
(kHz)

Half-
period
(ns)

Value
F-10 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
F.4 TCK values

Table F-4 shows the corresponding frequencies for the TCK fields on the JTAG settings
dialog. As an example, for a value of 4 for TCK HIGH and TCK LOW, the TCK rate
is 2MHz.

Table F-4 TCK values

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)

0 50 10000.00 21 1100 454.55

1 100 5000.00 22 1150 434.78

2 150 3333.33 23 1200 416.67

3 200 2500.00 24 1250 400.00

4 250 2000.00 25 1300 384.62

5 300 1666.67 26 1350 370.37

6 350 1428.57 27 1400 357.14

7 400 1250.00 28 1450 344.83

8 450 1111.11 29 1500 333.33

9 500 1000.00 30 1550 322.58

10 550 909.09 31 1600 312.50

11 600 833.33 32 100 5000.00

12 650 769.23 33 200 2500.00

13 700 714.29 34 300 1666.67

14 750 666.67 35 400 1250.00

15 800 625.00 36 500 1000.00

16 850 588.24 37 600 833.33

17 900 555.56 38 700 714.29

18 950 526.32 39 800 625.00

19 1000 500.00 40 900 555.56
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-11

JTAG Interface Connections
20 1050 476.19 41 1000 500.00

42 1100 454.55 66 600 833.33

43 1200 416.67 67 800 625.00

44 1300 384.62 68 1000 500.00

45 1400 357.14 69 1200 416.67

46 1500 333.33 70 1400 357.14

47 1600 312.50 71 1600 312.50

48 1700 294.12 72 1800 277.78

49 1800 277.78 73 2000 250.00

50 1900 263.16 74 2200 227.27

51 2000 250.00 75 2400 208.33

52 2100 238.10 76 2600 192.31

53 2200 227.27 77 2800 178.57

54 2300 217.39 78 3000 166.67

55 2400 208.33 79 3200 156.25

56 2500 200.00 80 3400 147.06

57 2600 192.31 81 3600 138.89

58 2700 185.19 82 3800 131.58

59 2800 178.57 83 4000 125.00

60 2900 172.41 84 4200 119.05

61 3000 166.67 85 4400 113.64

62 3100 161.29 86 4600 108.70

63 3200 156.25 87 4800 104.17

64 200 2500.00 88 5000 100.00

Table F-4 TCK values (continued)

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)
F-12 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
65 400 1250.00 89 5200 96.15

90 5400 92.59 114 7600 65.79

91 5600 89.29 115 8000 62.50

92 5800 86.21 116 8400 59.52

93 6000 83.33 117 8800 56.82

94 6200 80.65 118 9200 54.35

95 6400 78.13 119 9600 52.08

96 400 1250.00 120 10000 50.00

97 800 625.00 121 10400 48.08

98 1200 416.67 122 10800 46.30

99 1600 312.50 123 11200 44.64

100 2000 250.00 124 11600 43.10

101 2400 208.33 125 12000 41.67

102 2800 178.57 126 12400 40.32

103 3200 156.25 127 12800 39.06

104 3600 138.89 128 800 625.00

105 4000 125.00 129 1600 312.50

106 4400 113.64 130 2400 208.33

107 4800 104.17 131 3200 156.25

108 5200 96.15 132 4000 125.00

109 5600 89.29 133 4800 104.17

110 6000 83.33 134 5600 89.29

111 6400 78.13 135 6400 78.13

112 6800 73.53 136 7200 69.44

Table F-4 TCK values (continued)

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-13

JTAG Interface Connections
113 7200 69.44 137 8000 62.50

138 8800 56.82 162 4800 104.17

139 9600 52.08 163 6400 78.13

140 10400 48.08 164 8000 62.50

141 11200 44.64 165 9600 52.08

142 12000 41.67 166 11200 44.64

143 12800 39.06 167 12800 39.06

144 13600 36.76 168 14400 34.72

145 14400 34.72 169 16000 31.25

146 15200 32.89 170 17600 28.41

147 16000 31.25 171 19200 26.04

148 16800 29.76 172 20800 24.04

149 17600 28.41 173 22400 22.32

150 18400 27.17 174 24000 20.83

151 19200 26.04 175 25600 19.53

152 20000 25.00 176 27200 18.38

153 20800 24.04 177 28800 17.36

154 21600 23.15 178 30400 16.45

155 22400 22.32 179 32000 15.63

156 23200 21.55 180 33600 14.88

157 24000 20.83 181 35200 14.20

158 24800 20.16 182 36800 13.59

159 25600 19.53 183 38400 13.02

160 1600 312.50 184 40000 12.50

Table F-4 TCK values (continued)

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)
F-14 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

JTAG Interface Connections
161 3200 156.25 185 41600 12.02

186 43200 11.57 210 60800 8.22

187 44800 11.16 211 64000 7.81

188 46400 10.78 212 67200 7.44

189 48000 10.42 213 70400 7.10

190 49600 10.08 214 73600 6.79

191 51200 9.77 215 76800 6.51

192 3200 156.25 216 80000 6.25

193 6400 78.13 217 83200 6.01

194 9600 52.08 218 86400 5.79

195 12800 39.06 219 89600 5.58

196 16000 31.25 220 92800 5.39

197 19200 26.04 221 96000 5.21

198 22400 22.32 222 99200 5.04

199 25600 19.53 223 102400 4.88

200 28800 17.36 224 6400 78.13

201 32000 15.63 225 12800 39.06

202 35200 14.20 226 19200 26.04

203 38400 13.02 227 25600 19.53

204 41600 12.02 228 32000 15.63

205 44800 11.16 229 38400 13.02

206 48000 10.42 230 44800 11.16

207 51200 9.77 231 51200 9.77

208 54400 9.19 232 57600 8.68

Table F-4 TCK values (continued)

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. F-15

JTAG Interface Connections
209 57600 8.68 233 64000 7.81

234 70400 7.10 245 140800 3.55

235 76800 6.51 246 147200 3.40

236 83200 6.01 247 153600 3.26

237 89600 5.58 248 160000 3.13

238 96000 5.21 249 166400 3.00

239 102400 4.88 250 172800 2.89

240 108800 4.60 251 179200 2.79

241 115200 4.34 252 185600 2.69

242 121600 4.11 253 192000 2.60

243 128000 3.91 254 198400 2.52

244 134400 3.72 255 204800 2.44

Table F-4 TCK values (continued)

Value
Half-
period
(ns)

Frequency
(kHz)

Value
Half-
period
(ns)

Frequency
(kHz)
F-16 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Appendix G
User I/O Connections

This appendix describes and illustrates the additional input and output connections
provided in Multi-ICE. It contains the following section:

• Multi-ICE user I/O pin connections on page G-2.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. G-1

User I/O Connections
G.1 Multi-ICE user I/O pin connections

This section describes the User I/O connector. It contains the following sections:

• User input/output pin connections

• Input bit logic on page G-4.

The user (I/O) connector is situated under the removable cover on the Multi-ICE
interface unit. The connector is a 20-way header that mates with IDC sockets mounted
on a ribbon cable (see Figure G-1).

Figure G-1 User I/O pin connections

If you must drive one of the user-defined inputs with a signal operating at the target
system logic levels, see the sample circuit in Figure G-2 on page G-4.

G.1.1 User input/output pin connections

Table G-1 shows the user input/output pin connections.

����
�,

�����

����-

����.

�.�

��/" �

��/��

"&�0

"&��

"&�" �

'��

����1

����2

�����

��)�

" �0�

" �01

��0�

��01

'��

�

�

�

!

��

�

��

�!

�

�

�

�

��

��

��

��

��

��

��

Table G-1 User I/O connections

Pin Signal I/O Description

Pin 1 TestClk - For production test only. This pin must be left unconnected.

Pin 2 GND - -

Pin 3 Test1 - For production test only. This pin must be left unconnected.

Pin 4 Test2 - For production test only. This pin must be left unconnected.

Pin 5 Test3 - For production test only. This pin must be left unconnected.
G-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

User I/O Connections
Pin 6 Test4 - For production test only. This pin must be left unconnected.

Pin 7 Test5 - For production test only. This pin must be left unconnected.

Pin 8 Reset - For production test only. This pin must be left unconnected.

Pin 9 +5V Output This is intended for use as a supply for a small amount of external logic
circuitry. There is a recommended current limit of 20mA from this pin. You
must remember that due to the DC-DC converter, the additional current taken
from the target to supply any external logic is approximately Iout * (5V /
target voltage).

Pin 10 V+HP - For production test only. This pin must be left unconnected.

Pin 11 Vt_out - For production test only. This pin must be left unconnected.

Pin 12 out-1 Output This is a user output bit.

Pin 13 Vt_in - This is the voltage threshold used for input logic detection, derived from the
target logic reference voltage (VTref on pin 1 of the target connector). Use
this as one of the inputs to the comparator if a target logic level is being
monitored.

Pin 14 out-2 Output This is a user output bit.

Pin 15 Comp- Input This is connected to the inverting input of a spare LM339D comparator for use
with the user-defined input/output. There is a 1MΩ pull-down resistor to GND
on this pin.

Pin 16 in-1 Input This is a user input bit. This uses 74ACT family input thresholds and has a
10kΩ pull-up to +5V.

Pin 17 Comp+ Input This is connected to the non-inverting input of a spare LM339D comparator
for use with the user-defined input/output. There is a 1MΩ pull-up resistor to
+5V on this pin.

Pin 18 in-2 Input This is a user input bit. This uses 74ACT family input thresholds and has a
10kΩ pull-up to +5V.

Pin 19 Compout Output This is connected to the output of a spare LM339D comparator for use with
the user-defined input/output. This is an open collector output so it requires a
pull-up resistor (user inputs in-1 and in-2 already have suitable pull-ups
(10kΩ to 5V)).

Pin 20 GND - -

Table G-1 User I/O connections (continued)

Pin Signal I/O Description
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. G-3

User I/O Connections
G.1.2 Input bit logic

The user input bits correspond to two TTL logic-level outputs available from the user
input/output connector (see User I/O pin connections on page G-2). You can use these
signals to remotely monitor user logic at the server location.

The Multi-ICE JTAG port automatically adapts its input and output thresholds to the
voltage levels in the target system (based on the VTref pin). The inputs on the
Multi-ICE user I/O connector operate at standard TTL levels. If you must drive one of
the user-defined inputs with a signal operating at the target system logic levels, the
circuit, as shown in Figure G-2, converts this to TTL levels.

Figure G-2 Converting user-input signals to TTL levels

Pins 15, 17, and 19 are connected to an LM339 type comparator within the Multi-ICE
interface unit. The open collector comparator output (pin 19) drives the user input
(pin 16), which includes a suitable pull-up resistor. The inverting input to the

�!
�
�-���

��
�
�-!

�
�
�-.

�� ��-��	�'(

�!

�!

!�	

�� /�'%���

�-

!�	

�

����,�����
=0
#��0.

���,������1
%����1�����

)5��6
�

)54
	�6
��-

��

!����"�#$�����������������

'	����������

/�'%���&�$�

/�'%�&%
��#

"�#

"�#
G-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

User I/O Connections
comparator (pin 15) is driven by an output from the voltage reference mirror circuit
(pin 13). The non-inverting input to the comparator (pin 17) is driven by the signal to be
monitored using a small series resistor (Rin).

The output of the comparator is also fed back to this input through a large resistor
(Rhyst) to provide a small amount of hysteresis (around 20mV with the values shown).
A ground reference for the input signal must be connected to pin 20 to provide a more
direct return path than through the JTAG connector.

The user input bits are shown at the bottom-right corner of the Multi-ICE server
window. Each bit is:

• light green when HIGH

• dark green when LOW.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. G-5

User I/O Connections
G-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Glossary

Adaptive clocking A technique in which a clock signal is sent out by Multi-ICE and it waits for the returned
clock before generating the next clock pulse. The technique allows the Multi-ICE
interface unit to adapt to differing signal drive capabilities and differing cable lengths.

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

Angel Angel is a debug monitor that runs on an ARM-based target and enables you to debug
applications.

Application
Program Interface

A specification for a set of procedures, functions, data structures, and constants that are
used to interface two or more software components together. For example, an API
between an operating system and the application programs that use it might specify
exactly how to read data from a file.

ARM Debugger for
UNIX

ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively.

ARM Debugger for
Windows

ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two
versions of the same ARM debugger software, running under Windows or UNIX
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended
Debugger

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

AXD See ARM eXtended Debugger.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Cache cleaning The process of writing dirty data in a cache to main memory.

Coprocessor An additional processor that is used for certain operations, for example, for
floating-point math calculations, signal processing, or memory management.

Core Module See Integrator

CPU Central Processor Unit.

CPSR Current Program Status Register. See Program Status Register.

DCache Data cache.

DLL See Dynamic Linked Library

Dirty data When referring to a processor data cache, data that has been written to the cache but has
not been written to main memory. Only write-back caches can have dirty data, because
a write-through cache writes data to the cache and to main memory simultaneously. The
process of writing dirty data to main memory is called cache cleaning.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Dynamic Linked
Library

A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device such
as a printer or keyboard is often packaged as a DLL.

ECP See Enhanced Capability Port.

EmbeddedICE The additional hardware provided by debuggable ARM processors to aid debugging.
Glossary-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Glossary
Enhanced
Capability Port

A standard for parallel ports which enables fast bidirectional data transfers over parallel
ports.

See also EPP and IEEE1284.

Enhanced Parallel
Port

A standard for parallel ports which enables fast bidirectional data transfers over parallel
ports.

See also ECP and IEEE1284.

EPP See Enhanced Parallel Port.

Environment The actual hardware and operating system that an application will run on.

ETM Embedded Trace Macrocell.

External Data
Representation

A specification defined by Sun Microsystems describing a way of transferring typed
data between computer systems in a system independent manner. Used by Sun RPC.

Flash memory Nonvolatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

ICache Instruction cache.

ICE See In-Circuit Emulator.

ICE Extension Unit A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

ID Identifier.

IEEE 1149.1 The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as
JTAG.

IEEE 1284 A standard for parallel port interfaces which encompasses ECP but extends it to enable
semi-autonomous transfers.

IEU See ICE Extension Unit.

Image An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator A device enabling access to and modification of the signals of a circuit while that circuit
is operating.

Instruction Register When referring to a TAP controller, a register that controls the operation of the TAP.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Glossary-3

Glossary
Integrator An ARM hardware development platform. Core Modules are available that contain the
processor and local memory.

IR See Instruction Register.

Joint Test Action
Group

The name of the standards group which created the IEEE 1149.1 specification.

JTAG See Joint Test Action Group.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Memory
management unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor EmbeddedICE interface. ARM registered trademark.

nSRST Abbreviation of System Reset. The electronic signal which causes the target system
other than the TAP controller to be reset. This signal is known as nSYSRST in some
other manuals.

See also nTRST.

nTRST Abbreviation of TAP Reset. The electronic signal that causes the target system TAP
controller to be reset. This signal is known as nICERST in some other manuals.

See also nSRST.

Open collector A signal that may be actively driven LOW by one or more drivers, and is otherwise
passively pulled HIGH. Also known as a "wired AND" signal.

PID The ARM Platform-Independent Development card, now known as the ARM
Development Board.

PIE A platform-independent evaluator card designed and supplied by ARM Limited.

Port mapper A process that enables RPC client processes to contact the RPC server process for a
particular RPC service.

Processor Core The part of a microprocessor that reads instructions from memory and executes them,
including the instruction fetch unit, arithmetic and logic unit and the register bank. It
excludes optional coprocessors, caches, and the memory management unit.

Processor Status
Register

See Program Status Register.

Program image See Image.
Glossary-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Glossary
Program Status
Register

Program Status Register (PSR), containing some information about the current program
and some information about the current processor. Often, therefore, also referred to as
Processor Status Register.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

RDI See Remote Debug Interface.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

Remote_A Remote_A is a software protocol converter and configuration interface. It converts
between the RDI 1.5 software interface of a debugger and the Angel Debug Protocol
used by Angel targets. It can communicate over a serial or Ethernet interface.

Remote Debug
Interface

RDI is an open ARM standard procedural interface between a debugger and the debug
agent. The widest possible adoption of this standard is encouraged.

Remote Procedure
Call

A call to a procedure in a different process. The calling procedure invokes a procedure
in a different process that is usually running on a different processor.

RM RealMonitor.

RPC See Remote Procedure Call.

RTCK Returned TCK. The signal which enables Adaptive Clocking.

RTOS Real Time Operating System.

Scan Chain A group of one or more registers from one or more TAP controllers connected between
TDI and TDO, through which test data is shifted.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SPSR Saved Program Status Register. See Program Status Register.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.

Synchronous
starting

Setting several processors to a particular program location and state, and starting them
together.

Synchronous
stopping

Stopping several processors in such a way that they stop executing at the same instant.
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Glossary-5

Glossary
Sun RPC A specific form of RPC defined as a standard by Sun Microsystems that uses the XDR
standard and TCP/IP datagrams to communicate between networked computers.

TAP See Test Access Port.

TAP Controller Logic on a device which allows access to some or all of that device for test purposes.
The circuit functionality is defined in IEEE1149.1.

See also TAP, IEEE1149.1.

TAPOp The name of the interface API between the Multi-ICE Server and its clients.

Target The actual processor (real silicon or simulated) on which the application program is
running.

TCK The electronic clock signal which times data on the TAP data lines TMS, TDI, and
TDO.

TDI The electronic signal input to a TAP controller from the data source (upstream). Usually
this is seen connecting the Multi-ICE Interface Unit to the first TAP controller.

TDO The electronic signal output from a TAP controller to the data sink (downstream).
Usually this is seen connecting the last TAP controller to the Multi-ICE Interface Unit.

Test Access Port The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO
and nTRST (optional).

TTL Transistor-transistor logic. A type of logic design in which two bipolar transistors drive
the logic output to one or zero. LSI and VLSI logic often used TTL with HIGH logic
level approaching +5V and LOW approaching 0V.

Watchpoint A location within the image that will be monitored and that will cause execution to stop
when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

XDR See External Data Representation.
Glossary-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Index
A
Active server connections 4-12
Adaptive clocking 5-8, 6-3, 6-4

menu option 3-24
Adaptive JTAG voltage levels 6-13
Adaptor

TI 14-way to 20-way 2-12
14-way to 20-way 1-2, 2-9, 4-47,

5-14
ADU 1-3
ADW 1-3, 4-5

accessing debugger internals 4-50
Configure Debugger menu item 4-5
Debugger Configuration diaog 4-6
error messages 5-16

AFS 1-5
Allow network connections 2-17, 4-12
AMBA 5-9
Angel debug monitor 1-5
ARM

ADS 1-13, 1-15, 2-2
ADW 4-2, 4-5

Angel debug monitor 4-54
AXD 4-4
Debuggers 2-2
Developer Suite 2-2
Development Board 4-64, 5-8
Embedded Trace Macrocell 1-13
Firmware Suite 1-5
Integrator 5-8
Integrator board 1-14
PID board 4-64
PIE7 board 2-11, 5-8
PIV7T board 2-11, 5-8
Processors. see Processors
RealMonitor 1-14, 4-51
System coprocessor 4-49
TDT 1-13

ARMulator 4-5
ASIC

guidelines 6-9
multiple devices 6-9
signal drivers 6-15

Automatic
configuration 3-3

dialup 2-3
AXD 1-3, 4-4

Accessing debugger internals 4-50
Choose Target dialog 4-4
Configure Target menu item 4-4
debugging multiple processors 4-27

B
Big endian 4-18, D-2
Boards

ARM Development 5-8
ARM Integrator 5-8
ARM PIE7 2-11, 5-8
ARM PIV7T 2-11, 5-8
compatibility 2-11
Integrator 1-14
selecting 1-11, 4-21

Box header, JTAG F-2
Breakpoints 4-56, B-2

exception vectors 5-8
hardware vs software 4-56
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Index-1

Index
ROM 4-62
semihosting 4-53
signal 1-4
single-stepping B-3
SWI vector B-2

BREAKPT signal 1-4
Browsing for server 4-11

C
Cable length, JTAG 6-15
Cache

clean code address 4-14
clean data address 4-15
read-ahead memory 4-19

cache
preservation 4-60–4-61

Calculating, JTAG clock 3-22
CE Declaration of Conformity iv
Channel viewers

DLL 4-24
failing 5-9
selecting 4-24

Clocks
adaptive 6-3, 6-4
JTAG speed 3-21
menu option 3-24
setting speed 3-7
synchronizing 3-24, 6-3

Compatibility
boards 2-11
Multi-ICE with debuggers 1-3

Configuration
automatic 3-3, 3-9
manual 3-12
server 2-16

Configuration files
autoconfig.cfg 3-9
creating 3-9
examples A-5
IRlength.arm 5-5, A-3
loading 3-3
userdrvn.txt 3-13, 5-3

Connecting
debugger to Multi-ICE 4-3
Multi-ICE hardware 2-6

Connection
active server 4-12

PCB 6-12
Coprocessor

debug 4-65, D-7
signal processing D-7
system 4-49, D-7, E-1
vector floating-point D-2
0, accessing 4-65

Coprocessor 0 D-7
Coprocessor 15 4-49, D-7
Coprocessors

register display E-2
Cores, CPU

starting and stopping 3-5
Creating

Multi-ICE configuration files 3-9

D
Daisy chaining TAP controllers 6-3
Data Cache uncachable bit 5-13
Data transfer, 4-bit 3-19
DBGACK signal 1-4
DBGEN 5-5, 5-6
DBGRQ signal 1-4
Debug

extensions 1-4
Debug Comms Channel 1-5

viewers see Channel Viewers
Debug Communications Channel. see

Debug Comms Channel.
Debug handler address 4-16
Debugger

ADW 4-2
internal variables 4-36
saving settings 4-26

Debugger variables
see also Variables

Debuggers
connecting to Multi-ICE 4-3
performance 3-30

Debugging
ROM applications 4-62
self-modifying code 4-56

Defining JTAG device interaction 3-28
Desktop Update, Windows 4-3
Devices

execution control 3-27
polling 3-30

unknown 2-16, 5-3
Dialup

automatic 2-3
Digital signal processor 6-2
Disk usage 2-3
Displaying

RPC call information 3-5
DLL files

channel viewer 4-24
Downloading code

user output bits 3-20
Driver

.mul files 5-16

E
ECP parallel port 3-19
Electromagnetic conformity iv
Embedded Trace Macrocell 1-2, 1-13
EmbeddedICE 1-2, 1-4, 4-41, 4-69,

6-17
debug architecture 1-5
Interface Unit 2-13
logic, resetting 4-63, 5-6
resetting logic 6-6

EmbeddedICE/RT logic 1-4
Endian

big 4-18, D-2
little 4-18

EPP parallel port 3-19
Error messages

from ADW 5-16
from Multi-ICE server 5-12

ETM see Embedded Trace Macrocell
Examining a running system 4-45
Exception vectors

breakpoints 5-8
setting breakpoints 5-8

eXDI 1-11
Exiting Multi-ICE server 3-4
Extensions debug 1-4

F
Failed to connect 5-11
Fault Address Register 5-14
Fault Status Register 5-14
Index-2 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Index
FCC notice iv
Files

autoconfig.cfg 3-9
configuration 3-9
driver .mul 5-16
log 3-4
Non_tcp_ip.reg 2-18

Flash memory
Memory

flash 4-12
Flush debug handler cache if running on

exit 4-17
FPGA 1-14, 4-12

H
Hard disk usage 2-3
Hardware requirements 2-3
Harvard architecture 4-40
HBI-0004 2-11
HBI-0008 2-11
HHI-0016 2-11
Hot-debug enabled 4-17
HPI-0027 1-2, 2-9, 4-47, 5-14
HPI-0068 2-12
HP-UX 1-11, 2-4

I
ICE Extension Unit. see IEU
IDC header F-2
IEEE 1284 parallel port

Parallel port
IEEE 1284 mode 3-19

IEU 1-5, 4-69
Image

downloading 3-20
endian 4-18
load symbols 4-46, 4-48

Initialisation failed 5-11
Installing Multi-ICE 2-14
irlength.arm A-3

J
Joint Test Action Group. see JTAG

JTAG 1-2
boundary scan 6-11
cable length 6-15
clock speed 3-21–3-24

calculating 3-22
setting 3-21

clock too fast 5-5
controlling settings for 3-7
debugging support 1-4
defining interaction 3-28
Enabling tristate driver 5-4
list of signals F-2
low clock rates 3-23
port synchronizer 6-4, 6-5
settings 3-7
signal list F-2
14-way to 20-way adaptor 1-2, 4-47

K
Killing TAP connection 3-6

L
Leave processor in Halt mode on exit

4-17
Leave processor in Monitor mode on

exit 4-17
Linux 1-11, 2-4
Listing TAP controllers 3-6
Little endian 4-18
LM339 G-4
Loading

configuration files 3-3
lockdown 4-61
Log files 3-4
Logic levels 6-12

TTL 3-19, 3-21, G-4
Logic types

CMOS 6-14
TTL 6-14

M
MAX823 6-7
Memory regions

ARM740T, ARM940T 4-40
Management Unit 5-13

Messages
creating log files 3-4

Microsoft WinCE 4-44
Microsoft Windows

Browser service 4-11
browsing networks 1-13
Desktop Update 4-3
installing Multi-ICE 2-14
NT 4 4-3
parallel port driver 3-19
requirements 2-3
versions 2-2
2000 1-12, 1-13
95 4-3

Mixing ARM CPUs with others 6-3
MMU 5-13
Modification box (PCB) 2-11
Multi-ICE 3-4

compatibility 1-3
connection configuration 4-8
DLL 1-10

using on UNIX 1-7
install directory 4-4, 4-6
interface unit 1-7, 2-15, D-9
multiple processors 4-27
poll rate 3-30
run control 3-26
server 1-8
server poll frequency 3-30
startup menu 2-14
toolbar 3-5

Multi-ICE interface unit 4-45, 5-7
Multi-ICE menus

Connection 3-6
File 3-2
Help 3-8
overview 3-2
Run Control 3-5
Settings 3-7
View 3-5

Multi-ICE power supply 2-12
Multi-ICE server 2-2

browsing for 1-13, 4-11
configuration 3-9
connecting to 5-11
error messages 5-12
multiple connections 1-8
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Index-3

Index
starting 2-15
Multi-ICE.dll 4-4, 4-6
Multiple TAP controllers 6-9

N
Network

dialup 2-3
software 2-3

Network connections
allowing 2-17, 4-12

nICERST. see Signals
Non_tcp_ip.reg 2-18
Notices

CE conformity iv
FCC iv

nSRST. see Signals
nSYSRST. see Signals
nTRST. see Signals

O
OEM licenses 1-3
Open collector output F-3

P
Parallel port

driver 1-7
ECP mode 3-19
EPP mode 3-19
selecting 3-7
settings 3-7, 3-18
4-bit data transfer 3-19
4-bit mode 3-19
8-bit mode 3-19

PCB connections 6-12
Persistence

debugger settings 4-26
PID7T 4-64
Platform Builder 1-11
Polling devices 3-30
Portmap service 1-9, 3-17
Power

resetting 4-62
series resistor 2-12

supply 2-9, 4-45
supply requirements 2-12
Vdd 2-12, F-3

Processors
ARM10 4-65
ARM10 family 4-39–4-40
ARM1020T 1-13, 4-39, D-2,

E-24–E-27
ARM10200T 1-13, 4-39,

E-24–E-27
ARM7 family 4-37
ARM7DI 4-37
ARM7DMI 4-37
ARM7EJ-S 1-11
ARM7TDI 4-69
ARM7TDI-S 1-13, 4-37
ARM7TDMI 1-11, 2-17, 6-3
ARM7TDMI-S 1-11, 1-13, 4-37,

6-3
ARM710T 4-37, E-2, E-3
ARM720T 4-37, 4-44, E-4
ARM740T 4-37, E-5
ARM9 family 1-15, 4-38, 4-40
ARM9E-S 1-13
ARM9TDMI 4-38, 4-69
ARM9TDMI-S 4-38
ARM920T 1-13, 1-14, 4-38, 4-44,

6-3, E-6–E-9
ARM922T 1-11, 1-12, E-6–E-9
ARM925T 1-11, 1-12, E-10–E-13
ARM926EJ-S 1-11, E-14–E-17
ARM940T 1-14, 4-38, E-18–E-20
ARM946E-S 1-11, 1-12, 1-13,

4-40, E-21–E-23
ARM966E-S 1-11, 1-13, 1-14,

4-38, 4-40
Atmel AT91 5-9
description files 1-12
Harvard architecture 4-40
Intel XScale family 1-12
list of supported 2-5, 5-3
Samsung KS32C50100 1-13, 4-37,

4-41
Samsung S3C4510B 1-11, 4-37,

4-41
XScale microarchitecture 1-11,

1-12, 1-13, 4-39, 4-65, 5-8, D-3,
E-28

Program counter 4-56

R
RDI 1-2, 1-15

version setting 4-19
Read-ahead Cache 4-19
RealMonitor, ARM 1-14, 4-21
Remote Debug Interface. see RDI
Report non-fatal errors 4-20
Requirements

hardware 2-3
software 2-2

Reset
circuit 6-8
EmbeddedICE logic 4-63
power-on 4-62
signals 6-6
simulating 4-62
system 4-42
vector 4-64

ROM 4-56
at address zero 4-58, 4-64, 5-8
breakpoints in 4-62
debugging applications 4-62

RPC
display 3-5
logging 3-4

RS422 6-15
Running, Multi-ICE server 2-15

S
S bit in vector_catch 4-50, B-2, B-3
Scan chains 1-4

displaying 3-10
examining 3-3
requirements 2-5

Self-modifying code
debugging 4-56

Semihosting 4-50
breakpoint usage 4-53
Enabling and disabling 4-50

Server
configuring 2-16, 3-9
starting 2-15

Settings
clock speed 3-7
debuggers

saving 4-26
Index-4 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

Index
JTAG clock speed 3-21
parallel port 3-7, 3-18
RDI version 4-19
user output bits 3-19, 3-21, G-4

Signals
BREAKPT 1-4
DBGACK 1-4, 4-58
DBGEN 5-5, 5-6
DBGRQ 1-4, 3-27, 4-58, 5-5
drivers, ASIC 6-15
JTAG F-3
JTAG, list of F-2
MCLK 5-4
multiplexing JTAG 6-10
nICERST Glossary-4
nSRST 3-4, 3-5, 4-58, 5-3, 6-7,

6-13, 6-14, A-4, D-5
nSYSRST Glossary-4
nTDOen 5-4
nTRST 3-4, 3-5, 4-58, 5-3, 5-6, 6-3,

6-6, 6-13, A-4
nWait 4-59
open collector F-3
pull-up resistors 4-46, 4-47
reset 6-6
RTCK 3-24, 5-8, 6-13, 6-17
RTCK feedback loop 6-4
TCK 3-22, 6-13, 6-15, A-4

frequency F-7, F-11
14-way adaptor 6-17

TDI 6-13
Timing F-5
TMS 6-13
Vsupply 2-12, 4-46, 6-17
VTref 4-46, 4-47, 6-13

Single-stepping breakpoints B-3
Software requirements 2-2
Solaris 1-11, 1-13, 2-4
Standard EmbeddedICE Interface Unit

connection 2-9
Standards

IEEE 1149.1 1-2, 2-4, 3-16
Multi-ICE connection 2-9
RS422 6-15

Starting
CPU cores 3-5
Multi-ICE Server 2-14

Stopping
CPU cores 3-5

Supported processor list 2-5, 5-3
SWI vector

breakpoint B-2
handlers 4-42, 4-50
handlers, adding 4-52

Symbols
core status, JTAG 3-10
image load 4-46–4-48

Synchronizing
clocks 3-24
processor start and stop 1-8, 3-5,

3-25–3-27, D-2
Synchronous

start group 3-26
stopping processors 3-26

System requirements 2-2

T
T bit in CPSR B-4
TAP controllers 1-5, 6-9

bypass 6-3
chaining 6-3
IR register A-2
listing 3-6
multiple 6-9
user output bits 3-20

TAPOp
controlling user output bits 3-21,

G-4
protocol version 3-14
user output bits 3-19

TAPOp procedure calls
TAPOp_WriteMICEUser1 3-20
TAPOp_WriteMICEUser2 3-20

Target
debugging multiple 4-27
interface voltage levels 6-13

TCK 6-13, A-4
Test Access Port 1-5

controllers 6-2
Texas Instruments JTAG adaptor 2-12
Thumb state flag B-4
ThumbCV 4-24, 4-25
Timeout

hardware interface 5-7
Toolbars 3-5
Trace Debug Tools 1-13, 4-22

trace capture dll 4-23

U
UNIX

connecting debugger 4-3
debugging 2-2
support 1-3

Unknown
device 2-16, 5-3
watchpoint error 4-53

User input bits
sample circuit 3-21, G-4
viewing 3-21, G-5

User I/O connector G-2
User output bits

accessing G-4
controlling 3-7
setting 3-19, 3-21, G-4
setting TAP controllers 3-20
TAPOp procedure calls 3-19, 3-21,

G-4

V
V bit in CP15 4-44
Variable

vector_catch 4-58
Variables

arm9_restart_address 1-14
cache clean code address 5-12, 5-13
cp15_cache_selected 4-38, 4-39,

4-40, E-2
cp15_current_memory_area 4-37,

4-40, E-2
cp_access_code_address 4-37–4-39
debugger internal 4-36
icebreaker_lockedpoints

4-37–4-41, 4-69, B-5
internal_cache_enabled 4-19,

4-37–4-41
internal_cache_flush 4-19,

4-37–4-41
ks32c_special_base_address 4-37,

4-41
safe_non_vector_address

4-37–4-41
ARM DUI 0048F Copyright © 1998-2002 ARM Limited. All rights reserved. Index-5

Index
searchpath 4-36
semihosting_dcchandler_address

4-36–4-42, 4-51, 4-52, 5-9
semihosting_enabled 3-27, 4-24,

4-36–4-39, 4-42, 4-50–4-52, 4-58
semihosting_vector 4-50, 4-52,

4-53, 4-58
sw_breakpoints_preferred

4-37–4-39, 4-42
system_reset 4-37–4-39, 4-42
top_of_memory 4-37–4-39, 4-42,

4-63, 5-9
user_input_bit1 4-37, 4-38, 4-39,

4-43
user_output_bit1 4-37, 4-38, 4-39,

4-43
vector_address 4-36, 4-37, 4-38,

4-39, 4-41, 4-44, 4-50
vector_catch 4-36, 4-57, 4-64

Vector catch breakpoints B-2
Vector catch hardware 4-58

ARM10 processor B-2
ARM9 processor B-2
XScale processor B-2

Viewing
device information 3-15
user input bits 3-21, G-5

W
Warranty 1-2
Watchpoints 4-55

unknown 4-53
Windows. see Microsoft Windows

X
XScale processor

debug architecture D-3
debug handler 4-16
reset vector overloading D-5

Numerics
4-bit data transfer 3-19
4-bit parallel port 3-19

8-bit parallel port 3-19
Index-6 Copyright © 1998-2002 ARM Limited. All rights reserved. ARM DUI 0048F

	Multi-ICE User Guide
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Organization
	Timing diagram conventions
	Further reading

	Feedback
	Feedback on Multi-ICE
	Feedback on this document

	Introduction
	1.1 About Multi-ICE
	1.2 Availability and compatibility
	1.3 Basic principles
	1.3.1 Debug extensions to the ARM core
	1.3.2 The EmbeddedICE logic
	1.3.3 The ICE extension unit
	1.3.4 How Multi-ICE differs from a debug monitor

	1.4 Introduction to the Multi-ICE components
	1.4.1 The Multi-ICE interface unit
	1.4.2 The Multi-ICE parallel port driver
	1.4.3 The Multi-ICE server
	1.4.4 The portmap application
	1.4.5 The Multi-ICE DLL

	1.5 New features and changes from previous versions
	1.5.1 New features in Multi-ICE Version 2.2
	1.5.2 Changes in Multi-ICE Version 2.2
	1.5.3 New features in Multi-ICE Version 2.1
	1.5.4 Changes in Multi-ICE Version 2.1
	1.5.5 New features in Multi-ICE Version 2.0
	1.5.6 Changes in Multi-ICE Version 2.0
	1.5.7 New features in Release 1.4

	Getting Started
	2.1 System requirements
	2.1.1 Host software requirements
	2.1.2 Host hardware requirements
	2.1.3 Target hardware requirements

	2.2 Connecting the Multi-ICE hardware
	2.2.1 What you require
	2.2.2 Connection instructions

	2.3 Connecting to nonstandard hardware
	2.3.1 Compatibility with PID, PIE, and PIV ARM development boards
	2.3.2 Nonstandard connectors
	2.3.3 Power supply

	2.4 Starting the software
	2.4.1 Microsoft Windows start program menu for Multi-ICE
	2.4.2 Starting the Multi-ICE server
	2.4.3 Other Multi-ICE server startup features

	Using the Multi-ICE Server
	3.1 About the Multi-ICE server menus
	3.1.1 Menu structure
	3.1.2 File menu
	3.1.3 View menu
	3.1.4 Run control menu
	3.1.5 Connection menu
	3.1.6 Settings menu
	3.1.7 Help menu

	3.2 Multi-ICE server device configuration files
	3.2.1 Automatic device configuration
	3.2.2 Manual device configuration

	3.3 Server configuration
	3.3.1 Chip driver settings dialog
	3.3.2 Start-up Options dialog
	3.3.3 Parallel port settings dialog
	3.3.4 User output bits dialog
	3.3.5 User input bits
	3.3.6 JTAG settings dialog

	3.4 Using the Multi-ICE server with multiple processors
	3.4.1 Controlling device execution
	3.4.2 Run control and the debugger
	3.4.3 About run control
	3.4.4 Setting up interaction between devices
	3.4.5 Setting up the poll frequency

	Debugging with Multi-ICE
	4.1 Compatibility with ARM debuggers
	4.2 Connecting Multi-ICE to ADW, ADU, or AXD
	4.2.1 Connecting AXD
	4.2.2 Connecting ADW and ADU

	4.3 Configuring the Multi-ICE DLL
	4.3.1 Connect configuration tab
	4.3.2 Processor Settings Tab
	4.3.3 Advanced configuration tab
	4.3.4 Board configuration tab
	4.3.5 Trace configuration tab
	4.3.6 About Multi-ICE tab
	4.3.7 Channel viewer configuration tab
	4.3.8 Persistence of DLL settings

	4.4 Configuring and debugging multiple processors
	4.4.1 Configuration using named AXD target configurations
	4.4.2 Configuration using session files

	4.5 Debugger internal variables
	4.5.1 Accessing debugger internal variables
	4.5.2 Internal variable support by processor
	4.5.3 Internal variable descriptions

	4.6 Post-mortem debugging
	4.6.1 Powering the interface unit using the power jack (Multi-ICE Version 2.1 or later)
	4.6.2 Powering the interface unit using a modified cable
	4.6.3 Powering the interface unit using the 14-way JTAG adaptor, HPI-0027

	4.7 Access to CP15
	4.8 Semihosting
	4.8.1 Enabling semihosting
	4.8.2 Adding an application SWI handler when using Multi-ICE

	4.9 Watchpoints and breakpoints
	4.9.1 Watchpoints
	4.9.2 Breakpoints
	4.9.3 Watchpoints, breakpoints, and the program counter
	4.9.4 EmbeddedICE/RT breakpoints
	4.9.5 Vector breakpoints and exceptions
	4.9.6 Vector catch with ROM at 0x0
	4.9.7 Stopping the processor

	4.10 Cached data
	4.10.1 Cached data on ARM architecture processors
	4.10.2 Cached data on XScale microarchitecture processors

	4.11 Debugging applications in ROM
	4.11.1 Debugging from reset
	4.11.2 Debugging systems with ROM at zero

	4.12 Accessing the EmbeddedICE logic directly
	4.12.1 Reading EmbeddedICE logic registers from AXD
	4.12.2 Reading EmbeddedICE logic registers from ADW
	4.12.3 Using the EmbeddedICE logic values
	4.12.4 Support for the ICE Extension Unit

	Troubleshooting
	5.1 Troubleshooting
	5.1.1 The Multi-ICE server fails to autoconfigure the chip
	5.1.2 The debugger reports “Attempt to force the processor to enter debug state failed - execution continues”
	5.1.3 The debugger reports “Target processor would not enter debug state when requested. Do you want to try asserting System Reset with a breakpoint on address 0?”
	5.1.4 The debugger reports “*** Data abort ***” in the execution window
	5.1.5 Random stopping or failure to start the debugger
	5.1.6 The debugger reports “Hardware interface timeout”
	5.1.7 The debugger reports “Unable to set vector catch breakpoints on exception vectors”
	5.1.8 Data aborts or crashes when loading or running applications
	5.1.9 DCC semihosting, the channel viewer, or the DCC fails
	5.1.10 A program that prints strings seems to load and run, but displays garbled text
	5.1.11 A 'C' program including string handling or uses char arrays works on some ARM processors but not on others
	5.1.12 When trying to connect Multi-ICE and a logic analyzer to an ARM Integrator board to trace a program, Multi-ICE continually reports "The target is being reset, unable to connect"
	5.1.13 My application works using ARMulator but quickly crashes when I use Multi-ICE
	5.1.14 Running the Multi-ICE server makes my computer run very slowly
	5.1.15 I cannot connect to a Multi-ICE server from the computer that is running it

	5.2 Error messages
	5.2.1 Multi-ICE server messages
	5.2.2 Multi-ICE DLL messages

	System Design Guidelines
	6.1 About the system design guidelines
	6.2 System design
	6.2.1 Mixing ARM cores with other devices
	6.2.2 Using adaptive clocking to synchronize the JTAG port
	6.2.3 Reset signals

	6.3 ASIC guidelines
	6.3.1 ICs containing multiple devices
	6.3.2 Constraints imposed by the Multi-ICE server
	6.3.3 Boundary scan test vectors

	6.4 PCB guidelines
	6.4.1 PCB connections
	6.4.2 Target interface logic levels

	6.5 JTAG signal integrity and maximum cable lengths
	6.6 Compatibility with EmbeddedICE interface target connectors
	6.6.1 Adaptor to connect a Multi-ICE interface unit to 14-way connectors

	Server Configuration File Syntax
	A.1 IR length configuration file
	A.1.1 File syntax
	A.1.2 Device aliases

	A.2 Device configuration file
	A.2.1 Syntax
	A.2.2 Example configuration file

	Breakpoint Selection Algorithm
	B.1 Multi-ICE internal breakpoints
	B.2 How the debugger steps and runs code
	B.3 Breakpoint and watchpoint allocation algorithm

	Command-line Syntax
	C.1 Multi-ICE server

	Processor-specific Information
	D.1 The ARM1020T (Rev 0) processor
	D.1.1 Limitations of the ARM1020T (Rev 0) processor

	D.2 Intel XScale microarchitecture processors
	D.2.1 Behavior on system reset
	D.2.2 Debug mode
	D.2.3 Performance counters
	D.2.4 Coprocessors
	D.2.5 Debug handler firmware support
	D.2.6 Summary

	CP15 Register Mapping
	E.1 About register mapping
	E.2 ARM710T processor registers
	E.3 ARM720T processor registers
	E.4 ARM740T processor registers
	E.5 ARM920T and ARM922T processor registers
	E.6 ARM925T processor registers
	E.7 ARM926EJ-S processor registers
	E.8 ARM940T processor registers
	E.9 ARM946E-S processor registers
	E.10 ARM1020T and ARM10200T processor registers
	E.11 XScale microarchitecture processor registers

	JTAG Interface Connections
	F.1 Multi-ICE JTAG interface connections
	F.1.1 JTAG pinouts

	F.2 Multi-ICE JTAG port timing characteristics
	F.3 TCK frequencies
	F.4 TCK values

	User I/O Connections
	G.1 Multi-ICE user I/O pin connections
	G.1.1 User input/output pin connections
	G.1.2 Input bit logic

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Numerics

